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ABSTRACT

Clement, Kevin Douglas

Floristic and Environmental Characteristics of Sub-boreal Peatlands in Minnesota and

Western Wisconsin
Advisor: Bradley J. Cook, Ph.D.

Peatland communities in the sub-boreal region of Minnesota and western
Wisconsin were characterized by floristic composition, structure and environmental
characteristics to determine the natural variation among peatland communities in the
region and their shared associations with the boreal and temperate peatlands of North
America. Floristic classification revealed five, distinct peatland community types,
identified as Sphagnum Bogs, Herbaceous Fens, Forested Fens, Rich/Calcareous Fens
and Phalaris anrundinacea — Dominated Peatlands. Differences among sub-boreal
peatlands largely reflected changes in the significant indicator and dominant plant species
identified, which were found to exhibit high fidelities to a particular peatland community
type. Floristic variations among sub-boreal peatlands were observed to correlate with
changes in pore-water chemistry along a strong pH-alkalinity gradient. Ordinal analysis
by non-metric multidimensional scaling also indicated a strong community association
with soil and pore-water chemistry, which reflected the geomorphic and hydrologic
settings in which communities developed and the transitional nature of peatlands in the
region. In addition, the broad physiological tolerance and invasive nature of P.
anrundinacea was found to pose a substantial threat to the biodiversity and ecological

functioning of sub-boreal peatland communities.
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CHAPTER 1

INTRODUCTION

Peatlands, commonly known as bogs and fens, are wetland communities
characterized by an organic soil layer with the water table at or near the soil surface
throughout the year (Moore and Bellamy 1974, Mitsch and Gosselink 2000). Peatlands
primarily develop in areas associated with positive water balances (i.e., precipitation
exceeds evapotranspiration), and where soil saturation and anaerobic conditions restrict
microbial decomposition to rates far less than primary production (Vitt 1994). These
conditions result in the accumulation of organic matter (colloquially known as “peat”) to
depths >40cm (Soil Survey Staff 1998, National Wetlands Working Group 1988), with
depths >2m commonly observed (Gorham 1991). In most other wetland communities,
the frequency and magnitude of hydrologic fluctuations, which strongly influence the
depth and duration of aerobic conditions, create environments for greater microbial
decomposition (Collins and Kuehl 2001), and limit accumulations to small quantities of
highly decomposed organic matter (Zoltai and Vitt 1995). Low soil temperatures also
decrease the rate of microbial decomposition (Boelter and Verry 1977, Collins and Kuehl

2001, Jenny 1950), which is reflected in the global distribution of peatland communities.

Peatlands are estimated to occupy between 2.97 x 10° km? (Matthews and Fung
1987) and 4.22 x 10° km? (Kivinen and Pakarinen 1981), making up roughly 3% of
Earth’s land surface (Gorham 1991), and representing over half of all wetlands
worldwide (Bridgham et al. 2001). The distribution of peatland communities, however,

is disproportionately concentrated in the northern latitudes, between 50 and 70°



(Aselmann and Crutzen 1989), where 95% of all wetland communities are classified as
peatlands (Gorham 1991). In North America, peatland communities primarily occur in
the boreal and sub-boreal regions (Figure 1), where cooler temperatures (Boelter and
Verry 1977) and positive water balances facilitate extensive accumulations of organic

matter (Vitt 1994 an Zoltai and Vitt 1995).

Boreal Peatlands

Temperate Peatlands

Figure 1 The distribution of peatland communities in North America is primarily concentrated across the
boreal region, where climactic conditions facilitate organic matter accumulation. The occurrence of
temperate peatlands is limited to areas of localized and sustained groundwater discharge. Figure was
adapted from Glaser (1987) for the distribution of boreal peatlands and Amon et al. (2002) for the
distribution of temperate peatlands in the United States.

In the continental interior of North America, peatland development initiated
following the retreat of the Cordilleran ice sheet, between 4,700 and 8,000 years ago

(Almendinger and Leete 1998a, Gorham et al. 2007). During this period, cool



temperatures and slow moving glacial melt waters, which stagnated where substrate
composition and landscape topography limited water movement, provided the climactic
conditions, physical templates and stable hydrology necessary for organic matter
accumulation (Boelter and Verry 1977). Peatlands, however, also occur in the temperate
regions of North America (Carpenter 1995, Thompson 1993, Eggers and Reed 1997,
MNDNR 2005b). In these regions, peatland communities are small, usually only a few
hectares in size (Bedford and Godwin 2003), and occur in isolation where continuous
hydrologic inputs, discharged as groundwater, maintain conditions necessary for organic
matter accumulation (Almendinger and Leete 1998a, Amon et al. 2002). Distinctions
between all peatland communities are based primarily on complex interactions between
1) landscape position, 2) organic matter accumulation and 3) the source and chemical
composition of hydrologic inputs, which are reflected in the various methods by which

peatlands are classified.

Historically, peatland classifications have grouped communities based on
similarities in topography (Damman 1986, Glaser and Janssens 1986, Moore and
Bellamy 1974), hydrology (von Post and Granlund 1926 [as cited in Bridgham et al.
1996], Moore and Bellamy 1974), water chemistry (Sjors 1948 and Du Rietz 1949 [as
cited in Bridgham et al. 1996]), nutrient availability (Du Rietz 1954 [as cited in Bridgham
et al. 1996], Sjors 1961, Moore and Bellamy 1974), floristic composition (Heinselman
1963, Gorham and Janssens 1992, Cowardin et al. 1979), and more recently, ecological
function (Brinson 1993). These classifications reflect a progressive transition in peatland
structure and floristic composition along multiple limiting gradients (Bridgham et al.

1996, Hajek et al. 2006, Pkland et al. 2001), with distinctions among peatland



communities derived from variations in the source and chemical composition of

hydrologic inputs.

In terms of hydrologic classification, peatland communities are distinguished
based on the dominant source of hydrologic inputs, which is directly related to landscape
position and peatland topography (Moore and Bellamy 1974, National Wetlands Working
Group 1988). In general, this variation is illustrated along a continuum, with bogs and
fens representing endpoints (Figure 2). Hydrologically, fens are classified as
minerogenous peatlands (Warner and Rubec 1997, Zoltai and Vitt 1995), in which soil
saturation and anaerobic conditions are sustained by hydrologic sources other than
precipitation (i.e., indirect hydrologic inputs), such as groundwater discharge and surface
waters. Bogs, in contrast, are classified as ombrogenous peatlands, with hydrologic

inputs exclusively derived from precipitation (i.e., direct hydrologic inputs).

In general, bogs develop from fens when the vertical accumulation of peat rises
above the surrounding mineral soil (Ingram 1982), or when the downward hydraulic
pressure from precipitation is greater than that of discharging groundwater (Siegel 1983,
Siegel and Glaser 1987). Ultimately, both scenarios lead to the hydrologic isolation of
bogs (Figure 2), and result in a dependence on precipitation to maintain soil saturation
and anaerobic conditions. The point at which a fen transitions to a bog community, due
to declining inputs of mineral-rich waters, is defined as the “mineral-soil-water-limit”
(Du Rietz 1949 [as cited in Bridgham et al. 1996]). This transition has been shown to
occur with as little as 10% hydrologic inputs from mineral-rich ground waters (Siegel
1983). However, few studies quantify hydrologic inputs sufficiently to classify peatland

communities based on hydrologic source (Bridgham et al. 1996), much less accurately



define regional variations. As a result, changes in pore-water chemistry are commonly
used as surrogates to describe and classify peatland communities based on the relative

influence and chemical composition of hydrologic inputs.

Similar to hydrologic classifications, water chemistry-based classifications
primarily characterize the source of mineral nutrients (Sjors 1948, Moore and Bellamy
1974, Warner and Rubec 1997). Fens, therefore, are defined as minerotrophic peatlands
(i.e., mineral nourished), with nutrient inputs supplied from the mineral soils from which
hydrologic inputs originate. In contrast, bogs are classified as ombrotrophic peatlands
(i.e., rain nourished), with inputs of nutrients and major cations (e.g., Ca**, Mg?*, Na*,
K™) supplied only by precipitation. This intimate connection between the hydrologic and
nutrient sources of peatland communities results in soil and pore-water chemistries of

bogs and fens that largely reflect the chemical composition of their hydrologic inputs.

As peatland communities become increasingly isolated from mineral-rich water
sources, due to the vertical accumulation of organic matter and changes in peatland
topography, a sharp decline is observed in the supply of major cations (Figure 2) (Glaser
1987). This reduction in the supply of cations, combined with an increase in the organic
content of peat, results in a significant decrease in the acidity of peatland soil and pore-
water (Gorham 1957). Calcium concentrations are particularly important to the pore-
water chemistry of peatland communities in that calcium contributes both to pore-water
alkalinity and is directly related to pH through the buffering capacity of bicarbonates
(Kemmers 1986, Glaser 1987). Inputs of calcium are often the result of discharging
groundwater from calcium-rich substrates, such as limestone and dolomite (Almendinger

and Leete 1998a, Grootjans et al. 2006). Additionally, locally important wind-blown



inputs from calcium-rich glacial-till can contribute to the soil and pore-water chemistry of
peatland communities (Gorham et al. 1984, Glaser 1987). In boreal region of northern
Minnesota, calcium concentrations in fens can range from 3 to 45mg/l (Glaser et al.
1990). Whereas in the temperate region, calcium concentrations commonly exceed
100mg/l (Almendinger and Leete 1998b), and concentrations as high as 290mg/l have
been observed in highly calcareous fens in the Midwest United States (Amon et al. 2002).
In contrast, bogs are characterized by acidic pore-water chemistries, with pH levels
generally <4.2, calcium concentrations <2mg/l and considerably lower total ionic
concentrations (Glaser et al. 1990). The pore-water pH of fens, however, can range from
mildly acidic to alkaline (4.5 to >8), dependent on the chemical composition of
hydrologic inputs (Bedford and Godwin 2003). In boreal and sub-boreal peatlands,
changes in pore-water pH and ionic concentrations are consistently observed to correlate
with changes in the floristic composition of peatland communities (Sjors 1950, Glaser
1987, Vitt and Chee 1990, Gorham and Janssens 1992, Wheeler and Proctor 2000).
These consistent correlations have generated water chemistry-based classifications that
define peatland communities along an acidity-alkalinity gradient (Moore and Bellamy

1974, Gorham and Janssens 1992, National Wetlands Working Group 1988).

