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The existing International Standard Atmosphere (ISA) simplifies what 

may look as an insurmountable task of making some sense of apparently chaotic 

molecular motion of elementary gas particles. But even ISA is often clumsy, 

cumbersome, and complicated for quick estimates and especially so for higher 

altitudes. Since ISA consists of several discrete temperature layers (ICAO, 1993; 

ISO, 1975; NOAA, 1976) still complex computations are required despite recent 

efforts to design a general computational algorithm that facilitates and simplifies 

computations for arbitrary altitudes below 86 orthometric kilometers (Daidzic, 

2015). The reasons for introduction of ISA were already discussed in a recent 

article by Daidzic (2015) and will thus not be repeated here. Existing international 

standards of Earth’s atmosphere cover the range of altitudes from the Mean Sea 

Level (MSL) up to 80 km (ICAO, 1993) or up to 1,000 km (ISO, 1975; NOAA, 

1976). The basic temperature layers of the ISA homosphere with the associated 

Temperature Lapse Rates (TLR) are presented in Table 1.  

 

Table 1 

 

Atmospheric Temperature Layers of ISA Homosphere 

 

Atmospheric Layer 

(Homosphere) 

Altitude Range 

(Geopotential) [km] 

TLR 

dHdT [K/m] 

Troposphere 0-11 -0.0065 

Tropopause (SS I) 11-20 0 

Stratosphere II 20-32 +0.001 

Stratosphere III 32-47 +0.0028 

Stratopause (MS I) 47-51 0 

Mesosphere II 51-71 -0.0028 

Mesosphere III 71-84.852 -0.0020 

 

Above the homosphere, in which the homogeneous perfect-gas air mixture 

presents a reasonable approximation due to intense mixing and local convective 

overturning, the in-homogeneous heterosphere is located. Heterosphere consists 

of thermosphere (up to 500 km) and exosphere (from 500 to 1,000 km) and must 

be treated as a real gas. Ozone layer forms in stratosphere (20-30 km) photo-

chemically (Iribarne & Cho, 1980). The air temperature in thermosphere, which 

now experiences increasing dissociation and ionization (Pai, 1981), undergoes 

wild 5000-8000C diurnal oscillations due to variable absorption of sun’s radiation 

(Iribarne & Cho, 1980). Ionization generates several ionospheric layers that 

migrate diurnally and much of it depends on the solar activity. Diffusion, 

photoelectric, and photochemical processes become very important. Temperatures 
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of the rarefied thermosphere air can reach 1,500 to 2,000 Kelvin (K) during peak 

radiation absorption cycles. 

  

The exosphere or the “spray region” is regarded as the final layer of the 

Earth’s atmosphere and the transition from the terrestrial atmosphere to inter-

planetary gas. Significantly fewer collisions between the ions, atoms, and 

molecules take place in exosphere. The base of the exosphere is defined as the 

condition in which the average MFP is equivalent to the local scale height of the 

atmosphere (i.e., 500 km). Free molecular flow exists and the gravitational and 

electromagnetic forces are dominating particle dynamics with the very low 

collision frequencies. Some of the elementary particles will join the Earth’s orbit, 

some will exhibit ballistic trajectories ultimately returning to Earth’s atmosphere, 

and some may entirely escape Earth’s gravitational pull. 

 

However, although homospheric ISA simplifies the real atmosphere 

considerably and provides a standard for aircraft performance testing, it is still 

quite complicated, bulky, and computation intensive. Many ISA temperature 

layers with discontinuous TLRs complicates the issue. It can also be stated that 

ISA represents neutrally stable atmosphere at standard (negative) TLR of 

1.980C/1000 ft, which is located between the Dry Adiabatic Lapse Rate (DALR) 

of 30C/1000 ft and the Saturated Adiabatic Lapse Rate (SALR), which according 

to Dutton (2002) typically can be taken as 1.50C/1000 ft in mid-latitudes. 

 

The basic motivation behind this article is to introduce simpler 

atmospheric models, which conserve the total atmospheric mass and weight. In 

that respect, an Isothermal Atmospheric Model (ISOAM) and the Nonlinear 

Parabolic Atmospheric Model (NLPAM), which best approximate the ISA’s TLR 

were developed making estimation of vertical pressure and density distribution 

much simpler. This is especially true for the upper atmospheric layers where 

twelve or fourteen pressure and density functions are replaced by just one 

expression for temperature and one for pressure or density. The ideal-gas law then 

connects the three thermodynamic variables in a unique fashion.  

 

Two important heights/altitudes exist in Earth’s atmosphere relevant to the 

aviation and aerospace industries. One is the Armstrong (physiological) limit 

(named after Harry George Armstrong) which is located at about 19.2 km (63,000 

ft) and designates the height at which the total atmospheric pressure drops to less 

than 63 hPa (0.91 psi) at which the unprotected (unpressurized) human bodily 

fluids would start evaporating/boiling considering the normal average human 

body temperature of about 370C (Daidzic & Simones, 2010). About 70% of 

human body is water and many different bodily fluids have essential life-
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preservation functions. In reality, the blood is circulating under somewhat higher 

(gage) pressure and it would take some time and even lower atmospheric 

pressures to start ebulism and anoxia (Daidzic & Simones, 2010). This is the main 

reason pressurized suits must be worn above 50,000 feet (aeromedical “onset of 

space”) unless the aircraft is built to stricter space standards. Armstrong’s limit 

sets restrictions to commercial passenger transportation.  

 

Another important limit is the von Kármán (aerodynamic) limit (named 

after Theodore von Kármán) which is located at around 100 km (about 330,000 

feet) and often, designated as the “beginning of space”. The air density at these 

altitudes is so low that an aircraft would have to move at speeds equal to or higher 

than about 7.8 km/s to generate enough lift to sustain flight by Angle-of-Attack 

(AOA). That speed would correspond to circular orbital speeds of Low Earth 

Orbits (LEO). Von Kármán limit is thus the aerodynamic limit of atmospheric 

flight by AOA and the concept could be extended to other planetary atmosphere. 

 

The main application areas of the two new ISA approximations is in 

airplane testing and design, calculation of drag for supersonic, hypersonic, and 

trans-atmospheric vehicles and easier computations of inverse problems. 

Approximate analytical solutions could greatly benefit from simpler atmospheric 

models. While ISA is standard, the computations must be done marching in space 

from SL up to and including the particular layer. The main motivation behind 

ISOAM is in simpler computations of drag from SL all the way up to von Kármán 

limit. In fact, the first rough estimates of drag for the slip and free-molecular 

atmospheric regions could be obtained by extending ISOAM up to 150-300 km. 

For trans-atmospheric flights, ballistic missiles, and space launches and reentries 

is the simple model of atmosphere important in the approximate estimation of 

optimal trajectories. ISOAM can be extended to other planetary atmospheres (e.g., 

Venus, Jupiter) especially in terms of entry/re-entry problems. On the other hand, 

the NLPAM can be used as a reliable ISA substitute for altitudes up to 47 km. 

 

Literature Review 

 

Historically, many attempts were made to construct simple atmospheric 

models. Often the first choice was in designing isothermal atmosphere. Less 

frequent were models of the linear atmosphere in which the temperature is 

linearly changing with height. While the troposphere definitely experiences global 

negative TLR, despite some localized temperature inversions (positive TLRs), the 

rest of the ISA has several isothermal layers and the globally positive TLR 

regions (upper stratosphere) for which a negative TLR would be absolutely 
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inappropriate. In order to model the TLR throughout the ISA troposphere and 

stratosphere, a single parabolic NLPAM TLR is introduced. 

