
Minnesota State University, Mankato Minnesota State University, Mankato 

Cornerstone: A Collection of Scholarly Cornerstone: A Collection of Scholarly 

and Creative Works for Minnesota and Creative Works for Minnesota 

State University, Mankato State University, Mankato 

All Graduate Theses, Dissertations, and Other 
Capstone Projects 

Graduate Theses, Dissertations, and Other 
Capstone Projects 

2011 

Floristic and Environmental Characteristics of Sub-boreal Floristic and Environmental Characteristics of Sub-boreal 

Peatlands of Minnesota and Western Wisconsin Peatlands of Minnesota and Western Wisconsin 

Kevin Douglas Clement 
Minnesota State University, Mankato 

Follow this and additional works at: https://cornerstone.lib.mnsu.edu/etds 

 Part of the Biology Commons, Plant Biology Commons, and the Terrestrial and Aquatic Ecology 

Commons 

Recommended Citation Recommended Citation 
Clement, K. D. (2011). Floristic and environmental characteristics of sub-boreal peatlands of Minnesota 
and Western Wisconsin. [Master’s thesis, Minnesota State University, Mankato]. Cornerstone: A Collection 
of Scholarly and Creative Works for Minnesota State University, Mankato. 
https://cornerstone.lib.mnsu.edu/etds/10/ 

This Thesis is brought to you for free and open access by the Graduate Theses, Dissertations, and Other Capstone 
Projects at Cornerstone: A Collection of Scholarly and Creative Works for Minnesota State University, Mankato. It 
has been accepted for inclusion in All Graduate Theses, Dissertations, and Other Capstone Projects by an 
authorized administrator of Cornerstone: A Collection of Scholarly and Creative Works for Minnesota State 
University, Mankato. 

http://cornerstone.lib.mnsu.edu/
http://cornerstone.lib.mnsu.edu/
https://cornerstone.lib.mnsu.edu/
https://cornerstone.lib.mnsu.edu/
https://cornerstone.lib.mnsu.edu/
https://cornerstone.lib.mnsu.edu/etds
https://cornerstone.lib.mnsu.edu/etds
https://cornerstone.lib.mnsu.edu/theses_dissertations-capstone
https://cornerstone.lib.mnsu.edu/theses_dissertations-capstone
https://cornerstone.lib.mnsu.edu/etds?utm_source=cornerstone.lib.mnsu.edu%2Fetds%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/41?utm_source=cornerstone.lib.mnsu.edu%2Fetds%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/106?utm_source=cornerstone.lib.mnsu.edu%2Fetds%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/20?utm_source=cornerstone.lib.mnsu.edu%2Fetds%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/20?utm_source=cornerstone.lib.mnsu.edu%2Fetds%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages


i 

 

 

 

 

 

Floristic and Environmental Characteristics of Sub-boreal Peatlands  

in Minnesota and Western Wisconsin 

 

By: 

Kevin Douglas Clement 

 

 

 

 

A Thesis Submitted in Partial Fulfillment of the Requirements  

for the Degree Master of Science in Biology 

 

 

The Department of Biological Sciences 

Minnesota State University, Mankato 

June 2011 

  



ii 

 

 

 

Date:   July 01, 2011________ 

This thesis has been examined and approved. 

Examining committee: 

Bradley J. Cook, Ph. D., Advisor 

 

 

 

Robert Sorensen, Ph. D. 

 

 

 

Thomas Malterer, Ph. D. 

 

 

  



iii 

 

 

 

ABSTRACT 

 

Clement, Kevin Douglas 

Floristic and Environmental Characteristics of Sub-boreal Peatlands in Minnesota and 

Western Wisconsin 

Advisor: Bradley J. Cook, Ph.D. 

Peatland communities in the sub-boreal region of Minnesota and western 

Wisconsin were characterized by floristic composition, structure and environmental 

characteristics to determine the natural variation among peatland communities in the 

region and their shared associations with the boreal and temperate peatlands of North 

America.  Floristic classification revealed five, distinct peatland community types, 

identified as Sphagnum Bogs, Herbaceous Fens, Forested Fens, Rich/Calcareous Fens 

and Phalaris anrundinacea – Dominated Peatlands.  Differences among sub-boreal 

peatlands largely reflected changes in the significant indicator and dominant plant species 

identified, which were found to exhibit high fidelities to a particular peatland community 

type.  Floristic variations among sub-boreal peatlands were observed to correlate with 

changes in pore-water chemistry along a strong pH-alkalinity gradient.  Ordinal analysis 

by non-metric multidimensional scaling also indicated a strong community association 

with soil and pore-water chemistry, which reflected the geomorphic and hydrologic 

settings in which communities developed and the transitional nature of peatlands in the 

region.  In addition, the broad physiological tolerance and invasive nature of P. 

anrundinacea was found to pose a substantial threat to the biodiversity and ecological 

functioning of sub-boreal peatland communities.    
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CHAPTER 1 

INTRODUCTION 

Peatlands, commonly known as bogs and fens, are wetland communities 

characterized by an organic soil layer with the water table at or near the soil surface 

throughout the year (Moore and Bellamy 1974, Mitsch and Gosselink 2000).  Peatlands 

primarily develop in areas associated with positive water balances (i.e., precipitation 

exceeds evapotranspiration), and where soil saturation and anaerobic conditions restrict 

microbial decomposition to rates far less than primary production (Vitt 1994).  These 

conditions result in the accumulation of organic matter (colloquially known as “peat”) to 

depths >40cm (Soil Survey Staff 1998, National Wetlands Working Group 1988), with 

depths >2m commonly observed (Gorham 1991).  In most other wetland communities, 

the frequency and magnitude of hydrologic fluctuations, which strongly influence the 

depth and duration of aerobic conditions, create environments for greater microbial 

decomposition (Collins and Kuehl 2001), and limit accumulations to small quantities of 

highly decomposed organic matter (Zoltai and Vitt 1995).  Low soil temperatures also 

decrease the rate of microbial decomposition (Boelter and Verry 1977, Collins and Kuehl 

2001, Jenny 1950), which is reflected in the global distribution of peatland communities. 

Peatlands are estimated to occupy between 2.97 x 10
6
 km

2
 (Matthews and Fung 

1987) and 4.22 x 10
6
 km

2
 (Kivinen and Pakarinen 1981), making up roughly 3% of 

Earth’s land surface (Gorham 1991), and representing over half of all wetlands 

worldwide (Bridgham et al. 2001).  The distribution of peatland communities, however, 

is disproportionately concentrated in the northern latitudes, between 50 and 70° 
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(Aselmann and Crutzen 1989), where 95% of all wetland communities are classified as 

peatlands (Gorham 1991).  In North America, peatland communities primarily occur in 

the boreal and sub-boreal regions (Figure 1), where cooler temperatures (Boelter and 

Verry 1977) and positive water balances facilitate extensive accumulations of organic 

matter (Vitt 1994 an Zoltai and Vitt 1995).   

 

Figure 1 The distribution of peatland communities in North America is primarily concentrated across the 

boreal region, where climactic conditions facilitate organic matter accumulation.  The occurrence of 

temperate peatlands is limited to areas of localized and sustained groundwater discharge.  Figure was 

adapted from Glaser (1987) for the distribution of boreal peatlands and Amon et al. (2002) for the 

distribution of temperate peatlands in the United States. 

In the continental interior of North America, peatland development initiated 

following the retreat of the Cordilleran ice sheet, between 4,700 and 8,000 years ago 

(Almendinger and Leete 1998a, Gorham et al. 2007).  During this period, cool 
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temperatures and slow moving glacial melt waters, which stagnated where substrate 

composition and landscape topography limited water movement, provided the climactic 

conditions, physical templates and stable hydrology necessary for organic matter 

accumulation (Boelter and Verry 1977).  Peatlands, however, also occur in the temperate 

regions of North America (Carpenter 1995, Thompson 1993, Eggers and Reed 1997, 

MNDNR 2005b).  In these regions, peatland communities are small, usually only a few 

hectares in size (Bedford and Godwin 2003), and occur in isolation where continuous 

hydrologic inputs, discharged as groundwater, maintain conditions necessary for organic 

matter accumulation (Almendinger and Leete 1998a, Amon et al. 2002).  Distinctions 

between all peatland communities are based primarily on complex interactions between 

1) landscape position, 2) organic matter accumulation and 3) the source and chemical 

composition of hydrologic inputs, which are reflected in the various methods by which 

peatlands are classified.   

Historically, peatland classifications have grouped communities based on 

similarities in topography (Damman 1986, Glaser and Janssens 1986, Moore and 

Bellamy 1974), hydrology (von Post and Granlund 1926 [as cited in Bridgham et al. 

1996], Moore and Bellamy 1974), water chemistry (Sjörs 1948 and Du Rietz 1949 [as 

cited in Bridgham et al. 1996]), nutrient availability (Du Rietz 1954 [as cited in Bridgham 

et al. 1996], Sjörs 1961, Moore and Bellamy 1974), floristic composition (Heinselman 

1963, Gorham and Janssens 1992, Cowardin et al. 1979), and more recently, ecological 

function (Brinson 1993).  These classifications reflect a progressive transition in peatland 

structure and floristic composition along multiple limiting gradients (Bridgham et al. 

1996, Hájek et al. 2006, Økland et al. 2001), with distinctions among peatland 
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communities derived from variations in the source and chemical composition of 

hydrologic inputs.   

In terms of hydrologic classification, peatland communities are distinguished 

based on the dominant source of hydrologic inputs, which is directly related to landscape 

position and peatland topography (Moore and Bellamy 1974, National Wetlands Working 

Group 1988).  In general, this variation is illustrated along a continuum, with bogs and 

fens representing endpoints (Figure 2).  Hydrologically, fens are classified as 

minerogenous peatlands (Warner and Rubec 1997, Zoltai and Vitt 1995), in which soil 

saturation and anaerobic conditions are sustained by hydrologic sources other than 

precipitation (i.e., indirect hydrologic inputs), such as groundwater discharge and surface 

waters.  Bogs, in contrast, are classified as ombrogenous peatlands, with hydrologic 

inputs exclusively derived from precipitation (i.e., direct hydrologic inputs).   

In general, bogs develop from fens when the vertical accumulation of peat rises 

above the surrounding mineral soil (Ingram 1982), or when the downward hydraulic 

pressure from precipitation is greater than that of discharging groundwater (Siegel 1983, 

Siegel and Glaser 1987).  Ultimately, both scenarios lead to the hydrologic isolation of 

bogs (Figure 2), and result in a dependence on precipitation to maintain soil saturation 

and anaerobic conditions.  The point at which a fen transitions to a bog community, due 

to declining inputs of mineral-rich waters, is defined as the “mineral-soil-water-limit” 

(Du Rietz 1949 [as cited in Bridgham et al. 1996]).  This transition has been shown to 

occur with as little as 10% hydrologic inputs from mineral-rich ground waters (Siegel 

1983).  However, few studies quantify hydrologic inputs sufficiently to classify peatland 

communities based on hydrologic source (Bridgham et al. 1996), much less accurately 
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define regional variations.  As a result, changes in pore-water chemistry are commonly 

used as surrogates to describe and classify peatland communities based on the relative 

influence and chemical composition of hydrologic inputs. 

