
Minnesota State University, Mankato Minnesota State University, Mankato

Cornerstone: A Collection of Scholarly Cornerstone: A Collection of Scholarly

and Creative Works for Minnesota and Creative Works for Minnesota

State University, Mankato State University, Mankato

All Undergraduate Theses and Capstone
Projects Undergraduate Theses and Capstone Projects

2020

Development of Machine Learning Tutorials for R Development of Machine Learning Tutorials for R

John Pintar
Minnesota State University, Mankato

Follow this and additional works at: https://cornerstone.lib.mnsu.edu/undergrad-theses-capstones-all

 Part of the Software Engineering Commons, and the Theory and Algorithms Commons

Recommended Citation Recommended Citation
Pintar, J. (2020). Development of machine learning tutorials for R [Bachelor of Science thesis, Minnesota
State University, Mankato]. Cornerstone: A Collection of Scholarly and Creative Works for Minnesota State
University, Mankato. https://cornerstone.lib.mnsu.edu/undergrad-theses-capstones-all/2/

This Thesis is brought to you for free and open access by the Undergraduate Theses and Capstone Projects at
Cornerstone: A Collection of Scholarly and Creative Works for Minnesota State University, Mankato. It has been
accepted for inclusion in All Undergraduate Theses and Capstone Projects by an authorized administrator of
Cornerstone: A Collection of Scholarly and Creative Works for Minnesota State University, Mankato.

http://cornerstone.lib.mnsu.edu/
http://cornerstone.lib.mnsu.edu/
https://cornerstone.lib.mnsu.edu/
https://cornerstone.lib.mnsu.edu/
https://cornerstone.lib.mnsu.edu/
https://cornerstone.lib.mnsu.edu/undergrad-theses-capstones-all
https://cornerstone.lib.mnsu.edu/undergrad-theses-capstones-all
https://cornerstone.lib.mnsu.edu/undergrad-theses-capstones
https://cornerstone.lib.mnsu.edu/undergrad-theses-capstones-all?utm_source=cornerstone.lib.mnsu.edu%2Fundergrad-theses-capstones-all%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=cornerstone.lib.mnsu.edu%2Fundergrad-theses-capstones-all%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/151?utm_source=cornerstone.lib.mnsu.edu%2Fundergrad-theses-capstones-all%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages

Development of Machine Learning Tutorials for R

by

John Pintar

A Thesis Submitted in Partial Fulfillment of the

Requirements for the Degree of

Bachelor of Science

in

Cognitive Science

with an emphasis in Computer Science

Minnesota State University, Mankato

Mankato, Minnesota

May 7, 2020

ii

Abstract

Machine learning (ML) techniques developed in computer science have revolutionized

nearly every sector of industry. Despite the prevalence and usefulness of ML, students out-

side of computer science rarely receive training in ML. Students frequently receive training

in statistical analysis, often using the software package R, which is free, open source, and

has additional downloadable modules. A popular module is the ML package caret, which

contains 238 different ML algorithms, each with 0-9 hyperparameters. caret is powerful,

flexible, and provides consistent syntax across algorithms. In the hands of an experienced

practitioner, this tunability is welcomed and can increase accuracy. However, when used

by a beginning student, the large number of options can become overwhelming and hinder

their learning. babyCaret is an ML package for R developed in this work to reduce this

complexity and support student learning while matching caret’s syntax. The goal is to

teach users about the application of ML directly inside their familiar R environment. baby-

Caret contains integrated tutorials activated by a function call. These tutorials teach users

about the application, interpretation, and technical aspects of four algorithms: k-nearest

neighbors, apriori, k-prototypes, and decision tree. The k-nearest neighbors implementation

was designed by the author. Decision trees are computed via the rpart R package for its

visualization capabilities, k-prototypes uses a modified implementation by Gero Szepannek,

and apriori uses the arules R package. A limited number of hyperparameters are available

for tuning. The rest have either been automated or fixed to their simplest configuration to

reduce complexity, which may affect accuracy. babyCaret is an open-source teaching tool,

a simple and functional beginner ML package, and a stepping-stone to the more complex

iii

caret. Evaluation includes runtime comparison between k-nearest neighbors computed us-

ing caret and babyCaret, and runtime comparison between Szepannek’s implementation

and our modified version of k-prototypes. babyCaret’s KNN implementation had lower

runtime than caret’s and the modified version of Szepannek’s k-prototypes implementation

had lower runtime than the original. Evaluation of the tutorials involved distributing them

to an intelligent systems class as supplemental course content. Tutorials were successfully

used in the course setting.

Table of Contents

1 Introduction 1

2 Background 3

2.1 The R Statistical Package . 3

2.2 Machine learning . 4

2.3 caret: an ML module for R . 10

2.4 Extending R: babyCaret, a new ML module 11

3 Tutorial Development 13

3.1 Rcpp . 13

3.2 Algorithms . 15

3.2.1 k-nearest Neighbors . 16

3.2.2 k-prototypes . 19

3.2.3 Decision Tree . 21

3.2.4 Apriori . 26

3.3 Tutorials . 26

4 Results 33

iv

v

4.1 Tutorial Distribution . 33

4.2 k-nearest Neighbors Runtime . 34

4.3 k-prototypes Runtime . 35

5 Conclusions & Future Work 36

5.1 Assessing Implementation Performance . 36

5.2 Future work . 37

5.2.1 User Evaluation . 37

5.2.2 RStudio 1.3 . 38

5.2.3 Cross Validation . 38

5.2.4 KNN . 39

5.2.5 k-prototypes . 39

5.2.6 Apriori . 39

A babyCaret’s tutorials 45

A.1 What is babyCaret? . 45

A.2 How to Operate babyCaret’s Tutorials . 45

A.3 Prerequisite R Programming . 46

A.4 Creating Training and Testing Sets . 51

A.5 Using the Algorithms (in general) . 54

A.6 k-nearest Neighbors algorithm . 58

A.7 k-prototypes algorithm . 64

A.8 Apriori algorithm . 69

A.9 Decision tree algorithm . 72

vi

B Materials for Future Formal User Feedback 78

B.1 Help Sheet . 78

B.2 User Survey . 80

B.3 Researcher Instructions . 87

C Public Functions 89

Table of Figures

2.1 Base R Command Line Interface . 4

2.2 RStudio Integrated Development Environment 5

3.1 RStudio Console Window showing a Tutorial Section Containing Information

on Manhattan Distance . 18

3.2 A Decision Tree using Species as the target attribute on Fischer’s Iris Dataset

[8] . 22

3.3 Regression Tree Showing Interior Node Values [8] 24

3.4 Classification Tree on Fischer’s Iris not Showing Interior Node Values [8] . . 25

3.5 babyCaret’s Tutorial Menu . 27

3.6 Multiple Choice Question about the Apriori Algotithm 29

3.7 True/False Question about the Apriori Algorithm 29

3.8 Programming Question Related to the k-prototypes Algorithm 30

vii

List of Tables

2.1 Categories of ML Algorithms included in babyCaret 7

4.1 Mean KNN runtime in milliseconds on Fisher’s Iris dataset with k = 5 34

4.2 Mean k-prototypes runtime in milliseconds on Fisher’s Iris dataset with k = 5,

nstart = 1, iter.max = 100. 35

viii

Chapter 1

Introduction

Machine learning (ML) techniques developed in computer science have revolutionized

nearly every sector of academia and industry. Despite the prevalence and usefulness of ML,

students outside of computer science rarely receive training in ML.

The goal of this thesis to develop a tutorial module that allows novice users to both

learn about and implement machine learning inside of a commonly used statistical software

package. Students frequently receive training in statistical analysis, often using the software

package R [21], which is free, open source, and allows for open development of add-on

modules. R currently has ML capabilities through a module, caret [15].

Learning Challenges:

1. When learning a new analysis software package, it is easy to only learn the bare mini-

mum required to complete an analysis.

2. Analysis packages are often complex.

3. Important details of an analysis technique need to be understood.

This work’s contribution is a freely available add-on ML module developed to extend

R. This module is named babyCaret. babyCaret is a simplified ML module with syntax

inspired by the existing module caret that allows users to implement four machine learning

1

2

algorithms. Unlike other modules, babyCaret contains console-based tutorials to teach

users about these algorithms.

In chapter 2, this thesis presents background information on machine learning and R,

the software package our module has been developed for. In chapter 3, the development

of the tutorial and ML module babyCaret is discussed. Chapter 4 includes the results of

distributing this module to a class of intelligent systems students as supplemental course

material as well as comparative runtime analysis.

Chapter 2

Background

In this chapter, the necessary background for this work is discussed. This covers the

statistical software package, R, a brief overview of machine learning including the four algo-

rithms used by babyCaret, and lastly, discussion of babyCaret and its tutorials.

2.1 The R Statistical Package

R is a statistical software package and programming language. It is used extensively

throughout both industry and academia and is one of the leading analysis packages for science

in general. R was chosen as the context for this work for multiple reasons. The first reason

is that R is commonly used for ML. The second reason is its diverse user base; R is not a

language which caters specifically to computer scientists. Its user base includes statisticians,

financial analysts, and scientists of various disciplines. Second is its long history. R has been

available for over 20 years [13] and is an offshoot of an even older language, S. The final

reason is that it is free and open source. Users have access to the code used to create R and

are able to modify that code. This allows for development of modules that can be easily and

freely distributed—including the source code used to create it. Much of R’s functionality

comes from open source development of add-on modules. These modules are frequently

created by developers outside of the R Core Team and can be hosted on multiple repositories

3

4

Figure 2.1: Base R Command Line Interface

for easy installation by users. babyCaret is one such module. Beyond modules, there are

open source development environments. RStudio [25] is a popular development environment

for R which adds graphical user interface (GUI) functionality beyond the standard command

line interface. RStudio can be used as desktop or cloud software as RStudio Desktop and

RStudio Cloud [23], respectively. Figure 2.1 shows the standard R command line interface,

while Figure 2.2 shows RStudio and its GUI.

2.2 Machine learning

Machine learning algorithms are algorithms whose results improve as they process data.

This happens because of a training process where the algorithm is presented with data.

Usually, this learning involves identifying frequent or important patterns. During training,

5

Figure 2.2: RStudio Integrated Development Environment

6

the algorithm creates a model. The model is then used for classification or regression (two

types of prediction), or informing the user of the patterns found in the data through clustering

or rule learning. Throughout this paper we will often refer to this broad class of processing—

which occurs after model training—as a testing phase or testing process. When the testing

phase is prediction, a target variable or attribute must be specified. This target variable

specifies what is being predicted.

In the context of this thesis, the data being processed is assumed to be in the form of

a data table, or a “data frame” in the syntax of R. Each row in the table is an instance,

or a single observation. Each column is an attribute. An instance will have a numeric or

categorical value for each attribute. A single attribute may contain either numeric values or

categorical values, not both.

When training a model, the user provides the model with hyperparameters, parameters

set by the user and used to shape the model. This is in contrast to model parameters learned

by the algorithm. In this work, parameter is synonymous with hyperparameter, which is the

term used in the R module caret. The basic level of user ML workflow considered here

involves selecting an appropriate algorithm, optimizing the model by tuning parameters,

and finally, using the model for prediction and/or data analysis.

The four algorithms implemented in babyCaret were chosen due to their ease of inter-

pretation, relevance, flexibility, and capabilities on mixed datasets (i.e., with both numeric

and categorical attributes). These are k-nearest neighbors (KNN), k-prototypes [12], decision

tree [4], and apriori [3] and are described in Table 2.1. Together, these four algorithms enable

babyCaret to be capable of predicting numeric values (regression), predicting categorical

values (classification), identifying groups of similar datapoints (clustering), and finding sta-

tistical if/then rules which explain what set of values we can expect to find if we have already

7

Table 2.1: Categories of ML Algorithms included in babyCaret

Category Algorithm Testing process

Classification k-nearest Neighbors, Decision Tree Predicts missing
categorical values

Regression k-nearest Neighbors, Decision Tree Predicts missing numeric
values

Clustering k-prototypes Provides data points
with a label based on
their similarity to other
data points

Association Rule Apriori Identifies statistical
Learning if-then rules describing

co-occurrence of values
in the dataset

found a given set of values (association rule learning). Being capable of these four processes

allows babyCaret’s tutorials to cover a wide range of common ML tasks.

k-nearest neighbors is a simple classification and regression algorithm and has been used

to identify job satisfaction and organizational commitment as predictors of action identifica-

tion level [33]. k is the one hyperparameter set by the user. During the training phase, KNN

simply stores the entire training set in memory. During the testing phase, KNN calculates

a distance or similarity measure between each instance found in the training set and all

instances which are having values predicted. That information is used to make predictions.

When KNN makes a prediction, the mean (numeric data) or mode (categorical data) of the

k training instances closest or most similar to the testing instance is used as the predicted

value. KNN is capable of handling numeric and categorical data.

Decision trees are used for classification and regression in a wide variety of application

areas including speech synthesis [5] and recognition [2]. An ensemble of decision trees, or

8

“random forest,” has been found to be an effective method for imputing missing values in

psychological datasets [9]. Decision trees operate by recursively splitting data into maximally

homogeneous aubsets as measured by homogeneity of the target value where target values are

those belonging to the attribute being predicted. The rules used to create these subsets along

with their associated target variable means or modes are used when making a prediction.

