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Abstract 

Johne’s disease, which is caused by the acid-fast bacterium Mycobacterium avium 

subspecies paratuberculosis (Mpt), is a chronic, inflammatory intestinal disease that 

primarily affects ruminants. This disease has a significant effect on the economics of 

dairy farming. Mpt has a remarkable ability to survive in host tissues for 2-6 years 

without producing any signs of infection. However, the reliability of diagnostic 

techniques is limited only to those animals with clinical disease. This may be due to the 

entry of the organism into a dormant state, which has been reported for other 

mycobacteria. Reversion to the actively growing state (resuscitation) would improve the 

sensitivity of diagnostic culture; however, the substances effecting resuscitation have not 

been defined. Previous work in our laboratory showed that conditioned medium obtained 

from starvation-dormant Mpt (SDCM) enhanced the resuscitation of dormant Mpt. 

Research by others demonstrated that resuscitation of other dormant mycobacterial 

pathogens was enhanced by resuscitation promoting factors (Rpf), a class of 17-19 kDa 

proteins that are secreted by these organisms. We therefore hypothesized that one or more  

Rpf was responsible for the resuscitative activity in SDCM.  In this study, we sought to 

identify and characterize fractions of SDCM that contain resuscitative activity. SDCM 

was fractionated into 6 molecular weight classes, and each fraction was tested for the 

ability to promote the resuscitation of anaerobically dormant Mpt responder cells. Most 

(if not all) of this activity was confined to a fraction containing molecules with a 

molecular weight of 5 kDa or less (F5). To characterize F5, this fraction was subjected to 
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heat, protease treatment, and combinations of the two. The resuscitative activity of F5 

was stable at high temperatures (65
o
C and 80

o
C), resistant to trypsin and thermolysin, and 

was not impaired by a combination of heat and protease treatment. Growth factors in F5 

were concluded to be non-protein in nature, thereby refuting our hypothesis. F5 prepared 

from 5-, 6, and 8-month-old cultures were analyzed by reversed-phase high performance 

liquid chromatography to compare peptide and acyl homoserine lactone (AHL) 

components in F5. AHL peaks steadily accumulated with time, whereas peptide analysis 

identified hydrophobic peaks that generally diminished over time, and hydrophilic peaks 

that increased with time. Further characterization and identification of this Mpt-

resuscitative growth factor will be necessary in order to test its ability to enhance the 

recovery of dormant Mpt in clinical specimens.  
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Chapter 1: Introduction 

Johne’s disease, which is caused by the acid-fast bacterium Mycobacterium avium 

subsp. paratuberculosis (Mpt), is a chronic, inflammatory intestinal disease that primarily 

affects ruminants. In the clinical phase of the disease, infected animals lose weight 

despite having a good appetite, and develop profuse diarrhea (11). These animals become 

weakened and eventually die. Animals are usually infected within the first few weeks 

following birth, but clinical signs typically are not apparent until 2-5 years post-infection 

(12). Mpt is transmitted mainly by the fecal-oral route, in which healthy animals ingest 

food or water contaminated by feces from infected animals (74).  

Johne’s disease has a significant effect on the economics of dairy farming. In the 

United States, yearly losses have been estimated to be up to $1.5 billion, and its impact 

on the world economy is remarkably immense (79, 80). The average cost of Johne’s 

disease per cow is about $245, which is due to reduced milk production, early culling, 

and poor body condition at culling (79). Although it is still a controversial issue, the 

presence of Mpt in intestinal tissues of patients with Crohn’s disease, a chronic, 

inflammatory intestinal disease in humans, has led some to believe that this organism 

may cause Crohn’s disease (20). Recent reports about the presence of Mpt in milk from 

infected cows have therefore raised concern about the safety of dairy products (24, 25). 

At present, there is no effective treatment for Johne’s disease. Although vaccine 

development is being actively pursued, no currently available vaccine is able to prevent 

infection (41). Therefore, early Mpt diagnosis is essential in order to manage Johne’s 
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disease. There are many tests available to diagnose Johne’s disease. Among these, fecal 

culture is considered the gold standard for detecting Mpt infection.  

Fecal culture has been used to support a diagnosis of Johne’s disease for almost 

100 years. This method requires little equipment and is technically simple to perform. 

Moreover, the analytical specificity of fecal culture approaches 99.1%-100% (60, 88). 

Unfortunately, the sensitivity of fecal culture ranges from 96% in clinically diseased 

animals to 30%-50% when asymptomatically infected animals are included in the testing 

population (10, 60, 88). It is generally believed that animals in the early stages of disease 

pose a low risk to the herd with respect to disease transmission, i.e a sample from early-

stage animal can be easily detected as positively infected and the animal would be culled 

out of the herd before it spreads Mpt to others (66). That belief is based on an assumption 

that, all Mpt are able to survive the sample decontamination process that precedes fecal 

culture and will be able to grow on nutrient-rich culture medium. However, there have 

been mounting evidences that pathogenic mycobacteria enter a dormant state that enables 

them to persist for years inside the host, and these dormant mycobacteria cannot be easily 

recovered in culture (2, 33, 84). When conditions again become favorable in the host, 

dormant mycobacteria can resume growth, leading to the progression of disease.  

Given these observations for other pathogenic mycobacteria, it is possible that the 

poor sensitivity of fecal culture from animals in the early stages of Johne’s disease may 

be due to the presence in feces of dormant Mpt which cannot be recovered using the 

current fecal culture protocols (84). It is therefore important to ensure that dormant cells 

in the samples have been resuscitated. This may be accomplished by augmenting culture 

media with growth factors demonstrated to facilitate the recovery of dormant organisms.  
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Some gram-positive organisms produce a protein called resuscitation-promoting 

factor (Rpf) (33, 97). This protein was first found in conditioned medium (cell-free 

medium from a previous culture) from Micrococcus luteus, which can form dormant cells 

(33). The addition of Rpf to the dormant M. luteus can enhance the growth and restore the 

ability of this organism to replicate. Rpfs are small (15-17 kDa), heat labile, and trypsin-

sensitive (33, 45). Several mycobacteria possess Rpf homologues, and the proteins they 

encode possess the ability to resuscitate Mycobacterium tuberculosis, Mycobacterium 

bovis and Mycobacterium smegmatis (97). It is reasonable to assume that the protein may 

have similar effect on Mpt. However, factors accelerating the growth of Mpt dormant 

cells have not yet been identified.       

Research in our laboratory has shown that the recovery of Mpt rendered dormant 

by slow transition to anaerobiosis (anaerobic dormancy) was enhanced when these cells 

were cultured in conditioned medium obtained from Mpt rendered dormant by nutrient 

deficiency (starvation dormancy). It was also observed that the factor responsible for 

resuscitation was a secreted product (18). It indicated that in starvation-dormant 

conditioned medium there are one or more specific factors that can improve the recovery 

of dormant Mpt. While M. tuberculosis contains five homologues of Rpf, four of them 

were identified in the genome of Mpt (27). Therefore, the hypothesis of this research 

was that the recovery of Mpt from anaerobic dormancy is mediated by 

resuscitation-promotion factors (Rpf) present in conditioned medium obtained from 

starvation-dormant Mpt.   

The objectives chosen to generate data to fulfill the above hypothesis were to i) 

partition of conditioned medium from starvation dormant Mpt (SDCM) into different 
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molecular weight fractions and test these fractions individually for their ability to 

promote the resuscitation of anaerobic dormant Mpt; ii) to subject resuscitation 

promoting fractions to heat and protease treatment to determine the effect of these 

treatments on resuscitative activity; iii) use reversed-phase high-performance liquid 

chromatography (HPLC) to characterize the components of the resuscitation-promoting 

fractions.   

Characterization of the factors affecting the resuscitation of dormant Mpt is 

expected to lead to changes in protocols and media used in fecal culture that will improve 

the sensitivity of early detection of Mpt. This in turn will lead to improved diagnosis and 

keep dairy products safe and affordable for consumers.   
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Chapter 2: Literature review 

2.1 Johne’s disease 

2.1.1 History 

Johne’s disease (also known as paratuberculosis) was first described by H. Johne 

and L. Frothingham in 1895 (12). Shortly after their published description, the disease 

was also noticed in the Netherlands and the United Kingdom (6). Johne’s disease was 

subsequently reported in several other European countries including Switzerland in 1905, 

Denmark in 1906, and France in 1907 (41). The first documented case of Johne’s disease 

in US was reported in 1908 (52). By the 1920s cases of Johne’s disease was observed in 

Africa and Asia, and cases in India and South America were reported in the 1930s (41). 

Australia reported the presence of Johne’s disease in 1936, and shortly thereafter the 

disease was considered to be endemic in South Australia (41). Johne’s disease had been 

identified on all continents except Antarctica. 

2.1.2 Economic impact of Johne’s disease 

Mycobacterium avium subsp. paratuberculosis (Mpt), the causative agent of 

Johne’s disease, can infect a wide range of animals including wild and domestic animals. 

Among them, domestics are the most commonly infected animals (3, 5, 6). Infections in 

domestic ruminant usually result in economic losses. In US the effect of Johne’s disease 

is particularly severe in dairy cattle. The disease causes losses in milk production, 

premature culling and reduction in slaughter value.  Although dairy animals are typically 

infected early in life, clinical sign usually don’t appear until 2-5 years after infection, 
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which causes prolonged exposure of herd to Mpt (12). The first study of Johne’s disease 

in the US was performed at University of Pennsylvania in 1908 and the resulting report 

warned about the serious economic loss for paratuberculosis (52).  

A study performed by The National Animal Health Monitoring System (NAHMS) 

in 1996 estimated that the average cost for producers for a Johne’s disease clinical cow in 

infected herds is $245, mostly due to reduced milk production (79). Economic loss due to 

paratuberculosis in US dairies was estimated to be at least $250 million annually. The 

National Animal Health Monitoring System Dairy 2007 study estimated that 61.8% of 

US dairy operations were infected with Mpt and at least 25% US dairy operations had 

high percentage of infected cows in the herd (80).  

2.1.3 Symptoms and stages of Johne’s disease 

The incubation period for Johne’s disease is prolonged. The mean incubation has 

been estimated to be 5 years in cattle. The disease progresses through 4 stages (87). In 

stage I, also referred to as the silent stage, young animals (from birth to a few months 

old) get infected by ingesting Mpt in milk or from the environment. These animals can 

get infected with a low dose of organisms (about 103 Mpt) (41).  During stage I, shedding 

of Mpt is not detected, and the animal shows no clinical signs. This stage can last from a 

few months to years and slowly progresses to the stage II (87).  

