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ABSTRACT 

Surrounding land use influences avian community structure; moreover, 

anthropogenic manipulation of habitat can alter bird species richness and composition. In 

the first chapter of my thesis work, I conducted avian surveys at 20 sub-boreal peatlands 

in eastern Minnesota and western Wisconsin to detect correlations between land 

development and bird community structure. Peatlands are wetlands that accumulate 

decaying organic plant material (peat) and provide valuable and diverse habitats to a 

variety of flora and fauna. I measured urban and cropland development at three spatial 

scales (500 m, 1000 m, and 2500 m radii). Effects of development on avian communities 

also were assessed with respect to distance from a major metropolis using three zones:  

counties inside the city (metro), counties immediately adjacent (collar), and rural counties 

adjacent to the collar (fringe). I predicted that the zone with intermediate levels of 

disturbance would have greater species richness (intermediate disturbance hypothesis) 

and that there would be a correlation between differences in community species 

composition (i.e., species turnover) and increased levels of development. Urban 

development influenced avian communities more than agricultural development and 

avian communities were different among the zones in species composition and partly in 

species richness. Statistical analysis identified negative relationships between urban cover 

and the proportion of human intolerant species at all three spatial scales.  In the second 

chapter of my thesis work, I created a rapid-assessment model of habitat quality designed 

to detect relationships of landscape variables such as peatland area, degree of isolation 

from other wetlands, extent of adjacent economic development, and vegetative structure 
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on bird community composition. I used rapid-assessment model, known as a 

hydrogeomorphic model (HGM), that numerically combines landscape features to predict 

the value of habitat to bird species diversity (functional capacity) Following HGM 

procedures, I predicted functional capacities at 20 sub-boreal peatlands When compared 

to observed species diversity, however, no relationship was found with predicted 

diversity levels. Of the model variables only vegetation structure was related to bird 

diversity. I suggest that a new model needs to be developed in order to assess the value of 

peatlands to support peatland bird communities. 
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Chapter 1 

Influences of adjacent land-use on avian community structure in sub- 

boreal peatlands of the Midwest.	
  

 

ABSTRACT 

 Surrounding land use often influences avian community structure; moreover, 

anthropogenic manipulation of habitat can alter species richness and composition. I 

surveyed 20 sub-boreal peatlands in eastern Minnesota and western Wisconsin to 

examine the effects that land use has on avian community assemblages.  Developed land 

was categorized as cropland and urban cover and total development. More specifically, I 

asked how economic development influences avian community structure. Land use 

variables were calculated at three spatial scales 500-m radius (79-ha circle), 1000 m (314 

ha) and 2500 m (1963 ha). Land use effects on avian communities were assessed at both 

site and regional levels; regions were categorized into three zones based on varying 

degrees of development and included the highly urbanized seven-county Twin Cities 

metropolitan region (metro), the 12 immediately adjacent suburban counties surrounding 

the metropolitan region (collar), and a rural region (fringe). I predicted that increased 

land development would not result in decreased species richness due to species-turnover 

which I defined as an avian community composition comprised of human-tolerant species 

with limited human-intolerant species. Urban development influenced avian communities 

more than agricultural and avian communities were different between the zones in 
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species composition and partly in species richness. Statistical analysis identified negative 

relationships between urban cover and the proportion of human intolerant species at all 

three spatial scales.   

	
  
	
  
INTRODUCTION	
  
	
  

Habitat loss presents a significant threat to biodiversity worldwide (Brooks et al. 

2002) and is often the result of anthropogenic land development for agricultural use and 

urban expansion.  With the human population of the United States projected to reach 438 

million by 2050 (Passel and Cohn 2008) it is expected that there will be increased 

pressure to develop land for agricultural and urban uses. In the Midwestern United States, 

the loss of wetland, grassland, and forest habitats to agriculture and urban expansion and 

the fragmentation of remaining natural land are already substantial (Sampson and Knopf 

1994, Gonzalez-Abraham et al. 2007, Dahl 2011). As natural habitats are lost and 

fragmented, biotic communities are significantly affected (Whited et al. 2000, Houlahan 

and Findlay 2003, Akasaka et al. 2010).  

Because of the close relationship between organisms and habitat, biologists use 

composition of communities to evaluate and monitor habitat quality. The idea of a biotic 

index is such that community assemblages in high quality habitat will have proportionally 

more sensitive species or certain indicator species (i.e., those that are present only in high 

quality habitats) than communities in low quality habitats. Of the taxonomic groups used 

as indicators of habitat quality, Galatowitsch et al. (1999) suggest that bird communities 

reflect land use more accurately than other organismal groups (i.e., plants, fish, 

amphibians and invertebrates) and other studies have successfully used birds as indicators 
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of habitat quality (O’Connell et al. 2000, Browder et al. 2002, DeLuca et al. 2004); 

therefore we selected birds for our model taxon.  

The declining trend of many bird populations in developed landscapes has raised 

concerns among conservationists and for management purposes it is necessary to identify 

species-habitat relationships at the local and landscape-scale to maintain viable 

populations. Local habitat cues (e.g., foliage height diversity, vegetation density and 

proximity to edge) have been identified as important predictors of bird species presence 

and diversity (MacArthur and MacArthur 1961, Rotenberry 1985, Mills et al. 1989, 

Cunningham and Johnson 2006). Changes in vegetation structure at the local scale, (e.g., 

the reduction of dead trees and understory plants) and diversity (e.g., the introduction of 

non-native vegetation in place of native vegetation) can have profound effects on bird 

communities (Blair 1996, Schlesinger et al. 2008). However, even if local habitats are left 

unaltered, land alteration and development for agricultural and urban development at 

farther distances and greater spatial scales can influence bird communities (Whited et al. 

2000). As such, the focus of our study was to identify the affects, if any that land 

development at the landscape scale (≥ 500 m radius) has on bird communities.                      

Land development for recreational use, agriculture and urban expansion can 

negatively affect avian density, abundance, species richness and increase the likelihood 

of nest predation (Best et al. 1995, Findlay and Houlahan 1997, Miller et al. 1998, 

Fernández-Juricic 2000, Miller et al. 2003, Thorington and Bowman 2003, Mallord et al. 

2007). Additionally, land development can result in species turnover within avian 

communities and lead to declines or local extinctions of species that are sensitive to 

human activity and increases in widely-distributed opportunistic species (Beissinger and 
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Osborne 1982, Väisänen and Rauhala 1983, Dowd 1992, Blair 1996, Blair 2004), thereby 

homogenizing the communities (Devictor et al. 2007).  Typically, habitat disturbance 

negatively affects specialist species and positively affects generalist and opportunistic 

species (Väisänen and Rauhala 1983, Dowd 1992, Blair 1996, Miller et al. 1998, May et 

al. 2002, Husté and Boulinier 2007, Banning et al. 2009) making it difficult to use species 

richness as an indicator of habitat quality as bird species richness may be similar between 

sites in urban landscapes and those in rural landscapes (Smith and Chow-Fraser 2010). 

Furthermore, moderate levels of development can result in increased species diversity; 

however, native species are typically replaced by ubiquitous species (Blair 1996). 

Additionally, urban environments tend to support fewer long-distance migratory species 

and more non-migratory species than rural environments (Husté and Boulinier 2007, 

Minor and Urban 2010).  

Although both agricultural and urban development alters landscapes from their 

natural state, research suggests that the negative impact on avian communities is more 

drastic in urban environments than in agricultural environments. When natural habitat is 

converted for agricultural purposes it typically results in vegetative monocultures 

interspersed by marginal or poor quality habitat (e.g., fencerows and small patches of 

trees planted as wind breaks). When compared to forested and wetland habitats, row-

tilled and small grain crops are used by few bird species and usually only for foraging 

(Best et al. 1995). Though some non-cultivated habitats associated with agricultural 

landscapes, such as wooded fence rows, may support high avian abundance they likely 

function as ecological traps where bird populations suffer low reproductive rates due to 

increased nest predation, human disturbance and brood parasitism (Best 1986). Other 
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factors associated with agricultural practices, such as the application of pesticides, can 

alter bird diversity and result in the loss of foraging guilds (Genghini et al. 2006). 

 Avian communities are influenced by measures of urban cover including road 

density, building density and percent urban development (Findlay and Houlahan 1997, 

Whited et al. 2000, Miller et al. 2003, Minor and Urban 2010). Increased levels of human 

activity, noise pollution, nest predation and brood parasitism associated with urban 

environments affect bird species presence and reproductive success even in habitats that 

would be suitable for breeding purposes (Francis et al. 2011). Even relatively minor 

levels of disturbance (e.g., a recreational trail or a long pier) that increase human activity 

can influence bird communities (Miller et al. 1998, Banning et al. 2009). Pedestrian 

activity can lead to decreased bird species richness, abundance and population density 

(Fernández-Juricic 2000, Mallord et al. 2007); furthermore, species-turnover has been 

positively correlated with increased pedestrian rates (Fernández-Juricic 2000).  