 

The issue of an exponential atmosphere finds its origins in the kinetic 

theory of gases in gravitational field. One of the first considerations elucidating 

that was made by Kennard (1938). The problem is that gravitational forces are not 

the only ones exerting influence on gas particles and thus an isothermal 

atmosphere is an idealization. One of the first applications of an isothermal 

atmospheric standard was given by Chapman (1958) in regards to planetary 

atmospheric (re)entry of space vehicles. The initial problem of that time was of 

course in resolving the issue of reentry into Earth atmosphere of ballistic missiles 

and the reentry of manned space capsules and satellites, which was just in its early 

phase. Steep reentry angles and enormous heat loads were (and still are) a big 

concern. Chapman used exponential atmospheric model to then solve differential 

equations for entry into atmospheres of Earth, Mars, Venus, and Jupiter. Ashley 

(1992) uses an isothermal atmospheric model which approximates ISA when 

considering space launch and reentry vehicles (ballistic missiles and satellites). 

His model is based on the Chapman model (Chapman, 1958). Tewari (2007) also 

used an isothermal model of atmosphere based on the least-square optimization 

although details of it were not shown. According to Tewari, the approximation is 

reasonably good for the homosphere, but not for upper atmospheric layers. 

However, Tewari’s resulting Sea Level (SL) density is extreme and the model is 

not recommended below 5 km. Similar isothermal models are used in many 

atmospheric physics books (e.g., Dutton, 2002; Houghton, 2000; Iribarne & Cho, 

1980; Wallace & Hobbs, 2006). 

 

However, the problem with previous isothermal atmospheres is that the 

base density 0  often does not correspond to ISA SL density. As a matter of fact 

in order to fit the data, the SL density in exponential (isothermal) models is 

sometimes almost 50% higher than ISA’s SL density as in Tewari (2007). The 

problem with all these earlier works is they used exponential functions with two 

degrees of freedom (independent coefficients to be optimized) in their models of 

the exponential form  H *

0 exp  .  

 

The base density actually is a function of the isothermal temperature 

constrained by the ideal-gas law once the standard SL pressure is chosen (e.g., 

ISA SL). Accordingly, such a constrained problem cannot be solved using the 

methods of linear least-squares as the base-density is dependent on the 

temperature in the scale factor 00

* RTg . In other words, the SL temperature 

0T  affects both coefficients ( *

0  and  ) which then become dependent. One then 
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has to deal with the problem of nonlinear regression (best-fit) which is far more 

complicated (Chapra & Canale, 2006; Press et al., 1992). Therefore, the ISOAM 

model introduced here is starkly different from the previous global exponential 

models of atmosphere by the fact that SL constraint will be imposed on the air 

properties (pressure, temperature, and density). No reference to a nonlinear TLR 

model (such as NLPAM) was found and to the best of my knowledge this is the 

first time such considerations are given.  

 

Mass of the atmosphere and surface pressures of dry and humid air as a 

function of season, hemispheric (North and South) latitudes, and averaged for the 

entire globe were given in several articles by Trenberth at coworkers (Trenberth, 

1981, Trenberth & Guillemot, 1994; Trenberth & Smith, 2005). The average 

surface elevation (topography) varied in various estimates but most of the results 

are between 231 and 239 m (758 and 784 ft). The MSL elevation of about 70% of 

Earth’s surface is zero. Trenberth (1981) estimated the average SL pressure to be 

1011.00 hPa based on the averages over the Northern (NH) and the Southern (SH) 

hemisphere and over the months of January and July. Trenberth and Guillemot 

(1994) provided an update on surface pressure data and atmospheric mass and 

found that the average atmospheric mass is 5.1441×1018 kg. The global mean 

water vapor pressure was 2.58 hPa with an annual cycle range of 0.36 hPa which 

enables the calculation of the moisture content in atmosphere and monitoring its 

changes spatially and temporally. The total dry-air atmospheric mass was 

5.132×1018 kg (Trenberth & Guillemot, 1994). The average total surface pressure 

according to latest update by Trenberth and Smith (2005) for measurements 

conducted in a period 1979-2001 is 985.5 hPa for humid- and 983.05 hPa for dry-

air (such as in ISA model). Considering the average height of topography (MSL), 

the difference between SL and surface pressures is less than 30 hPa, but this 

varies from the equatorial to the polar region and over seasonal cycles. At lower 

altitudes only, it is assumed that each 10 m of vertical air-column is equivalent to 

about 1.2 hPa. The ISA standard SL pressure is 1013.25 hPa and corresponds 

roughly to an average measured SL pressure at 200 latitude in NH. The average 

atmospheric mass of dry air is according to Trenberth and Smith (2005) equal to 

(5.1352±0.0003) × 1018 kg. The mass of moisture in atmosphere is about two-to-

three orders-of-magnitude lower, i.e., for each kg of atmospheric water there is 

400 kg of dry air. 

 

Mathematical Model of Atmosphere 

 

Knowledge of atmospheric parameters, such as, temperature, density and 

pressure for arbitrary orthometric altitudes is crucially important in aviation and 

aeronautical industry. Pressure altimeter calibration, flight testing and 
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performance data scaling and processing are some of the applications where the 

mutually-agreed standard atmospheric model is needed.  

 

Discrete Nature of Atmosphere 

 

The Earth’s atmosphere consists of huge number of elementary particles 

(molecules, atoms, and ions) in thermal motion. Tracking all these particles in 

time and space is practically and theoretically an impossible task. Fortunately it is 

not needed. One of the most important physicists of the 19th century, Ludwig 

Boltzmann was also one of the founding fathers of the gas theory, pre-quantum 

atomic theories, and the statistical physics as evident from his original 

masterpiece work in 1896 and 1898 (Boltzmann, 1964). The classical Maxwell-

Boltzmann (MB) statistics being a limiting case of quantum Bose-Einstein (BE) 

and Fermi-Dirac (FD) statistics (Hansen, 1976; Hill, 1987; Holman, 1980; Reif, 

1965; Sears, 1964; Tribus, 1961; Wannier, 1987) predicts the distribution of 

molecular velocities in an ideal dilute gas quite well, which has also been 

confirmed by numerous experiments. The kinetic theory of gases (Holman, 1980; 

Kennard, 1938; Reif, 1965; Saad, 1966; Sears, 1964) describes transport 

processes of gas particles in thermal motion remarkably well. A Mean Free Path 

(MFP), collision frequency, momentum exchange, etc., define various mesoscopic 

transport properties such as dynamic viscosity and the coefficient of heat 

conduction. For example, a single “anonymous” diatomic nitrogen molecule (N2) 

at SL pressure and temperature of 300 K (270C) will have MFP of 58  

nanometer (nm) and the collision frequency of almost nine billion impacts per 

second (9 GHz) with other anonymous nitrogen molecules. That implies about 

one collision every 0.1 nanosecond (ns). On average every N2 molecule will 

“miss” 9 other anonymous molecules before colliding with the 10th under given 

conditions. Almost 1020 nitrogen molecules will be found in one cubic centimeter 

(cm3) of air at SL pressure and 300 K. A Root-Mean-Square (RMS) speed of a 

nitrogen molecule is about 517 meters per second (m/s) or about 1005 knots at SL 

pressure and temperature of 300 K. A single N2 molecule has a diameter of about 

0.4 nm. Thus a MFP, as expected for a continuum, is on average 100 times larger 

than the representative size of a molecule. The molecular spacing is about 10 

times the molecule size. However, about 45-in-a-million nitrogen molecules will 

have MFPs ten times longer (about 600 nm). Nevertheless, this length scale is still 

much smaller than the characteristic length scales in atmospheric flows.  