In stage II, subclinical infection stage, the animals begin to shed Mpt in their feces. 

The shedding contaminates the environment and serves as source of future infections. 

Animals in this stage may show no sign of infection but may be susceptible to 

reproductive problems. These animals nevertheless have a high chance of remaining in 
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the herd and continuing the spread of infection. Only 15%-25% cases at this stage of 

disease can be detected as positive by fecal culture method (87).  

Stage III, the clinical stage, is characterized by chronic diarrhea. Signs can 

include emaciation, decline in milk production, and proteinemia. Other signs include 

abortion and alopecia. Animals lose weight despite having a good appetite. Large 

numbers of Mpt are shed in feces, with more than 1010 colony-forming units per gram of 

feces.  This dramatically increases the level of environmental contamination in the area. 

Infections in stage III animals are easily detected by most diagnostic methods (87). 

In stage IV, the advanced stage, the animal has persistent diarrhea. This leads to 

death of the animal due to dehydration and wasting (87). 

The dynamics of Johne’s disease in dairy herds has been described as “the iceberg 

phenomenon”. For every case of clinical Johne’s disease on the farm, there may be 6-8 

animals in stage II and 10-15 animals in stage I (80). 

2.2. Mycobacterium avium subsp. paratuberculosis  

2.2.1 Characteristics 

Mpt was identified as the causative agent of Johne’s disease by Twort in 1910 

(78). It belongs to the genus Mycobacterium, which includes gram positive, non-motile, 

obligately aerobic, acid-fast bacilli. Mpt is a small bacillus, approximately 0.5 µm in 

diameter by 1.5 µm in length. The cell wall contains 60% lipid, primarily mycolic acids, 

which makes the organism able to resist decolorization by acidified alcohol. The thick, 

waxy cell wall protects Mpt from chemical and physical factors, thus giving the organism 

a survival advantage (12, 87). However, this cell wall also restricts the uptake of nutrients.  

 Among the mycobacteria, Mpt possesses two intriguing characteristics: extremely 
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slow growth and the inability to produce the siderophore mycobactin. Mpt is the slowest 

growing species of mycobacteria, with the generation time over 20 hours under optimal 

conditions (35). When growing on solid agar under optimal conditions, Mpt takes 3-6 

weeks to produce colonies. The colonies are small, white and have a complete margin 

(41). Mpt grows best at 37oC (12). Early attempts to culture Mpt from cases of Johne’s 

disease were initially unsuccessful. In order to recover Mpt, Twort and colleagues added 

a hot ethanol extract of Mycobacterium phlei to their culture medium and suggested that 

something present in M. phlei supported the recovery of Mpt (78). Further 

characterization identified mycobactin as the necessary ingredient. Mycobactin belongs 

to a group of organic compounds known as siderophores, which are used by most 

bacteria and fungi to obtain iron from the environment.  Mycobactin dependency was 

originally used as a distinguishing characteristic for Mpt; however, some strains of 

Mycobacterium avium subsp. avium and Mycobacterium avium subsp. silvaticum also 

require mycobactin (96). Therefore, mycobactin dependency is no longer used as the sole 

criterion for identifying Mpt. 

2.2.2 Classification  

Mpt belongs to the Mycobacterium avium complex (MAC). This complex 

includes Mycobacterium intracellulare, M. avium subsp. avium,  M. avium subsp. 

hominissuis and M. avium subsp. paratuberculosis. Members of this complex share 90% 

genomic similarity. MAC species can be distinguished based on the 16S-23S internal 

transcribed spacer (ITS1) and 16S rRNA sequences (22). Subspecies are distinguished 

based on the insertion sequences (IS) present in their respective genomes. Mpt alone 
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contains IS900, and its genome does not contain IS1245, while all of the other MAC 

species have the latter insertion sequence in their genome (89).     

Two Mpt strains have been initially recognized based on host species of origin. 

These are designated as S (sheep) and C (cattle) strains. Molecular typing techniques 

have been used to further discriminate among Mpt isolates (70). Because Mpt has a fairly 

broad host range, the S and C strain type designations may cause confusion. Therefore 

these strain types were then designated as type I (formerly S type) and type II (formerly C 

type).  

There are differences between these two strains based on their host preferences, 

phenotypic characteristics, virulence, and genotypes. Type I strains are reported to be 

sensitive to ampicillin and vancomycin hydrochloride. These antibiotics are used in 

specimen decontamination procedures, making culture of type I strains more difficult 

(55). Type I strains are found in sheep and goats. They produce pigmented colonies on 

solid medium.  Type II strains produce non-pigmented colonies and are resistant to 

vancomycin and ampicillin (70).  Type II strains have a wide range of hosts. They can be 

isolated from both domesticated and wild animals such as cattle, foxes, stoats, and rabbits 

(3). Type II strains have also been isolated from Crohn’s disease patients (89).    

2.2.3 Genome 

The complete genome sequence of Mpt (bovine isolate K-10) was published in 2005. The 

Mpt genome is a single circular chromosome containing 4,829,781 base pairs. It has a G 

+ C content of about 67% and encodes 4,350 predicted ORFs and one rRNA operon. 

More than 3,000 genes of Mpt are homologous to genes of M. tuberculosis, the organism 

that causes tuberculosis in humans (39) 
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Fig 1. The complete genome map of Mycobacterium avium subsp. 

paratuberculosis strain K-10 (39) 

The genome sequence explains the mycobactin dependency of Mpt. Mpt has a 

deletion in mbtA-J, the genes necessary for mycobactin synthesis. Mpt also lacks genes 

for frdBCD, which encodes fumarate reductase; narX which encodes a positive regulator 

of nitrate reductase, and ureABC and ureDFG, which encode urease. All of these genes 

are present in other MAC organisms (39). 

Genes associated with virulence in M. tuberculosis were also detected in the 

genome of Mpt.  The PE/PPE family of proteins in M. tuberculosis is believed to be 

responsible for host interaction, inhibition of antigen progressing, and survival in 

macrophages. This gene family was also found in Mpt, with 10 PE and 37 PPE 

homologues present (39). One of the mce gene clusters in M. tuberculosis, which are 
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believed to be responsible for mammalian cell entry, was found in Mpt but is absent from 

the genomes of other MAC. It may play an important role in the virulence of Mpt (39).  

The Mpt genome was found to contain a high number of repeat sequences and 

insertion sequences (IS). IS are short DNA that functions as transposable elements. The 

genome of Mpt K10 contains 58 IS, including 17 copies of IS900, 7 copies of IS1311 and 

3 copies of ISMav2, along with 185 mono- to trinucleotide repeats. These sequences may 

be useful as molecular tools for the detection or identification of Mpt (39). 

2.2.4 Transmission and spread of Mpt 

Mpt is transmitted mainly through the fecal-oral route. Infected animals shed Mpt 

in their feces, contaminating the livestock environment (74). Animal can get infection by 

grazing in the contaminated area. Mpt can be absorbed into the soil and contaminate 

water sources. The agent can then be spread when the water flows to another location. 

Mpt is also found in raw cow’s milk and colostrum, meaning that nursing can directly 

result in transmission (74).  There is also evidence that Mpt can be transmitted to 

offspring in utero (82).  Because farmed animals are maintained in fairly restricted spaces, 

transmission can occur easily, placing the entire herds at risk once Mpt has been 

introduced into the herd. 

2.2.5 Immunology of Mpt infections 

After Mpt enters the host by ingestion of contaminated food or water, it invades 

the host intestine by entering microfold cells (M cells) covering Peyer’s patches in the 

small intestine (46).  The function of M cells is to transport foreign particles or organisms 

across the epithelial layer to underlying antigen presenting cells, T cells, and B cells of 

the Peyer’s patches, so that the foreign particle can be recognized and destroyed by the 
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immune system.  Subepithelial macrophages phagocytose the bacteria and may present 

Mpt antigens to T lymphocytes (46). Like other mycobacteria, Mpt is able to survive 

inside macrophages (44). The organism prevents macrophage apoptosis. Further, Mpt-

containing-phagosomes fail to become acidified and do not fuse with lysosomes. Infected 

macrophages produce cytokines such as interleukin (IL)-1, tumor necrosis factor (TNF)-

∝, and IL-12. These cytokines activate another macrophages as well as T cells and B 

cells.  Stabel et al. studied the effects of TNF-∝ on the recovery of Mpt. They concluded 

that if the host cells were treated with high doses (4,000 IU) of TNF-∝ before infection, 

the number of viable Mpt recovered in culture was reduced (66).  CD4+ T cells were 

reported as the main source for TNF-∝, but other immune cells also produce this 

cytokines during Mpt infection (11). 

In the early stages of infection, type I T helper cells (Th1) are dominant in the 

immune response to Mpt. As the disease progresses to later stages, the Th1 response 

wanes, and Th2 response begin to dominate. As a result, anti-Mpt antibody production 

increases; however, these antibodies are largely ineffective against an intracellular 

pathogen such as Mpt.   

γδ T cells may also play a role in the protection of the host. In a study by Tanaka 

about the role of γδ T cells, TCR-γ/δ deficient mice showed more Mpt colonization than 

did TCR-∝ or TCR-β deficient mice (75). Others have suggested that γδ T cells play a 

role in granuloma formation (41).  

Granulomas, which are characteristic lesions of mycobacterioses, are formed 

when macrophages, T cells, and B cells accumulate around infected macrophages in 

order to minimize the spread of the pathogens beyond the site of infection. Macrophages 



  18 

within granulomas often fuse together to form multinucleate giant cells. The formation of 

granulomas and the accumulation of immune cells in infected tissues result in the 

thickening of the intestinal wall, which causes a reduction in the surface area available 

for nutrient absorption in the intestine (41). This eventually leads to malnutrition and the 

diarrhea that are observed in the latter stages of Johne’s disease.  

2.2.6 Survival of Mpt in the environment 

Mpt has the ability to survive outside the host for extended periods of time. 

