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Abstract

The ability to manipulate videos has been around for decades but a process that once

would take time, money, and professionals, can now be created by anyone due to the rapid

advancement of deepfake technology. Deepfakes use deep learning artificial intelligence to make

fake digital content, typically in the form of swapping a person’s face in a video or image. This

technology could easily threaten and manipulate individuals, corporations, and political

organizations, so it is essential to find methods for detecting deepfakes. As the technology for

creating deepfakes continues to improve, these manipulated videos are becoming increasingly

undetectable. It is crucial to create methods to combat this problem. Previous research has been

conducted on the various techniques to detect deepfakes, and though some models show

promising results, many models struggle with reproducibility and practicality when exposed to

real-world scenarios. Future work could consist of creating models without the tools used to

generate deepfakes and the collected dataset in mind. Thus, the aim was to create a more general

model that could be repeated on a variety of real data. To achieve this, a deepfake dataset was

used to train models, and the results were analyzed. After comparing the strengths and

limitations of previous models, we created simple, machine learning models that can accurately

detect real-world deepfake images. Three methods, random forest, KNN, and SVM were

utilized, and all achieved high accuracies compared to state-of-the-art models. Random forest

had the best detection performance with accuracy results over 98%, followed by KNN and SVM.

As deepfake technology continues to accelerate, it is essential to continue building models that

can detect them because if not, it will be impossible to discern digital truth from reality.
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Chapter 1

Introduction

Deepfakes are a type of digitally manipulated image in which the face of an individual is

altered and replaced by the face of another. Using deep learning technology, any individual is

now able to manipulate images in seconds to provide highly realistic and convincing content.

This technology is advancing at a rapid rate, and it is becoming more difficult to discern real

images from fakes. Humans are already subject to manipulation by these images and they are

only becoming more and more indistinguishable. As this process continues, individuals will not

be able to distinguish the reality of any online media. This issue produces a significant threat to

the authenticity of digital content. Deepfakes can be used to deceive individuals, manipulate

organizations, and spread false information on a massive scale.

Recently, there has been a surge in using artificial intelligence (AI) to generate

self-portraits or fictitious people. This type of technology certainly poses similar risks to people

and society. The techniques used to create the generated images are similar and use the same

algorithms as those used to create deepfakes, but the fictitious images have been created too

recently to be included in the dataset. So, this research does not address the challenges of

detecting artificially generated images. Instead, this work focuses on detecting deepfake images

that involve face manipulation or swapping, which includes alterations of the entire face or

portions of the face.

1
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Deepfakes have been used for various purposes, including political propaganda, revenge

porn, and financial fraud. For example, deepfakes can be used to spread false information about a

political candidate or to incriminate an individual in a crime they did not commit [5]. In some

cases, deepfakes can even be used to impersonate someone in a video call or to create fake

endorsements for products or services. While deepfake and artificially generated technologies

can have potential humorous benefits, such as creating realistic or entertaining characters for use

in media, games, and marketing, individuals should not be misled by the content they encounter.

Because of this and the potential malicious actions, there is an urgent need to develop effective

methods for detecting manipulated videos and images.

In response to the urgent need for detection, much research has been done on the topic in

recent years [1-3, 6, 9, 10, 11, 13-17, 19-23, 26, 30-34]. This has, in hand, produced better

techniques for creating fakes. In order to detect more sophisticated manipulated images,

researchers must first create convincing datasets to train their models with. So, there is both a

battle to detect images and create challenging fake images. Deep learning and neural network

techniques are commonly used both to create and detect false images. This creates an

increasingly complex cycle between the generator and the detector, but it does not necessarily

benefit the reproducibility of detection when applied to real-world issues.

Instead of trying to add more levels of sophistication to already complex models that are

discussed in Chapter 2, simple machine learning techniques were used in this work to detect

real-world deepfake images. Chapter 3 discusses the WildDeepfake dataset chosen and the

processing steps. In Chapter 4, different feature extraction methods from the scikit-image library

[28] are applied, and features are extracted. Then, common machine learning models, including

random forest, k-nearest neighbor (KNN), and support vector machine (SVM), were trained and
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tested against the features extracted from the images using scikit-learn functions [29]. The results

in Chapter 5 demonstrate that less sophisticated models may successfully detect deepfake

images. By sticking with simple methods, the results show that machine-learning techniques can

achieve high accuracy scores and may be a viable option for detecting deepfakes. More analysis

is provided in Chapter 6. Finally, Chapter 7 discusses that more research is necessary to optimize

these techniques and address the limitations, but this study highlights the potential of simpler

machine learning models in the fight against deepfakes.



Chapter 2

Literature

The rise of deepfake technology has raised concerns about the ability to distinguish

between authentic and fake facial content. This issue has become increasingly relevant due to the

potential for this technology to be used for malicious purposes [5]. As a result, researchers have

been exploring different methods to detect deepfakes, with a particular emphasis on using

machine learning and deep learning algorithms. The aim of this literature review is to examine

the existing research on deepfake detection using machine learning. Specifically, the different

techniques used by researchers in the field, as well as some of the strengths and limitations of

each approach will be analyzed. By synthesizing the findings of these studies, insights into the

current state of research on deepfake detection and areas for further research will be identified.

2.1 Background

To understand the work of this thesis, it is first necessary to understand machine learning.

Machine learning is a subfield of artificial intelligence that involves training algorithms to make

predictions based on the data. This includes a variety of models and types of learning including

supervised, unsupervised, and reinforcement. Supervised learning involves training algorithms

on labeled data, in which the model is exposed to data with the category it belongs to, and then it

is tested by predicting the labels or category on unseen data. Unsupervised learning, on the other

hand, involves training algorithms on unlabeled data, with the goal of discovering underlying

patterns or structures in the data. Finally, reinforcement learning involves training algorithms to

4
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learn from feedback using rewards or penalties [4, 24]. For this thesis, all of the models use

supervised learning as the photos of deepfakes are labeled as “real” or “fake.”

Deep learning is a subset of machine learning that uses neural networks to compute

complex relationships between inputs and outputs. Neural networks are composed of layers of

interconnected nodes that process data and make predictions. Due to the complex

interconnection of nodes, these models resemble the structures of the human brain and are

capable of learning and adapting to new information. This type of learning has proven useful in

deepfake detection because the extra layers or nodes add more complexity to the model and

require less human intervention, allowing them to analyze more complex input data [8]. This is

particularly useful for feature extraction in images, as less work is needed in processing the data

beforehand. However, more simple machine learning techniques prove to be just as capable of

deepfake detection.

2.2 Search Strategy

To identify relevant papers for this literature review, a comprehensive search of databases

was conducted including Google Scholar [12] and Papers With Code [25], a site that hosts

academic papers and connects with the arXiv database. In addition to papers, they provide

connected software and datasets. This was helpful in finding papers that used the datasets of

interest, including WildDeepfake or Deepfake Detection Challenge (DFDC) datasets. In

searching, a combination of keywords was used such as "deepfake detection," "machine

learning", and "face forgery". The search was limited to studies published after 2017. The

inclusion criteria for the studies were as follows: (1) the study identified a method for deepfake

detection and utilized either the WildDeepfake or DFDC dataset, (2) the study was published in a

peer-reviewed journal, and (3) the study provided an evaluation of the proposed deepfake
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detection method. After applying the inclusion criteria, fifteen papers were identified that met the

criteria for inclusion in this literature review.