 

The non-dimensional Knudsen number ( Re* MlKn   ), which is 

the ratio of the molecular MFP and the macroscopic (integral) flow scale, is 

extremely small in this case justifying the continuum assumption. The kinetic-

theory of gases shows that the MFP is inversely proportional to the gas pressure. 
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As the pressure decreases by a factor of 105 so does the MFP increase by a factor 

of 105. For typical characteristic length scales in atmospheric flows one could, for 

example, deduce the size of the Kolmogorov eddies (micro-scale) to be on the 

order of one millimeter (mm). Typically, atmospheric Kolmogorov eddies 

responsible for atmospheric flows viscous dissipation have sizes that are on the 

order of 100 micrometer ( μm  is 10-6 m) to 10 mm and represent the smallest 

aerodynamic scales in the respective gaseous fluid continuum. Thus, 01.0Kn , 

justifying the continuum concept. The hydrodynamic continuum limit may be 

even two-orders of magnitude smaller than the aerodynamic due to much higher 

densities and shorter intermolecular spacing in liquids. Kolmogorov eddies are 

responsible for the final viscous dissipation of turbulent motion and conversion of 

flow energy into heat (Daidzic, 1992a, 1992b; Tennekes & Lumley, 1980). A 

ratio of MFP and the Kolmogorov-eddy scale is  4 ReMKn    (Tennekes 

& Lumley, 1980). Dissipation rate of turbulent energy is an essential part of the 

turbulent energy transport and its measurements are crucial in understanding 

turbulent scales and dynamics (Azad & Kassab, 1980).  

 

The universal gas constant  KkmolJ/314,8  , the Avogadro number 
-126 kmol10022.6 AN  and the Boltzman constant J/K1038.1 23Bk  were 

used in basic molecular dynamics estimates here. In order to arrive at these 

estimates, calculations using the MB statistics and the kinetic theory of gasses 

were implemented (Reif, 1965; Sears, 1964). Details are not shown as that would 

distract us from the main objective. This short example is solely intended to 

illustrate the enormous complexity of the micro-world and the need to come up 

with theories that can be reasonably handled and deliver meaningful results. 

 

Continuum Model of Atmosphere 

 

The continuum (low Knudsen-number) fluid mechanics (Chadwick, 1999; 

Landau & Lifshitz, 1987) entirely neglects the individuality of particles in thermal 

motion and introduces statistically-averaged intensive thermodynamic variables 

such as pressure, density, and temperature of air parcels containing huge number 

of molecules. Fortunately, these three essential thermodynamic properties of 

dilute gas mixtures are connected through a remarkably simple relationship – the 

ideal gas law (Holman, 1980; Saad, 1966; Sears, 1964; Tribus, 1961). The change 

of atmospheric pressure is thus based on the fundamental equation of aerostatics 

(Daidzic, 2015; Dutton, 2002; Iribarne & Cho, 1980; Pai, 1981): 

 

     
 
 

 
   

  dzzg
zTzR

p
dzzg

zT

zMp
dzzgzzdp 























   (1) 
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This equation is strictly valid for vertical pressure distribution over flat 

surfaces. In curved geometries the hydrostatic fluid pressure does not equal the 

weight per unit area of the fluid above it (Ambaum, 2008). According to the same 

author a geometric reduction in surface pressure as large as 5 hPa (mbar) exists 

for Earth. An ideal-gas law can be written at any height as: 

 

.lnlnlnln constR
T

dTd

p

dp
TRp 




   (2) 

 

Hence, for isothermal atmosphere, the relative pressure and density 

changes are equivalent. The air gas constant MR   can only be a function of 

height due to changes in molecular weight (above 80-86 km). Furthermore, it is 

assumed that aerostatic and thermodynamic pressures are equal in the absence of 

vertical acceleration and that atmospheric pressure is only a function of height 

(Dutton, 2002). As has been reported earlier (NOAA, 1976), the average 

molecular mass of dry air mixture stays essentially constant up to 86 orthometric 

km. That is due to intense mixing and localized convective overturning that 

prevents heavier gas components to settle in lower atmosphere and lighter 

components in upper atmosphere (Iribarne & Cho, 1980). The gravitational 

acceleration for a spherical uniform-density Earth as a function of orthometric 

height is: 

 

  km371,6m/s80665.9 0

2

2

0

0 











 Rg

zR

R
gzg oo  

 

As will be seen in a subsequent article on Earth’s shape and gravity, the 

SL-average gravitational attraction og  is actually a function of latitude  gg   

(neglecting tesseral gravitational anomalies). In terms of the geopotential height, 

the Equation 1 now becomes: 

 

 
     

dHg
HTHR

p
dHg

HT

HMp
dp 























 00    (3) 

 

Where the thermal and aerostatic equilibrium at lower altitudes imply the 

following relationship between the molecular-scale and thermodynamic (kinetic) 

temperature (NOAA, 1976; Tewari, 2007): 
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   
 HM

M
HTHT th

0         (4) 

 

The relationships between the constant-g (geopotential) height and the 

orthometric (geometric or MSL) height are (Daidzic, 2015): 

 

zHH
HR

R
zz

zR

R
H 



























0

0

0

0
    (5) 

 

For the constant-TLR homosphere (troposphere, stratosphere, mesosphere, 

etc.), and the constant gravitational acceleration, the change in atmospheric 

pressure with geopotential height follows the differential law: 

 

 
     

dH
HTHR

g
dH

HT

gHM

p

dp























 00     (6) 

 

We may also write: 

 

      


















 

HHp

p

dHTRHfHdHTRHf
d

p

dp

0

0

00

,;exp,;ln

00













 

 

By definition pressure ratios are: 
STD

SL

STD

SL p

p

p

p 0

0   . 

 

This accounts for the fact that an arbitrary atmospheric standard may have 

SL pressure, density, and temperature different from ISA’s definitions. However, 

from the three thermodynamic properties, one is always dependent (constrained) 

by the other two by the ideal-gas law. The vertical pressure distribution is 

obtained by integration of Equation 6 from SL to an arbitrary geopotential height: 

 

 
 

     





















 

HH

HTHR

dH
g

HT

dHHM
gH

0

00

0

00 expexp   (7) 

 

In order to solve the integral in Equation 7, the knowledge of molecular-

scale temperature profiles (NOAA, 1976; Tewari, 2007) with height is required. 

With good approximation it can be assumed that thermodynamic and molecular-

scale temperatures are equivalent in the homosphere. The variation of molecular 
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weight or air gas “constant” with geopotential height is also required. Generally, 

Equation 7 would be the most appropriate when modelling pressure changes in 

the thermosphere. Additionally, due to its strong dependence on solar irradiation, 

no steady-state temperature or pressure distribution is appropriate.  

 

However, according to Iribarne & Cho (1980) and NOAA (1976), the 

Earth atmosphere is very well mixed below about 80-100 km and according to 

ISA standard it can be assumed that the average molecular weight of dry air is 

constant  below about 86 km ( kg/kmol9644.280  MM ) and the molecular-

scale and thermodynamic temperatures are identical. Utilizing Equations 4 and 7, 

this results in significantly simpler formulation where air gas constant is 

essentially independent of altitude (up to 86 km): 

 

 
 
















 

H

HT

dH

R

g
H

0

0

0 exp       (8) 

 

This is quite a general formulation of pressure distribution in homosphere 

and is valid for an arbitrary vertical temperature profile  HT . It has been shown 

in great detail how to integrate Equation 8 for multiple ISA homospheric layers 

(Daidzic, 2015). Accordingly, the two basic models of the molecular-scale 

temperature change exist in ISA: isothermal (with the constant temperature or 

zero TLR) and linear (constant positive or negative TLR). In the case of simple 

ISOAM, where   0THT  , one obtains (where, 000   ): 

 

   HH
TR

g
dH

TR

g
H

H

*

0

0

0

0
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0

0 expexpexp  











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

















   (9) 

 

Additionally, if such atmosphere assumes SL pressure to equal ISA’s SL 

pressure, then 10  . The subscript “0” refers to lowest (base) layer (in ISA it is 

the troposphere). If, on the other hand, the TLR is constant or the vertical 

temperature profile has constant slope it will follow the linear law: 

 

   
 

ISA

SL

ISA

SL T

T

T

HT
H

T
HHTHT 0

0

0

0

000 1 









 


  (10) 

 

