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Abstract 
A general analytical solution of the navigational wind-triangle problem and the calculation of the 

critical tailwind angle are presented in this study among other findings. Any crosswind 

component will effectively create a headwind component on fixed course tracks. The meaning of 

a route track is lost with excessive crosswinds representing the bifurcation point between the 

possible and the impossible navigational solutions. Any wind of constant direction and speed 

will effectively reduce groundspeed and increase time-of-flight on closed-loop multi-segment 

flights. Effective wind track component consists, in general, of true and induced components. 

The average groundspeed of multiple-leg flights is a harmonic average. The critical tailwind 

angle measured from the positive true course (TC) direction will increase as the wind speed/true 

air speed (WS/TAS) ratio increases. The extreme case is when the wind correction angle is 90° 

in which case the airplane is oriented and flying perpendicular to the TC and the groundspeed 

(GS) is equal to TAS because of the true tailwind component. Relatively slow GA light airplanes 

could become very vulnerable to atmospheric wind effects as high WS/TAS conditions adversely 

affects flight safety. Atmospheric winds exert large influence on aircraft’s point-of-no-return, 

point-of equal time, and radius-of-action, which will also affect extended operations (ETOPS) 

operations and in-flight decisions. Extreme cases of adverse wind effects are not required to put 

flight operation at risk – even mild effects could suffice. Wind vectors have detrimental 

operational, economic, safety, and scheduling effects on flight operations.  

 

Keywords 
Wind triangle, direct and inverse problems, true induced and effective headwind, critical 

tailwind angle, Time-of-flight, PET, PNR, ROA. 

 

Introduction 
Air navigation is one of the essential skills that students and practitioners in aviation and 

aeronautics have to master. The natural language of navigation is planar trigonometry for shorter 

terrestrial distances and spherical trigonometry for larger terrestrial distances. One of the 

standard computations that students of aviation and aeronautics have to learn and apply is the 

navigational Wind-Triangle (WT) calculations and Dead Reckoning (DR) flight planning. A 

number of FAA visual flight (VFR) and instrument flight (IFR) general operating rules (FAA, 

2015), such as §91.103, §91.151, §91.153, §91.167, and §91.185 require the ability to estimate 

groundspeeds and time-of-flight (TOF), whether for fuel planning purposes or ATC procedures.  
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The general Great-Circle (GC) long-range navigation problems must account for spheroidal 

(Geoid) Earth, and the rules of spherical trigonometry and geodesy are used (Alexander, 2004; 

Daidzic, 2014; Sinnott, 1984; Wolper, 2001). Typically, in light-plane GA navigation or short-

to-medium flight only plane problems are treated neglecting Earth’s curvature. Planar 

trigonometric relationships exist between the aircraft’s True Heading (TH), True Course (TC) 

and Wind Direction (WDIR). Simultaneously, a problem is being solved for the vector 

magnitudes, such as, True AirSpeed (TAS), GroundSpeed (GS) and WindSpeed (WS). An angle 

between the TH and the TC vectors is termed Wind Correction Angle (WCA), or “crab” angle. 

We also designate A as an air vector, G as a ground vector, and W as a wind vector. A so called 

direct and inverse WT problem exists: 

 

1. Direct:  

a) Knowing TAS, TH, and WDIR/WS, calculate GS, drift angle, and TC. This kind of 

calculation applies predominantly to estimating the effect of wind (drift angle) and 

has no practical use in flight planning.  

b) Knowing TAS, TC, and WDIR/WS, calculate GS, WCA, and required TH to 

maintain course. This kind of problem applies predominantly to the flight planning 

phase. 

 

2. Inverse: 

a) Knowing TAS, GS, TH, and TC (which also implies knowing WCA), calculate 

WDIR and WS. This kind of problem is solved during flight to verify wind speed and 

direction (manually or automatically using on-board navigation equipment and 

computers). 

 

Typically, mechanical calculators, such as circular slide rule E-6B (Dalton’s dead reckoning 

computer, also known commercially as E6-B or E6B), are used for both direct and inverse WT 

problems. Additionally, electronic flight calculators/computers (e.g., ASA’s CX-2 Pathfinder) 

are also commonly in use. 

 

Nevertheless, it was observed over many years that University students of aviation and 

aeronautics lack basic knowledge of planar trigonometry and are thus having difficulties 

understanding and solving basic navigational problems. While learning the skill to use the 

circular slide ruler (mechanical logarithmic and trigonometric computers) is practical, it is also 

essential to understand fundamental trigonometric relations and the effects wind may have on 

flying aircraft. Being able to estimate wind vectors is essential in many phases of flight, and 

more importantly, it develops critical-thinking skills. In this era of powerful area-navigation 

systems (RNAV), electronic navigation systems that include global terrestrial electronic 

navigation, such as, hyperbolic satellite-based systems and passive inertial-based reference 

systems (IRS), it is all too easy to neglect learning the basics of navigation. Poor understanding 

of wind effects on cruising aircraft has been noticed, which sooner or later results in serious 

operational difficulties, incidents, and accidents.  

 

A lot of pilot/operator educational material, issued by government agencies (such as FAA in 
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USA) and other commercial sources has been consulted and checked. No serious consideration 

to all-important wind effects has ever been discussed or taught. No complete treatment of 

atmospheric wind effects on flying aircraft was ever located. The FAA’s handbook of 

aeronautical knowledge (FAA, 2003) provides some basic definitions and graphics/plots, but 

offers no discussion or computation of wind-triangle problems. Also the ASA’s pilot’s manual 

(ASA, 2005) provides no insight into various wind effects, other than basic theory and practice 

of using navigational slide ruler. 

 

In a desire to see if the basic principles of WT and DR calculations are truly a “lost art” or 

perhaps were never seriously discussed in aviation/aeronautics literature, we consulted older 

expert books dealing with air navigation. Disappointingly, not much was discussed except for 

explanations on how to use mechanical circular slide rulers or plot courses. A book titled 

“Mathematics of air and marine navigation” by Bradley (1942) has essentially no mathematical 

discussion of WTs.  Equally so, a much celebrated textbook on practical air navigation by Lyon 

(1966) provides no insights in WT problems and DR other than on how to plot courses and use 

mechanical slide rulers. Wright (1972) provides only rudimentary understanding of wind-

triangles without any theoretical considerations and/or defining or solving WT and DR problems. 

Wright’s book is mostly focused on historical development until about 1941.  

 

Of the newer aviation expert books written in the last 20-30 years for advanced pilot and 

navigation training, Clausing (1992) gives only basic discussion of navigational theory and 

restricts its content mostly to electronic navigation. Kershner (1994) provides perhaps the most 

comprehensive discussion of wind effects with many practical WT and DR problems for pilots, 

but no trigonometric relationships or curious wind effects are discussed. The practical use of a 

“whiz wheel” (E6B) is also explored as in almost all basic pilot theory educational materials. 