2.3 Datasets

The search began with an exploration of the DeepFake Detection Challenge (DFDC) and

the papers surrounding it [10]. The creators of this paper and dataset included industry partners

and experts, such as Facebook and Kaggle, who publicly released this large dataset to encourage

deepfake detection. The DFDC dataset is the largest deepfake detection dataset to date,

containing over 128,000 total videos, with over 104,000 of them being unique fake videos.

Comparing this to the size of others available shows an impressive jump in scale, as shown in

Figure 1. It was created by commissioning videos of individuals who consented to have their

images manipulated and used in a deepfake dataset. The videos were pre-processed using a face

tracking and alignment algorithm and then further manipulated using a variety of current

state-of-the-art deepfake generation methods, including the Deepfake Autoencoder method,

MM/NN face swap, FSGAN, StyleGAN, refinement, and audio swaps. The dataset was divided

into four sets: training, validation, public test, and private test, and the training and validation

sets were publicly released. The dataset also includes various augmentations including face

masks and Poisson blending to improve the quality of the deepfake videos and make detection

more challenging.

Not only was this dataset interesting in regards to its size and quality, but there was also a

competition behind it. In order to accelerate research within deepfake detection, the creators held

a Kaggle competition with the public dataset [9]. The competition had over 2,000 participants.

During the contest, the public test set was used to evaluate the models, but when it came to

actually judging, the models were evaluated with a private, never-before-seen, testing set. This,
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expectedly, caused precision and accuracy to drop. The average precision of the top models was

75.30% [10]. More information about the competition can be found on Kaggle [9].

Figure 1: Size comparison of popular deepfake datasets. The DFDC is significantly larger than
any other available. The boundaries show rough dataset “generation” (image from [10]).

In addition to this popular dataset, the WildDeepfake dataset was intriguing. Unlike the

DFDC which was created with consenting individuals and algorithms to create the deepfakes, the

WildDeepfake dataset was collected completely from the internet with unknown creation

methods for individual images [34]. It contains 7,314 face sequences from 707 videos, making it

a smaller but useful dataset. The authors hoped this would support the development of more

effective deepfake detectors by using it along with other datasets. The dataset is diverse and

contains a variety of quality, angles, and unknown deepfake methods, making it a challenging

dataset for deepfake detection. The authors argue that existing virtual deepfake datasets lack

diversity and have low quality, which may not fully generalize to real-world deepfakes. The

paper goes on to conduct experiments with baseline detection networks on both existing and
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WildDeepfake datasets. Then, the authors, Zi et al., propose their own method for detection using

two new attention-based deepfake detection networks (ADDNets) for more advanced deepfake

detection. The proposed methods use an attention mask to adjust the feature map at different

abstraction levels, making the method more effective. This dataset was additionally interesting

due to the lack of research conducted on it. Even though it has a variety of high-quality

deepfakes, it is used much more rarely in papers than the DFDC dataset. In addition, papers and

previous methods that it has been tested on have received lower accuracies. Zi et al. believe 3D

detection networks may be less effective than 2D networks for WildDeepfake detection due to

distorted temporal information in deepfake face sequences. Thus, the temporal information in

their videos needs to be treated differently from that in real videos in order to improve the

accuracy of sequence-level deepfake detection [34].

Another popular dataset is FaceForensics++ (FF++) [26]. It was created using 1,000 real

videos from the internet. These videos were manipulated using four popular deepfake techniques

including Deepfake, Face2Face, FaceSwap, and NeuralTextures, resulting in 4,000 fake videos to

test against. Other popular datasets were created similarly, with fewer unique identities and

algorithmic manipulations. For example, the DF-TIMIT [19] dataset contains 43 unique

identities, UADFV [33] contains 49, Google DFD [11] contains 58, and Celeb-DF [20] contains

59. The models created from these datasets struggled to generalize due to the small number of

unique subjects [10].

2.4 Previous Methods

When attempting to find “machine learning” methods for detection, it was surprising how

few papers used simple machine learning methods. Even papers claiming to use machine

learning would quickly use more advanced techniques involving deep learning and neural
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networks. Due to time constraints, these techniques have not been studied or worked with. Still,

an attempt was made to learn as much as possible from these papers.

One of the most helpful was a large research project conducted on the current state of

deepfakes [17]. In it, Juefei-Xu et al. analyzed current deepfake generation and detection

methods, along with the battleground between the two. The authors highlight how the battle

between generation and detection in deepfakes leads to improvements in both and inspires new

directions of research, such as avoiding deepfake detection. After analyzing over 318 papers,

Juefei-Xu et al. categorize both generation and detection methods. However, this review focuses

solely on deepfake detection methods.

2.4.1 Deepfake Detection Categories

In the deepfake detection section of this study [17], Juefei-Xu et al. highlight three main

types of deepfake detection methods: spatial-based, frequency-based, and biological-based. In

spatial-based detection, models focus on observing various artifacts in the spatial domain to

distinguish real and fake. This includes subsections of image forensics-based detection, which

inspects the disparities at the pixel level using a variety of techniques, and deep neural network

(DNN) based detection, which uses existing or new DNN models to extract spatial features in the

images. Frequency-based detection methods can reveal artifacts in fake images that are not easily

detectable in the spatial domain. These differences arise from the imperfections in the generative

adversarial networks (GANs), which is a generative model that works by “fighting” itself to

create more convincing data. Biological-based detection methods use natural signals in real

images and videos to distinguish them from fakes. This includes the mismatch in visual and

audio signals, the lack of naturalness in synthesized faces, and biological signals like motion,

facial expressions, lip-sync, and even heart rate.
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The spatial and frequency-based methods above work well when the deepfake data

exhibits obvious visual artifacts, but both have poor generalization to unknown techniques and

low robustness to adversarial attack, which means the model is easily fooled or manipulated by

small changes made to the input data. As a result, the model is unable to detect examples that are

created to exploit its weaknesses, and it is not reliable in real-world scenarios where such attacks

are common. The authors argue that in the near future, deepfakes could be so realistic that spatial

and frequency artifacts are no longer detectable. This would lead to biological signals being a

more effective solution for fighting real-world deepfakes. However, this solution could lose its

validity as biological signals become more enhanced in fake videos. Juefei-Xu et al. make note

that there are other detection methods that did not fit into these categories, but these prove to be

less popular approaches. Figure 2 provides a summary and visualization of these detection

methods. Overall, the authors found that the popular choice for deepfake detectors was

convolutional neural networks (CNN) models, at least as a backbone. CNN are a type of deep

learning often used for visual tasks in image classification because its convolutional layers allow

for feature extraction. In addition, linear machine learning methods were rarely employed for

detection.