Similar to hydrologic classifications, water chemistry-based classifications 

primarily characterize the source of mineral nutrients (Sjörs 1948, Moore and Bellamy 

1974, Warner and Rubec 1997).  Fens, therefore, are defined as minerotrophic peatlands 

(i.e., mineral nourished), with nutrient inputs supplied from the mineral soils from which 

hydrologic inputs originate.  In contrast, bogs are classified as ombrotrophic peatlands 

(i.e., rain nourished), with inputs of nutrients and major cations (e.g., Ca
2+

, Mg
2+

, Na
+
, 

K
+
) supplied only by precipitation.  This intimate connection between the hydrologic and 

nutrient sources of peatland communities results in soil and pore-water chemistries of 

bogs and fens that largely reflect the chemical composition of their hydrologic inputs.   

As peatland communities become increasingly isolated from mineral-rich water 

sources, due to the vertical accumulation of organic matter and changes in peatland 

topography, a sharp decline is observed in the supply of major cations (Figure 2) (Glaser 

1987).  This reduction in the supply of cations, combined with an increase in the organic 

content of peat, results in a significant decrease in the acidity of peatland soil and pore-

water (Gorham 1957).   Calcium concentrations are particularly important to the pore-

water chemistry of peatland communities in that calcium contributes both to pore-water 

alkalinity and is directly related to pH through the buffering capacity of bicarbonates 

(Kemmers 1986, Glaser 1987).  Inputs of calcium are often the result of discharging 

groundwater from calcium-rich substrates, such as limestone and dolomite (Almendinger 

and Leete 1998a, Grootjans et al. 2006).  Additionally, locally important wind-blown 
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inputs from calcium-rich glacial-till can contribute to the soil and pore-water chemistry of 

peatland communities (Gorham et al. 1984, Glaser 1987).  In boreal region of northern 

Minnesota, calcium concentrations in fens can range from 3 to 45mg/l (Glaser et al. 

1990).  Whereas in the temperate region, calcium concentrations commonly exceed 

100mg/l (Almendinger and Leete 1998b), and concentrations as high as 290mg/l have 

been observed in highly calcareous fens in the Midwest United States (Amon et al. 2002).  

In contrast, bogs are characterized by acidic pore-water chemistries, with pH levels 

generally <4.2, calcium concentrations <2mg/l and considerably lower total ionic 

concentrations (Glaser et al. 1990).  The pore-water pH of fens, however, can range from 

mildly acidic to alkaline (4.5 to >8), dependent on the chemical composition of 

hydrologic inputs (Bedford and Godwin 2003).  In boreal and sub-boreal peatlands, 

changes in pore-water pH and ionic concentrations are consistently observed to correlate 

with changes in the floristic composition of peatland communities (Sjörs 1950, Glaser 

1987, Vitt and Chee 1990, Gorham and Janssens 1992, Wheeler and Proctor 2000).  

These consistent correlations have generated water chemistry-based classifications that 

define peatland communities along an acidity-alkalinity gradient (Moore and Bellamy 

1974, Gorham and Janssens 1992, National Wetlands Working Group 1988).   

The wide variations in soil and pore-water chemistries among peatland 

communities, particularly fens, are frequently described along a poor – rich gradient 

(Figure 2) (Zoltai and Vitt 1995, Vitt 2000).  Poor fens are characterized by mildly acidic 

pore-water chemistries (pH = 4.5 – 5.5) and low ionic concentrations, whereas rich fens 

are characterized by slightly acidic to alkaline soil and pore-water chemistries (pH >6.0) 
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and considerably higher ionic concentrations (Figure 2).  The poor – rich gradient, 

however, does not necessarily reflect the nutrient status of peatland communities.   

 

Figure 2 Variations in the floristic structure and ecological functions of peatland communities are 

commonly describe along multiple limiting gradients (Bridgham et al. 1996), which are primarily 

determined by the sources and chemical composition of hydrologic inputs.  

Classification of the nutrient status of peatland communities is similar to that used 

for water bodies, with nutrient rich peatlands classified as eutrophic and nutrient poor 

peatlands are classified as oligotrophic (Weber 1908 [as cited in Bridgham et al. 1996], 

Warner and Rubec 1997).  However, nutrient levels are not observed to increase directly 

with increasing pH and alkalinity (Figure 2). Nutrient levels tend to be the lowest in 

highly acidic and highly alkaline communities (Bridgham et al. 1996).  The limiting 

nutrients most often associated with peatland communities are nitrogen and phosphorus 

(Bridgham et al. 1996).  Nitrogen availability decreases as the organic content of peat 

increases, with bogs exhibiting the lowest levels of available nitrogen (Gorham 1957).  
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Phosphorus concentrations in bogs, although low, are sufficient to meet the physiological 

needs of the vegetation present (Chapin et al. 2004).  In contrast, phosphorus deficiencies 

are common in extremely rich and calcareous peatlands, where significant accumulations 

of bicarbonate precipitate bind phosphorus in unusable forms (Boyer and Wheeler 1989, 

Almendinger and Leete 1998b).  Although calcium deficiencies are common in terrestrial 

communities (Bolan et al. 2004), calcium is rarely a limiting nutrient in peatland 

communities (Clymo and Hayward 1982, Malmer 1986).  In contrast, elevated calcium 

concentrations are toxic to many plant species (Clymo and Hayward 1982, Ingestad 1973 

[as cited in Bridgham et al. 1996]), and can significantly limit the availability of other 

nutrients when present at elevated concentrations (Wheeler 1980, Boyer and Wheeler 

1989).  As such, nutrient availability peaks in the intermediate communities along the 

bog-fen continuum (Figure 2), with variations in floristic composition and structure 

among peatland communities significantly influenced by the availability of limiting 

nutrients and position along the pH-alkalinity gradient.     

Floristic classifications define peatlands based on changes in floristic composition 

and structure, which primarily reflect changes in environmental conditions (i.e., water 

source, pH and nutrient availability) (Daniels 1978, Cowardin et al. 1979, Gorham and 

Janssens 1992, Vitt 1994).  Similar to water-chemistry based classifications, floristic 

transitions among peatlands are generally defined along a pH-alkalinity gradient by an 

increased presence of fen-indicator plant species (Sjörs 1948, Gorham 1950, Du Rietz 

1954 [as cited in Bridgham et al. 1996]).  In general, fen-indicator species are associated 

with narrow distributions along environmental gradients (Sjörs 1948 and Gorham 1950), 

but rarely represent dominant species in peatland communities (Bridgham et al. 1996).  
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The presence of fen-indicator plant species is an indication of changes in the local 

environment conditions that allow colonization by species with greater nutrient and ionic 

requirements (Glaser et al. 1990), or can represent remnant species, which signify prior 

environmental conditions (Gorham and Janssens 1992).  In contrast, dominant plant 

species in peatland communities distribute broadly along multiple environmental 

gradients (Glaser 1987), and often direct peatland development (Bridgham et al. 1996).  

This trend is most evident in the bimodal distribution of Sphagnaecea L. at low levels of 

pore-water pH and Amblystegiacea at higher pH levels (Gorham and Janssens 1992, 

Hájek et al. 2006), observed in the bryophyte-dominated (Zoltai and Vitt 1995) boreal 

peatlands of North America.   

The application of floristic-based classifications, however, is generally limited to 

the areas for which the classifications were developed (Gore 1983), as fen-indicator and 

dominant species are largely “a matter of human convenience” (Bridgham et al. 1996).  

Nevertheless, plant species, which are commonly associated with peatlands, exhibit 

consistent adaptations in response to the specific environmental conditions in which they 

develop (Mitsch and Gosselink 2000).  For example, plant adaptations, such as 

evergreenness, sclerophylly and nutrient translocation help limit nutrient loss in the 

acidic, nutrient poor environments characteristic of bogs.  Specifically, multiple species 

of the Ericaceae (Heath) family have adapted the ability to acquire nitrogen from amino 

acids (Chapin et al. 1993) or ammonium (Bridgham et al. 1996) rather than nitrate.  In 

addition, carnivorous plants, which are also commonly observed in bogs, trap and digest 

insects to offset nutrient deficiencies (Chapin and Pastor 1994).  In contrast, peatland 

communities associated with high ionic concentrations generally are comprised of low-



10 

 

 

 

stature plant species and exhibit greater floristic diversity (Boyer and Wheeler 1989).  

Severe phosphorus limitations are suspected to influence this trend, which can hinder 

plant growth and prevent dominance by a few species.  In addition, calcium-tolerant plant 

species (i.e., calciphiles) are characteristic of peatlands supplied with calcium-rich 

groundwater discharge (Almendinger and Leete 1998b, Eggers and Reed 1997).   

In general, regionally specific differences in floristic composition and structure 

appear sufficient to define transitions between peatland communities along the multiple 

limiting gradients associated with the bog-fen continuum.  However, many plant species 

that are common to peatland communities also occur in non-peat accumulating 

environments (Eggers and Reed 1997, Amon et al. 2002).  In order to account for such 

similarities, various classification systems have adopted a hierarchical approach that 

defines communities based on increasingly similar characteristics (Warner and Rubec 

1997, Zoltai and Vitt 1995, Cowardin et al. 1979). 

In the United States, the most widely used hierarchical classification of wetland 

communities is the “Classification of Wetlands and Deepwater Habitats of the United 

States” (Cowardin et al. 1979); in which, peatlands are broadly defined by hydrology and 

floristic composition as non-tidal wetlands, dominated by trees, shrubs, herbaceous 

plants, mosses or lichens (i.e., Palustrine).  Additional subclasses, dominance types and 

modifiers are used to distinguish peatlands from other wetland communities and define 

transitions among different peatland communities.  In Canada, where peatlands represent 

a significantly greater portion of the landscape than that of the continental United States, 

a hierarchical approach is used that initially categorizes wetlands based on ontology (i.e., 

development), with peatlands broadly defined as either a bog or a fen.  Further 
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distinctions among bogs and fens are based on topography, water source, water chemistry 

and vegetation composition (Warner and Rubec 1997).  A hierarchical classification of 

peatlands is advantageous in that it allows incorporation of multiple characteristics that 

can be used to distinguish a wide variety of community types across broad geographic 

extents.  Development of a hierarchical classification, however, requires extensive 

knowledge of the geology, geomorphic settings, hydrologic settings and limiting 

gradients that influence the community structure and floristic composition of peatlands 

within the domain of the classification.   

Most peatland classifications, as a result, are regionally oriented or focus on a 

specific peatland community type (i.e., bogs or fens) (Glaser and Janssens 1986, Amon et 

al. 2002).  The advantage of regionally focused classifications is that they emphasize 

specific limiting gradients that influence variations in peatland structure and function.  

Alternatively, the usefulness of these classifications rarely extends beyond the region or 

peatland type for which it was intended, especially if the classification relies heavily on 

locally important floristic indicators.  For example, peatlands in the temperate region of 

North America are distinguished from the expansive, boreal peatlands not only by their 

isolated distributions and reliance on groundwater inputs, but their chemical and physical 

composition as well as vegetation structure (Amon et al. 2002, Bridgham et al. 1996).  

