Abstract

Normal abundant dietary sugars such as fructose and glucose can contribute to hypertension and other health issues. To avoid these health complications, many individuals use artificial sweeteners. An equivalent intake of some artificial sweeteners also can lead to hypertension. However, Stevia, a sweetener that is isolated from a Paraguayan plant, was shown in relevant literature to decrease blood pressure in both rat specimens and humans. The general purpose of this research project was to study the effects of Stevia and glucose on the expression of two key components of the renin-angiotensin-aldosterone system (RAAS): prorenin receptor (PRR) and angiotensin receptor type 1 (AT1). Increased expression of renin and angiotensin can lead to vasocostriction and systemic hypertension. Their effects are mediated by their binding to PRR and AT1. Therefore, decreases in the expression of these receptor proteins can result in lowered blood pressure. Rats were fed diets supplemented with glucose, saccharin, or Stevia over a six-week period and the kidneys were obtained. qPCR designs were developed to measure the relative amounts of PRR receptor and AT1 receptor. The methods had efficiencies greater than 97% and gave reproducible results. Then the developed methods were used to measure the expression of AT1 and PRR in the different rat kidney samples. A general increase in the relative expression of both AT1 and PRR in the glucose diet was observed. However, this increase and all other differences in the test groups were not significantly different than the control groups. These results suggest no differences in AT1 or PRR expression for different sweetener diets.

Introduction

• The renin-angiotensin-aldosterone system is located primarily in the kidneys.
• It is important in regulating blood pressure and blood volume.
• Renin and angiotensin are the major proteins in this system: they bind to prorenin receptor (PRR) and angiotensin II type 1 receptor (AT1).
• Binding to these receptors lead to local vasocostriction and hypertension.
• Hypertension is a serious health problem in the United States, more than 30% of adults have it.1
• AT1 expression is increased during hypertension.2
• In rats, and increase in fructose & sucrose intake correlated with an increase in AT1 expression and hypertension.3
• In both rats and humans, Stevia was shown to decrease blood pressure.4,5
• Less information is known about the effects of sweeteners on prorenin receptor

Objectives

• To purify mRNA from the rat kidneys and assess its quality.
• To design and test the efficiency of qPCR primers and probes to measure the expression of prorenin receptor (PRR), angiotensin II type 1 receptor (AT1), and GAPDH (endogenous control).
• To measure the expression of AT1 and PRR relative to GAPDH in the control and experimental rat kidneys

Experimental Design

Four groups, four male WKY rats per group
Fed the following liquid diets for 6 weeks:
• Standard- liquid osmolite diet
• Glucose- liquid osmolite & glucose
• Saccharin- liquid osmolite & saccharin
• Stevia- liquid osmolite & stevia
• Mixed Diet - liquid osmolite (3 weeks), glucose (1 week), stevia (2 weeks) (2 kidneys)

Measured the relative expression of AT1 and PRR

Conclusions

• Efficient qPCR systems were established for AT1, PRR, and GAPDH.
• RNA was isolated with consistent purity despite a variance in concentration.
• No significant differences were found among sample groups, though a slight increase in the relative quantity of glucose was seen for both targets.
• The lack of significant differences between diet groups was probably a result of high variance among biological replicates and small sample sizes.

Table 1. Primers and Probes Designed for AT1, PRR, and GAPDH

| Sample | Concentration (ng/µL) | Log amount (ng) | A260/A280 | A260/A280
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>E1</td>
<td>592.7</td>
<td>0.4</td>
<td>2.04</td>
<td>35</td>
</tr>
<tr>
<td>E2</td>
<td>111.9</td>
<td>0.2</td>
<td>1.97</td>
<td>40</td>
</tr>
<tr>
<td>E3</td>
<td>596.7</td>
<td>0.4</td>
<td>2.04</td>
<td>35</td>
</tr>
<tr>
<td>E4</td>
<td>439.7</td>
<td>0.2</td>
<td>2.02</td>
<td>35</td>
</tr>
</tbody>
</table>

Figure 1. Simplified Diagram of Renin-Angiotensin System

Figure 2. Prorenin Receptor System Design. Crossing the exon junction ensures that the primers and probes are specific for only the mRNAs of interest

Figure 3. Diagram of qPCR Theory. As polymerization occurs, the Fluorophore is cleaved from the probe and emits measurable fluorescence

Figure 4. Example Amplification Plot comparing the threshold cycles (Ct) of control and experimental targets. The C_t is the cycle where the fluorescence reaches above baseline fluorescence, generally during the exponential phase of the curve.

Figure 5. 15% denaturing gel demonstrating the separation of short and long RNAs in the mirVana procedure

Figure 6. Standard curve to determine AT1 system efficiency. System was 97% efficient.

Figure 7. Standard curve to determine PRR system efficiency. System was 98% efficient.

Figure 8. Relative PRR mRNA quantity for each diet group

Figure 9. Relative AT1 mRNA quantity for each diet group

Resources

Acknowledgements

Department of Chemistry and Geology
Dr. Penny Kodluch
Dr. David Bissonette
Dr. Mary Hadley
& their research students

This document is available in alternative format to individuals with disabilities by calling Accessibility Resources at 507-389-2825 (V), 800-627-3529 or 711 (MRS/TTY).