Figure 2: Summary of deepfake detection methods. Blue represents spatial, green is frequency,
yellow is biological, and red is other methods (image from [17]).
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2.4.2 Model Evaluation

Models and machine learning methods can be evaluated on a variety of different

evaluation metrics. Previous research does not follow a standardized procedure for evaluating

models. Thus, researchers must compare a variety of different metrics. Popular metrics include

accuracy, precision, recall, F1 score, confusion matrices, ROC curves, and area under the curve

(AUC).

Accuracy is a metric that measures the proportion of correctly classified instances out of

all instances. Precision and recall are metrics that evaluate the performance of the positive class.

Precision measures the proportion of correctly classified positive instances out of all instances

classified as positive. Whereas, recall measures the proportion of correctly classified positive

instances out of all actual positive instances. The F1 score is a combined measure of precision

and recall that provides a single value to evaluate the model's overall performance.

These can all be visualized and understood more easily with a confusion matrix. A

confusion matrix shows the true positive, true negative, false positive, and false negative counts

for each model. The true positive count represents the proportion of positive instances that were

correctly classified as positive, while the false positive count shows the proportion of negative

instances that were incorrectly classified as positive. The true negative count and false negative

count represent the same values but for negative instances.

Finally, a ROC (receiver operating characteristic) curve is a graph that plots the true

positive rate against the false positive rate. Because of this, it is easier to evaluate and compare

the performance of different machine learning models. The area under the curve (AUC) is

referring to the area under the ROC curve, and it measures the entire 2-dimensional area under

the curve. This means a model that classifies everything completely correctly has an AUC of
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100%. This helps provide an aggregate measure of performance across classification measures.

By using these performance metrics and evaluation methods, the effectiveness of machine

learning models in detecting deepfakes can be determined and decisions can be made about

which models to use for future research.

2.4.3 Models

Because they are commonly deployed and have the most research conducted on them, a

valuable contrast to the simpler methods used in this thesis are approaches that use convolutional

neural networks (CNN). A CNN is a class of deep neural networks commonly used to analyze

images and visual data. Bonettini et al. [3] present a method for detecting manipulated faces in

videos using an ensemble of different CNN-trained models. Ensembling is accomplished by

using multiple models and voting on the best to improve prediction performance. The

EfficientNet family of models was used as a starting point. This family of models is able to

automatically scale CNN and is known for their high accuracy and efficiency when compared to

other CNN models. The EfficientNetB4 was specifically chosen due to its low number of

parameters, quick run time, and accuracy. To improve the performance of EfficientNetB4, the

authors of the paper propose two modifications. The first is an attention mechanism, which not

only helps focus on the most relevant portions of the input videos, but also provides insight on

what image parts the network viewed as most informative. Figure 3 shows the architecture of this

model. The second is a Siamese training strategy, which helps to learn more about the data by

comparing different examples. Their model was evaluated on the Face Forensics (FF++) and

DFDC datasets. It performed well on the FF++ with an area under the curve (AUC) of 94.44%,

but it was 87.82% for the DFDC. Their proposed method is efficient in terms of computational

complexity, works on multiple datasets, and outperforms existing methods.
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Figure 3: Architecture of EfficientNetB4Att (image from [3]).

Barni et al. [2] discuss a method to detect if an image is created using a GAN. The

method proposed two deep learning algorithms, the CoNet and the Cross-CoNet. The CoNet

analyzes the co-occurrence matrices of the color channels (red, blue, and green) in an image to

distinguish between the real and GAN-generated images. The scheme for this can be viewed in

Figure 4. In contrast, the Cross-CoNet modifies the CoNet by taking the relationships between

the color bands into account. This allows it to compute the color and spatial co-occurrences on

each color band separately. These models performed well on the StyleGAN2 dataset, with a

CoNet accuracy of 98.15% and a Cross-CoNet accuracy of 99.70%. The main advantage of the

Cross-CoNet appeared to be increased robustness against post-processing. In machine learning,

"robustness" refers to a model's ability to maintain its performance even when the input data is

modified. This points to better performance of the model in real-world applications. The authors

suggest future work should attempt to use intentional attacks to confuse their model as well as

expose it to unknown datasets.
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Figure 4: Scheme of CNN based detectors (CoNet and Cross-CoNet) (image from [2]).

A slightly different approach is used by Tariq et al. in [31] where they introduced a

convolutional long short-term memory (LSTM) based residual network (CLRNet). A LSTM

model is a is a type of recurrent neural network (RNN) that is useful for processing and

predicting sequences of data. It is able to selectively keep or discard information from previous

time steps, which allows it to remember information and use it to make accurate predictions.

Tariq et al. wanted to capture both temporal data (which can be accomplished by LSTM) and

spatial data (which can be accomplished by CNN), so they initially tried stacking these models,

but this proved unstable and did not transfer learning. So, they turned to Convolutional LSTM

cells, which do the same actions with more stability. From here, they developed three training

strategies including single domain learning, merge learning, and transfer learning. Single

learning trains the detector on a single dataset, merge learning trains the detector on a combined

dataset with all known generation methods, and transfer learning trains the detector on one

dataset and then learns new domains from a sample of a separate dataset. Finally, Tariq et al.

discuss different defense strategies to protect against attacks. The authors did not compute

accuracy scores for their model against any datasets but instead computed F1-scores for different

attack styles. They found that CLRNet was the best performer across the board with a 98.61%

average for a single domain, 87.58% for merge learning, and 97.57% for transfer learning, and it
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did generalize well for the open-domain attack with a score of 93.86%. Some limitations or

suggestions for future work in this research are utilizing different levels of video compression

and experimenting with talking videos [31].

Overall, previous methods show impressive results in terms of improving upon previous

models and exploring new ways to detect deepfakes. The literature reviewed in this study has

demonstrated that there are various approaches that can be employed for deepfake detection,

including the use of advanced deep learning techniques such as CNNs and LSTMs. Additionally,

researchers have experimented with a variety of datasets and training strategies, which have

resulted in improved performance in models and better generalization across various attacks.

Despite this progress, there are still many challenges. One of the main challenges is the constant

evolution of deepfake techniques, which requires researchers to continuously adapt and update

their detection methods. In addition, the lack of standardized datasets and evaluation metrics

adds to the difficulty of comparing results across different studies.

In conclusion, deepfake detection is an active area of research requiring ongoing

exploring and experimenting. The results of this literature review demonstrate promising

approaches to detect deepfakes. However, there is still more that can be done to improve the

accuracy and generalizability of deepfake models. In addition, it is necessary to have a complete

understanding of the range of methods used for deepfake detection. Thus, instead of creating a

new advanced model, this research focuses on better understanding a lesser-known dataset using

basic machine learning techniques.



Chapter 3

Dataset

For this project, the WildDeepfake dataset was carefully selected because it provides a

rich source of authentic examples that offer a broad spectrum of quality and angles [34]. The

dataset has a challenging reputation and has not been used in many earlier studies. It is

comprised of 7,314 face sequences derived from 707 videos. Of these, 3,805 images are real and

3,509 are fake. All of them were sourced from unknown internet locations with no information

on creation methods. While the WildDeepfake dataset may be smaller in comparison to some

popular sets, like DFDC, its real-world examples make it an invaluable resource for this project.