Peatlands are wetlands that accumulate decaying organic material (peat); the 

majority of peatlands are found in the boreal region of the northern hemisphere (Glaser 

1987). Sub-boreal peatlands are found between the boreal and temperate ecoregions. 

Peatlands occur along a bog-fen continuum and can potentially support diverse habitats, 

including open bogs, sedge and forested fens (Glaser 1987). However, though peatlands 

provide valuable habitat for many plants and animals, they face the threat of development 

as they also possess valuable resources such as peat and timber and can be used in 

agriculture (e.g., cranberry farming). Because of the potential conflict between the 

economic and ecological values of peatlands, there has been contention among 

conservationists and industrialists as to whether peatlands can be exploited sustainably 
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and without causing irreconcilable damage to the flora and fauna using them (Väisänen 

and Rauhala 1983, Desrochers et al. 1998, Chapman et al. 2003, Lachance and Lavoie 

2004). The diversity of habitats found in peatlands provides breeding and foraging habitat 

for bird species typically found in boreal, temperate-deciduous and prairie ecoregions 

(Niemi and Hanowski 1992); many of which are suffering population declines due 

primarily to habitat loss (North American Bird Conservation Initiative 2011).  In 

peatlands, severe levels of disturbance such as peat mining and logging result in bird 

species turnover in addition to reductions in species richness and abundance (Väisänen 

and Rauhala 1983, Niemi and Hanowski 1984, Desrochers et al. 1998). Changes in bird 

species composition and abundance resulting from commercial development of peatlands 

are largely due to the alterations in plant community structure and composition. 

Furthermore, development in the adjacent landscape can change aspects of peatlands such 

as hydrology and pH, influencing plant community structure (Girard et al. 2002, 

Churchill 2011, Miller 2011), potentially leading to changes in avian community 

composition. We sought to identify the effects that landscape-scale agricultural and urban 

development has on bird species richness and community assemblages in sub-boreal 

peatlands of eastern Minnesota and western Wisconsin. 

In eastern Minnesota and western Wisconsin, urban development in the seven-

county metropolis including Minneapolis and St. Paul (Metro) increased from 24 to 33% 

from 1986 and 2002, resulting in subsequent losses of rural land types, namely 

agriculture, wetland, and forest (Yuan et al. 2005). The increase in urban development 

led us to believe that bird communities in the Metro are noticeably different from those 

outside of the Metro where urban sprawl is not as prominent. Additionally, agricultural 
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development is a common land use practice in this region; however, I expected that 

agricultural development would be greater outside the Metro than within and that 

agricultural development would negatively affect bird communities at the spatial scales 

that I assessed. The degree of land development was assessed at individual sites and 

within zones at three spatial scales in areas of 500, 1000, and 2500 m radius (Fig. 2). 

Regions were categorized based on varying degrees of development and included the 

Metro, the 12 immediately adjacent suburban counties surrounding the metropolitan 

region (collar), and a rural region (fringe; Fig. 1). I assessed how anthropogenic land-use 

practices affect avian communities in terms of species richness and the proportion of 

human-intolerant bird species (i.e., species that lack an affinity to human activity). 

Human-intolerant species are typically area-sensitive, neotropical migrants, or specialists, 

whereas human-tolerant species tend to be area-insensitive, sedentary, or generalists.  

I expected that species richness would be greatest in the zone with intermediate 

levels of disturbance (here cropland and urban development). As agricultural 

environments tend to affect avian reproductive output more so than they do community 

assemblages, I did not anticipate a relationship between agricultural development and 

bird species richness or with the proportion of human-intolerant species. I predicted that 

there would be a shift in bird community assemblages from those primarily composed of 

human-tolerant species in sub-boreal peatlands located in the metropolitan area to bird 

communities composed primarily of human-intolerant species in fringe zone with 

intermediate levels found in the collar zone.  Furthermore, the proportion of human-

intolerant species within bird communities was expected to decrease as urban land cover 

increased within the adjacent landscape at all spatial scales.  
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METHODS 

Bird surveys 

 Bird communities were sampled in five peatlands in the Metro, seven in the collar 

and eight in the fringe. Within each zone (i.e., metro, collar, and fringe), the sites (i.e., a 

peatland) surveyed included those dominated by herbaceous, shrub, or forested habitats. I 

conducted 121 point counts at 41 circular point-count stations (points). Count duration 

was 10 min and points were surveyed between 1 May and 24 June 2011. The number of 

points per site varied from one to four and was determined by a combination of wetland 

size and accessibility. I established points at least 200 m apart to avoid double counting 

individual birds.  Points were located within the peatland at least 50 m from the peatland 

edge, unless I was not able to do so due to the difficulty of the terrain (e.g., deep water or 

floating bog).  

The use of combined call-response and passive surveys for secretive marshbirds is 

the suggested methodology to increase detection probability of marsh bird species to 

monitor populations (Conway and Nadeau 2010). I played 30-sec call-response 

recordings of sora (Porzana carolina), Virginia rail (Rallus limicola), yellow rail 

(Coturnicops noveboracensis), American bittern (Botaurus lentiginosus), least bittern 

(Ixobrychus exilis) and pied-billed grebe (Podilymbus podiceps) during the first session 

(1 May to 16 May).  

I recorded all species and number of individuals seen or heard within a 100-m 

radius, except for birds flying at heights > 20 m. Digital copies of calls at most points (n 

= 116; 96 %) were collected using a handheld recorder (H4n, Zoom Corporation, Tokyo, 

Japan) and compared to written data in the laboratory; recordings are useful for validating 
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vocal identification of species especially when species richness is high (Haselmayer and 

Quinn 2000). All points were surveyed between 30 min before sunrise and 0900 CDT 

with wind speeds < 20 km/hr and, at most a light rain. Each point was surveyed three 

times, except for those in St. Croix State Park, because it was added during the second 

sampling session. I measured species richness and determined a species’ affinity to 

humans (i.e., tolerant or intolerant) based on personal observation and species-human 

relationships identified in other studies (Dowd 1992, Bryce et al. 2002; Appendix 1).  

 

Land use characterizations 

Land use data was developed using 2008 1-m spatial resolution remote-sensing 

data from the United States Department of Agriculture (USDA), Farm Services Agency 

(FSA) and the National Agriculture Imagery Program (NAIP) in ArcMap 10 (ESRI 2011) 

and classified into five categories including water bodies, forest (both deciduous and 

coniferous), herbaceous (grassland, emergent wetland and pasture), cropland (cultivated) 

and urban (roads, residential housing and industrial) within each 500, 1000 and 2500-m 

radius circle of the study site (Whited et al. 2000). Only developed land was used in 

analysis to avoid auto-correlation among land-use variables, namely the proportion of 

undeveloped land to developed land within each radius. Additionally I combined the area 

of cropland and urban cover within each circle to create another category, total 

development. 
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Statistical analysis 

Statistical analyses were performed in R statistical software (2012). I used one-

way analysis of variance (ANOVA) tests to compare mean land development measures 

between zones. Developed land use was assessed as urban, cropland and total 

development (i.e., urban and cropland combined) for each spatial scale. One-way 

ANOVA tests were also used to compare mean species richness and mean proportion of 

human-intolerant species between the defined zones. Alpha was set at 0.05 for all 

comparative analyses. 

All sites were included (i.e., not grouped into zones) for regression analysis that 

compared measures of land-development (cropland and urban) to the composition of 

human-intolerant species within communities. After linear and curvilinear regression 

analyses were calculated for urban development, we used step-wise regression analysis in 

the MASS package for R (Venables and Ripley 2002) to determine goodness-of-fit. 

Models with lower Akaike Information Criterion (AIC) values were selected as the best-

fit.  

 

RESULTS 

 Bird surveys 

A total of 107 bird species were recorded, species richness ranged from 19 to 41 

(  = 29) per site. Three species (bald eagle (Haliaeetus leucocephalus), common grackle 

(Quiscalus quiscula) and common loon (Gavia immer)) occurred only as flyovers and 

were excluded from all analyses. The five most abundant species across all study sites in 

descending rank order were: red-winged blackbird (Agelaius phoeniceus), common 

€ 

x



11	
  
	
  

	
  

yellowthroat (Geothlypis trichas), swamp sparrow (Melospiza georgiana), yellow 

warbler (Dendroica petechia) and American goldfinch (Carduelis tristas); only common 

yellowthroat were detected at all sites. 

