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Verification of Costless Merge Pairing Heaps 
 

Joshua Vander Hook, Dr. Dean Kelley 

August 9, 2010 

Abstract 
 

Most algorithms’ performance is limited by the data structures they 
use. Internal algorithms then decide the performance of the data struc- 
ture. This cycle continues until fundamental results, verified by analysis 
and experiment, prevent further improvement. In this paper I examine 
one specific example of this. The focus of this work is primarily on a new 
variant of the pairing heap. I will review the new implementation, com- 
pare its theoretical performance, and discuss my original contribution: the 
first preliminary data on its experimental performance. It is instructive 
to provide some background information, followed by a formal definition 
of heaps in 1.1. I also provide a brief overview of existing literature on the 
design of these data structures in 1.2 and discuss the methods for evaluat- 
ing these types of structures in 1.3. Full details about the implementation 
of a pairing heap can be found in 2.2. Ongoing research has produced a 
variety of different types of heaps, which will be briefly discussed. 
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1 Background 
 

A heap is a type of set. The motivation behind heaps was to minimize the 
cost of retrieving the minimum element (min heaps) or maximum element (max 
heaps) from the set. Both types of heaps are analogous. Their only difference 
is how the elements of the set are compared. For the sake of readability we will 
consider only min heaps. 

 
All heaps provide the following template methods: 

 

insert(h,x) Add x to the heap h. 

removemin(h) Remove and return the minimum element from the heap h. 
 
 

The term heap is from Williams, who also described the heap sort[32]. Alter- 
natively, heaps are also known as priority queues thanks to Donald Knuth[19]. 
To further confuse terminology, some differentiate between heaps that can be 
merged, and those that cannot[31]. For the purposes of this paper, read “heap” 
as merge-able heaps. Consider a priority queue a non-merge-able heap. To be 
a merge-able heap, a third method is supplied: 

 

merge(h1, h2) Merge the two item-disjoint sets h1and h2, return the result and 
destroy the original heaps. 

 

The development of heaps was driven by real-world optimization problems. 
Heaps are important research topics because they form the backbone for a num- 
ber of commonly used algorithms. Thus, an improvement to heaps improves the 
performance of many existing solutions. 

 
Table 1 shows some of the algorithms which are based on heaps, and an example 
of their current-day use. 

 
Table 1: Heap-based algorithms 

 
Heap-Based Algorithm Designed for: Example of use 

Minimum Spanning Tree (MST) Graph Optimization Wireless Sensor Networks 
Link-State Routing Network Traffic OSPF Routing Protocol 

Dijkstra’s Shortest Path Graph Traversal Google Maps 

Earliest Deadline First Scheduling Operating Systems Industrial Control 
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1.1 Formal Definition of Heaps 
 

Formally, a heap is any data structure that honors the heap-ordering property[5]. 
This states (again, for a min heap) that for any node (or position) having key 
k and children {c1, c2, ..., cn}, 

 
k = min({c1, c2, ..., cn} ∪ {k}). 

 
Or simply, that the element with the minimum key is the root of the subtree. 
The heap property makes no claims about the ordering of the children. This is 
important because it allows some flexibility. Exploiting this internal flexibility 
provides us with efficient heaps. 

 
Both the collections in Figure 1 are min heaps. In practice, tree-based heaps are 
often used (left), because of their lower overall cost for expanding and contract- 
ing to fit arbitrarily-sized collections[5]. In light of this, our current use of the 
term “heap” can be expanded to mean a merge-able heap-ordered endogenous1 

tree. 
 

 
 

Figure 1: Two equivalent heap-ordered structures: a binary tree (left) and ar- 
ray (right). The numbers shown are the key values associated with the heap 
positions. The array-based heap says that for any position i its children are in 
2i and 2i + 1. 

 
 

1.2 Heaps to Date 
 

Heaps were described first by J. Williams[32].  Williams’ data structure was 
conceptually organized as a tree, but was physically stored as a contiguous 
array of keys. This organization (pictured in Figure 1) was dubbed the implicit 

 
 

1Lit.  “Growing from within.”  It means we do not distinguish node key values from the 
nodes actual. 
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heap for this reason. However, this was essentially the first binary heap, and 
was formally described by Floyd[9]. 