Nevertheless, analyses of peatlands throughout the boreal and circum-boreal regions have 

revealed strong and consistent associations between peatland development (Moore and 

Bellamy 1974), topography (Moore and Bellamy 1974, Glaser and Janssens 1986 and 

National Wetlands Working Group 1988), vegetation structure (Cowardin et al. 1979) 
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and environmental gradients (Sjörs 1948 and 1961, Du Rietz 1954 [as cited in Bridgham 

et al. 1996], Moore and Bellamy 1974).   

In the continental interior of North America, peatlands characterize the extensive 

variation of climatic, geomorphic and hydrologic templates from which they develop.  

From the isolated temperate peatlands to the expansive peatland complexes of the boreal 

region, knowledge of this natural variation provides a foundation from which resource 

managers can effectively inventory, monitor and manage peatland ecosystems.  The sub-

boreal region of the continental interior is a transitional area, reflected in a north to south 

temperature gradient and an east to west precipitation gradient (Albert 1995).  Peatland 

distribution also reflects these gradients, decreasing from north to south and from east to 

west (Wright 1972).  Climatically, this region is defined as humid to sub-humid with 

precipitation increasing from west to east across the study area.  Mean annual 

precipitation ranges from 29 to 33 inches, with roughly two-thirds occurring between the 

months of May and September (Wright 1972).   The transitional nature of the region 

suggests sub-boreal peatlands will share characteristic features of both boreal and 

temperate peatlands.  However, unlike boreal and temperate peatlands, less is known 

regarding the floristic and environmental characteristics associated with sub-boreal 

peatlands in the region.  In addition, population densities and urban development are 

increasing at a higher pace in this region than surrounding areas (Hibbs 2000).  As a 

result, peatlands in this region are subjected to increasing anthropogenic influences, 

which can, and often do result in alterations to the floristic composition, structure and 

environmental characteristics of peatland communities.   
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The objective of the current study was to classify and describe, in terms of 

floristic community and environmental characteristics, the natural variation of peatland 

communities in the sub-boreal region of Minnesota and western Wisconsin.  Specifically, 

I set out to provide a floristically-based classification of peatlands in this region and a 

description of the limiting gradients that influence how these peatlands are structured.  I 

hypothesized that sub-boreal peatlands would be structured along a strong pH-alkalinity 

gradient and would represent transitional communities, both in species composition and 

environmental characteristics, between the boreal and temperate peatland communities in 

the continental interior of North America. 
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CHAPTER 2 

METHODS 

Site Selection and Study Area  

The primary objective of this study was to describe and characterize, in terms of 

floristic community and environmental characteristics, the natural variation of peatland 

communities in the sub-boreal region of Minnesota and western Wisconsin.  Study sites 

were identified through a combination of aerial photography, published county soil 

surveys, peatlands listed in the Field Guide to the Native Plant Communities of 

Minnesota (MNDNR 2003b, MNDNR 2005a and MNDNR 2005b) and in consultation 

with wetland experts from multiple state and federal agencies.  Study sites were selected 

to represent the natural variation of peatland communities in the study area with 

preference placed on sites occurring on public land for ease of access.  Study sites were 

subjectively excluded from analysis if direct, geomorphic or hydrologic alterations were 

observed (e.g., soil removal, ditched, drained or flooded).  In total, 56 study sites were 

located across 13 counties in Minnesota and 2 counties in Wisconsin (Figure 3).  

Data Collection 

Community Composition and Floristic Diversity 

Characteristics of the floristic community, including plant species composition, 

abundance and an estimation of net primary productivity, were collected from 56 sites  
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Figure 3 Fifty-six study sites were distributed across three ecological providences and located in 13 

counties in Minnesota and 2 counties in Wisconsin.  Study sites were selected to represent the known 

variation of natural peatland communities in the sub-boreal region of Minnesota and western Wisconsin.  

during the 2008 – 2009 field seasons (May – October).  All species, except bryophytes, 

were identified to the species level when possible.  Bryophyte identification was limited 

to family associations, based on the bimodal distribution of Sphagnaceae and 

Amblystegiaceae in boreal peatland communities.  Species composition and abundance 

data were collected based on a modified version of the Braun-Blanquet relevé method 

(MNDNR 2007) at multiple, strata-dependent spatial scales: 100m
2
 for bryophyte and 

herbaceous strata and 400m
2
 for shrub and tree strata.  The herbaceous stratum 

encompassed all vascular plant species, woody climbers (e.g. Rhus L., Parthenocissus 

Planch. and Vitis L.), submerged or floating-leaved species (e.g. Utricularia L., 

Potamogeton L. and Myriophyllum L.) and seedling woody species <0.5m in height.  The 
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shrub stratum represented woody plant species between 0.5 – 2.0m in height, and the tree 

stratum represented woody plant species >2.0m in height.  The bryophyte stratum 

accounted for all non-vascular vegetation (e.g., lichens and mosses).  The intent of 

stratum designations was to provide a general description of peatland community 

structure.  Sample plots were positioned to represent the dominant vegetation 

communities present at each site.  Net primary productivity (g/m
2
) of the herbaceous 

stratum was measured by a removal of aboveground biomass from three, randomly 

assigned 0.1m
2
 plots within the 100m

2
 plot at each study site.  All samples of 

aboveground biomass were collected September 22 – October 16, 2008 and September 

23 – 25, 2009.  After removal, samples were dried to a constant mass at 60°C and 

weighed. 

Pore-water Chemistry 

Pore-water characteristics, including pH, electrical conductivity (EC) and water 

temperature, were measured in situ from perforated, closed-bottom wells.  Pore-water 

was defined as near-surface water, within 10cm of the soil surface.  Wells were 

constructed of 6.2cm PVC pipes, cut to lengths of 30cm.  Fifty-six, 4mm perforations 

were evenly spaced around the circumference, from the bottom of the well to a height of 

14cm.  At sites with water tables within 10cm of the peat surface, wells were installed in 

three random locations in the 100m
2
 sample plots to a depth of 10cm below the soil 

surface.  If variable microtopography was present (e.g., hummocks and hollows), wells 

were installed at the hummock base.  After installation, wells were evacuated and 

allowed to equilibrate three times prior to in situ analysis and sample collection.  In situ 

determination of pH, pore-water temperature and temperature compensated EC were 
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recorded with YSI pH100 and YSI EC300 probes respectively.  In addition, three 50ml 

pore-water samples were collected from each well for laboratory analysis.  Collected 

samples were analyzed with an YSI 9500 photometer for total alkalinity (Ca
2+

) and 

available phosphorus within 12 hours of collection. 

At sites where water tables were greater than 10cm below the soil surface, soil 

cores were collected for laboratory analysis of extractable ions.  Three soil cores were 

collected in each 100m
2
 plot to a depth of 10cm and preserved at 4°C prior to analysis.  

Extraction of ions was conducted in a water medium on air-dried and homogenized 

samples following the methods of Day et al. (1979).  Post extraction, filtrate analysis was 

conducted in the same manner as pore-water analysis with EC values corrected for 

conductivity resulting from the disassociation of hydrogen ions (Peech 1965). 

Soils 

A description of the soil profile, which included soil color and texture, was 

recorded at each site.  Soil profiles were described from samples collected using a 

Macaulay peat auger at thicknesses of 30 or 50cm.  Within the profile, depths at which 

changes in soil color and/or soil texture occurred were recorded and described.  Soil color 

(i.e., hue, value and chroma) was determined through comparison with Munsell soil 

charts.  A modified version of the von Post method (ASTM 2000) was used to describe 

soil texture and as a qualitative determination of the degree or organic matter 

decomposition (von Post and Granlund 1926 [as cited in ASTM 2000]).   

An additional three soil cores were collected for laboratory analysis of bulk 

density, organic matter content and carbonate content (calcium carbonate [CaCO3] 
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equivalent).  Bulk density was calculated per dry-weight (g) of sample volume collected 

(cm
3
).  Organic matter content and carbonate content were calculated by loss on ignition 

(LOI) (Bengtsson and Enell 2003, Heiri et al. 2001, Dean 1974) and reported as a 

percentage of dry-weight of the original sample.  Organic matter content (LOI550) was 

determined by heating a dry and ground sample of known mass (~3g) in a muffle furnace 

to a constant temperature of 550°C for 16 hours.  Mass lost through organic matter 

combustion provides a good estimation of the organic carbon content of the soil samples 

(Dean 1974).  Carbonate content (LOI940) of the samples was estimated by a subsequent 

burning at 940°C (ca. 2 hours) (Bengtsson and Enell 2003).  The change in mass between 

the first and second burning is proportional to the change in molecular mass associated 

with the breakdown of various carbonate complexes, and is strongly correlated with the 

carbonate content of clay-poor samples (Dean 1974).   

Water-Table Depth 

Water-table depth was measured in the perforated, closed-bottom wells used for 

pore-water sample collection.  All measurements were taken in reference to the soil 

surface.  If standing water was present, water-table depth was recorded as height above 

the soil surface.  At sites with a water table greater than 10cm below the soil surface, 

depth to the water table was determined from unlined boreholes at intervals of 30 or 

50cm until the water-table depth was determined.  

Data Analysis 

Data analysis was performed on mean floristic and environmental characteristics 

using SigmaPlot for Windows version 11.0 (Systat 2008).  Results were considered 
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significant at α = 0.95 and are reported as p-values throughout.  An one-way analysis of 

variance (ANOVA) was used to compare differences in species richness (alpha diversity) 

between the classified communities.  However, no other variables met the assumptions of 

normality or equal variance.  A non-parametric Kruskal–Wallis one-way ANOVA on 

ranks was used to compare differences in the remaining floristic community and 

environmental characteristics. Multiple pair-wise comparisons were performed using the 

Holm-Sidak (ANOVA) and Dunn’s (ANOVA on ranks) methods when significant 

differences were detected (p ≤ 0.05) between individual characteristics of the classified 

communities.  All data is reported for each classified community type as variable means 

and one standard error.   

Species diversity indices (gamma, alpha and beta) were calculated on the 

complete sample set of species identified for the sample population and optimum cluster 

level.  Species diversity largely reflects the nutrient status of peatland communities, and 

is reflected by an increase in species diversity with an increase in hydrologic inputs form 

mineral-rich water sources (Bridgham et al. 1996).  Total species richness (γ; gamma 

diversity) was measured as the total number of unique species.  Alpha diversity (α) was 

calculated as mean species richness per site and estimated with the Shannon diversity 

index (Greig-Smith 1983).  In addition, Whittaker’s beta diversity (ß) was calculated to 

determine overall floristic similarity among sub-boreal peatlands (Whittaker 1972), and 

was used to correlate changes in floristic composition along environmental gradients.   
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Community Classification 

Prior to community classification, 210 rare species, which occurred in less than 

three study sites, were removed from the community matrix, leaving 100 species in the 

herbaceous stratum, 25 species in the shrub stratum, 6 species in the canopy stratum and 

3 bryophyte taxa for analysis.  Removal of rare species is consistent with multivariate 

analysis and decreases noise associated with the chance occurrence of rare species across 

the landscape while increasing the detection of relationships between community 

structure and environmental variables (McCune and Grace 2002).   

