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iii

We present here a method for computing the homology of a substitution tiling

space. There is a well established cohomology theory that uses simple matrix

computations to determine if two tiling spaces are different. We will show how to

compute Putnam’s homology groups for these spaces using simple linear algebra.

We construct a Markov Partition based on the substitution rules, and exploit the

properties of this partition as a shift of finite type to construct algebraic invariants

for the tiling space. These invariants form a chain complex, of which we can

compute the homology. In our examples we will demonstrate an interesting duality

between the cohomology and homology of these spaces. This leads to a conjecture

relating the two theories to each other and we present the reasoning behind the

conjecture.
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Chapter 1

Introduction

Substitution tilings are interesting mathematical objects, both from a purely dy-

namical perspective, and from their relation to quasicrystals, materials science,

and computer science. We are interested in classifying these tilings by knowing

when they are combinatorially equivalent. By building a topological space of these

tilings, called a tiling space, we are able to apply topological invariants to the spaces

in question. If we are able to find that two spaces are topologically homeomorphic

via an orientation preserving map, we know then that the tilings are combinatori-

ally equivalent. The cohomology of these tiling spaces has been well understood

for some time [1]. Recently a homology theory has been presented which can be

applied to these spaces. Here we will consider one-dimensional substitution tiling

spaces, with finite local complexity. We employ the homology theory of Putnam

[13] for Smale spaces to compute the homology of our tiling spaces.

To understand tiling spaces, it is appropriate to begin with Smale’s Axiom A

systems [18]. An Axiom A system is a map f on a smooth manifold M, satisfying

the conditions that

• The non-wandering set of f , Ω( f ) is hyperbolic and compact.

• The periodic points of f are dense in Ω( f ).

1
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These were the foundation for Ruelle’s [16] definition of a Smale Space. Ruelle

added a binary operation called the bracket that can be applied to two points

in an Axiom A system that are sufficiently close using the appropriate metric.

Ruelle defined stable and unstable sets for each point in the space, and showed

how the bracket operation was the unique point of intersection of the stable and

unstable sets of the points in question. It was shown later by Bowen [6] that the

non-wandering sets of the Axiom A systems admitted a Markov partition. This

allowed the systems to be expressed as a coding known as a shift of finite type [11]

when the automorphism on the system is restricted to certain subsets. It is viewing

a tiling space in this manner that allows the use of Putnam’s [13] homology theory.

Smale also described the dynamics of the solenoid [18] under the doubling map.

This map essentially begins with a torus, then embeds this torus inside itself by

wrapping n times. The map is then repeated. This was adapted by Williams’ [19] in

his description of one-dimensional hyperbolic attractors, essentially using copies

of the circle instead of the torus and constructing the solenoid as an inverse limit.

There is a relationship between these solenoids and aperiodic tiling spaces. The

solenoids are inverse limits of expanding maps on circles, while the tiling spaces

are inverse limits of expanding maps on wedges of circles.

All hyperbolic one-dimensional attractors can be split into two classes. There

are the true solenoids [19], which are purely distinguishable by their cohomology.

There are also the aperiodic substitution tiling spaces [1, 4, 20], which have been

referred to as degenerate solenoids or as Williams’ solenoids. Anderson and Put-

nam [1] showed that the unstable equivalence classes of a Smale space are actually

the orbits of a tiling dynamical system. From a topological perspective, these are
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really the arc components of the space. In this way, the properties of the dynamical

system were able to be used to compute topological invariants. Anderson and

Putnam [1], and later Barge and Diamond [3], used this to view a tiling space as an

inverse limit space, which allowed them to compute the Čech cohomology of the

spaces.

One-dimensional substitution tiling spaces are constructed by taking a collec-

tion of sets (called prototiles) which are homeomorphic to the unit ball on the real

line, and applying to them a substitution rule which inflates each tile and replaces

the inflated tile with a collection of prototiles. The tiling space is the collection of

all possible allowed tilings of the real line using these particular prototiles. By an

allowed tiling, we mean a patch of prototiles that may arise from action on a set of

prototiles by substitution. There are two maps on the tiling space, the substitution

map and the map which acts on a tiling by translation, essentially moving the

origin. Both of these maps are automorphisms of the tiling space.

The method described here for computing the homology of these spaces in-

volves constructing a Markov partition which maps to the tiling space via a finite-

to-one, onto, map. We will record the location of the origin at each iteration of the

substitution, and in doing so, create a sequence that can be mapped to the tiling.

The map is not one-to-one, since at the boundary of two tiles, we have two possible

choices of coding. Once we have made a choice (right or left), we make the same

choice for all future codings. Depending on the tiling we are using, it may not

be sufficient to only know in which prototile the origin has landed, but also the

j nearest neighbors of this prototile. Knowing these neighbors makes our tiling

recognizable, in that if we know what tile we are in, we know where we came from
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prior to the last substitution.

Once we have our Markov partition constructed, we can use properties of shifts

of finite type [11] to define algebraic invariants known as dimension groups [9]. It

can be shown that these groups form a chain complex, of which we may take the

homology.

It is conjectured that, for all one-dimensional substitution tiling spaces Ω, the

homology and Čech cohomology are related via

H0(Ω) � Ȟ1(Ω) and H1(Ω) � Ȟ0(Ω).

This leads us to suspect a higher analog for n-dimensional aperiodic substitution

tiling spaces.

Conjecture 1.1. Given an aperiodic substitution tiling space Ω, of dimension n,

Hk(Ω) � Ȟn−k(Ω).

We present several examples which support this theory for one-dimensional

spaces, and show the future direction of our work in confirming it.

In this paper, we first present aperiodic substitution tiling spaces, showing that

they are both Smale spaces and inverse limit spaces. As inverse limit spaces we

present a method for computing cohomology, and as Smale spaces, we present a

method for computing homology. Much of our work here is in simplifying the

theory of [13] to apply specifically to substitution tiling spaces. Finally, we produce

examples in which we support the conjecture above.



Chapter 2

Substitution tiling spaces

We consider here the dynamical systems generated by substitution tiling systems.

A tiling of a space Rd is a covering of the space by sets with pairwise disjoint

interiors, each of which is a translation of one of a finite number of sets called

prototiles [1]. Each prototile is a set which is homeomorphic to an open ball in

Rd. We begin by considering partial tilings, which are collections of tile that have

pairwise disjoint interiors. The support of a partial tiling is the union of it’s tiles.