Here, we allowed for the base surface temperature 0T  to be different than 

the ISA’s standard surface temperature, which is captured by the temperature 
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correction factor 0  ( is temperature ratio). TLR can be positive, negative or 

zero, i.e.,   0
00  dHdT . The pressure distribution versus geopotential 

height for linear atmosphere (Equation 10) substituted into Equation 8 yields: 
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g
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R

g
H

H

0

0

0

0

0

0 00

0

0 1lnexpexp






  (11) 

 

Which reduces to the familiar constant-TLR pressure law or Linear 

Atmospheric Model (LAM): 
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
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  (12) 

 

More complex TLR laws can be constructed. If the vertical temperature 

profile of atmosphere includes low-altitude inversion with temperatures initially 

increasing before starting global decrease, a simple parabolic law produces: 

 

  000 210

2

210  aaaHaHaaHT    (13) 

 

The pressure distribution as a function of geopotential height with the 

discriminant, 20

2

1 4 aaaD   , becomes (Dwight, 1961; Spiegel & Liu, 1999): 
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g

D
D
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R

g
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H

H

H


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(14) 

 

For the special case when 0D , one obtains (Dwight, 1961): 
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H
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    (15) 

 

Even more complicated temperature profiles can be devised to 

approximate ISA with one functional relationship, but these efforts reach the point 

of diminished returns as they could become more complicated than ISA itself. In 

general, the integral defined in Equation 8 can be computed numerically for 

arbitrary well-behaved temperature profiles. If the vertical temperature profile 

comes from vertical sounding (measurements), then numerical integration 

delivers vertical pressure and density distributions of the still atmospheric air. The 

non-dimensional air mass density for a given layer, utilizing the non-dimensional 

ideal-gas law (constitutive relationship) is: 

 

 
 
 H

H
H

n

n

n



          (16) 

 

In the actual analysis of the ISA, ISOAM, LAM, and NLPAM it is 

assumed that the Earth is a perfect sphere of uniform mass-density with the 

gravitational equipotential surfaces being concentric spheres and the gravitational 

acceleration vectors being equivalent to the radius vectors emanating from the 

geocenter and barycenter. Above 86 km MSL, the physical-chemical processes in 

the Earth’s atmosphere (real gases) become much more complex and relatively 

simple modeling using the ideal-gas equation is no longer valid (NOAA, 1976). 

 

Methods and Materials 

 

Despite great simplifications introduced by standard-atmosphere model 

compared to the real atmosphere, ISA is still very complex and often impractical 

to use. Different functional relationships for vertical pressure and density 

distribution must be used in conjunction with the particular layer temperature 

distribution. One often needs just a simple expression to determine pressure and 

densities for arbitrary heights. Can a simpler model of ISA be constructed? Could 

a global atmospheric model be based on an ISOAM or LAM at least up to 86 km?  

 

Indeed, two models of ISA atmospheric model will be now introduced 

with the main goal to simplify and approximate the ISA. As will be seen later, 

both models provide fairly accurate predictions of vertical pressure and density 
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distribution in troposphere and stratosphere (up to 47 km). The ISOAM is 

particularly simple and convenient. The ISOAM model can be extended to any 

arbitrary altitude, while the NLPAM, as derived here, is only valid up to 47 km. 

However, the nonlinear NLPAM delivers more realistic vertical temperature 

profile and more accurate pressure and density distributions than ISOAM. 

 

Global Isothermal Atmospheric Model 

 

Considering that vertical temperature distribution meanders throughout 

ISA perhaps a constant-temperature atmosphere up to 86 km could be found that 

approximates ISA well. But there are infinite number of possible isotherms. The 

choice of the uniform temperature from SL up to 86 km is based here on 

numerically minimizing the L2 norm. Theoretically, the L2 norm is the square-root 

of the (Lebesgue) integral of the square of the absolute difference between the 

ISA and ISOAM mass-densities at every vertical point. In this way the mass of 

the atmosphere is best conserved. The ISOAM SL density is then a function of 

ISOAM SL pressure and the global isothermal temperature constrained by the 

ideal-gas law. ISOAM model theoretically extends atmosphere to infinity, but 

practically the exponential dependence will lead to a relatively rapid convergence 

to zero. The whole optimization procedure was done numerically and in an 

iterative manner until the best-fitting isothermal temperature was obtained. The 

new ISOAM of the homosphere drastically simplifies the multi-layered ISA 

model. Masses, weights, and scale heights can be easily determined from ISOAM. 

 

However, it must be understood that ISOAM is just a very practical and 

simple substitute to considerably more complicated ISA model. In terms of the 

geopotential altitude the ISOAM problem is formulated as (Equations 2 and 9): 

 

         HHHHH ISOAMISOAM 0expexp *

0

*

0   (17) 

 

with: 
0

00

0

0

0

0

0
225.115.288325,101 


 

Tp
 

 

The all-important ISOAM scale-height is defined as (Dutton, 2002):  

 

const
1

0

0

0

*

* 


 ISOAMTT
g

TR
H


 

 

The unknown optimum ISOAM constant temperature 0T  is found from the 

minimization of the following L2-norm: 
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     

   
21

2

0

*

0

21
2

0

expmin

min







































dhHhh

dhhhTe

ISA

ISOAMISA





    (18) 

 

The following conditions on integrals (Lebesgue or Riemann) must be satisfied:  

 

     


dhHhdhhISA

0

*

0

0

exp     (19) 

 

These condition are indeed satisfied as the atmospheric mass is finite and 

simpler Riemann integral does exist. As will be seen later the representative 

isothermal temperature is rounded to integer value of 275 K for easier usage. The 

exact value is closer to 274.605 K, but that is impractical for regular use. The 

minimum is quite shallow around 274.5-275.5 K and the error in rounding it to an 

integer temperature value is minimal.  

 

Integrals given in Equation 18 are cumbersome as we go from one 

atmospheric layer to another. It is thus more convenient to find a solution based 

on discrete values and in this case the performance measure being a sum of 

density difference squares must be minimized: 

 

    



N

i

iISOAMiISA HHS
1

2
       (20) 

 

This would seem to be the case of simple linear regression where the 

exponential form (Equation 17) is first linearized through taking the logarithm, 

H *

0lnln  , but in fact the optimization is constrained by the SL density 

which is the function of SL base pressure and isothermal temperature (ISOAM). 

Thus this becomes a problem of nonlinear regression (nonlinear least-squares) and 

the Gauss-Newton iterative method is often used to solve it (Chapra & Canale, 

2006). Details of the methodology are given in Appendix A.  

 

The ISOAM has important application in probing planetary atmospheres 

during space vehicle atmospheric entry. If gravitational acceleration is neglected, 

the initial deceleration during atmospheric entry becomes (Tewari, 2007): 
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 
m

AC
vHh

dt

dv D
e

2*

0 exp
2

1
    

 

A probe entering the atmosphere uses radar to measure height and closure 

rate. Since the ballistic coefficient ( ACmBC D ) and the entry speeds ev  are 

known, the approximate base density 0  and isothermal atmosphere scale height 
*H  can be estimated without performing extensive atmospheric measurements.  

 

Nonlinear Atmospheric Model 

 

A nonlinear parabolic model of ISA troposphere and stratosphere or 

NLPAM will be now constructed. International standard of troposphere and 

stratosphere has 4 layers of which one is isothermal (tropopause), one has 

negative TLR, and two upper stratospheric layers have two different positive 

TLRs (NOAA, 1976). A nonlinear TLR parabolic law approximating ISA 

troposphere and stratosphere results in: 

 

  000 210

2

210  aaaHaHaaHT    (21) 

 

In dimensionless form it yields: 

 

   
0

2*

2

0

1*

1

0

0

0

2*

2

*

10 11
T

a
a

T

a
a

T

a
HaHaH     (22) 

 

In order to find unknown coefficients: 0a  (SL temperature), 1a  (TLR), 

and 2a  (higher-order TLR) and construct a 2nd-order polynomial. A method of 

constrained optimization utilizing Lagrangian multipliers is applied. Two known 

ISA temperatures, at SL ( K15.2880 T ) and at 47 km ( K65.270 ), are used as 

anchor points (constraints). The NLPAM temperature profile is then optimized by 

minimizing the sum-of-squares of differences between the discrete ISA and the 

NLPAM temperatures. The ISA temperatures are taken to be exact model values 

(no uncertainty). No variable weights were assigned to ISA temperatures although 

lower layers are indeed denser and thus contribute more to the mass of the 

atmosphere. It is not difficult to include specific weights in our programs if the 

performance measure requires it. A constrained optimization method used here is 

described in Appendix B. The problem with optimum approximating TLR rests 

for the most part in choosing the proper “figure of merit” (performance measure). 