 
Despite their origin as a sorting mechanism, the real motivations behind con- 
tinuing heap development were graph-theoretic. Prior to the growth of research 
into data structures, network optimization algorithms were already maturing. 
A solution to the minimum spanning tree (MST) problem dates to 1926 and a 
study of power line routing[15]. The algorithm presented was improved upon 
and simplified by Kruskal[20] and Prim[23]. Their work produced three algo- 
rithms which use graphs in the form of adjacency lists or matrices. However, 
for sparse graphs (those with few connections relative to the number of nodes), 
the heap is a time and memory-saving solution to these problems. The MST 
problem is quite fascinating, with a wide array of practical and theoretical uses 
including approximation algorithms for the famous Traveling Salesman Prob- 
lem. An excellent history can be found in [15]. These algorithms have found 
widespread use in networking and other areas, which added to the importance 
of this research[29]. 

 
Following the discovery of heap-based solutions to networking problems, re- 
search began in earnest on defining efficient heaps. The results gave us the 
binomial heap[4] (an important predecessor to the pairing heap), leftist heap[6], 
and others. These heaps are usually tree-based. The study of tree-based struc- 
tures is beyond the scope of this (or perhaps any single) paper. However some 
relevant details should be mentioned. 

 
Trees as data structures seem to emerge around 1962 with [16]. These structures 
were expanded to include better performance from balancing and rigidity[1]. 
Knuth[18] described an optimal binary search tree using prior knowledge of 
access probabilities. It earned the name Optimal because it altered the internal 
structure of the tree to provide the minimum access times to all elements over the 
entire sequence of accesses. It is worth mentioning that this was fourteen years 
before amortized analysis, which generalized the analysis method of averaging 
over a sequence. 

 
Knuth’s optimal binary search tree worked well with apriori access probabili- 
ties, but for practical applications it may be better to construct the tree using 
the actual access sequence. In 1978 Allan and Murno worked to create a self- 
adjusting binary search tree that was competitive2 with Knuth’s optimal[2]. 
The self-adjusting binary search tree was refined by Sleator and Tarjan, and is 
known as the splay tree[25]. This used a splay technique (path shortening) to 
simplify previous work in dynamic data structures[26]. In this paper (refined 
in [27]), they presented a heap version, known as the skew heap, which they 
regarded as a self-adjusting version of the leftist heap. It could be classified as 
a heap-ordered binary tree. This was an interesting step, as it abandoned the 

 
 

2meaning:  within a constant multiplier of optimal 
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rigid internal structure that was common (and still is). According to their work, 
the skew heap out performed most existing heap implementations. 

 
Sleator and Tarjan took these results and applied similar modifications to the bi- 
nomial heap. They called the result the pairing heap[12]. At the time, they were 
only able to prove O(logn) bounds for each operation. The pairing heap would 
emerge as a top performer in subsequent analysis and experiments. The question 
of complete analysis is still open, though the bounds have been tightened[22]. 

 
The following year, the Fibonacci heap was developed, which provided excellent 
theoretical bounds[13]. To date, these performances seem to be the gold stan- 
dard for heaps of this type. However, the implementation of a Fibonacci heap 
is complex, due again to rigid internal structure. Furthermore, experimental re- 
sults by Moret and Shapiro have shown the pairing heap to be the structure of 
choice for the MST problem[21]. This, coupled with other experimental results 
which favor the pairing heap tend to preclude Fibonacci Heaps from common 
use[7, 11, 17, 21, 22, 24, 28]. 

 
The ultimate goal remains to find a heap with minimal complexity that performs 
as well as the Fibonacci heap. However, the pairing heap has a long-standing 
reputation as an excellent performer with relatively simple implementation. 

 
Fitting with the existing literature, we can classify the pairing heap as a d-ary 
self-adjusting heap-ordered tree. In 2.2 we give a greater detail of it’s implemen- 
tation, while full details can be found in[12], [10], [11] and [22]. Two variants of 
this structure are the subject of our experimental results. 

 
 

1.3 On Performance 
 

When we speak of performance of a data structure, we address two things-its 
theoretical performance and its experimental performance. A good theoretical 
bounds for a data structure tells us how it will perform under the worst case, 
and often how it will perform on average. These measures are good validation 
of a design, and can provide insights into the use of a data structure. 