The wide variations in soil and pore-water chemistries among peatland
communities, particularly fens, are frequently described along a poor — rich gradient
(Figure 2) (Zoltai and Vitt 1995, Vitt 2000). Poor fens are characterized by mildly acidic
pore-water chemistries (pH = 4.5 — 5.5) and low ionic concentrations, whereas rich fens

are characterized by slightly acidic to alkaline soil and pore-water chemistries (pH >6.0)



and considerably higher ionic concentrations (Figure 2). The poor — rich gradient,

however, does not necessarily reflect the nutrient status of peatland communities.

Bog —— . T Fen

Water source
Precipitation Groundwater

Hydrologic isolation
High h&\‘ Low

Nutrient source

Ombrotrophic Minerotrophic
P g e

“Poor”

Donunant cations
(Ca 2+, Mg 2+j Na +j K+)

[Ca®*] < 2mg/l - ] [ca*]32100mg/l

<42 . _1-e6
Nutrient availability

Low ///-]\\\ Low

Figure 2 Variations in the floristic structure and ecological functions of peatland communities are
commonly describe along multiple limiting gradients (Bridgham et al. 1996), which are primarily
determined by the sources and chemical composition of hydrologic inputs.

Classification of the nutrient status of peatland communities is similar to that used
for water bodies, with nutrient rich peatlands classified as eutrophic and nutrient poor
peatlands are classified as oligotrophic (Weber 1908 [as cited in Bridgham et al. 1996],
Warner and Rubec 1997). However, nutrient levels are not observed to increase directly
with increasing pH and alkalinity (Figure 2). Nutrient levels tend to be the lowest in
highly acidic and highly alkaline communities (Bridgham et al. 1996). The limiting
nutrients most often associated with peatland communities are nitrogen and phosphorus
(Bridgham et al. 1996). Nitrogen availability decreases as the organic content of peat

increases, with bogs exhibiting the lowest levels of available nitrogen (Gorham 1957).



Phosphorus concentrations in bogs, although low, are sufficient to meet the physiological
needs of the vegetation present (Chapin et al. 2004). In contrast, phosphorus deficiencies
are common in extremely rich and calcareous peatlands, where significant accumulations
of bicarbonate precipitate bind phosphorus in unusable forms (Boyer and Wheeler 1989,
Almendinger and Leete 1998b). Although calcium deficiencies are common in terrestrial
communities (Bolan et al. 2004), calcium is rarely a limiting nutrient in peatland
communities (Clymo and Hayward 1982, Malmer 1986). In contrast, elevated calcium
concentrations are toxic to many plant species (Clymo and Hayward 1982, Ingestad 1973
[as cited in Bridgham et al. 1996]), and can significantly limit the availability of other
nutrients when present at elevated concentrations (Wheeler 1980, Boyer and Wheeler
1989). As such, nutrient availability peaks in the intermediate communities along the
bog-fen continuum (Figure 2), with variations in floristic composition and structure
among peatland communities significantly influenced by the availability of limiting

nutrients and position along the pH-alkalinity gradient.

Floristic classifications define peatlands based on changes in floristic composition
and structure, which primarily reflect changes in environmental conditions (i.e., water
source, pH and nutrient availability) (Daniels 1978, Cowardin et al. 1979, Gorham and
Janssens 1992, Vitt 1994). Similar to water-chemistry based classifications, floristic
transitions among peatlands are generally defined along a pH-alkalinity gradient by an
increased presence of fen-indicator plant species (Sjors 1948, Gorham 1950, Du Rietz
1954 [as cited in Bridgham et al. 1996]). In general, fen-indicator species are associated
with narrow distributions along environmental gradients (Sjors 1948 and Gorham 1950),

but rarely represent dominant species in peatland communities (Bridgham et al. 1996).



The presence of fen-indicator plant species is an indication of changes in the local
environment conditions that allow colonization by species with greater nutrient and ionic
requirements (Glaser et al. 1990), or can represent remnant species, which signify prior
environmental conditions (Gorham and Janssens 1992). In contrast, dominant plant
species in peatland communities distribute broadly along multiple environmental
gradients (Glaser 1987), and often direct peatland development (Bridgham et al. 1996).
This trend is most evident in the bimodal distribution of Sphagnaecea L. at low levels of
pore-water pH and Amblystegiacea at higher pH levels (Gorham and Janssens 1992,
Héjek et al. 2006), observed in the bryophyte-dominated (Zoltai and Vitt 1995) boreal

peatlands of North America.

The application of floristic-based classifications, however, is generally limited to
the areas for which the classifications were developed (Gore 1983), as fen-indicator and
dominant species are largely “a matter of human convenience” (Bridgham et al. 1996).
Nevertheless, plant species, which are commonly associated with peatlands, exhibit
consistent adaptations in response to the specific environmental conditions in which they
develop (Mitsch and Gosselink 2000). For example, plant adaptations, such as
evergreenness, sclerophylly and nutrient translocation help limit nutrient loss in the
acidic, nutrient poor environments characteristic of bogs. Specifically, multiple species
of the Ericaceae (Heath) family have adapted the ability to acquire nitrogen from amino
acids (Chapin et al. 1993) or ammonium (Bridgham et al. 1996) rather than nitrate. In
addition, carnivorous plants, which are also commonly observed in bogs, trap and digest
insects to offset nutrient deficiencies (Chapin and Pastor 1994). In contrast, peatland

communities associated with high ionic concentrations generally are comprised of low-
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stature plant species and exhibit greater floristic diversity (Boyer and Wheeler 1989).
Severe phosphorus limitations are suspected to influence this trend, which can hinder
plant growth and prevent dominance by a few species. In addition, calcium-tolerant plant
species (i.e., calciphiles) are characteristic of peatlands supplied with calcium-rich

groundwater discharge (Almendinger and Leete 1998b, Eggers and Reed 1997).

In general, regionally specific differences in floristic composition and structure
appear sufficient to define transitions between peatland communities along the multiple
limiting gradients associated with the bog-fen continuum. However, many plant species
that are common to peatland communities also occur in non-peat accumulating
environments (Eggers and Reed 1997, Amon et al. 2002). In order to account for such
similarities, various classification systems have adopted a hierarchical approach that
defines communities based on increasingly similar characteristics (Warner and Rubec

1997, Zoltai and Vitt 1995, Cowardin et al. 1979).

In the United States, the most widely used hierarchical classification of wetland
communities is the “Classification of Wetlands and Deepwater Habitats of the United
States” (Cowardin et al. 1979); in which, peatlands are broadly defined by hydrology and
floristic composition as non-tidal wetlands, dominated by trees, shrubs, herbaceous
plants, mosses or lichens (i.e., Palustrine). Additional subclasses, dominance types and
modifiers are used to distinguish peatlands from other wetland communities and define
transitions among different peatland communities. In Canada, where peatlands represent
a significantly greater portion of the landscape than that of the continental United States,
a hierarchical approach is used that initially categorizes wetlands based on ontology (i.e.,

development), with peatlands broadly defined as either a bog or a fen. Further



11

distinctions among bogs and fens are based on topography, water source, water chemistry
and vegetation composition (Warner and Rubec 1997). A hierarchical classification of
peatlands is advantageous in that it allows incorporation of multiple characteristics that
can be used to distinguish a wide variety of community types across broad geographic
extents. Development of a hierarchical classification, however, requires extensive
knowledge of the geology, geomorphic settings, hydrologic settings and limiting
gradients that influence the community structure and floristic composition of peatlands

within the domain of the classification.

Most peatland classifications, as a result, are regionally oriented or focus on a
specific peatland community type (i.e., bogs or fens) (Glaser and Janssens 1986, Amon et
al. 2002). The advantage of regionally focused classifications is that they emphasize
specific limiting gradients that influence variations in peatland structure and function.
Alternatively, the usefulness of these classifications rarely extends beyond the region or
peatland type for which it was intended, especially if the classification relies heavily on
locally important floristic indicators. For example, peatlands in the temperate region of
North America are distinguished from the expansive, boreal peatlands not only by their
isolated distributions and reliance on groundwater inputs, but their chemical and physical
composition as well as vegetation structure (Amon et al. 2002, Bridgham et al. 1996).
Nevertheless, analyses of peatlands throughout the boreal and circum-boreal regions have
revealed strong and consistent associations between peatland development (Moore and
Bellamy 1974), topography (Moore and Bellamy 1974, Glaser and Janssens 1986 and

National Wetlands Working Group 1988), vegetation structure (Cowardin et al. 1979)
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and environmental gradients (Sjors 1948 and 1961, Du Rietz 1954 [as cited in Bridgham

et al. 1996], Moore and Bellamy 1974).

In the continental interior of North America, peatlands characterize the extensive
variation of climatic, geomorphic and hydrologic templates from which they develop.
From the isolated temperate peatlands to the expansive peatland complexes of the boreal
region, knowledge of this natural variation provides a foundation from which resource
managers can effectively inventory, monitor and manage peatland ecosystems. The sub-
boreal region of the continental interior is a transitional area, reflected in a north to south
temperature gradient and an east to west precipitation gradient (Albert 1995). Peatland
distribution also reflects these gradients, decreasing from north to south and from east to
west (Wright 1972). Climatically, this region is defined as humid to sub-humid with
precipitation increasing from west to east across the study area. Mean annual
precipitation ranges from 29 to 33 inches, with roughly two-thirds occurring between the
months of May and September (Wright 1972). The transitional nature of the region
suggests sub-boreal peatlands will share characteristic features of both boreal and
temperate peatlands. However, unlike boreal and temperate peatlands, less is known
regarding the floristic and environmental characteristics associated with sub-boreal
peatlands in the region. In addition, population densities and urban development are
increasing at a higher pace in this region than surrounding areas (Hibbs 2000). As a
result, peatlands in this region are subjected to increasing anthropogenic influences,
which can, and often do result in alterations to the floristic composition, structure and

environmental characteristics of peatland communities.
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The objective of the current study was to classify and describe, in terms of
floristic community and environmental characteristics, the natural variation of peatland
communities in the sub-boreal region of Minnesota and western Wisconsin. Specifically,
| set out to provide a floristically-based classification of peatlands in this region and a
description of the limiting gradients that influence how these peatlands are structured. |
hypothesized that sub-boreal peatlands would be structured along a strong pH-alkalinity
gradient and would represent transitional communities, both in species composition and
environmental characteristics, between the boreal and temperate peatland communities in

the continental interior of North America.
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CHAPTER 2

METHODS

Site Selection and Study Area

The primary objective of this study was to describe and characterize, in terms of
floristic community and environmental characteristics, the natural variation of peatland
communities in the sub-boreal region of Minnesota and western Wisconsin. Study sites
were identified through a combination of aerial photography, published county soil
surveys, peatlands listed in the Field Guide to the Native Plant Communities of
Minnesota (MNDNR 2003b, MNDNR 2005a and MNDNR 2005b) and in consultation
with wetland experts from multiple state and federal agencies. Study sites were selected
to represent the natural variation of peatland communities in the study area with
preference placed on sites occurring on public land for ease of access. Study sites were
subjectively excluded from analysis if direct, geomorphic or hydrologic alterations were
observed (e.g., soil removal, ditched, drained or flooded). In total, 56 study sites were

located across 13 counties in Minnesota and 2 counties in Wisconsin (Figure 3).