Padfield (1994) discusses some practical aspects of wind effects on airplanes during cruise and 

terminal/runway operations. He even gives two equations (Padfield, 1994, p. 46) for how to 

calculate effective GSs with pure HWs and TWs. Padfield focuses on practical flying issues with 

some emphasis on wind and also considers point-of-equal-time (PET) and point-of-no-return 

(PNR), which is quite unusual to find in common practical flying references. The van Sickle’s 

handbook (1999) was designed to be a pilot’s knowledge encyclopedia, covering many 

aviation/aeronautical topics barely touched on WT and DR issues. De Remer and McLean (1998) 

address a wealth of various navigational topics and some non-mathematical discussion of wind-

triangle calculations, but again no deeper insights or trigonometrical equations were provided. 

Underdown and Palmer (2001) provide perhaps the most detailed discussion of various wind 

effects and the use of mechanical slide rulers. They also define point-of-equal-time (PET), point-

of-no-return (PNR), radius-of-action (ROA), and effective headwind component (HW), but all in 

non-mathematical terms. Many of the effects explored and investigated here were not mentioned. 

Wolper (2001) discusses many aspects of the spherical and planar trigonometry and does not shy 

away from mathematical considerations, which most of the collegiate aviation students would 

find overwhelming. But that is mostly due to the lack of even basic education in mathematics in 

professional pilot education. However, even Wolper does not discuss wind-triangle issues deeply 

enough nor are most of the curious and interesting wind effects, investigated here, mentioned in 

his book. Jeppesen’s EASA ATPL manual (Jeppesen, 2007) is focusing entirely on air 
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navigation and is quite extensive in its scope, but includes no mathematical approach to any of 

the subjects discussed here. In the end, the fundamentals of wind-triangle computations boil 

down to the use of a circular slide computer. Williams (2011) provides many mathematical 

expressions in forms ready for computer programming, but offers no discussion on WT issues. 

Johnston et al. (2015) give a nicely illustrated overview of the history and practice of navigation 

on sea, in air and in space, but really no mathematical treatment of any subject.  

 

Some expert sources in marine (naval) navigation such as Bowditch (2002), Dodds (2001), and 

Maloney (2004) have been consulted and disappointingly only basic effects of wind were 

discussed. Much more attention in scientific literature is given to spherical and ellipsoidal 

geometry navigation problems, including Orthodromes (Great Circle), Loxodromes (Rhumb 

lines), and geodesic lines (Alexander, 2004; Sinnott, 1984; Vincenty, 1975; Weintrit and 

Kopacz, 2011; Wolper, 2001). In the aerospace engineering community only few relevant works, 

such as Hale and Steiger (1979), Hale (1984), Asselin (1997), and Filippone (2006, 2012) 

discuss wind effects in various flight phases. Many other engineering aircraft performance 

textbooks and expert books were consulted, but are not all given here due to lack of space. 

Needless to say, no in-depth discussion was found in the literature. The same can be said for the 

aerospace/aeronautics engineering community, peer-reviewed, archived publications. Most texts 

were limited to a rudimentary analysis of true HW component on a jet airplane’s range. It is very 

possible that some wind effects, discussed here, have been addressed in the past in the area of 

marine navigation or aeronautical navigation industry, but nothing was found in the public 

domain using reasonable search efforts.  

 

Designers of the electronic flight computers (such as CX-2) clearly must have used trigonometric 

equations programed into ROM (read only memory) to solve various direct and inverse 

problems. But there is no publically available literature source. Circular slide rulers essentially 

are solving WT problems geometrically by plotting vectors and the methods used are well 

known. Although, the use of planar trigonometry, which has been known for many centuries, 

may seem trivial to warrant a research article, nevertheless we find it important to describe basic 

principles and emphasize some curious wind effects. In fact, it is quite astonishing that no 

comprehensive and rigorous analysis of wind effects in air navigation was ever presented before. 

It does seem that in this age of easily-affordable electronic navigation systems, the fundamental 

principles of navigation have become a lost art. This article will provide comprehensive 

fundamental theoretical and practical foundation for understanding and solving WT/DR 

problems for students, practitioners, and educators of air navigation and airline operations.  

 

The main motivation and purpose of this article is to rigorously define planar WT problems, 

provide working trigonometric equations, highlight several solution methods, and most 

importantly underscore some little known or understood effects. There are indeed some 

unexpected effects of wind that would be useful to discuss. Few may know or understand that 

not every WT problem has a solution. Atmospheric winds directly and/or indirectly affect many 

aviation sciences and airline industry specifically, including air navigation, airline economics, 

route/track planning and optimization, airline operations and scheduling, aviation safety. 
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Mathematical formulation of wind triangle problem 
All known and unknown variables used in solving planar WT problems are vectors. For example, 

velocity is by definition a vector; the magnitude of velocity is called “speed”. A generic WT 

problem is depicted in Figure 1 (TN signifies True North) and is deceptively simple: 

 


 GSWSTASTCWDIRTH                      (1) 

 

It is very common in literature to use boldface capital symbols in vector algebra operations. 

 

TCWDIRTHGWA                        (2) 

 

How difficult can it be two add two values? However, let us not forget that we must obey vector 

algebra rules. Common way to perform vector algebra calculations is to use trigonometric 

relationships. The very nature of vectors in planar WT problems can be expressed using 

 

000 



GSTCWSWDIRTASTH

GSGSTCWSWSWDIRTASTASTH
                    (3) 

 

 

 
 

Figure 1: A generic wind triangle problem. The coordinate system is given in reference to TN 

with clockwise positive angle. 

 

These expressions utilize scalar (or dot or inner) and vector (cross) products of vectors, describe 

co-linearity (parallelism) of certain vectors, and establish rules for projecting those values on any 

reference system (vector basis) with unit vectors 1 WDIRTCTH . The basis vectors are 

those oriented with TN or 1n , and, TE or 1e , so that projection of courses is given by 

directional angles, e.g.,   nTCnTC ,cos   (see also Figure 1). Once the WT problem is 
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solved using the TN reference, it is very easily transformed into the Magnetic-North (MN) 

reference system. 

 

 

MDEVMHCH

MVARWCATCMVARTHMH




                    (4) 

                

Here, MVAR stands for the gradually changing magnetic variation based on current terrestrial 

data and given latitude/longitude information. Magnetic variation will be spatially changing 

during the flight unless the aircraft continues flying along the “isogonic” (constant-MVAR) line. 

In the case of the very special isogonic line, i.e. the “agonic” line, the MVAR is zero and 

TH=MH and TC=MC. MVAR can be Easterly (E or negative) or Westerly (W or positive). 

MDEV stands for the Magnetic Deviation of the internal magnetic compass heading (CH), which 

is caused by the local magnetic fields induced by internal electromagnetic fields (mostly from 

various NAV/COM radios and GPS units) and is aircraft specific. MDEV can be positive or 

negative based on the magnetic heading (MH).  

 

There are several ways to solve the WT/DR problems during planning and actual flight phases: 

 

1. Using mechanical (circular) sliding rulers/calculators (such as E-6B, CR-5, CR-2). 

2. Using the electronic flight calculator/computer (such as ASA’s CX-2). 

3. Deriving trigonometric relationships and programming working equations into them, 

which will deliver the same result as in item 2 above. 

4. Deriving and using approximate relationships, which can also be implemented during the 

flight phase for quick mental estimation of wind vectors. 