Floristic classification of the 56 study sites was conducted using PC-ORD 

software (McCune and Mefford 2006), and was based on species composition and 

abundance data.  Specifically, study sites were classified by hierarchical agglomerative 

cluster analysis (Post and Sheperd 1974), which groups communities based on 

compositional similarity.  The resulting dendrogram was structured such that the distance 

between study sites, and groups of study sites, decreases as the compositional similarity 

of floristic communities increases. Study sites were grouped using the Sørensen distance 

measure and a flexible beta linkage method (β = -0.25).  The Sørensen distance measure 

is commonly used for community analysis (McCune and Grace 2002) and has been found 

to provide a robust representation of ecological distances (Faith et al. 1987).  Linkage by 

flexible beta is a combinatorial method compatible with semi metric distance measures 

(i.e., Sørensen), providing similar results to Ward’s method at β = -0.25 (McCune and 

Grace 2002).  All study sites were retained for analysis, given that all study sites fell 

within the predefined level of variability, ±3 standard deviations, based on a frequency 

distribution of average distances.   
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 Pruning a cluster analysis dendrogram presents a trade-off between within group 

homogeneity and the number of groups selected (McCune and Grace 2002).  Indicator 

species analysis (ISA) provides an objective method by which the most informative 

cluster level is established based on indicator values of species at each cluster level 

(Dufrêne and Legendre 1997).  Indicator values range from 0–100, and are calculated 

based on the relative frequency and relative abundance of each species for a particular 

cluster grouping and cluster level.  An indicator value of 100 indicates complete fidelity 

of a species to a particular cluster grouping.  The optimum cluster level is established by 

either the lowest mean p-value or the highest number of significant indicator species (p ≤ 

0.05) among cluster groupings.  

Cluster groupings at the optimum cluster level were evaluated by Multi-Response 

Permutation Procedure (MRPP; Zimmerman et al. 1985) on the rank-transformed 

distance matrix.  MRPP is a nonparametric procedure to test the hypothesis of no 

differences between average with-in group distances (McCune and Grace 2002).  This is 

accomplished through calculation of weighted-mean, within group distances (delta; δ); a 

smaller δ indicates greater within group homogeneity.  The probability (p) of achieving a 

smaller δ by chance is assessed by a randomized Monte Carlo procedure where study 

sites are reshuffled as to represent the total number of partitions while maintaining the 

species matrix constant.  MRPP also calculates a test statistic (T) and chance-correlated 

within group agreement (A).  T-values represent the separation among groups, with more 

negative values indicating greater separation, while A-values provide an indication of 

within group homogeneity, ranging between 0 and 1.  An A-value of A=1 is obtained 

when all study sites within a group are identical.   
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Nonmetric multidimensional scaling (NMS; Mather 1976, Kruskal 1964) was 

performed to evaluate cluster analysis groupings and the relationships between 

community structure and environmental variables.  A random starting configuration was 

used with the “slow and thorough” auto plot setting in PC-ORD (McCune and Mefford 

2006).  Dimensionality was assessed automatically based on reductions in stress as a 

function of dimensionality for real and randomized data.  A final run was performed, with 

no step-down in dimensionality and a maximum of 100 iterations, to assess final stress 

and instability using coordinates from the dimension identified as having the lowest 

stress.  In addition, ordination by detrended correspondence analysis (DCA; Hill and 

Gauch 1980) was performed to evaluate the reliability and consistency of results (Økland 

2007).  Percent variance was calculated after-the-fact (Sørensen for NMS and relative 

Euclidean for DCA) and represents the variation of Euclidean distances between study 

sites in ordinal space and the distances between study sites in the original n-dimensional 

space.  Correlations between the ordinal scores of study sites and environmental variables 

were evaluated to assess changes in community structure along environmental gradients.  

MRPP, NMS, ISA and CA were all performed on raw abundance values with rare species 

removed prior to analysis.   
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CHAPTER 3 

RESULTS  

Floristic Classification  

Five sub-boreal peatland community types were classified by cluster analysis 

based on similarities in floristic composition (Figure 4), four of which were identified 

along the bog-fen continuum as Sphagnum Bogs, Herbaceous Fens, Forested Fens and 

Rich/Calcareous Fens.  The fifth sub-boreal peatland community type was characterized 

by the dominance of the invasive grass, reed canarygrass (Phalaris arundinacea L.), 

despite of the broader floristic variation present within the individual Phalaris – 

Dominated Peatland communities.   

Table 1 MRPP (Multi-response Permutation Procedure [Zimerman et al. 1985]) pair-wise comparisons 

between the five classified peatland communities of Minnesota and western Wisconsin.  All pair-wise 

comparisons were significantly different at the Bonferroni corrected α level of 0.005; Pa = Phalaris – 

Dominated, SB = Sphagnum Bogs, HF = Herbaceous Fens, FF = Forested Fens and RF = Rich/Calcareous 

Fens. 

 

Floristic classification of the sub-boreal peatland communities was evaluated by 

Multi-response Permutation Procedure (MRPP; Zimmerman et al. 1985), which revealed 

Pair-wise Comparisons T A P-value 

Pa vs. SB -10.028 0.375 <0.001 

Pa vs. HF  -7.035 0.301 <0.001 

Pa vs. FF  -6.078 0.425 <0.001 

Pa vs. RF  -8.236 0.268 <0.001 

SB vs. HF -13.217 0.342 <0.001 

SB vs. FF -10.034 0.331 <0.001 

SB vs. RF -18.756 0.475 <0.001 

HF vs. FF  -8.238 0.306 <0.001 

HF vs. RF -13.849 0.335 <0.001 

FF vs. RF -10.810 0.305 <0.001 
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high, within group homogeneity (A = 0.614, T = -22.979, p < 0.001), with significant 

pair-wise differences among between all peatland community types (Table 1).  

Classification of the sub-boreal peatland communities was also evaluated by Non-metric 

Multidimensional Scaling, which revealed distinct separations among the different 

peatland community types (Figure 5).  

 

Figure 4 Cluster analysis dendrogram represented the community associations of the 56 sample sites and 

was scaled using the Wishart objective function (Wishart 1969).  Approximately 23 percent information 

remained at the five – cluster level. 
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Figure 5 The final NMS ordination resulted from a stable 2-dimensional solution (final instability = 

0.00019; number of iterations = 100) with moderately high, but acceptable final stress (final stress = 

16.12331) (Kruskal 1964, Clarke 1993); Phalaris – Dominated = ▲, Sphagnum Bog = ○, Herbaceous Fen 

= ▼, Forested Fen = ■, and Rich/Calcareous Fen = ◊.   

Environmental Characteristics  

Pore-water Chemistry 

Significant differences were detected among the different peatland community 

types for all measured environmental characteristics (Table 2).  Analysis of mean pH 

revealed significant differences among the classified communities (HpH = 35.797, p < 

0.001), with significant pair-wise differences detected between multiple community types 

(Table 2).  Similar results, as those observed for pH, were detected for EC and total 
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alkalinity (Table 2).  In addition, a consistent rank-order of pH, EC and total alkalinity 

variable means was observed among community types (i.e., Sphagnum Bogs < 

Herbaceous Fens < Forested Fens < Phalaris – Dominated Peatlands < Rich/Calcareous 

Fens), with the lowest values recorded in Sphagnum Bogs and the highest recorded in 

Rich/Calcareous Fens (pH: HpH = 35.797, p < 0.001; Hconductance = 18.499, p < 0.001; 

Halkalinity = 29.627, p < 0.001).   Available phosphorus did not conform to this trend, but a 

significant difference was detected between Phalaris – Dominated Peatlands and 

Forested Fens (Hphosphoorus = 9.609, p = 0.048) (Table 2).   

Table 2 Mean pore-water characteristics (S.E.) and Kruskal-Wallis ANOVA on Ranks H-statistic and p-

values of the five sub-boreal peatland communities.  Different letters denote significant differences among 

peatland community types (Dunn’s Method, p <0.05).  Significance labeled as: *p<0.05, **p<0.01; Pa = 

Phalaris – Dominated, SB = Sphagnum Bogs, HF = Herbaceous Fens, FF = Forested Fens and RF = 

Rich/Calcareous Fens. 

 

pH Conductance (μS) 

Total Alkalinity 

(mg/l) 

Available Phosphorus 

(mg/l) 

Mean (SE) n Mean (SE) n Mean (SE) n Mean (SE) n 

PH  6.5 (0.5)
ac

 5 431.2 (134.6)
ab

 5 194 (73)
ac

 5 0.9 (0.2) 3 

SB 4.4 (0.2)
b
 12 112.1 (32.9)

a
 12 17 (4)

b
 12 1.5 (0.3) 12 

HF  5.5 (0.2)
ab

 13 208.4 (61.4)
a
 13 42 (8)

ab
 13 2.0 (0.4) 13 

FF  6.1 (0.3)
abc

 7 236.1 (57.2)
ab

 7 77 (30)
abc

 7 2.3 (0.4) 7 

RF 7.1 (0.1)
c
 16 500.9 (71.7)

b
 16 222 (23)

c
 16 1.7 (0.2) 13 

H, P-value 36.797, <0.001** 18.499, <0.001** 29.627, <0.001** 9.609, 0.048* 

 

Soil Characteristics 

No consistent group-by-variable trend was observed between the peatland 

community types and the physical characteristics of their organic soils (Table 3).  

However, the rank-order of mean bulk density paralleled the results observed for pH, EC 

and total alkalinity (Table 2).  Mean soil bulk density was lowest in the Sphagnum Bog 
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communities and highest in the Phalaris – Dominated Peatland communities (H bulk 

density=13.548, p=0.009), but was not different among the other peatland community types.  

LOI550 revealed significant differences in the soil-organic matter content among sub-

boreal peatland communities (H organic matter=21.934, p<0.001), with multiple significant 

pair-wise differences detected (Table 3).  LOI940 revealed significant differences in the 

soil-carbonate content of the sub-boreal peatland communities (H carbonate content=32.360, 

p<0.001), with significant pair-wise differences between peatland Rich/Calcareous Fens, 

Sphagnum Bogs and Herbaceous Fens (Table 3).  Significant differences in the mean 

water-table depth were also detected (H watertable depth=14.295, p=0.006), with a significant 

pair-wise difference between Herbaceous Fens and Sphagnum Bogs (Figure 6).   

Table 3 Mean soil characteristics, water-table depth (S.E.) and Kruskal-Wallis ANOVA on Ranks H-

statistic and p-values of the five sub-boreal peatland communities.  Different letters denote significant 

differences among peatland community types (Dunn’s Method, p <0.05).  Significance labeled as: *p<0.05, 

**p<0.01; Pa = Phalaris – Dominated, SB = Sphagnum Bogs, HF = Herbaceous Fens, FF = Forested Fens 

and RF = Rich/Calcareous Fens. 

