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ABSTRACT 

 In recent years, there have been tens of thousands of waterfowl mortalities in 

Wisconsin and Minnesota. An invasive species of snail, Bithynia tentaculata, is a host for 

the trematode parasites (Cyathocotyle bushiensis and Sphaeridiotrema globulus) that 

have caused these deaths. A microsatellite-enriched genomic library was detected using 

DNA from a B. tentaculata specimen from Lake Onalaska (Pool 7 of the Upper 

Mississippi River). Seven polymorphic microsatellite loci were used to genotype snails 

collected from Lake Butte des Morts, Shawano Lake, and Lake Onalaska in Wisconsin, 

as well as Lake Winnibigoshish in Minnesota. The genetic diversity of each population 

was measured as the number of alleles detected at each locus (NA), observed and expected 

heterozygosity (HO and HE), and allelic richness (AR). Populations were then 

differentiated by pairwise FST values, and the number of genetically distinct populations 

(K) was estimated. A consensus tree showing the relationship between geographical 

populations was created using matrices of Nei’s distance after repeatedly subsampling 

(bootstrapping) the data. Cluster analysis showed the genetic data from these snails was 

best explained by two groups, one containing the eastern Wisconsin populations and the 

other containing snails from Lake Onalaska and Lake Winnibigoshish. Furthermore, 

genetic distance and FST data suggests that the population of B. tentaculata in Shawano 

Lake likely founded the population in Lake Butte des Morts, which then contributed 

individuals to both Lake Onalaska and Lake Winnibigoshish. 
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INTRODUCTION 

 Recently, invasive species such as the emerald ash borer (Agrilus planipennis), 

silver carp (Hypophthalmichthys molitrix) and zebra mussel (Dreissena polymorpha) 

have received public attention. An invasive species is defined as an exotic species that 

occurs outside of its native range due to human activity and increases in abundance at the 

expense of native species (Primack, 2006). Invasive species are capable of causing 

immense environmental damage, estimated to cost the United States over $138 billion per 

year (Pimental et al., 1999). Monitoring and preventing the spread of invasive species is 

essential in the conservation of biodiversity. However, invasive species themselves are 

not the only threat to biodiversity. Many invasive species also host and transport parasites 

that may cause harm to native species. For example, the small hive beetle (Aethina 

tumida) poses little or no harm as a parasite of African honeybees but can cause great 

harm to European honeybee subspecies by destroying their nests (Neumann, Elzen, 

2004).  

Fortunately, with advances in molecular biology, the spread of invasive species 

can be monitored and possibly mitigated. A well-accepted means of inferring population 

structure and determining ancestral populations is by using microsatellite DNA 

sequences, otherwise referred to as simple sequence repeats (SSRs), short tandem repeats 

(STRs) or variable number tandem repeats (VNTRs; King et al., 1997; Schlötterer, 2000). 

Microsatellite loci are small segments of DNA with 1-6 base pair sequences repeated 

sequentially 10-30 times (for example, CATACATACATACATA…), which can be used 

as genetic markers (King et al., 1997; Schlötterer, 2000). 
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Microsatellite markers can be amplified using the Polymerase Chain Reaction 

(PCR; Mullis et al., 1986). A single pair of PCR primers is generally sufficient to detect 

the alleles at a given microsatellite locus in most individuals of the species being studied 

(Fisher et al., 1996). Most microsatellite regions of DNA are not known to code for 

specific protein products and provide several advantages for studies of microevolution 

because they tend to evolve more rapidly than transcribed genetic sequences (King et al., 

1997). Mutations occur more frequently during replication of microsatellite DNA than in 

coding regions due to the repetitive nature of the sequence. These mutations occur as a 

result of slipped-strand mispairing during the replication process, which changes the 

number of repeats that a microsatellite allele possesses (Tautz, Schlötterer, 1994). This 

leads to variation in allele length (in this case, an allele is the length of a repetitive 

sequence measured in base pairs). Microsatellite markers typically detect greater genetic 

diversity than other molecules such as mitochondrial DNA and allozymes (Davies et al., 

1999). 

Another advantage of microsatellite use in studies of population genetics, as 

compared to mitochondrial DNA, is that they are inherited in a Mendelian fashion. In 

sexually reproducing populations, each individual inherits one of its alleles at a given 

locus from each parent. Microsatellites are relatively abundant, and allele frequencies 

differ among populations.  The use of microsatellites as genetic markers has proven an 

effective tool in the studies of a variety of species, from mapping the diversity of the 

pathogenic rice fungus Magnaporthe grisea to population genetics studies of polar bears, 
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bottlenose whales, apostle birds, and many others (Crompton et al., 2008; Woxvold et al., 

2006; Zheng et al., 2008). 

In Lake Onalaska (Pool 7 of the Upper Mississippi River) in western Wisconsin, 

two trematode parasite species have been responsible for the deaths of over 30,000 

waterfowl since mortality was first detected in 2002 (Sauer et al., 2007). These parasites, 

Sphaeridiotrema globulus and Cyathocotyle bushiensis, both use the same species of 

snail, Bithynia tentaculata, as an intermediate host in their life cycles. Bithynia 

tentaculata, otherwise referred to as the faucet snail, is a native of Europe (Kipp, Benson, 

2010).  As an invasive species, B. tentaculata has spread parasitic infections in central 

North America. The faucet snail was first reported in 1871 in Lake Michigan and was 

later reported in Shawano Lake in 1996, Lake Butte des Morts during surveys for the 

snails performed between 1998 and 2000, and Lake Onalaska in 2002 (Cole, 2001; Mills 

et al., 1993; Sauer et al., 2007). According to the Minnesota Department of Natural 

Resources (MNDNR), B. tentaculata has also been found in Lake Winnibigoshish in 

northern Minnesota, where lesser scaup (Aythya affinis) mortalities occurred in both 2007 

and 2008 (Lawrence et al., 2008; MNDNR, 2009). It is not known how long these snails 

have inhabited these lakes, as their presence is usually not discovered until there has been 

noteworthy waterfowl mortality. According to the National Wildlife Health Center 

(NWHC; 2011), the first report of massive waterfowl mortality in Wisconsin due to either 

C. bushiensis or S. globulus was in Shawano Lake in 1996. The next places waterfowl 

deaths due to these parasites were reported in Minnesota and Wisconsin were Lake 

Onalaska in 2002 and Lake Winnibigoshish in 2007 (NWHC, 2011).  
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Several explanations have been proposed to explain how B. tentaculata came to 

inhabit North America, however the most widely accepted explanation is that B. 

tentaculata first arrived in Lake Michigan in the ballast of timber ships from Europe 

(Jokinen, 1992; Mills et al., 1993). The presence of B. tentaculata was first recorded in 

Lake Michigan in 1871 (Mills et al., 1993). It spread to Lake Ontario by 1879, the 

Hudson River by 1892, and to other bodies of water in the Finger Lakes region in New 

York soon after (Jokinen, 1992; Mills et al., 1993). B. tentaculata was introduced to Lake 

Oneida in New York State between 1910 and 1918 and Lake Erie by 1930 (Carr, 

Hiltunen, 1965; Harman, 2000; Krieger, 1985). After being introduced into the Erie 

Canal, B. tentaculata began to replace other species of snails (Jokinen, 1992). In addition 

to negatively impacting the diversity of snail species in the Erie Canal, B. tentaculata has 

also impacted the species richness of mollusks in Lake Oneida (Harman, 2000). In 

Wisconsin, the presence of B. tentaculata was recorded only in the Lake Michigan area 

and the Wolf River drainage, including Lake Butte des Morts and Shawano Lake, until its 

presence was noted in Lake Onalaska in 2002 (Sauer et al., 2007).  

Historical accounts of the pattern and timing of how B. tentaculata has spread 

throughout the United States are valuable, yet they cannot account for the current 

geographic distribution of this snail and do little to explain how its range continues to 

expand. Since B. tentaculata is a sexually reproducing species, microsatellite loci should 

be useful in the study of the genetic structure of its various populations. From the point of 

introduction, the diversity of alleles within a population will gradually increase due to the 

mutational changes in microsatellite allele size and the immigration of individuals with 
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unique alleles from additional populations. Although the magnitude of this increase will 

be limited by the diversity present at the time of the introduction, it is expected that the 

older populations of B. tentaculata will be more genetically diverse than more recently 

established and dispersed populations unless gene flow masks the ability to detect such 

differences. As an aquatic species that appears to be found only in permanent, freshwater 

lake systems in North America, dispersal of this snail is presumably limited. Avenues of 

dispersal for this snail might include water currents, boat traffic, or even the birds 

themselves. A study of the microsatellite loci in B. tentaculata should provide insight as 

to the snail’s method of migration. 

Mortality of water birds in Pool 7 due to C. bushiensis and S. globulus was 

unknown prior to 2002, which raises questions about the origin of these parasites and 

their host snail, B. tentaculata, at this site. Understanding how B. tentaculata has spread 

throughout Wisconsin and Minnesota would prove to be very useful in understanding 

connections between these populations of snails and could help explain which 

populations are most likely the source of the B. tentaculata population(s) in Pool 7 and 

Lake Winnibigoshish. Once this information is obtained, various studies could be 

performed to determine how these snails invade. An awareness of likely modes of 

transport may prove useful in limiting the spread of these snails and mitigating 

potentially fatal parasitic infections in other populations of waterfowl in the future. 

In the present study, microsatellite loci will be used to assess the genetic diversity 

of B. tentaculata populations at geographic locations in Wisconsin and Minnesota with 

the goal of understanding the relationship between genetic diversity and a population’s 
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source or age. Ultimately, it will be determined if the population of B. tentaculata in Pool 

7 descended relatively recently from older populations of these snails adjacent to Lake 

Michigan in eastern Wisconsin. DNA extracted from B. tentaculata will be used to 

isolate microsatellites, and those microsatellite markers will be used to determine the 

genetic structure of the B. tentaculata populations in Lake Onalaska in western 

Wisconsin and in various lakes in eastern Wisconsin (Shawano Lake and Lake Butte des 

Morts), as well as Lake Winnibigoshish in northern Minnesota. The genetic structures of 

the B. tentaculata populations will be determined by the diversity of alleles in isolated 

microsatellite loci, as well as genotype frequencies in accordance with Hardy-Weinberg 

equilibrium. Wright’s Fixation Index (FST; Weir, Cockerham, 1984) will then be used to 

compare the genetic structures of the populations to each other and assignment tests will 

be performed to distinguish genetically distinct populations (K). In addition, Nei’s 

genetic distance (Nei, 1972) will be used to determine the phylogenetic relationship 

between the Wisconsin and Minnesota B. tentaculata populations. 