Depending on environmental physical and chemical factors such as heat, organic matter, 

pH, sunlight, and water availability, Mpt can survive for a year or longer in the livestock 

environment. In dry, fully shaded locations, Mpt in fecal pellets could survive up to 55 

weeks (90). Mpt can survive in dam water in the shade up to 48 weeks and Mpt can 

survive in sediment an additional 12 -26 weeks (91). The ability of Mpt to resist heat was 

demonstrated in a report about the presence of Mpt in commercially pasteurized milk (26, 

27).  This finding suggested that Mpt-contaminated milk might be responsible for causing 

Crohn’s disease. Mpt is also resistant to chlorine, the disinfectant used in water treatment 

(86). Exposure of Mpt to 2 µg of chlorine for 30 minutes resulted in a less than 2,000-

fold reduction in the population of Mpt. Therefore Mpt is likely to be able to contaminate 

water systems as well as water reservoirs.  In a survey of US water systems in 2008, Mpt 

was found in 80% of the tap water samples, with concentrations of 1 to 29,000 CFU/l, 

although most samples had less than 500 CFU/l (4). 

2.3 Management of Johne’s disease 

Because of the increasing worldwide burden of Johne’s disease, control programs 

are needed to manage the spread of the disease. Since there is no cure for Johne’s disease, 
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the best ways to control infection are vaccination and early detection of infected animals 

in the herd. 

2.3.1 Vaccination 

Vaccines for Johne’s disease have been available for many years, and many 

iterations of vaccine are being developed. Some commercial vaccines are prepared as 

heat killed whole cell vaccines such as Mpt strain 316F (GudairTM and Mycopar, 

NeoparasecTM), and the heat-killed 5889 Bergey strain. GudairTM is the only vaccine 

approved for use in Australia (Pfizer, NSW, Australia), and it is also available in some 

European countries (51). The vaccine is used for sheep and goats, and the animal requires 

only one dose during its lifetime. The age for vaccination should be before the exposure 

to Mpt (4-16 weeks after birth) (51). In US the only approved vaccine is Mycopar 

(Boehringer Ingelheim, Ridgefield, CT, USA) (28). The age of vaccination is between 7 

to 35 days old (28). Both of these vaccines, however, produce non-specific cross 

reactivity in serology diagnostic tests due to high persistent level of antibodies (69). It is 

hard to distinguish between vaccinated animals and infected animals, thus leading to 

confusion when people use serologic testing to cull infected animals. 

Next generation vaccines are subunit-based vaccines, including protein subunit 

vaccines and DNA vaccines. The antigens for these proposed vaccines have been shown 

to induce strong immune responses in animals with stage I Johne’s disease (Table 1). 

Genes of the candidate protein are being used to produce DNA vaccines. Advantages of 

DNA vaccines include their stability and their easy purification.  
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Table 1: Protein vaccines for paratuberculosis 

Protein vaccines Subunit function Reference number 

Ag85 complex (Ag85A, Ag85B, 

and Ag85C) 

Mycolyl transferase activity-

responsible for the synthesis of 

cell wall components 

58 

Hsp65 (GroEL) and Hsp70 

(DnaK) 

Chaperonin 34 

P22 (22KDa) Secreted protein- immune target 17 

MAP1518 and MAP3184  Virulence factors 57 

 

Even though these subunit vaccines are promising, none of these is yet approved. 

Most importantly, while the approved and proposed vaccines may help to reduce the 

shedding of Mpt in feces, none have been shown to prevent infection.  

2.3.2 Diagnosis 

Diagnosis of Johne’s disease includes detection of the etiologic agent (Mpt) or 

detection of the immune response against the agent. The application of a combination of 

tests and the quantitative interpretation of test results provide valuable tools for diagnosis 

of Johne’s disease in a herd. In addition to culture, polymerase chain reaction (PCR) or 

enzyme-linked immunosorbent assay (ELISA) are used to help diagnose Johne’s disease.  

2.3.2.1 Culture  

 The gold standard for the detection of Mpt is fecal culture. The specificity of fecal 

culture is near absolute, but the sensitivity is heavily influenced by the stage of disease in 

the host animal (10, 60, 88). Isolation of Mpt in liquid or on solid medium offers the 

ability to complete molecular studies that increase our understanding of the epidemiology, 

physiology and virulence of this pathogen.  
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The first effective culture procedure was first developed in 1912 by Twort and 

Ingram (78). The general composition of medium for Mpt growth includes nutrients 

essential for supporting Mpt growth, antimicrobials and/or dyes to eliminate 

contaminants and select for Mpt, and mycobactin. Many mycobacterial media can be 

used to culture Mpt so long as they are supplemented with mycobactin J, but Lowenstein-

Jensen medium (LJ), Herrold’s egg yolk medium (HEYM) or Middlebrook media are the 

most common used (41). Because most bacteria can be detected in broth sooner than in 

solid media, new systems have been developed that use broth media and indicators that 

signal Mpt growth. Most of these media are based on Middlebrook broth formulations.  

The BACTEC 460TB system is a radioisotope-based detection method. In 

addition to selective antibiotics and mycobactin J, Middlebrook 7H12-based BACTEC 

broth includes 14C-labeled palmitic acid as a carbon source. When mycobacteria grow, 

they produce 14CO2, which is detected and measured by BACTEC 460TB instrument. 

The sample is considered positive or negative based on a growth index (36). The main 

advantage of this method is that it can detect Mpt faster than conventional culture method 

(4 weeks instead of 10 weeks for conventional culture) (13). Disadvantages include the 

expense of the BACTEC instrument and the handling and disposal of radioactive waste 

(7).  

The Mycobacteria Growth Indicator Tube (MGIT) system contains 7 mL of 

modified Middlebrook 7H9 broth base, enrichment and an antibiotic mixture.  At the 

bottom of the test tube, silicone beads are embedded with an oxygen-sensitive 

fluorochrome. At the time the medium is inoculated, there is an abundance of free oxygen 

in the medium, thus quenching fluorescence (62). As Mpt grows, the oxygen is consumed. 
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Fluorescence increases with decreasing oxygen levels, and cultures are flagged as 

positive when fluorescence reaches a set intensity. Fluorescence can be assessed visually, 

or it can be measured using the BACTEC MGIT 960 instrument (62).  

In a comparison of the MGIT and BACTEC systems for the recovery of Mpt from 

milk, both media were able to detect 10 organisms per mL of milk (25). However, while 

the liquid media are better at supporting the growth of mycobacteria, they also support 

the growth of unwanted organisms. Mpt is a very slow growing bacterium, so culture 

contamination by much more rapidly growing organisms (such as those commonly 

present in feces) can prevent the detection of Mpt.  

2.3.2.2 Polymerase chain reaction  

 Polymerase chain reaction (PCR) methods have made possible the rapid detection 

of Mpt in clinical samples, by reducing the time of detection time from weeks to within a 

couple of hours. In most studies, the DNA target has been IS900, initially considered to 

be an Mpt-specific marker (26).  The specificity of the IS900 PCR is about 83%; the 

sensitivity depends on the load of Mpt in samples, with 81% sensitivity if the sample 

concentration is over 70 CFU/g of feces and 45% sensitivity if the concentration is lower 

than 1 CFU/g of feces (68).  However the IS900 target has been found in other 

mycobacteria such as Mycobacteria intracellulare, Mycobacterium scrofulaceum, 

and Mycobacterium sp. strain IWGMT 90236 (19). Therefore, more PCR targets specific 

for Mpt have been identified such as F57, ISMap02, and ISMav2 (53, 67, 72).  New PCR 

assays for Mpt have been developed, such as the triplex real-time PCR (TRT-PCR) assay 

(29), and a quantitative TaqMan PCR assay (85). TRT-PCR is designed to co-amplify 

IS900, F57, and ISMap02. In a study using TRT-PCR to detect Mpt, Irenge et. al. 
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concluded that TRT-PCR is specific and sensitive when compared with culture methods 

(29).  The TaqMan PCR assay, which uses fluorescent probes, has a higher specificity 

(99.7%) than conventional IS900 PCR; however, test sensitivity varied from 4% in light 

and moderate fecal shedders to 76% in heavy fecal shedders (85). Although PCR assays 

offer the advantage of speed, they cannot distinguish between viable and nonviable Mpt 

cells. Direct testing of feces may lead to false-negative PCR results due to PCR inhibitors 

present in fecal samples or in sample decontamination solutions. 

2.3.2.3 Enzyme-linked immunosorbent assays (ELISA)  

Enzyme-linked immunosorbent assay (ELISA) is a technology that has been used 

for detection of immune responses to Mpt. Commercially-available ELISA kits for Mpt 

have been designed to detect antibodies or the cytokine interferon gamma (IFN-γ) in 

serum or milk of an animal (41). These assays enable the rapid, inexpensive testing of 

large numbers of samples. Commercially-available antibody ELISA kits have a high 

specificity and, when animals with clinical Johne’s disease are tested, high sensitivity. In 

one study, the sensitivity of ELISA on serum and milk relative to fecal culture was 74.3%. 

The corresponding values for ELISA-specificity based on the percentage of non-M. 

avium subsp. paratuberculosis–infected goats testing ELISA-negative were 98.6% and 

99.3% on serum and milk, respectively (30). However, ELISA is relatively insensitive 

when subclinically infected animals are in the testing population. In an experimental 

comparison of PCR, ELISA and fecal culture for detecting infection in subclinically 

diseased animals, culture and PCR were able to detect more infected animals than ELISA. 

The sensitivity and specificity of ELISA were 4.8 % and 97.8%, respectively while those 

of PCR were 57% and 85.3% (88). Disadvantages of the current ELISA are that it 
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requires skilled laboratory technicians. In addition, the specificity of ELISA is dependent 

on the antigen used in the assay. If the antigen in ELISA is not specific for 

paratuberculosis, it will lead to false positive results.  

2.4 Dormancy 

 2.4.1 Dormancy definition and models 

The ability of Mpt to survive in the macrophages for extended period of time is 

believed to be associated with the dormant state (84). Dormancy has been defined as “ a 

reversible state of low metabolic activity, in which cells can persist for extended periods 

without division” (32). Dormancy is considered a viable but not culturable state because 

dormant Mpt cannot be easily re-cultured. The anaerobic dormancy model for 

mycobacteria was developed by Wayne (84). In this model, M. tuberculosis was cultured 

in the presence of oxygen then oxygen was suddenly and gradually depleted. Growth and 

survival were measured by turbidity, numbers of colony forming unit on the solid agar, 

ATP concentration, and glycine dehydrogenase (GDH) activity. When oxygen was 

depleted rapidly, the organism died shortly thereafter.  However, when oxygen was 

gradually depleted, the organism remained alive but had low metabolic activity. In this 

stage, no growth was observed, and GDH activity was reduced. When the surviving 

organisms were diluted into fresh and oxygen-rich medium, the number of viable count 

(CFU) doubled within 32 hours after dilution (84).  Other mycobacteria such as 

Mycobacterium smegmatis and Mycobacterium bovis also show the ability to transform 

from an actively growing state to dormant state (32). Mycobacteria can also enter 

dormancy as the result of starvation. In a study with the organism, authors observed that 
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the metabolic rate dropped by 60% at day 10 and by 80% at day 53, then the viability was 

about 92% at day 25 (2). 