Many different criteria could be used. Perhaps, the most significant criterion when 
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seeking the best approximating NLPAM parabolic TLR is the conservation of 

tropospheric and stratospheric mass. Regardless, the presented NLPAM is still an 

excellent approximation and more accurate than ISOAM. However, it is only 

restricted to first 47 km. Nevertheless, most of the commercial air transportation 

today occurs below 50,000 ft (15 km) and NLPAM is more than sufficient.  

 

Solving the constrained optimization model, the unknown coefficients are 

computed as 15.2880 a  (the first or SL constraint), 3

1 1075897365  .a , and 

7

2 101460922.1 a . A discriminant 5

20

2

1 109.89452054  aaaD  in the 

Equation 21 is negative. The optimal constrained NLPAM (Appendix B) vertical 

temperature profile of the ISA’s troposphere and stratosphere yields (H [m]): 

 

  273 101460922.1107589736.515288 HH.HT      (23) 

 

The appropriate pressure distribution from Equation 14 yields: 
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(24) 

 

The first exponential function is just a constant for known temperature 

profile. One also has to remember that inverse tangent function is not unique and 

is bounded by     212tan 1  nx , where,  x . It is not difficult to 

show that this pressure function is monotonically decreasing with altitude. The 

TLR of the NLPAM is: 

 

 
H.Haa

dH

HdT

NLPAM








  63

21 1022921844.010758973652  (25) 

 

The NLPAM TLR is first negative, becomes zero at about 25 km and 216 

K, and subsequently becomes increasingly positive to hit 47 km at 270.65 K (2nd 

constraint is met). In the case of NLPAM, the TLR becomes zero when 

m25,119.70H . Density distribution as a function of geopotential height is: 
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  (26) 

 

Mass, Weight, and Scale Heights of Atmosphere 

 

The mass (not to be confused with previous symbol M for molecular 

weight or Mach number) of the ISA atmosphere for the spherical Earth of uniform 

mass-density and zero (MSL) elevation can be calculated from (Daidzic, 2015): 

 

   
 
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
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0

0
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Similarly, the weight of an atmospheric layer by knowing the air density 

distribution and the change of gravitational acceleration is (Daidzic, 2015): 

 

     
 

  

z

zV
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0

00

2

04      (28) 

 

These integrals can be evaluated analytically or numerically. A good 

historical account of atmospheric mass estimates is given in Trenberth (1981). 

Davies (2003) reports the value of atmospheric mass of approximately 

kg105.2 18 . Recently, Trenberth and Smith (2005) reported the dry mass of the 

atmosphere to be   kg100.00035.1352 18 . The authors perform integration 

starting from the globally-averaged surface topography elevation using the 

zonally-averaged surface pressure. More recently, Daidzic (2015) calculated the 

mass and weight of ISA up to 86 km. Daidzic estimated the mass of ISA 

homosphere as kg105.294480 18 and the weight is N105.180137 19 . However, 

those computations overestimated the Earth’s atmospheric mass somewhat as the 

lower bound was SL and not average surface level (about 237 m). Vertical change 

of gravitational acceleration according to Newtonian law of universal gravitation 

was included in weight calculations, but gravitational anomalies were excluded.  

 

The mass of dry ISOAM assuming it extends from SL to infinity and after 

replacing the orthometric with the geopotential altitude in Equation 27, yields: 
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The spherical Earth’s superficial area with the mean radius of 6,371 km 

(Stacey & Davis, 2008) is 2142

00 m101.54  RS  . As 0RH  , the above 

integral will indeed converge rapidly as the exponential function in integrand decreases to 

zero much faster than the 4th-order polynomial increases. Thus in the limit one can write: 
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   (30) 

 

The magnitude of the second term is:   0051.04 0

*  RH . In a good 

approximation the second term in Equation 30 can thus be neglected and the mass 

of the atmosphere simply becomes: 

 

0

00
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00

0
g

pSS
M SL 


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       (31) 

 

This agrees well with the theoretical consideration by Trenberth and Smith 

(2005) in which the mass of the atmosphere is directly proportional to the zonal-

averaged (oblate spheroid) surface pressure. The approximate weight is estimated 

directly from Equation 31. Replacing known ISA SL values into Equation 31, one 

obtains kg105.270126 18 and kg105.296761 18  (Equation 30) respectively. 

Using the averaged measured dry air surface pressure of 983.05 hPa (Trenberth & 

Smith, 2005) accounting for non-zero average topography elevation, the 

atmospheric mass becomes kg105.113430 18 according to Equation 31 and 

kg105.13927183 18  when the second-term from Equation 30 is included. 

 

Using the simple ISOAM, a fraction-mass scale-height can be easily 

estimated. The approximate mass of the ISOAM atmosphere with 0RH  , is: 
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18

International Journal of Aviation, Aeronautics, and Aerospace, Vol. 2 [2015], Iss. 3, Art. 7

https://commons.erau.edu/ijaaa/vol2/iss3/7
DOI: https://doi.org/10.15394/ijaaa.2015.1064



 

The scale height of the 275K ISOAM’s arbitrary fractional mass, using the 

ISA SL pressure ( 1.047817000  TTSL ), is estimated from: 
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where: m8,049.60K275kg105.296761 *

0

18

0  HTM . 

 

In the case of NLPAM, the mass of any particular atmospheric layer 

becomes, by utilizing Equations 5 and 27: 
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Substituting this expression for density distribution for an arbitrary layer 

from Equation 26 into Equation 34 ( 13

1 101.6999321M ), yields: 
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This complex-looking integral can be approximately evaluated with the 

power-series expansion. However, since the integrand is a known function, a 

powerful numerical 8-point Gaussian-Legendre quadrature (Carnahan et al., 1969; 

Chapra & Canale, 2006; Conte & de Boor, 1986; Demidovich & Maron, 1987; 

Press et al., 1992; Ralston & Rabinowitz 1978) utilizing Legendre orthogonal 

polynomials (Lebedev, 1972) is employed to calculate masses.   

 

Masses of individual atmospheric layers in ISOAM and NLPAM 

atmospheres and the total mass was evaluated numerically and analytically when 

possible. A FORTRAN 95 (Lahey Computer Systems, Inc., Incline Village, NV, 

USA) optimizing compiler with IMSL (Visual Numerics, Inc., Houston, TX, 

USA) and MATLAB
® (The Mathworks, Inc., Natick, MA, USA) high-level 

programing languages were utilized to design in-house programs to calculate the 

integrals given by Equations 29 (ISOAM) and 36 (NLPAM) mostly using Gauss-
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Legendre numerical integration method highlighted in Appendix C. Additionally, 

trapezoidal, recursive adaptive Simpson, recursive adaptive Lobatto, and Gauss-

Cronrod quadrature methods (Press et al., 1992) have also been used with 

MATLAB
® for verification with minimum required accuracy of 10-6. Many tests of 

various numerical integration methods were performed yielding satisfactory 

results although some MATLAB
® intrinsic integrators were overly sensitive to 

integration limits. In-house designed integrators typically performed better. 