 

Bulk density (g/cm
3
) LOI550 (% DW) LOI940 (% DW) 

Mean (SE) n Mean (SE) n Mean (SE) n 

PH 0.21 (0.06) 5   45.36 (14.42)
b
 5  3.06 (1.38)

ab
 5 

SB 0.07 (0.01) 14 85.74 (1.39)
a
 14 0.50 (0.08)

a
 14 

HF 0.12 (0.03) 13 56.55 (8.27)
b
 13 0.69 (0.10)

a
 13 

FF 0.15 (0.03) 7  63.45 (6.94)
ab

 7  1.38 (0.30)
ab

 7 

RF 0.18 (0.03) 17 53.66 (5.43)
b
 17 9.78 (3.29)

b
 17 

H, P-value 13.548, <0.001** 21.843, <0.001** 32.360, <0.001** 

 

Community Characteristics 

Herbaceous Productivity 

Productivity of the herbaceous strata varied significantly among sub-boreal 

peatland communities (Hproductivity = 39.920, p < 0.001), and ranged from 88.9 g/m
2
 in 

peatlands classified as Forested Fens, to 924.9 g/m
2
 in Phalaris – Dominated Peatlands 
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(Figure 7).  Significant pair-wise differences were observed between Sphagnum bogs, 

Forested Fens, and the other classified community types (Figure 7).   

 

Figure 6 Mean water table depth, 95 percent confidence intervals, Kruskal–Wallis H statistic and p-value 

for the five sub-boreal peatland community types.  Different letters denote pair-wise differences as 

determined by Dunn’s Method. 

Floristic Diversity and Indicator Species 

Three hundred and forty-one plant species across four strata were identified from 

56 sites during the 2008 and 2009 field seasons.  The majority of the plant species, 273, 

occurred in the herbaceous stratum; 49 occurred in the shrub stratum and 15 in the 

canopy stratum.  However, since each vascular plant species was also defined by the 

stratum or strata in which it occurred, only 297 unique vascular plant species were 

recorded in sub-boreal peatland communities.  Nineteen of the 341 species were recorded 

in two different strata (i.e., herbaceous and shrub strata or shrub and canopy strata), and 
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10 species were recorded in the herbaceous, shrub and canopy strata.  In addition, four 

families of bryophytes, Sphagnaceae, Thudiaceae, Amblystegiaceae and Polytrichaceae, 

and one family of liverworts, Ricciacea, were recorded in sub-boreal peatland 

communities.    

 

Figure 7 Mean productivity of the herbaceous strata, 95 percent confidence intervals, Kruskal–Wallis H 

statistic and p-value for the five sub-boreal peatland community types.  Different letters denote pair-wise 

differences as determined by Dunn’s Method. 

Two-hundred five plant species (out of the 341species indentified) were defined 

as rare (having <3 occurrences among all sample sites), and represented roughly 60% of 

all species surveyed, with 122 species occurring only once.  Eighteen species were 

considered “wide-spread”, occurring in 20% or more sites.  Carex stricta Lam. and 

Calamagrostis canadensis (Michx.) P. Beauv. were the most common species recorded, 

occurring in 43% and 45% of all sites, respectively.  Species diversity was significantly 
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different among sub-boreal peatland communities (HShannon’s = 19.728, p < 0.001) (Table 

4).  In addition, mean species richness differed among the classified peatland community 

types (Falpha = 6.686, p < 0.001) with the highest mean species richness observed in 

Forested Fen communities (34 species), while the lowest mean species richness was 

observed in Phalaris – Dominated Peatlands (8 species) (Table 4).  Similar trends were 

observed in the variation of both gamma diversity and beta diversity between the 

classified peatland communities (Table 4).    

Table 4 Total and mean diversity indices (S.E.), Kruskal-Wallis ANOVA on Ranks H-statistic and 

ANOVA F-statistic (Alpha diversity only) and p-values of the five classified peatland communities of 

Minnesota and western Wisconsin.  Different letters denote significant differences among peatland 

community types (Dunn’s  – Kruskal-Wallis and Holm-Sidak – ANOVA, p <0.05).  Significance labeled 

as: *p<0.05, **p<0.01; Pa = Phalaris – Dominated, SB = Sphagnum Bogs, HF = Herbaceous Fens, FF = 

Forested Fens and RF = Rich/Calcareous Fens. 

 n Gamma 

Alpha Shannon’s 

Beta Mean (SE) Mean (SE) 

All sample sites 56 341 20.4 (1.6) 2.66 (0.09) 15.8 

 Peatland Type      

 PH 5 23  8.0
 
(0.3)

a
 1.89

 
(0.04)

a
 1.9 

 SB 14 83 15.3
 
(1.7)

ac
 2.43

 
(0.15)

ac
 4.4 

 HF 13 103 18.6
 
(2.2)

ac
  2.58

 
(0.21)

abc
 4.5 

 FF 7 133 34.1
 
(2.5)

b
 3.39

 
(0.07)

b
 2.9 

 RF 17 175  24.0
 
(3.6)

bc
 2.83

 
(0.17)

bc
 6.3 

(F); H, P-value  - (6.686), <0.001** 19.728, <0.001** - 

 

Sixty-nine plant species were identified as significant indicators (p ≤ 0.05) 

(Dufrêne and Legendre 1997) of the five classified sub-boreal peatland community types 

(Table 5).  Significant indicator species with high indicator values (IV) displayed fidelity 

to particular peatland community types (Dufrêne and Legendre 1997, McCune and Grace 

2002), and were used to distinguish sub-boreal peatland communities based on floristic 

composition.  Forested Fen communities possessed the greatest number of significant 
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indicator species with 27, while only three significant indicator species were identified 

for Phalaris – Dominated Peatlands (Table 5).   

Phalaris arundinacea – Dominated Peatlands (Type I) 

 Twenty-three plant species were observed in the Phalaris – Dominated Peatland 

communities (Appendix 1).  Three species, P. arundinacea (IV = 76.7, p = 0.001), Carex 

lacustris Willd. (IV = 48.1, p = 0.005) and C. canadensis (IV = 32.7, p = 0.041), were 

identified as significant indicators with relative frequencies of 100, 80 and 80%, 

respectively (Table 5).  Ten of the 23 total species identified in Phalaris – Dominated 

Peatlands were observed in at least four of the five sub-boreal peatland community types.  

P. anrundinacea, in addition to being the most significant indicator species of Phalaris – 

Dominated Peatlands, was recorded in four of the five classified peatland community 

types, with the exception of Sphagnum Bogs.  Seven additional species occurred in four 

sub-boreal peatland community types (Table 5), and C. lacustris, and C. canadensis, 

were recorded in all five classified peatland community types.  Herbaceous-stratum 

species represented 21 of the 23 species recorded in Phalaris – Dominated Peatlands.  

The two remaining species, Salix petiolaris Sm. and Salix planifolia Pursh, occurred in 

the shrub stratum, and were present in 20% of Phalaris – Dominated Peatlands 

(Appendix 1).  Five of the 23 plant species observed in Phalaris – Dominated Peatlands 

were considered rare.  Three species, Polygonum persicaria L., Rorippa palustris (L.) 

Besser and Carex pellita Muhl. ex Willd., were exclusively recorded in Phalaris – 

Dominated Peatlands. 
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Sphagnum Bogs (Type II) 

Eighty-five species were recorded in the sub-boreal peatland communities 

classified as Sphagnum Bogs (Appendix 2).  Sixteen species were identified as significant 

indicators (Table 5).  Various species of the family Sphagnaceae L., genus Sphagnum L. 

(referred henceforth to as “Sphagnum”) occurred with 100% relative frequency with an 

IV of 66.9 (p = 0.001).  Sphagnum was also observed in four of the five classified sub-

boreal peatland communities, with the exception of Phalaris – Dominated Peatlands.  

Twelve species were identified as significant indicators of Sphagnum Bogs (Table 5), 

three of which with IV’s > 50.  In addition, nine of the 12 significant indicator species 

were exclusively observed in Sphagnum Bogs (Table 5).  Four indicator species, 

Chamaedaphne calyculata var. angustifolia (L.) Moench, Picea mariana (Miller) BSP. 

and Vaccinium angustifolium Aiton, were represented in multiple strata,  while Larix 

laricina (DuRoi) K. Koch was observed in the herbaceous, shrub and tree strata.  Eleven 

of the 83 species identified in Sphagnum Bogs were common throughout the 56 study 

sites; 36 species were classified as rare and 33 species were exclusively recorded in the 

sub-boreal peatlands classifies as Sphagnum Bogs (Appendix 2). 

Herbaceous Fens (Type III) 

 One-hundred three plant species were recorded in the sub-boreal peatlands 

classified as Herbaceous Fens (Appendix 3).  Twelve species, all from the herbaceous 

stratum, were identified as significant indicators (Table 5).  Seven of the 12 significant 

indicator species were exclusively observed in Herbaceous Fens (Table 5).  Cicuta 

bulbifera L. (IV = 81.3 p = 0.001), Carex lasiocarpa Ehrh. var. americana Fernald (IV = 
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65.8 p = 0.001) and Lysimachia thrysiflora L. (IV = 47.8 p = 0.003) were the most 

common significant indicator species, occurring with relative frequencies of 85, 69 and 

54%, respectively (Table 5).  C. canadensis also occurred with high relative frequency 

(62%), although not identified as a significant indicator of Herbaceous Fens.  Locally 

abundant shrub populations were recorded in six of 13 peatland communities classified as 

Herbaceous Fens.  However, the frequencies of occurrence were significantly less than 

herbaceous equivalents (Table 5).  S. petiolaris, Betula pumila L. var. glandulifera Regel 

and Alnus incana (L.) ssp. rugosa (Du Roi) R.T. Clausen were the most common shrub 

species, all with relative frequencies <40%.  Thirteen plant species were common across 

the 56 study sites, 36 were classified as rare and 33 species were exclusively recorded in 

peatland communities classified as Herbaceous Fens (Appendix 3).  

Forested Fens (Type IV) 

 One-hundred thirty-three plant species were recorded in the sub-boreal peatland 

communities classified as Forested Fens (Appendix 4).  Twenty-seven species were 

identified as significant indicators (Table 5), 10 of which were exclusive to Forested 

Fens.  Five significant indicator species, Acer rubrum L. var. rubrum (IV = 57.1, p = 

0.001), Fraxinus nigra Marsh. (IV = 57.1 p = 0.001), Betula alleghaniensis Britton var. 

alleghaniensis (IV = 57.1 p = 0.001), Thuja ocidentalis L. (IV = 49.2 p = 0.006) and 

Ulmus americana L. (IV = 32.7 p = 0.009), reflected the distinct tree stratum present in 

Forested Fens.  Four of these five indicator species (all except U. americana) occurred 

exclusively in Forested Fen communities (Table 5).  The most common significant 

indicators were Rubus pubescens Raf. var. pubescens (IV = 70.0 p = 0.001), 

Maianthemum canadense Desf. (IV = 58.4 p = 0.002) and Athyrium filix-femina (L.) Roth 
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ssp. angustum (Willd.) R.T. Clausen (IV = 71.4 p = 0.001), all occurring at relative 

frequencies >70%, with R. pubescens var. pubescens present in all Forested Fen 

communities.  Seventy-one species were classified as rare, 15 species were common 

among all study sites and 70 plant species were exclusively recorded in sub-boreal 

peatland communities classified as Forested Fens (Appendix 4).   

