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As the long-range and ultra-long range non-stop commercial flights slowly 

turn into reality, the accurate characterization and optimization of flight 

trajectories becomes even more essential. An airplane flying non-stop between 

two antipodal points on spherical Earth along the Great Circle (GC) route is 

covering distance of about 10,800 NM (20,000 km) over-the-ground. Taking into 

consideration winds (Daidzic, 2014; Daidzic; 2016a) and the flight level (FL), the 

required air range may exceed 12,500 NM for antipodal ultra-long flights. No 

civilian or military airplane today (without inflight refueling capability) is capable 

of such ranges. About 40-60% increase in air range performance will be required 

from the future airplanes to achieve truly global range (GR). There is no need to 

elaborate on the economic aspects of finding the shortest trajectories between two 

points on Earth. However, many other factors may cause perturbations of such 

trajectories when considering the minimum-cost, minimum-fuel, or any other 

goal-function in complex optimizations.  

 

The Earth is not a perfect sphere and due to rotational and gravitational effects 

the shape is more of an oblate spheroid. Actually, Earth’s shape is even more 

complicated and more appropriately treated in terms of tesseral surface harmonics 

(Tikhonov and Samarskii, 1990). Earth’s Polar radius is about 21 km shorter than 

the Equatorial. Several Earth’s shape approximations are used: 

 

 Idealized spherical Earth of equivalent volume (implicitly used in 

International Standard Atmosphere or ISA definition). 

 Reference mathematical ellipsoid of revolution (WGS-84, IERS/ITRS). 

Smooth and oblate.  

 Geoid or particular equipotential surface that approximates mean sea-level 

(MSL). Irregular and locally smooth. Physically the most important measure 

of Earth’s shape. An example of Geoid in use is WGS-84 (revision 2004) 

EGM96 Geoid. 

 Actual or physical Earth surface with all terrain details. This is fractal 

dimension, scale dependent and mathematically intractable. 

 

Using spherical Earth approximation is sufficient for the majority of long-

range air navigation problems. Due to economy of flight, we are particularly 

interested in the shortest distances between two arbitrary points on Earth. 

Differential geometry classifies such lines on smooth surfaces as geodesic lines. 

On the spherical Earth model a geodesic is a Great Circle (GC) or Orthodrome 

segment. GCs distances are not necessarily always shortest with respect to time as 

atmospheric wind plays significant role in distance-time optimization problems. 

The optimization of flight trajectories taking into account atmospheric factors, 

extended operations (ETOPS) procedures (De Florio, 2016; FAA, 2008), airspace 
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restriction, etc., is a difficult task. Finding geodesics on smooth ellipsoidal Earth 

has been solved. However, finding geodesic between two arbitrary points on the 

actual Earth surface considering all the vertical terrain features is practically 

impossible.  

 

Although, it has been with us for many years, the theory of GC and 

rhumb-line navigation has not been presented clearly and comprehensively for air 

navigation practitioners, operators, and students. One of the stated purposes of 

this article is to review and summarize differential geometry and calculus of 

variation theories as applied to spheres. That will relive readers from searching 

and consulting multiple sources using different and often confusing terminology. 

 

We are only considering spherical Earth approximation and present theory 

of GC (Orthodrome geodesic) and rhumb-line (Loxodrome) navigation. For short 

distances over certain terrestrial regions we also provide some simplified 

approximate formulas and define their limits of use. Several ultra-long-range 

navigational problems utilizing existing major international airports are fully 

solved using Orthodromes and Loxodromes. Graphic representation utilizing 

Mercator (cylindrical) and azimuthal (planar) projections is presented. The 

longest commercial non-stop flights today are reaching 8,000 NM (Daidzic, 

2014). Increase in air range of, at least, 40% is required to achieve full GR 

connecting any two airports on the Earth (Daidzic, 2014). Practically, due to 

airspace restrictions, ETOPS procedures, and other considerations, the range of 

existing long-range subsonic airplanes may need to increase by at least 50%. 

 

The main purpose of this article is to give complete and comprehensive 

consideration of short and long (geodesic) lines on spherical Earth for the purpose 

of air navigation. While clearly professional navigation planning software is 

available to major airlines/operators and ATC system it is mostly used as a black-

box. The objective is also to remove mysteries behind the long-range navigational 

calculations and provide working equations. Spherical approximation is 

satisfactory for overwhelming number of long-range air navigation problems. In 

particular, Orthodromes and Loxodromes are typically considered the two most 

important curves for air navigation. For that purpose we coded working equations 

into several software platforms (Basic, Fortran, IDL, and Matlab). The main goal 

of this article was to provide the fundamental theory and understanding, while the 

computations can be executed in any high-level programming language. 

 

Detailed mathematical derivations are presented in several appendices as 

to relive a reader interested only in the final results from the heavy mathematical 

interpretations involving differential geometry, variational calculus, topology and 
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other mathematical fields. Indeed, a knowledge of differential geometry, plane 

and space vectors and vector calculus, and calculus of variation (variational 

calculus) is required for in-depth understanding of the subject matters. The most 

important geometric and topological properties of spheres have been reviewed 

and working equations provided.  

 

An added benefit of presented long-range navigation solutions is relatively 

easy implementation of the actual Point-of-Equal-Time (PET), Point-of-No-

Return (PNR) and ETOPS limitations for given wind conditions (Daidzic, 2016a) 

and one-engine-inoperative (OEI) cruising speeds (Daidzic, 2016b). In a future 

contribution, and for the academic completeness an ellipsoidal Earth model will 

be introduced with the Great Ellipse (GE) substituting Great Circle (GC). True 

geodesic computations are complicated even for a smooth ellipsoid of revolution 

requiring iterative solvers. Generally, GC calculations on spherical Earth are 

sufficient for reliable air navigation flight planning purposes, considering all other 

uncertainties involved and mandatory fuel reserves.  

 

Air navigation should be a mandatory course in every professional pilot 

curriculum and especially so in aviation university education. Unfortunately, it 

often is not, which results in operational safety degradations. Too much and/or 

uneducated reliance on sophisticated electronic navigation technology did and 

certainly will continue to cause aviation accidents and incidents. 

 

Literature review 

 

A historic account of differential geometry and basic parts used in this 

work have been consulted from the well-known mathematical classics, such as, 

Aleksandrov et al. (1999), Goetz (1970), Kreyszig (1964), Lipshutz (1968), Struik 

(1988), and Wrede (1972). Also more modern books on differential geometry, 

such as, Oprea (2007) have been consulted. Basic planar and spherical 

trigonometry theory with calculus applications has been consulted from the 

books/handbooks by Ayres and Mendelson (2009), Bronstein and Semendjajew 

(1989), Danby (1962), Dwight (1961), Nielsen and Vanlonkhuyzen (1954), Olza 

et al. (1974), Spiegel and Liu (1999), and Todhunter (1886). The basic 

introduction and theory of solid analytic geometry including various lines, planes 

and curved surfaces was consulted using Hall (1968). A decent short history of 

mathematical development including the planar and spherical trigonometry is 

given in Struik (1987). Some special functions, elliptic integrals, and advanced 

mathematical methods used in navigation, orbital, and celestial calculations is 

given in classic sources by Abramowitz and Stegun (1984), Byrd and Friedman 

(1954), Jahnke and Emde (1945), Tikhonov and Samarskii (1990), and Weber and 
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Arfken (2004). The general theory of calculus of variations and its applications in 

analytical mechanics and geodesics on the sphere are given in, for example,  Dym 

and Shames (2013), Fox (1987), Greenwood (1987), Lanzos (1986), Lass (2009), 

Smith (1998), Widder (1989), etc. An introduction into geodesy and geodetic 

computations was consulted from the well-known classics such as Bomford 

(1983), Torge (2001), and Vaníček and Krakiwsky (1986). 

 

Basic principles of marine and air navigation and navigational 

instrumentation are given in books by Bowditch’s bicentennial edition (2002), 

Bradley (1942), De Remer and McLean (1998), Jeppesen (2007), Tooley and 

Wyatt (2007), Underdown and Palmer (2001), and Wolper (2001). However, none 

of these sources except maybe to an extent Wolper go into any deeper air 

navigation mathematical theory and calculation procedures. Sinnott (1984) 

proposed the use of the, so called, haversine formula for the GC navigation 

problems on spherical Earth due to problems with numerical accuracy using the 

classic cosine-formula for small central angles. Williams (2011) provides many 

useful aviation formulas, but the equations are written as pseudo-language 

mathematical expressions, difficult to read, and no background information is 

provided. Phillips (2004) provides algorithms for GC and rhumb-line navigation, 

but without derivations. Tewari (2007) presents GC and long-range airplane flight 

computations and demonstrates how in the absence of wind with no yawing and 

rolling motion, the airplane will actually follow a GC route.   Recently, Weintrit 

and Kopacz (2011) presented a novel approach to Loxodrome, Orthodrome, and 

general geodesic problems in Electronic Chart Display and Information 

System (ECDIS) used for nautical navigation.  