Insights obtained through the proposed research may be used to understand the 

mechanisms that enable the spread of B. tentaculata. The goal of this study is to perform 

an analysis of the genetic structure of B. tentaculata populations within Wisconsin and 

Minnesota, which would help determine how these populations are related to each other, 

and could possibly present clues as to their origins.  The working hypothesis of this study 

is that descendant populations of B. tentaculata populations will contain only a subset of 

the allelic diversity present in their founding populations. Therefore, based on the 

historical records for the presence of these snails at various sites in Wisconsin and 
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Minnesota, it is predicted that populations in eastern Wisconsin lakes possess more allelic 

diversity than populations in Lake Onalaska and Lake Winnibigoshish in northern 

Minnesota. A corollary of this hypothesis is that the western populations are descendants 

of the populations in eastern Wisconsin and that the alleles in the more recent populations 

were originally derived from their ancestor population(s). If this hypothesis is supported 

it would provide evidence that the Pool 7 and Lake Winnibigoshish snail populations 

were established more recently. Likewise, it is predicted that the population of B. 

tentaculata in eastern Wisconsin lakes will be more diverse than those in Lake Onalaska 

and Lake Winnibigoshish. It is also predicted that Lake Onalaska and Lake 

Winnibigoshish will give the largest FST values when compared to other populations. If 

the aforementioned hypothesis is supported by the results of the proposed study, the idea 

that B. tentaculata first reached the United States in or around Lake Michigan and spread 

west throughout Wisconsin and Minnesota would be supported. 

Research Questions 

 The following research questions will be answered by the proposed study: 

1. What are the genetic structures of the B. tentaculata populations in eastern 

Wisconsin lakes (Lake Butte des Morts and Shawano Lake), Lake Onalaska (Pool 

7), and Lake Winnibigoshish? 

2. How do the genetic structures of the B. tentaculata populations in eastern 

Wisconsin lakes, Lake Onalaska, and Lake Winnibigoshish compare to each 

other? More specifically, which populations (when compared to each other) have 
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the largest FST values and which geographic populations are grouped into the 

same cluster according to individual genotypes? 
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MATERIALS AND METHODS 

I. Sampling of Bithynia tentaculata Populations. 

 In May of 2009, 9 water bodies were sampled for Bithynia tentaculata specimens: 

Pool 13 of the Upper Mississippi River, Lake Geneva, Lake Koshkonong, Lake 

Michigan, Fox Lake, Green Lake, Green Bay, Shawano Lake and Petenwell Lake (Figure 

1). Pool 13 was sampled from Thomson, IL and the remainder of the sites are found in 

Wisconsin. These water bodies were chosen to sample for B. tentaculata either because 

these snails were reported there in the past (such as Lake Shawano), they were near other 

bodies of water where these snails had been reported and of similar size, or they were 

directly connected by waterways to other bodies of water where these snails had been 

reported. Additional snails were collected from Lake Onalaska, Lake Winnibigoshish and 

the Lake Butte des Morts area, including Lake Poygan and Lake Winneconne. 

 Snails were categorized as coming from 4 geographic areas (Lake Butte des 

Morts, Shawano Lake, Lake Onalaska, and Lake Winnibigoshish; Figure 1). Snails were 

collected using a variety of methods including: deep water sampling of bottom-dwelling 

snails using a ponar from a boat, picking snails off rocks or vegetation along the 

shoreline, and using the ponar in shallow water just off the shoreline to collect bottom-

dwelling snails. Snails were stored on ice in plastic bags filled with approximately 500 

mL of water from their original habitat while they were transported to Minnesota State 

University Mankato (MSUM). Snails were dissected and examined under a dissecting 

microscope (6.5x to 45x magnification), to determine the presence or absence of 



 10 

parasites. The anterior and posterior portions of individual snails were placed in separate 

1.5-mL microfuge tubes and stored at -80°C until DNA was extracted. 

II. Detection of a Microsatellite-Enriched Genomic Library 

 The DNA from an individual B. tentaculata snail from Lake Onalaska (Pool 7) 

was used as a source of high molecular weight, genomic DNA. The DNA from this snail 

(and all other snails used in this study) was extracted according to Hamburger et al. 

(1987). Snail tissue was removed from storage at -80°C and ground in the 

microcentrifuge tube using a chilled pestle. Once homogenized, 250 µL of lysis buffer 

(10 mM Tris-HCl pH 8.0, 50 mM EDTA, 5% SDS, and 250 µg/mL proteinase K) were 

added to the tube and the mixture incubated for 2 hr at 37°C. A phenol-chloroform 

extraction and ethanol precipitation were performed according to standard procedures 

(Ausubel et al., 1999), after which the pellet was resuspended in 100 µg/mL RNAse in 

TE (10 mM Tris-Cl, pH 7.5, 1mM EDTA) and incubated for 3 hr at 37°C. The phenol-

chloroform extraction and ethanol precipitation were repeated and the DNA pellet was 

resuspended in 40 µL of distilled water and quantified using a BioPhotometer 

(Eppendorf). When electrophoresed on a 1% agarose gel containing ethidium bromide 

(0.57 g/mL) the sample appeared to contain a large amount of high-molecular-weight 

DNA. 

The extracted DNA from this snail was treated to produce a microsatellite-

enriched genomic library using DeWoody’s Microsatellite Cloning Protocol (DeWoody, 

2002). 1 µg of DNA was digested with 0.5 µL (5 units, 5U) of each of the following 
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restriction enzymes: NheI, RsaI, and AluI (Promega). The reaction included 1X Buffer B 

(Promega) and 20 µg of BSA (Roche) in a total reaction volume of 20 µL. Ten separate 

microfuge tubes prepared with this reaction mixture were incubated at 37°C for 4 hr. 

After incubation, 4 µL from each tube was electrophoresed on a 1% agarose gel 

containing ethidium bromide (0.57 g/mL) to ensure satisfactory digestion of the DNA. 

The remaining 16 µL of each reaction were pooled.  

The ends produced by NheI in the digested DNA were blunted with mung bean 

nuclease. To do so, 160 µL of digested DNA, 1X Reaction Buffer (Promega), and 1 µL 

(10U) of mung bean nuclease (Promega) were incubated for 40 min at 37°C. This DNA 

was purified using the Wizard SV Gel and PCR Clean-Up System (Promega) and eluted 

in 50 µL nuclease-free water. The 5’ends were dephosphorylated using shrimp alkaline 

phosphatase (SAP). This reaction contained 40 µL of purified DNA, 5 µL (5U) of SAP 

(Promega) and 1X SAP Reaction Buffer (Promega) and was incubated at 37°C, followed 

by 15 min at 65°C. The digested, dephosphorylated DNA was once again purified using 

the Wizard SV Gel and PCR Clean-Up System (Promega) and eluted in 37 µL of 

nuclease-free water.  These dephosphorylated restriction fragments were ligated to SNX 

linkers (SNX forward: 5’CTAAGGCCTTGCTAGCAGAAGC-3’; SNX reverse: 3’-

AAAAGATTCCGGAACGATCGTCTTCGp-5’; Hamilton et al., 1999) using T4 DNA 

ligase. This reaction involved mixing 10 µL of digested and dephosphorylated DNA, 

double-stranded SNX linkers (forward and reverse, 1.95 µM each), 1X Buffer B 

(Promega), 10 mM rATP (Promega), 1 µL (20U) high concentration T4 DNA ligase 

(Promega), 1 µL (20U) XmnI (Promega), and 1X T4 ligase buffer (Promega) in a total 
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volume of 30 µL which was incubated in a Mastercycler® gradient thermocycler 

(Eppendorf), where it underwent 30 cycles of alternation between 30 min at 16°C and 10 

min at 37°C, followed by incubation at 65°C for 20 min. This product was used as a 

template for PCR reactions to verify the success of the ligation reaction.  Each 15 µL 

PCR mixture contained: 1X magnesium-free thermophilic DNA polymerase buffer 

(Promega), dNTPs (320 µM each, Promega), 1.5 mM MgCl2 (Promega), 0.3 µL (1.5U) 

Taq DNA polymerase (Promega), 0.4 µM each SNX double-stranded F & R (forward and 

reverse) primer, and the remaining volume was made up of a mixture of DNA template 

(50 ng) and nuclease-free water. The reaction mixtures underwent 35 cycles of 45 s at 

95°C, 60 s at 60°C and 60 s at 72°C, preceded by 5 min at 95°C and followed by 2 min at 

72°C. These PCR amplifications were electrophoresed in a 1% agarose gel to detect 

success of the ligation reaction. 

 The ligated DNA was hybridized to biotinylated microsatellite oligonucleotides 

((GATA)7, (CATA)7, (GATC)7, and (AC)10,; Integrated DNA Technologies, Inc. 

(IDT®)). SNX-ligated DNA (500 ng) was added to 150 pmol of biotinylated 

oligonucleotides and 173.4 µL of 6X SSC (0.1% SDS). The final volume was adjusted to 

250 µL with nuclease-free water (giving a final concentration of 4.2X SSC, 0.07% SDS) 

and the reaction mixture underwent a 5-min denaturation period at 95°C followed by a 2-

hr incubation at 55°C in a Mastercycler® gradient thermocycler (Eppendorf). 

Streptavidin-coated beads (Promega) were used to isolate microsatellite-bearing 

fragments from the hybridized genomic DNA. In this process, 300 µL of beads were 

prepared by washing them 3 times in 150 µL of TEN100 (10 mM Tris-HCl, 1 mM 
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EDTA, and 100 mM NaCl). They were incubated with the hybridized DNA at room 

temperature for 30 min and magnetized. The mixture was washed 3 times in 500 µL of 

TEN100 followed by 3 washes in 500 µL 0.2X SSC, 0.1% SDS.  The beads were 

incubated for 5 min at 95°C in 200 µL TE and the supernatant was ethanol-precipitated as 

in DeWoody’s Microsatellite Cloning Protocol (Spring 2002). Next, 22 µL of 3M sodium 

acetate were added followed by the addition of 500 µL ice-cold 100% ethanol. The 

mixture was frozen for > 15 min and spun at 13,200 rpm in a Centrifuge (5415 D, 

Eppendorf) for 10 min. The supernatant was removed and 400 µL of room temperature 

70% ethanol were added, followed by a 2-min spin at 13,200 rpm. The supernatant was 

again removed and the pellet was air-dried, resuspended in 40 µL of TE and stored at  

-4°C. 

Success of the hybridization was tested in a 15-µL PCR amplification containing 

1.5, 3, or 6 µL of template (hybridization product). Each reaction mixture contained 1X 

magnesium-free Thermophilic DNA Polymerase buffer (Promega), dNTPs (320 µM 

each, Promega), 1.5 mM MgCl2 (Promega), 0.3 µL (1.5U) Taq DNA Polymerase 

(Promega), 0.6 µM SNX F (forward) primer and the final volume was adjusted to 15 µL 

with nuclease-free water. The reactions underwent 45 cycles of 45 s at 95°C, 45 s at 58°C 

and 60 s at 72°C, preceded by 3 min at 95°C and followed by 10 min at 72°C in a 

Mastercycler® gradient thermocycler (Eppendorf). The entire 15 µL reactions were 

electrophoresed in a 1% agarose gel and visible bands > 200 base pairs (bp) were excised 

from the gel and refrigerated overnight at 20°C in microcentrifuge tubes. They were 
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cleaned using a ZymocleanTM Gel DNA Recovery kit (Zymo Research) and eluted in 12 

µL of nuclease-free water. 