 

Land development  

 Cultivated land comprised a greater area of land cover in the surrounding 

landscape than did urban cover at all three spatial scales (Table 1). The metro had the 

greatest amount of urban land cover, however coverage was not different from the collar 

at any spatial scale (Figures 3, 4, and 5). The amount of urban area in the metro was 

greater than the fringe at all spatial scales (all P < 0.02). Additionally, the collar zone had 

more urban cover than the fringe zone at all three spatial scales (all P ≤ 0.03). Cropland 

coverage did not differ between any of the areas at the 500 or 1000-m scale (Figures 3 

and 4) or the fringe at 2500 m; however, the collar zone had more cropland cover at the 

2500-m scale than the metro (P = 0.02). The metro and fringe zones did not differ in 

cropland coverage at any scale.  

 

Bird community composition 

Mean proportion of human-intolerant species did not differ between the 

metropolitan and collar zones, however the proportion of human-intolerant species in the 

fringe zone was greater than the metro (P < 0.00) and the collar (P << 0.00) zones (Fig. 

6). Mean species richness was not different between the metropolitan zone and the collar 

or fringe zones (Fig. 7). However, mean species richness in the collar zone was greater 

than in the fringe zone (P = 0.03; Fig. 7). 
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Negative trends were found with regression analysis between land development 

measures (area of urban Figures 8, 9, and 10 and cropland Figures 11, 12, and 13) and the 

proportion of human-intolerant bird species at all three spatial scales; however, 

significant relationships were found only for urban land use. The relationship between 

urban development at all scales and the proportion of human-intolerant species appeared 

to be curvilinear so we also calculated curvilinear regressions at each scale. Step-wise 

regression analysis indicated that curvilinear regression models for urban development 

provided a better fit to human-intolerant bird data than linear models; furthermore, based 

on AIC values the best-fit model was identified as urban development at the 2500-m 

scale (Fig. 10 ; AIC = -94.71). 

 

DISCUSSION 

My results provide evidence that avian community assemblages in sub-boreal 

peatlands are influenced by landscape characteristics in the surrounding environment. 

Urban development in the buffer zone negatively affected bird community composition 

of human-intolerant species at all spatial scales, with the most pronounced relationship at 

the 2500-m scale. Urban cover did not exceed 20 % of the surrounding landscape for any 

site at any spatial scale; suggesting that human-intolerant species in sub-boreal peatlands 

are sensitive to low levels of urban development. DeLuca et al. (2004) found that when 

urban development in the 500 and 1000-m scale exceeded 14 and 25 %, respectively that 

marsh bird community integrity was significantly reduced; the results from our study 

suggest that for avian communities of sub-boreal peatlands urban development threshold 

levels may be even lower. For sites with few human-intolerant species present, common 



13	
  
	
  

	
  

yellowthroat, swamp sparrow and yellow warbler were those commonly observed; these 

species are known to select breeding habitat based on local-scale habitat cues such as the 

presence/absence of water, patterns of vegetation distribution and availability of edge 

habitat (Stauffer and Best 1986, Greenberg 1988, Knopf and Sedgwick 1992) and not on 

landscape-scale habitat cues. Compared to urban cover, agricultural cover was much 

more prominent at all spatial scales. However, levels of agricultural land did not correlate 

with the proportion of human-intolerant species, which may be the related to human 

activity levels approaching but not meeting avoidance thresholds for sensitive species.  

Concerning species richness, I did not observe a difference in avian species 

richness between the metro zone and either of the other zones. Similarly, Smith and 

Chow-Fraser (2010) found that bird species richness was similar between environments 

in an urban landscape and those in a rural landscape; yet other studies found that 

urbanization results in decreased bird species richness (Blair 1996, Stratford and 

Robinson 2005). Mean species richness was greater in the collar zone than in the fringe 

zone; however, the additional species were mostly ubiquitous, as evident by the bird 

communities in the fringe zone having a greater mean proportion of human-intolerant 

species. Though the fringe zone had the lowest mean species richness of the three zones, 

bird communities in the fringe zone were composed of more human-intolerant species 

than either one; suggesting that species-turnover results from increased urban cover.  

Similarly, when comparing avian communities in an urban-forest patch to a natural-forest 

patch Dowd (1992) found that the natural patch had significantly more forest-interior and 

human-intolerant species. Another possible explanation for our findings may be that 

urban development imposes more influence on species richness than agricultural 
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development does and that intermediate levels of urban disturbance facilitate greater 

species richness following the intermediate disturbance hypothesis (see Grime 1973, 

Connell 1978, Huston 1979). The intermediate disturbance hypothesis suggests that a 

moderate level of habitat disturbance enables the coexistence of species that prefer low 

and high levels of habitat disturbance.   

Overall, my data suggest that urban development near peatlands has more 

influence on avian species composition and richness in sub-boreal peatlands than 

agricultural development. Furthermore, compared to habitat patches in non-urban 

landscapes, urban sites are used as temporary stop-over sites to a much-lesser degree by 

migratory species (Stratford and Robinson 2005) and support fewer neotropical migrants 

(Husté and Boulinier 2007, Minor and Urban 2010), trends that are further supported by 

our data. That is not to suggest that peatland habitat in urban landscapes are without value, 

as they still provide breeding and foraging habitat for many bird species in addition to 

offering potential stop-over sites for migrating species. Rodewald and Matthews (2005) 

found that neotropical migrants use forested habitat patches in developed landscapes, 

though some species (e.g., Swainson’s thrush [Catharus ustulatus]) avoid using small 

habitat-patches (Matthews and Rodewald 2010). I feel that efforts to conserve avian 

diversity in peatlands of the Midwest should be focused on areas that have minimal urban 

development in the surrounding landscape at the largest spatial scale possible so as to 

attract species that are sensitive to human activity.  
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FIGURES and TABLES

 
Figure 1. Study area and locations of twenty sites (black triangles), the 

metropolitan zone includes the seven-county area outlined in grey, the collar zone 

includes the 12 counties adjacent to the metropolitan zone (outlined in black) and 

the fringe zone includes counties outside of the metropolitan and collar zones. 

Five sites were located in the metropolitan zone, seven in the collar zone and 

eight in the fringe zone. 
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Figure 2. Urban and cropland area were measured at three spatial scales (500, 

1000, and 2500 m) for each peatland. Figure adapted from Whited et al. (2000). 
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Figure 3. Mean urban area (gray bars; +/- 1 SE) at the 500-m scale was less in the fringe 

zone compared to the collar (P = 0.05) and metro (P = 0.02). Mean urban cover did not 

differ between the metro and collar zones. Mean cropland area (white bars, +/- 1 SE) did 

not differ between the zones at the 500-m spatial scale. 
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Figure 4. Mean urban area (gray bars; +/- 1 SE) at the 1000-m scale was less in the 

fringe than the collar (P = 0.03) and metro (P = 0.01) zones. Mean urban cover did not 

differ between the metro and collar zones. Mean cropland area (white bars, +/- 1 SE) did 

not differ between the zones at the 1000-m spatial scale. 
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Figure 5. Mean urban area (gray bars; +/- 1 SE) at the 2500-m scale did not differ 

between the metro and collar zones. Mean urban area was less in the fringe zone 

compared to the metro (P = 0.02) and collar (P < 0.00) zones. Mean cropland cover 

(white bars, +/- 1 SE) was not different between the metro and fringe zones. The collar 

zone had greater cropland area than the metro (P = 0.02) and fringe (P = 0.05) zones. 
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Figure 6. The mean proportion of human-intolerant bird species (+/- 1 SE) was greater in 

the fringe zone than it was in the collar (P << 0.00) and metro (P = 0.00) zones. There 

was no difference in the mean proportion of human-intolerant species between the metro 

and collar zones.  
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Figure 7. Mean species richness (+/- 1 SE) was higher in the collar zone than in the 

fringe (P = 0.03). Mean species richness in the metro zone was not different from the 

collar or fringe zones. 
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Figure 8. A negative curvilinear relationship is observed on the proportion of human-

intolerant species in peatland bird communities as urban cover increases in a 500-m 

radius (r2 = 0.52, P < 0.00). 
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Figure 9. A negative curvilinear relationship is observed on the proportion of human-

intolerant species in peatland bird communities as urban cover increases in a 1000-m 

radius (r2 = 0.58, P < 0.00). 
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Figure 10. A negative curvilinear relationship is observed on the proportion of human-

intolerant species in peatland bird communities as urban cover increases in a 2500-m 

radius (r2 = 0.67, P << 0.00). 
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Figure 11. No relationship between the amount of cultivated land in a 500-m radius and 

the proportion of human-intolerant species was observed. 
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Figure 12. No relationship between the amount of cultivated land in a 1000-m radius and 

the proportion of human-intolerant species was observed. 
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Figure 13. No relationship between the amount of cultivated land in a 2500-m radius and 

the proportion of human-intolerant species was observed. 
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Table 1. Area of developed land for the three zones. 