 

We will be mostly concerned with items 3 and 4, and verify the results of computations using the 

methods described in 1 and 2. A few assumptions and limitations are made here: 

 

 The wind vector is designated using WDIR/WS (degrees/knots), and the directional angle 

WDIR means the azimuth it is coming from.  

 TC is given in angular degrees and can take any direction in a unit circle.  

 

All speeds used here are in knots, but as long as consistent units are maintained, any other 

measure can be used such as mph or km/h (kph). There is no theoretical limit to direction and 

magnitude of wind vector in our considerations. Some TCs will not be possible with some wind 

vectors. No solution to the WT problem then exists. Both radians and angular degrees are used 

interchangeably in this text also for the reason of familiarity. The conversion between radians 

and angular degrees is trivial. 

 

In order to solve the general WT problem one needs to have the same number of equations as 

there are unknowns. Typically, two equations are needed for two unknowns, while the other four 

WT parameters must be specified. In order to solve the trigonometric problem illustrated in 

Figure 1, we use the Law-of-Sines (5a), the Law-of-Cosines (5b), and the Law-of-Tangents (5c) 

(Ayres and Mendelson, 2009; Bronstein and Semendjajew, 1989; Davies, 2003; Dwight, 1961; 
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Olza et al., 1974; Spiegel and Liu, 1999; Wolper, 2001; Wylie, 1960): 

 

 Sines of Law
c

sin

b

sin

a

sin 
                                  (5a) 

 

 Cosines of Law

2

2

2

222

222

222







cosbabac

coscacab

coscbcba







           (5b) 

 

  
  

 

   
 

  2
2

Tangents of Law
2

2

cbas
css

bsas
tan

tan

tan

ba

ba






























           (5c) 

 

Similar relationships can be calculated using the Law-of-Tangents (5c) by permutation of sides 

and angles. The illustration of a general obtuse triangle is given in Figure 2. The law-of-sines is 

easily derived (Ayres & Mendelson, 2009) by calculating the area of the triangle which is one-

half the base multiplied by height,  sinasinbh  . 

 

The Law-of-Cosines can be easily derived by using the dot product for a general obtuse triangle 

(Wolper, 2001). For a triangle with two sides designated as v and w, the third side closing an 

acute angle between v and w can be represented as vector subtraction v-w.  

 

     

 wvwvwv

wvwwvvwvwvwvwv

,cos2

2

22

22




                 (6) 

 

 
 

Figure 2: A general obtuse (one angle more than 90°) triangle problem illustrated. 
 

A general WT problem is illustrated in Figure 3. A typical convention is to define air vector (TH, 

TAS) with one arrow, the ground vector (TC, GS) with two arrows, and the wind vector 

(WDIR/WS) with three arrows (Jeppesen, 2007; Underdown and Palmer, 2001). We are first 
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solving a trigonometric problem in a frame of reference fixed to the WT and with no relationship 

to geographic/geodetic or magnetic terrestrial coordinates. All of the angles are positive and less 

than or equal 180° (or  ), with their sum equal to 180°. Depicted angles in Figure 3 are: 

 
       

    







TAS,WSTH,WDIR

GS,WSTC,WDIRGS,TASTC,THWCA 2
 

 

Solving the WT problem is not trivial. The periodicity of trigonometric (transcendental) 

functions results in non-uniqueness, and inverse problems are often very difficult. Important 

trigonometric functions’ periodicity conditions yields:  

 

      ntantanncoscosnsinsin 2  and ,2,2   

 

Further important properties of trigonometric functions used in solving WT problems are (cosine 

is even, and sine and tangent are odd functions):  

 

       tantansinsincoscos    and ,  ,  

 

 

 

 
 

Figure 3: A wind-triangle problem illustrated with all angles and sides defined. The 

ambiguity exists with all angles and sides equivalent due to symmetry.  

 

A Taylor series approximation of trigonometric relationships was used (Spiegel & Liu, 1999) for 

small angles,   (in radians). Only the first-order or linear terms have been preserved resulting in 

the following useful approximations. 
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


















!crd!vers

sin!tan

!cos!sin

4020

63

1213

32

313

23

 

 

These approximations are sufficiently good for angles of less than 15°, which is the case in many 

realistic scenarios, at least regarding the WCA. Wind angles can generally assume any value in 

unit circle, prohibiting the use of such small-angle approximations of nonlinear trigonometric 

functions.  

 

It must also be noted that angles in the geographic/geodetic planar coordinate system are counted 

positive clockwise (starting from TN), while the opposite is true for the angles measured in the 

unit circle for the trigonometric functions (positive counterclockwise and negative clockwise).  

 

Direct problem I: Unknown GS and TH 

The first classical WT problem of dead reckoning that will be solved here has great practical 

applications in the flight planning phase. A TH and GS are sought that will result in the aircraft 

maintaining a particular track/course/bearing (e.g., IFR Victor-airway) under given (forecast or 

reported/measured) steady winds. The GS value is essential for fuel planning and obtainable 

range as well as planned and actual TOF, which then defines estimated time-of-arrival (ETA) 

and actual time-of-arrival (ATA). One long flight can be broken into as many legs (segments) as 

desired and especially so if a change in TC is required. The accuracy of the flight planning phase 

mostly depends on the fidelity of the wind information. 

 

Using Figure 3 and Equation (5), we utilize the Law-of-Sines to calculate the WCA and TH, and 

the Law-of-Cosines to compute the GS: 

 

 



cosWSTASWSTASGS

TAS

sin

WS

WCAsin
 2222

                 (7) 

 

The angle between the TC and the WDIR ± 180° is known as the wind-angle  . It is the angle 

between the positive directions of TC and where the WDIR is pointing to (and not coming from 

as usual) and can be calculated as  oWDIRTC 180 . The angle   WCAo180  is the 

angle between the TH and the oWDIR 180  (see Figure 3). The equation for the dimensionless 

GS can be now written in dimensionless form: 

 

 
TAS

WS
WCAcos

TAS

GS
z   21 2                           (8) 

 

We will subsequently see how the non-dimensional ratio TASWS  plays a crucial role in 

estimating wind effects on cruising aircraft. The solution expressed with Equation (8) is quite 

general and does not always exist. Finding the general conditions for the existence of a solution 

of Equation (8) has been conducted, but is beyond the scope of this article due to mathematical 



 

 International Journal of Aviation Sciences, Volume 1, Issue 1, 2016  

  66 

complexity. However, a few important results and conclusions will be presented here. The 

appearance of a negative sign for TASGSz   simply means that for a general wind intensity the 

airplane may be flying backward over the ground (GS and TAS have opposite directions). 

Theoretically and practically such a solution is possible. However, it is very rare. This is why 

flying in high (WS/TAS) conditions is impractical and may be very dangerous. Of course, the 

airplane is never aerodynamically stalled. 

 

We could allow the WCA to be positive (clockwise) for winds coming from the right-of-TC or 

negative (anti-clockwise) for winds coming from the left-of-TC to calculate the TH. However, 

that would confuse subsequent calculations and dictate introduction of absolute values of angles. 