50 µL PCR amplifications were set up according to DeWoody (2002). Each 

reaction mixture contained: 10 µL of microsatellite-enriched (hybridized) DNA, 1X 

magnesium-free Thermophilic DNA Polymerase buffer (Promega), dNTPs (320 µM 

each, Promega), 1.5 mM MgCl2 (Promega), 1.5U Taq DNA Polymerase (Promega), and 

0.6 µM SNX F primer. Reaction mixtures underwent 32 cycles of 45 s at 95°C, 45 s at 

58°C and 60 s at 72°C, preceded by 3 min at 95°C and followed by 10 min at 72°C in a 

Mastercycler® gradient thermocycler (Eppendorf). 10 µL of each reaction were 

electrophoresed in a 1% agarose gel and the remaining PCR products of hybridized DNA 

were cleaned with the Wizard SV Gel and PCR Clean-Up System (Promega) and eluted 

in 50 µL TLE (0.005 M EDTA, 0.1 M Lithium Chloride, 0.2 M Tris).  

The cleaned microsatellite-enriched DNA was digested with NheI to prepare it for 

subsequent XbaI ligation into the pBluescript®  (pBS) II SK (+) plasmid (Stratagene): 10U 

NheI (Fermentas), 10 ng/µL BSA (Promega), and 1X Buffer Tango (Fermentas) were 

added to 43.5 µL eluted DNA and the mixture incubated for > 2 hr at 37°C. Prior to 

ligation, the pBS II SK (+) plasmid was digested with XbaI: 10 µg of pBS II SK(+),10 

ng/µL BSA (Promega), 1X XbaI buffer (Promega), 0.5 µL (50U) XbaI (Promega) and 34 

µL nuclease-free water were combined and incubated for > 1 hour at 37°C. Digestion 

products were cleaned with the Wizard® SV Gel and PCR Clean-Up System (Promega) 

and eluted in 40-45 µL nuclease-free water. The cleaned, digested pBS II SK(+) was 

digested with SAP. 40 µL of eluted pBS II SK (+), 5U SAP (Promega) and 1X SAP 
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buffer were combined and incubated for 30 min at 37°C, followed by 15 min at 60°C. 

The resulting digested pBS II SK (+) was cleaned using ZYMO DNA Clean & 

ConcentratorTM-5 (Zymo Research), quantified using a BioPhotometer (Eppendorf), and 

a 3:1 (insert:vector) ligation was performed: 300 ng of insert (microsatellite-enriched 

DNA), 100 ng of pBS II SK (+), 1 µL (20U) of High Concentration T4 DNA Ligase 

(Promega), 1 µL (5U) of NheI (Promega), 10 mM rATP (Promega), 1X T4 DNA Ligase 

(Promega) and 1X Buffer B (Promega) were combined and underwent 30 cycles of 30 

min at 16°C and 10 min at 37°C in a Mastercycler® gradient thermocycler (Eppendorf).  

The pBS II SK (+) plasmid, now containing microsatellite-enriched DNA inserts, was 

transformed into XL1-Blue competent cells via electroporation. 40 µL of XL1-Blue 

competent cells (previously frozen at -80°C and thawed for 5 min on ice) and 1.5 µL of 

ligated pBS II SK (+) plasmid were added to a cuvette, electroporated at 2.5 kV in a 

GenePulser Xcell (Bio-Rad) and incubated for 30 min at 37°C in 1 mL SOC broth. 100 

µL of the transformed bacterial cultures were grown overnight at 37°C on plates of 20 

mL of LB agar with 100 µg/mL of ampicillin, 80 µg/mL of X-gal and 20 mM IPTG.  

After incubation, colonies containing plasmids with inserts appear white and 

colonies containing plasmids without inserts appear blue. Therefore, white colonies (i.e. 

colonies containing microsatellite-enriched DNA fragments) were selected and used in a 

15-µL PCR amplification with T3 and T7 primers (specific to the pBS II SK(+) plasmid) 

to determine the approximate size of the insert. The colony of choice was touched gently 

with an autoclaved toothpick, which was dipped into a tube containing the 15 µL PCR 

reaction mixture (dNTPs (320 µM each, Promega), 1X DyNAzymeTM II DNA 
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Polymerase buffer (Finnzymes), 167 nM T3 primer, 167 nM T7  primer,  and 0.24U 

DyNAzymeTM II DNA Polymerase (Finnzymes)). The tube was incubated for 3 min at 

95°C, followed by 32 cycles of 30 s at 95°C, 30 s at 55°C, and 72°C for 30 s, followed by 

10 min at 72°C in a Mastercycler® gradient thermocycler (Eppendorf). 7 µL of each PCR 

reaction was electrophoresed in a 1% agarose gel and PCR products producing bands > 

370 bp were used for sequencing.  

Approximate sizes of PCR products were determined using LabWorks 4.5 

software (Ultra-Violet Products, Cambridge, UK) and an AutoChemi imaging system 

(Ultra-Violet Products, Cambridge, UK).  The remaining 8 µL of the selected PCR 

products were cleaned with the ZYMO DNA Clean & ConcentratorTM-5 kit (Zymo 

Research), resuspended in 15 µL of nuclease-free water and quantified using a 

BioPhotometer (Eppendorf). For each 100 base pair (bp) of product, 2 ng of PCR product 

were used in the sequencing reaction (e.g. a 300-bp product would require 6 ng of PCR 

product for sequencing). The required volume of PCR product was added to a 0.2 mL 

tube and the volume was brought up to 3 µL with nuclease-free water. The remaining 4 

µL of the 7µL sequencing reaction consisted of: 2.86 µM of either T3 or T7 primer, 0.5 

µL of ABI PRISMTM BigDye® Cycle Sequencing Mix (Applied Biosystems, Foster City, 

California, USA), and 1.5 µL of 5X ABI buffer (Applied Biosystems, Foster City, 

California, USA). Sequencing reactions cycled in a Mastercycler® gradient thermocycler 

(Eppendorf) as following B.A. Roe (unpublished data): 5 min at 95 °C, followed by 99 

cycles of 30 s at 95 °C, 20 s at 48 °C, and 4 min at 60 °C. The reaction contents were held 

at 4 °C until further use.   



 17 

Sequenced PCR products were cleaned using ZR DNA Sequencing Clean Up 

KitTM (Zymo Research) and eluted in 6 µL of nuclease-free water. Entire cleaned samples 

were mixed with 2 µL of a 5:1 (deionized formamide:ABI loading dye (Applied 

Biosystems, Foster City, California, USA)) mix in the well of a 96-well plate. Once all of 

the samples were loaded into the 96-well plate, the mixtures were boiled for 5 min on a 

hot plate to evaporate excess water. Samples were loaded into a polyacrylamide gel 

between two glass plates and electrophoresed on an ABI PRISMTM 377 DNA Sequencer 

(Applied Biosystems, Foster City, California, USA). Sequences were analyzed using 

4Peaks version 1.7.2 (Griekspoor, Groothuis, 2005) BaseFinder version 6.2.3 (Giddings 

et al., 2006), and primers were designed using MSATCOMMANDER version 0.8.1 

(Faircloth, 2008) and Primer3 (Rozen, Skaletsky, 2000).  

Once primers had been designed, forward and reverse primers were ordered 

(without the presence of a fluorescent tag) so their polymorphism could be tested. This 

was done using Rhodamine Green in a 15-µL PCR amplification containing 267 nM 

Rhodamine Green, 12 ng/mL BSA (Roche), 1X DyNAzymeTM II DNA Polymerase 

buffer (Finnzymes), dNTPs (320 µM each, Promega), 167 nM forward (F) primer, 167 

nM R (reverse) primer, 0.24U DyNAzymeTM II DNA Polymerase (Finnzymes), and 50ng 

of template DNA. Reactions underwent an initial incubation of 5 min at 95°C followed 

by followed by 32 cycles of 45 s at 95°C, 45 s at 55°C, and 72°C for 60 s, followed by 10 

min at 72°C in a Mastercycler® gradient thermocycler (Eppendorf). Temperature was held 

constant at 15°C until further use. Samples were electrophoresed on an ABI PRISMTM 

377 DNA Sequencer (Applied Biosystems, Foster City, California, USA) and analyzed 



 18 

using GENESCAN 3.1 and GENOTYPER 2.5 software (Applied Biosystems, Foster 

City, California, USA). After confirming the polymorphism of microsatellite loci, primer 

pairs were ordered where the 5’ end of either the forward or reverse primer was tagged 

with a fluorescent dye (HEX, FAM, or TET). All designed primers were ordered from 

Integrated DNA Technologies (IDT®). 

III. Genotyping Bithynia tentaculata Specimens 

Snails were genotyped using 10 different primer pairs thought to amplify 11 

different loci (primer pair “GA62” appeared to amplify two different size ranges of 

products, above and below 240 bp). The following 6 primer pairs were designed at 

Minnesota State University Mankato using previously described methods: “Bt34”, 

“Bt34(GA)”, “GA138”, “GA144”, “GA154” and “GA62”. Primer pairs “Bite03”, 

“Bite16”, “Bite29” and “Bite40” were designed by Henningsen et al. (2010). 50 ng of 

template DNA was used in each 15 µL PCR amplification which contained: 12 ng/mL 

BSA (Roche), 1X DyNAzymeTM II DNA Polymerase buffer (Finnzymes), dNTPs (320 

µM each, Promega), 167 nM F primer, 167 nM R primer, and 0.24U DyNAzymeTM II 

DNA Polymerase (Finnzymes). Reaction mixtures incubated for 3 min at 95°C, followed 

by 32 cycles of 30 s at 95°C, 30 s at primer-specific annealing temperatures (Table 1) and 

72°C for 30 s, followed by 10 min at 72°C in a Mastercycler® gradient thermocycler 

(Eppendorf). PCR products were electrophoresed on an ABI PRISMTM 377 DNA 

Sequencer (Applied Biosystems, Foster City, California, USA) and analyzed using 
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GENESCAN 3.1 and GENOTYPER 2.5 software (Applied Biosystems, Foster City, 

California, USA). 

IV. Statistical Analysis 

Null Alleles. 
 
 MICRO-CHECKER version 2.2.3 (van Oosterhout et al., 2004) was used to check 

for errors in scoring and the presence of null alleles. Null alleles were found to exist at all 

11 polymorphic loci. Concentrations of DNA templates were verified to be 

approximately 25 ng/µL and PCR amplifications of DNA for individuals expressing a 

null allele at a given locus were attempted at least 3 times to ensure that nothing 

amplified (supporting the presence of a null allele). In addition, the quality of DNA of 

some individuals that did not amplify was confirmed by electrophoresis in an agarose gel. 

The original data set was used to determine the frequency of null alleles in each 

population and at each locus.  

Genetic Diversity. 
 
 FSTAT version 2.9.3 (Goudet, 2001) was used to determine the number of alleles 

detected at each locus (NA), observed and expected heterozygosity (HO and HE), and 

allelic richness (AR). Allelic richness is useful because it accounts for differences in 

sample size (Mousadik, Petit, 1996; Petit et al., 1998). The number of individuals with 

one or more private alleles (NP) and number of effective alleles (NE) were calculated for 

each locus and population using GenAlEx 6.4 (Peakall, Smouse, 2006). Deviations from 

Hardy-Weinberg Equilibrium (HWE) were tested with GENEPOP version 4.0.10 



 20 

(Raymond, Rousset, 1995). Default Markov chain parameters for all tests in GENEPOP 

were used (1000 dememorizations, 100 batches and 1000 iterations per batch). An overall 

significance level of P = 0.05 was maintained for multiple tests of deviation from HWE 

using Sequential Bonferroni corrections (Rice, 1989). 

Population Differentiation. 
 