 2.4.2 Dormancy characteristics 

The physiological state of Mpt changes during adaptation to starvation.  Total 

lipid content per cell declines in the beginning of the starvation period, then recovers to 

the original level after a month (day 32) of starvation (2). Lipid was hypothesized as the 

energy source during starvation. Archuleta et. al. explored  lipid consumption and 

concluded that the bacteria may have stored the lipid as triglyceride globules (2).    

Mycolate synthesis also decreases during starvation. As a major component of the 

mycobacterial cell wall, mycolic acids provide a protective thick layer. There are three 

types of mycolic acid in mycobacteria: type alpha- , type beta- (methoxyl-), and type 

gamma (keto). Among them, α-mycolic acid is the most abundant (at least 70% of the 

mycolic acids), folllowed by then keto-mycolic acid (approximately15%), and methoxyl-

mycolic acid  (approcimately 10%). During starvation, the total synthesized mycolate 

diminished, with a small decline in methoxyl-mycolic acids (responsible for wax ester). 

However synthesis of alpha-mycolic acids increases slightly, and the synthesis of keto-

mycolic acid increases considerably (2).  

2.4.3 Resuscitation 

Resuscitation refers to the transition from dormancy to culturable state. The 

mechanism underlying resuscitation has been the subject of investigation by several 

laboratories (33, 45, 61, 83). Several factors that enhance the reactivation of dormant 

cells have been reported. 
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 The most frequently cited factor is a family of small (15-17 kDa) secreted 

proteins known as resuscitation promoting factors (Rpf). Rpf was first isolated from the 

conditioned medium (CM) of Micrococcus luteus (33). CM is cell-free medium from a 

previous culture. The addition of Rpf-containing CM induced the resuscitation of 

dormant M. luteus, resulting in the forming of colonies on agar plates (33). Rpf proteins 

exhibit activity at low picomolar concentrations (31). The proteins contain a lytic 

transglycosylase domain similar to that of lysozyme (45). The lytic activity has been 

demonstrated to have an effect on peptidoglycan substrates. However the relationship 

between peptidoglycan hydrolysis and the resuscitation is not clear (76).  Rpf genes are 

also present in other gram-positive high G+ C organisms such as Rhodococcus 

rhodochrous, Mycobacterium smegmatis, Mycobacterium tuberculosis and 

Mycobacterium paratuberculosis ( 27, 97). Five homologues of Rpf (rpfA-rpfE) are 

present in the genome of M. tuberculosis. Inactivation of individual Rpf genes showed no 

effect on resuscitation, which suggested the functional redundancy of these genes (77). 

However, if three of these genes were disrupted, resuscitation was reduced. This 

indicated a potential synergy of Rpf genes in the resuscitation of dormant cells.  It was 

predicted that two of the Rpf proteins function to break down peptidoglycan and produce 

second messengers that stimulate the bacterial growth (61). This second messenger was 

proposed to be a phospholipid or a specific peptide (Rv1174c). Based on HPLC and 

MALDI mass spectra, the fatty acid was identified as 10-methyloctadecanoic acid or 

arachidonic acid (95).   

Peptide Rv1174c is an 8kDa peptide isolated from the culture supernates of M. 

tuberculosis (95). This peptide was expressed in E. coli and demonstrated resuscitative 
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activity when tested on Mycobacterium tuberculosis H37Ra. Peptides (22 to 25 amino 

acid residues in length) derived from the Rv1174c also showed resuscitative effects 

separately and in combination. Zhang and colleagues suggested that Rv1174c may be 

subjected to proteolysis to form smaller signaling peptides (95).         

In previous research in our lab, it was shown that CM from nutrient depleted 

dormant Mpt (starvation-dormant CM, or SDCM) was able to enhance the resuscitation 

of both starvation- dormant Mpt and cultures rendered dormant by gradual oxygen 

depletion (anaerobically-dormant Mpt) (18). The ability to enhance the recovery of 

organisms that are not otherwise likely to grow in culture would be expected to have 

strong potential for improving the sensitivity of diagnostic culture for Mpt. To that end, 

characterization of the resuscitative factors in Mpt SDCM merits further study. 
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Chapter 3: Materials And Methods 

3.1 Preparation and collection of conditioned medium from starvation-dormant Mpt 

Mycobacterium avium subsp. paratuberculosis (Mpt) PAMSUM8 (Minnesota 

State University, Mankato culture collection) was grown in M7H9C [Middlebrook 7H9 

broth (Becton Dickinson, Sparks, Md.) supplemented with 10% oleic acid-albumin-

dextrose-catalase (Becton Dickinson), 0.05% Tween 80 (Sigma, St. Louis, Mo.), and 2 

µg of mycobactin J (Allied Monitor, Fayetteville, Mo.) per ml]. Mpt (1 ml) was grown in 

25 ml M7H9C at 370C in sealed 160ml tissue culture flasks. Acid fast staining was done 

to check for contamination. After at least 5 months, Mpt cultures were harvested by 

centrifugation at 3000rpm at 40C for 30 minutes. The supernate was collected and filtered 

through a 0.2 µm filter. This filtrate was used as starvation-dormant conditioned medium 

(SDCM).  

3.2 Preparation of anaerobically-dormant responder Mpt  

 Anaerobically dormant Mpt responder cells were prepared by inoculating 100 µl 

of a mid- to late-exponential phase Mpt into a 10 ml serum vial containing 7 ml M7H9C. 

The vial was closed with a rubber septum, sealed with an aluminum cap, and incubated at 

370C for at least 4 months.  

Before Mpt responder cells were collected (after at least 4 months in culture), the 

viability of the culture was measured using the LIVE/DEAD BacLightTM - Bacterial 

Viability Kit (Invitrogen). The kit contains SYTO 9, which fluorescent green when bound 

to DNA and is membrane-permeant (staining DNA in all cells); and propidium iodide 
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(PI), which fluorescent red when bound to DNA and is membrane-impermeant 

(displacing SYTO 9 in dead and dying cells).  

To collect cells for the viability assay, 100 µl of the dormant culture was 

withdrawn from the culture vial with needles fitted to 3 ml syringes then put in an 

eppendorf. The eppendorf was centrifuged at 1817 x g for 30 minutes. The pellet was 

collected and washed in 1 ml filtered phosphate buffered saline (PBS). The suspension 

was centrifuged again at 1817 x g for 30 minutes, and the dormant cell pellet was 

resuspended in 1 mL PBS. One hundred microliters of the bacterial suspension was 

transferred to a clean 1.5ml microcentrifuge tube and mixed with an equal volume of 1:1 

SYTO 9:PI. The cell-dye suspension was incubated for 15 minutes and then analyzed by 

flow cytometry (Guava Technologies, Millipore). The percentage of cells fluorescing 

green only was recorded as the percent viability of the dormant Mpt responder cells. 

 To collect anaerobically dormant Mpt responder cells, cultures were centrifuged 

at 1200 x g for 30 minutes at 4oC. Cell pellets were collected and suspended in 3 ml 

sterile PBS with Tween-20 (PBST). Cell suspensions were adjusted to 30% transmittance 

at 490 nm, which is equivalent to 2 x 108 cfu/ml. Tenfold serial dilutions of the adjusted 

bacterial suspensions were used to obtain dormant cell concentrations of 2 x 105 cfu/ml in 

10 ml of M7H9C.       

3.3 Fractionation of conditioned medium  

SDCM was fractionated by sequential ultrafiltration (Vivaspin 20, Sartorius 

Stedium Biotech GmbH, Germany) to yield fractions with nominal cut-off values of 5 

kDa, 10 kDa, 30 kDa, 50 kDa, and 100 kDa. SDCM was added to ultra-filters and 

centrifuged at 1200 x g at 40C for 30 minutes. The eluate, containing substances with 
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molecular weights lower than 5 kDa, was collected as fraction 5 (F5). The retentate 

(greater than 5 kDa) was resuspended in PBS pH 6.8 and centrifuged as before, using a 

10 kDa filter. This second eluate, containing substances with molecular weights between 

5 kDa and 10 kDa, was designated fraction 10 (F10). The procedure was repeated to 

collect fraction 30 (F30), fraction 50 (F50), fraction 100L (F100L; molecular weights 

between 50 kDa and 100 kDa) and fraction 100U (F100U; molecular weights > 100 kDa).       

3.4 Preparation of incubation chambers 

Two pieces of benzylkonium chloride-soaked paper were placed inside a plastic 

sandwich container. The container was then autoclaved at 1210C, 15 psi for 30 minutes 

and kept closed in a biosafety hood until use. To avoid contamination, the incubation 

chamber was exposed to UV light in the hood for 15 minutes prior to resuscitation assay 

setup or measurement of optical density (OD).        

3.5 Assay for resuscitative effect of SDCM and SDCM fractions  

Three twofold serial dilutions of SDCM or SDCM fractions were prepared in 

M7H9C, and 100µl of each dilution was added to quadruplicate wells of a 96-well 

microtiter plate. Anaerobically dormant responder cells (100µl) were inoculated into all 

wells to a final concentration of 2000 cfu/well. Control well contained only M7H9C and 

dormant responder cells (100µl of each), and blank wells contained only 200 µl M7H9C. 

Microtiter plates were covered with a thin transparent plastic seal (Whatman, Piscastaway, 

NJ) to minimize evaporation and contamination. The plate was then placed in the sterile 

plastic container and incubated at 370C for about 15 days. Every two days, plates were 

allowed to equilibrate to room temperature, plastic seals were replaced to remove 

condensation, and OD590nm readings were obtained. All of the set up for resuscitation 
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assays and preparation for OD measurements were performed aseptically in a biosafety 

hood. 

3.6 Heat denaturation of fraction 5 

Aliquots of fraction 5 were incubated at 650C for 20 minutes or 800C for 10 

minutes in a water bath. After cooling to ambient temperature, F5 was used in 

resuscitation assays. 