Thus a tiling T has support Rd. For a tile t, we use the notation t ∈ T.

Definition 2.1. [17] A tiling is rotationally simple if it satisfies three assumptions

1. There are only a finite number of prototiles, up to Euclidean motion.

2. Each tile is a polygon

3. Tiles meet full-edge to full-edge

For our purposes we will only consider tilings which are rotationally simple.

Let u ∈ Rd and U ⊆ Rd. Then we have

T(u) = {t ∈ T|u ∈ t}. T(U) =
⋃
u∈U

T(u).

We define expansions and translations of T by

λT = {λt|t ∈ T} for λ ∈ R+

5
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T + u = {t + u|t ∈ T} for u ∈ Rd.

Often a collection of tilings Ω is defined by a substitution rule. Let {pi|i = 1, . . . ,n}

be the set of prototiles. Let Ω̂ be the collection of all partial tilings ofRd that contain

only translations of these prototiles. We assume that there is some inflation constant

λ > 1, and a rule that associates each prototile with a partial tiling, such that when

it is inflated by λ, it is in Ω̂. We define the inflation map ω̂ : Ω̂→ Ω̂ by

ω̂(T) = λ
⋃

pi+u∈T

(Pi + u).

We let Ω be the subset of Ω̂ such that for any partial tiling P with bounded

support, we have P ⊆ ω̂n({pi + u}). Thus P is a subset of it’s component prototiles

after they have been shifted and inflated appropriately. We can then let ω = ω̂|Ω.

This map takes a tiling and applies the inflation map and substitution rule to it, but

the result is another tiling in Ω.

As an example, we may look at the Fibonacci tiling of R. Think of two sets

homeomorphic to open balls that are placed on the real line, and labelled a and b.

These are really just intervals in this case. We may assume that they are of different

lengths. We define the substitution rule as

a→ ab

b→ a.

In such a way we may inflate each tile and substitute the appropriate prototiles

to obtain another tiling of the real line. Only certain sequences of prototiles may

occur in a tiling, depending on the substitution rule. We say a patch of tiles is

allowed if it occurs as the result of applying the substitution map to the prototiles.
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The space Ω in this case is the collection of all allowed tilings of the line, and the

map ω : Ω → Ω can be thought of as simply shifting the location of the origin to

obtain another element of the space.

Our conjecture will rely on a theory for a more general type of dynamical system,

called a Smale space. A Smale space is a non-empty, compact, metric space Ω, with

a map ω : Ω → Ω. We generally denote such a space as simply (Ω, ω). Assuming

we are given an ε > 0, we define a map [·, ·] called the bracket as

[·, ·] : {(x, y) ∈ Ω ×Ω|d(x, y) < ε} → Ω

with the properties that the bracket is continuous and

• [x, x] = x

• [[x, y], z] = [x, z]

• [x, [y, z]] = [x, z]

when all operations above are defined. A Smale space has local stable and unstable

sets defined by

VS(x, ε) = {u|u = [u, x] and d(x,u) < ε}

VU(x, ε) = {v|v = [x, v] and d(x, v) < ε}

with the property that

[x, y] = VS(x, ε) ∩ VU(x, ε).

We will also require the global stable and unstable sets, defined by

VS(x) =

∞⋃
n=0

ω−n(VS(ωn(x), ε))
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VU(x) =

∞⋃
n=0

ωn(VS(ω−n(x), ε))

For the formal definition, see [16].

In order to show that our tiling space is a Smale space, we must first define a

metric on the tiling space. Given any two tilings T, T′ ∈ Ω, we define

d(T,T′) = inf({1/
√

2} ∪ {ε|T + u and T′ + v agree on B1/ε(0) for some ||u||, ||v|| < ε}).

Essentially, two tilings are close if they agree on a ball of radius 1/ε around the

origin after a translation of at most ε [1].

With our metric defined, we let (Ω, d, ω) be our tiling space. We define the

bracket for our tiling space as [T,T′] = T′ + v − u, when d(T,T′) < ε0.

By [1] we have that (Ω, d, ω) is a Smale space. We note here that Ω is the closure

of Ω̂, and that the space contains only one connected component. Putnam [13] has

developed a homology theory that is valid for any Smale space. We will show how

the general theory may be simplified for a tiling space. Substitution tiling spaces

have the property of being non-wandering, which will aid us in the simplification.

Definition 2.2. A point x in a dynamical system (Ω, ω) is non-wandering if, given an

open set U containing x, there is a positive integer N such that ωN(U) ∩U is non-empty.

We say the system (Ω, ω) is non-wandering if each x ∈ Ω is non-wandering.

Another property of tiling spaces we will be using in computing both the

cohomology and the homology is that tiling spaces can be viewed as inverse limit

spaces, which we now define.

Begin with a collection Γ0,Γ1, . . . of topological spaces. For each n ∈ Z≥0, let

fn : Γn+1 → Γn be a continuous map. We view the product space ΠΓn as a set of
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sequences (x0, x1, . . .) with each xn ∈ Γn.

Definition 2.3. [17] The inverse limit space of a collection of topological spaces as above

is

lim
←−−

(Γ, f ) = {(x0, x1, . . .) ∈ ΠΓn| for all n, xn = fn(xn+1}.

As per [1], for any tiling space, we may consider it as an inverse limit of

CW complexes, using the substitution as the bonding map. For a tiling space the

complex Γi is fixed, and the map fi is the substitution map for all i. These complexes

can be generated using the prototiles as edges, with the connected components

representing when it is possible for one prototile to follow another. For example,

in the Fibonacci tiling above, we could have the complex

a b

as each of our Γn. The Fibonacci tiling space is the inverse limit space taken from

these CW-complexes using the bonding map introduced by the substitution rule.

That is, the circle a will wrap around itself and then the b circle, and the circle b will

wrap around the a circle under the map. The CW complex is a bit misleading, as it

appears the path bb can occur here, when it does not occur in the tiling space. Due

to this artifact, it may not be the case the the inverse limit space is homeomorphic

to the substitution tiling space, but the following theorem gives a condition on the

tiling space that will guarantee this property.
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Theorem 2.1. [1] If a substitution forces it’s border, then the inverse limit of the component

spaces under the substitution map is homeomorphic to the tiling space.