 

Basic GC navigation theory also finds many applications is celestial 

navigation, orbital mechanics, and astronomy and we used sources such as, Bate 

et al. (1971) and Fitzpatrick (2012) for some useful information. Geodetic theory 

and computations with geometric geodesy and geodetic datums on reference 

terrestrial ellipsoid with some historical accounts has been provided in reports by 

Jekeli (2012), Krakiwsky and Thomson (1974), Rapp (1991), and Rapp (1993). 

Many geodetic computations also find applications in geophysics and we mention 

some better known sources such as Lowrie (2007) that deal with various aspects 

of geodetic geometry, definitions, and computations.  

 

A good review of rhumb-line calculations on a sphere is given by 

Alexander (2004) and for terrestrial ellipsoid by Williams (1950). Kos et al 

(1999) derived and solved differential equation of Loxodrome on spherical Earth 

using difference of co-latitudes to find its length. GE theory with geodesic and 

rhumb-line calculations on spheroidal (ellipsoidal) Earth were given by Bennett 
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(1996), Bowring (1984), Sjöberg (2012), Tseng and Lee (2010), and Williams 

(1996). A true numerical geodesic computations for direct and inverse geodesic 

problems on ellipsoid of revolution (terrestrial spheroid) is given in a contribution 

by Vincenty (1975). Consideration of elliptic integrals used in geodesic problems 

was recently addressed by Rollins (2010). More recently Karney (2013) presented 

a comprehensive account of algorithms for geodesics.  

 

Motion of aircraft in an inertial frame of reference and non-inertial 

topocentric frames was consider by Miele (2016). McIntyre (2000) provides in 

depth considerations of motion on a rotating sphere. Fitzpatrick (2012) gives good 

account of inertial and non-inertial frames of references on Earth. Discussion of 

airplane trajectories and consideration of apparent forces in various non-inertial 

frames of references during GC flights will be addressed in a future contribution. 

 

Great Circle and Rhumb-line Navigation on Spherical Earth 

 

 Most often the inverse geodetic problem will be solved where the geodetic 

(geographic) spherical coordinates of departure and arrival (destination) airports 

are given. Sufficiently complete theory on fundamental geometric and topological 

properties of spherical Earth is given in Appendix A. Derivation of geodesic lines 

on spherical Earth, i.e., Orthodromes (GC arcs) is presented in Appendix B. The 

GC arcs lie in an osculating plane that contains Earth’s center. A proof that GC 

arcs are indeed shortest distances on spherical Earth is presented. Long distance 

GC navigation on spherical Earth is discussed in Appendix C. The working 

equations for calculating no-wind true courses (TC) and the vertex properties are 

derived. GC and rhumb-line routes are plotted in cylindrical conformal Mercator 

and/or polar Orthographic projections. Short-distance GC formulas were derived 

in Appendix D. Additionally, stereographic, gnomonic and orthographic polar 

(azimuthal) projections have been introduced. Theory of rhumb-line navigation on 

spherical Earth is presented in Appendix E.    

 

The traditional geographic latitude/longitude coordinates are first 

converted into truncated angular degree form by using (N+, S-, E+, W-): 

 

DDDDDDD.DDD
,

SSSS.SSMM
DDD 

600360
SS.SSSSMMDDD         (1) 

 

Geographic coordinates with an accuracy of one angular second (2.78x10-4 

degree), provides an accuracy of about 100 ft (30 m). A hundredth of an angular 

second delivers navigational uncertainty of about 1 ft (0.3 m). Eight significant 

digits representation is thus sufficiently accurate for air-navigation applications. 
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Typically, aircraft fly at constant pressure altitudes, which at high altitudes 

is referenced to a standard pressure datum (29.92 inch Hg or 1013.25 hPa). If 

Earth’s oblateness is neglected and spatial changes of atmospheric pressure it can 

be said that airplanes fly in concentric circles around Earth’s center. In that case 

any GC will have arc-length of about 21,600 NM (or about 40,000 km or 25,000 

SM). Future ultra-long range airplane should be able to fly non-stop half of any 

GC to a point which is exactly opposite on the Earth surface (antipodal or 

conjugate point) to achieve global range (Daidzic, 2014). Between two antipodal 

points there are infinitely many GCs all of which have equal length assuming 

spherical earth. The actual terrain elevation is irrelevant in high-altitude cruise 

flight. Orthometric or Mean Seal Level (MSL) altitude is given in reference to 

local Geoid height. Terrain elevation can be given in respect to vertical datum 

contained in WGS 84 spheroid (GPS reference ellipsoid) and when corrected for 

local Geoid height yields orthometric height. More accurate trajectory 

calculations should also account for orthometric altitude changes due to variable 

air pressure, but such considerations may not be significant for majority of flights. 

Distance errors due to the actual shape of the Earth are less than 0.5% and often 

within 0.3% and thus practically insignificant for most cases. 

 

Utilizing the spherical Law of Cosines (Appendix C) and the average 

Earth radius ER  (=6,371,000 m) plus the average cruising altitude h , the actual 

GC arc distance between two surface points  111  ,P  and  222  ,P  becomes: 

 

     2121

1

21 1  sinsincoscoscoscosRhRO EE  


         (2) 

 

An alternative GC-arc distance formula using the trigonometric haversine 

function (Appendix C) yields: 

 

  
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       (3) 

 

Adding the average cruising altitude, or the maximum planned cruising 

altitude, does not affect GC distance very much (10-20 NM), but is a conservative 

estimate reducing uncertainties. All courses, vertex properties, and GC and 

rhumb-line waypoints were calculated using expressions derived in appendices. 

The geographical coordinates are given as latitudes ϕ (N+, S-) and longitudes λ 

(W-, E+) for desired airport pairs on spherical Earth. The geodetic coordinates of 
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some major international airports used in program testing and route calculations 

are given in Table 1.  

 

Table 1 

 

Airports used in long- and ultra-long range route computations and testing  

 

ICAO IATA City 
Latitude (N+/S-) 

DD MM SS.SSSS 

Longitude (E+/W-) 

DDD MM SS.SSSS 

ZBAA PEK 
Beijing, 

China 

N 40 04 00.0000 E 116 36 00.0000 

+40.08000000 +116.58444444 

ZSPD PVD 
Shanghai, 

China 

N 31 09 00.0000 E 121 48 00.0000 

+31.1500000 +121.8000000 

SAEZ EZE 
Buenos Aires, 

Argentina 

S 34 49 20.0000 W 058 32 09.0000 

-34.822222222 -58.53583333 

RJAA NRT 
Tokyo-Narita, 

Japan 

N 35 45 55.0000 E 140 23 08.0000 

+35.765278 +140.385556 

SBGL GIG 
Rio de Janerio, 

Brazil 

S 22 48 32.0000 W 043 14 37.0000 

-22.808902 -43.243646 

KSEA SEA 
Seattle, WA, 

United States 

N 47 27 00.0000 W 122 18 42.0000 

+47.449889 -122.311777 

EGGL LHR 
London, England, 

UK 

N 51 28 39.0000 W 000 27 41.0000 

+51.477500 -0.461388 

YSSY SYD Sydney, Australia 
S 33 56 46.0000 E 151 10 38.0000 

-33.946110 +151.177222 

FAOR JNB 
Johannesburg, 

South Africa 

S 26 08 01.0000 E 028 14 32.0000 

-26.133693 28.242317 

MMMX MEX 
México City, 

México 

N 19 26 11.0000 W 099 04 20.0000 

+19.436303 -99.072096 

WMKK KUL 
Kuala Lumpur, 

Malaysia 

N 02 44 44.0000 E 101 42 36.0000 

+2.745578 +101.709917 

UUEE SVO 
Moscow,  Russian 

Federation 

N 55 58 21.0000 E 037 24 47.0000 

+55.972500 +37.413056 

VCBI CMB 
Colombo, Sri 

Lanka 

N 07 10 51.0000 E 079 53 03.0000 

+7.180756 +79.884117 

SEQM UIO 
Quito, Pichincha, 

Ecuador 

S 00 06 48.0000 W 078 21 31.0000 

-0.113332 -78.358610 

LQSA SJJ 
Sarajevo, Bosnia 

and Herzegovina 

N 43 49 29.0000 E 018 19 53.0000 

+43.82472222 +18.33138889 

KMSP MSP 
Minneapolis-STP, 

MN, United States 

N 44 52 55.0000 W 093 13 18.0000 

+44.88194444 -93.22166667 

 

7

Daidzic: Air navigation on spherical Earth

Published by Scholarly Commons, 2017

https://tools.wmflabs.org/geohack/geohack.php?pagename=Minneapolis%E2%80%93Saint_Paul_International_Airport&params=44_52_55_N_093_13_18_W_type:airport_region:US-MN
https://tools.wmflabs.org/geohack/geohack.php?pagename=Minneapolis%E2%80%93Saint_Paul_International_Airport&params=44_52_55_N_093_13_18_W_type:airport_region:US-MN


 
 

Rhumb-line or Loxodrome-arc distance of constant course angle α on 

spherical Earth is calculated as (Appendix E): 

 

      



secRhR

cos
RhRL EEEE 


 12

12
21 11          (4) 

 

Special care has to be taken to convert spherical angles into Earth-based 

headings 0-360 degrees. Attention also was warranted when crossing the prime 

and its anti-meridian or practically the International Date Line (IDL). The cyclic 

non-unique nature of trigonometric functions creates many problems when 

performing calculations as illustrated in Figures 1 and 2. The main navigation 

program originally developed in the True Basic v.5.5 contains subroutines that 

inspect each airport location and then calculate route waypoints and courses. 