Additionally, the dataset's diversity, various levels of quality, angles, scenes, backgrounds,

lighting conditions, resolutions, compression rates, and unknown deepfake methods produce

significant difficulties for deepfake detection. For these reasons, it is even more necessary to test

these difficulties using a variety of models.

The images within the WildDeepfake dataset consisted of snapshots of faces captured at

different frames of a video. Zi et al. [34] used the MTCNN face detector to identify the face

regions in each video frame and an ImageNet-pre-trained MobileNetV2 network to extract the

face features. Finally, facial landmark extraction by the dlib landmark detector aligned all the

faces in a face sequence and created images that were all the same size. The images included a

variety of subjects, demographics, lighting, angles, positions, and more. Many of the images

were highly convincing and difficult to distinguish by a human. An example of a fake image and

a real image from this dataset are included in Figure 4. Because the images were so convincing,

it was exciting to see how well a machine would perform on identification.

16
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Fake Real

Figure 5: An example of fake and real images from the WildDeepfake dataset.

Acquiring the WildDeepfake dataset was a challenging process, as it is not publicly

available. Nevertheless, by reaching out to the creators directly, access was eventually granted.

The images were shared via a Google Drive link, but the task of organizing them was not a

simple one. The images were stored in .tar files, which required downloading and unzipping.

Moreover, the images were organized within multiple folders, making it a time-consuming task

to extract the data. As an example of what one package contained, one .tar file first needed to be

downloaded to the computer. It contained 10-30 folders, which each led to a set of nested folders,

containing 1-30 folders with hundreds of images. To reorganize the data, the images were moved

from the separate nested folders into folders labeled "fake-data'' and "real-data." This was a

tedious and meticulous process requiring careful organization. In total, the images took up 20.38

GB of storage, with over 1,300 folders containing hundreds of thousands of images.

After the images were sorted, the data was organized. To ensure clean data, images were

originally scanned to ensure no filling-in of mixed values or deleting images needed to occur.

The format was suitable for this project. In order to not create erroneous values, the code opened

the folder location inputted and only read files ending with “.png” to guarantee only images were

input into the data table. A function was created to open the images, attach their labels, and

extract all the features. It took in the path of the folder containing all the fake or real data and the
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label attached to the images in the folder, “fake” or “real,” in order to assign all the images and

create a table that the models can understand and train on. The code, which can be viewed in

Appendix A.1, functioned like this:

1. Create seven empty lists for the six features and one label.

2. For every subfolder in the input folder of data:

2a. Go into the subfolder and find files ending with “.png”

2b. Read in the image

2c. Extract all the features using the extract_features function

2d. Add each feature to their own list

2e. Add the label input (fake/real) for each image

3. Return the lists of all the features and labels.

In addition to this, the data was again scanned to ensure no outliers or erroneous values.

To preprocess the data, after reading each file, six features were extracted and added to

individual lists. The function “extract_features” is called in step 2c of the data organization

script, and it can be viewed in Appendix A.2. Using an image as input, the feature extraction

process is:

1. The image is put into grayscale, as some of the features require that filter

2. Each feature is extracted through various manipulations of the image

3. A dictionary of features is created to store each feature and its value

4. The dictionary of features is returned, so it can be assigned in the other function.

More information about each of the extracted features can be found in the next chapter.

The open and extract function was called by inserting a path containing all the fake data and the

label “fake.” Then, the same was done with the real data. Finally, a dataframe, which is similar to
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a spreadsheet, was created to combine the fake and real data and all of their features. After

processing the images, the final dataframe contained 84,980 different rows of image data. An

example of the dataframe is shown in Table 1. This ensured the data was in an appropriate format

to train and test the machine learning models.

Table 1: Example features in the dataframe

Entropy Wrapped Noise Blur Keypoints Blobs Label

7.636494 6.221255 0.077251 151.995305 5 0 fake

6.966655 6.203553 0.072950 49.895874 0 2 real



Chapter 4

Methodology

This chapter covers the methodology used to build the machine learning models. After

describing the computing resources necessary for this work, the first half presents the feature

extraction process used to create a csv table from the image data. The second half reviews each

of the machine learning models chosen and the features that were most effective.

4.1 Computing and Software Resources

For computing resources, Minnesota State University, Mankato’s lab machines had 32GB

RAM with an Intel Core i7-7700K CPU. They also had NVIDIA GeForce GTX 980 GPUs with

4GB of memory. For software resources, PyCharm with Python version 3.8 was used. All

libraries were included. The models were all created with scikit-learn library’s resources. This

includes sklearn.ensemble.RandomForestClassifier, sklearn.neighbors.KNeighborsClassifier, and

sklearn.svm.SVC [29].

4.2 Feature Extraction

The feature selection process involved some trial and error. After reviewing previous

literature, the best features to extract and simple extraction methods were not readily apparent.

Rather, many previous models used advanced pre-made techniques, such as ResNet, MesoNet,

and Xception models, for extracting both images and features [17]. These approaches use deep

learning algorithms to extract only the frames with face data from a longer video and then

perform extraction on those faces. However, since the dataset used in this project was already a

collection of facial images, these advanced techniques were not necessary

20
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Despite having prior knowledge of how to set up machine learning models, a problem

still arose: the need to extract features from the dataset. In order for the machine learning models

to work, the data must be formatted in tables. Therefore, the goal was to create a table of usable

features from the images so that the models could identify patterns and make accurate

predictions. In addition, all the features used were numerical, with some continuous and some

discrete values.

To start, a basic decision tree model was created as a framework to verify the model

development process would work and the machine could classify images. This model acted as a

blueprint, so when features were extracted, they could immediately go into a model to assure

correct formatting and results. From here, the plan was to extract a few features to verify the

model could classify the image data. Initially, the first features found were selected and extracted

from a subset of images to try on the model for training and recognition. However, compatibility

issues arose due to differences in data formats. For example, one feature that was thought to be

beneficial was the Histogram of Oriented Gradients, which can be used to detect objects within

an image. While this feature could be extracted from all of the images, it could not be used

effectively to train the basic models used in this work. This was because the output was a

long-dimensional array that could not be interpreted by a decision tree model, which requires

individual features.

To ensure that the machine learning model training would work, a simpler feature

extraction code was implemented as a proof-of-concept. The code extracted the mean and

standard deviation of the red, blue, and green colors from the facial images, which would

generate single float values that the models could use to make decisions. After testing the new

code, it was confirmed that the models were built correctly. However, detection with this model
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did not return a good accuracy score, so in order for the models to be useful, better features must

first be extracted.

To identify useful features to extract and to ensure correct formatting, an approach was

taken where a singular image was selected and tested with the potential features offered by the

scikit-image library [28]. This library was chosen due to previous exposure in classes and

exceptional documentation. By examining the various options, reviewing examples, and

analyzing the code, features that appeared useful were selected. Initially, ten numerical features

were picked based on their potential for value. The resulting model's accuracy greatly improved

when compared to previous tests done on just color data, which was a positive indication that

progress was being made.

To better refine the chosen features, the models were evaluated by systematically

removing one feature at a time and comparing the accuracy. This approach helped determine

which features were contributing to better accuracy and which were not. For instance, the

features initially selected, "Dense Daisy," a local image descriptor based on gradient orientation

histograms, which allows for fast dense extraction of features, and “Local Maxima,” a function

used to find the coordinates of peaks in an image, proved to not affect the accuracy while testing.