 
 

1.3.1 Theoretical Results 
 

There is a theoretical bounds for heaps. Michael Ben-Or showed that for n items, 
they can be sorted in at best O(nlogn) comparisons[3]. Some exceptions to this 
rule exist if there are insights into the information that can be exploited, but in 
general the bounds holds. Using a heap we could perform n insert operations, 
followed by n delete-min operations to sort any arbitrary data.  For the lower 

5  
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bounds on sorting to hold, one of those operations must be at least O(logn) in 
complexity. 

 
Theoretical results are concerned with the worst-case performance per opera- 
tion. This type of analysis dominates computer science, because one can guar- 
antee that a particular data structure or algorithm will perform no worse than 
some bounds. However, it is occasionally more interesting to evaluate the aver- 
age performance over some worst-case sequence of operations. Note that this is 
still a theoretical result; the analysis simply defines what may be the worst case 
sequence and attempts to provide a bounds for its operating cost. This type 
of analysis is particularly insightful for self-organizing data structures, or any 
structure in which varying amounts of work are done during subsequent calls 
to the same method. This analysis is called Amortized Analysis, and was first 
described in [30]. 

 
There are two types of amortized analysis, and both are used to analyze pairing 
heaps. Most common is the potential method. It states that the amortized cost 
of the operations is equal to the change in potential of the structure plus the 
actual cost of the operation. Intuitively, the potential of a structure could be 
thought of as the energy of the structure. A change in energy implies that work 
was done, and thus, our work had unintended (or, more accurately, unaccounted- 
for) side effects which must be tallied. 

 
Formally, the amortized time a of operation i is shown by ai = ti + φi − φi−1 
where φ is the potential of the structure after operation i and t is the actual 
time. Thus, the total cost of a sequence of operations can be given by: 

 
 

m m m   
ti =     (ai − φi + φi−1) = φ0 − φm +     ai 

i=1 i=1 i=1 

 
If it can be arranged that φ begins at zero and remains non-negative, then the 
amortized cost provides an upper bound to the actual run time over the given 
sequence[30]. 

 
 

m m   
ti ≤     ai 

i=1 i=1 

 
Another method of amortized analysis is called the accounting method. It allo- 
cates a certain number of credits to each data item, and charges these credits 
for operations. The analysis can be made more complicated by introducing sav- 
ing credits (which averages forward in time) and borrowing. This is merely an 

6  
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Table 2: Theoretical Heap Performances. 
 

 insert merge decrease remove-min delete 

Skew Heap O(logn) O(logn) O(logn) O(logn) N/A 
Leftist Heap O(logn) O(logn) O(logn) O(logn) N/A 

Binomial Heap Θ(logn) Θ(logn) Θ(logn) Θ(logn) N/A 
Pairing Heap O(1) O(1) Ω(loglogn) O(logn) O(logn) 

Fibonacci  Heap O(1) O(1) O(1) O(logn) O(logn) 

 
analysis tool, and is not reflected in the final implementation of the structure. 
There is no CPU operation for “collect credit.” 

 
Table 2 provides some known bounds for various types of heaps and their oper- 
ations. 

 
 

1.3.2 Experimental Results 
 

Given that two competing structures may have similar theoretical results (as 
is often the case), experimental verification is needed before a structure can be 
accepted. All things being equal, the structure with better experimental results 
will probably be the most widely used. 

 
There are several ways to verify the performance of heaps experimentally. The 
most obvious is to use it to sort data. While this is appropriate for any heap, 
it is not very enlightening given the specific applications for our type of heaps. 
That is, sorting does not make use of the unique operations that the pairing 
heap provides. 

 
The majority of performance tests from existing literature fit into one of two 
types. In the first, the hold method[14, 17], a heap was used to simulate a fixed- 
size queue of events. In the second type, an actual graph is constructed, and the 
heap is used to find a minimum spanning tree or shortest path. Unfortunately, 
the first tests suffer from the same problem as generic sort tests. Stasko and 
Vitter defined a test similar to the hold method which included the decrease 
operation[28]. Their tests are used as a model for the tests used in this paper. 

 
A third type of testing was described in [24], which used a markov model to de- 
fine the queue operations. This provides some inspiration for our test methods, 
with minor adjustments. 