The parameters available for shaping the model are minSplit, which sets the minimum

number of instances that can exist in a subset for a split to be attempted and maxDepth,

which sets the maximum number of splits a subset can be away from the original complete

dataset. These two parameters are used to reduce the number of rules and subsets created

by the model, a process known as pruning. In the context of the decision tree algorithm,

this can avoid overfitting the model to the training data. Overfitting results in a model

that performs well on the training set, but poorly on others. The decision tree algorithm is

capable of handling numeric and categorical data.

The k-prototypes algorithm is used for clustering data into groups of similar data and has

been used to analyze user patterns from the video game platform, STEAM [22]. Clustering

in general is used for exploratory data analysis and for assigning categorical values to a

new attribute corresponding to which cluster the the datapoint belongs to. During training,

k-prototypes first randomly chooses four existing datapoints to be used as prototypes. A

prototype is the most representative datapoint (existing in the dataset or not) of a cluster.

Each datapoint has its similarity or distance to each cluster calculated. Each datapoint

is then assigned to its nearest prototype. The prototypes are then recalculated for each

cluster. This process stops when the prototypes converge. When using the model to label

data, the label corresponding to the instance’s closest prototype is applied. k-prototypes is

an amalgamation of two other algorithms, k-means and k-modes. k-means is only capable of

9

handling numeric data and k-modes can only handle categorical data. As the combination

of these two, k-prototypes is capable of handling numeric and categorical data, because

k-prototypes uses the distance function from k-means on numeric data and the distance

function from k-modes on categorical data.

Apriori is used for association rule learning and frequent itemset mining. An example

of a frequent itemset is, “genes A, B, C, and D are frequently found together.” A frequent

itemset can then be further processed into association rules such as, “gene A and B strongly

suggest the presence of gene D.” Apriori has been used to find associations between mutated

cancer genes. The algorithm allowed researchers to identify associations between up to four

genes, when the previous maximum was two [11]. Apriori uses an iterative process which

generates candidate frequent itemsets of size N . Apriori uses two stages of pruning to

identify infrequent itemsets. The first stage of pruning uses the downward closure property,

commonly referred to as the apriori principle. The downward closure property states that

all size N − 1 subsets of a frequent itemset must also be frequent. All candidate itemsets

satisfying the downward closure property then have their frequency directly calculated from

the dataset previous to the next iteration. Those that do not meet minimum frequency are

pruned. Once frequent itemsets have been found, they can be used to find unidirectional

if-then relationships between itemsets. Three parameters control apriori model creation:

minSup defines the rate of occurrence an itemset must have, or “support,” to be considered

frequent, minConf defines the minimum relation strength a rule must have, or “confidence”

to be returned to the user, and maxLen sets the maximum number of items that may be

contained in a frequent itemset. Unlike the previous three algorithms, apriori is not able to

be used directly on mixed data without discretizing numeric values or reassigning numeric

values to categorical values in a way that reduces their meaning. Apriori must discretize

10

numeric values. Association rule learning algorithms fundamentally operate on discrete

values so the ability to operate on mixed datasets was not expected out of this category of

algorithm.

Implementation details for all four algorithms are discussed in chapter 3 and further

details about how the algorithms work, as presented in the tutorials, are in Appendix A.

2.3 caret: an ML module for R

caret is a popular machine learning module for R that extends the base functionality of

R to allow a user to implement 238 ML algorithms. caret solves the problem of integrating

many disjoint implementations, as many implementations used by caret are available to R

users in modules separate from caret. Some of these modules include a single implementa-

tion, while others include multiple implementations. It can be difficult for users to keep track

of differing workflows between these disjoint modules. caret interfaces with these modules

and imposes a single workflow on all of them.

caret has the ability to automatically tune . This does not require the user to know what

those parameters do in order to improve the training of a model. A user does not have to

know what any parameter does in order for them to improve a model. caret can select the

optimal value on its own through cross validation. This is done by repeatedly training and

testing models with different parameter on resampled training data. Each set of parameters

receives an accuracy score. The set that results in highest accuracy is used as the final set

of parameters for the algorithm.

caret’s only unique implementation is its KNN implementation [16]. The rest come from

other modules. babyCaret’s KNN implementation is also unique to babyCaret. caret

11

uses the rpart R package [28] to train decision trees, as does babyCaret. caret does not

have clustering or association rule learning capabilities, so it does not contain k-prototypes

or apriori.

caret’s workflow for the ML training and testing process could be simplified for users

new to ML. caret allows up to 9 parameters to be tuned for each of its 238 algorithms, and

these can be tuned automatically, hiding the functionality from new users. caret can be

used in RStudio cloud, RStudio desktop, and R’s command line interface.

2.4 Extending R: babyCaret, a new ML module

Extending R to better support new users can be done by maintaining syntax and function

names, by reducing parameters available for tuning, and requiring manual tuning of these

parameters. babyCaret, the module developed here, uses 1-3 parameters instead of 0-

9. Requiring manual tuning requires the user to understand how the parameters affect

the model as well as encourages experimentation. One goal in developing babyCaret’s

machine learning capabilities was to be as fast and simple as possible. Speed ensures that

the interactive tutorials do not require the user to wait for processing. Simplified algorithm

implementations allow for their true functioning to be more easily explained during tutorials.

Along with ML capabilities, babyCaret provides integrated ML tutorials. Two existing

tutorial modules are learnr [26] and swirl [14]. learnr allows for the development of fea-

ture rich tutorials containing elements such as interactive graphs, videos, and programming

exercises. These tutorials are then hosted online with the main repository being RStudio’s

shinyapps.io [24]. learnr was not used in this work because it does not currently run inside

the user’s R environment. swirl is a tutorial package that runs in the user’s R console. It

12

was one of the main sources of inspiration for babyCaret. swirl has one tutorial section

which covers clustering, but no other tutorials on ML algorithms. Developers are able to

write tutorials for the swirl platform, but those tutorials are then run through swirl. swirl

does not allow for tutorials to be embedded into an ML module, and externally developed

tutorials must be searched for and installed by the user. Also, unlike babyCaret, swirl has

no direct ML capabilities. Integrating ML tools and ML tutorials into one module allows

for the tool aspect to be tailored to the tutorial aspect. The tool aspect can be simplified to

support tutorials targeting new users rather than creating tutorials which are forced to deal

with the complexity of existing tools.

Beyond learning about ML, babyCaret can support learning of the R environment.

babyCaret’s integrated tutorials run directly inside the user’s R environment. To support

user learning, key aspects of the tutorials are the minimum R programming required to use

babyCaret, how to split a single dataset into training and testing sets, how to implement the

four included algorithms, and how the four algorithms operate. Student learning is fostered

through processes traditionally used in teaching and reinforcement of human learning, such as

descriptive text, multiple choice questions, true/false questions, and programming questions

to help the users view key content and retain it for later use. Details on development are

discussed in the next chapter.

babyCaret’s tutorials are intended to be used with the RStudio environment. The

tutorials developed here assume that the user is working inside of RStudio and inform the

user about features specific to RStudio.

Chapter 3

Tutorial Development

This chapter discusses the development of babyCaret. babyCaret has been pro-

grammed in both the R and C++ programming languages. The interaction between lan-

guages is mediated by R’s Rcpp package [7], which is described below. Then, the im-

plementations for the four ML algorithms used by babyCaret are reviewed. Finally, the

development of babyCaret’s interactive tutorials is discussed. The content of babyCaret’s

tutorials can be found in Appendix A.

3.1 Rcpp

The choice to extend babyCaret with a language other than R allows more options

for development as well as the use of code which steps outside of the typical R paradigm.

Combining R and C++ specifically was done for two reasons. The first is because C++ is

the most common language used to extend R. There are significant resources and support

available for doing so; Dirk Eddelbuettel’s R package, Rcpp [7] is a stable and established

R package that babyCaret uses when integrating R and C++. The second reason is that

C++ excels in computational performance where R does not.

In professional ML software, runtime is a consideration. When training complex mod-

els on large datasets, the runtime can extend beyond time available for user learning and

13

14

tutorials. babyCaret was developed for use by novices, so large scale datasets are not

expected. However, runtime is a priority for a separate reason. babyCaret’s integrated

tutorials should feel snappy and responsive to the user. Short runtime is important to create

a satisfying user experience during the tutorials. Also, shorter runtime gives the program

headroom so that additional features can be added without a noticeable increase in runtime.

Using Rcpp, a C++ function can be written directly inside of an R script using cppFunction().

“Upon calling the cppFunction() . . . the C++ code is both compiled and linked, and then

imported into R under the name of the function supplied” [6]. Rcpp contains a set of C++

classes which are analogous to common R classes. For example, a character matrix in R

has an Rcpp counterpart. Rcpp handles conversion between C++ objects and R objects.

Some native C++ classes are supported. For example, an R one-element numeric vector can

be passed to a C++ function and will be converted by Rcpp into a C++ double precision

float. The conversion works bidirectionally. If that object is then returned by the C++

function, it will be converted into an R one-element numeric vector. While this is useful for

small components of code, it also supports use of larger or complete segments of code.

Iteration is a key structure where R performance suffers. In many cases, R must create an

entirely new object for each iteration of a loop. For example, if a vector is being appended

100 times though the use of a loop, R will initialize 100 vectors. In some cases, this be

addressed by treating R more like a lower level programming language and initializing an

object to its desired size prior to looping [18]. Additionally, looping can be slow in R due to

being an interpreted language. During each iteration of the loop, R has to determine what

class it is dealing with and then look up the methods for that class [30]. Neither looping

nor dealing with classes decrease C++’s speed. C++ can be used as a high performance

replacement for an entire R script or can be used to replace slow sections of an R script.

15

When iteratively computing a sum, doing so with a C++ function imported into R by

Rcpp has been shown to be approximately nine times faster than the equivalent R function

at 4.04µs vs. 36.71µs [31]. The same test also showed memory allocation to be approximately

79 times higher when using the R function at 2.49KB vs. 187.5KB [31]. When ultra fast

runtimes and low memory usage are required, which makes complex ML algorithms usable,

C++ is a better choice than R. Using Rcpp allows babyCaret to take advantage of C++’s

high performance while keeping the user-accessible functions entirely in R’s interface.

3.2 Algorithms

babyCaret uses four ML algorithms: k-nearest neighbors, k-prototypes, decision tree,

and apriori. These algorithms were chosen with simplicity and flexibility in mind. The

main criteria for flexibility was being able to work on mixed data i.e., with both numeric

and categorical values. We did not want the number of algorithms to grow simply because

more were required to make babyCaret fully compatible with mixed data. All algorithms

are natively compatible with mixed data except apriori, which discretizes numeric values to

simulate categorical values.

Algorithms were made appropriate for babyCaret’s tutorials through different approaches

for each algorithm. babyCaret’s KNN implementation is unique to babyCaret and uses

a combination of R and C++. A unique implementation ensures that only the necessary

overhead required to integrate with the tutorials would be present in the implementation.

Using C++ for computationally intensive operations such as distance calculation was done

in an attempt to reduce runtime.

k-prototypes uses a modified version of an existing implementation by Gero Szepannek

16

[27]. C++ was used for distance calculations instead of the original R code, and minor

changes were made to increase flexibility, for example, enabling use on homogeneous datasets

containing only numeric or only categorical attributes

The decision tree algorithm uses an existing R ML module, rpart [28]. Although rpart

is a module with many options, babyCaret disables some of rpart’s advanced functionality

such as automated model optimization. The philosophical approach imposed by babyCaret

is that babyCaret’s default decision tree model is overly complex and overfits to the training

data leading to poor predictions. This then forces the user to understand and use the two

pruning parameters left available in order to reduce complexity while increasing predictive

accuracy.

Apriori uses the existing R module arules [10]. arules’ apriori implementation does not

expose the user to extreme complexity or contain advanced functionality which reduces the

value of experimentation for optimization. The output has been forced into a form useful for

the tutorials, i.e., a data table sorted so that high-value rules derived from frequent itemsets

are in decreasing order.

The design decisions and implementation for these four algorithms are described in more

detail below.

3.2.1 k-nearest Neighbors

babyCaret’s k-nearest neighbors (KNN) implementation uses a mix of C++ and R.

Training is done entirely in R. An object representing the model is returned containing the

training set as an R data frame, the target variable as a vector, the class of the target

variable, and the user’s selection of k, which is this implementation’s only parameter.

17

C++ is used to scale numeric values between zero and one using max/min scaling on

both the training set and the testing set during the prediction phase before distances are

calculated. Scaling is done during the prediction phase to allow new data to be scaled

according to the same maximum and minimum values in the training set. To improve this

in future versions, the training data could be scaled during the training phase, with the

maximum and minimum values of each attribute recorded so that the new data could be

scaled between these values during the prediction process. This would save a small amount

of time in the prediction process. Although the runtime for one train-predict cycle would be

the same, reducing prediction time is of higher value because the same trained model can be

used to make predictions multiple times whereas training is a one time cost.

For the prediction phase, a distance matrix is calculated in C++. The distance matrix

contains the distances between every training set instance and every testing set instance.

For numeric values, Manhattan distance is used. The Manhattan distance between two

points is the distance required to move between the points when traversal must be parallel

to an axis. Figure 3.1 shows the description of Manhattan distance as given in the tutorials.

Manhattan distance was originally chosen over Euclidean distance because it was believed

to be easier to meaningfully explain to the user than Euclidean distance, particularly when

under consideration in high dimensional spaces. Its standing as KNN’s distance function is

further supported by research showing it often outperforms Euclidean distance when used in

KNN classification [20]. Additionally, Euclidean distance is used in the k-prototypes tutorial

implementation which provides tutorial information on two distance functions.