After several rounds of feature selection, a final set of six features was extracted from the

images. These features included entropy, phase unwrapping, noise, key points, blur, and blobs. In

Table 2, the features are compared based on how much accuracy decreased when the feature was

removed from each model. The numbers in Table 2 represent accuracy from a model trained on

all six features minus accuracy from a model trained on the remaining five features. For

example, when entropy was removed from random forest, it lost 1.64% accuracy and had a new

accuracy score of 97.21%. Thus, bigger numbers represent a more valuable feature for the
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model. Blur proved to be the most valuable feature for each model, as the drop in accuracy was

highest in each model when it was removed. Entropy was the second most valuable across the

board. Noise and phase unwrapping has the smallest drops in accuracy when they were removed.

Still, every feature proved to be helpful in detecting deepfakes. In the following paragraphs, each

of these features will be examined in more detail.

Table 2: The amount of accuracy decreased after removing the features from each models.
Bigger numbers represent a more valuable feature for the model.

Feature Random Forest KNN SVM

Entropy 1.64 5.44 3.46

Phase Unwrapping 0.16 0.84 0.82

Noise 0.01 0.34 3.78

Keypoints 0.23 0.91 1.44

Blur 1.73 6.36 5.22

Blobs 0.42 1.92 3.65

4.2.1 Final Features

Entropy is related to the complexity of its surroundings and can measure subtle

differences in gray-level distributions. A visualization of entropy is included in Figure 5. Using

the function “skimage.measure.shannon_entropy(img),” the Shannon entropy is computed with S

= -∑(p(k) * log(p(k))). In this case, p(k) is the frequency/probability of pixels with the value k.

This returns a continuous float value for entropy, which can easily be interpreted by machine

learning models [28].
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Figure 6: A visualization of Entropy, provided by scikit-image library [28].

Phase unwrapping is used to recover the underlying, unwrapped signal of an image that

can only be observed modulo 2π. This provides quantitative information from the image, which

is necessary for the models. The unwrapping process, as shown in Figure 6, returns a long array

of values in the image, so the range of values was extracted by taking the maximum subtracted

by the minimum to receive a continuous float that the models could interpret. The hope was that

the range would provide more information about the image details and would vary from real to

fake images [28].

Figure 7: A visualization of phase unwrapping images, provided by scikit-image library [28].
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The “noise” feature actually came from “non-local means denoising for preserving

textures” according to scikit-image [28]. In Figure 7, the astronaut image is denoised using the

non-local means filter. The non-local means algorithm can replace the value of a pixel with an

average from the selection of other pixel values. This allows textures to be restored. However,

instead of denoising the image, the standard deviation of the noise was measured using the

estimate_sigma function. It was hypothesized that highly variable noise values would correlate to

false images, whereas less variability would correlate to real images. This provided a continuous

float value to help train and test the machine learning models [28].

Figure 8: A visualization of noise and denoising, provided by the scikit-image library [28].

The keypoints feature uses a scale-invariant center-surround detector (CENSURE).

Scikit-image library claims it can outperform other detectors in image registration and visual

odometry [28]. The CENSURE detector provides a list of keypoints from details in the image,

from which the length was found to have a value our models can use. This provided a discrete

value to train the machine learning models. The hope was that the number of keypoints would



26

differ in fake images compared to real ones. Keypoints can be viewed as red dots in Figure 8

[28].

Figure 9: A visualization of keypoint detection shown by the red dots, provided by scikit-image

library [28].

Another feature extracted was the estimated strength of the blur. Figure 9 shows a blurred

image. After applying a filter to the image, the average of the image’s blur information was

calculated. This provided a continuous value to train the models. Then, it was added to the list of

extracted features. It was hypothesized that fake images would return a higher blur value [28].

Figure 10: A visualization of blur, provided by scikit-image library [28].



27

Finally, the feature of “blobs” was selected. The approach uses the difference of Gaussian

(DoG) to find blobs, which are either bright spots on dark or dark spots on bright regions in an

image. In Figure 10, blobs are detected of stars in space. A simple, discrete count of the blobs

was collected from the images, which were all the same size. This feature was included in the

models in hopes that manipulated images would contain a varying amount of blobs [28].

Figure 11: A visualization of blobs using the Difference of Gaussian method, provided by
scikit-image library [28].

4.2 Model Selection

After successfully extracting features from the images, these features were used to train

the machine learning models. The final models chosen were random forest, k-nearest neighbors

(KNN), and support vector machine (SVM). All of the functions used to create the models were

sourced from scikit-learn library [29]. These were chosen due to their powerful abilities,

popularity, simplicity, and prior work. In addition, they should show a variety of results. Each of

these methods uses supervised learning, meaning they were trained with labeled data (“fake” and

“real”) to predict the outcomes. Each model will be further explained and examined in the

following paragraphs.

Random forest is a powerful ensemble learning algorithm that uses multiple decision

trees to classify data. Figure 11 helps visualize the random forest architecture. This approach was
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chosen because of its versatile algorithm that can handle complex datasets with many features

and types. In the random forest algorithm, individual decision trees are first trained on a subset of

the data, in which each datapoint has an equal probability of being selected for a data subset.

Each tree in the ensemble can randomly select a subset of observations with full range of the

features from the dataset. Then, a final classification is determined by combining and averaging

the outputs of all the decision trees, hence a random forest of trees. This approach helps to

reduce overfitting and improve generalization performance, making it an ideal choice for

deepfake detection [32]. My model used 100 estimators or decision trees as this produced the

highest accuracy after running different iterations, as shown in Table 3.

Figure 12: Example of random forest model (image from [32]).

KNN, or K-Nearest Neighbors, is a non-parametric algorithm that classifies data based on

its proximity to other data points. Figure 12 provides an example KNN model to show how a

point is assigned. It was chosen due to its simplicity, speed, and its ability to be effective in

many classification tasks. For KNN classification, all the training points are placed on a plot.

Then, new points are classified based on the number of K nearest data points to the test point.

The most common label among those neighbors is the predicted label for the test point. This
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approach works well when the decision boundary between classes is nonlinear or complex,

making it a good choice for deepfake detection [18]. My model used k=5 neighbors, as Table 4

shows that this proved to return the highest accuracy.

Figure 13: Example of KNN model (image from [18]).

SVM, or Support Vector Machine, is another powerful algorithm that separates data into

classes using a hyperplane with the maximum margin. It was chosen because it is known to be

effective in handling high-dimensional data. The basic idea behind SVM is to find the

hyperplane that separates the data with the maximum margin. The margin is the distance between

the hyperplane and the closest data points from each class. Figure 13 aids in viewing the

hyperplane for a 2-dimensional classification task. This approach helps to maximize the

separation between classes and improve the generalization performance, a goal of this work [27].

My model used the default radial basis function (RBF) kernel, as this best separated the data.
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Figure 14: Example of SVM model (image from [27]).

Table 3: Accuracy results from a variety of estimator numbers for the random forest model.