 

 
 

Figure 1. Change of latitude on spherical Earth model. Not to scale. 

 

Navigational calculations were performed on a multi-core 64-bit floating-

point CPU to minimize rounding errors. True Basic v.5.5 and v.6 (64-bit), 32-bit 

optimizing-compiler Lahey Fortran 90/95 (Incline Village, NV), 64-bit optimizing 

Absoft Fortran 90/95 (Troy, MI) with many 2003/2008 extensions, and Matlab 

R2015a (ver. 8.5, Mathworks, Natick, MA) codes were developed with the 

graphical capabilities showing GC and Rhumb-line routes on Cylindrical 

Mercator and Polar Orthographic projections. Summary of some tested long-range 

route computations using loxodromic and orthodromic navigation is given in 

Table 2. Most GC (no rhumb-line) graphical results were generated using the 

Great Circle Mapper©, copyright Karl L. Swartz (www.gcmap.com). Our 
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graphical capabilities are currently modest, but powerful visual representations 

using IDL (Interactive Data Language) mapping capabilities will be available 

soon. Several ultra-long routes between some major International airports were 

used to test and demonstrate the capability and the accuracy of our NAV solvers. 

Moreover, the intention was to highlight the difficulties and the curiosities when 

navigating on Earth. Our AARNAVTM navigation programs used spherical-Earth 

approximation, while the GC Mapper© calculator uses geodesic calculations on 

oblate Earth. We also used the marine navigation www.Onboardintelligence.com 

calculator to independently test and verify GC and rhumb-line results. 

 

 
 

Figure 2. Change of longitude on spherical Earth model. Not to scale. 

 

Results and discussion 

 

Let us first consider a short flight from ZBAA to ZSPD. Interestingly, 

Beijing (ZBAA) and Shanghai (ZSPD) are only 594.38 NM orthodromic-distance 

apart (at FL360) with the Shanghai being S-SE of Beijing (numerical results are 

summarized in Table 2). The ZBAA orthodrome departure course of 153.084o and 

the ZSPD arrival course is 156.127o (see Table 2). The loxodrome constant course 

and distance are 154.689o and 594.45 NM respectively (only about 0.07 NM or 

about 426 ft longer). The vertex (Lat/Long) of the ZBAA to ZSPD GC-route is 

located outside of the arc segment at N69.73/E044.69.  

 

The first long-range route we discuss is the route between the SAEZ and 

ZBAA (Daidzic, 2014). The Orthodrome distance flying at 36,000 ft delivers 

distance of 10,433.26 NM. The initial outbound heading (from SAEZ) is 34.92o 
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and the final inbound heading (at ZBAA) is 142.11o with the northerly vertex of 

N61.97o at E053.20o longitude. The total change in heading is about 107o. The 

illustration of the GC route is shown in Figure 3. GC Mapper© oblate-Earth 

(WGS-84) calculator returned the geodesic distance within 2.3 NM of our 

orthodrome computations. The geodesic route overflies eastern parts of Brazil, 

crosses Atlantic ocean northbound and tracks parallel to the coast of western 

Africa, skimming N-W Europe and N-W portions of Russia and then after 

reaching vertex it “descends” over Mongolia to Beijing on SE headings.  

 

 Table 2 

Long-distance Loxodromic (L1-2) and Orthodromic (O1-2) routes at FL 360 

 

Route L1-2 [NM] L  O1-2 [NM] 1  2  
Vertex 

Lat. 

ZBAA-ZSPD 594.45 154.69 594.38 153.08 156.13 N69.73 

SAEZ-ZBAA 10,730.47 65.18 10,433.26 34.92 142.11 N61.97 

SAEZ-ZSPD 10,930.39 291.28 10,604.11 184.38 355.80 S86.41 

SBGL-RJAA 10,656.37 289.31 10,023.92 347.13 194.66 N78.15 

SEQM-WMKK 10,819.16 270.91 10,667.53 358.51 181.49 N88.51 

KSEA-FAOR 9,329.08 118.32 8,934.82 57.79 140.41 N55.10 

EGGL-YSSY 9,578.70 122.44 9,206.03 60.46 139.22 N57.19 

MMMX-WMKK 9,414.94 263.88 9,012.50 315.12 221.77 N48.29 

MMMX-VCBI 10,477.80 94.03 9,223.85 2.31 177.80 N87.82 

LQSA-KMSP 4,797.61 270.76 4,359.97 316.29 224.72 N60.10 

 

The rhumb-line distance SAEZ-ZBAA is 10,730.47 NM (Loxodrome is 

about 297.22 NM or 2.85% longer than Orthodrome) on a constant heading of 

about 65.180 and includes about 3,500 NM flight over the dangerous southern 

Atlantic Ocean. Rudimentary graphs were superimposed on a publically-available 

conformal Mercator projection image of the world as shown in Figure 4 

(Latitudes are unevenly spaced as ±15, ±30, ±45, ±60, and ±75 degrees). The GC 

(red solid line) and rhumb-line (blue solid line) routes are clearly discernable. The 

apparently shorter rhumb-line is quite deceptive due to stretching of the scale at 

higher latitudes on conformal Mercator projection. The difference between the 

GC route and the true Geodesic using GC Mapper is very small. 
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Figure 3. Great circle (geodesic) route SAEZ to ZBAA (EZE to PEK) on 

conformal cylindrical Mercator chart. Courtesy of GC Mapper. Maps generated 

by the Great Circle Mapper (www.gcmap.com) - copyright © Karl L. Swartz. 

 

 
 

Figure 4. GC route SAEZ to ZBAA on conformal cylindrical Mercator chart. 
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The long-range route from SAEZ to ZSPD is illustrated in Figure 5 using 

GC Mapper© and Mercator cylindrical projections. The same flight is partially 

also shown in Figure 6 using Polar Orthographic projection. In the case of SAEZ-

ZSPD, the shortest (orthodrome) distance at FL360 is over Antarctica (SP) at 

10,604.11 NM and a mere 200 NM short of antipodal distance. 

 

 

Figure 5. Geodesic route SAEZ to ZSPD on conformal cylindrical Mercator 

chart. Courtesy of GC Mapper. Maps generated by the Great Circle Mapper 

(www.gcmap.com) - copyright © Karl L. Swartz. 

 

The initial outbound heading from SAEZ is now almost straight south or 

about 184o, while the final inbound heading to destination ZSPD is about 356o. 

The vertex is very close to SP at -86.41o. The rhumb-line distance is 10,930.39 

NM at the constant heading of 291.28o (see Table 2) and involves diagonal flight 

over the entire Pacific Ocean. The GC Mapper returned the value of 10,580 NM 

(over surface) with the departure heading of 183.9o. None of the two SAEZ-ZSPD 

routes (GC or rhumb-line) are particularly friendly in terms of ETOPS procedures 

as they involve long flights over Polar Regions and oceans. What is very 

interesting is that while destinations ZBAA and ZSPD are very close to each 

other, the routes from SAEZ could not be more different. One reaches high 

northern latitudes, while the other goes almost straight over the South Pole (SP) 

and straight across Antarctica. 

 

If such a direct non-stop flight is ever planned it would be perhaps better 

in terms of safety and following the ETOPS procedures to follow similar route as 

in SAEZ-ZBAA route, i.e., fly over the South- and the North-America, passing 
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close to the North Pole (NP) and approach ZSPD on an almost straight south 

course. Such longer route would probably add another 1 ½ hour of flight, but 

there would be more options for deviations and alternates. Thus to have truly 

global range an airplane will have to have practical ground range exceeding half 

of the Earth circumference (e.g., 12,000 NM over ground) in which case the 

required air range would likely exceed 13,000 NM. 