When dealing with mixed datasets, ordinal data is converted to an integer before scaling,

scaled, then treated as numeric data. Nominal data uses simple matching distance. If there is

a match between nominal attributes, the distance contributed is zero. If there is not a match,

18

Figure 3.1: RStudio Console Window showing a Tutorial Section Containing Information on
Manhattan Distance

19

the distance contributed is one. One problem with this approach is that it is inflexible. On

some datasets, it is possible that two nominal values being mismatched between instances

does not contribute as much dissimilarity as one of their nominal attribute’s values being

very distant. In the current system, they are considered equally dissimilar. One way to

introduce some flexibility would be to multiply all matching distances by a user selected

parameter. This would allow them to increase or decrease the dissimilarity contribution of

mismatched nominal attribute values. This will be considered for future work.

The final stages of the prediction process are handled by R. The distance matrix is

recreated to keep only the k nearest or most similar instances for each testing set instance.

If the target variable is numeric, the mean of the k nearest training instances for each testing

instance is assigned as the testing instance’s value. If the target variable is categorical, the

mode is used. babyPredict(), which is outlined in Appendix C, then returns an R data

frame object complete with predicted values. The description of KNN given in babyCaret’s

tutorials can be found in Appendix A.6.

3.2.2 k-prototypes

Szepannek’s k-prototypes implementation follows the procedure described in Section 2.2.

Distance is calculated using Euclidean distance for numeric attributes and the same simple

matching distance used by babyCaret’s KNN implementation for categorical attributes.

Unique to this specific implementation is a lambda parameter that multiplies the matching

distance used for categorical attributes. This allows the a user to set the amount of distance

contributed by a mismatch. The distance contributed is equal to lambda which has a default

value of 1. The other parameters are iter.max which ends processing if convergence has not

20

occurred within its value of iterations and nstart which dictates the number of times the

algorithm is rerun with new initial random prototypes. Both Szepannek’s implementation

and babyCaret’s modified version allow for tuning of the same parameters.

The first modification made for babyCaret was rewriting distance calculations from R

into C++ as using Rcpp to reduce runtime was suggested by Szepannek [27]. The approach

taken was to use one matrix for numeric variables and another for categorical variables,

calculate their respective distances and then merge the two into a final distance matrix.

Szepannek’s implementation includes three stopping conditions which reduce its flexibil-

ity. These have been removed. One of these conditions exists to ensure lambda is greater

than or equal to zero for at least one variable. This check has been removed because setting

lambda equal to zero is an easy way for a user to completely ignore categorical variables

without having to remove them from the dataset. It is assumed the error check exists to

encourage the user to use k-means if they are not going to consider categorical attributes.

This would reduce redundant computation, but babyCaret values the reduction of user-

experienced complexity over the reduction of redundant computation. Also, being able to

reduce lambda to 0 allows the user to better understand lambda’s role in the algorithm,

meeting a learning objective for the tutorial.

The other two removed error checks are mirror images of each other. One stops the

training process if there are no numeric variables because that suggests the use of use k-

modes. This suggestion is printed by Szepannek’s implementation. The other does the same

for categorical variables and k-means. When there are no numeric variables, k-prototypes

essentially operates as k-modes. When there are no categorical variables, it is essentially

k-means. Removing these error checks change Szepannek’s implementation into a flexible

and novice-friendly implementation capable of clustering many datasets. The description of

21

k-prototypes given in babyCaret’s tutorials can be found in Appendix A.7.

3.2.3 Decision Tree

rpart is the standard R package for calculating decision trees. Both caret and baby-

Caret use rpart and contribute a standardized interface and workflow through which the

user interacts with this existing established ML package. rpart allows significant control

over decision trees, and babyCaret exerts control over rpart in a way to encourage user

experimentation and manual optimization to support user learning of the algorithm.

rpart’s decision tree implementation recursively splits a dataset by searching for a yes/no

rule involving a non-target attribute which will partition the target values into maximally

homogeneous subsets. If a regression tree is being built (numeric target attribute), an anal-

ysis of variance (ANOVA) technique is used to measure homogeneity. If a classification tree

is being built (categorical target attribute), the Gini index is used as the measurement of

homogeneity. The Gini index attempts to quantify the distribution of resources, in this

case, target values. A Gini index of 0 indicates equal distribution of resources while a Gini

index of 1 indicates maximally unequal distribution of resources. When used as the splitting

metric for a decision tree, the split leading to the highest Gini index is chosen. The Gini

index is equal to 1 minus the sum of squared target class probabilities and is commonly

used in economics to quantify income inequality [17]. In the Gini index formula below, nc

is the number of unique target values or classes in the set, and P (Ci) is the probability of a

randomly chosen value being a member of the ith unique class.

22

Figure 3.2: A Decision Tree using Species as the target attribute on Fischer’s Iris Dataset
[8]

Gini = 1 −
nc∑
i=1

P (Ci)
2.

In Figure 3.2, a decision tree was trained on Fischer’s Iris dataset [8]. Fisher’s Iris is a

dataset of iris flowers and contains four numeric attributes: petal length, petal width, sepal

length, and sepal width. The lone categorical attribute is species, of which there are three

possible values: setosa, versicolor, and virginica. Each node in Figure 3.2 represents a subset

and shows (from top to bottom) the most common species in the subset, the ratio of setosa,

versicolor, and virginica flowers in left to right order, and at the bottom, the percentage

of instances from the original dataset contained in the subset. The chosen rule for a split

is shown below the node. Observing the ratio of species contained in each node, it can be

23

seen that the tree is attempting to create maximally homogeneous subsets. Since this is a

classification tree, the Gini index is its metric for homogeneity, which is not shown, but can

be inferred from the distribution of species at each node.

By default, babyCaret will train a full tree. A full tree is a maximally complex (as

allowed by the algorithm) tree and runs the risk of overfitting to the training data. This

growth is allowed by blocking rpart’s cross validation and therefore the pruning that occurs

in that stage. Secondly, rpart has a parameter called cp, or complexity parameter. Any

split that does not improve the fit by cp is not attempted [28]. babyCaret fixes cp at -1 to

allow for training of a complete tree. Tutorial users are encouraged to explore tree growth

by changing other parameters described below.

Surrogate splits used for prediction in the presence of missing data are not addressed

since babyCaret’s tutorials do not deal with missing attribute values. Not searching for

surrogates reduces runtime by 50% [28]. Competitor splits are not found or displayed in

order to keep excess information away from the user (again, to focus user learning on the

process of decision tree building). This decision may be reevaluated in the future. Although

rpart is capable of identifying the splitting method, babyCaret provides this explicitly.

ANOVA splitting is used when the target variable is numeric. Class splitting is used when

the target variable is categorical. Lastly, if class splitting is being used, babyCaret sets the

the measurement of homogeneity to be the Gini index. The description of the decision tree

algorithm given in babyCaret’s tutorials can be found in Appendix A.9.

The parameters left available for tuning in the tutorial are maximum tree depth, maxDepth,

and minimum node size a split will be attempted on, minSplit. These allow the user to

reduce the complexity of the tree and improve the model in a way that is easy to understand

and visual in nature. To display a decision tree plot, babyCaret has a function called

24

Figure 3.3: Regression Tree Showing Interior Node Values [8]

plotTree(). This function calls rpart.plot() from an R module of the same name and

sets its visualization parameters based on the type of tree model given as an argument, ei-

ther classification or regression [19]. Additionally, the user can specify whether or not they

would like to see interior node values through the showInterior parameter. Output from

plotTree() is shown in Figures 3.2, 3.3, and 3.4. An outline of plotTree() can be found

in Appendix C.

Figure 3.3 shows a regression tree where the numeric target value is sepal width. Each

node shows the mean sepal width in its subset followed by the number of instances in that

subset. This is what would be shown if a user set plotTree()’s showInterior parameter

to TRUE while plotting a regression tree.

Figure 3.4 shows a classification tree where the categorical target value is species. The

nodes show the most numerous target value contained in the subset followed by how many

25

Figure 3.4: Classification Tree on Fischer’s Iris not Showing Interior Node Values [8]

instances have that target value over the number of instances in the subset. The only nodes

shown are the final subsets which are not split. These are the subsets which would be used

for prediction. Figure 3.4 is an example of what would be shown if a user set plotTree()’s

showInterior parameter to FALSE while plotting a classification tree. This is a fully grown

tree and shows that when the decision tree algorithm is unrestricted, homogeneity can come

at the price of increased model complexity. Six out of the nine subsets contain three or

fewer instances. This is an example of an overfitted decision tree model; it would likely make

less accurate predictions than a more generalized model. One of the tasks in babyCaret’s

tutorials is to start with a classification tree resembling Figure 3.4 and use pruning techniques

to make the model appear more like Figure 3.2

26

3.2.4 Apriori

babyCaret runs the apriori algorithm using R’s arules package [10]. arules did not

require the complexity reduction that rpart did. Users can modify all control babyCaret

has over arules. Tutorial users are able to change the minimum support for an itemset

to be considered frequent. This is done through the minSup parameter. This sets the

frequency required for an itemset to avoid pruning. Reducing minsup reduces the number

of infrequent itemsets found and therefore reduces runtime. The minimum confidence for a

rule to be displayed can be controlled by the minConf parameter. This sets the minimum

confidence a rule must have to be returned to the user. The maximum length of an association

rule is controlled by the maxLen parameter. This sets the maximum allowed iterations of

the process generating candidate itemsets. Since candidate itemset length or size grows by

one each iteration and the association rules are created from the itemsets, controlling the

maximum iterations of this process effectively controls the maximum length a rule may have;

the length of a rule is simply the number of items composing the rule. As a whole, these

parameters are used to reduce computation time and/or reduce the number and complexity

of rules returned to the user. The description of the apriori algorithm given in babyCaret’s

tutorials can be found in Appendix A.8.

3.3 Tutorials

babyCaret’s tutorials rely heavily on metaphorical explanations and user experimenta-

tion. The general template of a tutorial begins with text explaining the algorithm or problem

interspersed with true/false and multiple choice questions. This is followed by programming

questions which, for tutorials focused on algorithms, guide the users through training a

27

Figure 3.5: babyCaret’s Tutorial Menu

model, evaluating the quality of the model, manually optimizing the model, and then using

the model for prediction or data analysis. Tutorial content can be found in Appendix A.

The tutorials run entirely inside the R console. To enter the tutorial menu, the user

runs the function tutorial(). As shown in Figure 3.5, this prints nine module options to

the console for the user to select from. To select a module, they are prompted to select a

corresponding integer. Once the user selects a menu option, babyCaret takes control of

their console. The only action a user can make is to enter a character string which gets

assigned to an R object. This state ends either upon completion of a module or the entry of

one of babyCaret’s exit commands, which are “skip”, “exit”, “quit”, and “bye”. Multiple

exit commands were chosen to avoid the user being required to memorize a specific command.

Entering an exit command at any time will exit the tutorial and return full control of the

28

console to the user.

Tutorials consist of information displayed as descriptive text, multiple choice questions,

true/false questions, and programming questions as shown in Figures 3.6, 3.7, and 3.8. This

thesis refers to the display of any of these discrete elements as a frame. The text information

is displayed by a C++ function wrapped by a private R function .linePrint(). Note,

all functions beginning with ‘.’ are private R functions created during development. This

developer-defined function was preferred because when text reaches the end of a line using

R’s built in print() or cat() functions, any characters that do not fit on that line are

displayed on the next line, even if it was in the middle of a word. This can increase the

difficulty of reading displayed text. The extra control C++ gives over character strings

allowed for creation of a simple function that requires the entirety of a word to be printed

on the same line. This was done by setting a fixed maximum line length. Fixing line length

had the trade-off of not allowing the line length to respond to the user increasing the size of

their console window. The default behavior can still take over when decreasing the window

below the set line length. At the end of a section of text, the user is prompted to press enter

to continue. When they do, this moves them to the next frame. Alternatively, they may use

an exit command to leave the module.

Multiple choice questions use babyCaret’s .multipleChoice() function. This prints a

question followed by four answers (Figure 3.6). Each answer is tagged either “a”, “b”, “c”,

or “d”. The arrangement of the answers is randomized. The user enters a letter to select

an answer. If they get the incorrect answer four times, the question is re-displayed. To skip

any question, they may enter one of three skip commands: “skip”, “next”, or “ugh”. These

skip commands work on any question type. Once the correct answer is given or the question

is skipped, the user is moved to the next frame.

29

Figure 3.6: Multiple Choice Question about the Apriori Algotithm

Figure 3.7: True/False Question about the Apriori Algorithm

30

Figure 3.8: Programming Question Related to the k-prototypes Algorithm

True/false questions use babyCaret’s .trueFalse() function. The question is displayed

followed by T/F (Figure 3.7). The user may enter their response in forms such as “T”,

“TRUE”, “f”, or “false”; case does not matter. Once the correct answer or a skip command

is entered, the user is moved to the next frame.

Programming questions prompt the user to enter code to achieve a certain task (Figure

3.8). These tasks include standard use of R and use of babyCaret’s ML functionality.

Evaluation for the correctness of code is straight forward if only one answer is considered

correct. However, for most (if not all) programming questions, there are many correct

answers. At a high level, there are different ways to go about solving a compound problem.