Definition 2.4. [8] A substitution tiling space (Ω, ω) forces it’s border if, given two

tilings T,T′ and a point t ∈ T, t ∈ T′, there exists a positive integer N such that ωN(T) and

ωN(T′) coincide. That is, the tiles must have the same pattern of neighboring tiles following

the substitution.

We can always create an equivalent tiling spaces that forces it’s border by

collaring. Rather than just using the individual prototiles as our edges, we can

created collared tiles, where we relabel the tiles so that we know not only the tile

type, but also that of it’s neighbors. For example, rather than having the tiles a

and b, let us instead use the tiles 1 = (a)b(a), 2 = (b)a(a), 3 = (a)a(b), and 4 = (b)a(b).

The letters in parentheses are not part of the tile, but they represent the nearest

neighbors to each prototile, and so are included in our label of the tile. Our CW

complex then becomes

1 = (a)b(a)

4 = (b)a(b)

2 = (b)a(a)3 = (a)a(b)

The inverse limits of these CW complexes are isomorphic [1]. Thus tiling spaces

may be viewed as inverse limits of expanding maps on wedges of circles. Such

spaces correspond to Williams’ solenoids [19].



Chapter 3

Čech cohomology of substitution tiling spaces

There are several methods for computing the Čech cohomology of a tiling space.

The first method was given by Anderson and Putnam in [1]. It relies on showing

that a tiling space is an inverse limit space, and that the Čech cohomology of an

inverse limit space is isomorphic to the direct limit of the singular cohomology of

the individual spaces in the inverse limit. That is,

Ȟn(lim
←−−

(Γ, ϕ) � lim
−−→

(Hn(Γ), ϕ∗)

[12] where ϕ is the bonding map and ϕ∗ is the inducted map on the cohomology

groups of Γ.

This method may be computationally intensive, as we see when we examining

the tiling space (X, ϕ) generated by

a→ aaabb and b→ ab.

Using the Anderson-Putnam method, we first collar the tiles and relabel them.

This gives us 7 tiles, which we list below, as well as showing where they are taken

by the substitution map ϕ.

11
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1 : (a)a(a)
ϕ
→ (aaabb)aaabb(aaabb) = 51234

2 : (a)a(b)
ϕ
→ (aaabb)aaabb(ab) = 51234

3 : (a)b(b)
ϕ
→ (aaabb)ab(ab) = 67

4 : (b)b(a)
ϕ
→ (ab)ab(aaabb) = 67

5 : (b)a(a)
ϕ
→ (ab)aaabb(aaabb) = 51234

6 : (b)a(b)
ϕ
→ (ab)aaabb(ab) = 51234

7 : (a)b(a)
ϕ
→ (aaabb)ab(aaabb) = 67

Since the tiling space is an inverse limit space, we can take the one CW complex

that makes up the inverse limit space and represent it with a graph, as below.

1

2 3

4

5

6

7

We then look at where each edge of the graph and each vertex of the graph is

taken under the substitution. We will use a theorem of [1] that the Čech cohomology

of an inverse limit space is isomorphic to the direct limit of the cohomology as stated

above. Begin by computing the substitution matrices that records how ϕ acts on

edges and vertices. We will denote these as A0 and A1, referring to the vertices and

the edges. We must also build a matrix δ0 which computes the coboundary map of

the CW complex.

There are 6 vertices and each vertex is mapped to another vertex under substi-



13

tution, thus

A0 =



0 0 0 0 1 0

0 0 0 0 1 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 1 0

0 0 0 0 1 0


There are 7 edges and each edge is mapped exactly over a collection of edges.

We place a 1 in the i j entry of the matrix if the edges i maps over the edge j. Thus

A1 =



1 1 1 1 1 0 0

1 1 1 1 1 0 0

0 0 0 0 0 1 1

0 0 0 0 0 1 1

1 1 1 1 1 0 0

1 1 1 1 1 0 0

0 0 0 0 0 1 1


and since the coboundary of each vertex tracks which edges enter or leave that
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vertex we have the 7 × 6 matrix

δ0 =



−1 1 0 0 0 0

0 −1 1 0 0 0

0 0 −1 1 0 0

0 0 0 −1 1 0

1 0 0 0 −1 0

0 0 0 0 −1 1

0 0 0 01 −1



.

We build the following commutative diagram which shows how the cobound-

ary map is related to the matrices which are used to compute the direct limit. We

let C0 � Z6 be the zero dimensional cochains and C1 � Z7 be the one-dimensional

cochains. All higher dimensions are zero in this case.

0 −−−−→ 0 −−−−→ 0 −−−−→ . . .xδ1

xδ1

xδ1

C
1 A1
−−−−→ C

1 A1
−−−−→ C

1 A1
−−−−→ . . .xδ0

xδ0

xδ0

C
0 A0
−−−−→ C

0 A0
−−−−→ C

0 A0
−−−−→ . . .

By computing the eigenvalues and rank of each matrix, it becomes easy to

compute the image and kernel of the coboundary map, and thus compute the

cohomology.

The ranks of the matrices are Rank(A1) = 2, Rank(A0) = 2, and Rank(δ0) = 5,

and the corresponding eigenvalues are λA1 = 0, 0, 0, 0, 0, 2 +
√

3, 2 −
√

3 and λA0 =

0, 0, 0, 0, 0, 1.

We use the computational method presented in Sadun [17] here. Let K represent
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the complex above. We compute H0(K) � ker(δ0) and H1(K) � ker(δ1)/im(δ0). To

determine what is in each image and kernel, we rely on the fact that the diagram

must commute. Therefore, if an eigenspace associated with A0 is not an eigenspace

associated to A1, it must be in the kernel of δ0. The range of δ1 is zero, so everything

must be in the kernel. We note that no non-zero eigenvalues will persist in the direct

limit, so we need only take the direct limit of the cohomology groups under the

matrices A0 and A1 respectively. These are easily computed using the eigenvalues,

giving us

Ȟ0 � Z

Ȟ1 � Z2.

Since there is only one connected component, in all one-dimensional tiling

spaces, Ȟ0(Ω) � Z as described in Munkres [12]. We see that this is identical to the

result obtained above.