Number of Estimators Accuracy

10 0.9854672

50 0.9878207

100 0.9884679

150 0.9879972

200 0.9878795

250 0.9881149

300 0.9884679

Table 4: Accuracy from different numbers of neighbors used in KNN.

Number of Neighbors Accuracy

3 0.9309838

5 0.9443398

7 0.9311014

9 0.9328666

11 0.9289833
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With the simplicity of Python, data is separated before being processed and trained by the

model. First, the X and Y variables are assigned. X is set to all of the features, and Y is set to the

label: real or fake. Then, the training/testing split is chosen. The models were trained on 80% of

the data and tested on the remaining 20% of the data. This is a common split in machine learning

and proved to be most effective through a series of tests. It performed better than 70/30, 75/25,

and 90/10. The testing and training sets were randomly chosen each run and did not remain

consistent through each model. Results from the testing data return immediately after training.

Then, the models were compared with evaluation metrics of accuracy, precision, recall, and F1

Score. From here, the model’s features were adjusted to favor those that provided higher scores

in these categories. This final step helped determine the features mentioned above, such as 100

estimators, 5 neighbors, and the choice of kernel. Figure 14 provides an overall architecture of

the entire machine learning process. It includes separating the real and fake images for training,

processing the features, structuring the data, inputting the data into the models, and retrieving

results. This quick summary provides the overall methodology of this work.

Figure 15: Depiction of the machine learning architecture for this thesis.



Chapter 5

Results

This chapter covers the detection results using three machine learning models. To review,

the objective of this thesis is to develop machine learning models for deepfake detection. These

models were trained and tested on a dataset of over 7,000 photo samples. The photos were

preprocessed to extract image features for analysis. Then, three different machine learning

models were evaluated for deepfake detection: random forest, KNN, and SVM. The models were

trained on random samples of 80% of the dataset and tested on the remaining 20%. The

performance of each model was evaluated using metrics such as accuracy, precision, recall, and

F1 score. These are visualized with a confusion matrix and an ROC curve.

For each model, the ROC curve was computed using the roc_curve function from

sklearn.metrics [29]. This function takes two inputs: the true binary labels and the target scores,

such as probability estimates or confidence values. Then, the positive class label was specified to

the “real” images. The outputs of the function include increasing false positive rates, increasing

true positive rates, and decreasing decision thresholds. The points (0,0) and (1,0) correspond to

the false positive rate (FPR) and true positive rate (TPR) when the threshold is set at the extreme

ends. At (0,0), no instances are predicted as positive, while at (1,0), all instances are predicted as

positive. Understanding these points helps to interpret the performance of the classifier across

different threshold settings [29].

The random forest model achieved an accuracy of 98.85%, precision of 98.90%, recall of

98.75%, and F1 score of 98.82%. Figure 15 provides the confusion matrix, and Figure 16

provides the ROC curve for the random forest model’s results.

32
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Figure 16: Random forest confusion matrix.

Figure 17: Random forest ROC curve. Top left corner represents a perfect classifier.

The KNN model achieved an accuracy of 94.43%, precision of 94.18%, recall of 94.50%,

and F1 score of 94.34%. Figure 17 shows the confusion matrix, and Figure 18 shows the ROC

curve for KNN results.
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Figure 18: KNN confusion matrix.

Figure 19: KNN ROC curve. Top left corner represents a perfect classifier.

The SVM model achieved an accuracy of 84.54%, precision of 84.15%, recall of 84.40%,

and F1 score of 84.27%. Figure 19 highlights the confusion matrix, and Figure 20 gives an ROC

curve for the SVM model’s results. Additionally, Table 5 provides a comparison for every

evaluation metric for each of the models.



35

Figure 20: SVM confusion matrix

Figure 21: SVM ROC curve. Top left corner represents a perfect classifier.

Table 5: Results from each model for each evaluation metric are compared.

Random Forest KNN SVM

Accuracy 98.85% 94.43% 84.54%

Precision 98.90% 94.18% 84.15%

Recall 98.75% 94.50% 84.40%

F1 Score 98.82% 94.34% 84.27%



Chapter 6

Analysis

Interpreting the results shown in chapter 5, the models performed very well at the task of

deepfake detection. It should first be noted that all three models achieved relatively high

accuracy rates in detecting deepfakes. These accuracies are competitive with other datasets that

have been claimed to be easier to detect. In addition, they show improvements compared to

state-of-the-art models on this specific dataset. As shown in Tables 6 and 7, these models

performed better than previous models that use more complex methods to analyze this dataset.

Table 6: Comparison table of model accuracy on the deepfake dataset. Paper title, dataset,
method, and results in terms of accuracy are provided.
Title Dataset Method Accuracy

FedForgery: Generalized Face Forgery Detection with
Residual Federated Learning [22] WildDeepfake FedForgery 68.03%

Improved Xception with Dual Attention Mechanism and
Feature Fusion for Face Forgery Detection [21] WildDeepfake

Dual Attention
Mech Xception 83.32%

Hierarchical Forgery Classifier On Multi-modality Face
Forgery Clues [11] WildDeepfake HFC-MFFD 86.84%

Spatiotemporal Inconsistency Learning for DeepFake Video
Detection [14] WildDeepfake STIL 84.12%

Exploiting Fine-grained Face Forgery Clues via Progressive
Enhancement Learning [13] WildDeepfake

Progressive
Enhancement

Learning 84.14%

Fighting Deepfake by Exposing the Convolutional Traces
on Images [15] WildDeepfake RECCE 83.25%

Identity Mappings in Deep Residual Networks [16] WildDeepfake ResNetV2-50 63.99%

MesoNet: a Compact Facial Video Forgery Detection
Network [1] WildDeepfake MesoNet-4 64.47%

Xception: Deep Learning with Depthwise Separable
Convolutions [6] WildDeepfake XceptionNet 69.25%

Dual Contrastive Learning for General Face Forgery
Detection [30] WildDeepfake DeepfakeMAE 81.80%

WildDeepfake: A Challenging Real-World Dataset for
Deepfake Detection [34] WildDeepfake ADDNet-2D 76.25%

36
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Table 7: Results from current work with random forest, KNN, and SVM.
Dataset Method Accuracy

WildDeepfake Random Forest 98.85%

WildDeepfake KNN 94.43%

WildDeepfake SVM 84.54%

A comparative analysis of results from the random forest, KNN, and SVM models

indicate the random forest model outperforms the other two models in terms of accuracy,

precision, recall, and F1 score. This high performance can be attributed to its ability to handle

complex datasets with high-dimensional feature spaces and interactions between features. It

provides a probability of belonging to a class, which is useful for a variety of classification

problems. In contrast, the KNN model performed relatively well due to its simplicity and ability

to handle non-linear relationships between the features. However, the SVM model's lower

performance can be attributed to the sensitivity to hyperparameters and its potential for

overfitting with large numbers of features. In addition, SVM tries to compute a distance to a

boundary, so it is best with sparse amounts of linearly separable data. Even with adjusting the

kernel for non-linear data, it is not optimized to separate large amounts of complex data fully.