Development type Metropolitan Collar  Fringe  

 Mean(SE) Range Mean(SE) Range Mean(SE) Range 

500 m  

Urban cover (ha) 4.1(1.6) 1-10 3.0(1.0) 0-8 0.8(0.2) 0-2 

Cropland cover (ha) 15.9(3.3) 8-26 19.2(3.5) 5-31 15.5(5.9) 0-46 

 

1000 m  

Urban cover (ha) 27.2(10.0) 2-54 11.9(3.5) 0-26 3.7(1.1) 0-9 

Cropland cover (ha) 64.5(11.9) 35-106 92.0(10.2) 47-130 55.4(19.6) 0-146 

 

2500 m  

Urban cover (ha) 182.4(73.0) 20-385 94.5(13.0) 31-139 30.6(8.7) 0-73 

Cropland cover (ha) 389.8(47.0) 294-550 651.2(75.5) 361-916 363.9(107.8) 0-946 
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Chapter 2 

Development and field-test of a hydrogeomorphic model of bird diversity in sub-

boreal peatlands in the Upper Midwest. 

 

ABSTRACT 

 Peatlands are wetlands that accumulate decaying organic plant material (peat) and 

provide valuable and diverse habitats to a variety of flora and fauna. Though there are no 

bird species that solely use or breed in natural peatlands many selectively breed or forage 

in peatland habitats. For example, the palm warbler (Dendroica palmarum) selectively 

nests in open bogs, a type of peatland. I created and tested a rapid-assessment model 

designed to detect relationships of landscape variables such as peatland area, degree of 

isolation from other wetlands, extent of adjacent economic development, and vegetative 

structure on components of bird community composition. Model variables were selected 

because previous studies have shown them to influence bird communities. One type of 

rapid-assessment model, known as a hydrogeomorphic model (HGM), numerically 

combines landscape features to predict what are called functional capacities, parameters 

such as water flow or animal abundance. Following HGM procedures, I calculated 

functional capacity index scores (FCIs) using standardized values for model variables. 

All values were standardized on a scale from 0 to 1; where 1 represents the best support 

for birds that use peatlands with natural plant communities. A non-significant positive 

relationship was found between FCI scores and peatland bird community composition 
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measures. It is suggested that a new model needs to be developed in order to rapidly 

assess the value of peatlands for the support of bird communities as well as for other 

faunal groups.    

 

INTRODUCTION 

Peatlands are wetlands that accumulate decaying organic material (peat), and 

although they possess valuable resources such as peat and timber and can be used in 

agriculture (e.g. cranberry farming), they also provide valuable habitat for many plants 

and animals (Glaser 1987). Because of the potential conflict between the economic and 

ecological values of peatlands, there has been contention among conservationists and 

developers as to whether peatlands can be developed sustainably and without causing 

irreconcilable damage to the flora and fauna using them (Väisänen and Rauhala 1983, 

Desrochers et al. 1998, Chapman et al. 2003, Lachance and Lavoie 2004). Anthropogenic 

development for urban expansion, agriculture and forestry increases the isolation of sub-

boreal peatlands that are already insular in nature. Furthermore, development of the 

adjacent landscape can change aspects of peatlands such as hydrology and pH, both 

influence plant community composition and structure (Girard et al. 2002, Churchill 2011, 

Miller 2011).  

The US Army Corps of Engineers (ACE) developed the hydrogeomorphic 

approach for wetland assessment (HGM) to estimate the gains and losses of wetland 

function due to human impacts and subsequent mitigation (Brinson 1995). HGM models 

apply functional capacity indices (FCIs) to rapidly assess the ecological value of wetlands 

in specified regions for different wetland types (e.g., regional subclasses), for example, 
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prairie pothole wetlands of the Midwest or tidal fringe wetlands of the east coast. The 

HGM approach utilizes abiotic factors (geomorphic setting, water source and 

hydrodynamics) and biotic factors (such as vegetation physiognomy, presence of 

predators, distances from sources of immigrants) to assess the physical, chemical and 

biological functions of wetlands (Brinson 1993). The HGM approach uses reference sites, 

a set of sites used to create or test models, typically exhibiting the range of values of 

variable or conditions serving as predictors in the models. A particular type of reference 

site, the reference standard site, displays the highest function for the specified variable 

(e.g., water storage).  Explain here what the reference sites and the reference standard 

sites are used for. 

One important use of the HGM approach is to estimate the functionality of 

wetlands to support wildlife. Various animal taxa have been used in integrity assessment 

models (namely, Indices of Biotic Integrity (IBIs) and Habitat Evaluation Procedures 

(HEPs)) as indicators of habitat quality (for example see; Urich and Graham 1983, 

Ganasan and Hughes 1998, Welsh and Ollivier 1998, Van Dolah et al. 1999, Johnson and 

Swift 2000, Crozier and Gawlik 2003). Typically, HGM wildlife models have been 

developed to assess a wetland’s support of all wildlife; we however, focused on the bird 

community (Klimas et al. 2011, Noble et al. 2011).  Birds may serve as an indicator for 

wildlife in general in sub-boreal peatlands of the Midwest because Galatowitsch et al. 

(1999) suggest that bird communities have been linked to land use more frequently than 

other organismal groups (i.e., plants, fish, amphibians and invertebrates). Birds have 

often been used as indicators of habitat quality (Canterbury et al. 2000, Browder et al. 

2002, Bryce et al. 2002, Crozier and Gawlik 2003); birds are ideal indicator organisms 
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because of their sensitivity to environmental conditions, their affinity to particular 

habitats and their conspicuous nature that makes them easy to survey. HGM model 

variables incorporate abiotic and biotic factors that are important for supporting diverse 

wildlife communities such as wetland area, upland land use and various aspects of habitat 

cover (for examples see U.S. Army Corps of Engineers 2010, Klimas et al. 2011, Noble 

et al. 2011). Though HGM procedures have been in use since the early 1990’s there has 

been a general lack in using field data to validate model effectiveness (Eckles et al. 2002, 

Franklin et al. 2009) and to our knowledge there has not been a validation of any wildlife 

models. I sought to develop and test a HGM model for wildlife that uses natural bird 

diversity as an indicator of the ability of a peatland to support a diverse natural wildlife 

community. To determine relative values of use of sub-boreal peatlands by birds that 

typically use peatlands, we developed a hydrogeomorphic model (Equation 1).  The 

reference domain or geographic area of applicability of the model, included peatlands 

located between the boreal and temperate eco-regions (i.e., sub-boreal) of the Midwest 

(Fig. 1).  Bird abundance is often dependent on habitat structure and in sub-boreal 

peatlands bird communities are comprised of birds that typically use grasslands, 

deciduous forests and boreal forests (Neimi and Hanowski 1992). 



40	
  
	
  

	
  

 

Figure 1. The reference domain (dark grey line) includes the transitional area 

between the boreal (northern MN and north-western WI) and temperate (northern 

IA and eastern SD) eco-regions. The reference domain represents the area of 

applicability of the model. Reference sites (n = 28) represented by closed circles 

were located in boreal, temperate and sub-boreal eco-regions; bird surveys were 

conducted at 20 of the 28 sites.  
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My model incorporated variables that were known to influence bird assemblages 

in prior studies and would be easily measured by field technicians. I estimated the 

relationship between each variable and its corresponding subindex value. I developed the 

subindices by standardizing the variation in each landscape variable using a 0 to 1 scale 

among the reference sites, such that a subindex value of 1 is representative of a reference 

standard site.  Subindex values were entered into the model based on their assigned level 

of importance to calculate a functional capacity index (FCI) score; FCI scores are scaled 

between 0 and 1 where a site that receives a score of 1 provides the best support for 

peatland bird species.     

 

METHODS 

Model variables 

Peatland area (VArea) 

The species-area relationship (MacArthur and Wilson 1967) has been documented 

in a variety of habitats (Brown and Dinsmore 1986, Findlay and Houlahan 1997, Calmé 

and Desrochers 1999, Rodewald and Vitz 2005) in both pristine and altered landscapes 

(Shriver et al. 2004). Area is also positively correlated with breeding bird species 

richness (Craig and Beal 1992), abundance (Mora et al. 2011) and density (Boström and 

Nilsson 1983). However, the relationship between area and bird abundance, density and 

species richness, is typically more prominent in small habitat patches (< 50 ha) than in 

larger patches (Boström and Nilsson 1983, Brown and Dinsmore 1986, Mora et al. 2011). 

Helzer and Jelinski (1999) suggest that species richness is maximized in large habitat 

patches (> 50 ha) that are shaped to minimize edge effects for breeding birds in 



42	
  
	
  

	
  

grasslands. Some bird species, e.g. bobolink (Dolichonyx oryzivorus) and savannah 

sparrow (Passerculus sandwichensis), are area-sensitive (Robbins et al. 1989, Herkert 

1994, Helzer and Jelinski 1999) and avoid using structurally suitable habitat if the habitat 

patch is small (Brown and Dinsmore 1986, Naugle et al. 1999). The relationship between 

area and species is driven by the provision of a greater number of micro-habitat types by 

larger areas which allows the biota to develop a greater number of niches (MacArthur and 

Wilson 1967). Calmé and Desrochers (1999) found a strong positive relationship between 

area and micro-habitat richness in peatlands: both area and micro-habitat richness were 

positively related to bird species richness.  