Data Collection

Community Composition and Floristic Diversity

Characteristics of the floristic community, including plant species composition,

abundance and an estimation of net primary productivity, were collected from 56 sites
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Figure 3 Fifty-six study sites were distributed across three ecological providences and located in 13
counties in Minnesota and 2 counties in Wisconsin. Study sites were selected to represent the known
variation of natural peatland communities in the sub-boreal region of Minnesota and western Wisconsin.

during the 2008 — 2009 field seasons (May — October). All species, except bryophytes,
were identified to the species level when possible. Bryophyte identification was limited
to family associations, based on the bimodal distribution of Sphagnaceae and
Amblystegiaceae in boreal peatland communities. Species composition and abundance
data were collected based on a modified version of the Braun-Blanquet relevé method
(MNDNR 2007) at multiple, strata-dependent spatial scales: 100m? for bryophyte and
herbaceous strata and 400m? for shrub and tree strata. The herbaceous stratum
encompassed all vascular plant species, woody climbers (e.g. Rhus L., Parthenocissus
Planch. and Vitis L.), submerged or floating-leaved species (e.g. Utricularia L.,

Potamogeton L. and Myriophyllum L.) and seedling woody species <0.5m in height. The
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shrub stratum represented woody plant species between 0.5 — 2.0m in height, and the tree
stratum represented woody plant species >2.0m in height. The bryophyte stratum
accounted for all non-vascular vegetation (e.g., lichens and mosses). The intent of
stratum designations was to provide a general description of peatland community
structure. Sample plots were positioned to represent the dominant vegetation
communities present at each site. Net primary productivity (g/m?) of the herbaceous
stratum was measured by a removal of aboveground biomass from three, randomly
assigned 0.1m? plots within the 100m? plot at each study site. All samples of
aboveground biomass were collected September 22 — October 16, 2008 and September
23 — 25, 2009. After removal, samples were dried to a constant mass at 60°C and

weighed.
Pore-water Chemistry

Pore-water characteristics, including pH, electrical conductivity (EC) and water
temperature, were measured in situ from perforated, closed-bottom wells. Pore-water
was defined as near-surface water, within 10cm of the soil surface. Wells were
constructed of 6.2cm PVC pipes, cut to lengths of 30cm. Fifty-six, 4mm perforations
were evenly spaced around the circumference, from the bottom of the well to a height of
14cm. At sites with water tables within 10cm of the peat surface, wells were installed in
three random locations in the 100m? sample plots to a depth of 10cm below the soil
surface. If variable microtopography was present (e.g., hummocks and hollows), wells
were installed at the hummock base. After installation, wells were evacuated and
allowed to equilibrate three times prior to in situ analysis and sample collection. In situ

determination of pH, pore-water temperature and temperature compensated EC were
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recorded with YSI pH100 and YSI EC300 probes respectively. In addition, three 50ml
pore-water samples were collected from each well for laboratory analysis. Collected
samples were analyzed with an YSI 9500 photometer for total alkalinity (Ca?*) and

available phosphorus within 12 hours of collection.

At sites where water tables were greater than 10cm below the soil surface, soil
cores were collected for laboratory analysis of extractable ions. Three soil cores were
collected in each 100m? plot to a depth of 10cm and preserved at 4°C prior to analysis.
Extraction of ions was conducted in a water medium on air-dried and homogenized
samples following the methods of Day et al. (1979). Post extraction, filtrate analysis was
conducted in the same manner as pore-water analysis with EC values corrected for

conductivity resulting from the disassociation of hydrogen ions (Peech 1965).
Soils

A description of the soil profile, which included soil color and texture, was
recorded at each site. Soil profiles were described from samples collected using a
Macaulay peat auger at thicknesses of 30 or 50cm. Within the profile, depths at which
changes in soil color and/or soil texture occurred were recorded and described. Soil color
(i.e., hue, value and chroma) was determined through comparison with Munsell soil
charts. A modified version of the von Post method (ASTM 2000) was used to describe
soil texture and as a qualitative determination of the degree or organic matter

decomposition (von Post and Granlund 1926 [as cited in ASTM 2000]).

An additional three soil cores were collected for laboratory analysis of bulk

density, organic matter content and carbonate content (calcium carbonate [CaCOs3]
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equivalent). Bulk density was calculated per dry-weight (g) of sample volume collected
(cm®). Organic matter content and carbonate content were calculated by loss on ignition
(LOI) (Bengtsson and Enell 2003, Heiri et al. 2001, Dean 1974) and reported as a
percentage of dry-weight of the original sample. Organic matter content (LOlss0) was
determined by heating a dry and ground sample of known mass (~3g) in a muffle furnace
to a constant temperature of 550°C for 16 hours. Mass lost through organic matter
combustion provides a good estimation of the organic carbon content of the soil samples
(Dean 1974). Carbonate content (LOlg40) of the samples was estimated by a subsequent
burning at 940°C (ca. 2 hours) (Bengtsson and Enell 2003). The change in mass between
the first and second burning is proportional to the change in molecular mass associated
with the breakdown of various carbonate complexes, and is strongly correlated with the

carbonate content of clay-poor samples (Dean 1974).
Water-Table Depth

Water-table depth was measured in the perforated, closed-bottom wells used for
pore-water sample collection. All measurements were taken in reference to the soil
surface. If standing water was present, water-table depth was recorded as height above
the soil surface. At sites with a water table greater than 10cm below the soil surface,
depth to the water table was determined from unlined boreholes at intervals of 30 or

50cm until the water-table depth was determined.
Data Analysis

Data analysis was performed on mean floristic and environmental characteristics

using SigmaPlot for Windows version 11.0 (Systat 2008). Results were considered
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significant at a = 0.95 and are reported as p-values throughout. An one-way analysis of
variance (ANOVA) was used to compare differences in species richness (alpha diversity)
between the classified communities. However, no other variables met the assumptions of
normality or equal variance. A non-parametric Kruskal-Wallis one-way ANOVA on
ranks was used to compare differences in the remaining floristic community and
environmental characteristics. Multiple pair-wise comparisons were performed using the
Holm-Sidak (ANOVA) and Dunn’s (ANOV A on ranks) methods when significant
differences were detected (p < 0.05) between individual characteristics of the classified
communities. All data is reported for each classified community type as variable means

and one standard error.

Species diversity indices (gamma, alpha and beta) were calculated on the
complete sample set of species identified for the sample population and optimum cluster
level. Species diversity largely reflects the nutrient status of peatland communities, and
is reflected by an increase in species diversity with an increase in hydrologic inputs form
mineral-rich water sources (Bridgham et al. 1996). Total species richness (y; gamma
diversity) was measured as the total number of unique species. Alpha diversity (o) was
calculated as mean species richness per site and estimated with the Shannon diversity
index (Greig-Smith 1983). In addition, Whittaker’s beta diversity (13) was calculated to
determine overall floristic similarity among sub-boreal peatlands (Whittaker 1972), and

was used to correlate changes in floristic composition along environmental gradients.
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Community Classification

Prior to community classification, 210 rare species, which occurred in less than
three study sites, were removed from the community matrix, leaving 100 species in the
herbaceous stratum, 25 species in the shrub stratum, 6 species in the canopy stratum and
3 bryophyte taxa for analysis. Removal of rare species is consistent with multivariate
analysis and decreases noise associated with the chance occurrence of rare species across
the landscape while increasing the detection of relationships between community

structure and environmental variables (McCune and Grace 2002).

Floristic classification of the 56 study sites was conducted using PC-ORD
software (McCune and Mefford 2006), and was based on species composition and
abundance data. Specifically, study sites were classified by hierarchical agglomerative
cluster analysis (Post and Sheperd 1974), which groups communities based on
compositional similarity. The resulting dendrogram was structured such that the distance
between study sites, and groups of study sites, decreases as the compositional similarity
of floristic communities increases. Study sites were grouped using the Sgrensen distance
measure and a flexible beta linkage method (B = -0.25). The Sgrensen distance measure
is commonly used for community analysis (McCune and Grace 2002) and has been found
to provide a robust representation of ecological distances (Faith et al. 1987). Linkage by
flexible beta is a combinatorial method compatible with semi metric distance measures
(i.e., Sgrensen), providing similar results to Ward’s method at 3 = -0.25 (McCune and
Grace 2002). All study sites were retained for analysis, given that all study sites fell
within the predefined level of variability, +3 standard deviations, based on a frequency

distribution of average distances.
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Pruning a cluster analysis dendrogram presents a trade-off between within group
homogeneity and the number of groups selected (McCune and Grace 2002). Indicator
species analysis (ISA) provides an objective method by which the most informative
cluster level is established based on indicator values of species at each cluster level
(Dufréne and Legendre 1997). Indicator values range from 0-100, and are calculated
based on the relative frequency and relative abundance of each species for a particular
cluster grouping and cluster level. An indicator value of 100 indicates complete fidelity
of a species to a particular cluster grouping. The optimum cluster level is established by
either the lowest mean p-value or the highest number of significant indicator species (p <

0.05) among cluster groupings.