 Populations were differentiated from one another by pairwise FST values (Weir, 

Cockerham, 1984) calculated in FSTAT version 2.9.3 (Goudet, 2001). The number of 

genetically distinct populations (K) was estimated using STRUCTURE version 2.3.3 

(Pritchard et al., 2010). Methods described by Evanno et al. (2005) were used to estimate 

∆K, which gives a more accurate estimate of K because it takes into account the rate of 

change in and corresponding variances of L(K), the posterior probability that the 

genotypic data fits a hypothetical number of populations (K), between consecutive values 

of K. The most probable number of populations (K), or clusters, was estimated by using 

the admixture model and running simulations with K = 1-10 with 10000 replications. 

Several modules within PHYLIP version 3.69 (Felsenstein, 2005) were used to create 

dendograms of relationships between geographical populations based on allele 

frequencies calculated in GenAlEx 6.4 (Peakall, Smouse, 2006). Bootstrap values were 

computed in Seqboot by resampling over 1000 replications and branch lengths were 

calculated in Fitch using matrices of Nei’s distance (Nei, 1972) as calculated in Gendist  

(Felsenstein, 2005). Finally, a consensus tree was made in Consense using the branch 

lengths calculated in Fitch (Felsenstein, 2005). Trees were viewed using the programs 

NJplot version 2.3 (Perriere, Gouy, 1996) and TreeViewX version 0.5.0 (Page, 1996). 
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RESULTS 

Snail Collection. 
 
 Of the 9 bodies of water sampled, B. tentaculata specimens were only found in 

Lake Shawano, where 50 snails were collected.  Another 199 snails from the Lake Butte 

des Morts area (including Lake Butte des Morts, Lake Poygan and Lake Winneconne) 

were collected in the summer of 2009. In the fall of 2009, 264 snails from Lake 

Winnibigoshish were collected. A total of 817 snails were collected during 2008 and 

2009. Of these, 304 were collected from Lake Onalaska (Pool 7 of the Upper Mississippi 

River) in the fall of 2008.  Snails from all of these collections were categorized as coming 

from 4 geographic areas (Lake Butte des Morts, Shawano Lake, Lake Onalaska, and Lake 

Winnibigoshish; Figure 1). 

Detection of Bithynia tentaculata Microsatellites. 
 
 Of the DNA cloned from an individual snail from Lake Onalaska, a total of 215 

DNA fragments produced readable sequences. The sequences of 56 of those fragments 

were recorded; the mean fragment size was approximately 211 nucleotides, with a 

standard deviation of 117 nucleotides. Using this information, it is estimated that 

approximately 45152 to 45387 nucleotides of the B. tentaculata genome were sequenced 

during the screening for microsatellites. 52 of the known 56 sequences recorded appeared 

to contain microsatellites (Appendix 1). Primers were not designed to amplify all of these 

loci, either because not enough of the region flanking the repeat was known or the 

repetitive regions were too small to be classified as microsatellites. Of the 52 sequences 
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that appeared to contain microsatellites, only 11 were found to be unique microsatellite 

loci which primers were designed to amplify. Four of these primers did not produce 

reliable data, either because they were not polymorphic or their products were difficult to 

interpret on a genotyping gel due to the presence of stutter bands. Seven novel 

polymorphic microsatellite loci (loci 1-7; Table 1) were identified for B. tentaculata. One 

pair of primers produced a bimodal distribution of allele sizes. These were thought to be 

at 2 different loci, and are referred to as locus 6 and locus 7 (Table 1). Four additional 

polymorphic microsatellite loci (loci 8-11), designed by Henningsen et al. (2010), were 

also used to genotype specimens (Table 1). The number of alleles per locus varied from 5 

(locus 5, GA154) to 13 (locus 2, Bt34(GA)) across all populations. Allele size ranges 

include inner flanking regions and sequences complementary to the primers (Table 1). 

Null Alleles. 
 
 Loci 6, 9, 1, and 7 had the highest prevalence of null alleles, in descending order 

(Table 2). For the rest of the loci, the frequency of null alleles was less than 15%. The 

population with the highest null allele frequency was Winnibigoshish (almost 30%) 

followed by Shawano, Onalaska, and Butte des Morts, in descending order (Table 3). As 

previously stated, loci with the highest frequency (> 20%) of null alleles were 

disregarded for the remainder of the data analyses. Therefore, only 4 of the original 11 

primer sets designed as a part of this study were used in the final data analyses (2, 3, 4, 

and 5). 
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Genetic Diversity. 
 
 A total of 161 snails were genotyped at the 7 polymorphic loci used in the study 

(a maximum of 45 snails amplified from Lake Butte des Morts, 47 from Lake Onalaska, 

41 from Shawano Lake, and 26 from Lake Winnibigoshish, see Table 4.1). Sample size 

(N), number of alleles (NA), number of private alleles (NP), number of effective alleles 

(NE), and allelic richness (AR), are shown in Table 4.1 and 4.2. It was found that Butte des 

Morts had the greatest allelic diversity (i.e., it had the highest number of alleles), 

followed by Onalaska, Shawano, and Winnibigoshish, respectively. The same trend was 

found for effective alleles. However, a different trend is shown by allelic richness, with 

Butte des Morts and Shawano having the highest allelic richness, followed by Onalaska 

and Winnibigoshish (in descending order). Allelic richness for samples from 

Winnibigoshish and Onalaska was significantly lower than allelic richness for samples 

from Butte des Morts and Shawano (Mann-Whitney U-test P < 0.05). None of the 

individuals in Shawano had private alleles, whereas Butte des Morts had the highest 

number of private alleles, followed by Onalaska and Winnibigoshish. 

 Observed and expected heterozygosity (HO and HE), along with deviations from 

HWE (FIS, a measure of heterozygote deficiency) according to Weir and Cockerham 

(1894) are shown in Table 5. With the exception of locus 8 (Bite03) and locus 11 

(Bite40), the actual observed heterozygosities (Ho) were less than expected (HE) for all 

populations. Significant departures from HWE were observed in 16 of the 28 single-locus 

exact tests after sequential Bonferroni corrections.  
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Population Differentiation. 
 
 With the exception of Butte des Morts compared to Shawano, which showed little 

genetic differentiation (FST < 0.05), all populations showed moderate genetic 

differentiation (FST between 0.05 and 0.15; Hartl, Clark, 1997) when compared to each 

other (Table 6). Two genetically distinct populations, or clusters, were identified using 

STRUCTURE version 2.3.3 (Pritchard, Stephens and Donnelly, 2000; Falush, Stephens 

and Pritchard, 2003). Figure 2 shows a plot of the mean L(K), or the log probability of 

there being K genetically distinct populations, and ∆K as a function of K. ∆K  is the 

change in the log probability of K, and has been shown to provide a more accurate 

estimation of K (Evanno et al., 2005). The mean proportion of membership of each pre-

defined population in each of the clusters (Q) is shown in Table 7. Figure 3 is a bar plot 

that was generated in STRUCTURE version 2.3.3 (Pritchard, Stephens and Donnelly, 

2000; Falush, Stephens and Pritchard, 2003), and is a graphical representation of the 

assignment of individuals to different clusters. Cluster 1 is made up mostly of individuals 

from Butte des Morts and Shawano, while cluster 2 is made up of mostly individuals 

from Onalaska and Winnibigoshish. The same pattern is seen in the dendogram of 

relationships (Figure 4) based on Nei’s genetic distance (Nei, 1972). 
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DISCUSSION 

 The goals of this study were to compare the genetic diversity of Bithynia 

tentaculata populations in Wisconsin and Minnesota and to determine the geographic 

pattern of invasion by this species. This required the collection of B. tentaculata 

specimens, identification of microsatellite loci for this species, and their utilization in 

analyses of genetic diversity and population differentiation. 

Snail Collection. 

 Of the 12 bodies of water that were sampled during this study, Bithynia 

tentaculata specimens were found at only 4 areas (Lake Butte des Morts, Lake Onalaska 

(Pool 7 of the upper Mississippi River), Shawano Lake, and Lake Winnibigoshish).  

Since snails were not found at 8 of the locations sampled, it is possible that this species is 

not yet present at those locations or that it was not detectable using the employed 

methods. The likelihood of not detecting these snails if they were present is low because 

a high proportion of samples from the other 4 lakes did contain snails. This argues that if 

B. tentaculata were present in the other 8 water bodies it would have likely been 

observed. 

Microsatellite Detection. 

 Of the 52 microsatellite loci that were detected through sequencing, 7 were found 

to amplify microsatellite alleles effectively for most individuals; microsatellite data were 

not used for 3 of those 7 loci because some individuals failed to amplify at those after 

three or more attempts. The same samples did, however, amplify at other loci. This 
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suggests that null alleles were indeed present at those loci (Bt34, GA62.1, GA62.2), 

which may have contributed to the deficiencies of heterozygotes, or FIS values that were 

found to deviate significantly from HWE (shown in bold in Table 5). Significant 

deviations from HWE have also been found in similar studies of another invasive species, 

the zebra mussel (Dreissena polymorpha), and were most likely caused by the presence 

of null alleles (Astanei et al., 2005). Lake Winnibigoshish, likely the most recently 

established population, based on the timing of reports of waterfowl mortality, had the 

highest null allele frequency (Table 3). This is particularly interesting since null alleles 

are expected to be relatively rare, and they were seen in such high frequencies in the 

population with the smallest sample size. Null alleles can arise due to a change in the 

sequence of DNA flanking the microsatellite, including where the primer attaches. 

Perhaps many of the snails in Lake Winnibigoshish have different sequences in the 

primer sites than those from Lake Onalaska, which is the snail population that the primers 

were designed from. This may suggest that B. tentaculata snails from locations not 

sampled in this study played a role in founding the Lake Winnibigoshish population. 

Previous studies demonstrated that this snail species is also found in southern Quebec, 

Canada (Hoeve, Scott, 1988). Considering that Lake Winnibigoshish is the most northern 

of our study populations, there is some reason to believe that snails could have been 

transported from Canada to this site more frequently than the other sites. 

Genetic Characteristics of Snail Populations. 

 Since allelic richness accounts for differences in sample size, it is a more reliable 

measure of genetic diversity than simply the number of different alleles that are present in 
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a population (Mousadik, Petit, 1996; Petit et al., 1998). Lake Butte des Morts and 

Shawano Lake had the highest allelic richness, followed by Lake Onalaska and Lake 

Winnibigoshish (Table 4.2). Furthermore, allelic richness for samples from 

Winnibigoshish and Onalaska was significantly lower than allelic richness for samples 

from Butte des Morts and Shawano (Mann-Whitney U-test P < 0.05). This pattern could 

result from either genetic drift through a founding effect, mutation, or both. If the Lake 

Onalaska and Lake Winnibigoshish populations descended from either the Shawano Lake 

or Lake Butte des Morts populations (or both) and gene flow between the ancestor and 

descendant populations are infrequent, the descendant populations will have received a 

subset of the allelic diversity in the ancestral populations through immigration. The 

second process also relies on Winnibigoshish and Onalaska to be descendant populations 

and if the immigration of those snails had been fairly recent, insufficient time may have 

passed for mutation to generate new alleles derived from the founding alleles, as could 

have happened in the older populations in Lake Butte des Morts and Shawano Lake.  