 

 
 

Figure 6. SAEZ to ZSPD geodesic route on Polar Orthographic chart. Courtesy of 

GC Mapper. Maps generated by the Great Circle Mapper (www.gcmap.com) - 

copyright © Karl L. Swartz. 

 

 The next possible future ultra-long range flight specifically considered is 

from Rio de Janerio (Brazil) SBGL (GIG) to Tokyo Narita in Japan RJAA (NRT). 

The route is shown in Figure 7 on Mercator chart and in Figure 8 on Polar 

orthographic chart using GC Mapper©. According to Table 2’s summary of 

several ultra-long routes, we have the rhumb-line distance of 10,656 NM on a 

straight W-NW course of 289.31o while the GC distance with average cruise 

altitude of 36,000 ft delivers 10,023.92 NM. The differences between the GC and 

rhumb-line is quite significant at about 632.45 NM. Our calculator returned 

347.13o for outbound and 194.66o for inbound course. Our calculations estimated 

vertex at +78.15o latitude (North). We also utilized Onboardintelligence.com 
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(Onboard Marine navigation software) calculator and obtained 10,001.52 NM for 

Orthodrome (over surface) with the departure heading of 347.4o and the inbound 

course into Narita of 194.4o. Its vertex calculations resulted in +78°24'.15 latitude 

and -138°09'.22 longitude. Similar results were also obtained using the GC 

Mapper©, which returned 10,004 NM and 347.5o geodesic over the reference 

ellipsoidal surface (WGS-84).  

 

 
 

Figure 7. GC (geodesic) route SBGL to RJAA (GIG to NRT) on conformal 

cylindrical Mercator chart. Courtesy of GC Mapper. Maps generated by the Great 

Circle Mapper (www.gcmap.com) - copyright © Karl L. Swartz. 

 

The last route we specifically discuss is also the longest flight of all 

identified here between the existing major airports. In Figures 9 and 10 the route 

between Quito (Ecuador) and Kuala Lumpur (Malaysia) or SEQM to WMKK 

(UIO to KUL) are shown respectively on the Polar Orthographic and the Mercator 

charts. Both cities lie almost exactly on Equator and are very close to be 

antipodal. Our navigation calculator returned the value of 10,667.53 NM for GC 

distance flying average altitude of 36,000 ft with outbound initial heading of 

358.510o and inbound destination heading into WMKK on 181.492o heading. The 

vertex calculated is at Lat/Long +88.5099o/-169.850o and which is only about 90 

NM from the NP. Detailed listing of the route is given in Appendix F. 

 

The rhumb-line calculations returned the distance of 10,819.16 NM at a 

constant heading of 270.91o. The GC Mapper returned the value of 10,644 NM 

for the shortest (geodesic) distance over oblate Earth. However, that is surface 

distance and if we add about 18 NM for additional air distance we arrive at 10,662 
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NM which is within 6 NM (0.052%) of our calculations. GC Mapper returned a 

value of 358.8o for outbound course from departure point SEQM, which is within 

18 angular minutes of our calculations. The Onboardintelligence.com calculator 

returned the value of 10,644.04 NM for the Orthodrome and 10,812.68 at 270.9o 

for the Loxodrome. The GC departure course calculated is 360o and destination 

inbound course is 181.2o. Vertex is at N88°47'.3 and W168°21'.3. Due to actual 

oblateness of the Earth, the shortest distance between two locations close to 

Equator and on opposite meridians very likely will go over the NP or the SP.  

 

  
 

Figure 8. Geodesic route SBGL to RJAA (GIG to NRT) on Polar Orthographic 

chart. Courtesy of GC Mapper. Maps generated by the Great Circle Mapper 

(www.gcmap.com) - copyright © Karl L. Swartz. 

 

A familiar example of long-range route within continental US is flight 

from KJFK (New York) to KLAX (Los Angeles). Our calculations have been 

verified against Phillips’ (2004). A GC route at FL360 is 2,148.87 NM long with 

the outbound course of 273.858o and the KLAX inbound of 245.892o. The vertex 

is reached shortly after departing KJFK westbound. The rhumb-line distance is 

2,169.77 NM at constant 259.324o TC and just about 21 NM longer than the 

Orthodrome. Many examples of long-range flights (see Table 2) do not show very 

large difference between the GC and rhumb-line distances – often less than 5% 

(except MMMX-VCBI). In fact, the difference is largest when flying between two 

points of similar mid-latitudes. For example, KMSP (Table 1) and Urumchi 

(Ürümqi) Diwopu International Airport in China, Xinjiang/Uyghur province 

(ICAO: ZWWW, IATA: URC) with latitude +43.908o and longitude of +87.475o, 

are practically located on a meridian and its anti-meridian (longitude change of 
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179.3o). Both are located around the 44th parallel (like Sarajevo/LQSA). In fact 

the central angle (about 91.21o) of the two airports lies in an osculating plane 

slicing almost exactly over the NP. The orthodrome-arc length on the surface of 

the spherical Earth is 10,142.1 km (5,476.3 NM), while the Loxodrome will 

almost follow 44th parallel. The Loxodrome is about 14,244.6 km (7,691.5 NM) 

which is about 40.5% longer than the GC-arc. Rhumb-line flying will imply 

following straight East or West TC while the Orthodrome departure from KMSP 

is almost on a straight North TC. Flying at FL360 will add about 10 NM.  Flight 

LQSA to KMSP shows 9.1% difference between the GC and the rhumb-line.  

 

 
 

Figure 9. Geodesic route SEQM to WMKK (UIO to KUL) on Polar Orthographic 

chart. Courtesy of GC Mapper. Maps generated by the Great Circle Mapper 

(www.gcmap.com) - copyright © Karl L. Swartz. 

 

It must be said that GC distance calculations are very robust as they 

involve cosines which is an even function. On the other hand course calculations 

are fragile and considerable effort was made to make spherical-angles 
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transformation into Earth’s coordinates accurate under all conditions. All test 

routes evaluated at MSL showed excellent agreement with the available terrestrial 

spheroid geodesic calculators. However, these publically-available calculators are 

black-boxes with no insight to inner workings, plus they do not offer the ability to 

include altitude corrections. Our GC and rhumb-line courses and angles 

computations also showed excellent agreement with other calculators. Hence, we 

gained confidence in our navigation programs which can calculate almost any 

route on Earth with sufficiently high accuracy apart from the true antipodal 

distances for which the problem becomes undetermined on the spherical Earth. 

 

 
 

Figure 10. Geodesic route SEQM to WMKK (UIO to KUL) on conformal 

cylindrical Mercator chart. Courtesy of GC Mapper. Maps generated by the Great 

Circle Mapper (www.gcmap.com) - copyright © Karl L. Swartz. 

 

A common misconception when considering GC-route flying is that 

somehow since it is a curve on Mercator chart it should be approximated by 

straight line (secant) segments. As a matter of fact as long as the weight vector 

remains in the osculating plane no change of flight course is required for non-

rotating planet. In the absence of wind and GC trajectories, an aircraft only needs 

to assume the correct initial heading and continue with no rolling and/or yawing 

motion. GC arc is a geodesic with the projection on a tangential plane being a 

straight line and thus shortest distance. The geodesic curvature is zero. The effect 

of Coriolis force exists for rotating planet and will be discussed in a future 

contribution. It is in fact the loxodromic route that requires yawing motion to 

maintain constant heading on spherical Earth (see Figure C2). Loxodrome ends up 

being an infinite logarithmic spiral of finite length that winds around the pole. 
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 We are currently implementing IDL mapping capabilities using various 

Earth projections. An older licensed RSI’s IDL v.5.6 (2002) is being currently 

used. Generally, IDL (newest v.8.6 by Harris Geospatial) has very rich and 

powerful mapping and plotting capabilities and can work as standalone program 

or as a graphic interface to modern Fortran, Matlab, and Basic programs. 

Calculations of segment PNR and PET for given aircraft model in arbitrary wind 

conditions (Daidzic, 2016a) are easily implemented. Also all-engines-inoperative 

gliding performance with arbitrary wind can be added for routes. Some of the 

calculated routes from Table 2 can be easily verified manually using the basic 

Orthodrome and Loxodrome distance formulas given in Equations (2-4). More 

improvements and testing will be conducted in the future on our AARNAVTM air-

navigation calculators adding more graphic features and capabilities and 

enhancing performance. GC and rhumb-line waypoints can be calculated or for 

equidistant arc segments or for constant longitude increments (Appendix F). 