7  
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Figure 2: A Pairing Heap 
 

2 The Pairing Heap 
 

2.1 Description 
 

By applying the heap property to only half of a node’s children, and stating 
that any node can have any number of children, we have defined a half-ordered 
multi-way tree. The pairing heap is one such example of this structure. An 
example pairing heap is shown in Figure 2. Notice that the siblings of a node 
are not necessarily heap-ordered. Each layer of the tree could be thought of as 
an unsorted collection of heaps, and allows us to make some intuitive analysis 
in 2.4. Internally, the pairing heap uses child-sibling representation, and can 
be displayed as a binary tree, with the right children as siblings, and the left 
children as greater nodes. 

 
The following operations are provided by pairing heaps: 

 
 

makeheap(h) Initialize the heap h. 

insert(h,x) Insert the value x into the heap h. 

findmin(h) Return the minimum value of h. 

delete(h,x) Delete the element x from the heap. 

deletemin(h) Delete and return the minimum element from the heap 

decrease(h,x,∆) Decrease x in the heap h by ∆.  update the heap to reflect 
the new minimum. 

8  

8

Journal of Undergraduate Research at Minnesota State University, Mankato, Vol. 10 [2010], Art. 9

https://cornerstone.lib.mnsu.edu/jur/vol10/iss1/9
DOI: 10.56816/2378-6949.1044



 
 
 
 

 
 

Figure 3: A multiway tree and its child-sibling representation 
 

2.2 Implementation 
 

A pairing heap is implemented as a structure containing a pointer to the root 
node, a size type to denote size, and nothing else. 

 
 

2.2.1 Internal Representation 
 

As shown in Figure 2 and Figure 3 any node can have an arbitrary number of 
children. While a true d-ary tree uses arrays for each evel of nodes, a pairing 
heap performs better because of its tree-based internal structure. 

 
To implement this organization effectively, the child-sibling representation is 
used. Figure 3 is an example of a multi-way tree presented in child-sibling 
representation. Each node has a pointer to its left child, next sibling, and 
parent. In pairing heaps, the heap-ordering property is satisfied because each 
node is smaller than any of its distinct left children. In addition, each node has 
one data field and one bit to denote if the child is left or right of its parent. 

 
 

2.3 Psuedo-code  examples 
 

The first five methods are simple, and shared by both the pairing heap and the 
costless-merge pairing heap. For brevity, in all algorithms we omit verification 
of parameters (such as null reference checking). 

9  
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2.3.1 Shared methods. 
 
 

 

Algorithm 1 separate 
 

 

Separate: separate the node and the node’s sub-tree from the parent tree. The 
node retains its left branch, essentially becoming a heap of its own. 
s e p e r a t e   ( n ) 

temp = n . r i g h t 
i f   ( i s L e f t ( n ) ) 

n . parent . l e f t = temp 
e l s e  

n . parent . r i g h t = temp 
n . r i g h t  = n u l l 
n . parent  = n u l l 

 
 

 
 

 

Algorithm 2 Linkchild 
 

 

Linkchild: make n the child of m. if either of the nodes is null, it is acceptable 
to simply return the non-null node 
l i n k c h i l d   (m,   n ) 

n . pare nt = m 
temp = m. l e f t 
m. l e f t  = n 
n . r i g h t = temp 

 
 

 
 

 

Algorithm 3 Make Heap 
 

 

Makeheap has little work to do, simply initializing the pointers to some default 
value. 
makeheap ( h ) 

h . r o o t  = n u l l 
 

 

 
 

 

Algorithm 4 Merge 
 

 

Merge is used by most of the other operations. It is performed simply by 
comparing the values of the root data, and linking the tree with the greater 
value to the lesser’s left branch. 
merge (m, n ) 

i f  (m. data < n . data ) 
l i n k c h i l d (m, n ) 
r e t u r n  m 

e l s e  
l i n k c h i l d ( n ,m) 
r e t u r n  n 
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Algorithm 5 Insert 
 

 

Insert can be accomplished by creating a new heap with x as the root, and calling 
merge(h, x). The new heap’s node can be returned so that future operations on 
the node can be performed. 
i n s e r t ( h , x ) 

makeheap ( h2 ) 
h2 . r o o t  = new  node ( x ) 
r e t  = h2 . r o o t 
h = merge ( h , h2 ) 
r e t u r n   r e t   // to   a l l o w   f u t u r e   o p e r a t i o n s  on  the  node   i n s e r t e d 