The issue of multiple approaches is dealt with by walking step-by-step through compound

problems with the user. An example of a compound problem would be extracting a subset

of values from a dataset and then finding the mean. Additionally, this can foster learning;

31

guiding users step by step through a single approach allows them to mentally map out the

problem space. They can then use what they have learned for independent exploration.

There are many possible correct responses to even non-compound programming ques-

tions. As a simple example, when asked to assign the string “hello” to an object named

x, both x <- "hello" and x <- "hello" are correct. The difference between the two

is trivial whitespace. However, when testing for equality between the two lines of code as

character strings, they are not equal. This specific issue can be solved by removing all white

space and then evaluating for equality. However, x = "hello" is also correct. The approach

to overcome this was to evaluate the result of executing their code.

The majority of programming questions are handled by the .askUntil() function. One

parameter of this function is desiredInput which accepts a line of code as its argument.

The argument is evaluated and the result is assigned to an object. This is matched to the

result of the desired user input. The user’s input is passed to the function as a string which

is cast to an expression and then silently evaluated. If the evaluation does not cause an error,

the result is assigned to an object. This process repeats, including receiving new user input,

until the user’s result matches the desired result. Since the user has no control over the R

console, they are not able to run code directly. This is handled by babyCaret. Once the

the results are identical, .askUntil() will either assign the result to the global environment

and/or print the output to the console for the user to see. This approach keeps the user

sand-boxed and avoids them crashing the tutorial by entering error causing code.

There is one edge case where there are two correct results. This is dealt with by using

an optional second parameter, alternativeInput. If used, the user’s result is compared

to both results. There are two edge cases that were not working that involved the rpart

package that babyCaret uses for decision tree computation. The objects would not evaluate

32

as identical, but this was solved by checking the rpart objects for equality of user specified

parameters.

One last case led to problems in our approach: randomness. The issues were caused

by partitioning a dataset or training k-prototypes. Partitioning data using babyCaret’s

dataPartition() function (shown in Appendix C) uses random sampling to split a dataset

into training and testing sets. k-prototypes must initialize k random prototypes. To resolve

the issues, a hidden random seed is added to the user’s global environment before any

programming question involving these two processes is asked. If either function detects the

random seed, the function will use it. Once a question relying on a random seed is answered

or skipped, the hidden seed is removed. If the user ever enters an exit command, the hidden

seed is searched for and if present, removed before exiting. In addition to allowing for

evaluation of correct user response, using a specified random seed for these functions in the

tutorial environment allows for consistent output which can then be reliably used by the

tutorials for discussion.

Chapter 4

Results

This chapter consists of results from the distribution of babyCaret’s tutorials as a

classroom tool, followed by runtime analysis of babyCaret’s KNN and k-prototypes im-

plementations. KNN and k-prototypes are included because the KNN implementation is

unique to babyCaret and the k-prototypes implementation modifies Gero Szepannek’s im-

plementation [27]. Decision tree and apriori are not included in the result section because

rpart’s decision tree implementation [28] and arules’ apriori implementation [10] are used

by babyCaret as package dependencies in unaltered form.

4.1 Tutorial Distribution

babyCaret was distributed to a 200-level intelligent systems class as a part of the course’s

homework. This was was done because babyCaret’s tutorials aligned with course goals.

Basic feedback on the users’ experiences was given to improve the tutorials and instructions

for using the tutorials. IRB approval for user testing was pending when face to face inter-

actions were interrupted by COVID-19 responses and time was limited for implementation

and evaluation.

33

34

Table 4.1: Mean KNN runtime in milliseconds on Fisher’s Iris dataset with k = 5

KNN version Training (ms) Prediction (ms) Total (ms)

caret 559.9 2.38 562.3
babyCaret 0.20 12.38 12.58

4.2 k-nearest Neighbors Runtime

babyCaret’s k-nearest neighbors implementation was applied to Fisher’s Iris dataset

[8] and compared to the implementation used in caret. The two implementations predicted

values from the same dataset. Training was performed on 113 instances and prediction on

the remaining 37 instances. The argument for KNN’s single parameter, k, was five in both

implementations. Both training and prediction were performed 100 times. Mean runtime

is shown in Table 4.1. babyCaret’s mean combined runtime for training and prediction

is 549.72ms (44.70×) faster than caret’s. babyCaret’s prediction process is slower by

approximately 10.00ms (5.21×). This was expected because even without performing cross

validation, caret’s training process has more overhead than babyCaret’s does. This over-

head is shown by caret’s model containing 124,272 bytes when trained on the entirety of the

iris dataset in comparison to babyCaret’s 8,272 bytes. caret’s model includes the function

call, a vector of attributes, a list of user specified and default training options, and more.

caret’s list of options alone contains 25,168 bytes. Even without using advanced function-

alities such as cross validation, their existence still causes overhead because memory must

be allocated within this list of options to tell caret not to do that processing. babyCaret’s

model contains only the minimum information needed to make predictions.

35

Table 4.2: Mean k-prototypes runtime in milliseconds on Fisher’s Iris dataset with k = 5,
nstart = 1, iter.max = 100.

k-prototypes version Training Time (ms)

Original 79.93
Modified 39.24

4.3 k-prototypes Runtime

Gero Szepannek’s k-prototypes R implementation and babyCaret’s modified version of

Szepannek’s implementation using C++ were trained on Fisher’s Iris dataset. All hyperpa-

rameters were set to identical values. Both implementations ran inside of babyCaret to

control for package overhead. Training for each implementation was performed 100 times.

Prediction runtime was not measured because the modifications made were unique to the

training process. Mean runtime is shown in Table 4.2. The modified implementation’s mean

runtime was faster by approximately 40ms (2.04×). This was expected because the use of R

throughout the entirety of Szepannek’s implementation causes increased lookup of methods

and object initialization.

Chapter 5

Conclusions & Future Work

The machine learning tutorials were successfully implemented in R. The tutorials worked

as intended by delivering text information and multiple forms of questions without the

user having to leave their programming environment. They were installed and used to

supplement an intelligent systems class, but without formal user feedback, it is difficult to

discuss their usefulness and functionality. In this chapter, implementation performance is

discussed followed by future work. Future work can include user evaluation, moving tutorials

to the learnr platform, and modifying implementations.

5.1 Assessing Implementation Performance

In total runtime, babyCaret’s KNN implementation was shown to be faster than caret’s

by a factor of 44.7. This is useful for progressing through tutorials without delay and shows

the time to implement KNN using C++ was well spent. Although it is difficult to be certain,

the primary cause of the speed-up is suspected to be that the implementation is designed

to have the minimum functionality required to make predictions and support babyCaret’s

tutorials. Assuming the use of C++ alongside R did lead to some decrease in runtime, it is

not likely to be the primary factor responsible for the decrease.

The training time for babyCaret’s KNN implementation was significantly faster than

36

37

caret’s KNN implementation. This is indicative of babyCaret’s simpler training process.

When one of the main uses of the implementation is as a teaching topic for novice users,

simpler should be preferred.

babyCaret’s implementation is slower than caret’s at KNN prediction. One reason

is that babyCaret scales its training data during the prediction process, whereas caret’s

training data is scaled during the training process, which increases caret’s training time.

This has no effect on the predicted values since it is still done before calculating distances.

Using C++ to calculate the distance matrix for babyCaret’s k-prototypes implemen-

tation showed a decrease in runtime of approximately 50%. This validates our approach of

using a combination of C++ and R as opposed to only using R.

The decision tree and apriori algorithms functioned well within babyCaret’s tutorials.

This was expected because no modifications were made to either implementation.

5.2 Future work

There are multiple areas that could be addressed to improve and further develop baby-

Caret. These include doing formal user testing of the tutorials, working in a new release of

RStudio, and improving algorithm implementations.

5.2.1 User Evaluation

Formal feedback can be collected in the future during structured evaluation sessions.

Materials for gathering this feedback to support both evaluation and improvement of the

tutorials can be found in Appendix B.

38

5.2.2 RStudio 1.3

A new release of RStudio is currently under development, RStudio 1.3 [1]. One of its

features will be an integrated tutorial window, which will be able to host tutorials made

for RStudio’s learnr platform [26]. Developers will be able to create tutorials for their R

package and link to them from the package. The main focus of future work will be porting

babyCaret’s tutorials to the learnr platform and improving them using the tools provided

by the platform. This will allow expansion of the features in babyCaret’s tutorials to in-

clude interactive graphs, videos, images, and equations. RStudio’s tutorial window will run

completely independent of the user’s R session, allowing users to use their R console for ex-

perimentation without having to leave the tutorial. Much of the work done on babyCaret’s

tutorials will be usable in the new format. learnr has modules that evaluate the correctness

of programming question answers, so ideally babyCaret’s answer checking functionalities

should be usable after some modification [29].

5.2.3 Cross Validation

Support for cross validation should be implemented in the future. caret uses cross val-

idation to test multiple hyperparameter configurations to automatically choose the most

accurate configuration. Since this is so common in ML, it is a high priority feature. Auto-

matic hyperparameter selection goes against babyCaret’s purpose as an educational and

experimental tool. However, cross validation in babyCaret would likely be a dynamic pro-

cess that allows users to easily and manually tune hyperparameters and react to how they

affect model accuracy.

39

5.2.4 KNN

Experimentation with a lambda parameter similar to the one found in Szepannek’s k-

prototypes could be done. This would increase or decrease the importance of categorical

attributes. Additionally, scaling the training data should be moved outside of the prediction

process and into the training process.

5.2.5 k-prototypes

In addition to the completed work, Szepannek [27] suggested future work should focus

on automated selection of the lambda parameter. Although automated parameter selection

is not in the development plans for babyCaret, this still should be considered to improve

Szepannek’s implementation for users outside of babyCaret.

5.2.6 Apriori

Two attempts at an apriori implementation never made it into babyCaret. One of

these was written in C++. This was abandoned mostly due to time and the need for major

modifications to increase efficiency. Completion is a primary goal of future work.

Another attempt was written in R. The purpose of this implementation is to be used

as a prototype for the C++ version. This implementation is currently more complete than

the C++ version and is capable of finding frequent itemsets of size two and generating

candidate itemsets of size three. Remaining tasks include checking the size N − 1 candidate

subsets against the size N − 1 frequent itemsets, pruning candidates using that information,

calculating the support of the remaining candidates, pruning those not meeting minimum

support, and then looping that process.

40

Development of our R version of the apriori algorithm should be completed and develop-

ment should then return to the C++ version. Once apriori finds frequent itemsets, another

algorithm is required to find association rules from those itemsets. In common usage, the

apriori algorithm is considered the total process of finding itemsets and then rules, since

after apriori is used to find itemsets, the immediate next step in data mining is typically to

use another algorithm for finding association rules. Technically, apriori is just the algorithm

that finds frequent itemsets and our R version only finds frequent itemsets with a maximum

length of two items. Significant further development is required to implement the full process

of finding both frequent itemsets and their association rules. This extension was beyond the

scope of this thesis, but is valuable future work.

Bibliography

[1] RStudio v1.3.957-1 preview, 2020. https://rstudio.com/products/rstudio/

download/preview/.

[2] M. Akamine and J. Ajmera. Decision tree-based acoustic models for speech recognition.

EURASIP Journal on Audio, Speech, and Music Processing, 10, 2012.

[3] R. Argawal and R. Srikant. Fast algorithms for mining association rules. Proceedings

of the 20th VLDB Conference, 1994.

[4] L. Brieman, J. Friedman, C. J. Stone, and R. A. Olshen. Classification and Regression

Trees. Chapman and Hall/CRC, 1984.

[5] R. Donovan. Topics in decision tree based speech synthesis. Computer Speech Language,

17(1):43 – 67, 2003.

[6] D. Eddelbuettel and J. J. Balamuta. Extending R with C++: a brief introduction to

Rcpp. The American Statistician, 72(1):28–36, 2018.

[7] D. Eddelbuettel and R. François. Rcpp: Seamless R and C++ integration.

[8] R. A. Fisher. The use of multiple measurements in taxonomic problems. Annals of

Eugenics, 7(2):179–188, 1936.

41

https://rstudio.com/products/rstudio/download/preview/
https://rstudio.com/products/rstudio/download/preview/

42

[9] H. Golino and C. Gomes. Random forest as an imputation method for education and

psychology research: its impact on item fit and difficulty of the Rasch model. Interna-

tional Journal of Research & Method in Education, 39(4):401–421, 2016.

[10] M. Hahsler, S. Chelluboina, K. Hornik, and C. Buchta. The arules R-package ecosystem:

Analyzing interesting patterns from large transaction datasets. Journal of Machine

Learning Research, 12:1977–1981, 2011.

[11] W. Hu, X. Li, T. Wang, and S. Zheng. Association mining of mutated cancer genes in

different clinical stages across 11 cancer types. Oncotarget, 7(42):68270–68277, 2016.

[12] Z. Huang. Extensions to the k-means algorithm for clustering large data sets with

categorical values. Data mining and knowledge discovery, 2(3):283–304, 1998.

[13] R. Ihaka. A free software project, 2017. https://cran.r-project.org/doc/html/

interface98-paper/paper_2.html.

[14] S. Kross, N. Carchedi, B. Bauer, and G. Grdina. swirl: Learn R, in R, 2019. R package

version 2.4.4.

[15] M. Kuhn. Building predictive models in R using the caret package. Journal of Statistical

Software, Articles, 28(5):1–26, 2008.

[16] M. Kuhn. The caret package, 2020. http://topepo.github.io/caret/

available-models.html, Accessed: 2020-05-4.

