MICHAEL DOYLE, FACULTY MENTOR – DR. KULDEEP AGARWAL MINNESOTA STATE UNIVERSITY, MANKATO SPONSORS: MSU UNDERGRADUATE RESEARCH CENTER, RASP, EXONE COMPANY

URC

3D-Printing

Additive Manufacturing of Stainless Steel for Engineering Applications

Standards Worldwide American Society of **Testing & Materials**

Inject Liquid Adhesive

The liquid chemical binder is injected into the active layer of powder and adheres the 30-micron-diameter stainless steel particles together.

Heat Before Rolling Layer

The active layer is then heated to solidify the liquid before rolling the next 50/100/200 micron layer of powder. The process repeats for 1 to 4 hours.

Cure at 200°C - 3 hours

The block of powder is transferred into an oven that burns off 95% of the chemical binder, but makes the part strong enough to remove excess powder.

Sinter at 1200°C - 10 hours

The "green" part has remaining binder evaporated in a furnace & melts the particle surfaces into a necked matrix. Pores are infiltrated with bronze.

Tensile Test

The dog bone shaped parts are pulled with a machine that measures the force and elongation. The graph below is based on the machine's data & parts.

Installed Oct 2013

Build Volume
1.5"x2.3"x1.3"
Larger Machine:
15.7"x9.8"x9.8"

ExOne Materials
Sand, Glass, Gold,
316-Stainless Steel,
420-SS + Bronze;
Possibly Inconel,
Titanium, and more

MISSION

To start filling the gap of available information on metal additive manufacturing by publishing the data of these part's material characteristics, like tensile strength, for this metal chemical binding technology, and the process parameters and procedures involved.

PART ORIENTATION (SIDE VIEW) O° 30° 90° 60°

LAYER THICKNESS (MICRONS)

Automotive

Medical

FACTORS TESTED

Layer thickness or amount of layers for a given part height Orientation of part in the block of powder

Layer Thickness (micrometers or meter-millionths)	Linear Slope of Elasticity [Young's Elastic Modulus] (Mega-psi)	Permanent Deformation [Yield] Strength (kilo-psi [ksi])	Maximum [Ultimate Tensile] Strength (ksi)	Change in Length [Strain] (% Elongation)
50	20	33	105	2.8
100	14	30	86	3.3
200	19	28	75	2.3

FACTORS' SIGNIFICANCE

The thinner the layer, the stronger the part
Orientation didn't give an apparent correlation to tensile strength

Average Tensile Testing of 3 Layer Thicknesses 50% 420-SS + 50% Bronze Parts

VISION

Increase the 10 year Longevity of Joint Replacements to 20+ years

SPHERE PACKING

Future
Infiltrate Polymers
Gradient Density
More Materials
Gradient Material
Vary Particle Size