That is why we restrict wind angles to only oo 1800   (from the left or the right of the TC) 

which may cause ambiguity due to symmetry (Figure 3). The WCA is now: 

 

  sinsinWCA  1                                (9) 

 

Thus, the WCA is always positive (or zero) as 0sin . An additional limitation on the domain 

of the inverse-sine function (range is  11 , ) is: 

 

 
2

11 1 
   WCAsinsin                 (10) 

 

This condition implies that some TCs are not possible (or available) when ( 1 ), and the WT 

problem has no solution for some fixed TCs. An interesting observation is that when   is very 

large, the available TCs narrow, and in the infinity-limit, the only courses available are into 

(HW) or with the wind (TW), i.e., when ,,,nn 210    where  then    . The TH 

is now: 

  

 20  WCAWCATCTH                  (11) 

 

The sign ahead of the WCA will be determined based on whether the wind vector is to the right 

(+) or to the left (-) of the TC in the planar-Earth surface-fixed frame of reference. Several 

special WT cases exist: 

 

1. Pure headwind (HW) where    o180  and 0sin   ( 0WCA  and 0 ). 

2. Pure tailwind (TW) where  00  o  and 0sin  ( 0WCA  and   or  180o  ). 

3. Pure crosswind (XW) where  290   o  resulting in 1sin . If we allowed full 

circle angles it would be  23270   o , which is equivalent to  290   o , 

1sin , and WCA positive or negative (implying left/right or port/starboard XW). 

 

These kind of calculations are easily performed using a circular (trigonometric) slide 

calculator/ruler (e.g., E-6B) thus providing means to avoid ambiguity when using periodic 



 

 International Journal of Aviation Sciences, Volume 1, Issue 1, 2016  

  67 

trigonometric functions. If the wind vector is coming from the left two quadrants (left HW, XW, 

or TW) of the TC, the WCA is negative (but designates positive angle in a unit circle) and 

subtracted from TC. If wind is coming from the right two quadrants, the WCA is positive and is 

added to TC to obtain TH. In the case of pure HW, the WCA is zero, o180 , 0 , the 

cosine function is positive one (+1), and the groundspeed squared is: 

 

  121 2z                    (12) 

 

This results in a familiar case of pure HW: GS = TAS – WS and TH=TC. In the case of pure 

TW, the WCA is again zero, o0 , o180 , the cosine function is negative one (-1), and the 

groundspeed is. 

 

  121 2z                    (13) 

 

This becomes a pure-TW case with GS = TAS + WS and TH=TC. In the case of pure crosswind 

(XW), the WCA becomes: 

 

    25015deg601 .WCAsinWCA o     

 

Also, )WCAsin()WCAcos( o 90 and XWWS)WCAsin(TAS  , resulting in: 

 

11 2  z                     (14) 

 

Clearly, a fixed TC cannot be maintained with crosswinds TASWSXW  . The TH is as 

before, WCATCTH  . These are in fact the right-triangle Pythagoras’ rules. The general 

relationship (Equation 8) reduces to familiar Pythagoras rule in the case of right-triangle 

kinematics. 

 

Direct problem II: Unknown TC and GS 

This direct problem has little use in flight planning or actual flight except in some special cases 

when calculating drift angles and estimating winds. The geometry of the problem is slightly 

different as this time the angle between the TH and the WDIR or  TH,WDIR is known. 

The known values are wind-vector values WDIR and WS as well as TH and TAS. The angle 

between the TH and TC is now called drift angle or DA (as opposed to WCA used to maintain a 

given TC). Using the illustration from Figure 3, and the Law-of-Cosines, we may write (Equation 

8) again: 

 

 cosz  21 2                    (15) 

 

Drift angle (DA) can be calculated using the Laws-of-Sines: 
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 
  


  sinsinDA

GS

sin

WS

DAsin 1
               (16) 

 

The TC is now: 

 

DATHTC                      (17) 

 

When 0  and 0WCA , it implies o180 , and one has pure HW with DA equaling zero. 

The respective GS is then given by Equation (12). When o180  and 0WCA , it implies 

0 , and we have pure TW with DA equal zero. In that case the GS is given by Equation (13). 

The solution is very interesting for o90 , in which case the DA will be positive or negative in 

relationship to the reference system and the GS becomes: 

 

21 z                          (18) 

 

This time there is no restriction on the WS/TAS ratio. This is interesting from the point of view 

that TASGS   when the wind blows perpendicular to an airplane’s true heading (TH), while 

TASGS   when the wind blows perpendicular to the fixed true course (TC). For very large 

WS/TAS ratios clearly z , and WCA is zero. This is, of course, such an extreme case with 

little practical relevance as no aircraft should be flying in such atmospheric conditions and where 

no route control is possible. 

 

Inverse problem: Unknown winds - WDIR and WS 

During actual flight it is very practical to check the wind vector and especially so if the planned 

TC and GS cannot be maintained with given TH and TAS. For example, modern flight 

management systems (FMS) in transport-category (FAR/CS 25) airplanes have the wind vector 

displayed on the primary flight display (PFD) which is very valuable information. Even smaller, 

modern, glass-cockpit GA airplanes have the wind-vector displayed on the LCD screen. The 

triangle laws yield: 

 

   
GS

WCA

TASWS

WCA  


0180sinsinsin
                 (19) 

 

)WCAcos(GSTASGSTASWS  2222
                (20) 

 

Knowing TC and TH, the WCA follows immediately, and the WS can be calculated directly. We 

could then substitute the calculated WS into the Law-of-Sines for this problem and obtain: 

 

     11    WCAsinWCAsinsin                 (21) 
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But this expression for inverse-sine function may introduce ambiguity in the wind angle as the 

solution is not unique. The other and better way is to obtain the wind   angle from the Law-of-

Sines incorporating known GS: 

 

       WCAsinzsin 11                   (22) 

 

We can decompose the sine function in Equation (22), and after some tedious reductions finally 

obtain: 

 

   
   










 

WCAcosz

WCAsinz
tan






11

11                   (23) 

 

This is a slightly more complicated expression, but does not need before-hand knowledge of WS 

and the non-uniqueness of inverse-sine (arcsin) can be resolved better using the inverse-tangent 

(arctan) function. It is always recommended to use function ATAN2 (such as in Basic, Fortran, 

Matlab, C++, Excel) as the inverse-tangent function is checked in all four quadrants of the unit 

circle.  

 

Solving wind triangle problems using complex numbers 

Wind triangle problems can be solved more elegantly, avoiding messy trigonometric 

relationships, by using representation of vectors in a complex Cartesian plain (Argand diagrams). 

A polar or exponential form of vectors is used instead. An illustration of an inverse problem 

solution is shown in Figure 4. The TN coincides with the x axis or the positive real axis and the 

counter-clockwise angles are positive as shown in Figure 4.  

 

The air, ground, and wind vectors can be written (Churchill and Brown, 1984; Wylie, 1960) in 

exponential, trigonometric, polar, and phasor form as: 

 

   

   

   

 







201 ,,,i

WScisWSsinicosWSiexpWW

GScisGSsinicosGSiexpGG

TAScisTASsinicosTASiexpAA

WGA

WWWWW

GGGGG

AAAAA















             (24) 
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Figure 4: A wind-triangle problem solved in Argand diagram. TN is aligned with the 

positive real axis while TE is aligned with the positive imaginary axis. 