Loxodrome, GE, and true geodesic calculations on reference WGS-84 ellipsoid 

will be added to GC and loxodrome calculations on spherical Earth. 

 

Short lines on spherical Earth 

 

First we test polar short-distance calculators based on the planar 

projections. As an example we took two points on Antarctica close to the SP - 

point 1 has coordinates S80o 20’ 30.5000” and E100o 30’ 40.3456”, while point 2 

has coordinates S85o 10’ 44.7575” and E150o 45’ 20.0000”. The exact GC 

inverse-cosine and inverse haversine formulas both returned the value of 

453.43222 NM (839.75647 km), while the Law-of-Cosine flat-Earth 

approximation (Equation D2) returned the value of 453.1708446 NM. The 

difference is less than 1,590 ft or about 484 m (0.058% error), which is excellent 

accuracy for distance of about 840 km.  

 

Several right-angle very short-distance calculations (Equation D4) and 

comparison with the true GC formulas were also conducted. Mankato regional 

airport (KMKT) has coordinates (N44o 13’ 22.0000” and W093o 55’ 09.5000”). A 

close by Le Sueur (12Y) airport is almost straight true North (TN) with the 

coordinates (N44o 26’ 27.1971” and W093o 54’ 57.0502”). Our GC calculators 

using inverse-cosine and inverse haversine formulas (Equations 2 and 3) both 

returned distance of 13.118826 NM, while the planar approximation (Equation 

D4) returned the value of 13.09708846 NM, which is only about 132.16 ft (40.28 

m) difference. In another example, for two points close to equator with the change 

of latitude of 10 arc-minutes (about 10 NM) symmetric across the equator and the 

difference of longitude of 10 arc-minutes, the exact formulas return equal distance 
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of 14.17603 NM (26.254 km), while the flat-Earth approximation returns the 

value of 14.15167 NM, which is only 148.08 ft or less than 0.17% error. 

 

On the other hand if we use KMKT as departure airport again and utilize 

the flat-Earth approximation to calculate distance to a nearby Waseca airport 

(KACQ), which is just about 9 arc-minutes to the south and 22 arc-minutes to the 

East at about 44th parallel, we obtain “straight” distance of 23.753 NM. This is 5+ 

NM (actually 33,867 ft) longer than the exact inverse-cosine or haversine GC 

formula delivering about 18.183 NM and thus unacceptably inaccurate. The short-

line distance formula given with Equation (D4) is acceptable only up to about 15 

NM (28 km) in equatorial and lower mid-latitudes. Calculations were performed 

utilizing 32 and 64-bit floating point arithmetic with MS Excel, True Basic v. 5.5 

and v.6, Fortran 90/95/2003/2008, and Matlab R2015a (8.5) high-level computer-

language codes. We anticipate that a more user-friendly and thoroughly tested 

program version will be offered in the future for free to all users in public domain. 

 

Conclusions 

 

Global range air navigation implies flying non-stop from any airport to 

any other airport on Earth. That requires airplanes with the operational air range 

of at least 12,500 NM. Air transportation economy requires shortest distance 

flights which in the case of spherical Earth are Orthodrome arcs. Rhumb-line 

navigation has no practical application in long-range flights but has been used as 

comparison for historical reasons. Great Circle routes between many major 

international airports have been calculated and waypoints presented for both GC 

and rhumb-line routes. Many future global-range flights may be prohibited due to 

polar crossings and/or long flights over open water with not many alternate 

landing sites available. Additionally, we summarized short-lines navigation theory 

with particular emphasis on Polar Regions and very short distances elsewhere on 

the Earth. Working equations and algorithms have been coded into several high-

level programming languages. Considerable testing of programs have been 

conducted and compared with the publically-available geodesic computations 

over the surface of the terrestrial reference ellipsoid. Distance computations 

usually were less than 0.3% in error, while the angles and courses were mostly 

within few angular minutes. Accurate database of about 50 major international 

airports from every corner of the world has been constructed and used in testing 

and route validation. Further development will include computations of gliding 

distances from any altitude under arbitrary winds depending on the type of aircraft 

and the calculations of PET and PNR for every segment of the route and arbitrary 

wind conditions. A user-friendly machine-independent program version for global 

navigation with many flight planning features will be posted to public domain. 
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Appendix A 

 

Fundamental geometrical and topological properties of spheres 

 

In this section fundamental properties of spheres will be given. Basic familiarity 

with classical differential geometry and topology (Goetz, 1970; Kreyszig, 1964; 

Lipschutz, 1969; Oprea, 2007; Struik 1988; Widder, 1989; Wrede, 1972) is 

required. Euclidian geometry is assumed. A spherical coordinate system used in 

geodesy and terrestrial (air, maritime, etc.) navigation is somewhat different from 

the conventional used in mathematical physics (Tikhonov and Samarskii, 1990). 

For the homogeneous smooth sphere of constant radius for which the center of 

mass (barycenter) is in the geocenter, we have: 

 









22

sinRzsincosRycoscosRx
       (A1) 

 

We designated ϕ as latitude (geocentric and geodetic) measured from 

equatorial plane, and λ is latitude. Spherical coordinates can be represented 

inversely in terms of Cartesian coordinates: 

 

      

RzRRyRRxR

xytanyxztanRzsinzyxR
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  12211222 
       (A2) 

 

The first fundamental form of differential geometry specifies positive 

definite invariant or arc length of the surface given parametrically as 

    ,xv,uxx iii   (Equation A1): 
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   (A4) 

 

For a sphere given in spherical coordinates u   and v  (Equation 

A1), we obtain: 
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Where, 

 


222 0 cosRGFRE  xxxxxx       (A6) 

 

For a sphere we thus have: 

 

 22222  dcosdRddds  xx          (A7) 

 

A vector product of parametric tangent lines is: 
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An important property for a sphere (Struik, 1988) that is easily derived 

from vector calculus and will be often used is: 
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      (A9) 

 

If the curvilinear surface coordinates are further a function of a single 

parameter, i.e.,     tv,tuxx ii  , the arc length is (Goetz, 1970; Kreyszig, 1964; 

Lipschutz, 1969; Oprea, 2007; Struik 1988; Widder, 1989):  
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Or we can write for a sphere: 

 

28

International Journal of Aviation, Aeronautics, and Aerospace, Vol. 4 [2017], Iss. 1, Art. 2

https://commons.erau.edu/ijaaa/vol4/iss1/2
DOI: https://doi.org/10.15394/ijaaa.2017.1160



 
 
















































2

1

2

1

21
2

21
2 
















dG

d

d
Ed

d

d
GEs       (A11) 

 

For a curve coinciding with a meridian (line of longitude) and measuring 

from SP to NP we have 0d , and: 
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For an arbitrary line of latitude ( 00   d, ), we obtain: 
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Small circles will have progressively shorter arcs of length until respective 

poles where this becomes zero. The NP and the SP are the singular points on the 

sphere (Struik, 1988). 

 

The local angle between vectors xd  and x  parallel to a tangent plane at 

an arbitrary point on sphere is (Lipschutz, 1969; Struik 1988):  

 

   

 

   

s

v

ds

dv
G

s

u

ds

dv

s

v

ds

du
F

s

u

ds

du
E

vGvuFuEdvGdvduFduE

vdvGudvvduFuduE

vudvdu

vudvdu

d

d

xdx

xdx
cos

vuvu

vuvu

ii

ii


































































21222122 22

xxxx

xxxx

xx

xx

   (A12) 

 

For the tangent lines on the parametric curves (graticule – network of lines 

of latitudes and longitudes) the above expression implies that the scalar product 

must be zero as they are orthogonal as required by chart conformality. Indeed, 

using Equation (A4), we obtain the condition of orthogonality of parametric lines: 

 

  00   dGddFdExx  
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The angle between the parametric lines ( arbitrary0const. dv,du,u  ) 

and ( arbitrary0const. u,v,v   ) and using Equation (A12), results in: 
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Clearly, the coefficient F must be zero for the cosine angle to be zero and 

sine to be one resulting in the right angle solution. The unit vector normal on the 

parametric surface  v,uxx   at an arbitrary point using Equations (A8) and (A9) 

is (Lipschutz, 1969; Struik 1988; Widder, 1989):  
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By substituting partial derivatives for a sphere, the surface unit normal 

becomes: 

 

   sin,sincos,coscos N        (A14) 

 

The surface normal thus points toward the center in every point of the 

sphere. The second fundamental form of differential geometry specifies tangent 

plane and the normal on the surface and is invariant to parameter transformation 

just as the 1st fundamental form is (Lipschutz, 1969; Struik 1988; Widder, 1989): 
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In the case of sphere, we obtain: 
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where, NxNxNxNxNx  vvvvuvuuuu gfe  
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Finally, we obtain: 