While these computations were not difficult in this example, direct limits can be

much more complicated. We will instead consider the method developed by Barge

and Diamond [3]. It is less computationally intensive, and will be more useful

here, since we are only interested in comparing the results of the cohomology

computations with the homology computations.

The Barge-Diamond method involves looking at something called the germ of

each tile. This can be thought of as a small piece of the edge of each tile. By looking

at the eventual range of each germ under the substitution, we are able to determine

the cohomology of the entire space.

Definition 3.1. [17] Let W be a finite set, and f : W → W. There exists an N ∈ N such
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that for all n ≥ N, f n(W) = f N(W). f N(W) is called the eventual range of W.

We now take a CW complex X that represents our tiling space Ω, and a map σ

representing the the range of each prototile during an iteration of the substitution.

Let M be a matrix representing σ. Let X0 be the set of germs of X, and (X0)ER it’s

eventual range under σ. We then have

Theorem 3.1. [3] For a one-dimensional tiling space, if (X0)ER has k connected components

and l independent loops, then Ȟ1(Ω) � Zl
⊕ lim
−−→

A/Zk−1.

Using this method we can compute the cohomology of any one dimensional

tiling space quite quickly and easily. Using the example given above, but without

collaring, a→ aaabb and b→ ab. We will see how this is a much faster and simpler

method. We note that aa,ab,ba, and bb are all possible, so there are transition germs

eaa, eab, eba, and ebb. These can be thought of as small pieces of the prototiles that

have been ”split” off according to their transitions. In contrast, there would not be

an ebb germ in the Fibonacci tiling, as bb does not occur (see Chapter 6). For our

current example, the Barge-Diamond complex is

eab

eba

eaa ebb ba

We can apply the substitution rule to see where each germ ends up. The germ

eaa represents the ”end” of and a tile and the “beginning” of an a tile. The transition

aa maps to the transition ba. We therefore say eaa → eba, and similarly eab → eba,
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eba → eba, and ebb → eba, since all tiles end in a and begin in b under substitution.

Only one germ is in the eventual range, so we have l = k = 1. We take the direct

limit of the matrix

A =

 3 2

1 1

 .
Computing the eigenvalues to be λ = 2 ±

√
3, we have that the direct limit is Z2.

Since the eventual range is only one element, we have one connected component

and no loops. Thus the cohomology computation becomes

Ȟ1 � Z0
⊕Z2/Z0 � Z2.

The eventual range may have many loops and connected components. This

would prevent the cohomology from being computable merely by the direct limit.

We present an example in chapter 6 where this is the case.



Chapter 4

Factor maps, shifts of finite type, and Markov partitions

Here we describe several characteristics of a Smale space that are necessary for the

development of the homology theory. All of the following are standard definitions

from dynamical systems [11, 15, 7], but we simplify many definitions to apply

specifically to substitution tiling spaces.

Definition 4.1. [13] Let (X, ϕ) and (Y, ψ) be dynamical systems. A map π : (X, ϕ) →

(Y, ψ) is a continuous function such that π ◦ ψ = ϕ ◦ π. If π is also surjective, it is called

a factor map.

In our construction of an s/u-bijective pair for the tilings spaces we will consider,

we will require the notion of a shift of finite type.

Definition 4.2. [11] Let A be a finite alphabet (or set).

• The full shift AN on a set A is the collection of all bi-infinite sequences of elements

of A. Denote each element of the shift as (xi)i∈Z.

• The shift map σ on a full shirt AN maps a point x ∈ AN to a point y = σ(x) such

that the yi = xi+1. This is conventionally thought of a shifting the origin one space to

the left in the original sequence.

• A shift of finite type is a subset of a full shift where a finite number of blocks are

forbidden from appearing in any sequence.

18
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Example 4.1. An example of a shift of finite type would be all bi-infinite sequences made

up of elements of the set {1, 2}, where the symbol 2 is not allowed to follow itself. Thus the

sequence

. . . 12112121 . . .

would be allowed but the sequence

. . . 121122121 . . .

would not.

Definition 4.3. Let G be a graph and (ΣG, σ) be the associated shift of finite type. Given

a Smale space (X, ϕ) with Smale constant εX and a factor map π : (ΣG, σ) → (X, ϕ),

we say the factor map is regular if, for all e, f ∈ ΣG such that t(e0) = t( f 0), we have

d(π(e), π( f )) ≤ εX and π[e, f ] = [π(e), π( f )].

That is, the map is regular if the Smale bracket is defined and the map commutes

with the bracket operation. We note that any factor map can be made regular by

taking the graph to a higher block presentation such that there is only one edge

between each pair of vertices. For a full explanation of constructing a higher block

presentation, with many examples, see Lind and Marcus [11].

Definition 4.4. [13] Suppose that (X, ϕ), (Y1, ψ1), and (Y2, ψ2) are dynamical systems

and that π1 : Y1 → X and π2 : Y2 → X are maps. The fibered product of Y1 and Y2 is the

space Z = {(y1, y2)|y1 ∈ Y1, y2 ∈ Y2, π1(y1) = π2(y2)}.

It is also possible to create the fibered product of a space with itself.

Definition 4.5. [13] Let π : (Y, ψ)→ (X, ϕ) be a map. For N ≥ 0, define

YN(π) = {(y0, y1, . . . , yN) ∈ YN+1
|π(yi) = π(y j) for all 0 ≤ i, j ≤ N}.
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Definition 4.6. [13] Let (X, ϕ) and (Y, ψ) be Smale spaces and let

π : (Y, ψ)→ (X, ϕ)

be a map. The map π is called s-bijective (u-bijective) if for any y in Y, the restriction of

π to Ys(y) (Yu(y)) is a bijection to Xs(π(y))(Xu(π(y)),respectively).

Definition 4.7. Let (X, ϕ) be a Smale space. We define an s/u-bijective pair to be the set

π = (Y, ψ, πs,Z, ζ, πu), where

1. (Y, ψ) and (Z, ζ) are Smale spaces.

2. πs : (Y, ψ)→ (X, ϕ) is an s-bijective factor map.

3. Yu(y) is totally disconnected for every y in Y

4. πu : (Z, ζ)→ (X, ϕ) is a u-bijective factor map.

5. Zs(z) is totally disconnected for every z in Z

Theorem 4.1. [13] If (X, ϕ) is a non-wandering Smale space, there exists an s/u-bijective

pair for (X, ϕ).