[17] R. I. Lerman and S. Yitzhaki. A note on the calculation and interpretation of the Gini

index. Economics Letters, 15(3-4):363–368, 1984.

[18] U. Ligges and J. Fox. How can I avoid this loop or make it faster? R News,.

https://cran.r-project.org/doc/html/interface98-paper/paper_2.html
https://cran.r-project.org/doc/html/interface98-paper/paper_2.html
http://topepo.github.io/caret/available-models.html
http://topepo.github.io/caret/available-models.html

43

[19] S. Milborrow. rpart.plot: Plot ‘rpart’ Models: An Enhanced Version of ‘plot.rpart’,

2019. R package version 3.0.8.

[20] V. Prasath, H. A. A. Alfeilat, O. Lasassmeh, A. Hassanat, and A. S. Tarawneh. Distance

and similarity measures effect on the performance of k-nearest neighbor classifier–a

review. arXiv preprint arXiv:1708.04321, 2017.

[21] R Core Team. R: A Language and Environment for Statistical Computing. R Foundation

for Statistical Computing, Vienna, Austria, 2019.

[22] K. Rantil, K. Salim, and A. Girsang. Clustering STEAM user behavior data using

k-prototypes algorithm. Journal of Physics: Conference Series, vol. 1367(012018):1–7,

2019.

[23] RStudio Team. RStudio Cloud. RStudio, Inc., Boston, MA.

[24] RStudio Team. shinyapps.io by RStudio. RStudio, Inc., Boston, MA.

[25] RStudio Team. RStudio: Integrated Development Environment for R. RStudio, Inc.,

Boston, MA, 2015.

[26] B. Schloerke, J. Allaire, and B. Borges. learnr: Interactive Tutorials for R, 2019. R

package version 0.10.0.

[27] G. Szepannek. clustMixType: User-friendly clustering of mixed-type data in R. The R

Journal, 10(2):200–208, 2018.

[28] T. Therneau and B. Atkinson. rpart: Recursive Partitioning and Regression Trees, 2019.

R package version 4.1-15.

44

[29] K. Ushey. RStudio 1.3 preview: Integrated tutorials, 2020. https://blog.rstudio.

com/2020/02/25/rstudio-1-3-integrated-tutorials/, Accessed: 2020-05-6.

[30] H. Wickham. Advanced R, chapter Performance, pages 331 – 334. Taylor & Francis,

2014.

[31] H. Wickham. Advanced R, chapter High performance functions with Rcpp, pages 395 –

401. Taylor & Francis, 2014.

[32] G. N. Wilkinson and C. E. Rogers. Symbolic description of factorial models for anal-

ysis of variance. Journal of the Royal Statistical Society. Series C (Applied Statistics),

22(3):392–399, 1973.

[33] D. Şengür and M. Turhan. Prediction of the action identification levels of teachers

based on organizational commitment and job satisfaction by using k-nearest neighbors

method. Turkish Journal of Science Technology, 13(2):61–68, 2017.

https://blog.rstudio.com/2020/02/25/rstudio-1-3-integrated-tutorials/
https://blog.rstudio.com/2020/02/25/rstudio-1-3-integrated-tutorials/

Appendix A

babyCaret’s tutorials

This appendix shows shows the text descriptions and questions from each tutorial for-

matted for this appendix.

A.1 What is babyCaret?

What is babyCaret?

babyCaret is a simple machine learning (ML) package for the programming

language R. It is one part entry-level ML package and one part teaching

tool. In an attempt to be approachable by new users, babyCaret includes

tutorials on both its use and ML in general. These tutorials run in an R

using babyCaret’s own tutorial engine ("engine" might be a bit of a stretch)

and are intended to be used within the RStudio IDE. In addition, their

development is an experiment on the viability of console based tutorials as

an alternative form of package documentation. babyCaret has syntax inspired

by R’s primary ML package, Caret, and aims to ease the user’s transition

into Caret.

A.2 How to Operate babyCaret’s Tutorials

How to Operate babyCaret’s tutorials

--

45

46

The tutorials will run entirely in the console (bottom left window). To

enter the tutorial menu, type tutorial() in the console and then press

enter. tutorial() does not force you to make a selection from the menu;

if you make an invalid selection, you must use tutorial() again. Currently,

tutorial() must also be used to manually navigate to the next module upon

completion of a module. To exit a tutorial at any time, type stop, quit,

bye, or exit into the console, then press enter. IF YOU ENCOUNTER A BUG

OR GET STUCK ON A QUESTION, type skip, next, or ugh, then press enter to

skip that question. If the tutorial crashes, use tutorial() to re-enter the

module and use one of the skip commands to navigate to return to the spot

it crashed at. It’s reccomended but not required to clear your workspace

before begining a tutorial. To do so from RStudio, click the broom in the

upper right window. Don’t be afraid to scroll up through the console if

you want to reference previous answers or information. The rest should be

fairly self explanatory. Check back for more detailed instructions in a

future version.

A.3 Prerequisite R Programming

Prerequisite R programming

--

First, lets go over a couple of terms.

Object: An object in R is anything that has a value assigned to it. The

value could be a number, word, or even an entire dataset. It’s essentially

a variable.

Operator: An operator performs an operation. This could be addition, a

logical operation (like OR or AND), the assignment of a value to an object,

or something else entirely.

--

One of the operators used most frequently is the assignment operator.

This is used to assign a value to an object. The assignment operator is

a less-than symbol followed by a minus symbol. Basically, it’s a left

pointing arrow (<-). The name of the object you are assigning a value to

is placed on the left side of the arrow. The value you are assigning that

object is placed on the right side. You can think of the arrow as shoving a

value into an object.

47

--

Here’s an example: yourObject <- 22

This line of code assigns the value 22 to a new object named yourObject.

yourObject is a new object because this is the first time it has had a value

assigned to it. yourObject can now be used as a stand-in for 22.

--

myObject <- . . . Assign the value "hello world" to a new object named

myObject:

skip

[complete]

--

If you’re wondering what the "myObject <- . . ." is for, it’s to inform

that you are supposed to assign something to an object called myObject. The

assignment request of a coding prompt can easily fall out of your brain, so

you’ll see that format a lot in these tutorials.

--

If you want to see (or show me) the value of myObject, all you have to type

is its name. You can also see it in the upper right window, the variable

explorer.

--

Show me the value of myObject:

myObject

[1] "hello world"

[complete]

--

We call doing what you just did, "printing myObject to the console". Doing

so allows you to see the value of myObject in the window you’re currently

interacting with, the console.

--

If you’re planning on crunching data through a machine learning algorithm,

you have to be familiar with data frames. In R, data frame objects have the

’type’ data.frame, so I’ll often refer to them as such. A data.frame is R’s

representation of a spreadsheet. Each row of a data.frame contains a single

48

instance and each column is an attribute those instances have. If we were

using data on people, each instance (row) would be a specific person and

each attribute (column) would be a measurement or quality of those people.

These attributes may be things like weight, blood pressure, marital status,

etc.

--

I’m going to add a data.frame called cars into your R session. You should

see its name appear in your variable explorer (upper right). To display the

first six instances, enter the command: head(cars). This command is useful

for determining the attributes of a data.frame without being overwhelmed by

every single instance it contains.

--

Display the first six instances of the cars data.frame

skip

speed dist

1 4 2

2 4 10

3 7 4

4 7 22

5 8 16

6 9 10

[complete]

--

From this, we can see that the first car in this dataset has a speed of 4

and a dist of 2. This data.frame only has 50 rows, so it wouldn’t have

been a big deal to print its entirety to the console, but if it contained

thousands of rows, seeing the whole thing would be a bit of a distraction

if you just wanted to see its attributes and a few example instances. If

we did that, you would have to do a lot of scrolling up just to see the

attributes displayed at the top.

--

Sometimes you’ll want to do something with a specific column (attribute) of

a data.frame. You can access a column with the $ operator. When you type

the data.frame’s name followed by $ and then the column’s name, you will

49

grab only the specified column from that data.frame. You can then use that

column for whatever you want---maybe as target data for a machine learning

algorithm?

--

Here’s an example: myDf$eyeColor

This line of code accesses eyeColor column of a data.frame named myDf. If

you wanted, you could even assign this data to a whole new object. One

reason to do so would be to manipulate a copy of that data without modifying

the source.

--

vroom <- . . . Assign the speed column of the cars data.frame to a

new object called vroom:

vroom <- cars$speed

[complete]

--

Now print the contents of vroom to the console

skip

[1] 4 4 7 7 8 9 10 10 10 11 11 12 12 12 12 13 13 13 13 14 14 14 14 15 15 15

16 16 17 17 [31] 17 18 18 18 18 19 19 19 20 20 20 20 20 22 23 24 24 24 24 25

[complete]

--

Technically, vroom is a vector. A vector is an ordered collection of

values.

--

We have one last topic to cover before moving on: functions. A function

is a sequence of operations performed by R. The nice thing is that you’ve

already used one function. When you used head(cars), that was a function.

R has many built in functions. When we use a function, we refer to it as

a function ’call’. What you did was call the head() function on the cars

data.frame. One way to think about it is that you headed cars. In this

context, we refer to cars as an ’argument’. An argument is anything that

goes inside of a function’s parentheses. The function uses those arguments

to carry out its processes. Different arguments can have different roles.

An argument may be data to be processed or a value specifying how to process

50

data. The value that comes out of a function once it is finsished with its

processes is said to be ’returned’ by the function.

--

Use a function to find the mean value in vroom skip [1] 15.4

[complete]

--

We’re going to use the mean function to learn a little more about functions

in general. Don’t worry too much about the particularities of the mean

function.

--

Function call: mean(x, trim = 0, na.rm = FALSE)

Parameters: --- x --- An R object

--- trim --- the fraction (0 to 0.5) of observations to be trimmed from each

end of x before the mean is computed.

--- na.rm --- a logical value indicating whether NA values should be

stripped before the computation proceeds.

--

It’s worth taking a little bit of time to get familiar with the form the

mean function is in presented above. We will use this form frequently. The

"Function call:" section shows how to type out a call to this function.

x, trim, and na.rm are referred to as parameters. When you’re actually

typing out this function call, instead of typing ’x’, ’trim’, or ’na.rm’

you will enter the arguments you want to stand in for x, trim, and na.rm.

The arguments can either be objects containing a value you wish to use or

explicit values. If you see an = in the call, it means the following value

will be used if you do not enter a value; it’s a default value. If you wish

to use a default value, just don’t include an argument for it.

--

The ’Parameters:’ section describes how the arguments you enter to stand in

for these parameters will be used by the function. When including arguments

in a function call, you can either enter your arguments in the same order

as presented in the function call section or explicitly say parameter =

argument (trim = .25). Arguments must be separated by commas.

--

51

Call mean using vroom for x, .5 for trim, and FALSE for na.rm

skip

[1] 15

[complete]

--

This is the end of the Prerequisite R Programming module. I’ll go ahead and

clean my garbage out of your variable explorer/R session. There is a lot

more R programming to learn, but this should be enough to move you through

the rest of the modules. If you would like to learn more R programming,

you should try the R package Swirl. It was part of the inspiration for

babyCaret!

A.4 Creating Training and Testing Sets

Creating Training and Testing Sets

--

For a couple of the algorithms (k-nearest neighbors and decision tree)

included with babyCaret, you should consider having two separate datasets

available. One of them is called a training set and the other is called a

testing set. The training set is used in the learning process to create a

model, and the testing set is used to evaluate how well the model performs.

--

A training set is like study material for the algorithm. The algorithm

studies and creates a model; much like how after you study chapter 2

section 6 of "Biology" by Raven et. al, the result is a mental model of

how mitochondria work. If someone wants to determine the quality of your

mental model, they would test you on relevant material you’ve never seen,

but which they know perfectly. That is essentially what we are doing with

the testing set.

--

Mitochondria is:

a - Where the transcription of DNA to RNA takes place

b - The powerhouse of the cell

52

c - A neurotransmitter

d - A virus

Answer: b

[complete]

--

You might have both of these datasets provided to you, but often you will

find yourself with only one large dataset. In this situation, you will need

to split the dataset into a training and a testing set. A naive approach

would be to chop the dataset in half, with the first 50% of instances going

to the training set and the last 50% of instances going to the testing set.

There are (at least) two problems with this. The first is that we aren’t

assigning randomly from the original dataset. This can have the unfortunate

effect of causing our training set to be unrepresentative of the data. If

the original dataset was created by entering a new instance every day from

January 1st until December 31st, our algorithm would never be exposed to

a single fall instance. That’s not good; there are likely valuable things

to learn from those fall instances that can’t be learned from only winter

and spring instances. The second problem with our naive approach is that

we have too many instances in the testing set. Metaphorically, we want our

algorithm to study a book and then take an intense and lengthy exam, not

study half of a book and then take a test on the other half. A testing set

containing between 20% and 30% of the original data is standard.

--

To partition a dataset into a training and a testing set, we are going to

use babyCaret’s partitionData() function. partitionData treats the original

dataset like a deck of cards. First it shuffles the instances (cards), then

it cuts the shuffled dataset(deck) into two separate datasets. The ratio of

the cut is determined by you.

--

When using partitionData() you will type inside of the parentheses the name

of the dataset followed by a comma, then the ratio of data you want in your

training set as a decimal value. If you do not specify a ratio, .75 will be

used.

--

Here’s an example: partitionData(psychData, .7)

In the above call to the function partitionData(), we are partitioning a

53

dataset called psychData into a training set containing 70% of the original

data and a testing set containing 30% of the original data. The next frame

will show a more formal explanation of this function.