 

Discussion of Results 

 

Temperature profiles of ISA, ISOAM, and NLPAM up to about 50 km 

orthometric height are shown in Figure 1. While ISA and ISOAM extend up to 86 

orthometric km, NLPAM extends only up to 47 geopotential km. The temperature 

at which the TLR is zero is 215.8 K or about -570C for NLPAM. This temperature 

profile indicates almost identical TLR at SL (-1.7550C/1000 feet) compared to 

ISA’s -1.980C/1000 feet which progressively shallows out and then becomes 

positive from about 25 km upwards.  

 

 
 

Figure 1. Vertical temperature profiles for ISA, ISOAM and NLPAM versus 

orthometric altitude.  
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Temperature lapse rates for ISA, ISOAM, and NLPAM atmospheres are 

shown in Figure 2. The optimum ISOAM constant temperature was estimated 

(Appendix A) and rounded to an integer value of 275 K (+20C). The TLR for 

ISOAM is, of course, zero. The ISA’s TLRs jump across base layers. The 

NLPAM TLR changes smoothly from negative in the lower layers (troposphere 

and tropopause), becomes roughly isothermal around 25 km, (ISA is isothermal 

from 11 to 20 km) and then positive in upper stratosphere. Instead of four 

different TLRs for ISA, there is one TLR in both ISOAM and NLPAM. A TLR 

based on the third-order polynomial could be used to also model mesosphere. 

 

 
 

Figure 2. TLRs for ISA, ISOAM and NLPAM versus orthometric altitude. 

 

The comparison between ISA’s and ISOAM’s non-dimensional pressure 

and density distribution up to 86 km MSL is shown in Figure 3. It seems the 

difference between respective pressures and densities is excessive at high altitudes 

but one must bear in mind that most of the atmospheric mass is distributed in 

lower altitudes. It is thus more important to approximate ISA well at low altitudes 

which is exactly what the minimum sum of density differences squares is 

achieving here constrained by the ideal-gas law and ISA’s surface pressure at the 

SL. The results for ISA and ISOAM zoomed for the first 47 km are shown in 
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Figure 4. The approximation is particularly good up to 20 km. Many different 

isothermal atmospheres can be designed based on the specific merit functions. 

 

 
 

Figure 3. Comparison of non-dimensional pressures and densities for ISA and the 

fictional isothermal 275 K ISOAM up to 86 orthometric km. 

 

A comparison of ISA’s and NLPAM’s vertical pressure and density 

distributions are shown in Figure 5. Clearly, since the NLPAM’s TLR 

approximates meandering ISA’s TLR well up to 47 km, it is to be expected that 

the vertical pressure and density distributions will be satisfactory using the 

vertical temperature profile expressed by Equation 23. The benefit of having only 

one, though arguably more complex, TLR expression instead of four different in 

ISA is clear. Pressure calculations using Equation 24 are only marginally more 

complicated than any of individual ISA’s expressions. 

 

The mass of the ISOAM atmosphere can be quickly estimated from the 

surface air pressure by using Equations 30 or 31. The aerostatic balance implies 

that the atmospheric pressure at given height is equivalent to the weight of the 

column of air above that particular height per unit surface area. The total weight 

of the atmosphere then is surface pressure multiplied by the Earth’s surface area. 

This is reasonable as long as the Earth is assumed to be spherically symmetric and 
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the surface pressure uniform over entire surface. If one assumes the average dry-

air surface pressure of 983.05 mbar (or hPa) according to global measurements 

(Trenberth & Smith, 2005), the weight of the atmosphere is N10014189.5 19 . 

 

 
 

Figure 4. Comparison of non-dimensional pressures and densities for ISA and the 

fictional isothermal 275 K atmosphere up to 47 geopotential km (ISOAM). 

 

At SL standard acceleration this weight corresponds to a dry-air mass of 

gk1011305.5 18  (Equation 31). Using Equation 30 a slightly better estimate is 

achieved of gk10138891.5 18 . This is very close to recent estimates given by 

Trenberth and Smith (2005) and not far from the ISA mass calculations by 

Daidzic (2015). It is also in decent agreement with the amount of kg1028.5 18  

by Stacey and Davis (2008).  

 

The mass computations for NLPAM is bit more complicated and has been 

obtained numerically. The dry-air atmospheric mass by layer and the total for all 

three models (ISA, ISOAM, and NLPAM) are summarized in Tables 3 and 4 

using various quadrature methods. Judging from Table 3 it is clear that the 

difference between ISA and ISOAM is very small in terms of the total mass (less 

than 0.05%). Additionally, the difference between analytical and numerical 
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ISOAM predictions is negligible. The NLPAM is not valid in mesosphere, but as 

calculated by Daidzic (2015) almost 99.9% of atmosphere is already contained 

below 47 km and so the total NLPAM mass is not significantly smaller than the 

ISA total. As shown in Table 4, the difference between the ISA and NLPAM 

masses is relatively small even for each particular ISA layer. 

 

 
 

Figure 5. Comparison of non-dimensional pressures and densities for ISA and the 

fictional parabolic atmosphere (NLPAM) up to 47 geopotential km. 

 

The mass of the Earth’s atmosphere above 86 km is negligible compared 

to the total sum over lower layers. Specific ISOAM and NLPAM masses are 

depicted in Figures 6 and 7. Essentially, specific masses are integrands in mass 

integrals. Decrease of the specific mass is linear (ISOAM) or almost linear 

(NLPAM) in logarithmic scale. Masses can be quickly estimated from the average 

values using Figures 6 and 7.  

 

The fractional atmospheric masses for three atmospheric models and their 

respective scale heights are summarized in Table 5. Calculated scale-heights are 

accurate within about %1  (about ±50 m in ISA troposphere) and the values 

were not interpolated, but taken as closest to tabulated fractional mass (Daidzic, 

2015). The values for ISOAM fractional-mass scale-heights are calculated using 
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Equation 33. A change of ISOAM mass scale heights with the mass fraction is 

shown in Figure 8. The slope of the scale height at SL is equal to ISOAM scale 

height from the following expression (using Equation 33): 

 

 
 1,0

1

*
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 f
f

H

df
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       (37) 

 

The values of scale heights for NLPAM are obtained from integrated mass 

using Equation 34 and method highlighted in Appendix C.  

 

Table 3 

 

Masses of Layers for ISA and ISOAM’s analytical and numerical Computations 

 

ISA Level 
Mass [kg] 

ISA 

Mass [kg] 

ISOAM  

(Eq. 29) 

Mass [kg] 

ISOAM  

(8-point G-L) 

Mass [kg] 

ISOAM  

(Matlab) 

Troposphere 4.104397E+18 3.946136E+18 3.9368841E+18 3.9368818E+18 

Tropopause 9.005369E+17 9.090914E+17 9.1290622E+17 9.1290540E+17 

Stratosphere II 2.432901E+17 3.420996E+17 3.4568045E+17 3.4568003E+17 

Stratosphere III 4.030482E+16 8.400837E+16 8.5572534E+16 8.5572396E+16 

Stratopause 2.358320E+15 6.040763E+15 6.1982633E+15 6.1982512E+15 

Mesosphere II 3.396125E+15 8.602831E+15 8.8742306E+15 8.8742108E+15 

Mesosphere III 1.960204E+14 6.423663E+14 6.7058114E+14 6.7057925E+14 

TOTAL 5.294480E+18 5.296621E+18 5.2967863E+18 5.2967827E+18 

 

Table 4 

 

Masses of ISA Layers for ISA and NLPAM 

 

ISA Level 
Mass [kg] 

ISA 

Mass [kg] 

NLPAM 

(8-point G-L) 

Mass [kg] 

NLPAM 

(Matlab) 

Troposphere 4.104397E+18 4.0370412E+18 4.09099403E+18 

Tropopause (SS I) 9.005369E+17 9.3145274E+17 9.38094877E+17 

Stratosphere II 2.432901E+17 2.7670765E+17 2.75927071E+17 

Stratosphere III 4.030482E+16 4.3888902E+16 4.20237335E+16 

Stratopause (MS I) 2.358320E+15 NA NA 

Mesosphere II 3.396125E+15 NA NA 

Mesosphere III 1.960204E+14 NA NA 

TOTAL 5.294480E+18 5.2890905E+18 5.3470397E+18 
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Figure 6. ISOAM specific mass as a function of geopotential height. 