 

The inverse problem can be now described as: 

 

     WAG iexpWiexpAiexpGWAG  


              (25) 

 

Using dot vector products and projecting complex vectors on respective real (X) and imaginary 

(Y) axis, we obtain: 

 

WWWW

GGGG

AAAA

sinWSYcosWSX

sinGSYcosGSX

sinTASYcosTASX













                 (26) 

 

The intensity, modulus, or absolute value of the wind vector which is WS is now: 

 

   22

AGAG YYXXAGWWS                  (27) 

 

The argument or the counterclockwise angle in a polar vector representation measured from the 

positive real axis directly resolves an unknown wind angle: 

 















 

AG

AG
W

XX

YY
tan 1                     (28) 

 

Again, the best results are obtained if the four-quadrant arctan or ATAN2 function is used. The 
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regular ATAN trigonometric function delivers ambiguity for the opposing quadrants I and III, 

and II and IV, and the four-quadrant inverse-tangent function is essential in computing correct 

angles (see Figure 4).  

 

Let us now solve a practical inverse WT problem of finding the wind vector if the air (A) and 

ground (G) vectors are fully known (see Figure 4). The data used are TC = 030°, TH = 060° , GS 

= 120 knots, and TAS = 100 knots. We used our in-house developed WT solvers in True Basic 

v.6.007 and MS Excel 2013, and obtained rounded WDIR = 153.7° and WS = 60.13 knots. 

These results were also verified using ASA’s E-6B circular slide rule and ASA’s flight computer 

CX-2. It must be noted that the computations performed here (Equation 28) result in a wind 

vector pointing in the direction where the wind is going to, while it is customary in 

aviation/aeronautics to use the wind direction where the wind is coming from. So there is 180o 

change in direction from the calculations performed, i.e.,   WW . Our calculations have 

resulted in a wind vector direction of about 333.7°, which is where the wind is pointing to and 

the inverse direction is about 153.7° (from where wind comes) which is the correct result. 

Although all calculations are done in 15-significant-digit or double-precision, only two decimal 

points are used for speed and angle (direction) results. 

 

The mathematics of pure crosswind 

A pure crosswind vector (WS = XW) exhibits somewhat curious effects on flying aircraft 

maintaining fixed courses (TC). Due to the necessary WCA required to maintain TC, an effective 

HW component is generated. We will now derive functional relationships and calculate 

crosswind-induced HW component as a function of WS (=XW). Wind direction is fixed at right 

angles to TC ( 1 and 90   sino ). The right-triangle problem is illustrated in Figure 5.  

 

 
 

Figure 5: Right-angle wind triangle problem illustrated for the case of pure crosswind. 

 

From the right-angle triangle kinematics of motion, we may write: 

 

     WCAsinzWCAcos                   (29) 

 

A WCA (assumed only positive) and GS/TAS ratio are thus (see Equation 9): 

 

  1 sincosz                     
(30)
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The induced HW component due to XW is thus: 

 

     011 1 






  sincosz
TAS

HW

ind

           (31) 

 

The non-dimensional GS is now: 

 

 1z                      (32) 

 

Where crosswind function is defined in terms of versed sine of WCA: 

 

        WCAversWCAcossincos   11 1                       (33) 

 

Computations of the WCAs, and dimensionless ratios GS/TAS for various input ratios of 

WS/TAS (= XW/TAS) are given in Appendix A. The computed crosswind function   , or the 

dimensionless induced HW component  
ind

TASHW  are presented in Figure 6. 

 

 
 

Figure 6:  The plot of the crosswind  TASWS   function and  TASGSz  . 

 

The effective headwind component 

Previous considerations have shown that a XW component will create an induced HW 

component. The general wind vector when decomposed into two projections, one parallel and 

one perpendicular to the TC, will also have a true HW (or TW) component based on its 
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projection on TC. While wind projection on the TC can result in a true TW or HW, the XW 

component will always result in an effective HW component (reducing GS/TAS). An illustration 

of such a scenario is shown in Figure 7 using the unit circle. Hence, we speak of the effective 

HW component: 

 

indtrueeff HWHWHW                     (34) 

 

 

 
 

Figure 7: An illustration of effective, true, and induced headwind components. 

 

The true HW component is the projection of the wind vector on the ground vector and can be 

either positive (TW) or negative (HW) in sign: 

 

     cosWSWCAsinTASWSHWtrue

222                 (35) 

 

and, for  0 : 

 

     cosWCAsinTASHW
true

 22                 (36) 

 

The XW-induced HW component derived before  1  verscos , that can also be expressed 

in terms of haversine function, yields: 

 

     WCAhaversWCAversTASHW
ind

 2                 (37) 

 

The effective HW component is now: 
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   WCAsinWCAvers
TAS

HW

TAS

HW

TAS

HW

trueindeff

22 

























                    (38) 

    

The non-dimensional speed ratio z is (  0 ): 

 

    cossinsincosz  1                   (39) 

 

This is the most general equation which gives GS as a function of an arbitrary wind vector for a 

given course and with 1  sin . In the case of pure XW or 2  , this is the familiar result 

(Equation 30),    1for1   sincosz . 

 

The induced headwind component due to WCA will only exist for the aircraft in free flight. 

During takeoff and landing operations, an airplane will be only experiencing true 

headwind/tailwind components, and the crosswind will be compensated for by the friction 

between the landing gear and runway surface. In the case of pure HW (   ) and pure TW  

( 0 ) these are familiar expressions,   1and1 TWHW zz , respectively. 

 

The critical tailwind angle 

Headwinds always reduce GS, and tailwinds should apparently always increase GS. This seems 

logical, but as we will see, even TWs can reduce GS. As previous considerations have shown, 

the XW-component of a general wind vector will always reduce GS so that 1z . On the other 

side the true TW component (projection onto and in a direction of TC) of the general TW will 

increase GS, trueind TWHW  , when critical angle and trueind TWHW  , implies, TASGS . 

  

The angle at which a general TW acts will depend on the   ratio for 1z . An illustration of an 

airplane maintaining track under various TWs for which the induced HW component neutralizes 

true TW component is shown in Figure 8. Looking at the isosceles wind-triangle shown in Figure 

9, we can write for TW component ( 20   ): 

 

TAScosWS)WCAcos(TASGS                    (40) 

 

This relationship comes directly from Equation 39. Due to the familiar properties of isosceles 

triangles (equilateral triangle is a special case with all three sides equal and every angle being 

60°), we can write: 

22

2
2

WCA

WCA
WCA













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Figure 8: An illustration of critical tailwind angle. 

 

Using above expressions, trigonometric relationships and the versine trigonometric properties 

(Dwight, 1961), we may write: 

 




















22
2 2 WCA

sinWS
WCA

sinTAS)WCA(versTAScosWS                 (41) 

 

and 

 

   
 

   WCAcrdWCAsin
WCAsin

WCAsin

cos

WCAsin






 22

2

2222 22


 .             (42) 

 

 
 

Figure 9: Critical tailwind angle and the solution of isosceles triangle. 
 