 
 

 
 

 

Algorithm 6 FindMin 
 

 

Findmin simply returns the data field from the root of the tree. 
f indmin ( h ) 

r e t u r n  h . r o o t . data 
 

 

 
 

2.3.2 Distinct Pairing Heap Methods 
 

The remaining methods are more difficult. Since these heaps do not support 
(quick) searching, an explicit pointer to the node must be passed in (hopefully 
stored after insertion). Both of these operations perform a subtle but important 
step of pruning the internal tree. By separating the sub-tree and merging it 
into the root, the tree is made more shallow. This “flattening” effect is actually 
undesirable (see 2.4). However, it is preferred to the binary heap’s sift up 
because of its good experimental performance. 

 
 

Algorithm 7 Delete 
 

 

d e l e t e ( h , n ) 
s e p e r a t e ( n ) 
h2 = d e l e t e m i n ( n )  // s e e   s e c t i o n   2 . 3 . 3 
r e t u r n  merge ( h , h2 )  // merge  the  t r e e  back  in ,  minus  n 

 
 

 
 

 

Algorithm 8 Decrease 
 

 

d e c r e a s e ( h , n , d ) 
n . data = n . data − d 
h2 = s e p e r a t e ( n ) 
r e t u r n   merge ( h , h2 ) 
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2.3.3 Delete-Min 

 

Delete-min is where the real work takes place. This method has been redesigned 
no less than six times in the search for better performance[12, 8, 17, 7, 28]. 

 
To delete the minimum node (the root) we first seperate the root from the tree, 
then the minimum child is selected from the root’s child list and is made the 
new root. All other children are made the child of the new root. However, 
this operation must be executed carefully. If the root is allowed to accumulate 
too many children relative to the size of the heap (the heap is too shallow), 
the performance of subsequent delete-min operations will degrade (since delete- 
min must search the first-level children for a new root). Thus the delete-min 
operation does a small amount of extra work to restore some tree structure to 
the heap. 

 
Delete-min can be verbalized as such: 

 
 

1 remove the root 

2 merge the children into N distinct heaps 

3 merge the child heaps into one 
 

Because merge, decrease, and insert all link sub-trees to the root, the structure 
tends to flatten out over time. So the question now becomes, what is the 
appropriate value of N (and possibly: what is the appropriate structure for 
those trees). 

 
The most efficient way to do this was described as an alternate method in [12] 
and verified in [28]. It was called the Two-Pass Pairing Heap, and its method 
of delete-min is described as such: 

 

1 remove the root 

2 merge every other child with its next sibling, forming a list of new 
heaps 

3 merge these children in reverse order, from last to first. 
 
 

Figure 4 shows an example of this operation, and the procedure is detailed in 
Algorithm 9. A recursive implementation of this algorithm is arguably cleaner, 
but runs the risk of blowing the call stack for huge heap sizes. This problem 
was encountered during testing. 
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(a) The original heap 

 

 
(b) After root deletion and subsequent pairing 

 

 
(c) After merging from right to left 

 
Figure 4: Delete-min Two Pass 
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Algorithm 9 Pairing Heap Delete-min Two pass 
 

 

// n  =  f i r s t   c h i l d   o f   d e l e t e d   r o o t 
prev  = n u l l 
newroot = n u l l 
do 

i f  ( n . r i g h t  !=  n u l l )  // s i b l i n g s  remain 
y = n . r i g h t 
z  = y . r i g h t 
y . pa rent  =  n u l l ;  n . r i g h t  =  n u l l 
z . p aren t = n u l l ; y . r i g h t =  n u l l 
newroot = merge ( n , y ) 
newroot . p aren t = prev 
prev = newroot 
n = z 

e l s e 
 

 
w h i l e   ( n!= n u l l ) 

 
n . p aren t = prev 
prev = r o o t  = n 
n  =  n u l l 

 

prev=newroot . p aren t 
newroot . p aren t  = n u l l 

 

w h i l e ( prev != n u l l ) 
y = prev . p aren t 
newroot = merge ( newroot , prev ) 
prev = y 

r e t u r n   newroot 
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2.3.4 Variations 

 

A number of variations of the pairing heap exist. Most of the variation is 
concentrated in the method of creating the new heap after a delete-min. The 
multipass variant was the original method described in[12]. 