 

 
 

Figure 7. NLPAM specific mass as a function of geopotential height. 

 

An example comparing atmospheric parameters for ISA, ISOAM and 

NLPAM at a given altitude/height will be in order now. A comparison of 
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dimensional and non-dimensional atmospheric parameters at a geopotential height 

of 40 km is summarized in Table 6. The NLPAM temperature at 40 km is colder 

by about 100C, while the difference in pressure and density are less than 2.6% and 

6.5% respectively.  

 

Table 5 

 

Mass fraction as Functions of Orthometric Scale Heights for ISA, ISOAM, and 

NLPAM 

 

Mass fraction ISA [m] ISOAM [m] NLPAM [m] 

50% 5,405 5,579.56 5,557.50 

75% 10,216 11,159.11 10,615.00 

90% 16,040 18,534.89 16,800.00 

95% 20,315 24,114.44 21,200.00 

99% 30,899 37,069.77 30,922.00 

99.9% 47,857 55,604.66 42,185.00 

 

 
 

Figure 8. Scale heights versus the 275 K ISOAM mass fractions. 
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On the other hand, the ISOAM temperature is quite warmer and the 

pressure and density are more than twice as large. However, considering that the 

pressure and density are more than two orders-of-magnitude lower compared to 

SL conditions, it does not influence the total mass much. The ISOAM will 

overestimate drag and lift calculations at these heights which is acceptable in the 

first approximation. 

  

Table 6 

 

Comparison of ISA, ISOAM, and NLPAM Atmospheric Parameters at 40 km 

Geopotential Height 

 

 ISA ISOAM NLPAM 

H [m] 40,000 40,000 40,000 

z [m] (Eq. 5) 40,253 40,253 40,253 

 CK/0T  251.05/(-22.10) 275/(+1.85) 241.21/(-31.94) 

 -  0.8712476 0.954364047 0.8370948 

 Pap  277.52155 704.08317 285.07077 

 -  2.738925E-03 6.9487606E-03 2.8134298E-03 

 3kg/m  3.8510095E-03 8.9192651E-03 4.1171580E-03 

 -  3.143681E-03 7.2810377E-03 3.3609453E-03 

 

Future work on this subject will focus on introducing new methods of 

atmospheric mass computations including Earth’s real shape (Geoid), terrain 

elevation, curved geometry aero/hydro-static equation, and incorporating 

gravitational anomalies. The shape of the Earth and the gravitational magnitudes 

will be represented in a series of spherical tesseral harmonics. 

 

Conclusions 

 

Both, a new global isothermal temperature atmospheric model and a 

nonlinear parabolic-temperature atmospheric models of the ISA are introduced. 

Constrained optimization techniques in conjunction with the least-square-root 

approximations were utilized to design best-fit isothermal models for ISA 

pressure and density changes up to 47 geopotential km for NLPAM and 86 

orthometric km for ISOAM. The mass of the dry-air atmosphere and the relevant 

fractional-mass scale heights have been estimated utilizing accurate and 

sophisticated Gauss-Legendre numerical quadrature for both ISOAM and 

NLPAM. Both, ISOAM and NLPAM represent viable alternatives to ISA in many 
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practical applications. A true benefit of ISOAM and NLPAM is that only single 

expressions for temperature, pressure, and density are used instead of many 

different expressions in ISA formulation. A parabolic NLPAM is especially 

accurate in substituting ISA up to 47 geopotential km. Fractional mass scale-

heights have been calculated for both ISAOM and NLPAM and compared to ISA 

values. As expected, the agreement is especially good between ISA and NLPAM. 

It is straightforward to extend the notion of nonlinear temperature distribution and 

utilize higher-order polynomials describing vertical temperature profile to higher 

altitudes in mesosphere and this will be done in a subsequent publication. ISA, 

ISOAM, and NLPAM overestimate the mass of the real dry atmosphere by small 

amount as the lower limit of integration is taken as SL in ISA models and not as 

an average topography height of about 237 m in real atmospheric mass estimates. 

Globally and temporally averaged surface pressure measurements of 983.05 hPa 

are about 30 hPa lower than the adopted standard SL ISA pressure and about 28 

hPa lower than globally measured average SL pressure of 1011.00 hPa. 
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Appendix A 

 

Nonlinear regression for global isothermal model 

 

A regression (best-fit) of the measured or model data with an exponential function 

yields: 

 

   xaaxaaf 1010 exp;,         (A1) 

 

This exponential model has two degrees-of-freedom (coefficients: 10 ,aa ). 

A task of classical unconstrained regression analysis is to find the two unknown 

coefficients which will minimize the performance measure (most often the 

residual sum of squared differences between the observed and model data):  

 

    
2

1

2

10 ;, ay fxaafyS
N

i

iir 


     (A2) 

 

However, Equation A1 is nonlinear in respect to two unknown 

coefficients. To treat this as a part of linear regression analysis and estimate 

optimum coefficients, the exponential form in Equation A1 needs to be first 

linearized by using the logarithm: 

 

xAAYxaay  1010lnln     (A3) 

  

However, this procedure should normally be avoided unless the errors are 

log-normally distributed. Error structure (additive, proportional and multiplicative 

error) must be considered before making linearizing transformations (Seber & 

Wild, 1989). Otherwise, from here the process is trivial and the theory of linear 

regression (normal equations) by a linear (straight) curve is used with details 

provided in many classical books on numerical analysis (e.g., Carnahan et al., 

1969; Chapra & Canale, 2006; Conte & de Boor, 1986; Press et al., 1992). Also 

the polynomial approximation to be dealt with later belongs to the general theory 

of linear regression as the polynomial is linear in unknown coefficients 

irrespective of the possible wild nonlinearities in the basis functions.  

 

On the other hand, the problem that is solved in this work has only one 

degree-of-freedom and is nonlinear since the SL density is constrained by the 

ideal-gas law and dependent on chosen SL pressure (ISA SL pressure of 1013.25 

hPa) and unknown yet to be found isothermal temperature. The scale factor in 
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exponent which is the inverse of the atmospheric scale height is also a function of 

unknown uniform temperature. Thus we may write: 

 

      
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The sum of squares that needs to be minimized is: 
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The two coefficients are dependent and the model is thus nonlinear. For 

example, a Gauss-Newton (G-N) method of successive approximations 

(iterations) can be used for two or more variables (Chapra & Canale, 2006; Press 

et al., 1992; Seber & Wild, 1989). As usual, a merit function (typically, L2 norm) 

is minimized which is often just a familiar sum of squares: 
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 A resulting system of equations is nonlinear and is solved in an iterative 

manner using the G-N method. The linear (first-order) term in Taylor expansion 

of approximating model equation is used: 
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where: 
 

k

i

j

k

ik
a

xaf
J






;
. 

An initial guess 0

ka  is required for every unknown coefficient (vector of 

unknowns) to start the process and thus the convergence is not ensured. The 

Jacobian matrix is evaluated at each iteration step. A system (Equation A7) 

reduces to normal equations of linear regression which must be solved at each 

successive approximation (step): 

 

     i

j

kii xafyyyaya ;
1
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 TTTT
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Updated solutions are calculated (shifted) based on the just calculated 

(positive and/or negative) increments aaa j

k

j

k 1   and the process is continued 

until the relative error falls below a prescribed ones. However, the convergence 

will depend on the good choice of the initial values and is not ensured. Traditional 

methods, such as, Gauss-Jordan elimination, LU decomposition, Cholesky 

decomposition, etc., may work in most instances for simpler systems. However, 

the normal equations are very often close to singular (ill-conditioned) and very 

susceptible to round-off errors (Press et al., 1992). Advanced algorithms are 

needed such as QR decomposition and SVD (Singular Value Decomposition). 