--

Function call: dataPartition(df, p = .75)

Parameters:

--- df --- The dataframe object you are partitioning

--- p --- A number between 0 and 1. This determines how large your testing

set is. If .7 is entered, 70% of the original data will be in the testing

set and 30% will be in the training set. If no value is entered, p will =

.75

--

Call dataPartition() using iris as df and .8 as p: dataPartition(iris, .8)

[complete]

--

Just calling dataPartition() isn’t enough for our purposes.

--

myData <- . . . Repeat the same function call as before, but assign it to

a data object named ’myData’:

skip

[complete]

--

You may have noticed that we have only added one variable to the variable

explorer ’myData’, but are trying to create two new datasets. The training

and testing sets are both contained in the myData object. We can access

them by using the $ operator. It’s just like accessing a column from a

data.frame. myData$train will return the training set, while myData$test

will return the testing set.

--

trainSet <- . . . Assign the training set to a data object named trainSet

skip

[complete]

54

--

testSet <- . . . Assign the testing set to a data object named testSet

testSet <- myData$test

[complete]

--

Your training and testing sets are now ready ready for use! I’ll go ahead

and remove myData from your variable explorer

--

Well, I guess I’ll remove everything because you’ve reached the end of the

Creating Training and Testing Sets module. We’ve only covered the basics of

training and testing sets, but it’s enough to get us pretty far. Enter to

advance . . .

A.5 Using the Algorithms (in general)

Using the Algorithms (in general)

--

When training any model in babyCaret, the babyTrain() function is used.

--

Function call: babyTrain(formOrY, data, method, ...)

Parameters: --- formOrY --- There are two options: a formula or the target

attribute as a vector

--- data --- the training set as a data.frame object

--- method --- the algorithm you wish to use

--- ... --- parameters specific to each algorithm

--

formOrY is short for ’formula or y’. This should give you the clue

that there are two formats you can use for this argument. The first

is formula notation. In babyCaret, formula notation can be used to

specify which attributes in a data.frame you think predict your target

variable/attribute---what you’re trying to predict. This is useful when

55

you don’t think all attributes in a dataset are useful in predicting your

target attribute. Sometimes less is more.

--

Here’s an example: myData$sleep ∼ myData$programming + myData$coffee

This formula can be read as, "sleep is predicted by programming and coffee".

Each chunk of data must be a vector you subset from the training set. The

target attribute is the left most entry in the formula. This is followed

by a tilde (∼), which basically means, "is predicted by". After the tilde,

you type the attributes you think predict the target attribute separated

by pluses (+). You aren’t limited to just two predictors like the example.

You could make a formula with 8 predictors if you wanted.

--

Data used in a formula must be vectors subsetted from the training set.

T/F: T

[complete]

--

If you don’t use a formula, you’ll just enter the target attribute as a

vector subsetted from the training set. To do so, formOrY’s argument be

something like myData$sleep. This means you’ll be building a model which

uses every attribute in the dataset for prediction (which sometimes isn’t

best).

--

The data parameter should be provided with the entire training set.

--

The method parameter accepts one of four character (string) arguments,

"knn", "kproto", "apriori", "tree", or "hmm". Quotes are required. "hmm"

is used for tutorial purposes only.

--

The ... parameter is a placeholder for method specific arguments. These

must be entered after the first three arguments.

--

In order to use the model trained by babyTrain() for prediction, you must

assign the result of the function call to an object.

56

--

I’ve put put a data.frame called myTrainSet into your R session. Print it

to the console.

skip

att targ

1 hmm uhm

2 hmm uhm

3 hmm uhm

4 hmm uhm

5 hmm uhm

[complete]

--

myModel <- . . . Train a "hmm" model which uses myTrainSet$att to predict

myTrainSet$targ. For the value of hmm’s model specific parameter ’aNumber’

use 42. Assign the model to a new object called myModel

myModel <- babyTrain(myTrainSet$att, "myTrainSet$targ", "hmm", 42)

[complete]

--

Once you have a model, you can begin making predictions. Predictions are

made using the babyPredict() function.

--

Function call: babyPredict(trainedModel, newdata, isTest = FALSE)

Parameters: --- trainedModel --- A model trained by babyTrain()

--- newdata --- The dataset with values to be predicted.

--- isTest --- A logical value indicating whether or not the prediction is

being used on a testing set with known values. When set to true, returns

information on model accuracy. Must be TRUE or FALSE. Defaults to FALSE.

--

The trainedModel parameter will be provided with a trained model like

myModel (which you just trained). The newdata parameter requires a

data.frame formatted EXACTLY like the training set. The values for the

57

target attribute can be missing or ’NA’ when you’re predicting unknown

values. babyPredict() will fill in those missing values with predicted

values. If the values aren’t missing, babyPredict will rewrite the

known values with its predicted values. The results can then be used for

evaluating model performance outside of the tools for doing so provided

by babyCaret. the isTest parameter is set to FALSE unless your’re using a

testing set with known values to evaluate model performance, in which case

it should be TRUE.

--

I’ve put put a data.frame called unknownSet into your R session. Print it

to the console.

skip

att targ

1 hmm NA

2 hmm NA

3 hmm NA

4 hmm NA

5 hmm NA

[complete]

--

Use babyPredict() to predict the missing Values in unknownSet

babyPredict(myModel, unknownSet)

att targ

1 hmm ???

2 hmm ???

3 hmm ???

4 hmm ???

5 hmm ???

[complete]

--

As you can see, "hmm" is a very low quality machine learning algorithm.

58

??? obviously isn’t the real value for targ, but atleast it predicted

some values. It did the best it could. This is the end of the Using the

Algorithms (In General) module. I’ll go ahead and clean my junk out of your

R session. Enter to advance . . .

A.6 k-nearest Neighbors algorithm

K-Nearest Neighbors

--

K-nearest neighbors (KNN) is an algorithm that is used to predict unknown

numeric or categorical values. This could be anything from species of

flower, finishing position in a race, or the sale price of a house. Suppose

you want to follow the KNN algorithm with pen and paper to predict the sale

price of an interesting house in your neighborhood. Your first step would

be to make a list of known sale prices (this is your target attribute),

addresses, and square footage for other houses in the neighborhood. Your

second step would be to make a sub-list consisting of the information

belonging to the k (k is a whole number chosen by you) houses nearest in

address and square footage to the one you’re interested in. Lastly, you

would take the k sale prices in your sub-list, add them all up, and divide

by k. Your hope is that the average sale price of the k closest and most

similar houses will be an accurate prediction.

--

The learning aspect of KNN is simple. All KNN has to do is store the entire

dataset in memory. The specific implementation included with babyCaret

also scales numeric data between 0 and 1. This is done to reduce the impact

of differing units of measurement. What you need to specify is an integer

value for k, and what attribute you want it to predict. The value selected

for k will be set in the the model as how many of the closest neighbors to

average when making a prediction. If k is set too high, you’re likely to

consider very distant and irrelevant values. It would be like considering

the entire city instead of just the neighborhood. If you set k as high as

it can reasonably go (the number of instances in the training set), then

for every prediction it makes, KNN will just return the mean of the training

set’s target variable---the variable you’re telling it to predict. If you

set k too low, you reduce your buffer against anomalous neighbors throwing

off your predictions. Imagine being told you’re exactly the same as your

59

intolerable nextdoor (k = 1) neighbor.

--

Which technique is used in KNN’s learning process?

a - Storing the training set in memory

b - Defining a set of rules

c - Learning a polynomial

d - Finding a hyperplane

Answer: a

[complete]

--

In order to make a prediction, KNN must calculate the distance between the

instance being predicted and every instance in the training set. Let’s

focus on a single iteration of this process. babyCaret’s KNN implementation

primarily uses a distance metric called Manhattan distance. A precise-ish

definition of Manhattan distance is the sum of the absolute values of the

difference between corresponding dimensions. If that’s a bit much, we can

learn a lot about Manhattan distance by beginning with its name. Imagine

you’re in Manhattan and are trying to drive to a pizza place 2 blocks north

and 1 block east. The distance to you, the driver, is 3 blocks. This is

because you are restricted to only driving on roads. Distance "as the crow

flies" would be Euclidean distance. If you arrived to discover that the

pizza place was on the 4th floor of the building, the distance would then be

7 blocks because in our Manhattan, each floor has the height of one block.

(0, 0, 0) was your starting point and your ’neighbor’, the pizza place was

at (2, 1, 4). Each position inside the parenthesis can be considered as an

attribute or dimension. The Manhattan distance between these two locations

is calculated as | 0-1 | + | 0-2 | + | 0-4 | = 7, with the vertical bars

signifying absolute value.

--

Which operation is used when computing Manhattan distance?

a - Appendectomy

b - Square Root

c - Exponentiation

d - Absolute value

60

Answer: ugh

[complete]

--

If KNN is computing distance between ordinal attributes (must be ordered

factor datatype, not character), then the values are computed as their

underlying integer representation; on a scale of large, medium, and small,

small would be converted to 1 while large would be converted to 3. These

values are then used in the Manhattan distance calculation. If nominal

attributes are being used (must be factor datatype, not character), then

a match between two values has a distance of 1, else 0. This matching

distance for nominal attributes is not Manhattan distance; it’s an

alternative metric used when Manhattan distance does not make sense. These

values are added to the Manhattan distance.

--

How do you feel about one frame of optional (and potentially rambling)

sidebar information?

1 - Good

2 - Not so good

2

After KNN has calculated the distance between the first test instance and

the first training instance, KNN will then calculate the distance between

the first test instance and every single training instance. Once complete,

the average target value of the k nearest training instances is entered as

the target value for the first training instance. If the target value is

numeric or ordinal, this value is the average of target values from the k

nearest training instances. If categorical, the mode is used rather than

an average. Since for a categorical target variable, the mode is used, it

makes sense to use an odd value for k. This prevents a ’tie’, but only if

the target variable is binary (two labels). Once the target value for the

first test instance is entered, all that is left is to repeat this process

for each test instance.

--

Before we move on to applying this algorithm, let me add a couple of things

to to your R session. You should see them appear in the upper right window.

--

I’ve added some data on iris flowers to your R session. The iris dataset

61

is a classic, and if you continue your machine learning journey, you’ll

run into it a lot. trainSet is obviously your trainingSet, testSet is your

testing set, noPetalSet is a dataset with unknown Petal.Width values, and

noSpeciesSet has no Species values

--

Function call: babyTrain(formOrY, data, method, ...)

Parameters:

--- formOrY --- There are two options: a formula or the target attribute as

a vector

--- data --- the training set as a data.frame object

--- method --- the algorithm you wish to use. "knn", "kproto", "tree", or

"apriori". Make sure you include the quotation marks.

--- ... --- parameters specific to each algorithm

--

First, check out the missing values in noPetalSet. Print noPetalSet to the

console. It’s not very large.

noPetalSet

This output omitted in appendix.

[complete]

--

myModel <- . . . Use babyTrain() to train a KNN model which will use

every attribute to predict the missing Petal.Width values. Use 75 as the

value for k. Assign the result to an object named myModel

myModel <- babyTrain(trainSet$Petal.Width, trainSet , "knn", 75)

[complete]

--

Before we predict missing values, let’s use babyPredict() to find out how

well our model performs on the testing set. This can be done by setting the

isTest parameter to TRUE. First, I’ll print some information on babyTrain()

in case you need a refresher.

--

Function call: babyPredict(trainedModel, newdata, isTest = FALSE)

62

Parameters:

--- trainedModel --- A model trained by babyTrain()

--- newdata --- The dataset with values to be predicted.

--- isTest --- A logical value indicating whether or not the prediction is

being used on a testing set with known values. When set to true, returns

information on model accuracy. Must be TRUE or FALSE. Defaults to FALSE.

--

Use babyPredict() to assess your model’s performance on testSet. Don’t

assign the result to an object.

skip

[1] "Mean absolute percentage error: 64.9

[complete]

--

Mean absolute percentage error is a measurement of how accurate our numeric

predictions are. It tells you, on average, how far away your predictions

are from the the known values. We’re using percentage error instead of

raw error to account for the variation of magnitude in the true values. If

we made two predictions 2 and 12 for the real values 4 and 14, our total

absolute error would be 2 + 2 = 4 with both predictions contributing equally

to the total error. However, the second prediciton is only off by about 17

--

I think we can make this model more accurate. Let’s try to reduce our

error. We’re likely considering too many neighbors and should reduce k.

One thing to note. We’re using performance metrics from our testing set to

improve model accuracy. Ideally, we would have a special set for doing this

and then use the testing set once to determine our models accuracy. Our

metrics are likely to be less accurate in real world performance if we tune

our model on the data that we are using to compute performance metrics. We

can get into a situation where our model seems great but performs better on

the testing set than all other datasets.

--

myModel <- . . . Train a new KNN model to predict Petal.Width. Use k = 5

and assign the result to myModel.

skip

63

[complete]

--

Use babyPredict() to assess your model’s performance on testSet. Don’t

assign the result to an object.

babyPredict(myModel, testSet, isTest = TRUE)

[1] "Mean absolute percentage error: 14.9

[complete]

--

That looks better! let’s use our model to predict the missing Petal.Width

values in noPetalSet

--

newSet <- . . . Use babyPredict to predict the missing Petal.Width

values. Assign the result to an object named newSet

skip

[complete]

--

Let’s check out the predicted values. We cant claim with certainty how

accurate the predictions are this time because we don’t know the true

values, but we can at least look at them and revel in your brilliance.