Cluster groupings at the optimum cluster level were evaluated by Multi-Response
Permutation Procedure (MRPP; Zimmerman et al. 1985) on the rank-transformed
distance matrix. MRPP is a nonparametric procedure to test the hypothesis of no
differences between average with-in group distances (McCune and Grace 2002). This is
accomplished through calculation of weighted-mean, within group distances (delta; 3); a
smaller 8 indicates greater within group homogeneity. The probability (p) of achieving a
smaller & by chance is assessed by a randomized Monte Carlo procedure where study
sites are reshuffled as to represent the total number of partitions while maintaining the
species matrix constant. MRPP also calculates a test statistic (T) and chance-correlated
within group agreement (A). T-values represent the separation among groups, with more
negative values indicating greater separation, while A-values provide an indication of
within group homogeneity, ranging between 0 and 1. An A-value of A=1 is obtained

when all study sites within a group are identical.
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Nonmetric multidimensional scaling (NMS; Mather 1976, Kruskal 1964) was
performed to evaluate cluster analysis groupings and the relationships between
community structure and environmental variables. A random starting configuration was
used with the “slow and thorough” auto plot setting in PC-ORD (McCune and Mefford
2006). Dimensionality was assessed automatically based on reductions in stress as a
function of dimensionality for real and randomized data. A final run was performed, with
no step-down in dimensionality and a maximum of 100 iterations, to assess final stress
and instability using coordinates from the dimension identified as having the lowest
stress. In addition, ordination by detrended correspondence analysis (DCA; Hill and
Gauch 1980) was performed to evaluate the reliability and consistency of results (dkland
2007). Percent variance was calculated after-the-fact (Sgrensen for NMS and relative
Euclidean for DCA) and represents the variation of Euclidean distances between study
sites in ordinal space and the distances between study sites in the original n-dimensional
space. Correlations between the ordinal scores of study sites and environmental variables
were evaluated to assess changes in community structure along environmental gradients.
MRPP, NMS, ISA and CA were all performed on raw abundance values with rare species

removed prior to analysis.
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CHAPTER 3

RESULTS

Floristic Classification

Five sub-boreal peatland community types were classified by cluster analysis
based on similarities in floristic composition (Figure 4), four of which were identified
along the bog-fen continuum as Sphagnum Bogs, Herbaceous Fens, Forested Fens and
Rich/Calcareous Fens. The fifth sub-boreal peatland community type was characterized
by the dominance of the invasive grass, reed canarygrass (Phalaris arundinacea L.),
despite of the broader floristic variation present within the individual Phalaris —

Dominated Peatland communities.

Table 1 MRPP (Multi-response Permutation Procedure [Zimerman et al. 1985]) pair-wise comparisons
between the five classified peatland communities of Minnesota and western Wisconsin. All pair-wise
comparisons were significantly different at the Bonferroni corrected a level of 0.005; Pa = Phalaris —
Dominated, SB = Sphagnum Bogs, HF = Herbaceous Fens, FF = Forested Fens and RF = Rich/Calcareous
Fens.

Pair-wise Comparisons T A P-value
Pa Vs, SB -10.028 0.375 <0.001
Pa Vs, HF -7.035 0.301 <0.001
Pa Vs, FF -6.078 0.425 <0.001
Pa VS. RF -8.236 0.268 <0.001
SB VS. HF -13.217 0.342 <0.001
SB VS. FF -10.034 0.331 <0.001
SB VS. RF -18.756 0.475 <0.001
HF Vs. FF -8.238 0.306 <0.001
HF Vs. RF -13.849 0.335 <0.001
FF Vs. RF -10.810 0.305 <0.001

Floristic classification of the sub-boreal peatland communities was evaluated by

Multi-response Permutation Procedure (MRPP; Zimmerman et al. 1985), which revealed
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high, within group homogeneity (A =0.614, T =-22.979, p < 0.001), with significant
pair-wise differences among between all peatland community types (Table 1).
Classification of the sub-boreal peatland communities was also evaluated by Non-metric
Multidimensional Scaling, which revealed distinct separations among the different

peatland community types (Figure 5).
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Figure 4 Cluster analysis dendrogram represented the community associations of the 56 sample sites and
was scaled using the Wishart objective function (Wishart 1969). Approximately 23 percent information
remained at the five — cluster level.
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Axis 2

Figure 5 The final NMS ordination resulted from a stable 2-dimensional solution (final instability =
0.00019; number of iterations = 100) with moderately high, but acceptable final stress (final stress =
16.12331) (Kruskal 1964, Clarke 1993); Phalaris — Dominated = A, Sphagnum Bog = o, Herbaceous Fen
= V¥, Forested Fen = m, and Rich/Calcareous Fen = 0.

Environmental Characteristics

Pore-water Chemistry

Significant differences were detected among the different peatland community
types for all measured environmental characteristics (Table 2). Analysis of mean pH
revealed significant differences among the classified communities (Hpn = 35.797, p <
0.001), with significant pair-wise differences detected between multiple community types

(Table 2). Similar results, as those observed for pH, were detected for EC and total
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alkalinity (Table 2). In addition, a consistent rank-order of pH, EC and total alkalinity
variable means was observed among community types (i.e., Sphagnum Bogs <
Herbaceous Fens < Forested Fens < Phalaris — Dominated Peatlands < Rich/Calcareous
Fens), with the lowest values recorded in Sphagnum Bogs and the highest recorded in
Rich/Calcareous Fens (pH: Hyn = 35.797, p < 0.001; Hconductance = 18.499, p < 0.001;
Haikalinity = 29.627, p < 0.001). Available phosphorus did not conform to this trend, but a
significant difference was detected between Phalaris — Dominated Peatlands and

Forested Fens (Hphosphoorus = 9.609, p = 0.048) (Table 2).

Table 2 Mean pore-water characteristics (S.E.) and Kruskal-Wallis ANOVA on Ranks H-statistic and p-
values of the five sub-boreal peatland communities. Different letters denote significant differences among
peatland community types (Dunn’s Method, p <0.05). Significance labeled as: *p<0.05, **p<0.01; Pa =
Phalaris — Dominated, SB = Sphaghum Bogs, HF = Herbaceous Fens, FF = Forested Fens and RF =
Rich/Calcareous Fens.

Total Alkalinity Available Phosphorus

pH Conductance (puS) (mg/l) (mg/l)

Mean (SE) n Mean (SE) n  Mean (SE) n Mean (SE) n
PH 6.5 (0.5)* 5  431.2(1346)® 5 194 (73)* 5 0.9(0.2) 3
SB 4.4(0.2)° 12 112.1 (32.9)* 12 17 (4)° 12 1.5(0.3) 12
HF 55(0.2) 13 208.4 (61.4) 13 42 (8)® 13 2.0(0.4) 13
FF 6.1(0.3)* 7 236.1(57.2* 7 77 (30)* 7 2.3(0.4) 7
RF 7.1(0.0)° 16 500.9 (71.7)° 16 222 (23)° 16 1.7 (0.2) 13
H, P-value  36.797, <0.001** 18.499, <0.001** 29.627, <0.001** 9.609, 0.048*

Soil Characteristics

No consistent group-by-variable trend was observed between the peatland
community types and the physical characteristics of their organic soils (Table 3).
However, the rank-order of mean bulk density paralleled the results observed for pH, EC

and total alkalinity (Table 2). Mean soil bulk density was lowest in the Sphagnum Bog
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communities and highest in the Phalaris — Dominated Peatland communities (H pui
density=13.548, p=0.009), but was not different among the other peatland community types.
LOlsso revealed significant differences in the soil-organic matter content among sub-
boreal peatland communities (H organic matter=21.934, p<0.001), with multiple significant
pair-wise differences detected (Table 3). LOlgy revealed significant differences in the
soil-carbonate content of the sub-boreal peatland communities (H carbonate content=32.360,
p<0.001), with significant pair-wise differences between peatland Rich/Calcareous Fens,
Sphagnum Bogs and Herbaceous Fens (Table 3). Significant differences in the mean
water-table depth were also detected (H watertavle depth=14.295, p=0.006), with a significant

pair-wise difference between Herbaceous Fens and Sphagnum Bogs (Figure 6).

Table 3 Mean soil characteristics, water-table depth (S.E.) and Kruskal-Wallis ANOVA on Ranks H-
statistic and p-values of the five sub-boreal peatland communities. Different letters denote significant
differences among peatland community types (Dunn’s Method, p <0.05). Significance labeled as: *p<0.05,
**p<0.01; Pa = Phalaris - Dominated, SB = Sphagnum Bogs, HF = Herbaceous Fens, FF = Forested Fens
and RF = Rich/Calcareous Fens.

Bulk density (g/cm®) LOlsso (% DW) LOlgy (% DW)

Mean (SE) n Mean (SE) n Mean (SE) n
PH 0.21 (0.06) 5 45.36 (14.42)° 5 3.06 (1.38)® 5
SB 0.07 (0.01) 14 85.74 (1.39)* 14 0.50 (0.08)? 14
HF 0.12 (0.03) 13 56.55 (8.27)" 13 0.69 (0.10)* 13
FF 0.15 (0.03) 7 63.45 (6.94)® 7 1.38 (0.30)® 7
RF 0.18 (0.03) 17 53.66 (5.43)" 17 9.78 (3.29)° 17
H, P-value 13.548, <0.001** 21.843, <0.001** 32.360, <0.001**

Community Characteristics
Herbaceous Productivity

Productivity of the herbaceous strata varied significantly among sub-boreal
peatland communities (Hproductivity = 39.920, p < 0.001), and ranged from 88.9 g/m?in

peatlands classified as Forested Fens, to 924.9 g/m? in Phalaris — Dominated Peatlands
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(Figure 7). Significant pair-wise differences were observed between Sphagnum bogs,

Forested Fens, and the other classified community types (Figure 7).
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Figure 6 Mean water table depth, 95 percent confidence intervals, Kruskal-Wallis H statistic and p-value
for the five sub-boreal peatland community types. Different letters denote pair-wise differences as
determined by Dunn’s Method.