I used area as a more-easily measured surrogate of micro-habitat richness: 

peatland area (VArea) was measured by delineating the boundary of the peatlands in 

ArcMap 10 using National Wetland Inventory (NWI) shapefiles within a 2000-m radius 

of each vegetation survey point established by Clement (2011).  A positive relationship 

between wetland area and the subindex value was assumed up to 100 ha (Fig. 2).  

Peatlands ≥ 100 ha were assumed to be large enough to attract and support area-sensitive 

species and provide a greater diversity of micro-habitats.  
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Figure 2. The relationship between the subindex value and peatland area (ha) is 

assumed to increase linearly up to 100 ha. It is assumed peatlands ≥100 ha will 

support area sensitive species and provide more heterogeneous habitats and niches 

leading to increased biodiversity. 

 

Degree of Isolation (VIsol) 

Isolated habitat patches exhibit a lower rate of colonization by new species and a 

higher rate of local extinction (MacArthur and Wilson 1967). However, the response of 

bird species to isolation can vary regionally and temporally (Brown and Dinsmore 1986, 

Paracuellos and Telleria 2004). Furthermore, bird species in unaltered landscapes may be 

more sensitive to isolation than those in altered landscapes (Shriver et al. 2004). It may 

be that bird species that select habitats with low levels of human activity prefer areas that 

are less isolated from similar habitats. The degree of isolation may affect user species 

(species that primarily forage in wetlands) and breeder species (species that reproduce in 

wetlands) differently. Craig and Beal (1992) found that user richness was positively 

correlated with the proximity to other wetlands whereas breeder richness was not; 
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however Smith and Chow-Fraser (2010) found that obligate marsh-nesting species 

richness was greater on less-isolated wetlands. 

Although birds are reputed for their long-distance travels, non-migratory 

movements (e.g., daily movements of resident birds and that of nesting Neotropical 

migrants) are often inhibited by subtle barriers, such as deforested patches in a forested 

landscape. Movement of individuals between habitat patches across barriers (habitat gaps 

and between-patch matrix habitat) is unique for each bird species. Some bird species will 

move longer distances between habitat patches; for example northern flickers move 

farther than many other species (600 m; Colaptes auratus) while black-throated green 

warblers typically avoid crossing patches greater than 25 m (Dendroica virens; Harris 

and Reed 2002).   

I measured degree of isolation as the mean distance to the three nearest wetlands 

≥ 0.5 ha. A minimum area of 0.5 ha was selected because it is assumed to be large 

enough to support a territory for common yellowthroat (Geothlypis trichas) or sedge 

wren (Cistothorus palustris; Stewart 1953, Burns 1982); both species regularly use 

peatlands and have relatively small territories compared to other peatland using species. 

The relationship between the subindex value and the degree of isolation was assumed to 

decrease linearly between 0.05 – 0.95 km (Fig. 3). Sites with a mean isolation distance ≥ 

0.95 km were assumed to always support a low level of peatland bird species. I used 

movement threshold distances for 12 peatland species (summarized by Harris and Reed 

2002) to estimate the relationship between the subindex value and the degree of isolation. 

The 12 species include resident, short-and long-distance migrants and were therefore 

deemed representative of peatland bird communities. 
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Figure 3.  As the degree of isolation, measured as mean distance to the three 

nearest wetlands ≥ 0.5 ha, increases it is assumed that the subindex value 

decreases linearly until it approaches 1 km.  It is assumed that the greater the 

degree of isolation the lower the rate of colonization by new species and that 

fewer migratory and user species will utilize the peatland.  

 

Land Development (VLandDev) 

The development of land for recreational use, agriculture and urbanization can 

have negative effects on avian density, abundance and species richness (Findlay and 

Houlahan 1997, Miller et al. 1998, Fernández-Juricic 2000, Miller et al. 2003, Mallord et 

al. 2007).  Additionally, land development can change species composition (turnover) 

and lead to local extinctions of species that are vulnerable to human activity (Beissinger 

and Osborne 1982, Väisänen and Rauhala 1983, Blair 1996, Blair 2004), thereby 

homogenizing the communities (Devictor et al. 2007). However, not all bird species are 

negatively affected by anthropogenic disturbances; some opportunistic species benefit 

(Väisänen and Rauhala 1983, May et al. 2002). Typically, habitat disturbance negatively 
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affects habitat specialists and positively affects generalist and opportunistic species 

(Dowd 1992, Blair 1996, Miller et al. 1998, Banning et al. 2009) making it difficult to 

use species richness as an indicator of habitat quality as bird species richness may be 

similar between sites in urban landscapes and those in rural landscapes (Smith and Chow-

Fraser 2010).  

Even relatively minor levels of disturbance (e.g., a recreational trail or a long pier) 

that increase human activity can influence bird communities (Miller et al. 1998, Banning 

et al. 2009). Pedestrian activity can lead to decreases in bird species richness, abundance 

and population density (Fernández-Juricic 2000, Mallord et al. 2007); furthermore, 

species turnover has been positively correlated with increased pedestrian rates 

(Fernández-Juricic 2000). Moderate levels of development may increase species 

diversity; however, native species are often replaced by widely distributed species (Blair 

1996).  

Agriculture typically consists of vegetative monocultures interspersed by 

marginal habitat (e.g., fencerows and small patches of trees planted as wind breaks). 

When compared to forested and wetland habitats, row-tilled and small-grain crops are 

used by few bird species and then only for foraging (Best et al. 1995). Though some non-

cultivated habitats associated with agricultural landscapes, such as wooded fence-rows, 

may support high avian abundance they may function as ecological traps where birds 

suffer low productivity due to nest predation, human disturbance and brood parasitism 

(Best 1986).  

Severe levels of disturbance such as peat mining and logging can result in bird 

species turnover in addition to reductions in species richness and abundance of birds 
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using peatlands (Väisänen and Rauhala 1983, Niemi and Hanowski 1984b, Desrochers et 

al. 1998). Habitat loss from commercial development in peatlands leads to changes in 

bird species composition and abundance due to the effects of altered vegetation structure 

and composition.  Due to the significant negative effect that land development has on 

natural bird communities, specifically on species that are sensitive to human activity I 

identified land development with remote-sensing data in ArcMap. I did not measure 

undeveloped land-use types (water bodies, forested and non-agricultural herbaceous) 

because as the proportion of developed land increased the proportion of undeveloped land 

decreased. I measured the area of total development (impervious and cropland combined) 

within a 500-m radius from reference sites. The relationship between the subindex value 

and the proportion of land development was predicted to decrease linearly to a value of 

0.10 at complete land development (Fig. 4). 
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Figure 4. The relationship between the subindex value and the proportion of the 

500-m buffer that is developed land is presumed to be negative to a value of 0.1. 

As developed land increases habitats become more susceptible to invasion by 

opportunistic species leading to the homogenization of bird communities. 

 

Natural vegetation (VNatVeg) 

Plant community composition and structure in peatlands is greatly influenced and 

are in part determined by hydrology, pH and peat thickness (Girard et al. 2002, Churchill 

2011, Miller 2011) and is important because bird communities are sensitive to vegetation 

structure (Hanowski et al. 1997, Desrochers et al. 1998) in terms of foliage height 

diversity (MacArthur and MacArthur 1961). Plant species composition is not always 

related to avian support (MacArthur and MacArthur 1961); however, there is a 

relationship between tree species richness and bird species richness and density (James 

and Wamer 1982). For example, the distribution of wood warblers (Parulidae) in north-

central Minnesota is determined by habitat structure (Collins et al. 1982). Species 

richness, abundance and density are greater in landscapes with greater habitat complexity 

0.0 

0.2 

0.4 

0.6 

0.8 

1.0 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

V L
an

dD
ev

 S
ub

in
de

x 

Proportion of developed land in the 500-m radial buffer  



49	
  
	
  

	
  

(Niemi and Hanowski 1984a, Hanowski et al. 1997, Desrochers et al. 1998). Habitat 

preferences of bird species can vary annually and seasonally (Brewer 1967, Wilson et al. 

1998); making it difficult to model habitat support at the community level.  Further 

complicating matters, generalist species may not display habitat preferences as strongly 

as specialist species (Wilson et al. 1998) because of their ability to utilize diverse habitats. 

Although the group of birds identified as peatland users includes both habitat specialists 

and generalists, the species included are known to regularly use natural peatland habitat 

(Neimi and Hanowski 1992). 

 I assumed that a site dominated by natural peatland vegetation provides the best 

support for peatland birds compared to a site dominated by aquatic or marsh-like 

vegetation. An impacted site was likely to have plant community that was not 

representative of a natural peatland and would therefore support an avian community that 

was not representative of a natural peatland. Sites were identified as having a natural or 

unnatural peatland plant community from dominant indicator species (Clement 2011). 