--

Print newSet to the console.

skip

This output omitted in appendix.

[complete]

--

Cool! If we were to look at the training set, you would able to see that

the setosa species usually has a pretty small petal width. Let’s see if

your predicted values make sense.

--

Print your training set to the console and then compare the petal width

values from setosa plants to your predicted values above.

64

skip

This output omitted in appendix.

[complete]

--

Almost done. Before wrapping up, lets try predicting some

categorical---nominal in this case---data.

--

myModel <- . . . Train a new KNN model which predicts trainSet$Species

from trainSet. Use k = 10 and assign the result to myModel.

skip

[complete]

--

Use babyPredict() to assess your model’s performance on testSet. Don’t

assign the result to an object.

next

[1] "Percent misclassified: 3.84%"

[complete]

--

Easy as pie. We’ve reached the end of the KNN module. I’m going to leave

everything in your R session this time. Feel free to use myModel to predict

the values in noSpeciesSet!

--

A.7 k-prototypes algorithm

K-prototypes

--

K-prototypes is an algorithm used for clustering data. Its purpose is to

group similar instances together. One reason to use a clustering algorithm

is to apply labels to unlabeled data. Another is for exploratory data

65

analysis. If you have a bunch of data on similar dogs and notice that there

are two distinct clusters, you now have a reason to investigate and see if

you’re actually dealing with two breeds.

--

First, we need to know what a prototype is. A prototype is our best

reperesentation of the typical member of a cluster. A cluster is a

grouping of similar data points. Each cluster has exactly one prototype.

A prototype doesn’t have to be an actual member of the cluster. If you

imagine the prototypical thanksgiving dinner, it’s very possible that exact

dinner has never existed. I’m pretty sure the Pilgrims never had access to

Corn Flakes, but they’re both a part of my prototypical thanksgiving dinner.

--

What is a prototype?

a - The best representative of a cluster

b - The squared variance of the mean

c - An unfinished model

d - A rough idea

Answer: d

Answer: a

[complete]

--

"Imagining" is not useful to the K-prototypes algorithm. To find

a cluster’s prototype, within-cluster averages (numeric) and modes

(categorical) are calculated for each attrubute. The prototype is then

the instance (existing in the dataset or not) for which each attribute value

is equal to its within cluster mean/mode.

--

The first step in the K-prototypes algorithm is to randomly choose k initial

protoypes. These are chosen from real instances from the dataset.

--

After prototypes are chosen, each instance’s distance from each prototype

is calculated. Euclidean (straight line) distance is used for numeric

attributes, for categorical variables, the same matching distance as

K-nearest Neighbors is used. The total matching distance between a

66

prototype and an instance is simply added to the euclidean distance. If

you wish, the total matching distance can be multiplied by a value, lambda,

to either decrease or increase the importance of categorical variables.

--

What is the first step in the K-prototypes algorithm

a - Separate numeric and categorical attributes

b - Calculate distances

c - Assign prototypes

d - Randomly choose k initial prototypes

Answer: d

[complete]

--

After calculating distances, each instance is assigned to its closest/most

similar prototype. All instances assigned to the same prototype compose

a cluster. Each instance must belong to exactly one cluster. Once the

clusters are assigned, a new prototype is calculated using the method

previously discussed.

--

Ideally, the entire process described in the prevous two frames is repated

until all prototypes remain static; however, if the process reaches 100

cycles, the existing prototypes are considered final and the process stops.

--

How many clusters can an attribute belong to?

a - Two

b - None

c - One

d - Less or equal to k

Answer: ugh

[complete]

--

Here’s example code showing how to train K-prototypes babyTrain(NULL,

67

titanic, "kproto", k = 3, nstart = 1)

The first parameter is either our target attribute or a formula. Since

K-prototypes needs neither, this gets set to NULL. titanic is a dataset,

"kproto" tells babyTrain() to train a K-prototypes model, k is how many

clusters we want (defaults to 3), lambda is the value we are multiplying the

matching distance by (defaults to 1), and nstart tells babyTrain how many

times we want to rerun the algorithm (defaults to 1)---more on that later.

--

Train k-prototypes on the iris dataset with k = 4. You don’t need to assign

the result to a variable or include any other parameters

babyTrain(NULL, iris, "kproto", 4)

Below is the k-prototypes output.

Numeric predictors: 4

Categorical predictors: 1

Lambda: 1

Number of Clusters: 4

Cluster sizes: 28 50 40 32

Within cluster error: 14.88958 24.08526 22.23344 22.39944

Cluster prototypes:

Sepal.Length Sepal.Width Petal.Length Petal.Width Species

1 5.532143 2.635714 3.960714 1.228571 versicolor

2 5.006000 3.428000 1.462000 0.246000 setosa

3 6.252500 2.855000 4.815000 1.625000 versicolor

4 6.912500 3.100000 5.846875 2.131250 virginica

[complete]

--

Within cluster error is a measure of how well the prototype represents

the cluster. When k remains constant, a lower within cluster error is

preferred.

--

One way we can attempt to reduce this error is by running the algorithm

68

multiple times. Since the final prototypes can vary when we choose

different initial prototypes, we can run the algorithm multiple times and

choose the set of final prototypes with the lowest summed error. Setting

the nstart parameter > 1 will cause the algorithm to run multiple times,

babyTrain() will then automatically return the set of prototypes with the

lowest error.

--

Train k-prototypes on the iris dataset with k = 4. This time, use nstart =

10

skip

This output omitted in appendix.

[complete]

--

It looks like we get the exact same output as when running it once.

Although improving our original prototypes would have been great, we now

have some evidence suggesting that we are finding the best 3 prototypes we

can. As an experiment, let’s try turning lambda all the way down. This

will essentially ignore categorical variables.

--

myModel <- . . . Train k-prototypes ONCE on the same dataset with k = 3

and lambda = 0. Assign the result to a new object called myModel.

skip

This output omitted in appendix.

[complete]

--

Aside from using the prototypes to gain insight into our dataset, we can

also attach the cluster labels to the original dataset. To do this, we

use babyPredict(). Just like when using it with a knn model, your model

object is the first argument and a dataset is the second argument. However,

instead of using a special unseen test set, we use the training set. This

isn’t really prediction (it’s similar); we’re just using babyPredict() to

keep your workflow similar across algorithms.

--

use babyPredict() to attach cluster labels to the iris dataset.

69

babyPredict(myModel, iris)

This output omitted in appendix.

[complete]

--

It might be a little odd to assign labels to labeled data but it can be

useful, especially for demonstration. You can see the assigned cluster on

the far right and compare it to the species. The assigned cluster does a

decent job of matching up with the species, so I conclude that biologists

are right. These really are three species of flower. I also conclude the

k-prptotypes module!

A.8 Apriori algorithm

Apriori

--

Apriori is an algorithm for finding frequent itemsets. For our purposes,

a frequent itemset is a commonly occuring set of row values/items. A set

of row values may be a complete row/instance, it might be two items that

frequently occur together---like high blood pressure and diabetes, or it

could be a single item. The frequency of an itemset is called support.

It’s the number of times the itemset occurs divided by the total rows in

the dataset. One paramater we set is the minimum acceptable support. This

is used to ensure the only designated itemsets are ones we would consider

frequent.

--

The number of items/columns is important criteria in determining what

qualifies as an itemset

T/F: F

[complete]

--

The first step in the algorithm is to calculate the support of every

value/item the dataset contains. As you can imagine, this is most

meaningful on categorical data. For practical use on numeric data, numeric

70

values should be placed into bins defined by range. Once we calculate

the support of the single items, we create candidate itemsets of size two

by calculating all two item combinations of the single items with minimum

support. We then calculate the support of the new itemsets and ’drop’ those

who do not meet minimum support from consideration. Those meeting minimum

support are deemed frequent itemsets.

--

Once all size three itemset combinations are computed from the frequent

size two itemsets, we can finally use what makes this algorithm special,

the apriori principle. Instead of endlessly calculating support for all

possible combinations---which requires many time consuming passes through

the dataset---we can instead use the fact that all size n-1 subsets of a

size n itemset must minimum support for the size n itemset itself to meet

minimum support. It’s sort of like reaching the conclusion that diamond

encrusted cellphones are rare, not because you counted them up, but because

diamonds (a component of these phones) satisfy your criteria for rarity.

This means that once we reach candidate itemsets where n = 3, we look at

all of its n-1 subsets and ensure that we had already determined them to

be frequent. If any of its n-1 subsets weren’t frequent, then the size n

set can’t be frequent and we don’t even bother calculating support. The

size n candidate itemsets that pass the apriori consideration then have

their support calculated from the dataset. This process repeats until we no

longer find itemsets meeting minimum support.

--

What is the apriori principle (roughly)?

a - According to the philosopher Ludwig Wittgenstein, the a priori principle

. . .

b - Calculate the support for an itemset before calculating the support for

its subsets.

c - For something to be common, each of its components must also be common

d - Useless

Answer: d

Answer: c

[complete]

--

The frequent itemsets found by Apriori are cool and all, but they are

71

usually used in the calculation of association rules. In fact, the paper

that introduced Apriori is titled "Fast algorithms for mining association

Rules" (Agrawal Srikant, 1994), desipte only dedicating four sentences

to the "sub-problem" of calculating association rules. Association rules

are basically if-then statements; if we see the antecedent itemset, then

we see the consequent itemset. There are two main measurements for the

strength of an association rule. One is called confidence, the other is

called lift. Confidence is the frequency of the entire itemset (antecedent

and consequent together) divided by the frequency of the antecedent. It

measures how confident we in the consequent being present given we have

the antecedent. Lift is (support of antecedent) / (support of antecedent *

support of consequent). Lift attempts to temper the effects of a consequent

that is frequent throughout the entire dataset. This can lead to many

rules with high confidence just because the consequent itself is frequent

in general.

--

Here’s example of running Apriori: babyTrain(NULL, flowerStuff, "apriori",

minSup = 0.1, minConf = 2, maxLen = 10

Like the previous examples, the parameters following the method ("apriori")

are specific to the method and are shown set equal to their default

value---the value used if you act like they don’t exist at all. minSup

is the minimum support. This can be increased to consider less total

itemsets. minConf Is the threshold below which a rule will not be shown to

you. Consider Raising this if you’re being presented with too many rules,

or lowering if too few rules. maxLen is used for keeping the rule itself a

reasonable size for your application.

--

Run the default apriori settings on the arthritis dataset. don’t assign a

new object.

skip

Below is a segment of apriori’s output.

1 Treatment=Treated,Age=[51,60.3) => Improved=Marked 0.1309524 0.8461538

2.538462 11

2 Treatment=Placebo,Age=[23,51) => Improved=None 0.1547619 0.8666667

1.733333 13

3 Age=[51,60.3),Improved=None => Treatment=Placebo 0.1190476 0.8333333

1.627907 10

72

[complete]

--

A numeric attribute (age) was detected, so the values were changed to

ranges. You’ll see a warning informing you of this action once the module

is completed. This is a small dataset with few values, but we still found

some useful rules. It looks like if you’re treated and 51-60 yrs old, your

arthritis is likely markedly improve. I think the other rules are pretty

interesting too. Let’s lower our standards to find some more.

--

This time, decrease minConf to 0.3 to see some more rules meeting the

default minimum support of 0.1.

babyTrain(NULL, arthritis, "apriori", minConf = .3)

This output omitted in appendix.

[complete]

--

That’s all I’ve got. This is the end of the Apriori module.

--

A.9 Decision tree algorithm

Decision Tree

--

Like the previously covered K-nearest neighbors, the Decision Tree algorithm

is used for classification and regression. This algorithm recursively

splits the data into two subsets based on how attribute values fall into

buckets (temp < 70, yes/no?). The splits are chosen based on purity. If

we only had As and Bs as target attribute values and a split was found that

would create one subset of As and one subset of Bs, that split would be

chosen. The buckets and the pattern used to create them are recorded and

used for prediction.

--

73

First, the tree algorithm will attempt to find the best split. If used

for classification (categorical target variable), the split leading to the

smallest (weighted) gini index is used. The gini index of a dataset is 1

- (the sum of squared target class probabilities). If we had a bucket with

4 red balls and 5 green balls, the gini index would be 1 - (0.442 + 0.552)

= 1 - (0.2 + 0.3) = 0.5. A bucket with 8 red balls and 1 green ball would

have a gini index of 1 - (0.01 + 0.079) = 0.2. It makes sense that the

second bucket has a lower gini index and is therefore the preferred split.

It’s actually useful in making a prediction. It’s a bucket that allows you

to say, "If it’s in here, it’s likely a red ball". When building a tree,

many pairs of subsets---the result of a split---will not share the ratio

of instances equally. For example, subsets containing 3 and 7 instances in

comparison to 5 and 5. Because of this, the Decision Tree algorithm weights

the gini index of each subset by the ratio of instances it contains. The

gini index from both subsets are then added together to create the gini

index for the split. The split with the lowest gini index is chosen.

--

In babyCaret, splits are chosen based off of information gain

T/F: F

[complete]

--

If used for regression (numeric target variable), the split leading to

the highest between-groups sum of squares is used. In general, a sum of

squares is the sum of each value minus the mean; it’s just the numerator

when calculating variance. First, before any split is attempted, the

target variable’s grand mean is calculated. This is just the normal

arithmetic mean of the pre-split set. After this, each value in a subset

is ’temporarily replaced’ by the subset mean and used to calculate a sum

of squares between the each value in the subset and the grand mean. The

split that maximises this value is then chosen. It’s kinda like trying

to maximize the numerator of an ANOVA’s F-statistic. If everything is all

cloudy to you, your get out of jail free-ish card is to think about it as

trying to find a split which minimizes the p-value of its ANOVA.