3.7 Protease treatment of  F5 

Trypsin (Sigma-Aldrich) and thermolysin (Sigma-Aldrich) were used separately 

at 2.5 g/l, 0.25 g/l and 0.025 g/l concentrations to treat SDCM. Following protease 

treatment for 30 minutes at 37oC, SDCM was ultrafiltered as described above to collect 

F5 and remove the protease. Protease-treated F5 was used in resuscitation assays 

immediately after preparation. 

3.8 Combined effect of heat denaturation and protease treatment on F5 

The combination of heat and protease treatment was performed two ways: 

protease treatment followed by heat treatment, and heat denaturation followed by 

protease treatment. For the former combination, SDCM was treated with trypsin (0.25 

g/l) or thermolysin (0.25 g/l). F5 was then prepared from protease-treated SDCM and 

incubated at 80oC for 10 minutes. The F5 thus prepared was immediately used in 

resuscitation assays.  

For the latter combination, F5 was prepared as described above and incubated at 

for 10 minutes at 800C. Heat-denatured F5 was cooled to ambient temperature, then 

incubated at 37oC with trypsin (0.25 g.l) or thermolysin (0.25 g/ml) for 30 minutes. The 
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F5 was then filtered through a 5kDa untrafilter to remove the protease. F5 was then used 

immediately for resuscitation assays. 

3.9 High performance liquid chromatography (HPLC) 

Reversed-phase high performance liquid chromatography (HPLC) using a C18 

column was used to characterize the components of F5. Three F5 preparations of 

different ages (obtained from five-month old, six-month old and eight-month old 

cultures) were analyzed. A 1 ml sample of each F5 preparation was subjected to reversed-

phase HPLC with a C18 column in a buffer with 0.1 % formic acid  (buffer A) and 

formic acid and acetonitrile (buffer B) to characterize the peptide components. M7H9C 

was used as a blank and was also characterized for peptide components.  To characterize 

the acyl homoserine lactone (AHL) components in the F5 preparations, the same column 

was used but with 50% and 90% methanol (buffer A and B, respectively). Again, 

M7H9C was used as a blank. The results from HPLC were read at 254 nm and at 220 nm 

(for peptides and AHLs). In the HPLC for peptides, results at both wavelengths showed 

no difference, thus data at 254nm was chosen for results and data at 220 was placed in 

Appendix. In the HPLC for AHL results, the peaks appearing after 18 minutes reflected 

the gradient of the buffer used for HPLC therefore they were not included in the result. 

3.10 Data analysis 

All results were entered into GraphPad Prism statistical software (La Jolla, CA) 

for data analysis. Each treatment, including serial dilutions, was graphed and compared to 

the control. One-way analysis of variance (ANOVA) was used to look for the significant 

difference among the means of different dilutions in a fraction. Two-way ANOVA was 
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used to look for significant differences among the means of different dilutions of all 

fractions. 
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Chapter 4: Results 

4.1 The effect of SDCM fractions on dormant responder cells 

Two-fold serial dilutions of SDCM obtained from cultures aged from 5 months up 

to 1 year old were tested for the ability to resuscitate anaerobically-dormant Mpt. In the 

absence of CM, little to no resuscitation was detected in our assay. The optical densities 

(590 nm) of responder cells incubated with 1:2 dilutions of SDCM increased with 

increasing time of exposure, and this effect was significant by day 10 (p < 0.05 on day 

10). Higher dilutions of SDCM yielded results that were not significantly different from 

control (p > 0.05) (Fig 4.1). 

 In order to isolate the factor responsible for resuscitative activity, SCDM was 

partitioned by differential centrifugal filtration into six unit molecular weight fractions. 

Two-fold serial dilution of each fraction was tested for resuscitative activity using 

dormant responder cells, with unfractionated SDCM used as a positive control. 

Unfractionated SDCM enhanced the growth rate of responder cells (p < 0.01 on day 8, 10, 

14 and 16) (Fig. 4.2). Treatment with F5 demonstrated a trend towards improved 

resuscitation; however, this effect was not statistically significant from that seen for 

untreated controls (p > 0.05). No clear trend could be observed for any of the other 

SDCM fractions (p > 0.05 for all of other fractions).  

Because the resuscitative effect of F5 on dormant responder cells was not clearly 

established in our fraction-screening assay, two-fold serial dilutions of this fraction was 

again used to treat dormant responder cells. A clear, statistically significant enhancement 

of resuscitation by F5 was observed  (p < 0.01 relative to untreated controls).  In addition, 
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the resuscitative effect was greater than that seen for unfractionated SDCM and this 

effect was statistically significant (p < 0.05) (Fig 4.3).  

4.2 Testing the effect of F5 in combination with other fractions  

Because centrifugal filtration of complex protein solution into discrete molecular weight 

fractions can be confounded by protein conformation, F5 was combined with F10 or F30 

and tested on anaerobically-dormant responder cells. Neither F10 nor F30 alone enhanced 

the recovery of Mpt (Fig 4.2). However, combination of either of these fractions with F5 

showed the resuscitative effect that appeared better with F5 alone (Fig 4.4). This effect 

was significant (p < 0.05 day 8 for the combination of F5 and F10, p< 0.05 day 6 for the 

combination of F5 and F30).  

4.3 Effect of heat denaturation on resuscitation enhancement by F5  

In order to test the heat stability of the resuscitative factor in F5, aliquots of F5 were 

incubated at 65oC for 20 minutes or 80oC for 10 minutes prior to addition to dormant 

responder cells. Heat treatment of F5 did not appear to affect the resuscitation of dormant 

Mpt regardless of temperatures as compared with untreated F5 or CM  (Figs 4.5A and B).  

Two-way ANOVA revealed significant (p < 0.05) differences among the treatment 

groups on day 14,, although Bonferroni post-tests did not identify any particular 

treatment group (p > 0.05).  

4.4 Effect of protease digestion on resuscitation enhancement by F5  

To determine if the resuscitative activity of F5 was susceptible to protease treatment  

aliquots of F5 were treated with trypsin or thermolysin. SDCM was first treated with 

either trypsin or thermolysin for 30min at 37oC and fractionated through a 5 kDa-cutoff 
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filter to collect F5. Untreated and protease-treated F5 enhanced the recovery of dormant 

Mpt (p < 0.01 relative to untreated controls) equally well (Figs. 4.6A and B).  

4.5 Effect of both heat and protease treatment on resuscitation activity of F5 

Following digestion with trypsin or thermolysin, SDCM was fractionated, and F5 

was then heated at 80oC for 10 minutes. Trypsin-digested, heat-denatured F5 was as 

effective as untreated F5 in promoting the resuscitation of anaerobically-dormant Mpt 

(Fig 4.7A). Similarly, heat denaturation following thermolysin digestion did not affect the 

resuscitative ability of F5 (Fig 4.7B). 

 Because conformation can influence the access of proteases to cleavage site, we 

then heat-denatured F5 prior to digestion with either trypsin or thermolysin. It was 

observed that heat denaturation followed by trypsin digestion impaired the ability of F5 

to promote resuscitation (Fig 4.7A). However, heat denaturation followed by thermolysin 

digestion had no effect on the resuscitative ability of F5 (Fig. 4.7B).  

4.6 Reversed-phase HPLC analysis of F5 

F5 was prepared from SDCM obtained from 5-month-old, 6-month-old, and 8-

month-old dormant cultures and analyzed by reversed–phase HPLC. These F5 and 

SDCM preparations were chosen on the results of earlier resuscitation tests.  

4.6.1 Resuscitation assay for CM and F5   

SCDM and F5 prepared from 5-month-old, 6-month-old, and 8-month-old 

cultures were tested using two responder cells populations, the first containing 2% viable 

cells (low viability) and the second containing 42% viable cells (high viability). When 

tested using low viability responder cells, SDCM and F5 from 5- and 6-month-old 

cultures did not enhance the recovery of dormant responder cells (p > 0.05 for both as 
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compared with untreated control) (Fig. 4.8A and B). In contrast, SDCM and F5 from 8-

month old-cultures demonstrated significant resuscitative activity (p < 0.0001 for both 

when compared with untreated control) (Fig. 4.8C). When tested using high viability 

responder cells, all of the SDCM preparations promoted the recovery of the dormant Mpt 

(p < 0.0001), but only F5 from the 8-month-old culture had a significant resuscitative 

effect  (p <0.0001) (Fig 4.8E, D, and F).  

4.6.2 Reversed-phase HPLC analysis of F5 peptides  

All three F5 preparations yielded numerous peaks that were not present in the 

medium blank. These peaks were divided into four areas of interest: area 1 included 

peaks collected within 6 minutes; area 2 included peaks collected between 12.03- 14 

minutes and 16.483-16.492 minutes; area 3 included peaks collected at 29 minutes; and 

area 4 included peaks collected at 39.542-42.608 minutes. Increasing time of elution 

represented increased hydrophobicity.  

Area 1: All F5 samples had peaks with different profiles, with older sample yielding 

higher peaks, with the exception of the peak eluted at 4.3. These peptides were 

considered hydrophilic. 

Area 2: Peaks in area 2 had the same pattern as that seen in area 1, in that the peaks 

increased in size with increasing age of source culture. However, peaks from F5 prepared 

from the 5-month-old culture were barely noticeable. The peak height from F5 from 8-

month-old cells was at least twice that of F5 obtained from 6-month old cells, and those 

peaks were 25 times higher than area 2 peaks seen in F5 from the 5-month-old cells.  

Area 3: A single peak in area 3 (at 29 minutes) clearly decreased with age of source cells.  
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Area 4: Peaks in area 4 (39.542-42.608 minutes) were hydrophobic. The 39.5 peak was 

smallest in F5 prepared from 5-month-old cultures and very prominent in F5 from 6-

month-old cultures By 8 months, this peak was much smaller, but still greater that that 

observed from 5-month-old F5. Peaks at 41.8 and 42.6 minutes were present only in F5 

from 5-month-old and 8-month-old cultures. The 41.8 minute peak in F5 prepared from 

5-month-old cultures was greater than that seen in F5 from 8-month-old cultures. The 

peaks heights of the 42.6 minute peak were the same from both samples 

4.6.3 Reversed-phase HPLC analysis of F5 for AHLs 

Since AHLs are variable in structure, two wavelengths (220 nm and 254 nm) were 

used to measure the eluted HPLC peaks. Peaks were grouped in two areas (area 1-2). 