Natural sites were assumed to provide the best support for peatland birds and therefore 

received a multiplier in the subindex equation of 1.0; impacted sites were assumed to 

retain only marginal support for peatland birds and received a multiplier of 0.5. 

Multiplier scores were weighted accordingly for peatlands that had both natural and 

unnatural peatland plant communities. For example, a peatland with two natural 

vegetation communities (both score a 1.00) and one unnatural (would score a 0.50) 

received a multiplier score of 0.83, or {(1.00 + 1.00 + 0.50)/3.00}. 
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Model  

After subindex values were determined using the methods aforementioned they 

were entered into the FCI (Equation 1) to determine the functional capacity of the 

peatland. Within the FCI, I assumed that the mean value of area (VArea) and isolation 

(VIsol) were equal to that of land development (VLandDev), as area and isolation are not 

consistently influential on avian communities whereas development is. Furthermore, area 

and isolation are equilibrial in nature (MacArthur and Wilson 1967) and their influence 

on species richness is the result of the interaction between them; as evident in cases 

where species richness on small less-isolated patches have greater species richness than 

large isolated patches (Brown and Dinsmore 1986). The multiplier (VNatVeg) insures that 

sites are given an FCI score that reflects a peatland bird community; for example a large 

less-isolated site in an undeveloped landscape that is dominated by an upland plant 

community would receive an FCI score of 0.5 because the bird community was expected 

to reflect an upland community. Linear regressions were used to determine if a 

relationship existed between FCI scores and the proportion of peatland birds within each 

community. I predicted that FCI scores would be positively correlated with the 

proportion of peatland birds within each community. 
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Equation 1. The functional capacity index (FCI) for the support of birds in sub-

boreal peatlands is modeled as being dependent on peatland area (VArea), degree of 

isolation (VIsol), the proportion of economic development in the buffer (VLandDev), 

and the dominant vegetation of the peatland (VNatVeg). Peatlands that are large (≥ 

100 ha), are in close proximity to other wetlands, have a nearly pristine buffer and 

have a natural peatland plant community received a 1. The functional capacity 

index is scaled from 0 to 1; a peatland that receives an FCI score of 1 was 

presumed to support a bird community typical of an undisturbed peatland in an 

undisturbed landscape. 

  

I conducted sensitivity analyses to determine how influential each of the additive 

variables were on model output. I determined model sensitivities by multiplying raw data 

values by 90%, 100%, and 110% for VArea, VIsol and VLandDev separately and then 

recalculating FCI scores for each site using the adjusted subindex values. If FCI scores 

were changed by more than 5% by any one variable that variable was determined to be 

too influential on model output and would be adjusted accordingly.  

 

Site descriptions 

My sites were selected from reference sites Clement (2011) characterized based 

on abiotic data and plant community composition. Reference sites represented the range 

of peatlands along the bog-fen continuum; bogs in part are defined as ombrotrophic (rain-

fed) peatlands and fens are defined as minerotrophic (ground-water fed) peatlands. Plant 

species typically found in bogs were Sphagnum spp., leatherleaf (Chamaedaphne 
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calyculata), Carex oligosperma and tamarack (Larix laricina).  In non-forested fens, 

herbaceous species included native species such as bulblet-bearing water-hemlock 

(Cicuta bulbifera) various Carex spp. and tufted loosestrife (Lysimachia thyrsiflora) and 

at some sites invasive species, namely reed-canary grass (Phalaris arundinacea).  Plant 

species of forested-fens include common ladyfern (Athyrium filix-femina), skunk cabbage 

(Symplocarpus foetidus), Cornus spp., Salix spp., eastern white-cedar (Thuja 

occidentalis) and black spruce (Picea mariana). Measures of pH and electrical 

conductivity (µS) of reference sites ranged from 4.4(0.2) to 7.1(0.1) and 112.1(32.9) to 

500.9(71.7), respectively. Total alkalinity (mg/L) ranged from 17(4) to 222(23) and 

available phosphorous (mg/L) ranged from 0.9(0.2) to 2.3(0.4). All values are reported as 

means(SE). 

 

Birds of sub-boreal peatlands 

To assess the ability of the model to provide the best support for bird communities 

we must first define the focal community expected to be typical of an undisturbed site. 

Defining an avian community that adequately represents peatlands is difficult, in part 

because peatlands tend to occur along a continuum from fens to bogs and support myriad 

plant communities from open herbaceous to closed coniferous forest. Additionally, 

although no bird species use peatlands solely, Neimi and Hanowski (1992) compiled a 

list of 110 bird species that regularly use natural peatlands for reproduction, foraging, and 

resting and feeding sites during migration. I adjusted their bird list appropriately for the 

sub-boreal peatlands of our sample area, i.e. reference domain, to produce a list of birds 

expected to be supported by reference standard sites. Bird species were removed from the 
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list if their distribution or spring migration path did not extend into sample region. I 

retained 97 of the 110 species after filtering out those that did not fit our criteria 

(Appendix 1).  

 

Bird surveys 

I sampled 20 sub-boreal peatlands in eastern Minnesota and western Wisconsin 

that ranged in size from 0.50 to 1013.00 ha (median 90.50 ha). Sites were located 

between latitudes of 44.20 and 46.29 and longitudes of 93.55 and 92.29 (Fig. 1). I 

conducted 121 point counts at 41 circular point count stations (points). Count duration 

was 10 min and points were surveyed between 1 May and 24 June 2011. The number of 

points per site varied from one to four and was determined by a combination of wetland 

size and accessibility. I established points a minimum of 200 m apart to avoid double 

counting individual birds and > 50 m from the edge, unless we were not able to do so due 

to the difficulty of the terrain (e.g., deep water or floating bog). I played 30-sec call-

response recordings of sora (Porzana carolina), Virginia rail (Rallus limicola), yellow 

rail (Coturnicops noveboracensis), American bittern (Botaurus lentiginosus), least bittern 

(Ixobrychus exilis) and pied-billed grebe (Podilymbus podiceps) during the first session 

(1 May to 16 May). The use of a combination of call-response and passive surveys for 

secretive marshbirds is the commonly accepted methodology to increase detection 

probability of marsh bird species to monitor populations (Conway and Nadeau 2010).  

I recorded all species and number of individuals seen or heard within a 100-m 

radius, except for flyovers >20 m height. Digital copies of calls at most points (n = 116; 

96 %) were collected using a handheld recorder (H4n, Zoom Corporation, Tokyo, Japan) 
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and compared to written data in the laboratory; recordings are useful for validating vocal 

identification of species especially when species richness is high (Haselmayer and Quinn 

2000). All points were surveyed between 30 min before sunrise and 0900 CDT with wind 

speeds < 20 km/hr and, at most a light rain. Each point was surveyed three times, except 

for those in St. Croix State Park, because that site was added to the study during the 

second sampling session.  

 

Bird community measures 

I organized bird data to characterize peatland communities; therefore bird species 

were classified based on the affinity to natural peatland environments (i.e., either a 

regular peatland user or not). I assumed a reference standard site would provide better 

support for peatland birds than mitigated sites. In theory, a reference standard site with an 

FCI score of 1.0 should have a peatland bird community that is solely (a proportion of 

1.0) composed of peatland species.  

 

RESULTS  

Bird community measures 

I recorded a total of 2923 birds representing 107 species. Of the 107 species, the 

common grackle (Quiscalus quiscula), bald eagle (Haliaeetus leucocephalus) and 

common loon (Gavia immer) were excluded from analysis as they were recorded only as 

flyovers.  The five most abundant species across all study sites in descending rank order 

were: red-winged blackbird (579; Agelaius phoeniceus), common yellowthroat (296; 

Geothlypis trichas), swamp sparrow (168; Melospiza georgiana), yellow warbler (157; 



55	
  
	
  

	
  

Dendroica petechia) and American goldfinch (133; Carduelis tristis). Common 

yellowthroat was the only species that was detected at all study sites. Sixty peatland 

species were observed during the study, of the remaining 47 species observed, many were 

woodland specialists (such as the ovenbird [Seiurus aurocapillus] and red-eyed vireo 

[Vireo olivaceus]) or wetland obligates (such as the marsh wren [Cistothorus palustris] 

and Virginia rail [Rallus limicola]). Peatland bird species richness ranged from 12.0 – 

26.0 (  = 19.2) for sites and the proportion of peatland birds within each community 

ranged from 0.5 - 0.8.   

 

Landscape variables 

Peatland area ranged from 0.5 – 1192.0 ha (median = 95.5) for reference sites. 