The old and somewhat obsolete trigonometric functions versine (vers), haversine (havers), and 

chord (crd) directly describe the WS vector of the isosceles triangle (Figure 9). The archaic 

function chord was known to and used by the famous Greek-Egyptian astronomer Claudius 

Ptolemaeus, or Ptolemy (AD 100-170) (Sinnott, 1984; Toomer, 1970). The haversine function is 

very important in calculating Orthodromes on the spherical Earth and especially for calculating 
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small angular separation of astronomical objects (Sinnott, 1984). The critical WCA angle is thus: 

 

 22 1  sinWCA*                          (43) 

 

And the critical TW angle at which GS = TAS or 1z is: 

 

   2
2

2
222

11 





   sinsin
WCA **

*
*                    (44) 

 

The critical tailwind angle computations are presented in Figure 10. For a special case when WS 

= TAS = GS or 1 z , we have equilateral triangle and the critical angle is: 

 

  o* sin 60362212 1     

 

The critical wind angle measured from the positive direction of TC is then o** 120  . 

Another special case scenario is for WCA = 90°. In that case the TAS and GS vectors are 

perpendicular and the entire TAS is used only to compensate for pure XW (resulting in GS = 0 

along the TC), while the true TW component actually contributes to the entire GS: 

 

o**o
*

* WCA
135

4

3
45

44222






  

 

In this case, the inverse critical TW problem will result in   414122 .sin *   . 

 

The significance of this considerations is that tailwinds may exist in cruise, but in some cases, 

the true TW component (projected along and in a direction of TC) is being canceled by the 

reduced GS due to the WCA required to maintain the TC, i.e, induced HW component. For 

example, an aircraft cruising at 100 KTAS will have to fly perpendicular to its TC just to offset 

the XW component of a 141 knot tailwind WS coming from the relative angle of 135° of its nose 

or 45° of its tail. The GS is 100 knots. In this particular case WS/TAS is about 1.414 (i.e., 2 ) 

and tailwind blowing at angles between 90° and 135° measured from the TC direction will 

actually result in reduced GS or 1z . 
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Figure 10: Critical tailwind angle (measured from the positive TC direction) computations 

as a function of WS/TAS. 

 

The effect of atmospheric wind on TOF 

On round-robin (closed loop) flights, any steady wind vector (constant WDIR and WS) will 

always reduce average ground-speed and increase TOF. The TOF for a general multi-segment 

trajectory can be defined as: 

 

       effw
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



 

0

             (45) 

 

In theory, the TAS and the effective HW/TW can change as a function of time or as a function of 

trajectory path. To mathematically show a simple case of how TOF always increases with the 

constant wind vector, we will take a straight distance flight departing point A toward point B at 

given distance with return back to A. The total distance (A-B-A) is thus twice the distance A-B 

(A-B=B-A). Let us assume that TAS does not change in flight, yielding a hyperbolic 

relationship: 

 

____

BAAB

BAAB

BA

BA

AB

AB
BAAB

GS

L

GSGS

GSGS
L

GS

L

GS

L
TTT

2





                (46) 

 

The GS over the entire flight is the harmonic average (Bronstein and Semendjajew, 1989; 
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Spiegel and Liu, 1999) of the forward and return legs: 

 

TAS
GSGSGSGS

GSGS
GSLLL

BAABBAAB

BAAB
____

BAAB 








11

22
              (47) 

 

Clearly, if any of the two GS’s is zero so is the average GS, and TOF becomes infinite. One must 

be careful not to use arithmetic averages when calculating time-speed-distance problems, but 

harmonic averages instead. 

 

TOF can be now expressed in terms of known TAS and effective headwind/tailwind component 

(taking into account true and XW-induced wind components). Since the WDIR and WS are 

assumed constant and the induced HW component always reduces GS, we may write using 

Equations (46) and (47): 

 

  
     
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


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2               (48) 

 

After lengthy reductions, we obtain: 
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              (49) 

 

For relatively small XW-induced HW components (WCA less than about 12 degrees or 

20.TASXW  ), which is common in jet airplane operations, we may utilize true HW 

component only. In the case of true HW only or induced HW component only, respective time-

factors yield: 

 

     
ind

ind

HWtrue

true

HW TASHWTASHW  1111
2

  
                   (50) 

 

It is easy to see in the limit from Equation (49) that when the induced component is zero and the 

true component is one, the wind factor is infinite. The same holds if the induced component is 

one and the true is zero, but the rate of increase of the rate-factor is slower (Equation 50). 

Clearly, the NWT  is no-wind TOF, while the effective wind coefficient is always, 1HW  . In the 

limit: 

 

 TASHWxTlimlim ABA
x

HW
x


 11

  

 

We would get similar results if only the induced component exists or if both components add to 

one. This is the proof that whenever an approximately constant wind vector exists on closed-loop 
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flights it will always result in increased TOF. That is, any steady wind vector will actually act as 

an effective HW on round-robin flights, although in any individual leg it may actually act as pure 

TW. The negative effect of HW is thus stronger than the positive effect of TW, a fact well 

known, but apparently not quite understood. The primary reason is that HW not only reduces GS, 

but also prolongs exposure to it. The average GS with mostly true HW component is now: 

 

     201
2

.TASHWTASHWTASTASGS
indtrueHW

____

          (51) 

 

This applies mostly to the WS/TAS < 0.4 condition for which the induced HW component is still 

relatively small and the true HW component is more important. The mathematical proof is now 

completed. Since the endurance of aircraft is a more-or-less fixed number, aircraft range is 

especially vulnerable to wind effects. The graphical result of computations of approximate time-

factor 1HW  and speed-factor 11 HW  are shown in Figure 11.  

 

 
 

Figure 11: The effect of steady true headwind on time of flight and average speed of multi-

leg closed flights (round-robin). 

 

The results presented in Figure 11 and Equations (49), (50), and (51) are of utmost importance in 

flight operations. TOF increases first slowly and then rapidly with the true HW/TAS (Equation 

50), and the GS decreases quadratically (Equation 51) with the increased true HW-component. 

The increase of TOF with the increased true HW component can be described as: 
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Similarly, for the pure induced HW component, the TOF would increase without bound, but a bit 

slower than for the case of true HW component. It is easy to show that for small WCAs the 

effective wind is mostly in true HW component. In the general case of the closed multi-leg flight 

trajectory, we may write: 
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The influence of effective wind on PET, PNR, and ROA 

The PET value is an aircraft-specific scenario signifying emergency situation in which the 

decision must be made to return to departure (or previous adequate airport) or proceed to 

destination or next enroute alternate airport. PET has special importance in ETOPS operations 

(FAA, 2008) in the case where the airplane crew must decide to return to a previous point or 

continue on to the next. With ETOPS an airplane must always be within given flying time (e.g., 

180/207 minutes) from an adequate airport in the case of engine shutdown/failure and reduced 

TAS, which will also imply drift-down to lower cruising altitudes. The concept of ETOPS (FAA, 

2008) is based on the correct determination of PET location and TOF. On the other hand, the 

PNR, also known as the point-of-safe-return, signifies an airport emergency situation, in which 

case the aircraft still can return to its departure point. Radius-of-action (ROA) is closely related 

to PNR, so it will not be considered separately. All conclusions from PNR considerations can be 

directly applied to ROA. Numerical calculations of PNR and PET in airline operations are, for 

example, described in Filippone (2012). Understanding and forecasting wind vectors is crucial in 

aircraft performance and operations (Daidzic, 2014; Hale and Steiger, 1979; Hale, 1984; 

Filippone, 2006, 2012). 