 It is interesting that no private alleles were found in Shawano Lake. Perhaps 

individuals from Shawano Lake had a large role in colonizing other populations, thus all 

of the alleles present in Shawano Lake are present in other populations as well. This 

conclusion fits well with the dendogram based on Nei’s genetic distance (Figure 4), 

which has strong bootstrap support for the placement of Shawano Lake snails at the basal 

node. It is more difficult to resolve the reason for the large number of private alleles 

present in the Lake Butte des Morts snail population. Because Butte des Morts has the 

highest number of individuals with a private allele, it may be reasonable to assume that it 
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was one of the earliest established populations and through evolution, new alleles arose 

that were not passed on to any of the other populations studied. This also suggests one-

way gene flow between Butte des Morts and Shawano, with Shawano contributing to 

Butte des Morts diversity but not the opposite. The fact that the snails that were assigned 

to the Lake Butte des Morts population were actually collected from Lake Winneconne 

and Lake Poygan, in addition to Lake Butte des Morts, might also help to explain the 

large number of private alleles in that sample. If those 3 snail populations are actually 

more genetically isolated than our grouping of them suggests, we may be inappropriately 

assigning the private alleles of 3 somewhat distinct populations to just one location. 

 When compared to each other, Butte des Morts and Shawano displayed little 

genetic differentiation (FST  < 0.05), whereas all other population comparisons showed 

moderate genetic differentiation (FST between 0.05 and 0.15; Hartl, Clark, 1997; Table 6). 

Comparing trends in the mean pairwise FST values, it is apparent that whenever Butte des 

Morts is compared with other populations, the mean FST value across all loci is lower 

than any of the other 3 comparisons. This means that Butte des Morts has more in 

common genetically with the other 3 populations than they do with each other. This is a 

good indication that Lake Butte des Morts, which may have received its alleles from 

Shawano Lake, played a key role in the colonization of Lake Onalaska and Lake 

Winnibigoshish. 

 STRUCTURE version 2.3.3 (Pritchard, Stephens and Donnelly, 2000; Pritchard, 

Wen and Falush, 2010) assigned individuals to 2 different clusters. The number of 

clusters was determined using ∆K (Evanno et al., 2005). Figure 3 shows that cluster 1 is 
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made up of individuals from Butte des Morts and Shawano, whereas cluster 2 is made up 

of individuals from Winnibigoshish and Onalaska. This is consistent with Butte des 

Morts and Shawano displaying the least genetic differentiation according to pairwise FST 

values (Weir, Cockerham, 1984).  

 The dendogram created in PHYLIP (Felsenstein, 2005), which is based on Nei’s 

genetic distance (Nei, 1972) suggests that the population of B. tentaculata in Shawano 

Lake was the first of those in the present study to be established, followed by Butte des 

Morts. While it is not certain whether Winnibigoshish or Onalaska was the next location 

populated, a comparison of Nei’s genetic distance (Nei, 1972; Figure 4) suggests that 

Shawano played a major role in founding all 3 of the other populations (consistent with 

its lack of private alleles), most likely through the colonization of Butte des Morts, which 

then shared alleles with Winnibigoshish and Onalaska. This logic comes from a 

combination of the dendogram in Figure 4, the FST values in Table 6, and the fact that no 

private alleles were found in Shawano Lake. Since Shawano Lake showed little genetic 

differentiation (FST < 0.05) when compared with Butte des Morts, it follows that 

Shawano and Butte des Morts are very closely related to one another. Since Shawano 

Lake showed moderate genetic differentiation with both Winnibigoshish and Onalaska 

populations, it is fair to interpret this pattern as evidence that these populations are more 

distantly related. Both Onalaska and Winnibigoshish seem to be more closely related to 

Butte des Morts than they are to Shawano Lake, or to each other (Table 6).  

From a historical perspective, within Wisconsin the presence of B. tentaculata 

was only recorded in Lake Michigan and the Wolf River drainage, including bodies of 
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water such as Lake Butte des Morts and Shawano Lake, until its presence was noted in 

Lake Onalaska in 2002 (Sauer et al., 2007). Waterfowl mortalities in the Wisconsin and 

Minnesota due to parasites associated with B. tentaculata were reported in Shawano Lake 

in 1996, Lake Onalaska in 2002, and Lake Winnibigoshish in 2007 (NWHC, 2011). This 

mortality pattern follows the population genetic pattern for the snail hosts that are 

associated with waterfowl mortality in that mortality occurred in Shawano Lake before 

Lake Onalaska and Lake Winnibigoshish. It is interesting that the genetic evidence 

obtained in this study suggests that Lake Butte des Morts played a key role in founding B. 

tentaculata populations in Lake Onalaska and Lake Winnibigoshish, while there have 

been no reports of waterfowl mortality in Lake Butte des Morts. It is typical that the 

presence of B. tentaculata is not acknowledged until there has been noteworthy 

waterfowl mortality. Perhaps B. tentaculata were, indeed, present in Lake Butte des 

Morts before they were present in Lake Onalaska and Lake Winnibigoshish, as the 

genetic evidence suggests, but the parasite population has not reached a threshold size 

that favors notable mortality patterns among waterfowl at Lake Butte des Morts. Perhaps 

molluscivorous water birds, such as lesser scaup and American coot, do not reach 

population densities at Lake Butte des Morts that favor transmission of C. bushiensis or 

S. globulus. 

 Although the polymorphic microsatellite loci used in this study were useful in 

determining the genetic relationships between geographic populations of B. tentaculata in 

Wisconsin and Minnesota, it is still unknown how these snails are able to disperse and 

invade. It is plausible that they spread via water currents, boat traffic, or even via birds. In 
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this study, the snail populations in Lake Shawano and Lake Butte des Morts were found 

to be ancestral to Lake Onalaska and Lake Winnibigoshish. This supports the hypothesis 

that the B. tentaculata populations in eastern Wisconsin lakes are older than and ancestral 

to the population(s) in Lake Onalaska and Lake Winnibigoshish in northern Minnesota. 

In other words, the western populations are descendants of the populations in eastern 

Wisconsin and the alleles in the more recent populations were originally derived from 

their ancestral populations.   

 Lake Butte des Morts is connected to Green Bay (Lake Michigan) via Lake 

Winnebago and the Fox River. This may cause one to believe that Lake Butte des Morts 

is most likely ancestral to other populations of B. tentaculata in the Wisconsin and 

Minnesota, if they first arrived in the United States in Lake Michigan. However, the Fox 

River flows North into Green Bay from Lake Butte des Morts, not vice versa. Shawano 

Lake and Lake Butte des Morts are connected by the Wolf River and a series of other 

lakes (Lake Poygan and Lake Winneconne), and Shawano Lake drains into Lake Butte 

des Morts via this series of waterways. This, combined with the genetic data obtained in 

this study, suggests that B. tentaculata snails most likely spread downstream using rivers 

(as they could have from Lake Shawano to Lake Butte des Morts via the Wolf River) and 

not upstream (for example, from Lake Michigan to Lake Butte des Morts via the Fox 

River). The genetic information provided by this study suggests that there is more genetic 

similarity among populations of B. tentaculata that are nearer to each other 

geographically. Thus, in addition to possibly migrating via water currents, these snails are 

likely being transported from one body of water to another by land or air. Since Shawano 
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Lake and Lake Butte des Morts are the only populations in this study that are connected 

by water, it is unlikely that moving with water currents is the primary method of 

migration for these snails. Other things these water bodies have in common need to be 

established, such as sharing the same flyway for waterfowl migration or being visited by 

the same recreational vessels, which could indicate the primary method of migration of B. 

tentaculata. 
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Table 1. Details for 11 polymorphic microsatellite loci used to genotype Bithynia tentaculata specimens. 
Locus Primer Sequence (5’3’) Tm 

(ºC) 
Repeat Motif Size 

(bp) 
k 

1 (Bt34) F: GGAGAGAGAGAGACAGAAATACATA 
R: *CGTTTTATGCTCACGCTC 

53.0 
51.5 

(TAGA)21 193-
249 10 

2 (Bt34(GA)) F: *TTTCTTCTGCACATCAACG 
R: TCTATCTATGTATTTCTGTCTCTC 

50.8 
48.9 

(GA)18 101-
147 13 

3 (GA138) F: CACCACAGGCACGTTCAG 
R: *TGGGAGGACCACAATATCTCAG 

56.5 
55.9 

(GATA)9 206-
258 9 

4 (GA144) F: *ATGGGTGACTAAACAATAATGTGATTTC 
R: ATTTCTCTACAAAACGTGGGGAAG 

54.1 
55.2 

(ACT)10 310-
325 6 

5 (GA154) F: GGAGACAAGAGGACGAAGC 
R: *TGGTTATTAGACAGTTTCCAAGGC 

55.2 
55.1 

((GACA)7/(GATA)5) 168-
184 5 

6 (GA62.1) F: *TTTGGTCCTTATTGGTGAAGAG 
R: GAAATACACTGCTTGCAACAG 

52.6 
52.4 

(GA)45 199-
237 11 

7 (GA62.2) F: *TTTGGTCCTTATTGGTGAAGAG 
R: GAAATACACTGCTTGCAACAG 

52.6 
52.4 

(GA)45 241-
277 12 

8 (Bite03) F: *AGACCTCCCAATGCTTCAGG 
R: GCAACGCTCAAGGCAGTTA 

57.0 
55.9 

(AGT)14 167-
191 9 

9 (Bite 16) F: GCATCACGAGCAGCCTTTA 
R: *CCATCCATGTTAGTGGAGCC 

55.5 
55.5 

(GTTT)6 261-
235 10 

10 (Bite29) F: *TGCATCGGTGGGTCTGATTA 
R: GCTAGCCTCGTATTTCCAGC 

56.1 
55.6 

(GTTT)8 208-
228 6 

11 (Bite40) F: GGCAGCAGCGTTATGTTAGAA 
R: *GAAGTTGGCTCTGTAAGACCG 

55.5 
55.4 

(ATC)7 248-
269 8 

The number of alleles amplified is k; size indicates the range of observed alleles in base pairs (including the 
region flanking the repeat). Primers for loci 2-5 were designed at Minnesota State University Mankato. 
Primers for loci 8-11 were designed by Henningsen et al. (2010). 
*5’ ends of primers were labeled with either 6-FAM, HEX, or TET. 
 
Table 2. The frequency of null alleles by locus. 

 

 
Table 3. The frequency of null alleles by population. 
Population Frequency of null alleles 
Butte des Morts 0.088 
Onalaska 0.088 
Shawano 0.126 
Winnibigoshish 0.279 
 
 

Locus Frequency of null alleles 
1 (Bt34) 0.225 
2 (Bt34(GA)) 0.026 
3 (GA138) 0.100 
4 (GA144) 0.077 
5 (GA154) 0.035 
6 (GA62.1) 0.433 
7 (GA62.2) 0.215 
8 (Bite03) 0.028 
9 (Bite16) 0.295 
10 (Bite29) 0.064 
11 (Bite40) 0.101 
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Table 4.1. Sample size (N), number of alleles (NA), number of individuals with one or more private alleles 
(NP), number of effective alleles (NE), and allelic richness (AR). 