Floristic Diversity and Indicator Species

Three hundred and forty-one plant species across four strata were identified from
56 sites during the 2008 and 2009 field seasons. The majority of the plant species, 273,
occurred in the herbaceous stratum; 49 occurred in the shrub stratum and 15 in the
canopy stratum. However, since each vascular plant species was also defined by the
stratum or strata in which it occurred, only 297 unique vascular plant species were
recorded in sub-boreal peatland communities. Nineteen of the 341 species were recorded

in two different strata (i.e., herbaceous and shrub strata or shrub and canopy strata), and
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10 species were recorded in the herbaceous, shrub and canopy strata. In addition, four
families of bryophytes, Sphagnaceae, Thudiaceae, Amblystegiaceae and Polytrichaceae,
and one family of liverworts, Ricciacea, were recorded in sub-boreal peatland

communities.
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Figure 7 Mean productivity of the herbaceous strata, 95 percent confidence intervals, Kruskal-Wallis H
statistic and p-value for the five sub-boreal peatland community types. Different letters denote pair-wise
differences as determined by Dunn’s Method.

Two-hundred five plant species (out of the 341species indentified) were defined
as rare (having <3 occurrences among all sample sites), and represented roughly 60% of
all species surveyed, with 122 species occurring only once. Eighteen species were
considered “wide-spread”, occurring in 20% or more sites. Carex stricta Lam. and
Calamagrostis canadensis (Michx.) P. Beauv. were the most common species recorded,

occurring in 43% and 45% of all sites, respectively. Species diversity was significantly
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different among sub-boreal peatland communities (Hspannon's = 19.728, p < 0.001) (Table
4). In addition, mean species richness differed among the classified peatland community
types (Fapha = 6.686, p < 0.001) with the highest mean species richness observed in
Forested Fen communities (34 species), while the lowest mean species richness was
observed in Phalaris — Dominated Peatlands (8 species) (Table 4). Similar trends were
observed in the variation of both gamma diversity and beta diversity between the

classified peatland communities (Table 4).

Table 4 Total and mean diversity indices (S.E.), Kruskal-Wallis ANOVA on Ranks H-statistic and
ANOVA F-statistic (Alpha diversity only) and p-values of the five classified peatland communities of
Minnesota and western Wisconsin.  Different letters denote significant differences among peatland
community types (Dunn’s — Kruskal-Wallis and Holm-Sidak — ANOVA, p <0.05). Significance labeled
as: *p<0.05, **p<0.01; Pa = Phalaris — Dominated, SB = Sphagnum Bogs, HF = Herbaceous Fens, FF =
Forested Fens and RF = Rich/Calcareous Fens.

Alpha Shannon’s
n Gamma Mean (SE) Mean (SE) Beta
All sample sites 56 341 20.4 (1.6) 2.66 (0.09) 15.8
Peatland Type
PH 5 23 8.0(0.3) 1.89 (0.04)? 1.9
SB 14 83 15.3(1.7)* 2.43(0.15)* 4.4
HF 13 103 18.6(2.2)* 2.58 (0.21)™° 4.5
FF 7 133 34.1(2.5)° 3.39(0.07)° 2.9
RF 17 175 24.0(3.6)™ 2.83(0.17)™ 6.3
(F); H, P-value - (6.686), <0.001** 19.728, <0.001** -

Sixty-nine plant species were identified as significant indicators (p < 0.05)
(Dufréne and Legendre 1997) of the five classified sub-boreal peatland community types
(Table 5). Significant indicator species with high indicator values (1V) displayed fidelity
to particular peatland community types (Dufréne and Legendre 1997, McCune and Grace
2002), and were used to distinguish sub-boreal peatland communities based on floristic

composition. Forested Fen communities possessed the greatest number of significant
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indicator species with 27, while only three significant indicator species were identified

for Phalaris — Dominated Peatlands (Table 5).

Phalaris arundinacea — Dominated Peatlands (Type I)

Twenty-three plant species were observed in the Phalaris — Dominated Peatland
communities (Appendix 1). Three species, P. arundinacea (IV = 76.7, p = 0.001), Carex
lacustris Willd. (IV = 48.1, p = 0.005) and C. canadensis (IV = 32.7, p = 0.041), were
identified as significant indicators with relative frequencies of 100, 80 and 80%,
respectively (Table 5). Ten of the 23 total species identified in Phalaris — Dominated
Peatlands were observed in at least four of the five sub-boreal peatland community types.
P. anrundinacea, in addition to being the most significant indicator species of Phalaris —
Dominated Peatlands, was recorded in four of the five classified peatland community
types, with the exception of Sphagnum Bogs. Seven additional species occurred in four
sub-boreal peatland community types (Table 5), and C. lacustris, and C. canadensis,
were recorded in all five classified peatland community types. Herbaceous-stratum
species represented 21 of the 23 species recorded in Phalaris — Dominated Peatlands.
The two remaining species, Salix petiolaris Sm. and Salix planifolia Pursh, occurred in
the shrub stratum, and were present in 20% of Phalaris — Dominated Peatlands
(Appendix 1). Five of the 23 plant species observed in Phalaris — Dominated Peatlands
were considered rare. Three species, Polygonum persicaria L., Rorippa palustris (L.)
Besser and Carex pellita Muhl. ex Willd., were exclusively recorded in Phalaris —

Dominated Peatlands.
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Sphagnum Bogs (Type I1)

Eighty-five species were recorded in the sub-boreal peatland communities
classified as Sphagnum Bogs (Appendix 2). Sixteen species were identified as significant
indicators (Table 5). Various species of the family Sphagnaceae L., genus Sphagnum L.
(referred henceforth to as “Sphagnum ) occurred with 100% relative frequency with an
IV of 66.9 (p = 0.001). Sphagnum was also observed in four of the five classified sub-
boreal peatland communities, with the exception of Phalaris — Dominated Peatlands.
Twelve species were identified as significant indicators of Sphagnum Bogs (Table 5),
three of which with IV’s > 50. In addition, nine of the 12 significant indicator species
were exclusively observed in Sphagnum Bogs (Table 5). Four indicator species,
Chamaedaphne calyculata var. angustifolia (L.) Moench, Picea mariana (Miller) BSP.
and Vaccinium angustifolium Aiton, were represented in multiple strata, while Larix
laricina (DuRoi) K. Koch was observed in the herbaceous, shrub and tree strata. Eleven
of the 83 species identified in Sphagnhum Bogs were common throughout the 56 study
sites; 36 species were classified as rare and 33 species were exclusively recorded in the

sub-boreal peatlands classifies as Sphagnum Bogs (Appendix 2).

Herbaceous Fens (Type I11)

One-hundred three plant species were recorded in the sub-boreal peatlands
classified as Herbaceous Fens (Appendix 3). Twelve species, all from the herbaceous
stratum, were identified as significant indicators (Table 5). Seven of the 12 significant
indicator species were exclusively observed in Herbaceous Fens (Table 5). Cicuta

bulbifera L. (IV =81.3 p = 0.001), Carex lasiocarpa Ehrh. var. americana Fernald (IV =
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65.8 p = 0.001) and Lysimachia thrysiflora L. (IV =47.8 p = 0.003) were the most
common significant indicator species, occurring with relative frequencies of 85, 69 and
54%, respectively (Table 5). C. canadensis also occurred with high relative frequency
(62%), although not identified as a significant indicator of Herbaceous Fens. Locally
abundant shrub populations were recorded in six of 13 peatland communities classified as
Herbaceous Fens. However, the frequencies of occurrence were significantly less than
herbaceous equivalents (Table 5). S. petiolaris, Betula pumila L. var. glandulifera Regel
and Alnus incana (L.) ssp. rugosa (Du Roi) R.T. Clausen were the most common shrub
species, all with relative frequencies <40%. Thirteen plant species were common across
the 56 study sites, 36 were classified as rare and 33 species were exclusively recorded in

peatland communities classified as Herbaceous Fens (Appendix 3).

Forested Fens (Type 1V)

One-hundred thirty-three plant species were recorded in the sub-boreal peatland
communities classified as Forested Fens (Appendix 4). Twenty-seven species were
identified as significant indicators (Table 5), 10 of which were exclusive to Forested
Fens. Five significant indicator species, Acer rubrum L. var. rubrum (IV =57.1,p =
0.001), Fraxinus nigra Marsh. (IV =57.1 p = 0.001), Betula alleghaniensis Britton var.
alleghaniensis (IV =57.1 p = 0.001), Thuja ocidentalis L. (IV = 49.2 p = 0.006) and
Ulmus americana L. (IV = 32.7 p = 0.009), reflected the distinct tree stratum present in
Forested Fens. Four of these five indicator species (all except U. americana) occurred
exclusively in Forested Fen communities (Table 5). The most common significant
indicators were Rubus pubescens Raf. var. pubescens (IV = 70.0 p = 0.001),

Maianthemum canadense Desf. (IV =58.4 p = 0.002) and Athyrium filix-femina (L.) Roth
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ssp. angustum (Willd.) R.T. Clausen (IV = 71.4 p = 0.001), all occurring at relative
frequencies >70%, with R. pubescens var. pubescens present in all Forested Fen
communities. Seventy-one species were classified as rare, 15 species were common
among all study sites and 70 plant species were exclusively recorded in sub-boreal

peatland communities classified as Forested Fens (Appendix 4).

Rich/Calcareous Fens (Type V)

One-hundred seventy-five plant species were recorded in the sub-boreal peatland
communities classified as Rich/Calcareous Fens (Appendix 5). Eleven species were
identified as significant indicators of Rich/Calcareous Fens (Table 5), five of which,
Pycnanthemum virginianum (L.) Durand and Jackson (IV =47.1, p = 0.001), Cirsium
muticum Michaux (IV =42.1, p = 0.008), Poa pratensis L. ssp. pratensis (IV =23.5, p =
0.05), Calamagrostis stricta (Timm) Koeler ssp. stricta (IV = 23.5, p =0.039) and
Frangula alnus Mill. (IV = 23.5, p = 0.049), were exclusively recorded in
Rich/Calcareous Fens (Table 5). Two of the 11 significant indicator species, C. stricta
(IV =63.4, p =0.001) and Eupatorium maculatum L. (IV =49.5, p = 0.002), were
considered widespread across all 56 study sites and were observed in four of the five
classified sub-boreal peatland communities (Table 5). C. stricta was the most common
species recorded across all 56 study sites, and was also the most commonly recorded
species in Rich/Calcareous Fens, occurring at a relative frequency of 94%. Two species
from the shrub stratum were also identified as significant indicators, Salix discolor Muhl.
(IV =25.3, p=0.048) and F. alnus (IV = 23.5, p = 0.049), occurring at 29 and 24%
relative frequencies, respectively. Eighteen of the 175 plant species recorded in

Rich/Calcareous Fens were common across all study sites and 92 species were classified
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as rare. In addition, 90 species were exclusively recorded in the sub-boreal peatland

communities classified as Rich/Calcareous Fens (Appendix 5).