Rich/Calcareous Fens (Type V) 

 One-hundred seventy-five plant species were recorded in the sub-boreal peatland 

communities classified as Rich/Calcareous Fens (Appendix 5).  Eleven species were 

identified as significant indicators of Rich/Calcareous Fens (Table 5), five of which, 

Pycnanthemum virginianum (L.) Durand and Jackson (IV = 47.1, p = 0.001), Cirsium 

muticum Michaux (IV = 42.1, p = 0.008), Poa pratensis L. ssp. pratensis (IV = 23.5, p = 

0.05), Calamagrostis stricta (Timm) Koeler ssp. stricta (IV = 23.5, p = 0.039) and 

Frangula alnus Mill. (IV = 23.5, p = 0.049), were exclusively recorded in 

Rich/Calcareous Fens (Table 5).  Two of the 11 significant indicator species, C. stricta 

(IV = 63.4, p = 0.001) and Eupatorium maculatum L. (IV = 49.5, p = 0.002), were 

considered widespread across all 56 study sites and were observed in four of the five 

classified sub-boreal peatland communities (Table 5).  C. stricta was the most common 

species recorded across all 56 study sites, and was also the most commonly recorded 

species in Rich/Calcareous Fens, occurring at a relative frequency of 94%.  Two species 

from the shrub stratum were also identified as significant indicators, Salix discolor Muhl. 

(IV = 25.3, p = 0.048) and F. alnus (IV = 23.5, p = 0.049), occurring at 29 and 24% 

relative frequencies, respectively.  Eighteen of the 175 plant species recorded in 

Rich/Calcareous Fens were common across all study sites and 92 species were classified 
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as rare.  In addition, 90 species were exclusively recorded in the sub-boreal peatland 

communities classified as Rich/Calcareous Fens (Appendix 5).   

Table 6 Correlation coefficients (r), p-values and the number of study sites (N) used to calculate Spearman 

Rank Order correlations between NMS axis 1 and axis 2 ordinal scores and environmental and floristic 

characteristics.  Significance labeled as: *p<0.05, **p<0.01. 

 

Variable 

  NMS axis 1 NMS axis 2 

N r P r P 

pH 53     0.608** <0.001      0.727** <0.001 

Electrical conductivity 53     0.464** <0.001      0.619** <0.001 

Total alkalinity 53     0.573** <0.001      0.692** <0.001 

Available phosphorus  48 0.193 0.19  0.007 0.96 

Bulk density 53   0.333* 0.02      0.543** <0.001 

Von Post  51   0.344*   0.014  0.191 0.18 

Peat depth  53 0.089 0.53 -0.152 0.28 

LOI550  51  -0.279* 0.05     -0.692** <0.001 

LOI940  51     0.720** <0.001      0.648** <0.001 

Depth to water table   55 0.056 0.68    0.266* 0.05 

Herbaceous productivity 56    -0.00082 0.99      0.793**  <0.001 

Species richness 56     0.544** <0.001 -0.163  0.23 

Shannon's diversity 56     0.539** <0.001 -0.163 0.23 

 

Ecological Gradients 

The final ordinal arrangement explained a cumulative 64% of the observed 

structural variation between study sites, with 16% represented by axis 1 and 47% 

represented by axis 2 (Figure 8).  The distribution of peatland communities in ordinal 

space reflected strong community association with pore-water chemistry, floristic 

diversity and the productivity of the herbaceous stratum (Figure 8).  This was indicated 

by the strong and significant correlations detected between ordinal scores of study sites 

and the corresponding floristic and environmental characteristics (Table 6), in addition to 

the separations observed along axes 1 and 2 (Figure 8).  The strongest correlations were 
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between axis 2 and pH (r
2
 = 0.727, p < 0.001) and herbaceous productivity (r

2
 = 0.793, p 

< 0.001) (Table 6).  Community distributions along axis 2 reflected a strong floristic 

gradient coincident with significant changes in pore-water pH and total alkalinity (Ca
2
 
+
) 

(Figure 8).  In particular, the greatest separation along axis 2 was observed between the 

acidic and calcium poor environments of Sphagnum Bogs and the more alkaline and 

calcium rich environments of Rich/Calcareous Fens (Figure 8).  Changes in floristic 

diversity and herbaceous productivity were inversely related along axis 1 (Figure 8), with 

positive correlations observed for floristic diversity indices and a negative correlation 

with herbaceous productivity (Table 6).   
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Figure 8 NMS ordination with joint – plot vectors that show the relationship between ordinal scores and 

measured environmental and community characteristics.  The angle and length of joint – plot vectors 

represent the direction and strength of ecological gradients along which sub-boreal peatlands are structured.  

Peatland types represent cluster analysis groupings; Phalaris – Dominated = ▲, Sphagnum Bog = ○, 

Herbaceous Fen = ▼, Forested Fen = ■, and Rich/Calcareous Fen = ◊.  The mean group values were used 

in place of missing environmental characteristics in order to construct joint plot vectors.   
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CHAPTER 4 

DISCUSSION 

The objective of this study was to characterize and describe the variation in 

floristic and environmental characteristics among sub-boreal peatlands in Minnesota and 

western Wisconsin.  In addition, I set out to provide a classification of sub-boreal 

peatlands from which resources managers could accurately define, inventory and manage 

peatland communities in the region.  I hypothesized that floristic variation among sub-

boreal peatlands would correlate with a strong pH-alkalinity gradient, and sub-boreal 

peatlands would represent transitional communities, both in terms of floristic 

composition and environmental characteristics, between the boreal and temperate 

peatlands of the continental interior of North America.    

Five distinct peatland community types were identified using multivariate 

analysis of 56 study sites located in the sub-boreal region of Minnesota and western 

Wisconsin.  As hypothesized, the variation among sub-boreal peatlands significantly 

correlated with a strong pH-alkalinity gradient and reflected the commonly describe bog-

fen continuum.  Differences among the sub-boreal peatland community types were 

defined by changes in floristic composition and environmental characteristics.  These 

changes also reflected a north to south climactic gradient, with sub-boreal peatlands 

representing a transitional link between the expansive boreal peatlands (Gorham 1991, 

Boelter and Verry 1977, Vitt 1994, Zoltai and Vitt 1995, Gorham et al. 2007, Glaser and 

Janssens 1986) and the isolated temperate peatlands (Carpenter 1995, Thompson 1993, 
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Almendinger and Leete 1998a, Amon et al. 2002, Bedford and Godwin 2003).  The 

results of this study complemented previous work conducted on peatland communities in 

North America, which had focus primarily on boreal peatlands and more recently 

temperate peatlands in the Midwest United States, by providing a description of the 

environmental and floristic characteristics associated with these transitional communities 

and the associations with their boreal and temperate counterparts.  The classification 

presented can simplify peatland identification and facilitate peatland inventory in a region 

disproportionately affected by anthropogenic pressures through urban expansion and high 

population densities (Hibbs 2000).  In addition, results indicated that sub-boreal peatlands 

are susceptible to invasion and dominance by the invasive grass, Phalaris arundinacea, 

which was found to substantially decrease floristic diversity.  Changes in wetland 

structure, function and floristic composition have been attributed to P. arundinacea 

establishment throughout the Midwest United States (Galatowitsch et al. 1999), and this 

study highlighted the potential of P. arundinacea to affect the regional diversity of sub-

boreal peatlands.   

Peatland Classification 

Floristic classification of sub-boreal peatlands revealed five distinct community 

types.  The observed variations among sub-boreal peatlands reflected the commonly 

described bog-fen continuum, with Sphagnum Bogs and Rich/Calcareous Fens 

representing end-point communities along the continuum.  Differences in environmental 

characteristics, particularly pore-water pH, total alkalinity, EC (Table 2) and soil 

carbonate content (Table 3), among the classified community types supported the 

floristic-based classification; and as hypothesized, variations among sub-boreal peatlands 
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correlated with a strong pH-alkalinity gradient.  Community transitions along a pH-

alkalinity gradient are common among boreal peatlands in North America, and 

classifications frequently use pore-water chemistry to define transitions between peatland 

community types (Warner and Rubec 1997, Zoltai and Vitt 1995, Gorham and Janssens 

1992, Glaser et al. 1990).   

Other classifications of wetland communities in this region identify between nine 

(Eggers and Reed 1997) and 26 (MNDNR 2003a) different classes of native peatland 

communities based on differences in vegetation community structure and local 

environmental conditions.  The results of this study, however, indicated that the floristic 

compositions and local environmental conditions among sub-boreal peatland 

communities did not vary within each community type such that greater divisions were 

necessary.  One explanation for the reduced number of peatland community types 

identified is that the previous classifications included non-peat accumulating 

communities, which increased the floristic variation on which the classifications were 

based.  As such, some vegetation communities, identified as peatlands, also were found 

to occur on mineral soils (Eggers and Reed 1997, MNDNR 2003a).  In addition, the study 

area, although large, was limited to the sub-boreal region of Minnesota and western 

Wisconsin, which may have excluded other peatland communities found outside the 

study area.  Nonetheless, broad variation was observed among the classified sub-boreal 

peatland community types, which was indicative of the large geographic extent of the 

study area and the dynamic nature of the glaciated landscape.   

The majority of peatlands surveyed in this study were distributed near the border 

between two major Ecological Provenances (ECOMAP 1993) in the region, the 
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Laurentian Mixed Forest and the Eastern Broadleaf Forest (Figure 3).  The Eastern 

Broadleaf Forest Provenance constitutes an area in which precipitation roughly equals 

evapotranspiration (Wright 1972), and is as an ecotone between the semiarid prairie and 

the semi-humid mixed deciduous-coniferous forested ecosystems in the region (Albert 

1995).  Similarly, this transitional nature was observed in the floristic and environmental 

characteristics of peatland communities surveyed in this study, as well as their spatial 

distribution in the region.  In particular, the distribution of peatlands classified as 

Sphagnum Bogs was concentrated in the northern portion of the study domain.  Similar 

peatland communities are common throughout northern Minnesota (Boelter and Verry 

1977, Glaser 1987). In contrast, the peatland communities classified as Rich/Calcareous 

Fens were primarily distributed in the southern portion of the study domain, and were 

floristically and environmentally similar to the temperate peatlands of the continental 

interior of North America (Amon et al. 2002).   