Locus/Sample Butte des Morts Onalaska Shawano Winnibigoshish Mean/locus 
2 (Bt34(GA))      

N 45.000 47.000 41.000 25.000 39.500 
NA 12.000 9.000 7.000 3.000 7.750 
NP 8.000 1.000 0.000 0.000 2.250 
NE 3.004 2.502 2.594 1.279 2.345 
AR 9.799 7.118 6.142 3.000 6.515 

3 (GA138)      
N 43.000 46.000 38.000 20.000 36.750 
NA 8.000 3.000 3.000 3.000 4.250 
NP 9.000 2.000 0.000 0.000 2.750 
NE 3.087 2.079 2.208 2.332 2.427 
AR 6.592 2.683 3.000 3.000 3.819 

4 (GA144)      
N 44.000 43.000 40.000 23.000 37.500 
NA 4.000 5.000 4.000 4.000 4.250 
NP 1.000 3.000 0.000 0.000 1.000 
NE 1.655 3.546 1.574 1.749 2.131 
AR 3.773 4.778 3.979 4.000 4.133 

5 (GA154)      
N 44.000 47.000 39.000 26.000 39.000 
NA 5.000 4.000 4.000 5.000 4.500 
NP 0.000 0.000 0.000 0.000 0.000 
NE 2.251 1.984 1.849 2.522 2.152 
AR 4.581 3.717 3.891 5.000 4.297 

8 (Bite03)      
N 45.000 45.000 41.000 26.000 39.250 
NA 8.000 7.000 6.000 4.000 6.250 
NP 0.000 0.000 0.000 0.000 0.000 
NE 4.436 4.655 3.413 1.945 3.612 
AR 6.733 6.391 5.632 4.000 5.689 

10 (Bite29)      
N 45.000 46.000 40.000 22.000 38.250 
NA 5.000 5.000 5.000 3.000 4.500 
NP 0.000 0.000 0.000 0.000 0.000 
NE 3.944 2.190 3.682 2.960 3.194 
AR 4.993 4.461 4.798 3.000 4.313 

11 (Bite40)      
N 45.000 46.000 37.000 20.000 37.000 
NA 6.000 5.000 7.000 4.000 5.500 
NP 1.000 0.000 0.000 5.000 1.500 
NE 3.127 2.175 3.782 1.294 2.595 
AR 5.271 4.162 6.298 4.000 4.933 
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Table 4.2. Mean sample size (N), number of alleles (NA), number of samples with private alleles (NP), 
number of effective alleles (NE), and allelic richness (AR) across all loci. 
Mean (all loci) N NA NP NE AR 
Butte des Morts 44.429 6.857 2.714 3.072 5.963 
Onalaska 45.714 5.429 0.857 2.733 4.759 
Shawano 39.429 5.143 0.000 2.729 4.820 
Winnibigoshish 23.142 3.714 0.714 2.012 3.714 

 
 
Table 5. Expected (HE) and observed (HO) heterozygosities, and deviations from HWE (FIS) according to 
Wier and Cockerham (1984). Values indicated in bold indicate samples that deviate significantly from 
HWE (P < 0.05) after sequential Bonferroni corrections. 

Locus/Sample Butte des Morts Onalaska Shawano Winnibigoshish 
2 (Bt34(GA))     

HE 0.667 0.600 0.615 0.218 
HO 0.489 0.447 0.366 0.160 
FIS 0.278 0.266 0.415 0.286 

3 (GA138)     
HE 0.676 0.519 0.547 0.571 
HO 0.535 0.478 0.263 0.150 
FIS 0.220 0.089 0.529 0.749 

4 (GA144)     
HE 0.396 0.718 0.365 0.428 
HO 0.250 0.326 0.100 0.304 
FIS 0.378 0.555 0.732 0.309 

5 (GA154)     
HE 0.556 0.496 0.459 0.604 
HO 0.318 0.277 0.179 0.308 
FIS 0.437 0.451 0.617 0.505 

8 (Bite03)     
HE 0.775 0.785 0.707 0.486 
HO 0.889 0.822 0.707 0.500 
FIS -0.137 -0.036 0.012 -0.009 

10 (Bite29)     
HE 0.746 0.543 0.728 0.662 
HO 0.689 0.370 0.400 0.5  
FIS 0.088 0.330 0.461 0.267 

11 (Bite40)     
HE 0.680 0.540 0.736 0.228 
HO 0.778 0.326 0.730 0.250 
FIS -0.132 0.406 0.022 -0.073 
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Table 6. Pairwise FST values among populations for each locus. 
Comparison Locus 2 Locus 3 Locus 4 Locus 5 Locus 8 Locus 10 Locus 11 Mean 

Butte des Morts – 
Onalaska 0.000 0.020 0.200 0.220 0.060 0.130 0.080 0.100 
Butte des Morts – 
Shawano 0.000 0.060 -0.010 0.000 0.010 0.070 0.060 0.030 
Butte des Morts – 
Winnibigoshish 0.100 0.020 -0.020 0.000 0.180 0.030 0.140 0.060 
Onalaska – 
Shawano 0.010 0.040 0.200 0.260 0.120 0.140 0.060 0.120 
Onalaska – 
Winnibigoshish 0.080 0.060 0.160 0.140 0.170 0.080 0.150 0.120 
 
 

 
Figure 1. 12 water bodies were sampled for B. tentaculata and are represented with a dot: Pool 13 of the 
Upper Mississippi River, Lake Geneva, Lake Koshkonong, Lake Michigan, Fox Lake, Green Lake, Green 
Bay, Shawano Lake and Petenwell Lake, Lake Winnibigoshish, and the Lake Butte des Morts areas 
(including Lake Poygan and Lake Winneconne). Snails were found in 4 areas indicated by a white dot: 
Lake Butte des Morts (including Lake Poygan and Lake Winneconne), Lake Onalaska, Shawano Lake, and 
Lake Winnibigoshish. Image from Google Earth (2010). 
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Figure 2. Mean L(K),the mean of the absolute value of the posterior probability that the genotypic data fits 
a hypothetical number of populations (K), and ∆K as a function of K. 
 

Figure 3. Summary plot of estimates of Q (estimated membership coefficients of each individual in each 
cluster). Each individual is represented by a single vertical line broken into K colored segments, with 
lengths proportional to each of the K inferred clusters.  
 
 
 
Table 7. The mean proportion of membership (Q) of each pre-defined population in each cluster. 
Cluster Butte des Morts Onalaska Shawano Winnibigoshish 
1 0.568 0.399 0.570 0.482 
2 0.432 0.601 0.430 0.517 
 
 



 38 

  
Figure 4. Dendogram of relationships based on Nei’s genetic distance (Nei, 1972). Numbers at branch 
points are bootstrap values computed after repeatedly subsampling (bootstrapping) the data and are given 
as percentages over 1000 replications. 
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APPENDIX 1 

DNA Sequences for Isolated Microsatellite Loci 

 This section describes the nucleotide sequences of microsatellite loci 

identified from an extract of genomic DNA from Bithynia tentaculata snails collected 

from Lake Onalaska, WI, USA. Titles for sequences have the following format: sample 

name-olignucleotide probe used-colony number sequenced-primer used. Sequence titles 

are in bold. “Sample name” indicates the individual snail the DNA came from. For 

example, “Bt6A” was the title given to the snail to isolate many of the sequences. All of 

the other sequences were isolated from one other snail from the same site. 

“Oligonucleotide probe used” refers to the biotinylated microsatellite oligonucleotide that 

was hybridized to the snail DNA ((GATA)7, (CATA)7, (GATC)7, or (AC)10,; Integrated 

DNA Technologies, Inc. (IDT®)). “Colony number sequenced” is the number that was 

assigned to the bacterial colony that the DNA was cloned in. “Primer used” indicates 

whether the T7 or T3 primer for the pBluescript®  (pBS) II SK (+) plasmid (Stratagene) 

was used to obtain the given sequence. If “Consensus” is found at the end of the sequence 

title, both primers were used in separate sequencing reactions to obtain the final 

sequence. Text underlined once indicates repetitive sequences (potentially 

microsatellites). Double-underlined text identifies primer sequences that were used in 

attempts to amplify that repeat. An “N” in the sequence means that this base was unable 

to be called with confidence. All sequences are in the 5’ to 3’ direction for the specified 

reading frame (T3 or T7). 
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Bt6A-GATA/C-1-T7 
CTGGACGGACGGACGGACGGACGGACGGACACGAAAGAGAGAGAGAGAGACAGAC 
 
Bt6A-GATA/C-3-Consensus 
ATCTATCTATCTATCTATCTATCTATCTATCTATCTATCTATCTATCTATCTATCTGTTGTCTGTC
TGTCTGTCCGTCCATCTGTCTGTCTATCTATATATCTATCTATCATGTCTGTCATGTTCATATGT
CTATCTATGTATCTATCTATCTGTCTATCTGTCTGTCTATCTGTCTGTCTATCTATCTGTCTATCT
ATCTATTTATATGTCTATCAGTCTGTCTATCTATCTATCTATCTATCTATCTAT 
 
Bt6A-GATA/C-4-T7 
GATAGATAGATAGATAGATAGATAGATAGATAGATAGATAGATAGATAGATAGATAGATAGA
TAGATAGATAGATAGATAGATTACAGTAAGAAGCCGTAATCAGGCCTTAGCGCCTCTGTATCT
TAAAATGTTCAATAAAATGTACACCGGGATTACACGTATTAACTAAGACAATACATGTTAATT
ATTACATGATTAAGGTAGTTTATCACCAAT 
 
Bt6A-GATA/C-10-T7 
GGGCTANAAGGTAGAGAGATAGAGTGAGGGCTAGAAGGTAGAGAGAGAGAGTGTGGGCTAT
GACGGTAGAGAGTTTGGAGTGTGGGCCAGAGGCAGAGAGAGAGAGTTTGGGCTAGACGGTA
GAGTTTGGAGTGAGGGCTAGAAGGTAGAGAGAGAGAGTGTGGGCTAGAAGGTAGAGAGAGA
GAGAGTGTGGGCTAGAAGGTAGAGAGTTTGGATGTAGGGCTAGAATGGTAGAGAGAGAGAG
TGTGGGCTACAAGGTAGAGAGTTTGGAGTGAGGGCTAGAAGGTAGAGAGAGAGAGAGTGGG
CTATAATGTAGAGAGAGAGAGAGTTGTGGGCTAGAAGTGTAGAGAGAGAGAGTGTGAGTTAG
ATAGTATAGAGAGAGGAGGCTTCTGCTAGAGCGGCCGCCACCGCGGTGGAGCTCCAGCTTTT
GCTTCCTT 
 
Bt6A-GATA/C-15-T7 
CCCTCTACAGAAATGATAGTGTAAGACATCGGTATGCATGCCTTCTTGCTCGCTTTGCTGGGG
CAATTAAGGTAGACCCTTAACCGAAATCGTGTTCACTATACCATATATATGGTCATTTGCATTT
AAGTATAATGGGCTAATAATAACGGCAATAATACATGTCATGTGGGTGTAATGTGTTAGAACA
ATGTGCAAAAAATGTGTGTGATTTTGCCGTGTATACCAACATGTATGTCCATTTCGAATTTAAT
TTGTATCTGTGTAAGTGCAGTTAGAAAATATTGTAGCTTATGGTAAAGTTATGATTTCATGTCT
TATTTGCACTATCTTTTATAAATGTACCAAATTAATTTCTCTTTGGGAGATAATAAAGTAGCCC
AATCTTATTCTTATAGATAGATAGATATATAGATAGATAAATAGATAGACAGACAGACAGAC
AGACAGACAGACAGACAGACAGATAGATAGATAGATAGATAGATAGATAGATAGATG 
 