Overall, the results highlight that the choice of model significantly affects classification

performance. The random forest model's ability to handle complex data and the interactions

between features make it a viable option for many classification tasks. However, models like

KNN may be more appropriate for datasets with fewer features and non-linear structures. The

SVM model can also be effective with small, linearly separable datasets. Still, the results suggest

that all of the models were proficient in detecting deepfakes. Though more improvements can be

made, the results are impressive and improved compared to previously researched methods.



Chapter 7

Conclusion

The machine learning models were successful in detecting deepfakes. With competitive

accuracy and other evaluation metrics, they showed strength as a viable model for deepfake

detection. In this chapter, it is necessary to understand the limitations faced by deepfake

detection and these models. In addition, suggestions for future research are discussed.

7.1 Limitations

According to Juefei-Xu et al., the main limitations faced by models are the ability to

generalize to unseen synthesized techniques, remain robust against attacks, and provide

explainable detection results [17]. Many models struggle when exposed to real-world deepfakes,

especially those with unknown generation techniques.

One of the main limitations specific to this study was that only one dataset was used.

While the WildDeepfake dataset used was intentionally selected to represent a diverse range of

real-world deepfake techniques, more datasets would help verify the model's reproducibility.

Another limitation is the number of machine learning methods used. Although the three

models used in this study were selected based on their popularity and effectiveness in

classification tasks, there are many other machine learning methods that could be explored to

improve the accuracy of deepfake detection.

Moreover, the study was constrained by time limitations which prevented a more

extensive exploration of different models and datasets. While efforts were made to optimize the

models and datasets used, the results of the study may not be generalizable to all deepfake

scenarios. In the future work section, further exploration is discussed.
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Despite these limitations, machine learning methods have shown great potential in

detecting deepfakes. Compared with the common deep learning methods used, these basic

machine learning models are generally easier to interpret and require fewer computational

resources. By understanding the limitations of the current study and continuing to explore and

refine machine learning methods, deepfake detection will continue to advance and help to

mitigate the negative consequences of this emerging technology.

7.2 Future Work

While this work has demonstrated promising results in detecting deepfakes on a

high-quality dataset, there is still much more to be explored in this area. To further advance the

field, it is crucial to address the current limitations and explore areas of future research.

One area that requires attention is the application of machine learning methods to other

datasets. For example, the DFDC dataset could be used since it is the largest dataset and contains

a variety of actors, qualities, photos, videos, and generation methods. Cross-dataset evaluation

could be conducted by training the model on one dataset and testing it against another, which

will help ensure the robustness and generalization of the models. Using the most diverse data to

train the model will result in a model best equipped to detect real deepfakes. Overall, continuing

to experiment with new models, parameters, and a variety of data is vital since there are many

factors that can affect model performance.

In addition to exploring new datasets, more time and exploration could be conducted on

feature extraction. The scikit-image library has hundreds of features, providing a wide range of

possibilities for extracting information from images. These features should be further analyzed

and understood to better interpret the value of these for deepfake detection. Exploring additional

aspects of spatial, frequency, biological, and other features will ensure the model is capable of



40

detecting a variety of deepfakes. Along with this, ablation studies could be conducted by

removing one feature at a time to test for the highest accuracy. Though this occurred with a small

number of features in this work, it should be conducted on a larger scale. This will ensure

robustness against a variety of generation methods and produce improved models.

It is crucial to keep up with research efforts as fake content proliferates on the internet.

With the rise in AI-generated media, such as images, videos, and artwork, it could soon be

impossible to discern the truth from anything viewed online. With continued research, we can,

hopefully, remain at the forefront of AI development and continue to detect fake content

effectively. Otherwise, we may be forced to accept an unsettling “reality” in which artificially

created content regularly shapes our perceptions, beliefs, and lives.

Overall, it is important to acknowledge the ongoing race between deepfake generation

and detection methods. While deepfakes are becoming more convincing, it is crucial not to rely

solely on complex methods to detect them. Instead, research should first aim to better understand

the models by utilizing simple tactics to detect deepfakes. This research was a step in that

direction, but additional steps will be needed to continue the fight against deepfakes and fake

content as a whole.
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Appendix A

Code for Data Processing and Feature Extraction

The code in this appendix organizes the data (A.1) and extracts features from the images

(A.2), so that it is prepared to train the machine learning models (B.1, B.2, and B.3).

A.1 Data Organization

This function takes in a folder path to find an image, calls the previous functions, and

adds each feature from the dictionary to a list. It also takes in the respective label for each image.

It returns lists of all the image’s feature data.

def get_images_and_labels(folder, label):

entropy = []
wrapped = []
noise = []
blur = []
keypoints = []
blobs = []
labels = []

for subfolder in os.listdir(folder):
subfolder_path = os.path.join(folder, subfolder)
if not os.path.isdir(subfolder_path):

continue
for filename in os.listdir(subfolder_path):

if not filename.endswith(".png"):
continue

try:
img = io.imread(os.path.join(subfolder_path, filename))
features = extract_features(img)
entropy.append(features['entropy'])
wrapped.append(features['wrapped'])
noise.append(features['noise'])
blur.append(features['blur'])
keypoints.append(features['keypoints'])
blobs.append(features['blobs'])
labels.append(label)

except Exception as e
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print("Skipping file", filename)
print("Error:", e)

return entropy, wrapped, noise, blur, keypoints, blobs, labels

This code calls the previous function to assign all of the fake and real images. Then

creates a data frame using the lists of features.

# Assigning all the data
fake_entropy, fake_wrapped, fake_noise, fake_blur, fake_keypoints, fake_blobs, fake_labels =
get_images_and_labels(r"C:\Users\Student\DeepfakeResearch\WildDeepfakeData\fake-data", "fake")

real_entropy, real_wrapped, real_noise, real_blur, real_keypoints, real_blobs, real_labels =
get_images_and_labels(r"C:\Users\Student\DeepfakeResearch\WildDeepfakeData\real-data", "real")

# Creating data frame
all_data = pd.DataFrame({

"Entropy": fake_test_entropy + real_test_entropy,
"Wrapped": fake_test_wrapped + real_test_wrapped,
"Noise": fake_test_noise + real_test_noise,
"Blur": fake_test_blur + real_test_blur,
"Keypoints": fake_test_keypoints + real_test_keypoints,
"Blobs": fake_test_blobs + real_test_blobs,
"Label": fake_test_labels + real_test_labels

})

# Save the data to a csv file
all_data.to_csv(all_data.csv")
print(all_data.head())

A.2 Feature Extraction

This function takes in an image, extracts all the features, and adds the data to a dictionary:

def extract_features(img):
gray_img = color.rgb2gray(img)

# Entropy Feature Extraction
entropy = skimage.measure.shannon_entropy(img)

# Wrapped Feature Extraction
image_wrapped = np.angle(np.exp(1j * img))
max_val = np.max(image_wrapped)
min_val = np.min(image_wrapped)
wrapped_range = max_val - min_val
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# Noise Feature Extraction
astro = img_as_float(img)
astro = astro[30:180, 150:300]
sigma = 0.08
noisy = random_noise(astro, var=sigma ** 2)
sigma_est = np.mean(estimate_sigma(noisy, multichannel=True))

# Blur Feature Extraction
blurred_images = [ndi.uniform_filter(img, size=k) for k in range(2, 32, 2)]
img_stack = np.stack(blurred_images)

# Keypoints Feature Extraction
detector = CENSURE()
detector.detect(gray_img)

# Blob Dog Feature Extraction
blobs_dog = blob_dog(gray_img, max_sigma=1, threshold=.1)

features = {
'entropy': entropy,
'wrapped': wrapped_range
'noise': sigma_est,
'blur': np.mean(img_stack),
'keypoints': len(detector.keypoints),
'blobs': len(blobs_dog)

}
return features



Appendix B

Code for Model Training and Testing

This python code is used for splitting the data into training and test sets, creating models

for the random forest, KNN, and SVM algorithms, and using these models to make predictions

on the test set.