Environmental Characteristics 

The range of variation observed in environmental characteristics (Table 2, Table 3 

and Figure 6) indicated substantial differences among sub-boreal peatlands in the source 

and the chemical composition of hydrologic inputs.  Previous studies have shown that a 

change in the source or chemical composition of hydrologic inputs is the primary factor 

that governs transitions between peatland community types (Moore and Bellamy 1974, 

Bridgham et al. 1996, Warner and Rubec 1997, Zoltai and Vitt 1995).  In this study, no 

attempt was made to quantify hydrologic inputs; however, changes in pore-water 

chemistry are commonly used to infer changes in the chemical composition and relative 

source of hydrologic inputs (Sjörs 1950, Glaser 1987, Glaser et al. 1990).   
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This study showed that differences in mean pore-water chemistry (pH, total 

alkalinity and EC) were the primary environmental characteristics found to distinguish 

the different sub-boreal peatland community types (Table 2).  Specifically, mean levels of 

pore-water pH, total alkalinity and EC exhibited an increasing trend from Sphagnum 

Bogs to Rich/Calcareous Fens (Table 2).  The parallel relationship between changes in 

pore-water chemistry and transitions between peatland community types has been 

observed in boreal peatland communities throughout Europe (Du Rietz 1949 and Du 

Rietz 1954 [as cited in Bridgham et al. 1996], Sjörs 1961, Moore and Bellamy 1974, 

Sjörs 1950, Wheeler and Proctor 2000) and North America (Warner and Rubec 1997, 

Zoltai and Vitt 1995, Gorham and Janssens 1992); however, the point at which a 

transition is observed is often dependent on regionally specific environmental factors and 

floristic compositions of the peatland communities (Bridgham et al. 1996).   

Sphagnum Bogs were distinguished from other sub-boreal peatland community 

types by a mean pore-water pH of 4.4 and mean total alkalinity of 17mg/l.  In comparison 

however, the mean level of total alkalinity in Sphagnum Bogs was considerably higher 

than the level of <2mg/l reported for boreal bogs of northern Minnesota (Heinselman 

1963, Glaser 1987, Glaser et al. 1990).   The higher levels of mean total alkalinity, 

combined with a mean pH >4.2, indicated that Sphagnum Bogs were more similar, in 

terms of pore-water chemistry, to semi-ombrogenous or weakly minerotrophic peatlands 

of the boreal region (Heinselman 1963).  Herbaceous Fens were weakly acidic peatlands, 

with pH a mean pH of 5.5 and mean total alkalinity of 42mg/l.  As such, Herbaceous 

Fens were most similar to Sphagnum Bogs, in terms of environmental characteristics, 

than the other classified sub-boreal community types.  The higher levels of total alkalinity 
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and pore-water pH indicated that Herbaceous Fens received considerably greater 

hydrologic inputs from minerogenous water sources than Sphagnum Bogs, and represent 

the most acidic and ionic poor of fen peatlands in the sub-boreal region.  Phalaris – 

Dominated Peatlands and Rich/Calcareous Fens were the most ion-rich of the classified 

sub-boreal peatland communities, with mean levels of total alkalinity >190mg/l (Table 

2), which are consistent with those reported in calcareous fens of the Minnesota River 

Valley (Almendinger and Leete 1998b) and the temperate fens of the Midwest United 

States (Amon et al. 2002).  Temperate fens are distinguished from their boreal 

counterparts by a direct dependence on sustained hydrologic inputs from groundwater 

discharge to facilitate organic matter accumulation (Bedford and Godwin 2003), and as a 

result, pore-water pH generally exceeds 7.0 with total alkalinity levels that range between 

50 and 292mg/l (Amon et al. 2002).  In the boreal region of Minnesota, extremely rich 

fens are defined by pH values >7.0 and total alkalinity levels >30 mg/l (Glaser 1987).  

All sub-boreal peatland communities, with the exception of Sphagnum bogs, exceeded 

total alkalinity levels of 30 mg/l.  This may indicate that Herbaceous Fens and Forested 

Fens receive a greater proportion of hydrologic inputs from minerogenous water sources 

that originate from calcareous substrates (Vitt and Chee 1990, Glaser et al. 1990), which 

are common throughout central and southern Minnesota (Wright 1972), but considerably 

less than the high amounts observed in Rich/Calcareous Fens.  Mean pore-water 

chemistries of Forested Fens were intermediate, but still exceeded the levels of extremely 

rich boreal fens.  Although not analyzed, inputs of dissolved iron as iron ochre were 

recorded in many of the Forested Fen communities, which may have contributed to the 
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elevated pore-water EC levels recorded while total alkalinity remained slightly above that 

observed in Herbaceous Fens (Table2).    

Other environmental characteristics, including pore-water EC (Table 2), soil 

carbonate content and soil organic matter content (Table 3), were observed to co-vary 

with pore-water pH and total alkalinity (Table 2) and could be used to distinguish sub-

boreal peatland community types.  Water table depth (Figure 6) and available phosphorus 

(Table 2), although significantly different among peatland community types, were less 

useful in the classification of sub-boreal peatland communities due to variation among 

community types.  However, mean water-table depths (Figure 6) provided an indication 

of water-table stability in sub-boreal peatlands, which have elsewhere been shown to be 

an important gradient along which peatlands are structured (Laitinen et al. 2008)  

Herbaceous Fens, Rich/Calcareous Fens and Phalaris – Dominated Peatlands exhibited 

the highest hydrologic stability among sub-boreal peatlands (Figure 6), with mean water-

table depths of 4.5cm ± 4.7 in Herbaceous Fens, -3cm ± 5.0 in Rich/Calcareous Fens and 

4.0cm ± 5.0 in Phalaris – Dominated Peatlands.  In contrast, Sphagnum Bogs exhibited 

the greatest variation in mean water-table depth (-18cm ± 10.2).  Variation in mean 

water-table depth was observed to decrease as climactic pressures increased from north to 

south.  Peatlands in the southern portion of the study area experience an increased 

dependence on groundwater discharge to sustain organic matter accumulation.  The low 

variation in water-table depths among Herbaceous Fens, Rich/Calcareous Fens and 

Phalaris – Dominated Peatlands was indicative of the stable hydrologic settings in which 

they occurred and constant hydrologic inputs from groundwater discharge, which 

supported the premise that the majority of sub-boreal peatlands were fen-classified 
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communities.  In contrast, inter-annual and intra-annual changes in water table depths are 

common in boreal peatland communities, with 1–2m drawdowns observed in the water 

tables of precipitation-dominated peatlands during periods of prolonged draught (Glaser 

et al. 1997).  This suggested that Sphagnum Bogs in the sub-boreal region of Minnesota 

and western Wisconsin were, primarily, precipitation dominated peatlands, with only 

limited amounts of external hydrologic inputs.   

Inter-annual and intra-annual variations in nutrient levels, particularly nitrogen 

and phosphorus, have been shown to occur in peatland communities and are not useful in 

the classification of peatland communities (Vitt et al. 1995b).  Most surprisingly 

however, were the low levels of available phosphorus (0.9mg/l ± 0.2) observed in the 

Phalaris – Dominated sub-boreal Peatlands.  P. arundinacea is an invasive grass species 

that is commonly associated with wetlands disturbed by nutrient enrichment and 

sediment deposition from agriculture (Green and Galatowitsch 2001, Green and 

Galatowitsch 2002, Werner and Zedler 2002).  However, in this study none of the sub-

boreal peatlands classified as Phalaris – Dominated were situated in agricultural 

landscapes.  The low level of available phosphorus was more likely the result of bi-

carbonates and phosphate complexes that immobilize phosphorus in areas associated with 

elevated bi-carbonate levels (Boyer and Wheeler 1989).   In fact, three of the five 

Phalaris – Dominated sites were in located in the same peatland complexes as other 

communities classified as Rich/Calcareous Fens, with pH levels >7.0, total alkalinities 

>300mg/l and soil carbonate contents >3.0% of dry weight.   
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Floristic and Community Characteristics 

Floristic differences among sub-boreal peatlands also reflected a strong pH-

alkalinity gradient.  In particular, changes in the relative frequencies of Sphagnacea and 

Amblystegiacea (Table 5) conformed to the bimodal distributions between Sphagnacea at 

low pH and Amblystegiacea at higher pH levels observed in boreal peatland communities 

(Gorham and Janssens 1992, Vitt et al. 1995a).  The decrease in the relative frequency of 

Sphagnum with increasing pore-water pH also corresponded with the absence of calcium-

tolerant Sphagnum species in extremely rich fen communities in central Europe (Hájek et 

al. 2006), with only one occurrence of Sphagnum recorded in the 17 study sites classified 

as Rich/Calcareous Fens.  In contrast, the relative frequency of Amblystegiaceae species 

peaked in the Forested Fen communities at 57% (Table 5), with no occurrences recorded 

in Sphagnum Bogs. Other species, such as Alnus incana ssp. rugosa (Du Roi) Clausen, C. 

stricta, C. lasiocarpa, Cladium mariscoides (Muhl.) Torr, Clintonia borealis (Aiton) 

Raf., Dasiphora fruticosa (L.) Rydb. ssp. floribunda (Pursh) Kartesz, Elocharis 

compressa Sull, Muhlenbergia glomerata (Willd.) Trin. and T. occidentalis, among 

others, have been shown elsewhere to be minerotrophic indicator species (Jeglum 1991, 

Glaser et al. 1990 and Amon et al. 2002), and were all recorded with greater frequencies 

in fen-classified sub-boreal peatlands (Table 5).   

Floristic variations among sub-boreal peatlands were defined, primarily, by 

significant indicator species, identified by indicator species analysis (Dufrêne and 

Legendre 1997).  Many of which were exclusively found in a particular peatland 

community type (Table 5).  Indicator plant species have traditionally been used in the 

classification of peatlands to define transitions between different floristic communities 
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along environmental gradients (Locky et al. 2005, Zoltai and Vitt 1995, Glaser et al. 

1990, MNDNR 2003a, Gorham and Janssens 1992).  Similarly, indicator species 

identified in this study were associated with distinct environmental conditions.  Unlike 

most studies, many of the indicator species identified were also found to be dominant 

species, and represented the prevailing vegetation stratum from which sub-boreal 

peatlands were defined.   

Sphagnum Bogs were characterized by high relative frequencies of Sphagnum and 

other indicator species of nutrient poor and acidic environments associated with limited 

mineral-rich hydrologic inputs (e.g., Picea mariana, Chamaedaphne calyculata var. 

angustifolia, Vaccinium oxycoccos and Carex oligosperma).  However, a number of 

species commonly regarded as minerotrophic or “fen” indicators (Carex trisperma 

Dewey var. trisperma, Cladium mariscoides (Muhl.) Torr., Drosera rotundifolia L. var. 

rotundifolia and Rhamnus alnifolia L'Hér) (Glaser et al. 1990) were observed in 

Sphagnum Bogs.  Variation among Sphagnum Bogs reflected the presence or absence of 

a tree stratum.  Tree canopies in Sphagnum Bogs were not as dense as those observed in 

Forested Fens, and were composed of solely of P. negra and L. laricina.  Other 

classifications have characterized these communities as Open or Forested Bogs (Eggers 

and Reed 1997) and as acidic peatlands, with distinctions made between changes in the 

dominant floristic composition (e.g. Northern Open bog, Poor Tamarack – Black Spruce 

Swamp, Northern Spruce bog and Northern Poor Fen) (MNDNR 2003b).  Regardless of 

how these communities are classified, all reflect the nutrient poor and acidic conditions 

associated with Sphagnum dominance, with a distinction between forested and open 

communities.  This distinction was also observed among the sub-boreal Sphagnum Bogs; 
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however, the limited variation observed in this study did not support separate distinctions 

between the two communities.     