 


20 cosRgfRe  NxNxNx     (A17) 

 

The normal curvature on the surface is given as (Goetz, 1970; Lipshutz, 

1969; Struik, 1988): 
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In the case of sphere, we obtain: 
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This proves that the normal curvature of sphere lies in an osculating plane 

and is a constant. Since the fundamental forms are proportional, every point on a 

sphere is umbilical or naval point (Struik, 1988). The curvature vector is: 

 

  Nkkkt  gngndsd          (A20) 

 

It can be easily shown that geodesics are lines of shortest distance with an 

important property that geodesic curvature is zero (Struik, 1988). For deeper 

understanding of geodesics and its various applications (e.g., general theory of 

relativity) consult Goetz (1970), Kreyszig (1964), Lipschutz (1969), Oprea, 2007, 

Struik (1988), Wrede (1972), etc. The important mean and Gauss (total) 

curvatures are defined as (Lipschutz, 1969; Struik, 1988): 
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          (A21) 

 

All the points on the sphere are thus elliptic umbilical points. Gauss 

curvature is an invariant property of the surface. The surface of the sphere can be 

found calculated from the 2nd Fundamental theorem:  
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      (A22) 

 

Since the spherical-average terrestrial radius is 6,371 km, the surface area 

of the perfectly smooth planet Earth is about 510 million km2 or 197 million SM2 

(148.7 million NM2). Land mass is about 30% or 150 million km2 or about 58 

million SM2 (43.73 million NM2). Five spatially largest countries: Russia 

(17,075,200 km2), Canada (9,984,670), USA (9,826,630), China (9,596,960), and 

Brazil (8,511,965) cover almost 55 million km2 or more than 1/3 of the entire land 

mass. 

 

The volume of the sphere is obtained by integrating infinitesimal volume 

in spherical coordinate system: 
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   (A23) 

 

The volume of spherical Earth is accordingly 1.0832 x 1021 m3. The mass 

and average density of Earth is easily calculated from the gravitational data. 
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Appendix B 

 

Geodesics on a sphere – Variational calculus problem 

 

Geodesic lines or geodesics are defined as lines (curves) of shortest length on any 

surface (Greenwood, 1997; Lanczos, 1986; Lass, 2009; Smith, 1998; Struik, 

1988). Struik (1988) also provides a more general definition of geodesics as 

curves of zero geodesic curvature. For a sphere this simply means that geodesics 

are “straight” lines with the entire curvature in the osculating plate and no 

curvature in the rectifying plane. This also implies absence of any torsion for 

Orthodrome curves on sphere (Struik, 1988). For example, straight lines are 

geodesic curves on planar surfaces and that can be easily mathematically proven 

(Smith, 1998). Quite generally, geodesic lines can be derived using the Euler-

Lagrange (E-L) equations of calculus of variations (Fox, 1987; Greenwood, 1997; 

Lanczos, 1986; Lass, 2009; Smith, 1998; Weber and Arfken, 2004). On spheres, 

the geodesic lines are GCs (Greenwood, 1997; Lanczos, 1986; Lass, 2009; Smith, 

1998; Weber and Arfken, 2004). GC distances are also called Orthodromes 

(Weintrit and Kopacz, 2011) GEs are approximately geodesic lines on ellipsoids 

of revolutions (Bowring, 1984; Sjöberg, 2012; Tseng and Lee, 2010; Williams, 

1986).  

 

Although, GCs are shortest lines (geodesics) on a perfect sphere, the 

tangent (heading) is constantly changing in spherical coordinate system, which 

historically presented a problem for maritime and long-range air navigation. As a 

matter of fact, Riemann’s geometry can be interpreted on a sphere by taking GCs 

as straight lines (Struik, 1988). In Euclidian geometry the length of the parametric 

curve between two points is: 
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Using the first fundamental form of differential geometry for a sphere 

(Goetz, 1970; Kreyszig, 1964; Lipschutz, 1969; Oprea, 2007; Struik, 1988) or by 

direct differentiation from Equation (B1), the length of a curve along the spherical 

surface is a parametric curve where the longitude is a function of latitude 

(Equation A10): 
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The integral given by Equation (B2) belongs to a class of (incomplete) 

elliptic integrals of the second kind (Abramowitz and Stegun, 1984; Byrd and 

Friedman, 1954; Dwight, 1961; Jahnke and Emde, 1945; Spiegel and Liu, 1999): 
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dcosk,kE  
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Elliptic integrals originated in problems of rectification of elliptical orbital 

arcs. In general, they do not have analytical (closed-form) solution (Byrd and 

Friedman, 1954). The goal is now to find a curve (out of infinitely many possible) 

on a sphere with λ=λ(ϕ) so that length L(λ) is minimized between the starting P1 

(ϕ1, λ1) and the end point P2 (ϕ2, λ2). Calculus of variations was developed to 

precisely deal with these kind of problems. For more details on variational and 

optimization methods/principles and its applications in physics and engineering a 

reader could consult references used here, such as, Fox (1987), Greenwood 

(1997), Lanczos (1986), Smith (1998), and Weber and Arfken (2004). 

 

The variational problem of finding the shortest distance (geodesic) on a 

spherical surface between two known points is formally known as an inverse or 

2nd geodesic problem (Bomford, 1983; Vaníček and Krakiwsky, 1986). Thus, 

Equation (A4), can be formally transformed into variational problem involving 

functional L(λ) (Fox, 1987: Smith, 1998): 

 

      
 







 



   d

d
wwcosRw,Fd,FL 221

1

0

   (B3) 

 

Here, a particular curve λ(ϕ) resulting in shortest length L defines a 

geodesic on a spherical surface, i.e., GC or Orthodrome with two ends anchored 

in known starting and ending points. To solve this problem we use the powerful 

Euler-Lagrange equations (Fox, 1987; Greenwood, 1997; Lanczos, 1986; Lass, 

2009; Smith, 1998; Weber and Arfken, 2004): 

 

      
 

y
dx
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y

F

y

F
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d
x
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







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






0           (B4) 

 

When E-L equations are satisfied presents sufficient and necessary 

condition to make the following integral (functional) stationary (Lanczos, 1986): 
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            byaydxy,y,xFxyJ

b

a

,         (B5) 

 

The problem of geodesics on a sphere reduces to the following E-L equations: 

 

     
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



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
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





 ,F,F

d

d
          (B6) 

 

Since there is no direct dependence on longitude (meridian), i.e., 

0 F , the variational problem reduces to simple: 
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Using definitions from Equation (A5), we obtain: 
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w
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We can now extract unknown meridional dependence on latitude: 

 

 
.consta

acoscos

a

d

d
w 




22 
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Integrating Equation (A11) results in: 

 

  b
acoscos

da





  22 


         (B10) 

 

The analytic solution of this integral can be obtained by using several 

different substitution methods (Dym and Shames, 2013; Fox, 1987; Oprea, 2007; 

Smith, 1998). First, the integral in Equation (B10) will be transformed into using 

trigonometric relationship,  22 1 tansec  : 
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Introducing substitution (Oprea, 2007): 

 

 dseccdsec
a

a
dwtanctan

a

a
w 





 22

22 11
 

 

The integral in Equation (B11) becomes: 

 

  b
w

dw



  21

           (B12) 

 

Utilizing another substitution sinw   (Oprea, 2007) and then back-

substitution to the original variable for latitude, the integral in Equation (B12) 

becomes: 
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tana
sin 
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





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
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The geodesic on the circle is restricted (constrained) with the curve given 

parametrically (longitude as a function of latitude) as: 

 

   .constc,b,atanctan
a

a
bsin 


 

21
     (B14) 

 

The unknown constants “b“ and “c“ can be evaluated from the known 

anchor points P1 and P2 satisfying: 
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2
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1

1
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1

1





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bsin

tan

bsin
ctancsintancsinb





   

 

These are two simultaneous transcendental (nonlinear) equations that can 

be solved numerically for unknowns: b and c. Once the constants are known there 

is a unique (unless conjugate points) shortest curve (Orthodrome arc) that passes 

between two arbitrary points on the sphere. By expanding trigonometric functions 

in Equation (B14), we obtain: 

 

 sincbsincoscosbcossincos   

 

Using spherical coordinate system definitions from Equation (A1), we obtain: 
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00  zCyBxAczbcosybsinx        (B15) 

 

where, c
a

a
CbcosBbsinA 




21
. 