 

1 After a delete-min, enqueue the children, merging the first two and 
enqueing the result. 

2 Repeats this until only one heap remains in the queue. 
 
 

But the two-pass seems to perform the best in experimental testing. Therefore, 
it is this variant that serves as the standard for the costless-merge tests. 

 
 

2.4  Prior Analysis and Results 
 

As a self-organizing data structure, it is difficult to arrive at a complete analysis 
of all of the pairing heap’s operations. While a rigorous reproduction of the 
analysis is omitted, some intuitive results are critical to understanding how the 
pairing heap performs well despite a lack of internal structure. A full analysis 
can be found in [12]. 

 
Recently, Fredman showed that the Pairing Heap does not support O(1) de- 
crease cost for all sequences[11]. He showed that there exist a sequence of oper- 
ations such that the cost for decrease is Ω(loglogn). However, sub-logarithmic 
amortized time was proven for the general case by Pettie[22]. Again, we omit 
reproducing the majority of the results, but provide an intuitive example. 

 
Consider the pairing heap as a d-ary tree. Any time a delete-min operation is 
done on a pairing heap, the list of d children must be searched for the minimum 
node to promote. Since the children are essentially an unsorted list, the time 
to search this list is O(d). Thus, it is important to keep the heap deep (a tall, 
narrow tree), which minimizes the number of children attached to the root. 
This is exactly the opposite motivation for the splay tree, which sought to bring 
common elements (and subsequently their immediate neighbors) up with each 
access. Therefore, merge, insert, and decrease operations actually reduce the 
performance of delete-min, and thus may reduce the overall performance of the 
heap over time. The constant number of pointer assignments made in these 
operations do not fully reflect the effect they have on the structure. 

 
The flattening effect might explain why the multi-pass method was preferred in 
the original publication. The multi-pass method would produce a taller tree.. 

15  

15

Vander Hook: Verification of Costless Merge Pairing Heaps

Published by Cornerstone: A Collection of Scholarly and Creative Works for Minnesota State University, Mankato, 2010



 
 
 
 

However, this method is essentially an extra imposition of structure. The two- 
pass method of combining children probably makes fewer comparisons overall, 
and therefore produces better experimental performance. 

 
Finally, there is a fine line to walk when designing an experiment for a pairing 
heap. Following the lead of [22], we consider that the cost of decrease (at 
somewhere around sub-logarithmic), is probably dwarfed by the Θ(nlogn) cost 
paid for n insert and delete-min pairs. The ratio of decrease to delete-min has 
been referred to as the density of the sequence. 

 
 

3 Recent Developments - The Costless Merge 
Pairing Heap 

 
3.1 Description 

 
In [7], a new variant of paring heap was described. Unlike previous variants 
this new structure was different in its implementation of decrease. The costless 
merge pairing heap (CMPH), exploits the fact that a heap only has to return 
the min node, it doesn’t necessarily have to keep the min node in any particular 
location. Thus, whenever a node is decreased, its new value is compared to 
the current minimum. If it is less, the min pointer is updated to point to the 
decreased node. No further work is done. Asymptotically, this is the same as the 
PH2p’s method at O(1). However, since only one comparison and one pointer 
is updated, it has the potential to add savings over time. It is exactly this “over 
time” argument that is central to the analysis of these data structures. 

 
One of the advantages of a CMPH is that it maintains a separate list of decreased 
nodes to avoid moving a large number of subtrees up to the root.  This list is 
later merged during a special operation called cleanup. Keeping the decreased 
nodes separate may reduce the impact to delete-min, and reduce sensitivity to 
the density of the operations sequence. 

 
Finally, cleanup combined with the normal two-pass delete-min produces a taller 
tree after each delete-min, provided the operations sequence was dense enough. 

 
The CMPH provides the following operations. 

 
 

makeheap(h) Initialize the heap h. 

insert(h,x) Insert the value x into the heap h. 

findmin(h) Return the minimum value of h. 
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deletemin(h) Delete and return the minimum element from the heap 

decrease(h,x,∆) Decrease x in the heap h by ∆. Update the heap to reflect 
the new minimum. 

 

Delete is omitted, because it cannot be efficiently implemented. 
 