Table 6 Correlation coefficients (r), p-values and the number of study sites (N) used to calculate Spearman
Rank Order correlations between NMS axis 1 and axis 2 ordinal scores and environmental and floristic
characteristics. Significance labeled as: *p<0.05, **p<0.01.

NMS axis 1 NMS axis 2

Variable N r P r P
pH 53 0.608** <0.001 0.727** <0.001
Electrical conductivity 53 0.464** <0.001 0.619** <0.001
Total alkalinity 53 0.573** <0.001 0.692** <0.001
Available phosphorus 48 0.193 0.19 0.007 0.96
Bulk density 53 0.333* 0.02 0.543** <0.001
Von Post 51 0.344* 0.014 0.191 0.18
Peat depth 53 0.089 0.53 -0.152 0.28
LOlsso 51 -0.279* 0.05 -0.692** <0.001
LOlgs 51 0.720** <0.001 0.648** <0.001
Depth to water table 55 0.056 0.68 0.266* 0.05
Herbaceous productivity 56 -0.00082 0.99 0.793** <0.001
Species richness 56 0.544** <0.001 -0.163 0.23
Shannon's diversity 56 0.539** <0.001 -0.163 0.23

Ecological Gradients

The final ordinal arrangement explained a cumulative 64% of the observed
structural variation between study sites, with 16% represented by axis 1 and 47%
represented by axis 2 (Figure 8). The distribution of peatland communities in ordinal
space reflected strong community association with pore-water chemistry, floristic
diversity and the productivity of the herbaceous stratum (Figure 8). This was indicated
by the strong and significant correlations detected between ordinal scores of study sites
and the corresponding floristic and environmental characteristics (Table 6), in addition to

the separations observed along axes 1 and 2 (Figure 8). The strongest correlations were
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between axis 2 and pH (r* = 0.727, p < 0.001) and herbaceous productivity (r* = 0.793, p
<0.001) (Table 6). Community distributions along axis 2 reflected a strong floristic
gradient coincident with significant changes in pore-water pH and total alkalinity (Ca**)
(Figure 8). In particular, the greatest separation along axis 2 was observed between the
acidic and calcium poor environments of Sphagnum Bogs and the more alkaline and
calcium rich environments of Rich/Calcareous Fens (Figure 8). Changes in floristic
diversity and herbaceous productivity were inversely related along axis 1 (Figure 8), with

positive correlations observed for floristic diversity indices and a negative correlation

with herbaceous productivity (Table 6).
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Figure 8 NMS ordination with joint — plot vectors that show the relationship between ordinal scores and

measured environmental and community characteristics. The angle and length of joint — plot vectors

represent the direction and strength of ecological gradients along which sub-boreal peatlands are structured.

Peatland types represent cluster analysis groupings; Phalaris — Dominated = A, Sphagnum Bog = o,

Herbaceous Fen = ¥, Forested Fen = m, and Rich/Calcareous Fen = ¢. The mean group values were used

in place of missing environmental characteristics in order to construct joint plot vectors.
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CHAPTER 4

DISCUSSION

The objective of this study was to characterize and describe the variation in
floristic and environmental characteristics among sub-boreal peatlands in Minnesota and
western Wisconsin. In addition, | set out to provide a classification of sub-boreal
peatlands from which resources managers could accurately define, inventory and manage
peatland communities in the region. | hypothesized that floristic variation among sub-
boreal peatlands would correlate with a strong pH-alkalinity gradient, and sub-boreal
peatlands would represent transitional communities, both in terms of floristic
composition and environmental characteristics, between the boreal and temperate

peatlands of the continental interior of North America.

Five distinct peatland community types were identified using multivariate
analysis of 56 study sites located in the sub-boreal region of Minnesota and western
Wisconsin. As hypothesized, the variation among sub-boreal peatlands significantly
correlated with a strong pH-alkalinity gradient and reflected the commonly describe bog-
fen continuum. Differences among the sub-boreal peatland community types were
defined by changes in floristic composition and environmental characteristics. These
changes also reflected a north to south climactic gradient, with sub-boreal peatlands
representing a transitional link between the expansive boreal peatlands (Gorham 1991,
Boelter and Verry 1977, Vitt 1994, Zoltai and Vitt 1995, Gorham et al. 2007, Glaser and

Janssens 1986) and the isolated temperate peatlands (Carpenter 1995, Thompson 1993,



45

Almendinger and Leete 1998a, Amon et al. 2002, Bedford and Godwin 2003). The
results of this study complemented previous work conducted on peatland communities in
North America, which had focus primarily on boreal peatlands and more recently
temperate peatlands in the Midwest United States, by providing a description of the
environmental and floristic characteristics associated with these transitional communities
and the associations with their boreal and temperate counterparts. The classification
presented can simplify peatland identification and facilitate peatland inventory in a region
disproportionately affected by anthropogenic pressures through urban expansion and high
population densities (Hibbs 2000). In addition, results indicated that sub-boreal peatlands
are susceptible to invasion and dominance by the invasive grass, Phalaris arundinacea,
which was found to substantially decrease floristic diversity. Changes in wetland
structure, function and floristic composition have been attributed to P. arundinacea
establishment throughout the Midwest United States (Galatowitsch et al. 1999), and this
study highlighted the potential of P. arundinacea to affect the regional diversity of sub-

boreal peatlands.

Peatland Classification

Floristic classification of sub-boreal peatlands revealed five distinct community
types. The observed variations among sub-boreal peatlands reflected the commonly
described bog-fen continuum, with Sphagnum Bogs and Rich/Calcareous Fens
representing end-point communities along the continuum. Differences in environmental
characteristics, particularly pore-water pH, total alkalinity, EC (Table 2) and soil
carbonate content (Table 3), among the classified community types supported the

floristic-based classification; and as hypothesized, variations among sub-boreal peatlands
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correlated with a strong pH-alkalinity gradient. Community transitions along a pH-
alkalinity gradient are common among boreal peatlands in North America, and
classifications frequently use pore-water chemistry to define transitions between peatland
community types (Warner and Rubec 1997, Zoltai and Vitt 1995, Gorham and Janssens

1992, Glaser et al. 1990).

Other classifications of wetland communities in this region identify between nine
(Eggers and Reed 1997) and 26 (MNDNR 2003a) different classes of native peatland
communities based on differences in vegetation community structure and local
environmental conditions. The results of this study, however, indicated that the floristic
compositions and local environmental conditions among sub-boreal peatland
communities did not vary within each community type such that greater divisions were
necessary. One explanation for the reduced number of peatland community types
identified is that the previous classifications included non-peat accumulating
communities, which increased the floristic variation on which the classifications were
based. As such, some vegetation communities, identified as peatlands, also were found
to occur on mineral soils (Eggers and Reed 1997, MNDNR 2003a). In addition, the study
area, although large, was limited to the sub-boreal region of Minnesota and western
Wisconsin, which may have excluded other peatland communities found outside the
study area. Nonetheless, broad variation was observed among the classified sub-boreal
peatland community types, which was indicative of the large geographic extent of the

study area and the dynamic nature of the glaciated landscape.

The majority of peatlands surveyed in this study were distributed near the border

between two major Ecological Provenances (ECOMAP 1993) in the region, the
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Laurentian Mixed Forest and the Eastern Broadleaf Forest (Figure 3). The Eastern
Broadleaf Forest Provenance constitutes an area in which precipitation roughly equals
evapotranspiration (Wright 1972), and is as an ecotone between the semiarid prairie and
the semi-humid mixed deciduous-coniferous forested ecosystems in the region (Albert
1995). Similarly, this transitional nature was observed in the floristic and environmental
characteristics of peatland communities surveyed in this study, as well as their spatial
distribution in the region. In particular, the distribution of peatlands classified as
Sphagnum Bogs was concentrated in the northern portion of the study domain. Similar
peatland communities are common throughout northern Minnesota (Boelter and Verry
1977, Glaser 1987). In contrast, the peatland communities classified as Rich/Calcareous
Fens were primarily distributed in the southern portion of the study domain, and were
floristically and environmentally similar to the temperate peatlands of the continental

interior of North America (Amon et al. 2002).

Environmental Characteristics

The range of variation observed in environmental characteristics (Table 2, Table 3
and Figure 6) indicated substantial differences among sub-boreal peatlands in the source
and the chemical composition of hydrologic inputs. Previous studies have shown that a
change in the source or chemical composition of hydrologic inputs is the primary factor
that governs transitions between peatland community types (Moore and Bellamy 1974,
Bridgham et al. 1996, Warner and Rubec 1997, Zoltai and Vitt 1995). In this study, no
attempt was made to quantify hydrologic inputs; however, changes in pore-water
chemistry are commonly used to infer changes in the chemical composition and relative

source of hydrologic inputs (Sjors 1950, Glaser 1987, Glaser et al. 1990).
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This study showed that differences in mean pore-water chemistry (pH, total
alkalinity and EC) were the primary environmental characteristics found to distinguish
the different sub-boreal peatland community types (Table 2). Specifically, mean levels of
pore-water pH, total alkalinity and EC exhibited an increasing trend from Sphagnum
Bogs to Rich/Calcareous Fens (Table 2). The parallel relationship between changes in
pore-water chemistry and transitions between peatland community types has been
observed in boreal peatland communities throughout Europe (Du Rietz 1949 and Du
Rietz 1954 [as cited in Bridgham et al. 1996], Sjors 1961, Moore and Bellamy 1974,
Sjors 1950, Wheeler and Proctor 2000) and North America (Warner and Rubec 1997,
Zoltai and Vitt 1995, Gorham and Janssens 1992); however, the point at which a
transition is observed is often dependent on regionally specific environmental factors and

floristic compositions of the peatland communities (Bridgham et al. 1996).