Area 1 included peaks collected within 5 minutes. Area 2 included peaks collected at 8.5-

13.2 minutes. There was no difference in absorbance between 220nm and 254 nm for all 

three F5 samples (Fig. 4.10). 

Area 1: The sample peak heights increased with increasing age of the source culture; 

however F5 obtained from 5-month-old and 6-month-old cultures were similar with 

respect to pattern and height of peaks. The heights of the peaks from F5 prepared from 8-

month-old cultures were 2-6 times higher than those of the other F5 preparations. 

Area 2: All three F5 preparations were similar with respect to peak high and peak pattern, 

and the peak heights were compared to those of area 1.  
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Fig 4.1 Cell-free conditioned medium from starvation-dormant Mycobacterium 

avium subsp. paratuberculosis (SDCM) promoted the recovery of anaerobically-

dormant responder cells. Twofold serial dilutions of SDCM (100 µl) were added to 

microplate wells containing 100 µl (2000CFU/ml) of anaerobically-dormant 

Mycobacterium avium subsp. paratuberculosis. Plates were incubated for 16 days and 

growth was assessed by optical density measurements (590 nm) every 48 hours at 590 nm.  

Control wells contained medium and dormant responder cells only.  
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Fig 4.2 The fraction of starvation-dormant conditioned medium (SDCM) containing 

molecules < 5kDa (F5) best promoted the resuscitation of anaerobically-dormant 

Mycobacterium avium subsp. paratuberculosis cells. SDCM was fractionated using 

ultrafilters with MW cut-offs of 5 kDa, 10 kDa, 30 kDa, 50 kDa, and 100kDa. Fractions 

were labeled according to the cut-off. F5 contained all molecules with mass lower than 

5kDa, F10 all molecules with mass from 5k- 10k, F100L contained all molecules with 

mass from 50k-100kDa and F100U contained all molecules with mass over 100kDa. 

Twofold serial dilutions of SDCM (100 µl) were added to microplate wells containing 

100 µl (2000CFU/ml) of anaerobically-dormant Mycobacterium avium subsp. 

paratuberculosis. Plates were incubated for 16 days and growth was assessed by optical 

density measurements (590 nm) every 48 hours at 590 nm.  Control wells contained 

medium and dormant responder cells only. 
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Fig 4.3 Fraction 5 (F5) enhanced the resuscitation of anaerobically dormant 

Mycobacterium avium subsp. paratuberculosis (Mpt) in a dose-dependent manner. 

Twofold serial dilutions of F5 (100 µl) were added to microplate wells containing 100 µl 

(2000CFU/ml) of anaerobically-dormant Mycobacterium avium subsp. paratuberculosis. 

Plates were incubated for 15 days and growth was assessed by optical density 

measurements (590 nm) every 48 hours at 590 nm.  Negative control wells contained 

medium and dormant responder cells only. Inverted triangles - negative control; squares – 

SDCM (positive control); solid circles – F5, 1:8 dilution; triangles - F5, 1:4 dilutions 
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Fig 4.4 Combining SDCM fractions 5 and 10 (F5 and F10, respectively) or F5 and 

F30 enhanced the recovery of anaerobically-dormant Mycobacterium avium subsp. 

paratuberculosis (Mpt). Twofold serial dilutions of F10 or F30 (50 µl) were mixed with 

an equal volume of twofold serially diluted F5 and added to microplate wells containing 

100 µl (2000CFU/ml) of anaerobically-dormant Mycobacterium avium subsp. 

paratuberculosis. Plates were incubated for 13 days and growth was assessed by optical 

density measurements (590 nm) every 48 hours at 590 nm.  Negative control wells 

contained medium and dormant responder cells only.  SDCM (positive control) 1:2 

dilution;  Combination of F5 and F30 1:2 dilution;  F5 1:2 dilution;  Combination 

of F5 and F10 1:2 dilution;  Negative control 
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Fig 4.5: Heat treatment alone did not affect the resuscitative activity of Fraction 5 

(F5). Fraction 5 was incubated at 650C for 20 minutes (A) or at 80oC for 10 minutes (B).  

Heat-treated F5s were added (100 µl) microplate wells containing 100 µl (2000CFU/ml) 

of anaerobically-dormant Mycobacterium avium subsp. paratuberculosis. Plates were 

incubated for 15 days and growth was assessed by optical density measurements (590 

nm) every 48 hours at 590 nm.  Negative control wells contained medium and dormant 

responder cells only.  SDCM (positive control) 1:2 dilution;  F5 treated at high 

temperature, dilution 1:2;  F5 1:2 dilution;  Negative control 

 

 

 

 



  44 

 

 

 

 

 

 

 

 

 

 

 

Fig 4.6: Protease treatment did not affect the resuscitative activity of fraction 5 (F5). 

SDCM was incubated with trypsin (0.25 mg/ml, A) or thermolysin (0.25 mg/ml, B) at 

370C for 30 minutes.  Treated SDCM was filtered through a 5kDa-cutoff filter to collect 

F5. Protease-treated F5s (100 µl) were added to microplate wells containing 100 µl 

(2000CFU/ml) of anaerobically-dormant Mycobacterium avium subsp. paratuberculosis. 

Plates were incubated for 14 days and growth was assessed by optical density 

measurements (590 nm) every 48 hours at 590 nm.  Negative control wells contained 

medium and dormant responder cells only.  F5 (no treatment) 1:2 dilution;  F5 

treated with protease;  Negative control 
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Fig 4.7: Resuscitative activity of fraction 5 (F5) was diminished by heat treatment 

followed by trypsin digestion but not by trypsin digestion followed by heat 

treatment (A), but was not affected by the order of heat treatment and thermolysin 

digestion (B). For protease digestion followed by heat treatment, SDCM was incubated 

with either protease (0.25g/l) at 370C for 30 minutes, filtered through a 5kDa-cutoff filter, 

and incubated at 80oC for 10 minutes. For heat treatment followed by protease digestion, 

F5 was incubated at 80oC for 10 minutes. After cooling to ambient temperature, F5 was 

then incubated with either protease (0.25 g/l) at 370C for 30 minutes and then filtered 

through a 5kDa-cutoff filter. Treated F5s (100 µl) were added to microplate wells 

containing 100 µl (2000CFU/well) of anaerobically-dormant Mycobacterium avium 

subsp. paratuberculosis. Plates were incubated for 14 days and growth was assessed by 

optical density measurements (590 nm) every 48 hours at 590 nm.  Negative control 

wells contained medium and dormant responder cells only;  Negative control;  

F5treated at 80oC for 10 min followed by protease digestion; and F5 treated with the 

protease, then incubated at 80oC for 10 min. 
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Fig 4.8: The resuscitative effect of SDCM and F5 depends on the age of the source 

culture and the viability of responder cells. SDCM was collected from 5- (A and D), 6- 

(B and E), and 8-month-old cultures (C and F), and each of these was used to prepare F5 

SDCM and F5 prepared from each source (100 µl) were added to microplate wells 

containing 100 µl (2000CFU/ml) of anaerobically-dormant Mycobacterium avium subsp. 

paratuberculosis that contained 2% viable responder cells (A-C) or 42% viable responder 

cells (D-F). Plates were incubated for 14-19 days, and growth was assessed by optical 

density measurements (590 nm) every 48 hours at 590 nm. Negative control wells 

contained medium and dormant responder cells only.  SDCM 1:2 dilution;  F5 1:2 

dilution;  Control 
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Fig 4.9: Reversed-phase HPLC analysis of Fraction 5 (F5) peptides. F5 prepared from 

5-month old cultures (A), 6-month-old cultures (B), and 8-month-old cultures (C) were 

compared with each other and with the blank (fresh medium). Differences from the 

medium blank were observed in four areas: Area 1- 0.0-6.0 min, area 2 - 12.03-12.04 min 

and 16.483-16.492 min, area 3 - 29 min, and area 4 - 39.542-42 min. 
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Fig 4.10: Reversed-phase HPLC analysis of possible acyl homoserine lactones in 

Fraction 5. F5 prepared from 5-month old cultures (A), 6-month-old cultures (B), and 8-

month-old cultures (C) were compared with each other and with the blank (fresh 

medium). Fractions were read at 220 nm (left panels) and 254 nm (right panels).  
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Chapter 5: Discussion 

Fecal culture, because of its relatively high sensitivity and specificity, is 

considered as the best means for ante mortem diagnosis of Johne’s disease. However, 

because the sensitivity of fecal culture is approximately 45% when animals in all stage of 

disease are considered, it is a flawed standard. It seems likely that the low sensitivity of 

fecal culture – particularly with samples from sub-clinically infected animals – reflects 

the inability to reliably culture dormant organisms. It is therefore important to define the 

conditions necessary to allow the resuscitation of the organism in order to improve the 

sensitivity of fecal culture, improve the success of disease management efforts, and allow 

the development and implement of new testing procedures.  

Previous work by Ghimire demonstrated that Mpt secreted factors that promoted 

the recovery of dormant Mpt (18). The present work sought to further characterize the 

resuscitative factor present in SDCM. We observed the resuscitative activity was present 

only in F5; however resuscitation appeared to be enhanced when F5 and F10 or F5 and 

F30 were used in combination.   

Secreted proteins from culture filtrate of Mpt have been subjects of several 

investigations; however most of them were not well characterized. Cho et. al. found that 

Mpt cellular extract rich in molecules with molecular weight lower than 30 kDa (9). This 

suggested that most of the Mpt proteins in SDCM would be present in F5, F10 and F30.  

Of all the fractions from SDCM, only fraction 5 (F5), which contained molecules with 

molecular weights lower than 5 kDa, consistently supported the resuscitation of dormant 

Mpt. Because F5 was necessary and sufficient for resuscitation and because F10 and F30 
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alone had no resuscitative effect, we believed F5 merits further characterization for 

identification of resuscitative factors. 

The positive effect of CM was also observed in other mycobacteria and gram-

positive bacteria (47). The protein identified as Rpf is also a secreted product. Rpf was 

first found in the culture supernates from Micrococcus luteus (31). Several mycobacteria 

also contain multiple homologues of M. luteus rpf. Hedlund identified four rpf 

homologues in the genome of Mpt (27). Therefore, the possibility that the resuscitation of 

dormant Mpt by Rpf in SDCM was considered. However, because the molecular weights 

of Rpf are approximately 15-17 kDa (46), those proteins would have been present in F30. 