Theorem 4.2. [13] The homology of a Smale space is independent of the choice of s/u-

bijective pair.

For a substitution tiling space, we may greatly simplify our s/u-bijective pair.

Theorem 4.3. [13] Let (X, ϕ) be a non-wandering Smale space. Then there exists a shift

of finite type (Σ, σ) and a factor map

π : (Σ, σ)→ (X, ϕ)



21

such that πmay be written as the composition of an s-bijective factor map with a u-bijective

factor map.

Since a tiling space is non-wandering, and has a totally disconnected stable set,

given a tiling space (X, ϕ), we may choose π = (Σ, σ, πs,X, ϕ, id) as our s/u-bijective

pair, where id represents the identity map, that is, Z = X and ζ = id.. We are then

left with the problem of how to construct this shift of finite type and the s-bijective

factor map πs. This will be resolved using the notion of a Markov partition.

Definition 4.8. [11] A topological partition of a metric space M is a finite collection

P = {P0,P1, . . . ,Pr−1} of disjoint open sets such that M = P0 ∪ · · · ∪ Pr−1.

We may construct a shift space XP,φ whose elements each denote a member

of the topological partition. Thus, if we have a dynamical system, a sequence in

XP,φ may record into which member of the partition a particular point falls at a

particular iteration of the system. For every x ∈ XP,φ we may define the non-empty

set

Dn(x) =

n⋂
k=−n

φ−k(Pxk) ⊆M.

Definition 4.9. [11, 6] Let (M, φ) be an invertible dynamical system. A topological

partition of M is a Markov Partition if for every x ∈ XP,φ, the intersection
⋂
∞

n=0 Dn(x)

consists of exactly one point and XP,φ is a shift of finite type.

In the next section, we show hot to construct a Markov partition for a substi-

tution tiling space. We will utilize the existing coding given by the tiles in each

tiling to simply record into which tiles the origin falls under substitution. It should

be noted that the resulting Markov partition is a shift of finite type, whereas the

coding from the tiles in a tiling is never a shift of finite type.
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Computing the homology of a substitution tiling space

In chapter 3 we discussed a cohomology theory that was entirely derived from the

action of the substitution map. Here we present a homology theory that, while

related to the substitution, requires us to look at other properties of the space. The

homology theory was developed by Putnam in [13] for any general Smale space.

We have adapted his method here to be specific to aperiodic substitution tiling

spaces.

Let us first digress briefly to define and discuss the dimension groups of Krieger

[9]. These will be the entries in our chain complex that allow us to compute the

homology of the tiling space. There are two dimension groups, denoted stable and

unstable, associated with any shift of finite type. We will only concern ourselves

with the stable group.

Definition 5.1. Given a shift of finite type (Σ, σ), let Ds(Σ), be the collection of all non-

empty, compact, open subsets of Σ, with the following equivalence relation. Given E,F ∈ Σ,

let E ∼ F if [E,F] = E and [F,E] = F, with the restriction that E F if and only if σ(E) σ(F).

Let [E] be the equivalence class of E. The stable dimension group, denoted Ds(Σ) is

defined to be the free abelian group generated byDs(Σ), modulo the subgroup generated by

all [E ∪ F] − [E] − [F], where E and F are disjoint.

22
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This definition is rather obtuse, so we will need a more direct way of computing

the dimension groups. By choosing a graph which presents our shift of finite type

[11, 13], we may compute a dimension group for the graph which is isomorphic

to the dimension group of the shift of finite type. For our purposes, we will only

require the stable group, which will be denoted with a superscript s. For the full

development of both groups, see Chapter 3 of [13]. Let G be a graph and consider

ZG0, the abelian group generated by the set of vertices, G0. For any edge e ∈ G, let

the maps t(e) and i(e) denote the vertex at which that edge terminates and originates,

respectively. We define a map γs
G : ZG0

→ ZG0 by

γs
G(v) = Σt(e)=vi(e).

We then let the dimension group be defined by

Ds(G) = lim
−−→

(ZG0, γs
G).

The standard definition of this direct limit is given in [10], but we use the alternate

definition from [13].

Definition 5.2. Construct the setZG0
×N, and let (a,n) ∼ (b,n) if there exists some l ≥ 0

such that (γs
G)n+l(a) = (γs

G)m+l(b). For (a,m) ∈ ZG0
×N, let [a,m] denote it’s equivalence

class. The direct limit can be seen as the set of all equivalence classes of this set.

In practice, we will compute the direct limit by examining the adjacency matrix

of the graph G. If we calculate the eigenvalues of this matrix, we may use these to

see what group persists in the direct limit. Any non-zero eigenvalue plays a role.

For each integer eigenvalue λ, we get one copy of the integers with 1
λ adjoined.
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The direct limit is then the direct sum of these groups. For example, if the non-zero

eigenvalues of the matrix were 1,−1, 2, the direct limit would be Z2
⊕Z[ 1

2 ].

We will also need the dimension group of the higher block presentations of a

graph. These are constructed by letting the edge set of a graph be the vertex set of

another graph. We look at the allowed transitions between edges, and set each of

these transitions as a new edge. For example, we could have the graph G

v0 1

with the vertex set {v} and edge set {0, 1}, and it’s higher block presentation G1

0 1

01

00 11

10

with vertex set {0, 1} and edge set {00, 01, 10, 11}. Note that the edges in G1 are

simply pairs of edges from G0. We may continue in this manner to generate the

higher block presentation GK.

Theorem 5.1. Let G be a graph and K,K′ ≥ 0. Then Ds(GK) � Ds(GK+K′).

Now that we have the dimension group of a graph established, we require the

dimension group of a shift of finite type. Let (ΣG, σ) be the shift of finite type

associated to the graph G. Then (ΣG, σ) is the collection of all bi-infinite paths in G.

We fortunately have the result of Putnam that Ds(G) � Ds(ΣG, σ).
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We will need to compute higher dimensional dimension groups to build our

chain complex. For these we will look at higher dimensional graphs, using the

fibered product. Let Gn denote the fibered product of G with itself n times. Then

Gk
n is the set of all paths of length k + 1 in this fibered product.

Definition 5.3. [13] Let k,N ≥ 0.