 

This is the special case of the general equation of the plane (Hall, 1968, 

Spiegel and Liu, 1999): 

 

0 DzCyBxA          (B16) 

 

 The plane described with Equation (B16) is passing through the center of 

the sphere P0 (0,0,0) and the two points (anchors) on the sphere, P1 (X1,Y1,Z1) and 

P2 (X2,Y2,Z2) implying D=0 (Bronstein and Semendjajew, 1989; Hall, 1968; Olza 

et al., 1974; Spiegel and Liu, 1999). The same final result was also obtained by 

Dym and Shames (2013), Fox (1987), Oprea (2007), and Smith (1998). This plane 

which intersects with the sphere forms GC or Orthodrome. For antipodal 

(conjugate) points there are infinitely many GCs. 

 

The radii for the two points P1 and P2 laying on the plane (Equation B16) 

in orthonormal Cartesian coordinate system have the direction cosines (Hall, 

1968, Spiegel and Liu, 1999): 
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The central angle (see also Figure B1) between the two radii for points P1 

and P2 belonging simultaneously to the intersecting plane and the surface of the 

sphere is:  

 

 


 0
2

212121
212121

R

zzyyxx
nnmmllcos     (B17) 

 

We have thus demonstrated that an Orthodrome is a section of a GC arc, 

which lies in the osculating plane intersecting the center of the sphere and is a 

geodesic line on a perfect sphere. Such intersecting plane can always be rotated so 

as to coincide with the equatorial GC (z=0) or a meridional GC for which x=0 or 

y=0 and for which the arc-length stays invariant. 
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Appendix C 

 

Great Circle navigation on a perfect sphere 

 

Let us use a spherical coordinate system with a traditional notions of latitude ϕ 

and longitude λ. For each angle of latitude there is also a corresponding angle of 

complementary latitude or co-latitude δ (often called polar distance). For a perfect 

homogeneous sphere the geocenter, geodetic (geographic) center, and barycenter 

are all in the same point. A schematic of a vector point on a smooth spherical 

surface in spherical coordinates is shown in Figure C1. The plane intersecting the 

sphere through the center and an arbitrary GC are shown as well. Transformation 

between the Cartesian coordinate system (x,y,z) with the orthonormal vector basis 

(i,j,k) and the spherical coordinates on a unit sphere is: 

 









22

sinzsincosycoscosx
        (C1) 

 

 
 

Figure C1. Vector representation in spherical coordinate system and the GC lying 

in an osculating plane intersecting the perfect sphere through its center. 

 

The unit vectors in the Cartesian coordinate system are orthonormal, 

independent, and form the basis in the Euclidian space: 

 

01  kjkijikkjjii  

 

A radius vector of an arbitrary point on sphere of radius magnitude R is: 
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R

sin

sincos

coscos

R ii 



 rr







          (C2) 

 

Two arbitrary points on a surface of a sphere with the latitude-longitude 

coordinates of constant radius are  111  ,,RP  and  222  ,,RP . Two radius-

vectors originating in a geometric center now define a plane and a central angle σ. 

A dot (inner or scalar) product of two vectors with known norm is: 

 

 cosRcos  2

2121 rrrr           (C3) 

 

Using Equation (C2) we obtain:  

 

  21212121

2

212121

2

21





sinsinsinsincoscoscoscosR

zzyyxxcosR



 rr
      (C4) 

 

This is the same result obtained previously (Equation B16). Using 

trigonometric addition formulas one obtains: 

 

   sinsincoscoscos            (C5) 

 

Substituting Equation (C5) into Equation (C4) results in: 

 

  212121  sinsincoscoscoscos          (C6) 

 

The central angle can be directly derived using the Law of Cosines of the 

spherical trigonometry (Bowditch, 2002; Bronstein and Semendjajew, 1989; 

Nielsen and Vanlonkhuyzen, 1954; Olza et al., 1974; Spiegel and Liu, 1999; 

Todhunter, 1886): 

 

  


 
2

212121 cossinsincoscoscos       (C7) 

 

Using familiar trigonometric conversions, the identical relationship as the 

one given by Equation (C6) is obtained. Taking the inverse of the cosine function 

(Equation C6 or C7), delivers: 

 

     

212121

1 coscoscossinsincos     (C8) 
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A third method to estimate the central angle is based on using the chord of 

the GC instead the arc itself. This method is computationally the most ineffective, 

and is introduced solely for academic completeness. The chord is a line segment 

in three-dimensional Euclidian space. Using spherical coordinates on a unit 

sphere given by Equation (C1), the chord vector components are: 

 

12

1122

1122







sinsinZ

sincossincosY

coscoscoscosX







          (C9) 

 

The norm (magnitude) of the chord and the central angle is: 

 

       







 

2
2 1222 C

sinZYXC CC     (C10) 

 

The radius vector for any point on the sphere is constant and the chord 

between two points form’s an isosceles triangle which is split in two symmetric 

right triangles (see Figure C1). The GC-arc length for the angle less than or equal 

1800 or π between two points P1 and P2 on the same plane on a surface of a sphere 

of constant radius R is thus: 

 

    

 coscoscossinsincosRRL 2121

1

21
     (C11) 

 

In practical calculations, we use northerly (N) latitudes as positive and 

southerly (S) latitudes as negative. The westerly (W) longitudes are taken 

negative, while easterly (E) are taken positive. It will be also necessary to convert 

latitudes and longitudes into real numbers (angular degrees) and then possibly 

also convert into radians if software implementations requires it. 

 

However, as pointed out by Sinnott (1984), the Orthodrome distance 

calculations for two points in proximity (e.g., closely spaced astronomical bodies 

on celestial sphere) using Equation (C8) may produce large errors due to the finite 

number of significant digits in discrete computations. Thus Sinnott (1984) 

suggests using the haversine formula, which was well known and used in the old 

navigational and astronomical tabular computations (Bowditch, 2002). The 

somewhat antiquated haversine and versine trigonometric functions have also 

been used recently in generalized wind-triangle computations and its effects on 

aircraft in cruise by Daidzic (2016a). We define haversine of an angle as 

(Daidzic, 2016; Dwight, 1961; Nielsen and Vanlonkhuyzen, 1954; Sinnott, 1984; 

Todhunter, 1886): 
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   

    1
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2 



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





 


 verscossin

cosvers
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Using the definition given in Equation (C9) it can be easily shown that 

(Nielsen and Vanlonkhuyzen, 1954): 

 

      212121   haverscoscoshavershavers     (C13) 

 

Again using Equations (C9) and (C10), the haversine (inverse haversine) 

formula for GC distance ( 2121   , ) expressed over inverse sine 

becomes: 
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
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
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sincoscossinsinR

haverscoscoshaverssinRRL

   (C14) 

 

Haversine expression is much more accurate for very short distances 

unless 64-bit floating-point arithmetic computations are used implementing 

Equations (C7) and (C8). However, the haversine formula fails when calculating 

Orthodromic distances for antipodal (conjugate) points on the sphere. The angle 

ambiguity is avoided by using the inverse tangent function (ATAN2) found in 

many software implementations (Basic, Fortran, Matlab, Excel) as the arctan 

(arcus-tangent) function is checked in all four quadrants. Using common 

trigonometric relationships we can convert inverse sine (arcus sinus) into inverse 

tangent function and write for Orthodrome’s arc central angle: 

 

   

    


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






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
 






haverscoscoshavers

haverscoscoshavers
tan

21

211

1
     (C15) 

 

Equations (C11), (C14), and (C15) are working equations for Orthodrome 

calculations between two non-conjugate points on the spherical Earth. For very 

short distances, haversine Equation (C13) is recommended, while for almost 

antipodal, inverse-cosine Equation (C11) should be used. Very short flights are 

mostly following constant-heading rhumb-lines and the possible error caused by 

implementing Equation (C11) is almost never encountered in air navigation. An 

average error of about 0.5% exists when using Orthodrome versus geodesics and 

GEs on terrestrial reference ellipsoid. The exact error varies and can be somewhat 

smaller or larger depending on the exact route. For a 10,000 NM non-stop flight 
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one can expect an error typically of about 30-50 NM (corresponding to 4-6 

minutes in high-altitude high-subsonic cruise flight), which is acceptable for most 

applications considering all other uncertainties. To reduce distance errors to 

0.05%, or less, GE on oblate ellipsoidal Earth approximation is recommended 

(Bowring, 1984; Sjöberg, 2012; Tseng and Lee, 2010). Accurate geodesic 

distances from few centimeters to 20,000 km on WGS-84 reference ellipsoids can 

be calculated using the well-known iterative algorithm of Vincenty (1975) and 

Karney (2013), but for air navigation purposes this is hardly needed.   