Because F30 alone had no resuscitative activity, it is not likely that Rpf plays a role in the 

resuscitation of dormant Mpt. This is consistent with Hedlund’s observation that purified 

recombinant RpfB did not improved the recovery of dormant Mpt (27) 

It is interesting that while F5 alone was sufficient for resuscitation of dormant 

Mpt, this effect was apparently enhanced when F5 was used in combination with F10 or 

F30. If the resuscitative factor has a molecular weight near the 5kDa cut-off or had a 

conformation that limited its passage through the filter, one could expected that both F5 

and F10 would have similar activities when used alone. This reasoning would be 

insufficient to explain the enhanced resuscitation seen when F5 and F30 were combined. 

F10 and F30 may contain molecules that are precursors of those in F5 or act 

synergistically with molecules in F5 (95). Alternatively, F10 and F30 might contain 

enzymes turning precursors in these fractions into the growth factor in F5 or require a 

factor in F5 for resuscitative activity.  
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In our investigation we saw a clear dose-dependent effect both with CM and F5; 

that is, the highest concentration of SCDM and F5 components promoted resuscitation 

best. In an earlier investigation by Ghimire, this was not the case  - lower concentrations 

of SDCM were required in order for resuscitative activity to be observed (18). It was 

suggested that the observed effect reflected a conflict between resuscitative factors and 

inhibitory factors in SDCM. The reason for the difference in observations is not 

immediately clear and awaits explanation. 

The combination of heat treatment followed by trypsinization appeared to have a 

negative effect on resuscitation. This may indicate that either the resuscitative factor was 

cleaved, or that inhibitory factor was released as the result of trypsin digestion. Because 

thermolysin cleaved at more sites (cleavage following isoleucine, leucine, valine, alanine, 

methionine, and phenylalanine residues) than does trypsin (cleavage following arginine 

or lysine residues), it would be expected that the similar loss of activity would have been 

observed for thermolysin digestion. Because thermolysin treatment did not reduce the 

resuscitative activity of F5, it seems likely that trypsin digestion may have resulted in the 

release of a factor that inhibited resuscitation rather than degrading a resuscitative factor. 

Ying et al. identified Rv1174c (GenBank accession number NP215690) 

 as potential resuscitative factor for M. tuberculosis. This 8 kDa protein and three 

synthetic peptides containing 22-25 amino acids from the Rv1174c sequence appeared to 

enhance the colony-forming activity of the old H37Ra cells (95). Based on the published 

sequence from Mycobacterium tuberculosis, Rv1174c protein was predicted to have a 

mass of 10 kDa; however, MALDI mass spectrophotometry revealed the protein with 

molecular weight as 8.3 kDa. This discrepancy was explained by the observation that the 
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first 28 amino acids present in the sequence, which represented the signal sequence was 

cleaved during the secretion process. The finding that 22-25-mer peptides representing 

Rv1174c had resuscitative activity suggested that the protein might be broken down by 

proteolysis without the loss of activity. 

MAP2609 (GenBank accession number NP9615430), a protein predicted from the 

genomic sequence of Mpt, is a homologue of Rv1174c. Comparison of amino acid 

sequences of MAP2609 and Rv1174c by BLAST revealed 78% amino acid similarity 

between the proteins (40). Because of its homology with Rv1174c, the amino acid 

sequence of MAP2609 was analyzed using SignalP (http://www.cbs.dtu.dk/ services/ 

SignalP/) to predict if the gene encoded a potential signal sequence.  As with Rv1174c, 

SignalP predicted a signal peptide with the cleavage site between amino acid residue 28 

and 29. It was therefore possible that a peptide from MAP2609 may have been present in 

F5. However, in silico digestion of either Rv1174c or MAP2609 with thermolysin 

(PeptideCutter, http://web.expasy.org/peptide_cutter/) yielded individual amino acid and 

short peptides no longer than 8 residues. Because our observations showed that the 

growth factor in F5 was protease-stable, this indicated that MAP2609 was not likely to be 

responsible for the resuscitation of Mpt, unless the 8-residue peptides resulting from 

thermolysin treatment were sufficient for resuscitation.  

The characteristics of the unknown growth factor in F5 were similar to that 

observed for a growth promoting factors from Mycobacterium tuberculosis.  Four-week-

old Mtb H37Ra conditioned medium had a resuscitative effect on dormant (at least 8 

month old) Mtb H37Ra (73). The resuscitative phenomenon was found not only in 

Middlebrook 7H9 medium (relatively rich medium) but also in Sauton’s simple salt 
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medium. The growth factor was characterized as both heat- and trypsin-stable. 

Resuscitative activity was not affected by RNase, DNaseI, or exonuclease III treatment. 

The authors concluded that the growth factor was neither protein nor polypeptide. Size 

exclusion chromatography revealed the mass of this factor to be less than 1.4 kDa (73). 

This non-protein factor may correspond to the growth factor present in F5. However, 

information regarding Zhang’s non-protein factor, beyond its molecular weight, is 

presently very limited.  

Since Mpt appears capable of making substances necessary for resuscitation from 

the dormant state, those factors can be considered autoinducers. Peptide and acyl 

homoserine lactone (AHL) are frequently cited as autoinducers in bacteria (43, 54). 

However the involvement of these substances in stimulating cell division, a necessary 

part of resuscitation from dormancy, is not commonly described in literature.        

AHL are associated with quorum sensing in gram-negative bacteria. Gram-

positive organisms are generally unresponsive to AHLs, and the presence of and the 

production of acyl homoserine lactonases by Rhodococcus erythropolis (which, like Mpt 

is a high G+C Gram-positive organism) (81) may suggest that AHLs are not likely to be 

involved in the resuscitation of dormant Mpt. However, overexpression of a LuxR 

homologue (which binds AHLs) in Mpt led to an increase in virulence in a cell culture 

assay (1). Therefore, the increases observed over time in area 1 peaks in our AHL screen 

indicates that further characterization of this region should be considered, regardless of 

their involvement in resuscitation.  

Several Gram-positive bacteria, including Mpt, encode homologues of LuxS, the 

enzyme that synthesizes 4,5-dihydroxy-2,3-pentanedione (DPD), which acts as a second 
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autoinducer (AI-2) in Vibrio harveyi. While AI-2 plays a role in quorum sensing in 

Gram-negative bacteria, AI-2-like molecules may act in a quorum sensing-independent 

manner. For example, biofilm formation can be a quorum sensing-regulated process in 

bacteria. However, microarray analysis of AI-2-treated Mycobacterium avium subsp. 

avium (Maa) and subsequent treatment of Maa cultures separately with AI-2 and H2O2 

led Geier et al. to conclude that formation of biofilms by this organism was related to 

environmental stress rather than quorum sensing (23). The observation that dormant 

Listeria innocua cultures did not respond to AI-2 from Escherichia coli suggests that AI-

2 may not cause resuscitation (94).  Because we were unable to obtain information that 

would allow us to screen for F5 for AI-2-like molecules, it remains unknown whether this 

class of molecule plays a role in the resuscitation of Mpt.  

In considering the possibility of resuscitation by peptides present in areas 1 and 2 

of our peptide screening may, at first glance, hold interesting possibilities. The peaks in 

these areas accumulated with time, whereas peaks in area 3 and 4 either decreased or did 

not have clear time-dependent relationship. The observation that only F5 obtained from 

8-month-old cells resulted in significant resuscitation would indicate that peaks in area 1 

or 2 must accumulate to a threshold value before resuscitation can occur. However, it 

may also be possible that resuscitation occurs as a result of the loss of a repressor rather 

than the appearance of an inducer. In this case, peaks in areas 3 and 4 would be of interest. 

A third possibility is that peaks in area 3 and 4 may be hydrolyzed to yield peaks in area 

1 and 2. If this is true, it would be necessary to characterize all the peaks in all four areas. 

What is known is if the resuscitative factor is a peptide, it would likely be a small peptide 
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(approximately 15 amino acids in the length or smaller) in order to be resistant to 

thermolysin. 

In the low viability culture, we saw resuscitative effect only when F5 and SDCM 

obtained from 8 month-old cells were used. In our high viability responder cells, SDCM 

worked well regardless of the age of the source cultures, but F5 promoted resuscitation 

only when it was obtained from 8 month-old cells. From these observations several 

explanations can be formulated. First, SDCM may contain both inhibitors and effectors of 

resuscitation. Since SDCM may contain waste products that can stop the activity of 

growth factor, resuscitative factors must accumulate to a particular level if resuscitation is 

to be initiated exclusively exogenously, i.e., if dormant cells have an absolute 

requirement for resuscitative factor, they need to produce and secret it in the environment 

until the concentration of factors can overcome the inhibitory effect of the waste products. 

Sun et al. (1999) reported that dormant Mtb H37Ra could be resuscitated by cell-free 

supernates from 3-4 month Mtb H37Ra cultures (20-fold better than with fresh medium), 

but resuscitation was impaired if supernates from 8 month-old cultures were used (1000-

fold lower than with fresh medium) (73). They concluded that the increased inhibition 

resulted from the accumulation of waste products in the supernates. In contrast, we saw 

an increase in resuscitative potential with increasing age of the source culture. Thus, it 

appears that time is required for resuscitative factors to accumulate and/or inhibitory 

factors to be inactivated. The fact that, in high-viability responder cells, CM promoted the 

resuscitation but F5 did not may indicate that removal of inhibitor molecules was 

controlled by processing factors present in un-fractionated CM, and a certain ratio of 

these factors allowed resuscitation to proceed. Separating components in the CM to 
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collect F5 may have excluded these processing factors, preventing resuscitation. Longer 

exposure of CM to the source cells would have allowed processing of the inhibitors by 

extracellular enzymes, explaining the successful enhancement of resuscitation by F5 

obtained from 8-month-old cultures.  

Second, resuscitation may be achieved with a lower level of promoting factors as 

initiator if the viability of the dormant culture is above particular threshold. Stated 

differently, a subpopulation of responder cells may have the ability to amplify the 

resuscitative effect. In a study of the resuscitation of Micrococcus luteus, Votyakova et al. 

noted that a very small proportion of actively growing cells is required to be present in a 

dormant culture in order to achieve recovery from dormancy. In the absence of the active 

responder cells, they were unable to observe Rpf-mediated, i.e even though there was Rpf 

presence, resuscitation did not occur (83). Although we did not attempt to distinguish 

active Mpt within the dormant responder cell population, it is possible that they were 

present. This may be an academic consideration, since it is impractical to distinguish 

among these Mpt types in diagnostic samples. Thus, the identification of factors that 

allow resuscitation of low numbers of dormant but viable organisms present in a fecal 

sample is likely to have greater impact in improving the sensitivity of diagnosis culture. 