 

The expression for PET is calculated knowing the distance between the point A (departure) and 

B (destination) and given TAS while the effective HW will be constant for forward and return 

flight ( BPETAPET TT   ): 
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Using the definition of the WCA (Equation 9), we may finally write: 
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A few important conclusions follow. A true XW will always generate HWind for the constant TC, 
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which acts equally in reducing GS in both legs and does not affect the PET location. Otherwise, 

the PET will always move into the direction from which the true wind-component comes: 
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The PNR can be written for a similar problem when flying from A to B on a straight course with 

constant effective wind. The effective endurance is the amount of flying time not counting fuel 

reserves and normally applies only at a given TAS, altitude, specific-fuel-consumption (SFC), 

and known initial fuel amount. Since the flight is round-robin the wind will always reduce the 

range of the aircraft and increase flight time compared to a no-wind situation: 
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The product ( 2TASEeff ) is the maximum no-wind half-range or the maximum distance the 

aircraft can fly outbound and still be able to return with zero wind to its destination. This is 

equivalent to the ROA definition. The existence of wind always results in effective HW in 

round-robin flights with given fixed courses. Unlike PET, which implies aircraft emergency, the 

PNR signifies airport emergency. The ROA can be similarly defined as: 

 

  HWMissionsRefuelMaxROA TASEEEL 
2

1
                 (55) 

 

In the end it is instructive to estimate the ratio of PET and PNR distances. Using Equations (52) 

and (53), we may write: 
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The PET is located typically halfway between two airports and always moves into the wind, 

while the PNR distance can be significantly longer than PNR. The significance of GS in the 

nominator is that this is the minimum GS allowed to reach destination. 

  

Small-perturbation theory of wind effects 

An important question arises as to how small changes in wind vector (direction and/or speed 

measurements) affect air and ground vectors. This consideration is important from the aspect of 

track/route optimization and sensitivity to winds. Additionally, wind vector measurements are 

susceptible to smaller or larger experimental and instrumentation uncertainties. Therefore, we 

have developed a theory based on the small (linear) perturbation of the wind vector to estimate 
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changes in WCA and GS for a given fixed TC. Other WT problems could also be easily derived 

following the same strategy as applied below. Typically, first-order linear perturbation analysis 

of nonlinear functional relationships is valid only for small changes of an independent value up 

to about 10-15% and becomes increasingly inaccurate for larger changes. Using the fact that 

  ,fWCA  ,   ,gz  , and using Equations (8) and (9), we obtain for total differentials 

(Ayres and Mendelson, 2009; Spiegel and Liu, 1999): 
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Evaluating partial derivatives from Equations (8) and (9) and replacing them in Equation (55), 

one obtains after tedious mathematical reduction (for   0WCA 1    sinsin ): 
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and  
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Here, we designated 021 2   cosy , and used the fact that the three internal WT 

angles satisfy   0  dWCAdd and   WCA (must be in radians). The meaning of 

terms in small perturbations is very clear. In Equation (58), the first term shows the relative 

change in WCA due to the small relative change of wind speed magnitude, while the second 

term shows the WCA change due to the small perturbed value of wind angle. Interestingly, 

Equation (59) has three terms affecting the change of GS. The first is due to the change of 

windspeed (WS) alone, the second due to change of wind (true wind component) and the third 

caused by the change in WCA, which is nothing else, but the induced wind component due to the 

fact that TC must be fixed and is evaluated first with Equation (58). In the case when the wind 

vector is aligned with the ground (and thus also air) vector, only the first term in Equation (59) 

remains. The subscript “0” simply means that the set point is calculated at known equilibrium 

(steady-state) position and the perturbations are added to it. Singularities exist when 0WCA , 

for  or    0or    or   0  , . 

 

Results and Discussion 
The first result presented will be the solution of the direct problem. The graphical result of the 

wind-triangle problem is depicted in Figure 12 with the values of known and computed figures 

shown. We used a MS Excel 2013 spreadsheet program for computations and graphical 
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presentation. The results of computations were also verified using the structured high-level 

programming language True Basic v.6.007. The results and illustration of the inverse WT 

problem using complex numbers and polar/exponential wind vector representation is shown in 

Figure 13. It must be said that solutions involving complex analysis are far more elegant and 

simpler than tedious and cumbersome traditional trigonometric calculations. 

 

The WCA is a function of WS/TAS ratio and the WDIR angle on the fixed TC using the 

equation derived earlier (Equation 9). The results of WCA calculations are presented in Figure 

14. At 1 , the WCA must be equal to the angle of wind for the fixed TC. This is logical as the 

airplane must turn completely into the HW if it is to maintain course, but the GS will be then 

zero, i.e., 0z . The next result is the computation of the TASGSz   ratio as a function of 

angles  ,  , and dimensionless wind speed TASWS  as illustrated in Figure 15. 

 

 
 

Figure 12: Solution of the direct wind triangle problem using trigonometric WT 

relationships. 
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In the case of 1z , which results in the critical TW* angle, a following transcendental equation 

must be solved for unknown critical TW* angle: 

 

  0222   coscos                        (60) 

 

The solution for 0  is trivial. The other solution for the critical angle is obtained from: 

 

   22 1   coscos **                   (61) 

 

 
 

Figure 13: Solution of inverse wind triangle problem using complex representation of air, 

ground, and wind vectors. 
 

It can be easily shown that: 
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This is the identical result we obtained previously from direct critical TW angle considerations. 

It is somewhat surprising and unexpected that such a critical TW angle was never mentioned 

before in any publically available literature or academic/scientific article to the best of our 

knowledge. 

 

 
 

Figure 14: Wind correction angle calculations. 

 

A movement of the 1z  point to the left (increasing TW angles) is evident from Figure 15. Also 

the behavior of the 1  curve is very interesting. It crosses the 1z  line at 60° and hits zero 

GS at 90° as expected. After that, it remains constantly at zero. An aircraft must turn directly into 

the wind if it is to maintain TC, which is somewhat irrelevant as the GS will be zero. The GSs 

between 60° and 90° of the tail will result in TASGS  . For the case when 1 , there will be a 
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“forbidden region” of wind angles where 1  sin  and for which it is impossible for an 

aircraft to maintain fixed TC. The “allowed zone” of courses will be an ever sharper cone and in 

the limit of 1 , the only possible course is the direction of the wind (into wind or with it). 

Additionally, for 1 , a region 0z  exists, implying that the GS vector will be opposite of the 

TAS vector as evident in Figure 15. Flight under such conditions makes little practical sense, but 

is possible yet unsafe. 

 

Surprisingly, some electronic flight computers tested, such as ASA’s CX-2 will not report an 

error condition when trying to solve the impossible WT problem (TC restriction with 1 ), but 

will instead just return the original TC and TAS as a TH and GS. The mechanical circular slide 

computers, such as Jeppesen’s E-6B or CR-2, ASA’s E6-B, or Pooley’s CRP-5, will not be able, 

in general, to solve WT problems for large   ratios. Granted it would be highly unwise to 

attempt to fly in high WS/TAS conditions, nevertheless the clear restrictions and limits are never 

spelled out in flight computer (electronic or mechanical) operating manuals nor taught to flying 

students and practitioners. 