 

3.2 Implementation and Intuitions 
 

A summary of the analysis is presented to show the motivations for the optional 
implementations. More details can be had in [7]. 

 
The implementation of the CMPH is similar to the PH, except for the deletemin 
and decrease operations. However, an additional pointer assignment is made 
during each insert, merge, and decrease. For brevity, only the new decrease is 
shown, but each of these operations would have to update the min pointer if 
the new node is less than the root. Additionally, the findmin operation simply 
returns the data pointed to by min. 

 
 

Algorithm 10 CMPH Decrease 
 

 

The CMPH maintains an internal list of decreased nodes. In this example, d is 
the ∆value, n is the node to be decreased, and h is the heap. 

d e c r e a s e ( h ,  n ,  d ) 
n . data  =  n . data  −d 
i f   ( n!=h . root ) 

h . l i s t . add ( n ) 
i f   ( n . data<  h . root . data ) 

h . min  =  n 
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Algorithm 11 Costless-Merge Pairing Heap cleanup() 
 

 

Here, h is the CMPH, which contains the fields root, decreased (the list of 
decreased nodes) and min (a pointer to the current minimum node). 
Let  n = l o g ( d e c r e a s e d . l e n g t h ) 
i f    ( n<2) 

 

e l s e 
 

pos  = 0 

na = new  node [ d e c r e a s e d . l e n g t h ] 
 

node [ ]   na  = new  node [ n ] 

w h i l e   ( d e c r e a s e d . s i z e  > 0 ) 
x = d e c r e a s e d . pop 
p = x . parent 
y  = x . l e f t 
z  = x . r i g h t 
x . pare nt = n u l l 
yr = n u l l 
i f   ( y!= n u l l ) 

yr = y . r i g h t 
y . pare nt = p 
i f   ( i s l e f t ( x ) ) 

p . l e f t  = y 
e l s e  

p . r i g h t  = y 
 
 

e l s e 

y . r i g h t  = z 
i f   ( z != n u l l ) 

z . pare nt = y 
 

// y == n u l l 
i f   ( i s l e f t ( x ) ) 

p . l e f t  = z 
e l s e  

p . r i g h t  = z 
i f   ( z != n u l l ) 

z . pare nt = p 
x . l e f t  = yr 
i f   ( yr  !=  n u l l ) 

yr . parent  = x 
na [ pos ]  = x 
pos++ 

 
i f   ( pos==n ) 

s o r t ( na , 0 , n )  // mergesort  e n t i r e  array 
w h i l e (  −−p os  >  0 ) 

l i n k c h i l d ( na [ pos − 1 ] , na [ pos ] ) 
r o o t  = merge ( root , b u i l d [ pos ] ) 

 
i f   ( pos >0) 

s o r t ( na , 0 , pos ) 
w h i l e ( −−p os  > 0 ) 

l i n k c h i l d ( na [ pos − 1 ] , na [ pos ] ) 
r o o t  = merge ( root , b u i l d [ pos ] ) 
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Algorithm 12 Costless-Merge Pairing Heap delete-min 
 

 

cleanup ( ) 
r e t  = r o o t  // a s s i g n  r e t u r n  value 
min = r o o t  = d e l e t e −min ( )  // do  standard  two  pass  d e l e t e −min 
r e t u r n  r e t 

 
 

 

From Algorithm 10 it is apparent why the CMPH does not support an arbitrary 
delete. To avoid corrupting the heap during a deletemin operation, the list of 
decreased nodes would have to be searched and the reference to the deleted node 
removed. This is too expensive, and so the method was not implemented. 

Two other things are apparent upon inspection. First, Algorithm 11 makes the 
assumption that sequential nodes will be distinct. This is required because the 
algorithm does not make distinctions between the node to be joined to, and the 
node joining. If a node was decreased twice during operation, the node would 
be in the list twice. Depending on the order of pointer assignments, this would 
result in either losing a reference to the node’s parent or sub-tree.3 This may 
not happen commonly during the use of the data structure, but the possibility 
is there. 

To solve this problem, the decreased list would again have to be checked for 
membership of the newly decreased node. This would add execution cost to 
the decrease method. However, to prevent conflict with the original design, 
data sets were scrubbed of matching decrease operations that occurred before a 
deletemin (and thus before each cleanup) prior to execution4. 