• LetB(Gk
N,SN+1) ⊆ ZGk

N be the subgroup generated by all elements p ∈ Gk
N such that

p = p · α and all elements p = sgn(α)p · α, for some permutation α ∈ SN+1.

• Let Q(Gk
N,SN+1) be the group

ZGk
N/B(Gk

N,SN+1).

Example 5.1. Using the second graph above, let G0
1 be the paths of length 1 in the fibered

product. We then have G0
1 = {(0, 0), (0, 1), (1, 0), (1, 1)}. We look at the action of elements

of this set under the group S2. There are only two elements of this permutation group, one

of which is the identity, and the other of which swaps the entries of an element of G0
1. If we

look at the elements that are equal to themselves under a permutation we have (0, 0) and

(1, 1). The elements (0, 1) and (1, 0) are permutations of each other, so we only consider

one of them when we generate B(G0
1,S2) � Z3. Therefore Q(G0

1,S2) � Z4/Z3 � Z. We

will show a method later in this chapter for determining the final group Q(Gk
N,SN+1) more

quickly.

Definition 5.4. The higher dimensional Krieger dimension groups are defined by

Ds
Q

(Gk
N) = lim

−−→
(Q(Gk

N,SN+1), γs).
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To actually build our chain complex, we begin with a substitution tiling space

with finite local complexity, which we denote (X, ϕ), where X is our space and ϕ is

the substitution map.

From this we build an s/u-bijective pair, letting (Y, ψ) be a Markov partition

on the tiling space (the construction will be described shortly), and (Z, ζ) = (X, ϕ),

with ζ the identity map. The requirements for and s/u-bijective pair are met, as

the identity map is bijective, and therefore u-bijective, and the stable sets of a

substitution tiling space are totally disconnected, satisfying the condition for (Z, ζ).

For our space (Y, ψ), we require the map πs : Y→ X to be a regular, s-bijective factor

map. By choosing our map to be

πs(y) =

∞⋂
n=−∞

ϕ−n(yn)

as in [6], these conditions are satisfied.

In building our Markov partition, we code the each point in our tiling space by

recording the prototile type into which the origin falls under each iteration of the

substitution. In the case that the origin lands on the border of two tiles, we make

a choice to code by the left or right tile. Once this choice has been made, the same

choice must be made for the remainder of the tiling. The one concern in making this

coding is that, once the tiling are coded, the substitution map must be invertible,

for which we need recognizability, as defined in [14]. We basically need to ask if

one can determine the pre-image of a particular tile under the substitution map.

This is essential given the factor map above involves inverting the substitution.

Recognizability can be obtained by taking the j-th order collaring, that is, let each

”rectangle” in the partition be selected to be the collared prototile containing the
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origin, with the collaring chosen so the j nearest neighbors of this tile are known.

For some such j, the tiling is always recognizable.

Now that we have our Markov partition, we note that it is clearly a shift of finite

type. Therefore, we may apply the following theorem from [13] to compute the

homology of the tiling space.

Theorem 5.2. Let (X, ϕ) be a Smale space and (Σ, σ) a shift of finite type. Suppose that

πs : (Σ, σ)→ (X, ϕ) is an s-bijective factor map. Then the homology Hs
N(X, ϕ) is naturally

isomorphic to the homology of the complex (Ds
Q

(Σ∗(πs)), ds(πs))

Relabeling our Markov partition as (Y, ψ) = (Σ, σ), we need to find the com-

plex (Ds
Q

(Σ∗(πs)), ds,K(πs)) and compute its homology. In coding our space into the

Markov partition, we made a choice of left or right tile when the origin landed on

the border of two tiles. Thus we may have two different codings that map to the

same tiling.

Theorem 5.3. [13] Given an s/u-bijective pair for a Smale space (X, ϕ), let M0 be such

that the cardinality of πs
{x} is less than M0 for all x ∈ X. Then for M ≥M0, the dimension

group Ds
M = 0.

Our factor map here is 2 : 1, and by the theorem above, we need to only consider

the (0,0) and (1,0) entries in our complex.

Begin by building a graph G to represent the Markov Partition under the sub-

stitution map. In order for the factor map to be regular, we must have only one

edge connecting each pair of vertices. If this is not the case, taking a higher block

presentation of the graph will remedy the situation. We denote it’s vertex set by

G0 and it’s edge set by G1. Since Ds
Q

(Σ0) � Ds
Q

(G0), we need only consider the
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dimension group of the graph. Let A be the adjacency matrix of the vertices of G0,

and take lim
−−→

(ZG0
0,A). This will yield the (0,0) entry of our complex.

To compute the next element of our chain complex, we need to define G1 be be the

fibered product of G with itself. It is defined as G1 = {(x0, x1) ∈ G×G|πs(x0) = πs(x1)}.

We take the vertex set of this fibered product and denote if G0
1.

Definition 5.5. Given a permutation group Sn and a set X on which it is acting, the

isotropy subgroup of Sn at an element x ∈ X is the set of all α ∈ Sn such that x ·α = x. We

say that the element x has trivial isotropy if the isotropy subgroup at this point consists

of only the identity element.

To compute Ds
Q

(Σ1), we need to find a subset B0
1 ⊆ G0

1, which contains only

elements meeting each orbit having trivial isotropy only once, and not meeting

any orbits having non-trivial isotropy under action by S2. We will eventually take

the direct limit of this the group generated by this set, but we must first define the

bonding maps involved. Let t∗B(p, j) = {(q, α) ∈ G1
1 × S2|t j(q) = p, i j(q) · α ∈ B0

1}. Then

we may define

γs
B(p) =

∑
(q,α)∈t∗B(p,1)

sgn α · i(q) · α.

Let A′ be the adjacency matrix of the vertices of B1, as defined by γs
B, and take

lim
−−→

(ZB0
1,A

′). This gives us Ds
Q

(G1) and the (1, 0) entry of our complex.

We must state one important theorem before we proceed with our computation.

Theorem 5.4. [13] Let (Σ, σ) be a shift of finite type, (X, ϕ) be a Smale space and πs an

s-bijective factor map. Then Ds
Q

(ΣN(πs), ds
Q

(πs)N) is a chain complex.

We now introduce notation for our boundary maps. The complex we will use
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for our one-dimensional tiling spaces is

0→ Ds
Q

(Σ1)
ds,K

1
→ Ds

Q
(Σ0)

ds,K
0
→ 0.