Third, the resuscitation may require the processing of a precursor in order to 

release the active resuscitative factor. In the present study, we observed that SDCM from 

5-month-old, 6-month-old, and 8-month-old cultures promoted the resuscitation of 

dormant Mpt, whereas only F5 obtained from 8-month-old cultures did. Removal of 

molecules with a molecular weight greater than 5 kDa would have likely excluded 

enzymes that were necessary to cleave the precursor molecule into its active state, and 
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only after 6 months had enough processed product accumulated to the threshold required 

for resuscitation.  

There were two major problems that require resolution in order for this line of 

investigation to proceed. The first of these is the “spikes” that appeared in some growth 

curves in this study. The reason for the sudden, sharp increases in optical density is not 

clear. However we feel confident that the spikes reflect something other than an increase 

in bacterial number. If indeed there was a sudden increase in a number of bacteria, the 

optical density would not have returned to baseline values in the brief period observed.  

Supporting this conclusion was the fact that these spikes occurred within experiments and 

were not consistent for any given treatment across experiments.  

The second problem was the high degree of variability within and among 

experiments. Part of this can be attributed to the tendency of mycobacteria to clump 

together. As such it is difficult to ensure that responder cells get evenly distributed in 

each experimental setup. Another factor that is likely to contribute to experimental noise 

is the current lack of a culture system that will yield dormant cultures with consistent 

levels of viability. This problem has been encountered by others (92), and will require 

continued effort to refine the experimental system. 
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Conclusions 

Growth factors promoting the resuscitation from dormant state are found in CM 

of starvation culture of Mpt. These factors as characterized in the present investigation 

were revealed to be low molecular weight (less than 5 kDa), heat- and protease (trypsin 

and thermolysin) -stable factors. Since Rpf proteins are 15-17 kDa and trypsin-sensitive, 

the hypothesis that Rpf is responsible for the resuscitation of dormant Mpt responder 

cells was rejected. The initial determination that the resuscitative factor was present in F5 

suggested that another potential resuscitative factor, MAP2609, may be involved. 

MAP2609 is an Mpt gene encoding a homologue of Rv1174c from Mtb, which was 

demonstrated by others to have resuscitative activity in Mtb. However, thermolysin 

digestion of both MAP2609 and Rv1174c in silico indicated that participation of 

MAP2609 in the resuscitation of Mpt was unlikely, unless octopeptides or smaller 

peptides from MAP2609 were sufficient for resuscitation.  Reversed-phase HPLC was 

used to analyze the peptides and AHLs in F5 prepared from cultures of various age. AHL 

peaks steadily accumulated with time, whereas peptide analysis identified hydrophobic 

peaks that generally diminished overtime, and hydrophilic peaks that increased with time. 

Resuscitation tests with F5 and SDCM from different age cultures suggested that a 

threshold of resuscitative factors is required to promote resuscitation. These factors may 

be needed to remove resuscitative inhibitors or cleave resuscitative precursors. Thus all 

peaks identified by HPLC in this study should be further characterized, particularly those 

in area 1 from the AHL analysis and areas 1 and 2 from the peptide analysis, since they 

accumulated over time. 



  60 

There were problems in this study that caused a high level of experimental noise 

as well as unexplainable spikes. First, sudden spikes appeared and subsequently 

disappeared in many of the time course experiments. The quick disappearance of these 

spikes strongly suggests that they were not a result of Mpt growth. Nevertheless, they 

may have had an effect on statistical analyses. Second, the well-documented tendency of 

mycobacterial cells to clump together likely interfered with the even distribution of 

dormant responder cells into wells, leading to high standard deviations. Third, the 

viability of responder cells was not able to controlled. This problem has been observed by 

others (92). This may explain at least some of the variability in results between similar 

experiments. Finally, in this study, resuscitation was best when the lowest dilution of 

SDCM (1:2) was used. In a previous investigation by Ghimire (18), which used the same 

experimental system, the optimal concentration of SDCM was approximately fourfold 

lower. The explanation for this discrepancy is as yet unknown, but it may relate to the 

balance of growth factors versus inhibitors present in SDCM. Therefore it will be 

necessary to modify the experimental system to avoid or account for these issues.  

The results revealed some of the characteristics of the resuscitative factors in 

SDCM. However, there are many questions remaining. What concentration of the growth 

factor is necessary for resuscitation? Is there a requirement for actively growing cells in 

the dormant responder population? Are there factors in other fractions that are necessary 

for processing so that factors that accumulate in F5 can promote resuscitation? 

Preparative HPLC and mass spectrometry would enable better characterization of the 

component present in the peaks identified here, and each of the isolated compounds could 
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then be used in a resuscitation assay (modified to address the problems mentioned above) 

to answer some of these questions.  

Further analysis is necessary to clarify whether AHLs or AI-2-like molecules play 

a role in the resuscitation of Mpt from dormancy. A reversed-phase HPLC analysis of 

commercially available AHLs may help to determine the nature of the peaks present in 

our AHL screening, and a screening for AI-2-like molecules should be implemented.  

Once identified and fully characterized, the factors present in F5 can be purified 

from cultures or synthesized in the laboratory for use as culture medium supplements. It 

is therefore hoped that by localizing the resuscitative factor in SDCM to F5, the present 

study has contributed to the developments that will improve the sensitivity of fecal 

culture for Mpt, the “gold standard” for the diagnosis of Johne’s disease. This will 

ultimately translate into the improved profitability of dairy farming and provide 

consumers with safe, affordable dairy products.  
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  Appendix 

 

Appendix 1: Screening results for resuscitative factors from SCDM 

 

 

 

 

 

 

 

 

 

 

 

 

A1. Effect of fraction 5 on the recovery of anaerobically dormant Mpt: Conditioned 

medium was filtered through 5,000 Da filtered to obtain fraction 5.  Two fold serial 

dilutions of fraction 5 in Middlebrook 7H9 broth were added (100 l) to the wells of 

microtiter plate, then 100 l of anaerobically Mpt dormant cells were added to all the 

wells. Plate was incubated for 16 days and optical density monitored every 48 hours at 

590 nm.  The control well contained Middlebrook 7H9 broth and Mpt dormant cells only. 

Open circle- Control, Square- 1:2 dilutions, Triangle- 1:4 dilutions, and Solid circle- 1:8 

dilutions 
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A2. Effect of fraction 10 on the recovery of anaerobically dormant Mpt: The 

supernatant, which molecular weight was greater than 5,000 Da, was filtered through 

10,000 Da filtered to obtain fraction 10.  Two fold serial dilutions of fraction 10 in 

Middlebrook 7H9 broth were added (100 l) to the wells of microtiter plate, then 100 l 

of anaerobically Mpt dormant cells were added to all the wells. Plate was incubated for 

16 days and optical density monitored every 48 hours at 590 nm.  The control well 

contained Middlebrook 7H9 broth and Mpt dormant cells only. Open circle- Control, 

Square- 1:2 dilutions, Triangle- 1:4 dilutions, and Solid circle- 1:8 dilutions. 
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A3. Effect of fraction 30 on the recovery of anaerobically dormant Mpt: The 

supernatant, which molecular weight was greater than 10,000 Da, was filtered through 

30,000 Da filtered to obtain fraction 30.  Two fold serial dilutions of fraction 30 in 

Middlebrook 7H9 broth were added (100 l) to the wells of microtiter plate, then 100 l 

of anaerobically Mpt dormant cells were added to all the wells. Plate was incubated for 

16 days and optical density monitored every 48 hours at 590 nm.  The control well 

contained Middlebrook 7H9 broth and Mpt dormant cells only. Open circle- Control, 

Square- 1:2 dilutions, Triangle- 1:4 dilutions, and Solid circle- 1:8 dilutions. 
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A4. Effect of fraction 50 on the recovery of anaerobically dormant Mpt: The 

supernatant, which molecular weight was greater than 30,000 Da, was filtered through 

50,000 Da filtered to obtain fraction 50.  Two fold serial dilutions of fraction 50 in 

Middlebrook 7H9 broth were added (100 l) to the wells of microtiter plate, then 100 l 

of anaerobically Mpt dormant cells were added to all the wells. Plate was incubated for 

16 days and optical density monitored every 48 hours at 590 nm.  The control well 

contained Middlebrook 7H9 broth and Mpt dormant cells only. Open circle- Control, 

Square- 1:2 dilutions, Triangle- 1:4 dilutions, and Solid circle- 1:8 dilutions.  
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A5. Effect of fraction 100L on the recovery of anaerobically dormant Mpt:The 

supernatant, which molecular weight was greater than 50,000 Da, was filtered through 

100,000 Da filtered to obtain fraction 100L.  Two fold serial dilutions of fraction 100L in 

Middlebrook 7H9 broth were added (100 l) to the wells of microtiter plate, then 100 l 

of anaerobically Mpt dormant cells were added to all the wells. Plate was incubated for 

16 days and optical density monitored every 48 hours at 590 nm.  The control well 

contained Middlebrook 7H9 broth and Mpt dormant cells only. . Open circle- Control, 

Square- 1:2 dilutions, Triangle- 1:4 dilutions, and Solid circle- 1:8 dilutions.  
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A6. Effect of fraction 100U on the recovery of anaerobically dormant Mpt: The 

supernatant, which molecular weight was greater than 100,000 Da, was used as fraction 

100U.  Two fold serial dilutions of fraction 100U in Middlebrook 7H9 broth were added 

(100 l) to the wells of microtiter plate, then 100 l of anaerobically Mpt dormant cells 

were added to all the wells. Plate was incubated for 16 days and optical density 

monitored every 48 hours at 590 nm.  The control well contained Middlebrook 7H9 broth 

and Mpt dormant cells only. Open circle- Control, Square- 1:2 dilutions, Triangle- 1:4 

dilutions, Solid circle- 1:8 dilutions.  
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Appendix 2: HPLC for Peptide Report 

 

A7. HPLC for Peptide Report:  Media Blank  
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A8. HPLC for Peptide Report: F5 from 8-month-old culture  
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A9. HPLC for Peptide Report: F5 from 6-month-old culture   
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A10. HPLC for Peptide Report: F5 from 5-month-old culture 
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