Futhermore, the use of a min pointer addes a comparison to each operation, and 
the cleanup operation adds overhead to both merge and deletemin. However, all 
of these things conspire to decrease the overall cost of a sequence of operations, 
and these effects would be absorbed by the benefits5. 

In [7], Elamsary showed that the amortized cost of cleanup is O(logn). 
 
 

4 Experimental  Validation 
 

The main purpose of this paper is to compare the CMPH to the two-pass pairing 
heap (2pPH). To accomplish this goal, they both had to be implemented. The 

 
 

3Actually, it makes the assumption that all nodes in the list will be distinct. Performing 
the link-join phase on a node twice will not have devastating effects. However, separating the 
pool into sub-pools of size log(n) makes it more likely that only sequential nodes will cause 
the problem. 

4For heaps of sizes in the hundreds of thousands of nodes, with randomly selected nodes 
for decrease, this was a time-consuming process. In fact, this scrubbing took the majority of 
the CPU time before each test. 

5In theory 
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2pPH was implemented as described in 2.2. The CMPH was implemented as 
described above. 

 
 

4.1 Methods 
 

Programs were written to generate sequences of operations, in an effort to sim- 
ulate a real-world application. These data sets were created according to the 
algorithm in 13. To remove the effect of the testing environment from the results 
(garbage collection, system load, and other random effects), the tests were run 
in random order and up to 100 times for each data set. The total system exe- 
cution time and thread execution time were recorded for both data structures. 
Finally, they were tabulated, compared, and statistical methods were used to 
determine the better performer. 

 
 

Algorithm 13 Generate Data set 
 

 
 
 

Note that a data set is actually a list of operations and values. The testing pro- 
gram could be thought of as an interpreter which simply executed the programs 
that were generated from Algorithm 13. 

 
 

4.2 Results 
 

Over random operations sequences of the same size and composition, the Costless- 
merge pairing heap underperformed. P-values were less than .01 for similar-sized 
data sets, and were as small as .00147. Thus, the difference is significant, with 
CMPH run times per given data set averaging higher than PH2p run times for 
the same set. 

 
All tests were run on an idle 3.2 GHz Pentium IV with 2 GB RAM with Windows 
XP Pro. JVM options were -Xmx1024 and -Xms1024. 
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Figure 5: Sample Data set 
 
 

Ten sequential test results are shown in Figure 5, while the bulk of the data 
sorted by run time, is shown in Figure 6 on the following page. A test of 
means was done on run times from each sample operations set using PSPP. 
No analysis was done on the aggregate data set, as the large variance between 
data sets would render the results inconclusive. Figure 6 shows what appears to 
be an exponential increase in run time. However, it should be noted that this 
merely reflects the composition of the tests, not the asymptotic runtime of the 
data structures. 

 
 

5 Conclusions 
 

From 6 on the next page it is apparent that the CMPH under performs. How- 
ever, careful observation of the chart shows a portion where the CMPH seems 
to out perform the 2pPH. It should be mentioned that analyzing these specific 
entries is the equivalent of asking, “Which data structure has lower run time 
in this range of run times on this system, while ignoring the composition and 
size of the operations sequence?” The validity of this question is suspect, but 
the analysis was done anyway (to satisfy curiosity) and revealed no significant 
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Figure 6: Aggregate Test Results (Runtime vs Test Number) 
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difference between the means. Where the data was conclusive, it showed the 
Pairing Heap out performing. 

 
This data could be considered preliminary, and other types of tests could be 
run. For instance the algorithm used to generate operations could be altered 
to produce different ratios of decrease to deletemin. This may yield different 
performance curves. It is possible that with a higher percentage of decrease 
operations, the overhead of managing the decreased trees separate from the 
child list of the root might pay off. However, in [11]Fredman showed that the 
cost of m pairing heap operations with n decrease operations has an amortized 
cost of O(mlog 2m n). Given the bounds shown in 2.4, and the right value for m 

n 

as mentioned in [7], a constant decrease cost could be should provide additional 
benefit to both structures. 

 
As an aside, given the motivations for simplicity that made (and keep) the 
Pairing Heap popular, the Costless-Merge Pairing Heap seems unnecessarily 
complex, unless some interesting performance increase could be shown. 
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