As per [13], ds,K
0 is defined to be the zero map. We need then only to define ds,K

1 to

finish building our chain complex.

We define ds,K
n (q) =

∑n
j=1(−1)nδK

n (q), where q ∈ Gn. Thus, in our case, we have

ds,K
1 (q) = δK

0 (q) − δK
1 (q). It leaves us then to formally define the δ maps.

The map δn takes in an n−tuple in Gn and deletes the n−th coordinate. We define

the map

δK
n (q) = Sum{δn(q′)|q′ ∈ G1+K

1 , tK(q′) = q}.

In other words, we want to list all paths in G1 of length 1 + K that terminate in

the ordered pair q, delete the n−th coordinate, then sum the resulting set. The first

obstacle here is in finding K. It is imperative that we choose K sufficiently large.

As demonstrated in the examples in Chapter 6, an incorrect choice of K will result

in an incorrect computation.

Using Lemma 2.7.2 in [13], we put a constraint on K. Given bi-infiite paths

e0, e1, f0, f1 ∈ (Σ, σ), and a constant k0 such that πs(e0) = πs(e1), πs( f0) = πs( f1),

ek
0 = f k

0 for all k ≥ k0, and e1 stably equivalent to f1, we have ek
1 = f k

1 for all

k ≥ ko + K. Any K satisfying this condition may be used in our definition of δK
n

above. For a one-dimensional substitution tiling and our chosen Markov partition,

we need to consider how many times two tilings may disagree near the origin if

they are to agree everywhere thereafter. This is essentially equivalent to knowing

the asymptotic composants of a tiling space as described in [2]. There Barge and

Diamond present an algorithm for computing the asymptotic composants of a tiling
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space.

Once this is complete, we are ready to compute our boundary map. We first

look at the generators of Ds
Q

(Σ1). Using the eigenvectors which correspond to

the eigenvalues we used to compute this direct limit, we identify the equivalence

classes into which the elements of B0
1 were separated. By theorem 3.4.4 in [13], we

know that the image of the equivalence classes under δn is the same as if we apply

δs,K
n to the individual generators and take their equivalence classes. That is, if we

let [g] ∈ Ds
Q

(Σn) represent the equivalence class of an element of Σn, we have

δn([g]) = [δs,K
n (g)].

Since lim
−−→

(ZG0
0,A) � lim

−−→
(ZGK

0 ,A) by theorem 3.2.3 in [13], we can look to see which

eigenspaces the generators of Ds
Q

(Σ1) end up in after applying the d1 map. This

allows us to identify the kernel and image of the d1 map and thus compute the

homology.



Chapter 6

Examples

Our first example is the 2-solenoid. While not technically a tiling space, it has very

similar properties, being the inverse limit of the doubling map on the circles. It

illustrates that our homology computation is independent of the choice of Markov

partition.

We first compute it’s cohomology. This can be done using the method described

in Theorem 73.4 of Munkres [12] for computing the Čech cohomology of an inverse

limit space. In particular, let X be the 2-solenoid, S1 the unit circle, and ϕ the

doubling map, then

Ȟ1(X) � Ȟ1(lim
←−−

(S1, ϕ)) � lim
−−→

(H1(S1), ϕ) � lim
−−→

(Z, ϕ).

We have that, for the 2-solenoid, the cohomology groups are Ȟ0 � Z and Ȟ1 � Z[ 1
2 ].

The method for computing the homology of the solenoid comes from [13]. We

first look at the Markov partition of the solenoid with two elements. The graph in

this case is

0 1

and the adjacency matrix is A =

 1 1

1 1

, which has eigenvalues 0 and 2. Thus

Ds
Q

(G0) � Z[1
2 ].To compute Ds

Q
(G1), we consider the set G0

1 = {(0, 0), (1, 1), (0, 1), (1, 0)}

31
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and it’s subset B0
1 = {(0, 1)}. Since B0

1 has only 1 element, the associated direct limit

is Z. This gives us a chain complex of

0→ Z
d1
→ Z[

1
2

]→ 0.

Applying the boundary map, we have d[(0, 1)] = [δs,K
0 (0, 1)] − [δs,K

1 (0, 1)]. These

appear to be different equivalence classes, but since there is only one equivalence

class in the range, they must go to the same class. Therefore the boundary map is

the zero map and we have

H0 � Z[
1
2

] � Ȟ1

H1 � Z � Ȟ0.

It is important to note that the homology is independent of the choice of Markov

partition. If we use 3 rectangles in our partition, instead of 2, we get the same result.

Looking at the solenoid as being created by a map that wraps a circle around itself

twice, we can partition the circle into 3 equal pieces and see where they are mapped

in the wrapping. The first third of the circle would wrap around the first two thirds,

the second third would wrap around the last and first third, etc. This gives us this

graph

0

1

2

The adjacency matrix is A =


1 1 0

1 0 1

0 1 1


, which has eigenvalues λ = −1, 1, 2 and
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thus Ds
Q

(G0) � Z2
⊕Z[ 1

2 ].

G0
1 = {(0, 0), (1, 1), (2, 2), (0, 1), (0, 2), (1, 2), (2, 1), (1, 0), (2, 0)} and the subset B0

1 =

{(0, 1), (0, 2), (1, 2)} can be found to have the adjacency matrix A′ =


−1 1 −1

1 −1 −1

−1 −1 1


.

The direct limit gives us Ds
Q

(G1) � Z3. If we take the three eigenvectors, and apply

the boundary map, we see that one of them is clearly zero, while the other two are

both non-zero, and do not share an eigenspace. Thus the kernel of the boundary

map is Z and the image Z2, which yields the same homology computation as

above.

Next we consider the Fibonacci Tiling space. The space is generated by the

substitutions a→ ab and b→ a. We begin by computing the cohomology using the

Barge-Diamond method. Our CW complex, including germs, is

eab

eba

eaa ba

The adjacency matrix is A =

 1 1

1 0

. There is only one element in the eventual

range, so there are no loops and only one connected component. The direct limit

is just Z2, so we have Ȟ1 � Z0
⊕Z2/Z0 � Z2

For the homology computation, our Markov coding is achieved by placing the

location of the origin at each iteration of the substitution into one of the following

four rectangles
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1 : (a)b(a)

2 : (b)a(a)

3 : (a)a(b)

4 : (b)a(b)

with the origin landing on the border handled as above. This gives us a Markov

partition which is actually a shift of finite type. Therefore, the Krieger dimension

groups for this shift of finite type are isomorphic to those generated by the graph

which presents the shift. We use this graph, which we label G.