Herbaceous Fens are common throughout the region, and as observed in ordinal 

analysis, span a large ecological distance (Figure 5).  Significant indicator species 

characteristic of Herbaceous Fens primarily represented similarities in the herbaceous 

strata (Table 5), and were a reflection of stable hydrologic conditions with a positive 

mean water table (Figure 6).  In the boreal region of northern Minnesota, these 

communities often occur as transitional communities between bogs and more nutrient-

rich fen communities (Heinselman 1963).  Isolated occurrences of Sphagnum Bogs were 

observed within larger complexes of Herbaceous Fen communities, which may indicate 

succession to Sphagnum-dominated peatlands in areas where inputs of precipitation offset 

climactic pressures.  Variation within Herbaceous Fens also reflected an increase in the 

frequency of woody species, primarily Alnus incana ssp. rugosa and Salix petiolaris.  In 

addition, other shrub-stratum species frequently observed included Cornus sericea L. ssp. 

pallens (Banks ex Ging), S. discolor, Cornus racemosa Lam., Spirea tomentosa L. var. 

rosea, Betula pumila L. var glandulifera Regel, and Ribes americanum Mill. (Appendix 

3).   Shrub-dominated peatlands are common throughout Minnesota and Wisconsin 

(Eggers and Reed 1997), and the lack of a distinct shrub-dominated peatland community 

type may indicate that this community type was not adequately sampled.  Herbaceous 

species most frequently observed with greater shrub coverage were Spirea alba, 

Triadenum fraseri and Carex utriculata.  Whereas higher frequencies of Bidens aristosa 

and Carex lasiocarpa var. americana were characteristic of the mostly herbaceous 

dominated communities of Herbaceous Fens.  Increased hydrologic inputs, as evidenced 
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by higher water tables, also were observed to alter the community composition of 

Herbaceous Fens, which resulted in a more marsh-like community structure with higher 

relative frequencies of Lemna minor, Lythrum salicaria, Carex stipata var. stipata, 

Lysimachia thyrsiflora, Typha angustifolia and Sagittaria latifolia.  Although hydrologic 

alterations are common throughout Minnesota, the effect of elevated water tables was 

most evident in the Anoka Sand Plain, where hydrologic manipulations have converted 

extensive areas once dominated by C. lasiocarpa var. americana to marshes dominated 

by the invasive cattail species, Typha angustifolia (Rand 1953).   

Forested Fens were characterized, primarily, by the presence of a dense tree 

stratum (Table 5).  Forested peatlands of this type are predominantly found in the 

northern portions of the sub-boreal region (Eggers and Reed 1997), and have been 

classified as Wooded Swamps (Eggers and Reed 1997), and Forested Rich Peatlands 

(MNDNR 2003b, 2005a).  In the boreal region of North America, similar communities 

are common and represent extremely-rich forested peatlands communities (Zoltai and 

Vitt 1995).  In addition, these communities are known to occur, although infrequently, in 

the temperate region of the Midwest United States (Bedford and Godwin 2003).  The 

indicator species that differentiated Forested Fens from other sub-boreal peatland 

communities were Athyrium filix-femina (L.) Roth ssp. angustum (Willd.) R.T. Clausen, 

Rubus pubescens Raf. var. pubescens, Acer rubrum L. var. rubrum, Betula alleghaniensis 

Britton var. alleghaniensis, Fraxinus nigra Marsh., Maianthemum canadense Desf., 

Thuja occidentalis L. and Amblystegiaceae.  In addition to the high diversity observed 

within Forested Fens, considerable floristic variation was observed between forested sites 

with Thuja occidentalis and Betula alleghaniensis var. alleghaniensis as dominants, and 



56 

 

 

 

sites primarily composed of Ulmus americana, Acer rubrum var. rubrum, Fraxinus nigra 

and Larix laricina.  This distinction conforms to the classification of Eggers and Reed 

(1997), which differentiates coniferous from hardwood swamps.  As indicated for 

Sphagnum Bogs, however, the variation among sub-boreal peatland communities was 

greater than that observed within Forested Fen communities.  Therefore, no distinction 

was made between the different Forested Fen communities in this study.     

The dominant composition and floristic structure of Rich/Calcareous Fens were 

differentiated from other sub-boreal peatland communities, primarily, by the presence of 

species adapted to high ionic concentrations, particularly bi-carbonates.  Indicator species 

of high ionic concentrations identified in this study, which also are identified as 

indicators of Prairie Rich Fens and Prairie Extremely Rich Fens (MNDNR 2005b), 

included Eupatorium maculatum L., Pyncanthemem virginian, Cirsium muticum Michx. 

Helianthus grosseserratus M. Martens and Calamagrotis stricta (Timm) Koeler ssp. 

stricta.  Other species not identified as indicator species, but are known to occur in 

calcareous or extremely rich fen communities, included Lycopus americamis Muhl. Ex 

W. Bartam, Galium boreale L., Doellingeria umbellate (Mill.) Nees and Oxypolis rigidor 

L. Raf.  In addition, Rich/Calcareous Fens were found to support the highest number of 

endangered, threatened and species of special concern of all sub-boreal peatland 

communities.  This may have been due to a combination of high ionic concentrations and 

limited habitat availability.  Species recorded in Rich/Calcareous Fens, and are regarded 

as threatened in Minnesota, included Carex sterilis Willd., Valeriana edulis Nutt. Ex. 

Torr. & A. Gray var. ciliate (Torr. & A. Gray) Cronquest, Cladium mariscoides (Muhl.) 

Torr. and Rhynchospora capillacea Torr.  Species of concern in Minnesota included 
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Lysimachia quadriflora Sims and Rudbeckia triloba L. var. triloba.  One species 

recorded in Rich/Calcareous Fens, Muhlenbergia richardsonis (Trin.) Rydb, is listed as 

endangered in Wisconsin.  In addition to being highly diverse ecosystems, 

Rich/Calcareous Fens exhibited considerable species turnover (Table 4).  As such, none 

of the 13 significant indicator species identified were present in all Rich/Calcareous Fen 

communities (Table 5).  Carex stricta was the most common species with 94 percent 

relative frequency, but its’ occurrence was not limited to Rich/Calcareous Fen 

communities (Table 5).  Floristic variation between Rich/Calcareous Fens illustrated the 

distinctions between rich and calcareous fens; however, as previously mentioned, the 

variation among sub-boreal community types was greater than the variation within the 

Rich/Calcareous Fen subtype.  Similar to Herbaceous Fens, structural variations were 

observed within the Rich/Calcareous Fen communities.  Shrub-stratum species are also 

common in highly calcareous peatlands in the region (MNDNR 2005b, Eggers and Reed 

1997, Bedford and Godwin 2003), as was observed in this study (Appendix 5).  Although 

primarily dominated by herbaceous-stratum species, a distinct shrub stratum, consisting 

of S. discolor, F. alnus and Rhamnus cathartica L., was frequently recorded in 

Rich/Calcareous Fen communities.   

Phalaris – Dominated Peatlands reflect an ecological consequence of the presence 

of the invasive species, P. anrundinacea.  Phalaris anrundinacea was found to occur 

across broad ranges of pH (5.17 – 7.83), total alkalinity (15 – 350mgl
-1

 [Ca
2+

]) and water 

table depths (-53cm – +22cm), suggesting a wide physiological tolerance.  Interpretation 

of the NMS ordination also indicated a successional trend associated with P. 

anrundinacea establishment and dominance (Figure 5).  This most prominently affected 
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Rich/Calcareous Fens, from which, four significant indicator species were observed to 

occur in Phalaris – Dominated Peatlands (Table 5).  The low species diversity and 

exclusion of native species, as observed in Phalaris – Dominated Peatlands (Table 4), has 

been observed in wetland communities throughout the Midwest United States due to 

aggressive nature of P. arundinacea and clonal expansion (Kercher et al. 2004, Kercher 

and Zedler 2004, Galatowitsch et al. 1999).  Surprisingly, Eupatorium maculartum L. 

was observed at 60% relative frequency in Phalaris – Dominated Peatlands; whereas 

Kercher et al. (2004) observed competitive exclusion of this species due to shading in wet 

meadows in Wisconsin.  It is difficult to determine the exact number of species excluded 

in Phalaris – Dominated Peatlands; however, since Phalaris – Dominated Peatlands are 

most similar to Rich/Calcareous Fens, in terms of environmental characteristics and 

floristic composition, the effect on species and peatland diversity are most likely 

significant.      

Sub-boreal peatlands represent a floristically diverse set of communities, as 

indicated by the 341 species recorded.  The high floristic diversity among sub-boreal 

peatlands was indicative of a transitional landscape, and supported the hypothesis that 

sub-boreal peatlands represent transitional communities between boreal and temperate 

peatlands.  Transitional landscapes tend to support greater species diversity than either of 

the adjacent regions due to the overlapping distributions of regionally specific flora 

(Shmida and Wilson 1985).  Peatlands in the boreal region of the continental interior of 

North America are floristically impoverished communities, particularly raised bogs, in 

which most communities support less than 20 vascular species (Glaser 1992).  In the Red 

Lake peatlands of boreal Minnesota, which cover an estimated area of 1200 km
2
, < 200 
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vascular species were recorded across seven major vegetation communities types 

(Wheeler et al. 1983).  In contrast, temperate peatlands, which are considered distinctly 

different that their boreal counterparts, both in terms of environmental characteristics and 

floristic composition (Bridgham et al. 1996, Amon et al. 2002), are renowned for their 

high floristic diversity (Bedford and Godwin 2003), despite their geographic isolation and 

limited extent.  The high beta diversity recorded among sub-boreal peatlands (Table 4) 

also supported the hypothesis that sub-boreal peatlands represent transitional 

communities between boreal and temperate peatlands.  In this study, the strong pH-

alkalinity gradient accounted for much of the species turnover observed among peatland 

communities, with changes in floristic diversity and composition strongly correlated 

(Table 6) with ordinal distribution of study sites (Figure 8).  The increasing climactic 

pressures from north to south, however, cannot be overlooked as a major determinate in 

the distribution, composition and floristic structure of sub-boreal peatlands.   

The results of this study complimented work previously done on peatland 

communities in North America by providing a description of the variation in floristic and 

environmental characteristics associated with peatlands that represent transitional 

communities between peatlands in the boreal and temperate regions of the continental 

interior of North America.  In addition, this study highlighted the potential threat of P. 

arundincacea to the biodiversity of sub-boreal peatlands.  Future research should 

continue to focus on the invasive mechanisms of P. arundinacea and its’ impact on the 

floristic composition and structure of native peatland communities.  Application of the 

purposed classification is most applicable to the northern portion of the sub-boreal 

region, where anthropogenic influences have not drastically altered the structure and 
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ecological functions of peatland communities.  To validate and further expand the 

application of the purposed classification into greater Wisconsin, Michigan and the Upper 

Peninsula of Michigan, floristic and environmental data should be collected from study 

sites that reflect the variation associated with the east-west precipitation gradient in the 

region.  In addition, future research should attempt to quantify the contribution of 

microtopography to the floristic and environmental variation among sub-boreal peatland 

community types.  
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