SVD also takes care of round-off errors and is the recommended method 

according to Press et al. (1992). 

 

Some other quite powerful (gradient and direct search) methods of solving 

unconstrained nonlinear regression (or more generally nonlinear optimization) 

problems are: Levenberg-Marquardt, steepest descent/ascent, conjugate gradient 

search (Fletcher-Reeves), “full Newton-type”, etc. (Chapra & Canale, 2006; Press 

et al., 1992). In many numerical methods the analytical or approximate 

knowledge of the Hessian (matrix of second-order partial derivatives) may be 

helpful. The constrained nonlinear optimization methodology uses many of these 

aforementioned methods specifically adjusted to meet constraints in a direct or 

indirect approach. In the case where only one unknown coefficient exists, as is 

our case here, a resulting single nonlinear equation yields:  
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 

0
;

;
1 0

0
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ii
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xayd
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Since only one positive real root exists (unknown temperature), the 

Equation A9 can be solved by any of the many available nonlinear equations 

roots-seeking methods, such as, bisection, secant, Regula-falsi, Newton-Raphson, 

fixed-point iteration, etc. (Chapra & Canale, 2006; Press et al., 1992). Replacing 

into Equation A9, the nonlinear regression ISOAM model is evaluated from: 
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    (A10) 

 

Known ISA density values are used as observational exact points (with no 

uncertainty) for which the minimum residual sum of square differences is sought. 
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Appendix B 

 

Constrained optimization using Lagrange multipliers 

 

In order to find the parameters of the parabolic temperature profile (NLPAM) 

with given two constrains at SL and 47 km, a method of Lagrange multipliers or 

the Lagrangian method of undetermined coefficients (Ashley, 1992; Greenwood, 

1997; Lanzos, 1986; Miller, 2000; Pierre, 1986; Tribus, 1961; Widder, 1989) with 

the least-square-sum performance measure is used. Least-square-sum is 

essentially a maximum likelihood estimator which yields (Press et al., 1992): 
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i
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k

ikki

i

xXayS
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1

2 1


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Here, N is the number of equidistant discrete measurements (as a function 

of discrete independent variable) and K is the polynomial degree. The standard 

deviation 1i  (Press et al., 1992) because it is or unknown or the data are exact 

(based on ISA model). The regression is linear because it describes linear 

relationship between unknown coefficients ka for the basis-functions kX  which 

in the case of linear polynomial regression are monomials, k

k xX  . In fact, basis 

functions can be any other functions, such as, trigonometric functions (e.g., 

Fourier series), etc. For example, two constraints can be given maximum for a 

quadratic polynomial: 

 

  1,,2,10);(0);( 2211  KJJjxagxag kk    (B2) 

 

If too many constrains are given the problem becomes over-constrained 

and no solution exists. What it means that three points define an interpolating 

quadratic polynomial regardless of the performance measure. Four constraints 

would be generally asking too much from a quadratic polynomial and may not be 

consistent.  

 

A Lagrangian (Ashley, 1992; Greenwood, 1997; Lanzos, 1986) or the 

augmented performance (Lagrangian) measure (Miller, 2000; Minoux, 1986, 

Nocedal & Wright, 2006, Pierre, 1986; Widder, 1989) is now constructed: 

 

    1;;);,(
1
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 In order to find stationary points (maximum, minimum, or inflexion 

point), the following sufficient and necessary conditions must be satisfied 

(Greenwood, 1997; Lanzos, 1986; Minoux, 1986, Nocedal & Wright, 2006; 

Pierre, 1986; Tribus, 1961; Widder, 1989): 

 

 JjKkg
L

a

L
j

jk

,,2,1,,2,1,000  










  (B4) 

 

Often a negative sign is used instead of positive with Lagrange multipliers 

in Equation B3 resulting in condition gS   . The extremum condition given 

by Equation B4 results in K+1+J simultaneous linear algebraic equations (K+1 for 

unknown coefficients and J for Lagrange multipliers) with the same number of 

unknowns which can be solved with any of the many existing methods (Carnahan 

et al., 1969; Chapra & Canale, 2006; Conte & de Boor, 1986; Demidovich & 

Maron, 1987; Press et al., 1992; Ralston & Rabinowitz 1978). Generally, one can 

write: 

 

           CBZCZB 
1

     (B5) 

 

Matrix B is a non-singular square matrix of known coefficients for which 

the inverse exists (determinant not zero). The solution vector contains three 

unknown coefficients, ka , which in fact minimize the sum of squares (Equation 

B1) under given constraints and two Lagrangian multipliers k . 

 

General optimization theories (constrained and unconstrained) are well 

covered in some references used here (Miller, 2000; Minoux, 1986, Nocedal & 

Wright, 2006, Pierre, 1986). Torenbeek (2013) demonstrates applications of 

various optimization methods in advanced aircraft design. 
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Appendix C 

 

Gauss-Legendre numerical integration method 

 

A definite integral with arbitrary real limits can be converted into a normalized 

Gauss-Legendre (G-L) quadrature form: 
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where, 
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Unlike in Newton-Cotes integration where the function evaluations are 

always at the interval boundaries, the Gauss quadrature introduces additional 

degree-of-freedom by choosing the abscissa points for function evaluations. As a 

result, the Gauss quadrature is significantly more accurate and requires less 

evaluations than closed Newton-Cotes formulas (e.g., popular Simpson’s 1/3-rd 

rule). Various orthogonal polynomials are typically used for Gauss quadrature 

(e.g., Gauss-Legendre, Gauss-Hermite, Gauss-Chebyshev, Gauss-Laguerre). 

Gauss-Legendre quadrature is particularly popular and powerful. Orthogonal 

Legendre polynomials can be conveniently defined by the Rodrigues’ formula 

(Lebedev, 1972) in an interval  1,1 : 

 

    n

n

n

nn t
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d

n
tP 1

!2
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An important orthogonal property that also defines L2 norm of Legendre 

polynomials: 
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 Coefficients iA ’s are the weights and it ’s are the roots (zeros) of 

orthogonal Legendre polynomials with some selected useful properties 

(Demidovich & Maron, 1987): 
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The six-point G-L quadrature formula has six weights and roots of 

orthogonal Legendre polynomials which are summarized in Table C1. As a matter 

of fact, eight-point G-L quadrature was used in our computational programs for 

increased accuracy. More details on Gauss quadrature and tables of values of 

zero‘s and weight coefficients are given in (Carnahan et al., 1969; Chapra & 

Canale, 2006; Demidovich & Maron, 1987; Press et al., 1992). 

 

Using a linear substitution, the mass-fraction integral is first converted 

into normalized domain of Legendre polynomials and then weighted sum is 

formed. An eight-point G-L quadrature method involving four positive and four 

negative zeros of Legendre polynomials with eight weights (four pairs) was 

actually employed in Equation C1. Integrand was evaluated eight times at specific 

Legendre polynomial zero points in an interval  1,1 . Ten-point and fifteen-

point G-L zeros and weight coefficients with 15-significant-digits precision were 

also used and are given in Carnahan et al. (1969). 

 

Table C1 

 

Weight Coefficients and Zeros of Legendre Polynomials Used in Six-Point Gauss-

Legendre Quadrature 

 

i  1 2 3 4 5 6 

iA  0.17132450 0.36076158 0.46791394 0.46791394 0.36076158 0.17132450 

it  -0.9326951 -0.66120939 -0.2386192 +0.2386192 +0.66120939 +0.9326951 

Note. Adapted from Demidovich and Maron (1987) 

 

To calculate the scale heights of NLPAM for specific mass fractions f  

(50%, 75%, 90%, etc., atmosphere), a complicated iterative solution of the inverse 

problem is sought. A positive real roots of nonlinear algebraic-integral equation is 

found by halving the interval, localizing the solution, and minimizing the residual 

function  Hg : 

 

        fHHHfHHMMf  01,00    (C6) 
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