1

4

3

2

Let G0 = {1, 2, 3, 4} be the vertex set of G, and G1 = {12, 21, 23, 31, 34, 41, 43} be

the edge set of G. We will first compute Ds
Q

(Gn), for n = 0, 1. This is quite easy in

the case n = 0, as our group is simply the direct limit of ZG0
0, under the map

γs(e) =
∑
t(e)=v

i(e),

where v ∈ G0, e ∈ G1, and i and t represent the initial and terminal maps respectively.

This is the same map as the adjacency matrix A =



0 1 1 1

1 0 0 0

0 1 0 1

0 0 1 0


. As there are 4
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elements of G0
0, we have our actual limit as lim

−−→
(Z4,A). Since the eigenvalues of A

are 0,−1, 1±
√

5
2 , we have that this direct limit is isomorphic to Z3

In the case n = 1, our procedure becomes more complicated. We will still

be taking the direct limit of a group generated by the graph, but calculating

the group and the map is not quite as straightforward. We can list all elements

of G0
1 = {(1, 1), (2, 2), (3, 3), (4, 4), (1, 2), (1, 3), (1, 4), (2, 1), (3, 1), (4, 1), (3, 2), (2, 3)}, and

thus B0
1 = {(1, 2), (1, 3), (1, 4), (2, 3)}. Computing the map γs

B,and applying this map

to each p ∈ B0
1, we have the adjacency matrix A′ =



−1 1 0 0

0 0 1 1

1 0 0 0

−1 1 0 0


. Thus our group

in question is lim
−−→

(Z4,A′) � Z2.

This gives us a chain complex of

0→ Z2 d1
→ Z3

→ 0.

To compute the boundary map, we let K = 2. If K < 2 is chosen, the computation

may still be carried out, but the result will be incorrect. For too small of a K the

δs,K
n map will not commute with the generators of the equivalence classes, resulting

in an incorrect boundary map. We then list all paths of length 3 in our original

graph, of which there are 7. We then take the eigenvectors associated with each

eigenspace that generatedZ2 and augment it to the 7×7 matrix of the eigenvectors

generating Z3. If we row reduce this matrix, we see that one of the generators is

a linear combination of the eigenvectors associated to non-zero eigenvalues, while

the other is not. Thus the image and kernel of the boundary map are eachZ, giving
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us that the homology is

H0 � Z
2 � Ȟ1

H1 � Z � Ȟ0.

For our next example, we consider the tiling space generated by the rules

a→ aaabb and b→ ab. The cohomology for this example was computed in Chapter

3.

When we look at the possibilities for neighbored tiles, there are 7 of them. In this

case it becomes easier to represent the possible paths as an edge list, rather than as a

graph. This gives us G1
0 = {11, 12, 13, 14, 15, 21, 22, 23, 24, 25, 31, 32, 33, 34, 35, 46, 47, 51, 52, 53,

54, 55, 61, 62, 63, 64, 65, 76, 77} and adjacency matrix A =



1 1 1 1 1 0 0

1 1 1 1 1 0 0

1 1 1 1 1 0 0

0 0 0 0 0 1 1

1 1 1 1 1 0 0

1 1 1 1 1 0 0

0 0 0 0 0 1 1



.

Taking the direct limit yields Ds
Q

(G0) � Z2. Moving up one level, we have the set

B0
1 = {(1, 2), (2, 3), (3, 4), (4, 5), (5, 1), (4, 6),

(6, 7), (7, 5)}, with the direct limit being Z. Taking the elements that generate this

copy of the integers and applying the boundary map leaves a single vector that is

in the zero eigenspace of A. Thus the boundary map is zero, and we have

H0 � Z
2 � Ȟ1

H1 � Z � Ȟ0.
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Finally, we compute the homology for the Morse-Thue tiling space, generated

by a → ab and b → ba. The cohomology is calculated using the CW complex

(including germs)

eab

eba

eaa ebb ba

where all 4 germs are in the eventual range. Thus we have 1 connected com-

ponent and one loop. The direct limit of the adjacency matrix is Z[ 1
2 ], so we have

Ȟ1 � Z ⊕Z[1
2 ].

For the homology computation we need to know 2 neighbors of each tile to

have recognizability. This gives us 12 rectangles in our Markov partition, and 16

elements in the set B0
1. The chain complex becomes

0→ Z4 d1
→ Z4

⊕Z[
1
2

]→ 0.

We must take K ≥ 2, which results in a 48 × 48 matrix, which we omit. The kernel

of the boundary map can be computed to be Z, which gives us, correctly,

H0 � Z ⊕Z[
1
2

] � Ȟ1

H1 � Z � Ȟ0.



Chapter 7

Conclusion

In this paper we have presented several examples supporting that, for all one-

dimensional substitution tiling spaces Ω, the homology and Čech cohomology are

related via

H0(Ω) � Ȟ1(Ω) and H1(Ω) � Ȟ0(Ω).

The key feature that leads us to believe that this is true are the asymptotic

composants of a tiling space. According to Barge and Diamond [2], there is a finite,

non-empty set of arc components of a tiling space that are called the asympototic

composants. There is an algorithm for computing these given in the paper cited

above. In our method for computing the homology of a tiling space, we looked

at path of length K in the graph which presented our Markov partition. It seems

to be the case when when, given two elements of our group ZBK
1 where the first

coordinate of one element is equal to the second coordinate of the other element,

these will end up in the kernel of the boundary map. This suggests that only those

arc components which are asymptotic composants will be in the image. This leads

us to believe that, as the cohomology and homology of an aperiodic substitution

tiling space are each related to the asympototic composants of the space, we will

find the duality of this conjecture.

Unfortunately, there has been some difficulty in obtaining an analog for the

38
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asymptotic composants of higher dimensional tiling spaces. There can be infinitely

many asymptotics pairs, although finitely many in each direction. A recent paper

by Barge and Olimb [5] offers some hope, but little in the way of algorithmically

computing asymptotics. Further work would be needed in this area before the

general conjecture could be pursued in higher dimensions.
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