Reference sites (n = 28) included eight that were not included for bird surveys. Eight of 

the sampled sites met reference standard requirements for area (≥ 100 ha); all reference 

standard sites were given a subindex value of 1. Mean isolation distance ranged from 

0.02 – 1.15 (km) for reference sites; nearly half of the sampled sites (n = 9) were 

identified as reference standards (mean distance ≤ 0.1 km). The proportion of 

development (cropland and impervious land-use combined) within a 500-m radius ranged 

from 0.00 – 0.62; three sites met reference standard criteria (proportion ≤ 0.05). Eleven of 

the 20 sites had vegetation communities that were representative of a natural peatland 

community.   

FCI scores ranged from 0.29 – 1.00 (  = 0.66) for sampled peatlands. No 

significant relationship between FCI scores and the proportion of peatland birds in the 

community was found using linear regression analysis (Fig. 5). Sensitivity analyses 
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suggest that VArea, VIsol and VLandDev did not disproportionately influence FCI scores (Fig. 

6). Increasing VArea values did not change mean FCI scores and decreasing VArea values 

only slightly decreased the mean. Manipulating VIsol values (+/- 10 %) did not affect 

mean FCI scores and adjusting VLandDev only slightly changed mean FCI scores. 

 

 

 

Figure 5. No relationship was found between FCI scores and the proportion of peatland 

bird species in the community (r2 = 0.08, p-value = 0.22). 
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Figure 6. Plots of residuals were used to determine how the FCI model was influenced 

by subindex values. FCI scores using unaltered values for all model variables are 

represented by the x-axis (0). Black circles represent values that have been increased by 

110 % and grey diamonds represent those values that have been decreased by 90 %. 

Deviation from FCI values calculated with unaltered values appears to be similar for 90 

and 110 % changes in VArea (a), VIsol (b), and VLandDev (c). 

 

DISCUSSION 

Overall the model did not accurately predict the proportion of peatland birds 

within communities; however refining the model with step-wise regression methods or by 

reassigning subindex value distribution may net a better relationship.  Care should be 

taken however, so that future modeling efforts do not fit the model to the data, rather 

once it is refined it could be used as a predictive tool for the ability of other sub-boreal 

peatlands to support peatland bird communities. The eight reference sites that were not 

included for bird surveys would serve well for the purpose of testing the refined model. 

Though we attributed the highest subindex values to large peatlands (≥ 100 ha) 

the importance of small wetlands for avian communities should not be discounted as 

small wetlands that are part of complexes are very important for preserving biodiversity 

(Gibbs 1993) and may have greater species richness than large isolated wetlands (Brown 

and Dinsmore 1986, Craig and Beal 1992). Additionally, small patches of forest habitat 

are important for migrating passerines as stop-over sites, (Swanson et al. 2003). 

Furthermore, many bird species (e.g., red-winged blackbird [Agelaius phoeniceus], sora 

[Porzana carolina] and ring-necked duck [Aythya collaris]; Brown and Dinsmore 1986) 

are not area-dependent and edge species (e.g., red-winged blackbird and American 

goldfinch [Carduelis tristis]; Herkert 1994) may be negatively affected by increased area. 
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Furthermore, four of the six smallest sites (< 20 ha) had relatively high proportions of 

peatland species in the community (0.7 – 0.8) and three of the four were highly 

connected; the fourth site was moderately connected and had the lowest proportion of 

peatland species of the four. All four sites had natural peatland plant communities. Our 

results suggest that small less-isolated peatlands with natural peatland plant communities 

are important for preserving peatland bird communities and future HGM modeling efforts 

should account for their value. Three of the larger sites (88 - 369 ha) had low proportions 

of peatland bird species (0.50 – 0.56), two of these had altered vegetation communities 

and the other was isolated; this provides additional support for rescaling subindex values 

for VArea.  

Land development influences bird community composition, often negatively. The 

presence of many peatland bird species (n = 25) may not be influenced by land 

development in the adjacent landscape as they are generalists and are not sensitive to 

human-activity; therefore a sub-boreal peatland in a highly developed landscape could 

theoretically have natural peatland bird community composed of generalist peatland 

species. For future modeling efforts it may be of interest to assess the types of land 

development (urban and agricultural) separately as they influence avian communities 

differently. Urban development in the landscape surrounding habitat patches influences 

species richness, leads to species-turnover and will often result in the loss of species that 

are sensitive to human-activity. Road density within 500 m of study sites may have the 

greatest influence on bird assemblages (Findlay and Houlahan 1997, Whited et al. 2000). 

The negative impacts of agriculture on avian communities is much less pronounced than 

is that of urban development; however agricultural landscapes can function as ecological 
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sinks for bird populations (Best 1986) so they likely negatively impact avian 

communities. For modeling purposes, agricultural development in the surrounding 

landscape may not be important for maintaining natural peatland bird communities as 

agricultural land use does not appear to influence species presence; therefore for the 

benefit of the model it may need to be removed from inclusion in VLandDev calculations. 

Support for omitting agriculture land from VLandDev calculations is found for three sites 

that had high proportions of peatland bird species (0.74 – 0.80) in their respective 

communities that received lower VLandDev scores primarily based on the amount of 

agricultural land in the 500-m buffer. Agricultural practices, such as the installation of 

drainage systems under fields lead to changes in water level and eventually to changes in 

nearby plant communities; changes in plant communities leads to changes in avian 

communities and this change will be accounted for by the multiplier variable VNatVeg. 

The multiplier, VNatVeg, appears to be useful because it is related to natural 

peatland bird communities. Three of the four sub-boreal peatlands that did not have 

representative peatland plant communities had low proportions of peatland bird species 

(0.55 – 0.56), the remaining site had inundated water levels that influenced plant 

communities however, structurally the vegetation was similar to a sedge-fen and is likely 

why it had a higher proportion of peatland bird species (0.71). Eight of the 11 sites that 

had natural peatland plant communities had high proportions (0.69 – 0.80) of peatland 

bird species; two of the three that had lower proportions of peatland bird species (0.57 – 

0.63) were structurally similar to eastern deciduous upland forests and were used by 

many species that are found in upland deciduous forests, the remaining site was small (2 



61	
  
	
  

	
  

ha) and surrounded by upland deciduous forest and was also used by many species 

typical of upland deciduous forest habitats. 

I suggest that a new FCI model needs to be created to monitor and assess the 

ability of sub-boreal peatlands to support faunal communities that are representative of 

natural peatlands. I feel that peatland bird species serve as the best indicators of habitat 

quality for other peatland fauna (e.g., mammals, herptiles, and invertebrates) because of 

their habitat affinity, sensitivity to human activity and landscape factors, and they are 

more-easily surveyed. An improved model will allow mitigation efforts to be assessed for 

the improvement of wildlife habitat and to determine which sites or portion(s) of sites are 

of the least value to wildlife for future development; additionally the effects of site 

development can be monitored.  
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APPENDICES 

Appendix 1. List of all bird species included in analysis and their tolerance of human activity. 