Sphagnum Bogs were distinguished from other sub-boreal peatland community
types by a mean pore-water pH of 4.4 and mean total alkalinity of 17mg/l. In comparison
however, the mean level of total alkalinity in Sphagnum Bogs was considerably higher
than the level of <2mg/I reported for boreal bogs of northern Minnesota (Heinselman
1963, Glaser 1987, Glaser et al. 1990). The higher levels of mean total alkalinity,
combined with a mean pH >4.2, indicated that Sphagnum Bogs were more similar, in
terms of pore-water chemistry, to semi-ombrogenous or weakly minerotrophic peatlands
of the boreal region (Heinselman 1963). Herbaceous Fens were weakly acidic peatlands,
with pH a mean pH of 5.5 and mean total alkalinity of 42mg/l. As such, Herbaceous
Fens were most similar to Sphagnum Bogs, in terms of environmental characteristics,

than the other classified sub-boreal community types. The higher levels of total alkalinity
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and pore-water pH indicated that Herbaceous Fens received considerably greater
hydrologic inputs from minerogenous water sources than Sphagnum Bogs, and represent
the most acidic and ionic poor of fen peatlands in the sub-boreal region. Phalaris —
Dominated Peatlands and Rich/Calcareous Fens were the most ion-rich of the classified
sub-boreal peatland communities, with mean levels of total alkalinity >190mg/I (Table
2), which are consistent with those reported in calcareous fens of the Minnesota River
Valley (Almendinger and Leete 1998b) and the temperate fens of the Midwest United
States (Amon et al. 2002). Temperate fens are distinguished from their boreal
counterparts by a direct dependence on sustained hydrologic inputs from groundwater
discharge to facilitate organic matter accumulation (Bedford and Godwin 2003), and as a
result, pore-water pH generally exceeds 7.0 with total alkalinity levels that range between
50 and 292mg/l (Amon et al. 2002). In the boreal region of Minnesota, extremely rich
fens are defined by pH values >7.0 and total alkalinity levels >30 mg/l (Glaser 1987).
All sub-boreal peatland communities, with the exception of Sphagnum bogs, exceeded
total alkalinity levels of 30 mg/l. This may indicate that Herbaceous Fens and Forested
Fens receive a greater proportion of hydrologic inputs from minerogenous water sources
that originate from calcareous substrates (Vitt and Chee 1990, Glaser et al. 1990), which
are common throughout central and southern Minnesota (Wright 1972), but considerably
less than the high amounts observed in Rich/Calcareous Fens. Mean pore-water
chemistries of Forested Fens were intermediate, but still exceeded the levels of extremely
rich boreal fens. Although not analyzed, inputs of dissolved iron as iron ochre were

recorded in many of the Forested Fen communities, which may have contributed to the
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elevated pore-water EC levels recorded while total alkalinity remained slightly above that

observed in Herbaceous Fens (Table2).

Other environmental characteristics, including pore-water EC (Table 2), soil
carbonate content and soil organic matter content (Table 3), were observed to co-vary
with pore-water pH and total alkalinity (Table 2) and could be used to distinguish sub-
boreal peatland community types. Water table depth (Figure 6) and available phosphorus
(Table 2), although significantly different among peatland community types, were less
useful in the classification of sub-boreal peatland communities due to variation among
community types. However, mean water-table depths (Figure 6) provided an indication
of water-table stability in sub-boreal peatlands, which have elsewhere been shown to be
an important gradient along which peatlands are structured (Laitinen et al. 2008)
Herbaceous Fens, Rich/Calcareous Fens and Phalaris — Dominated Peatlands exhibited
the highest hydrologic stability among sub-boreal peatlands (Figure 6), with mean water-
table depths of 4.5cm + 4.7 in Herbaceous Fens, -3cm + 5.0 in Rich/Calcareous Fens and
4.0cm £ 5.0 in Phalaris — Dominated Peatlands. In contrast, Sphagnum Bogs exhibited
the greatest variation in mean water-table depth (-18cm £ 10.2). Variation in mean
water-table depth was observed to decrease as climactic pressures increased from north to
south. Peatlands in the southern portion of the study area experience an increased
dependence on groundwater discharge to sustain organic matter accumulation. The low
variation in water-table depths among Herbaceous Fens, Rich/Calcareous Fens and
Phalaris — Dominated Peatlands was indicative of the stable hydrologic settings in which
they occurred and constant hydrologic inputs from groundwater discharge, which

supported the premise that the majority of sub-boreal peatlands were fen-classified
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communities. In contrast, inter-annual and intra-annual changes in water table depths are
common in boreal peatland communities, with 1-2m drawdowns observed in the water
tables of precipitation-dominated peatlands during periods of prolonged draught (Glaser
et al. 1997). This suggested that Sphagnum Bogs in the sub-boreal region of Minnesota
and western Wisconsin were, primarily, precipitation dominated peatlands, with only

limited amounts of external hydrologic inputs.

Inter-annual and intra-annual variations in nutrient levels, particularly nitrogen
and phosphorus, have been shown to occur in peatland communities and are not useful in
the classification of peatland communities (Vitt et al. 1995b). Most surprisingly
however, were the low levels of available phosphorus (0.9mg/l £ 0.2) observed in the
Phalaris — Dominated sub-boreal Peatlands. P. arundinacea is an invasive grass species
that is commonly associated with wetlands disturbed by nutrient enrichment and
sediment deposition from agriculture (Green and Galatowitsch 2001, Green and
Galatowitsch 2002, Werner and Zedler 2002). However, in this study none of the sub-
boreal peatlands classified as Phalaris — Dominated were situated in agricultural
landscapes. The low level of available phosphorus was more likely the result of bi-
carbonates and phosphate complexes that immobilize phosphorus in areas associated with
elevated bi-carbonate levels (Boyer and Wheeler 1989). In fact, three of the five
Phalaris — Dominated sites were in located in the same peatland complexes as other
communities classified as Rich/Calcareous Fens, with pH levels >7.0, total alkalinities

>300mg/I and soil carbonate contents >3.0% of dry weight.
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Floristic and Community Characteristics

Floristic differences among sub-boreal peatlands also reflected a strong pH-
alkalinity gradient. In particular, changes in the relative frequencies of Sphagnacea and
Amblystegiacea (Table 5) conformed to the bimodal distributions between Sphagnacea at
low pH and Amblystegiacea at higher pH levels observed in boreal peatland communities
(Gorham and Janssens 1992, Vitt et al. 1995a). The decrease in the relative frequency of
Sphagnum with increasing pore-water pH also corresponded with the absence of calcium-
tolerant Sphagnum species in extremely rich fen communities in central Europe (Hajek et
al. 2006), with only one occurrence of Sphagnum recorded in the 17 study sites classified
as Rich/Calcareous Fens. In contrast, the relative frequency of Amblystegiaceae species
peaked in the Forested Fen communities at 57% (Table 5), with no occurrences recorded
in Sphagnum Bogs. Other species, such as Alnus incana ssp. rugosa (Du Roi) Clausen, C.
stricta, C. lasiocarpa, Cladium mariscoides (Muhl.) Torr, Clintonia borealis (Aiton)
Raf., Dasiphora fruticosa (L.) Rydb. ssp. floribunda (Pursh) Kartesz, Elocharis
compressa Sull, Muhlenbergia glomerata (Willd.) Trin. and T. occidentalis, among
others, have been shown elsewhere to be minerotrophic indicator species (Jeglum 1991,
Glaser et al. 1990 and Amon et al. 2002), and were all recorded with greater frequencies

in fen-classified sub-boreal peatlands (Table 5).

Floristic variations among sub-boreal peatlands were defined, primarily, by
significant indicator species, identified by indicator species analysis (Dufréne and
Legendre 1997). Many of which were exclusively found in a particular peatland
community type (Table 5). Indicator plant species have traditionally been used in the

classification of peatlands to define transitions between different floristic communities
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along environmental gradients (Locky et al. 2005, Zoltai and Vitt 1995, Glaser et al.
1990, MNDNR 2003a, Gorham and Janssens 1992). Similarly, indicator species
identified in this study were associated with distinct environmental conditions. Unlike
most studies, many of the indicator species identified were also found to be dominant
species, and represented the prevailing vegetation stratum from which sub-boreal

peatlands were defined.

Sphagnum Bogs were characterized by high relative frequencies of Sphagnum and
other indicator species of nutrient poor and acidic environments associated with limited
mineral-rich hydrologic inputs (e.g., Picea mariana, Chamaedaphne calyculata var.
angustifolia, Vaccinium oxycoccos and Carex oligosperma). However, a number of
species commonly regarded as minerotrophic or “fen” indicators (Carex trisperma
Dewey var. trisperma, Cladium mariscoides (Muhl.) Torr., Drosera rotundifolia L. var.
rotundifolia and Rhamnus alnifolia L'Hér) (Glaser et al. 1990) were observed in
Sphagnum Bogs. Variation among Sphagnum Bogs reflected the presence or absence of
a tree stratum. Tree canopies in Sphagnum Bogs were not as dense as those observed in
Forested Fens, and were composed of solely of P. negra and L. laricina. Other
classifications have characterized these communities as Open or Forested Bogs (Eggers
and Reed 1997) and as acidic peatlands, with distinctions made between changes in the
dominant floristic composition (e.g. Northern Open bog, Poor Tamarack — Black Spruce
Swamp, Northern Spruce bog and Northern Poor Fen) (MNDNR 2003b). Regardless of
how these communities are classified, all reflect the nutrient poor and acidic conditions
associated with Sphagnum dominance, with a distinction between forested and open

communities. This distinction was also observed among the sub-boreal Sphagnum Bogs;
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however, the limited variation observed in this study did not support separate distinctions

between the two communities.