B.1 Random Forest Model

import pandas as pd
from sklearn.ensemble import RandomForestClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, f1_score, precision_score, recall_score, confusion_matrix, roc_curve,
auc
import matplotlib.pyplot as plt
import seaborn as sns

# accessing the csv to make the model
my_data = pd.read_csv("all_data.csv")

X = my_data[["Entropy", "Wrapped", "Noise", "Blur", "Keypoints", "Blobs"]]
y = my_data["Label"]

# training and test sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)

# standardize the range of values
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)

# Random Forest classifier
forest_model = RandomForestClassifier(n_estimators=100, random_state=1)
forest_model.fit(X_train, y_train)
forest_y_pred = forest_model.predict(X_test)

# evaluate performance
forest_accuracy = accuracy_score(y_test, forest_y_pred)
forest_precision = precision_score(y_test, forest_y_pred, pos_label='real'
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forest_recall = recall_score(y_test, forest_y_pred, pos_label='real')

forest_f1 = f1_score(y_test, forest_y_pred, pos_label='real')

print("Random Forest Accuracy:", forest_accuracy)
print("Random Forest Precision:", forest_precision)
print("Random Forest Recall:", forest_recall)
print("Random Forest F1 Score:", forest_f1)

# confusion matrix
forest_cm = confusion_matrix(y_test, forest_y_pred)
plt.figure(figsize=(6, 4))
sns.heatmap(forest_cm, annot=True, cmap="Blues", fmt='g', xticklabels=['fake', 'real'], yticklabels=['fake', 'real'])
plt.title("Random Forest Confusion Matrix")
plt.ylabel("True label")
plt.xlabel("Predicted label")
plt.show()

# ROC curve
forest_probs = forest_model.predict_proba(X_test)
forest_probs = forest_probs[:, 1]
fpr, tpr, thresholds = roc_curve(y_test, forest_probs, pos_label='real')
roc_auc = auc(fpr, tpr)
plt.plot(fpr, tpr, color='lightblue', lw=2, label='ROC curve (area = %0.2f)' % roc_auc)
plt.plot([0, 1], [0, 1], color='black', lw=2, linestyle='--')
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Random Forest ROC Curve')
plt.legend(loc="lower right")
plt.show()

B.2 KNN Model

import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import accuracy_score, f1_score, precision_score, recall_score, confusion_matrix, roc_curve,
auc
import matplotlib.pyplot as plt
import seaborn as sns

# accessing the csv to make the model
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my_data = pd.read_csv("all_data.csv")

X = my_data[["Entropy", "Wrapped", "Noise", "Blur", "Keypoints", "Blobs"]]
y = my_data["Label"]

# training and test sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)

# standardize the range of values
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)

# Creating KNN
knn = KNeighborsClassifier(n_neighbors=5)
knn.fit(X_train, y_train)
y_pred = knn.predict(X_test)

# Evaluate the performance
knn_accuracy = accuracy_score(y_test, y_pred)
knn_precision = precision_score(y_test, y_pred, pos_label='real')
knn_recall = recall_score(y_test, y_pred, pos_label='real')
knn_f1 = f1_score(y_test, y_pred, pos_label='real')
print("KNN Accuracy:", knn_accuracy)
print("KNN Precision:", knn_precision)
print("KNN Recall:", knn_recall)
print("KNN F1 Score:", knn_f1)

# Confusion matrix
knn_cm = confusion_matrix(y_test, y_pred)
plt.figure(figsize=(6, 4))
sns.heatmap(knn_cm, annot=True, cmap="Blues", fmt='g', xticklabels=['fake', 'real'], yticklabels=['fake', 'real'])
plt.title("KNN Confusion Matrix")
plt.ylabel("True label")
plt.xlabel("Predicted label")
plt.show()

# ROC curve
knn_probs = knn.predict_proba(X_test)
knn_probs = knn_probs[:, 1]
fpr, tpr, thresholds = roc_curve(y_test, knn_probs, pos_label='real')
roc_auc = auc(fpr, tpr)
plt.plot(fpr, tpr, color='lightblue', lw=2, label='ROC curve (area = %0.2f)' % roc_auc)
plt.plot([0, 1], [0, 1], color='black', lw=2, linestyle='--')
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('KNN ROC Curve')
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plt.legend(loc="lower right")
plt.show()

B.3 SVM Model

import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.svm import SVC
from sklearn.metrics import accuracy_score, f1_score, precision_score, recall_score, confusion_matrix, roc_curve,
auc
import matplotlib.pyplot as plt
import seaborn as sns

# accessing the csv to make the model
my_data = pd.read_csv("all_data.csv")

X = my_data[["Entropy", "Wrapped", "Noise", "Blur", "Keypoints", "Blobs"]]
y = my_data["Label"]

# training and test sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)

# standardize the range of values
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)

# linear kernel, since data is linearly separable
svm_model = SVC(kernel='rbf', random_state=1)
svm_model.fit(X_train, y_train)
svm_y_pred = svm_model.predict(X_test)

# Evaluation of performance
svm_accuracy = accuracy_score(y_test, svm_y_pred)
svm_precision = precision_score(y_test, svm_y_pred, pos_label='real')
svm_recall = recall_score(y_test, svm_y_pred, pos_label='real')
svm_f1 = f1_score(y_test, svm_y_pred, pos_label='real')
print("SVM Accuracy:", svm_accuracy)
print("SVM Precision:", svm_precision)
print("SVM Recall:", svm_recall)
print("SVM F1 Score:", svm_f1)

# Confusion matrix
svm_cm = confusion_matrix(y_test, svm_y_pred)
plt.figure(figsize=(6, 4))
sns.heatmap(svm_cm, annot=True, cmap="Blues", fmt='g', xticklabels=['fake', 'real'], yticklabels=['fake', 'real'])
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plt.title("SVM Confusion Matrix")
plt.ylabel("True label")
plt.xlabel("Predicted label")
plt.show()

# ROC curve
svm_probs = svm_model.decision_function(X_test)
fpr, tpr, thresholds = roc_curve(y_test, svm_probs, pos_label='real')
roc_auc = auc(fpr, tpr)
plt.plot(fpr, tpr, color='lightblue', lw=2, label='ROC curve (area = %0.2f)' % roc_auc)
plt.plot([0, 1], [0, 1], color='black', lw=2, linestyle='--')
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('SVM ROC Curve')
plt.legend(loc="lower right")
plt.show()
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