--

Something something, sum of squares.

T/F: T

[complete]

74

--

If we let this process run continue until it no longer can, we’re likely

to end up with a bunch leaf nodes (ending buckets) that contain very

small values. This is not necessaily a good thing. Our model may end

up representing lots of nuances in the training set, but then fail to

generalize to the population. This is called overfitting and it’s

something decision trees are prone to if we don’t take steps to reduce their

complexity. At our basic level, we have two main ways of doing so: we

can set a lower threshold for the size of bucket the algorithm is allowed

to split, and we can set the maximum depth---you’ll see this later as the

number of ’rows’ in a plot. Lets check this out.

--

Here’s example code showing how to train a Decision Tree:

babyTrain(titanic$survived, titanic, "tree", maxDepth = 30, minSplit = 2

As usual, the first parameter is our target variable, the second is the

dataset it’s from, and the third tells babyTrain() to train a Decision

Tree model. maxDepth sets the maximum allowed depth (defaults to 30), and

minSplit sets the bucket size under which a split will not be attempted

(defaults to 2). The default tree parameters lead to a fully grown

tree. This can be useful when you’re only concerned with analyzing the

particularities of a single dataset, but is likely to be overfitted and

lacking in prediction accuracy.

--

myModel <- . . . Train a decision tree on the iris dataset with

iris$Species as the target attribute. Use the default arguments for

maxDepth and minSplit. Assign the result to a new data object called

myModel.

myModel <- babyTrain(iris$Species, iris, "tree")

Plot shown in RStudio.

[complete]

--

Check out the plot in the lower right window. It looks . . .

complicated. It’s likely overfitted to the training data. This will

cause the model to capture lots of detail from the training set but fail

to generalize to other datasets. Let’s test the model accuracy.

--

75

Use babyPredict() to evaluate accuracy on testSet

skip

[1] "Percent misclassified: 7.69

[complete]

--

We might be able to get a more accurate model if we reduce the complexity of

the model. We’ll do this by increasing minSplit.

--

myModel <- . . . Train the same model and re-assign to myModel, but this

time set minSplit to 25

skip

[complete]

--

myModel <- . . . Train the same model and re-assign to myModel, but this

time set maxDepth to 3

skip

Plot shown in RStudio.

[complete]

--

That’s better. If you look at the first split chosen at the very top, you

can see that we were able to include all of the setosa flowers into one

subset.

That looks better. If you look at the first split chosen at the very top,

you can see that we were able to include all of the setosa flowers into one

subset. This was chosen due to the resulting low gini index. Next, we’ll

check the accuracy.

--

Use babyPredict() to evaluate accuracy on testSet

skip

[1] "Percent misclassified: 3.84%"

[complete]

76

--

Great! We’ve increased the model’s accuracy. Since we’ve reduced the

model’s complexity, it’s better able to generalize to unseen data. It’s

a better representation of how the patterns in the data can be used for

species classification. Now let’s try using decision tree for regression.

Once we get a good regression model, we’ll end this module.

--

myModel <- . . . Train a decision tree on trainSet with

trainSet$Petal.Length as the target attribute. Use the default arguments

for maxDepth and minSplit. Assign the result to myModel.

myModel <- babyTrain(trainSet$Petal.Length, trainSet, "tree")

Output omitted from appendix due to length.

[complete]

--

This tree is so complicated that plotting it is likely to crash your R

session. Instead of plotting, I’ve printed a text based representation

of the tree to your console. If you scroll up through the output, there

should be no doubt in your mind that the model is overfitted. Let’s check

accuracy on the test set.

--

Use babyPredict() to evaluate accuracy on testSet

skip

[1] "Mean absolute percentage error: 33.3

[complete]

--

We can definitely do better. We’ll reduce model complexity by decreasing

maxDepth (defaults to 30).

--

myModel <- . . . Train the same model and re-assign to myModel, but this

time set maxDepth to 2

myModel <- babyTrain(trainSet$Petal.Length, trainSet, "tree", maxDepth = 2)

[complete]

77

--

Use babyPredict() to evaluate accuracy on testSet

babyPredict(myModel, testSet, TRUE)

[1] "Mean absolute percentage error: 11.5%"

[complete]

--

Awesome! I think that’s accurate enough to end the decision tree module.

Appendix B

Materials for Future Formal User Feedback

This section of the appendix contains materials that may be used for future testing and

evaluation of the tutorials by users.

B.1 Help Sheet

Entering Commands

• Type a line of code in the console then press enter to execute that command.

Some Commands

t u t o r i a l ()

This will begin the tutorial. This should be the first line of code that you run.

Note: If you use any of the following commands, please let the researcher know that you

used and why you used it.

sk ip

This will skip the current frame of the tutorial. If you are stuck on an action due either to

a bug or not knowing the answer, this command should move you past it. Please let the

78

79

researcher know whenever you use skip and why you used skip.

e x i t

This command will kick you out of the tutorial and return you to the normal R console.

This will end your tutorial session. NOTE: please do not X out of RStudio.

Some Tips

• If you can’t remember how to do something you’ve previously done, you can scroll up

through the console to see the questions asked and how you responded. Use the scroll

wheel for this rather than the arrow keys.

• You should primarily be using the console window of R studio; it’s on the left side of

the screen. You will not need the source or job tabs. You will occasionally interact

with the two windows on the right side of the screen. To the extent you do, you will

only be using the lower section and the environment tab of the upper section.

Your Goal

Your goal is to complete the tutorial while understanding the information presented. Run

the tutorial() command in the console window when you are ready.

80

B.2 User Survey

1. What is your major?

2. What year are you in school?

3. What is your experience in using the programming language R?

� None

� Familiar

� Some experience

� Comfortable

� Competent

� Advanced

� Expert

If you did not answer none, would you say that you primarily use R for statistics/data-

analysis? � Yes � No

4. What programming language(s) do you know and what is your experience level?

Some

Language None Familiar Experience Comfortable Competent Advanced Expert

C/C++

C#

Java

Python

Other

5. What is your greatest experience with machine learning software that you are most

comfortable with?

81

� None

� Familiar

� Some experience

� Comfortable

� Competent

� Advanced

� Expert

If you did not answer none, what is the software? If it’s a programming language/-

package, please include the language and package.

..

..

6. Have you ever completed a programming oriented course in any of the following disci-

plines: computer science, information technology, electrical engineering, mathematics,

or computer information science? � Yes � No

7. How familiar are you with the following machine learning algorithms?

(a) K-nearest neighbors

� I didn’t know it existed.

� I only know it exists.

� I understand it on an applied level.

� I understand it on both applied and

technical levels.

� I would consider my understanding

deep.

Have you computed or instructed software to compute this algorithm before?

� Yes � No

(b) K-prototypes (K-means with a hamming distance for categorical variables)

82

� I didn’t know it existed.

� I only know it exists.

� I understand it on an applied level.

� I understand it on both applied and

technical levels.

� I would consider my understanding

deep.

Have you computed or instructed software to compute this algorithm before?

� Yes � No

(c) Decision tree

� I didn’t know it existed.

� I only know it exists.

� I understand it on an applied level.

� I understand it on both applied and

technical levels.

� I would consider my understanding

deep.

Have you computed or instructed software to compute this algorithm before?

� Yes � No

(d) Apriori

� I didn’t know it existed.

� I only know it exists.

� I understand it on an applied level.

� I understand it on both applied and

technical levels.

� I would consider my understanding

deep.

Have you computed or instructed software to compute this algorithm before?

� Yes � No

83

Stop! Please do not proceed until you have ceased working on the

tutorial.

84

1. I would use this tutorial again 1 2 3 4 5

2. I would use future versions of this tutorial 1 2 3 4 5

3. I would use the R package again 1 2 3 4 5

4. At times, I felt frustrated with the tutorial 1 2 3 4 5

5. I feel that the tutorials aided my learning 1 2 3 4 5

6. I had difficulty navigating the tutorial 1 2 3 4 5

7. I feel that bugs or issues with the tutorial hin-

dered my learning

1 2 3 4 5

8. I feel that bugs or issues with the R software

hindered my learning

1 2 3 4 5

9. I would recommend this to someone unfamiliar

with programming

1 2 3 4 5

10. I would recommend this to someone familiar

with programming

1 2 3 4 5

11. What about the tutorial helped you learn to use the software?

..

..

..

..

85

12. What would help your learning in this software environment?

..

..

..

..

13. What did you like about the tutorial?

..

..

..

..

14. What did you dislike about the tutorial?

..

..

..

..

15. Do you have any suggestions for improving your experience with the tutorial?

..

..

..

..

86

16. Please briefly state what each of the four algorithms do, or how they work. You can

start by listing their names.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

87

Thank you for participating in this research. If you want more information about the

tutorials, please ask!

B.3 Researcher Instructions

1. Consent form

(a) Explain the study.

(b) Give participant the consent form to read and sign.

(c) Ensure they have initialed every page and signed the last one.

(d) Ask if they have any questions.

2. Survey

(a) Give them a survey and instruct them to fill out first section.

(b) Open RStudio software.

(c) Load package.

(d) Maximize console window.

(e) Clear the console.

3. Help Sheet

(a) Read through and explain the help sheet.

(b) Ask if they have any questions.

88

(c) Ask them to let you know if they get stuck or have difficulties.

(d) Remind them know you will be taking notes (as written in the consent form).

(e) Instruct them to run the tutorial() command and begin the tutorial.

(f) Note their start time.

4. During Task

(a) If participant gave email, send them a copy of the consent form.

(b) Stop them 30 minutes after their start time or if they complete the tutorial.

• If they are having difficulties related to the content you may suggest they scroll

up through the console and reread, or that they may use the skip command.

• If they are having difficulties not related to the content e.g. they minimize the

console window. You may resolve the issue for them.

• Take notes on what feedback the participant gets stuck on or has questions on. If

they use “skip”, or “exit” ask and record why they chose to use that command.

5. After Task

(a) Have them complete the survey

(b) Ask if they have any questions.

(c) let them know they can complete the tutorial if they would like during open lab

hours.

(d) Thank them for their participation.

Appendix C

Public Functions

This section contains short descriptions of babyCaret’s public functions. Where a

parameter is set equal to a value, the value signifies the default argument when used when

the user does not specify a value.

1. babyTrain(formOrY, data, method, ...)

babyTrain() handles ML model training through interaction with babyCaret’s ML

model implementations.

• formOrY accepts either the dependent variable as a vector, or R’s implementation

of Wilkinson-Rogers notation [32]. These are two ways for the user to specify a

target attribute. formOrY accepts NULL for apriori and k-prototypes methods.

• data accepts a dataframe containing the training data.

• method is a string specifying the ML algorithm to be trained. knn, kproto, tree,

apriori, or hmm. Hmm is a fake model used for tutorial purposes.

• ... contains model specific parameters.

– knn has k = 3.

– kproto has k = 3, max.iter = 100, and nstart = 1.

– tree has maxDepth = 30 and minSplit = 2.

89

90

– apriori has minSup = 0.1, minConf = 0.8, and maxLen = 100.

2. babyPredict(trainedModel, newdata, istest = FALSE)

babyPredict() predicts missing values through via a model trained by babyTrain().

• trainedModel is a model returned by babyTrain.

• newdata is the dataframe containing values to be predicted.

• istest is a Boolean value specifying whether newdata has known target values

and is being used to assess model accuracy. If TRUE, prints information on model

accuracy, if FALSE, predicts newdata’s missing target values

3. dataPartition(df, p = 0.75)

dataPartition() splits a single dataset into list containing a training set and a testing

set.

• df is the dataframe being split.

• p is a parameter between 0 and 1 governing the ratio of data being sent to the

training set. (1-p)·100% of data is sent to the testing set.

4. (plotTree(tree, showInterior = FALSE))

plotTree() plots a decision tree using R’s rpart.plot package [19]

• tree is a decision tree model returned by babyTrain().

• showInterior is a Boolean value that when TRUE, will include non-terminal

nodes in the plot.

91

5. tutorial()

tutorial() opens the tutorial menu inside the user’s R console.

	Development of Machine Learning Tutorials for R
	Recommended Citation

	Introduction
	Background
	The R Statistical Package
	Machine learning
	caret: an ML module for R
	Extending R: babyCaret, a new ML module

	Tutorial Development
	Rcpp
	Algorithms
	k-nearest Neighbors
	k-prototypes
	Decision Tree
	Apriori

	Tutorials

	Results
	Tutorial Distribution
	k-nearest Neighbors Runtime
	k-prototypes Runtime

	Conclusions & Future Work
	Assessing Implementation Performance
	Future work
	User Evaluation
	RStudio 1.3
	Cross Validation
	KNN
	k-prototypes
	Apriori

	babyCaret's tutorials
	What is babyCaret?
	How to Operate babyCaret's Tutorials
	Prerequisite R Programming
	Creating Training and Testing Sets
	Using the Algorithms (in general)
	k-nearest Neighbors algorithm
	k-prototypes algorithm
	Apriori algorithm
	Decision tree algorithm

	Materials for Future Formal User Feedback
	Help Sheet
	User Survey
	Researcher Instructions

	Public Functions