Bt6A-GATA/C-23-T7 
TCTATCTATCGTATCTATCTATCTATCTATCTATCTATCTATTCATCTATCTATCTATCTATCTAT
CTATCTATCTAATCTATCTATCTATCTATATCTATATTTGCGCGCATGGAAAAGCCAATATTTC
GGTTGATGTACWWCATGGATGCATCNGGTCNTT 
 
Bt6A_GATA/C_32d_T7 
CTTTCCGACTTCACTCAATCGTCCTTCTCTGCACCTTCCCTCCAGCCAGCCCCGTGATATTTGG
GCCGATTACAGCATGTCATAATATCATACCAAAAGATCGGAGCACTTGCGTTTTATGCTCACG
CTCTTCTCAGCATCTCTTCGCCCCAGAATTCCCCTCCATTTTTCTATCTCTCTTAATGTCCATCT
CTCTTTCTTTCTCTCTTTCTGTCTCTCTCTCAAATCTATCTATCTATCTATCTATCTATCTATCTA
TCTATCTATCTATTCTATTCTATCTATCTATCTATCTATCTATCTATCTATCTATGTATTTCTGTC
TCTCTCTCTCCCTCTCCCTCTCTCTCTCT 
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Bt6A-GATA/C-34-Consensus 
TTTCTTCTGCACATCAACGCGATGGGGTAACGAGCTGCAGAAGGAGAGAGAGAGAGAGAGAG
AGAGAGAGAGAGAGAGAGGGAGAGGGAGAGAGAGAGACAGAAATACATAGATAGATAGAT
AGATAGATAGATAGATAGATAGATAGATAGATAGATAGATAGATAGATAGATAGATAGATAG
ATAGATAGATTTGAGAGAGAGACAGAAAGAGAGAAAGAAAGAGAGATGGACATTAAGAGAG
ATAGAAAAATGTAGGGGAATTCTGGGGCGAAGAGATGCTGAGAAGAGCGTGAGCATAAAAC
GCAAGTGCTCCGATCTTTTGGTATGATATTATGACATGCTGTAATCGGCCCAAATATCACGGG
GCTGGCTGGAGGGAAGGTGCAGAGAAGGACGATTGAGTGAAGTCGGAAAG 
 
Bt6A-GATA/C-66-T7 
TTTGCTTCTGCACATCAACGCGATGGGGTAACTGAGCTGCAGAAGGAGAGAGAGAGAGAGAG
AGAGAGAGAGAGAGA 
 
Bt6A-GATA/C-79-T7 
CTTTCCGACTTCACTCAACGTCCTTCTCTGCACCTTCCCTCCAGCCAGCCCCGTGATATTTGGG
CCGATTACAGCATGTCATAATATCATACCAAAAGATCGGAGCACTTGCGTTTTATGCTCACGC
TCTTCTCAGCATCTCTTCGCCCCAGAATTCCCCTCCATTCTTCTATCTCTCTTAATGTCCATCTC
TCTTTCTTTCTCTCTTTCTGTCTCTCTCTCAAATCTATCTATCTATCTATCTATCTATCTATCTAT
CTATCTATCTATCTATCTATCTATCTATCTATCTATCTATCTATCTATCTATGTATTTCTGTCTCT
CTCTCTCCCTCTCCCTCTCTCTCTCTCTCTCTCTCTCTCTCTC 
 
Bt6A-(AC)10-7-T7 
ACTGCAGTGCTTCTCAGTATGTGTGTGTGTGTGTGATTGTGTGTGTGTGATTGTGTGTGTGTGT
GTGTGTGTGA 
 
Bt6A-GATA/C-51-T3 
CATGGATCTTGTGAGAGAAGTTGAAAGCATTATCCGTGCCTATTATTACTAGGCTACTACTAC
TACTAACTAGTACTACGTAAATGTAATACTAAGCAGCACTATTTTAAGACTCTCACTCATTCAT
ATCTATCTATCTATCTATCTATCTATCTATCTATCTATCTATCTTACTCTATCCATCCATCCATC
CATCCATCTATCCATCTATCTATCTCACCCGTATCTGCGCAGTTGTTAAAGATCGTTCTTTCAG
CCGCCTTCAAGCG 
 
Bt6A-GATA/C-53-T3 (Consensus) 
ACCCATTTGTCACATCGTACAACAGACATTCTATCGATCTGTCTCTGTTCTTACTTGCGCTATTT
TACACATTTGTCACATCGTACAACAGACATTCTATCGATCTGTCTCTGTTCTTACTTGCGCTAT
TTTACCCATTTGTCACATCGTACAACAGACATTCTATCGATCTATCTTTACTCTTACTTGCGCTA
TTTTACCCATTTGTCACATCGTACAACAGACATTCGTATCGATCTATCTCTACTCTTACTTGCG
CTATTTTACCCATTTGTCACATCGTACAACAGACATTCTATCGATCTATCTCTACTCTTACTTGC
GCTATTTTACCCATTTGTCACATCGTACAACAGACATTCGA 
 
Bt6A-ID202-T3 
TTTGCTTCTGCACATCAACGCGATGGGGTAACGAGCTGCAGAAGGAGAGAGAGAGAGAGAGA
GAGAGAGAGAGAGAGAGAGGGAGAGGGAGAGAGAGAGACATGAAATACACTAGATAGATA
GATAGATAGATAGATAGATAGATAGATAGATAGATAGATAGATAGATAGATAGATAGATAGA
TAGATAGATTTGAGAGAGAGACAGATCAG 
 
Bt6A-ID203-T3 
TCTACTATCTATCTATCTATCTATCTATCTATCTATCTATCTATCTATCATATCTA 
 
Bt6A-ID79-T3 
TTTGCTTCTGCACATCAACGCGATGGGGTAACGAGCTGCAGAAGGAGAGAGAGAGAGGAGAG
AGAGAGAGAGAGAGAGAGAGAG 
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Bt-CATA4.1-T7 
ACGACAAACACTCCACGTTCCCTCGCCAGACCCACGCTGGTCCAACCTTGCCAACTGCGCTAG
TTATAGCCGTATGAAAGGGGTTATTGAGAGGGAGAGAGGTTGAGCGAGAGTTTGTAACAGTC
ATACAGCGAGAGAGAAAGAGAGAGAAAGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTG
TGTGTGTGTGTGTGTGTATATATGGCGTCGTTTTCTTA 
 
Bt-AC1-T7 
GCTAGTGACTAGACTAAAGTTATAACTTTTATGGAGTTGTCTTATAACGAACTGCGTGTGTGT
GTGTGTGTGTGTGTGATGTGTGTGTGTGTGCGTGTGTTGTGTGTGTGTGTGTGTGTA 
 
Bt-AC8.1-T7 
GGCTCCAGCCGCTTCCCTGTGAGCAATAAGAAACGACGCCATATATACACGCATACACACAC
ACACACACACACACACACACACATCATTAAACTTTCAATGCTCAAATAGTTTACTTCCAGTCG
GGATTGAGAAGGGGTCAGATGGTTTATG 
 
Bt-CATA7-T7 
AAGTATAATAATTGACAATTATTGTGGTGATGATAATCATCCTGTTCTTCATCTTCCTCGTCTG
ACAGGGGCTGCAGATAAATACGTAGTTACCTTTTTATTTCCACTTACGGACTGTCGAACCAGA
GAGATAGCAAACGCCCGTTGGGTGGCTGTCTACAGATAACTTGGATTACGCCCCGTTGCCTTG
CGTGGGAGATAGAAAGAGAATTAGACAGTATGTGTGTGTGTGTTTGTGTGTGTAGGTGCGTGG
GTGTGTCNATTGCGAGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGT 
 
Bt-CATA14-T7 
ATGTGCTGCCAAGAGGGTATAAAGTATAAACGGTTCAGGTTATCGATTTCGCGATACGTATTC
CTTGTCACGAACAGGCTAAGATTGGAGCCAGCCTGTAAAAGGGATCCAACATGTGTGTGTGTG
TGTGTGTGTGTGTGTGTGTGTGCCTGTGTATGCGCGCTATATTATGGCGT 
 
Bt-CATA21-T7 
AACACGGGTATGTGTGTGAATGTGCGTGCGTGTGTGTGTGTGTTTGCGTGTGTGCGTGTGTGT
GCGTGTGTGTGTGTGTGTGTATGTGTGTGTGTGTGTGTGTGTG 
 
Bt-GATA143-T3 
GACACAAGCGATTTAAGTATAAAAACAGAAAGACAGAGAGAGAGAGACAGAGACAGACAGA
CAGAGAGTGATAGAGAGAGAGGATAGAGAAATAGAGAAGAGAGAGGGGGAGAGAGAGAGA
GAGGGGGGGGAGAGA 
 
Bt-AC15-T3 
CCGAACTAATGTGAGTGTGTGCATAAGTAGGTGGTGTGTGTATGTGAGCGTGTGTGTGTGTGT
GTGTGTGTGTGTGTGTGTGTGTGTGTGTATGCGTGTATATATGGCGTCGTTTCTTATTGCTCAC
AGGGAAGCGGCTGGAGCC 
 
Bt-AC19-T3 
AACCAAGACGTGACTGGTCTGTAGCACCAGTCTCCATTCAGAAAGTTGCTGGTTCGTCTGTTG
CGAAATCTAGCAAGGCTCTCCTTCANAGTGCGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTATG
CGTGTATATATGGCGTCGTTTCTTATTGCTCACAGGGAAGCGGCTGGAGCC 
 
Bt-AC23-T3 
GGCTCCAGCCGCTTCCCTGTGAGCAATAAGAAACGACGCCATATATACACGCATACACACAC
ACACACACACACACACACACACACACACAAGCACTGTTAACGGTCAATAACCCACTGT 
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Bt-AC30-T3 
GTGTGGTGTGGCCATTTTTTTTAGGTAGCCTTGGACACACCCGTGAGTAGTTGTGTGTGTGTGT
GTGTGTGTGTGTGTGTGTGTATGCGTGTATATATGGCGTCGTTTCTTATTGCTCACAGGGAAGC
GGCTGGAGC 
 
Bt-AC31-T3 
CATCTGCATTGAGTAATACACACAATGACACAAGTCTGTTTTGTGTGTGTGTGTGTGTGTGTGT
GTGTGTGTGTGTGTATGCGTGTATATATGGCGTCGTTTCTTATTGCTCACAGGGAAGCGCTGGA
GCC 
 
Bt-AC34-T3  
ATCACAACTCTGCCTCCCGGTGGTGGCGCACCAGGGTCGGCCGCACCTCCCCCTAGCCAACCG
CACAACTGCCCTTTTCTGTCTTTCTTTTTCCACCATGGATTCCGTGTGTGTGTGTGTGTGTGTGT
GTGTGTGTGTGTATGCGTGTATATATGGCGTCGTTTCTTATTGCTCACAGGGAAGCGGCTGGA
GCC 
 
Bt-AC62-T3 
AACCAAGACGTGACTGGTCTGTAGCACCAGTCTCCtATTCAGAAAGTTGCTGGTTCGTCTGTTG
CGAAATCTAGCAAGGCTCTCCTTCAnAGTGCGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTATG
CGTGTATATATGGCGTCGTTTCTTATTGCTCACAGGGAAGCGGCTGGAGCC 
 