Herbaceous Fens are common throughout the region, and as observed in ordinal
analysis, span a large ecological distance (Figure 5). Significant indicator species
characteristic of Herbaceous Fens primarily represented similarities in the herbaceous
strata (Table 5), and were a reflection of stable hydrologic conditions with a positive
mean water table (Figure 6). In the boreal region of northern Minnesota, these
communities often occur as transitional communities between bogs and more nutrient-
rich fen communities (Heinselman 1963). Isolated occurrences of Sphagnum Bogs were
observed within larger complexes of Herbaceous Fen communities, which may indicate
succession to Sphagnum-dominated peatlands in areas where inputs of precipitation offset
climactic pressures. Variation within Herbaceous Fens also reflected an increase in the
frequency of woody species, primarily Alnus incana ssp. rugosa and Salix petiolaris. In
addition, other shrub-stratum species frequently observed included Cornus sericea L. ssp.
pallens (Banks ex Ging), S. discolor, Cornus racemosa Lam., Spirea tomentosa L. var.
rosea, Betula pumila L. var glandulifera Regel, and Ribes americanum Mill. (Appendix
3). Shrub-dominated peatlands are common throughout Minnesota and Wisconsin
(Eggers and Reed 1997), and the lack of a distinct shrub-dominated peatland community
type may indicate that this community type was not adequately sampled. Herbaceous
species most frequently observed with greater shrub coverage were Spirea alba,
Triadenum fraseri and Carex utriculata. Whereas higher frequencies of Bidens aristosa
and Carex lasiocarpa var. americana were characteristic of the mostly herbaceous

dominated communities of Herbaceous Fens. Increased hydrologic inputs, as evidenced
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by higher water tables, also were observed to alter the community composition of
Herbaceous Fens, which resulted in a more marsh-like community structure with higher
relative frequencies of Lemna minor, Lythrum salicaria, Carex stipata var. stipata,
Lysimachia thyrsiflora, Typha angustifolia and Sagittaria latifolia. Although hydrologic
alterations are common throughout Minnesota, the effect of elevated water tables was
most evident in the Anoka Sand Plain, where hydrologic manipulations have converted
extensive areas once dominated by C. lasiocarpa var. americana to marshes dominated

by the invasive cattail species, Typha angustifolia (Rand 1953).

Forested Fens were characterized, primarily, by the presence of a dense tree
stratum (Table 5). Forested peatlands of this type are predominantly found in the
northern portions of the sub-boreal region (Eggers and Reed 1997), and have been
classified as Wooded Swamps (Eggers and Reed 1997), and Forested Rich Peatlands
(MNDNR 2003b, 2005a). In the boreal region of North America, similar communities
are common and represent extremely-rich forested peatlands communities (Zoltai and
Vitt 1995). In addition, these communities are known to occur, although infrequently, in
the temperate region of the Midwest United States (Bedford and Godwin 2003). The
indicator species that differentiated Forested Fens from other sub-boreal peatland
communities were Athyrium filix-femina (L.) Roth ssp. angustum (Willd.) R.T. Clausen,
Rubus pubescens Raf. var. pubescens, Acer rubrum L. var. rubrum, Betula alleghaniensis
Britton var. alleghaniensis, Fraxinus nigra Marsh., Maianthemum canadense Desf.,
Thuja occidentalis L. and Amblystegiaceae. In addition to the high diversity observed
within Forested Fens, considerable floristic variation was observed between forested sites

with Thuja occidentalis and Betula alleghaniensis var. alleghaniensis as dominants, and
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sites primarily composed of UImus americana, Acer rubrum var. rubrum, Fraxinus nigra
and Larix laricina. This distinction conforms to the classification of Eggers and Reed
(1997), which differentiates coniferous from hardwood swamps. As indicated for
Sphagnum Bogs, however, the variation among sub-boreal peatland communities was
greater than that observed within Forested Fen communities. Therefore, no distinction

was made between the different Forested Fen communities in this study.

The dominant composition and floristic structure of Rich/Calcareous Fens were
differentiated from other sub-boreal peatland communities, primarily, by the presence of
species adapted to high ionic concentrations, particularly bi-carbonates. Indicator species
of high ionic concentrations identified in this study, which also are identified as
indicators of Prairie Rich Fens and Prairie Extremely Rich Fens (MNDNR 2005b),
included Eupatorium maculatum L., Pyncanthemem virginian, Cirsium muticum Michx.
Helianthus grosseserratus M. Martens and Calamagrotis stricta (Timm) Koeler ssp.
stricta. Other species not identified as indicator species, but are known to occur in
calcareous or extremely rich fen communities, included Lycopus americamis Muhl. Ex
W. Bartam, Galium boreale L., Doellingeria umbellate (Mill.) Nees and Oxypolis rigidor
L. Raf. In addition, Rich/Calcareous Fens were found to support the highest number of
endangered, threatened and species of special concern of all sub-boreal peatland
communities. This may have been due to a combination of high ionic concentrations and
limited habitat availability. Species recorded in Rich/Calcareous Fens, and are regarded
as threatened in Minnesota, included Carex sterilis Willd., Valeriana edulis Nutt. EX.
Torr. & A. Gray var. ciliate (Torr. & A. Gray) Cronquest, Cladium mariscoides (Muhl.)

Torr. and Rhynchospora capillacea Torr. Species of concern in Minnesota included
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Lysimachia quadriflora Sims and Rudbeckia triloba L. var. triloba. One species
recorded in Rich/Calcareous Fens, Muhlenbergia richardsonis (Trin.) Rydb, is listed as
endangered in Wisconsin. In addition to being highly diverse ecosystems,
Rich/Calcareous Fens exhibited considerable species turnover (Table 4). As such, none
of the 13 significant indicator species identified were present in all Rich/Calcareous Fen
communities (Table 5). Carex stricta was the most common species with 94 percent
relative frequency, but its” occurrence was not limited to Rich/Calcareous Fen
communities (Table 5). Floristic variation between Rich/Calcareous Fens illustrated the
distinctions between rich and calcareous fens; however, as previously mentioned, the
variation among sub-boreal community types was greater than the variation within the
Rich/Calcareous Fen subtype. Similar to Herbaceous Fens, structural variations were
observed within the Rich/Calcareous Fen communities. Shrub-stratum species are also
common in highly calcareous peatlands in the region (MNDNR 2005b, Eggers and Reed
1997, Bedford and Godwin 2003), as was observed in this study (Appendix 5). Although
primarily dominated by herbaceous-stratum species, a distinct shrub stratum, consisting
of S. discolor, F. alnus and Rhamnus cathartica L., was frequently recorded in

Rich/Calcareous Fen communities.

Phalaris — Dominated Peatlands reflect an ecological consequence of the presence
of the invasive species, P. anrundinacea. Phalaris anrundinacea was found to occur
across broad ranges of pH (5.17 — 7.83), total alkalinity (15 — 350mgl™ [Ca*']) and water
table depths (-53cm — +22cm), suggesting a wide physiological tolerance. Interpretation
of the NMS ordination also indicated a successional trend associated with P.

anrundinacea establishment and dominance (Figure 5). This most prominently affected
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Rich/Calcareous Fens, from which, four significant indicator species were observed to
occur in Phalaris — Dominated Peatlands (Table 5). The low species diversity and
exclusion of native species, as observed in Phalaris — Dominated Peatlands (Table 4), has
been observed in wetland communities throughout the Midwest United States due to
aggressive nature of P. arundinacea and clonal expansion (Kercher et al. 2004, Kercher
and Zedler 2004, Galatowitsch et al. 1999). Surprisingly, Eupatorium maculartum L.
was observed at 60% relative frequency in Phalaris — Dominated Peatlands; whereas
Kercher et al. (2004) observed competitive exclusion of this species due to shading in wet
meadows in Wisconsin. It is difficult to determine the exact number of species excluded
in Phalaris — Dominated Peatlands; however, since Phalaris — Dominated Peatlands are
most similar to Rich/Calcareous Fens, in terms of environmental characteristics and
floristic composition, the effect on species and peatland diversity are most likely

significant.

Sub-boreal peatlands represent a floristically diverse set of communities, as
indicated by the 341 species recorded. The high floristic diversity among sub-boreal
peatlands was indicative of a transitional landscape, and supported the hypothesis that
sub-boreal peatlands represent transitional communities between boreal and temperate
peatlands. Transitional landscapes tend to support greater species diversity than either of
the adjacent regions due to the overlapping distributions of regionally specific flora
(Shmida and Wilson 1985). Peatlands in the boreal region of the continental interior of
North America are floristically impoverished communities, particularly raised bogs, in
which most communities support less than 20 vascular species (Glaser 1992). In the Red

Lake peatlands of boreal Minnesota, which cover an estimated area of 1200 km?, < 200
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vascular species were recorded across seven major vegetation communities types
(Wheeler et al. 1983). In contrast, temperate peatlands, which are considered distinctly
different that their boreal counterparts, both in terms of environmental characteristics and
floristic composition (Bridgham et al. 1996, Amon et al. 2002), are renowned for their
high floristic diversity (Bedford and Godwin 2003), despite their geographic isolation and
limited extent. The high beta diversity recorded among sub-boreal peatlands (Table 4)
also supported the hypothesis that sub-boreal peatlands represent transitional
communities between boreal and temperate peatlands. In this study, the strong pH-
alkalinity gradient accounted for much of the species turnover observed among peatland
communities, with changes in floristic diversity and composition strongly correlated
(Table 6) with ordinal distribution of study sites (Figure 8). The increasing climactic
pressures from north to south, however, cannot be overlooked as a major determinate in

the distribution, composition and floristic structure of sub-boreal peatlands.

The results of this study complimented work previously done on peatland
communities in North America by providing a description of the variation in floristic and
environmental characteristics associated with peatlands that represent transitional
communities between peatlands in the boreal and temperate regions of the continental
interior of North America. In addition, this study highlighted the potential threat of P.
arundincacea to the biodiversity of sub-boreal peatlands. Future research should
continue to focus on the invasive mechanisms of P. arundinacea and its’ impact on the
floristic composition and structure of native peatland communities. Application of the
purposed classification is most applicable to the northern portion of the sub-boreal

region, where anthropogenic influences have not drastically altered the structure and
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ecological functions of peatland communities. To validate and further expand the
application of the purposed classification into greater Wisconsin, Michigan and the Upper
Peninsula of Michigan, floristic and environmental data should be collected from study
sites that reflect the variation associated with the east-west precipitation gradient in the
region. In addition, future research should attempt to quantify the contribution of
microtopography to the floristic and environmental variation among sub-boreal peatland

community types.
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