 

 
 

Figure 15: (GS/TAS) calculations as a function of (WS/TAS) and wind angle  measured of 

the tail. Pure TW is at 0° and pure HW is at 180°. 

 

In the case of 40. , the critical TW angle is about 102° (Figure 9), the crosswind function is 
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about 0.92 (Figure 6 and Appendix A), and time factor is about 1.2 (Figure 10), implying that 

closed-loop (round-robin) flights will take about 20% longer, which may be critical for fuel 

reserves. Even though pilots are expected to conduct pre-flight planning, obtain weather 

information, and plan the flights, winds can end up being stronger than forecast, which will very 

negatively affect flight operations. Due to the nature of solutions, a 10 knot stronger wind than 

forecast will have much more negative effect at stronger winds than at lighter winds as can be 

clearly seen in Figure 11 and the solution for the time factor. Thus, extreme caution is required 

when deciding to fly in high WS/TAS winds as any stronger than-expected-winds will probably 

result in flight deviation, alternate landing site, and possibly low-fuel emergency situation. The 

WS/TAS ratio is of essential importance. Conducting flight operations for WS/TAS ratios 

exceeding 0.4 can be hazardous, and slow GA airplanes are thus quite vulnerable. A high-speed 

aircraft is much less affected by atmospheric winds due to lower WS/TAS ratio. For the same 

reasons, supersonic transport has even bigger advantage over high-subsonic transports. 

Following the same logic, the proposed controlled powered flight in very rarefied Martian 

atmosphere may be unfeasible due to strong Martian winds which would make route tracking 

almost impossible. 

 

The last results presented here will be estimating small changes in the wind vector and its effect 

on TH and GS for a given fixed TC and TAS. We will use the same direct problem as presented 

in Figure 12, i.e., oWDIR 150 , knots 40WS , o60 , oTC 030 , and knots 170TAS . The 

solution is o.WCA 7611 , o.TH 7641 , and knots 43186.GS  . Let us now assume that both 

wind speed and wind direction change by 10% (WS = 44 knots) and WDIR is now more from 

the right at 144° ( o66 ). The full nonlinear solution of the WT problem yields o.WCA 6813 ,
o.TH 68043 , and knots 08183.GS  . These calculations have been accomplished using our in-

house developed WT solvers and also checked utilizing commercial ASA’s CX-2 and Jeppesen’s 

E-6B flight computers. The results of approximate first-order and nonlinear calculations of the 

above example using our efficient WT solvers are summarized in Table 1. The steady-state 

values are calculated for the original problem above (also depicted in Figure 12). The full WT 

solutions and first-order approximations are in excellent agreement. From the calculations 

presented, it is observed that 10% relative change in WS, for the constant WDIR, has more effect 

on WCA than it has on GS. On the other hand, the small change in WDIR only (for the constant 

WS) also has more effect on the WCA than it has on the GS, but to a lesser extent than the 

previous case. 

 

Table 1:  

Full and approximate solutions of direct WT problem by using small 10% changes in WS 

and/or WDIR. For negative perturbations only the sign changes. Bold font indicates input 

values. 

 

 Nonlinear (Full) problem Linear perturbation 

    0.1/0.0 0.0/0.1 0.1/0.1 0.1/0.0 0.0/0.1 0.1/0.1 

WCAWCA  0.101190 0.055272 0.163265 0.101428 0.061323 0.162751 

zz  0.006651 -0.022153 -0.017969 0.006860 -0.021796 -0.014936 
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Conclusions 
Atmospheric winds affect cruising aircraft in many unexpected ways. The average groundspeed 

of multiple-leg flights is the harmonic, and not arithmetic, average of segment groundspeeds. 

Any crosswind will effectively induce a headwind component on fixed track caused by the 

aircraft having to assume a WCA and thus reducing GS. If the crosswind component is equal to 

TAS, an aircraft will have to turn directly into the wind vector, resulting in zero forward 

groundspeed on the track. The effect of XW is mild for WS/TAS ratios less than about 0.3, 

resulting in less than 5% loss in GS over TAS. Any constant wind vector will effectively reduce 

average GS and increase total TOF on multi-segmented closed-loop flights. This affects flight 

training practice and also many airline operations. Generally, effective wind consists of true and 

crosswind-induced components. A critical angle of tailwind is defined for the condition in which 

GS equals TAS. The critical angle is calculated from the condition in which the true TW 

component equals the induced HW component. Indeed, reduced GSs exist for tailwinds blowing 

between 90° and the critical TW angle measured from the positive direction of the aircraft’s 

longitudinal axis. The critical tailwind angle measured from the positive TC direction will 

increase as the WS/TAS ratio increases. Both, PNR and PET are significantly affected by wind 

vectors. Relatively slow aircraft could be very vulnerable to atmospheric wind effects as high 

WS/TAS conditions in cruise will result in much reduced GSs, shorter range, and progressively 

longer TOFs. The WS/TAS ratio is thus of essential importance for cruising aircraft. It is 

generally not recommended to conduct flight operations if that ratio exceeds 0.4. A high-speed 

aircraft is much less affected by atmospheric winds. The small perturbation theory of wind 

vectors uncertainties was developed and demonstrated excellent agreement with the full 

nonlinear solutions. It provides a tool for the sensitivity and the measurement uncertainty 

analysis. The relative importance of small WS and/or WDIR changes on track WCA and GS at 

the constant TC was demonstrated.  
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Appendix A 
The effect of pure XW on WCA, induced HW/TAS, and z = GS/TAS ratios. 

 

XW/TAS 

[-] 

WCA 

[degree] 

HWind/TAS  

[-] 

GS/TAS  

[-] 

0.000 0.000 0.0000 1.0000 

0.050 2.866 0.0013 0.9987 

0.100 5.739 0.0050 0.9950 

0.150 8.627 0.0113 0.9887 

0.200 11.537 0.0202 0.9798 

0.250 14.478 0.0318 0.9682 

0.300 17.458 0.0461 0.9539 

0.350 20.487 0.0633 0.9367 

0.400 23.578 0.0835 0.9165 

0.450 26.744 0.1070 0.8930 

0.500 30.000 0.1340 0.8660 

0.550 33.367 0.1648 0.8352 

0.600 36.870 0.2000 0.8000 

0.625 38.682 0.2194 0.7806 

0.650 40.542 0.2401 0.7599 

0.675 42.454 0.2622 0.7378 

0.700 44.427 0.2859 0.7141 

0.725 46.469 0.3113 0.6887 

0.750 48.590 0.3386 0.6614 

0.775 50.805 0.3680 0.6320 

0.800 53.130 0.4000 0.6000 

0.825 55.588 0.4349 0.5651 

0.850 58.212 0.4732 0.5268 

0.875 61.045 0.5159 0.4841 

0.900 64.158 0.5641 0.4359 

0.925 67.668 0.6200 0.3800 

0.950 71.805 0.6878 0.3122 

0.975 77.161 0.7778 0.2222 

1.000 90.000 1.0000 0.0000 
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