Bt-AC65-T3 
ACTTGCTGAGGTTGCTCGCTCTTGACGGGATGTTGCTGGCACAGAGGGGTAGTCTGTCCTGAA
AGTGCCACCAGACACAAACATTNGTATTTTTATCGTCCATTAATTATTTTTGTGCGAGTGTTTG
TGTGTGTGTGTGTGTGTGTGTGTGTGTATATATGGCGTCGTTTCTTATTGCTCACAGGGAAGCG
GCTGGAGCC 
 
Bt-CATA25-T7 
TGAATATGATGTAGCAAATAATACCCCCTGAACAATGAACCGATTTAGCCGGAaACAAAAAA
GTCTGGACACCATAAATAGGGACACTAAAAAGCCGCGAGGCTTAATCAAGTCCCTCTGAACT
GACCTGgATGACTGTCATGTAATTATTCTCTGTCTACCTGTCTGTGCTTTGCATAAAgGGTTTTG
TGTGTGTGTGTGTGTGTGTGTGGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTATGCgTGTATAT
ATGGCGTCGtTTCtTAtTGCTCACAgGgaAgCgGCTGGAgCc 
 
Bt-CATA26-Consensus (T7 reading frame) 
TCCTCGTCCCTTTCCACCGACGCAGGATTCCTTACCCTAACAGAATCGCNTAAACAAAACAAA
AAAACAAAAATCCGTTGGGATTTCGGCGATGTATTTGTGTGCGTTTGTGGTTGATTGTGTGTAT
CTGTTTATTTTATGTGTGGCGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTATGCGTGTATATAT
GGCGTCGTTTCTTATTGCTCACAGGGAAGCGGCTGGAGCC 
 
Bt-CATA27-T7 
TCGGCCTTTAAATGCTTAATAAACGAAGTGTGAGGTATCCTAAGAAATTAGTGTGCCAGTGTG
TGTGTGTGTGTGGTGTGTTTTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTAATAT 
 
Bt-CATA39-Consensus (from T3 reading frame)  
GGCTCCAGCCGCTTCCCTGTGAGCAATAAGAAACGACGCCATATATACACGCATACACACGC
ATACACACACACACACACACGCACACACTCGCAATCGACACACCCACGCACCTACACACACA
AACACACACACACATACTGCTTAATTCTCTTTCTATCTCCCACGCAAGGCAACGGGGCGTAAT
CCAAGTTATCTGTAGACAGCCACCCANCGGGCGTTTGCTATCTCTCTGGTTCGACAGTCCGTA
AGTGGAAATAAAAAGGTAACTACGTATTTATCTGCAGCCCCTGTCAGACGAGGAAGATGAAG
AACAGGATGATTATCATCACCACAATAATTGTCAATTATTATACTT 
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Bt-CATA41-T3 
TGTGTATGTAGGTGTGTGTGTGTGTAATGCAAGCCATGCCCAAGTTTAAACAAAACCATGAAA
ACCAAAGCAAATAATTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTATGC 
 
Bt-CATA45-T7 (Consensus of T3 &T7; read in T7 frame) 
CGGACCGATGACGGACGCTGGCTGGGTGTCGTCCATGGCTTGATTTATTCTAAATTTTTAGTTT
GTTTTCAGGTGGAGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTATGCGTGTATATATGGCGTCG
TTTCTTATTGCTCACAGGGAAGCGGCTGGAGCc 
 
Bt-CATA67-Consensus (read in T7 frame) 
GAGTGTTAGTGAGTCCTTTCAAGTAATTATTGTTTCTTTATCGTTGTAATTGTGTGTGTGTGTGT
GTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTATGCGTGTATATATGGCGTCGTTT
CTTATTGCTCACAGGGAAGCGGCTGGAGCC 
 
Bt-CATA69-T3 
NCGAAGAGAGCNCTCGGTGTGTGTGTGTGTGTGTGTGTGTGTGTA 
 
Bt-GATC31-T3  
ACAGGCACCGTCGGTAGATGGCACCACTGGTCTTGCATTCGTTACCAGTCTGCTGTTTCGGGC
AGGAACAGACATCACAGTGCCATAATGACCAAAACCTAATGCGGAACGAGGAAGACAACNN
AATACAGAAAGAAGACGAAGAGATAGAAGAGATGAGAGAGAGAGAGAGAGAGAGAGAGAG
AGAGAGAGAGAGAGGGAAGTGGAAAGGATGGGAGAGAGGGAGGGAGAAGAGAA 
 
Bt-GATA144-T3 
ATTTCCATTACACAGTCATGGGTGACTAAACAATAATGTGATTTCTTCCCACGAAACTTTCTGT
AAGTCTCGTAGGTATACCCATAAGGGACATTCTGAGGTCTCGTAGAGGTGTGTTAGTGTCAGC
ATCGGCGTATCAGCATCCTATAATTTAATTGCTACTACTACTATTACCACTACTACTGCTATGA
CATCACTACTACTACTACTACTACTACTACTACTAAAGGGGATATCCACACTAACAAACCCTA
TTAGACCTCAGAATTAGATCTCAGAATATACCTTTGAGACCGAGAGACTATCTGAGAATACTC
ATCNCCACGTTTGTAGAGAGATCCGTAGTTATTCTGTCTCTGTTG 
 
Bt-GATA-P138-T3 
GCGGCCCATTGCTGTTCACCACAGGCACGTTCAGTTCATGCAATTTACATTCAGTAAATTTTTC
TATCTATCTATCTATCTATCTATCTATCTATCTATCCCATAGTCCTGCAGACCGTTGGGGGCAC
CACCAACAACTCGACAAACAACTTCCTCCATTCCACTCTGTGTTCTTTGACATTCTTAGTGCAT
GGCTCAGTTTCAGTCCTGCTGACCCTGAGATATTGTGGTCCTCCCAATTTTTCTCCCTCtGTCTG
CGTCCCCTTCGCCCCTT 
 
Bt-GATA62-T3 Consensus 
ATTTCGGTCAAACTTAAAGTATTCTTCAAACTCATTAAACACATTTCCTAAAATTTGGTCCTTA
TTGGTGAAGAGAGACAAGAGAGAGGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGT
TGGGGTTAGAATTAAAGAGGACAAGAGAGAGAGAGAGAGAGTTGGGGTTAGAATTAAAGAG
GACAAGAGAGAGAGAGAGAGAGAGAGTTGGGGTTAGAATTAAAGAGGACAAGAGAGAGAG
AGAGAGAGAGAGTTGGGGTTAGAATTAAAGAGGACAAAACAAACACATATTAAAAAATGTTT
TGCTGTTGCAAGCAGTGTATTTCCTCTGACAGGCAATGGAAACTGT 
 
Bt-GATA-P200-T3 
TGCCAAATCATCAGTGGTGCCCCAACGGCCGACAAGTCTACGGGATAGATAGATGGATAGAT
ATGATAGATAGATAGATGGATAGATAGATAGATAGATAGATATGATGGATATGATAGAATTA
AAGCGAATGTTCCCATACTACTCGTTACCTAGCcCCCAGTCCGCTAT 
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Bt-GATA-P205-T3 
AGCCCCTGGTTATCTATCTATCTATCTATCTATCTATCTATCTATCTATCATGATCCGCGGACTC
CTGTAAAGTAAGGATTTAATTTACGGAATGAACGGCATTTCTAGAACAGTAAATTTATCAATA
CAGAAATGCCGTTCA 
 
Bt-GATA-P206-T3 
TCTCTCTCTTTCTCTCTCTCTCTCTCGCTCTCTCTCTCTCNGGGGGACGCACAGAGCGCAAATG
NAATGGCACCAGTGTTCAAAATGGGCTCTGTATATTTTTGTTAATATCTGCTGGATTGGAGACT
TTGTTTGTGTTGAAATTTGACAAGGATCTTTGTTAGGTC 
 
Bt-GATA-P217-T3 
GGTCATAACGCTTTCCTCTTTTGACCTTAGCTGTGGTGTTAATAGATAGATAGATAGATAGATA
GATAGATAGATAGATAGAA 
 
Bt-GATA-P150-T3 Consensus 
AAGGTCGTCTAAAGGTCACCGGCTTAGCACTCTGGCGGCGACAGTGGCTGTTGGAACCGTCTC
AAACGCATTGTTTTATTAACATTTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGCGTGTGTAT
GCGTGTATATATGGCGTCGTTTCTTATTGCTCACAGGGAAGCGGCTGGATGCC 
 
Bt-GATA-L154-T3 
CGGAGACAAGAGGACGAAGCCCGATATAGAGACAGAGGCAGAGAGAGACAGAGAGACAGA
GACAGAGTGAGAGAGACAGACAGACAGACAGACAGACAGACAGAGAGATAGATAGATAGAT
AGATAGCTCTAACTCGAACTTTGTCAGAGAACAATAGCCTTGGAAACTGTCTAATAACCAGTC
CCATTTCCTAGCAAAGCAGTTTGGACAAAGGCACCC 
 
Bt-GATA-L78-T3 Consensus 
ATGTGTTAGTAAAGTAAACAATAAACAAGCAGATGAAACCATTATTGTTCCGTTGGTCCCTTT
CCATTGGACATAACCAAAACAAACAAAAAAAGAGTGAGAGAGAGAGAGAGAGTCATTTCCG
TGTTTGGGTGTCATGGGACTATCTTGCTTAGTGGTCAAGGTCACAGATTATATGTGCTGTCAAG
GTTATAACTATTTTTAGCCCTTTCCGCACC 
 
Bt-GATA-L114-T3 Consensus 
TCAGCNGCTCCTGTACATAGAACGACGCTATATACACGCATACACAGCACACACACACACAC
ACACACACACACANNTGTATAACTATGCGTTGAGACGTCCACAGCCACTGTCGCCAGAGTGCT
AAGCCGGTGACCTTTAGACGACCTTGCTTCTGCTAGCAGAAGCATCCGCAGCGGCATCAAACA
GGGCTGTGTGCNTGCGCCGACGCTTTTGGCATCTTCTTCGCAGTCCTGCTGAAGCACGCCTTTG
GGACTTCAGCAGAAGGTGTCTACCTCCACACACGGTCAGATGGTAGACTGTATAACCTGGCTC
GACTGAAGGCTAAGAGCAAAGTACGACAAGCGACC 
 
Bt-GATA-L123-T3 Consensus 
GATCCTGAACACCTGTGGGCGATTTCTGACATTAATTGTAACCAGTCCTTACGGTGTAAGCTT
AGCAACTTAGTGTGCGTGTGTGTGTCTGAGAGAGATAGAAAGAGAGAGAGAGAGAGAGAGA
GAGAGAGAGAGAGTCTGTGTGTGTGTGTGTGTGTGTGCGTGTGTGTGTGTGAGAGTTAGAGGA
GTGAAGGGTGGATTAGTAATGATAGCTGTGTGAGGAGACTGCGTGTGCTTCTAGCTAGCAAA
AGCAAGCCTGCATTCGATGGATGCGTCACAGACTTTGTTCTTGAAGGGTTGCGCTAACCCGTT
CTCCATCCCAGGCTTTTAGTTGGTACTGAAACGTCTGCCTTCC 
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