Common name Scientific name Affinity 
Alder flycatcher Empidonax alnorum Intolerant 
American bittern Botaurus lentiginosus Intolerant 
American coot Fulica americana Intolerant 
American crow Corvus brachyrhynchos Tolerant 
American goldfinch Carduelis tristis Tolerant 
American redstart Setophaga ruticilla  Intolerant 
American robin Turdus migratorius Tolerant 
Baltimore oriole Icterus galbula Tolerant 
Barn swallow Hirundo rustica Tolerant 
Bay-breasted warbler Dendroica castanea Intolerant 
Belted kingfisher Megaceryle alcyon Tolerant 
Black and white warbler Mniotilta varia Intolerant 
Blackburnian warbler Dendroica fusca Intolerant 
Black-capped chickadee Poecile atricapilla Tolerant 
Black-throated green warbler Dendroica virens Intolerant 
Black tern Chlidonas niger Intolerant 
Blue jay Cyanocitta cristata Tolerant 
Blue-winged warbler Vermivora pinus Intolerant 
Blue-winged teal Anas discors Intolerant 
Bobolink Dolichonyx oryzivorus Intolerant 
Blackburnian warbler Dendroica fusca Intolerant 
Broad-winged hawk Buteo platypterus Intolerant 
Brown creeper Certhia americana Intolerant 
Brown thrasher Toxostoma rufum Intolerant 
Brown-headed cowbird Molothrus ater Tolerant 
Canada goose Branta canadensis Tolerant 
Cape May warbler Dendroica tigrina Intolerant 
Cedar waxwing Bombycilla cedrorum Tolerant 
Chestnut-sided warbler Dendroica pensylvanica Intolerant 
Chipping sparrow Spizella passerina Tolerant 
Clay-colored sparrow Spizella pallida Intolerant 
Common raven Corvus corax Intolerant 
Common yellowthroat Geothlypis trichas Intolerant 
Double-crested cormorant Phalacrocorax auritus Tolerant 
Downy woodpecker Picoides pubescens Tolerant 
Eastern bluebird Sialia sialis Tolerant 
Eastern kingbird Tyrannus tyrannus Tolerant 
Eastern meadowlark Strunella magna Intolerant 
Eastern phoebe Sayornis phoebe Tolerant 
Eastern wood-pewee Contopus virens Intolerant 
Field sparrow Spizella pusilla Tolerant 
Golden-crowned kinglet Regulus satrapa Intolerant 
Golden-winged warbler Vermivora chrysoptera Intolerant 
Gray catbird Dumetella carolinensis Tolerant 
Great blue heron Ardea herondias Intolerant 
Great crested flycatcher Myiarchus crinitus Tolerant 
Green heron Butorides virescens Intolerant 
Green-winged teal Anas crecca Intolerant 
Hairy woodpecker Picoides villosus Tolerant 
House wren Troglodytes aedon Tolerant 
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Indigo bunting Passerina cyanea Intolerant 
Killdeer Charadrius vociferus Tolerant 
Least flycatcher Empidonax minimus Intolerant 
Le Conte’s sparrow Ammodrammus leconteii Intolerant 
Magnolia warbler Dendroica magnolia Intolerant 
Mallard Anas platyrhynchos Tolerant 
Marsh wren Cistothorus palustris Intolerant 
Mourning dove Zenaida macroura Tolerant 
Nashville warbler Vermivora ruficapilla  Intolerant 
Northern cardinal Cardinalis cardinalis Tolerant 
Northern flicker Colaptes auratus Tolerant 
Northern parula Parula americana Intolerant 
Northern rough-winged swallow Stegidopteryx serripennis Intolerant 
Northern shoveler Anas clypeata Intolerant 
Northern waterthrush Seiurus noveboracensis Intolerant 
Orange-crowned warbler Vermivora celata Intolerant 
Ovenbird Seiurus aurocapillus Intolerant 
Palm warbler Dendroica palmarum Intolerant 
Pied-billed grebe Podilymbus podiceps Intolerant 
Pileated woodpecker Dryocopus pileatus Intolerant 
Red-bellied woodpecker Melanerpes carolinus Tolerant 
Red-breasted nuthatch Sitta canadensis Tolerant 
Red-eyed vireo Vireo olivaceus Intolerant 
Red-winged blackbird Agelaius phoeniceus Tolerant 
Ring-necked duck Aythya collaris Intolerant 
Ring-necked pheasant Phasianus colchicus Tolerant 
Rose-breasted grosbeak Phuecticus ludovicianus Tolerant 
Ruby-crowned kinglet Regulus calendula Tolerant 
Ruby-throated hummingbird Archilochus colubris Tolerant 
Ruffed grouse Bonasa umbellus Intolerant 
Sandhill crane Grus canadensis Intolerant 
Savannah sparrow Passerculus sandwichensis Tolerant 
Scarlet tanager Piranga olivacea Intolerant 
Sedge wren Cistothorus platensis Intolerant 
Sharp-shinned hawk Accipiter striatus Intolerant 
Song sparrow Melospiza melodia Tolerant 
Sora Porzana carolina Intolerant 
Spotted sandpiper Actitis macularia Intolerant 
Swainson’s thrush Catharus ustulatus Intolerant 
Swamp sparrow Melospiza georgiana Intolerant 
Tree swallow Tachycineta bicolor Tolerant 
Veery Catharus fuscenscens Intolerant 
Virginia rail Rallus limicola Intolerant 
White-breasted nuthatch Sitta carolinensis Intolerant 
White-throated sparrow Zonotrichia albicollis Intolerant 
Winter wren Troglodytes troglodytes  Intolerant 
Willow flycatcher Empidonax trailii Intolerant 
Wilson’s snipe Gallinago delicata Intolerant 
Wood duck Aix sponsa Intolerant 
Woodthrush Hylocichla mustelina Intolerant 
Yellow warbler Dendroica petechia Intolerant 
Yellow-bellied sapsucker Sphyrapicus varius Intolerant 
Yellow-headed blackbird Xanthocephalus xanthocephalus Tolerant 
Yellow-rumped warbler Dendroica coronata Intolerant 
Yellow-throated vireo Vireo flavifrons Intolerant 
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Appendix 2. List of 97 bird species that use peatlands in the reference domain for reproduction, 

foraging, or as stop-over sites during migration.  
Species Scientific name 
Alder flycatchera Empidonax alnorum 
American bitterna Botaurus lentginosus 
American crowa Corvus brachyrhynchos 
American goldfincha Carduelis tristis 
American redstarta Setophaga ruticilla 
American robina Turdus migratorius 
Bay-breasted warblera Dendroica castanea 
Black-and-white warblera Mniotilta varia 
Black-backed woodpecker Picoides arcticus 
Black-billed cuckoo Coccyzus erythropthalmus 
Black-billed magpie Pica hudsonia 
Black-capped chickadeea Poecile atricapilla 
Black-throated green    
   warbler 

Dendroica virens 

Blackburnian warblera Dendroica fusca 
Blue jaya Cyanocitta cristata 
Blue-headed vireo Vireo solitarius 
Blue-winged teala Anas discors 
Bobolinka Dolichonyx oryzivorus 
Boreal chickadee Poecile hudsonica 
Brewer's blackbird Euphagus cyanocephalus 
Brown creepera Certhia americana 
Brown thrashera Toxostoma rufum 
Brown-headed cowbirda Molothrus ater 
Cape May warblera Dendroica tigrina 
Cedar waxwinga Bombycilla cedrorum 
Chipping sparrowa Spizella passerine 
Clay-colored sparrowa Spizella pallida 
Common ravena Corvus corax 
Common yellowthroata Geothlypis trichas 
Connecticut warbler Oporornis agilis 
Dark-eyed junco Junco hyemalis 
Downy woodpeckera Picoides pubescens 
Eastern kingbirda Tyrannus tyrannus 
Evening grosbeak Coccothraustes vespertinus 
Golden-crowned kingleta Regulus satrapa 
Golden-winged warblera Vermivora chrysoptera 
Gray catbirda Dumetella carolinensis 
Gray jay Perisoreus canadensis 
Gray-cheeked thrush Catharus minimus 
Greater yellowlegs Tringa melanoleuca 
Hairy woodpeckera Picoides villosus 
Hermit thrush Catharus guttatus 
House wrena Troglodytes aedon 
LeConte's sparrowa Ammodramus leconteii 
Lesser yellowlegs Tringa flavipes 
Lincoln's sparrow Melospiza lincolnii 
Magnolia warblera Dendroica magnolia 
Mallarda Anas platyrhynchos 
Nashville warblera Vermivora ruficapilla 
Nelson's sharp-tailed    
    sparrow 

Ammodramus nelsoni 

Northern flickera Colaptes auratus 
Northern goshawk Accipiter gentilis 
Northern harrier Cirus cyaneus 
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Northern parulaa Parula americana 
Northern waterthrusha Seiurus noveboracensis 
Olive-sided flycatcher Contopus cooperi 
Orange-crowned warblera Vermivora celata 
Palm warblera Dendroica palmarum 
Philadelphia vireo Vireo philadelphicus 
Pine siskin Carduelis pinus 
Pine warbler Dendroica pinus 
Purple finch Carpodacus purpureus 
Red crossbill Loxia curvirostra 
Red-breasted nuthatcha Sitta canadensis 
Red-winged blackbirda Agelaius phoeniceus 
Ring-necked ducka Aythya collaris 
Rose-breasted grosbeak Pheucticus ludovicianus 
Ruby-crowned kingleta Regulus calendula 
Ruby-throated  
    hummingbirda 

Archilochus colubris 

Ruffed grousea Bonasa umbellus 
Rusty blackbird Euphagus carolinus 
Sandhill cranea Grus canadensis 
Savannah sparrowa Passerculus sandwichensis 
Sedge wrena Cistothorus platensis 
Sharp-shinned hawka Accipiter striatus 
Sharp-tailed grouse Tympanuchus phasianellus 
Short-eared owl Asio flammeus 
Solitary sandpiper Tringa solitaria 
Soraa Porzana carolina 
Swainson's thrusha Catharus ustulatus 
Swamp sparrowa Melospiza georiana 
Tennessee warbler Vermivora peregrina 
Tree swallowa Tachycineta bicolor 
Veerya Catharus fuscescens 
White-breasted nuthatcha Sitta carolinensis 
White-crowned sparrow Zonotrichia leucophrys 
White-throated sparrowa Zonotrichia albicollis 
Wilson's phalarope Phalaropus tricolor 
Wilson's snipea Gallinago delicata 
Wilson's warbler Wilsonia pusilla 
Winter wrena Troglodytes troglodytes 
Yellow rail Coturnicops noveboracensis 
Yellow warblera Dendroica petechia  
Yellow-bellied flycatchera Empidonax flaviventris 
Yellow-rumped warblera Dendroica coronata 
  
a Species was observed. 
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