 

 To calculate all (or arbitrary many) waypoints on the GC, we use the 

normal vector on the osculating plane in which GC lies. Using the definition of 

the vector (or cross) product, we obtain the vector normal as (Ayres as 

Mendelson, 2009; Bronstein and Semendjajew, 1989; Hall, 1968; Olza et al., 

1974; Wolper, 2001): 
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where, 

 

jikikjkjikkjjii  0  

 

After complicating vector algebra using Equation (C2), we obtain for 

normal vector components: 
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      (C17) 

 

Since vector normal is perpendicular to all points lying on the plane, 

including the points that are common to GC, then for an arbitrary vector point on 

an Orthodrome, we write the condition for perpendicularity of vectors: 

 

0 zNyNxN zyxrN         (C18) 

 

By substituting the spherical coordinates from Equation (C2), we obtain: 
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Thus any point on a GC segment must satisfy Equations (B15) and (C19). 

After substituting Equation (C17) into Equation (C19), we obtain latitude on a GC 

for an arbitrary longitude (taken between the starting and ending longitudes): 
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The heading (TC) is constantly changing on GC route (unless on 

meridians or equator). This is due to convergence of meridians (  sin ) 

toward the poles which can be observed in Figure C2. Small circle radii decrease 

with the cosine of latitude to become zero at the poles (see Equation A10 and its 

corollaries). Also shown in Figure C2 is Loxodrome, which is curving toward 

nearest pole. As a matter of fact, the Loxodrome would be spiraling infinitely 

around the pole, but has a finite length. 

 

 
 

Figure C2. Gnomonic projection depicting Orthodrome and Loxodrome. Not to 

scale. 
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Using the Law of Sines in spherical trigonometry (Bronstein and 

Semendjajew, 1989; Danby, 1962; Nielsen and Vanlonkhuyzen, 1954; Olza et al., 

1974; Spiegel and Liu, 1999; Todhunter, 1886), we can write: 
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The starting and ending (final) true courses (heading or bearing) are: 
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Unfortunately, this simple relationship does not resolve angle ambiguity of 

inverse-sine and is quite dangerous to implement trivially. But the TC information 

can be also obtained using the Cosine Law of spherical trigonometry (Danby, 

1962; Nielsen and Vanlonkhuyzen, 1954; Todhunter, 1886), resulting in: 
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     (C23) 

 

For numerical accuracy and resolving the angle ambiguity using periodic 

trigonometric functions it is always better to use inverse-tangent function which 

in software implementation is typically coded as ATAN2(y,x) or similar (in True 

Basic an intrinsic function ANGLE (x,y) is used). Quadrants are shown in Figure 

C3. In terms of inverse tangent function by combining Equations (C22) and (C23) 

and doing basic trigonometric transformations, one obtains (see Figures C2 and 

C3): 
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    (C24) 

 

Utilizing the Law of Sines, we can also find the very important point along 

GC route called the vertex (Jeppesen, 2007; Underdown and Palmer, 2001; 

Wolper, 2001). Vertex is the point of highest latitude (N or S) for which the 
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instantaneous TC is equal to 90 o or 270o and is illustrated in Figure C3 together 

with the GC segments. Using the Law of Sines as given in Equation (C21), we can 

write from the second and third equality: 
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Figure C3. The location of vertex on GC-arc routes using the polar gnomonic 

projection. Not to scale. 

 

This expression is sometimes called Clairaut’s relation or theorem (Struik, 

1988), but for spheres it actually comes originally from many Arabic and 

Iranian/Persian scholars in the period from 9th to 13th century, such as, Al-Jayyani 

and Nasir al-din al-Tusi (Struik, 1987) who, by-the-way, have fully developed 

planar and spherical trigonometry. Equation (C25) is valid for any two points on a 

GC. It will also be valid for the point where the GC crosses equator (going N or 

S). Since the latitude at the equator is 0o, and the TC at vertex is   12 sin  or 

  123 sin , we may write: 

 

vertexeq coscossincossinsin   2211       (C26) 
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The latitude (N or S) of the vertex is thus: 
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A GC which is not an equator or meridian (with anti-meridian) will have 

two vertices (“higher” and “lower” or N and S). The longitude of the vertex is 

shifted by 90o from the longitude at which GC crosses Equator. The longitude of 

the vertex can be easily derived and yields: 
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We can easily prove the relationship between the vertex and Equator’s 

(Eq) crossing longitudes by using: 

 

 
vertexvertexEqEq tancostan            (C29)  

 

All vertex geometric properties can be derived using Napier’s rules of 

right-angled spherical triangle (Bowditch, 2002; Nielsen and Vanlonkhuyzen, 

1954; Olza et al., 1974; Todhunter, 1886). Since Equator is excluded as a GC 

route and has undefined vertex it must be 0vertextan  . On the other hand, we 

have 0Eqtan  . Hence the solution is:  
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Finally, we have defined and derived all working equations necessary for 

GC route computations on spherical Earth. In general, if the Orthodrome route is 

along the equator or any meridian (which are GCs on spherical Earth) then the 

problem is trivial and many of the here derived equations will fail. For example, 

vertex is undefined for the GC along the Equator or any meridian. However, the 

TCs are then simply equal to 0o/180o (along any meridian) or 90o /270o (along 

Equator) and the Orthodrome is equal to change in longitude multiplied by the 

spherical Earth radius (6,371 km) when along equator. Similar reasoning will 

apply for any meridian and its anti-meridian.  

 

 

 

 

46

International Journal of Aviation, Aeronautics, and Aerospace, Vol. 4 [2017], Iss. 1, Art. 2

https://commons.erau.edu/ijaaa/vol4/iss1/2
DOI: https://doi.org/10.15394/ijaaa.2017.1160



 
 

Appendix D 

 

Short distance Great Circle navigation on a perfect sphere 

 

As mentioned previously the cosine-formula for GC (Equation C8) fails for very 

short arcs. While mathematically exact, the problem occurs with the finite number 

of digits representation as was illustrated by Sinnott (1984). Essentially for 

angular distances of less than 1 arc-minute it is better to use haversine formula 

(Equations C14 and C15) although modern 64-bit floating point arithmetic’s can 

push the envelope to less than 1 arc-second. Such small angular distances have 

important astronomical, but practically no air navigation applications. 

 

For short distances on Earth (around 20 km or less), it is acceptable to 

neglect Earth’s spheroidal shape and utilize planar-trigonometry. Here, we will 

distinguish two special cases (1) Polar-coordinates flat-Earth formula used with 

polar azimuthal projections for high latitudes, and (2) planar projections using 

simple Pythagoras theorem (Euclidian space). Close to the geographic poles (NP 

or SP), the polar projections (De Remer and McLean, 1998; Jeppesen, 2007; 

Struik, 1988; Underdown and Palmer, 2001) will result in meridians being 

represented as radials coming out of poles, while the lines of latitude are 

concentric circles with separation distance between them changing depending on 

the type of projection. The polar stereographic azimuthal projections is illustrated 

in Figure D1. Polar gnomonic would be very similar, but the distance between the 

lines of latitude will be increasing rapidly (Equator is in infinity). Orthographic 

projection has center of projection in infinity (Figure D2). The lines of latitude are 

decreasingly spaced concentric circles. Conjugate hemisphere is not represented. 

 

 
 

Figure D1. Polar stereographic azimuthal projection of Earth. Not to scale. 
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Figure D2. Polar orthographic azimuthal (plane) projection of Earth. Not to scale. 

 

Polar-coordinates azimuthal projection formula originates from the Law of 

Cosines of planar trigonometry (Olza et al, 1974; Spiegel and Liu, 1999) as 

illustrated in Figure D3: 
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Figure D3. Polar azimuthal gnomonic projection with polar coordinates and 

rectangular azimuthal projection for short-distance computations. 

 

Substituting co-latitudes (polar distances) with geocentric latitudes, we 

obtain for the central angle and the chord distance approximating GC arc: 
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The closer the straight-line course in polar azimuthal projection is to the 

poles the more accurate the approximation is. We can also derive TCs at points 1 

(departure) and 2 (destination) using the same law-of-cosines: 
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A simple right-angle approximation (Pythagoras theorem) can be used for 

lower latitudes and very short distances:  
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Essentially the convergence of the meridians and the curvature of the 

parallels is neglected. A comprehensive analysis of the deviation from the various 

GC formulas was not conducted as this presents a significant effort in itself. A 

somewhat improved oblique stereographic azimuthal projection short-distance 

GC that partially takes into account convergence and latitude is: 
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Appendix E 

 

Rhumb line navigation and the Loxodrome 

 

Maintaining constant angle (headings, courses, bearings) in relationship to 

terrestrial meridians is called rhumb-line navigation. Rhumbs are part of curves 

called Loxodromes. Rhumb line navigation does not deliver shortest distances on 

spherical or spheroidal Earth. A Loxodrome is a very interesting curve that for 

any heading other than North-South and East-West (coincides with Orthodromes) 

ends up spiraling around the NP and SP (Alexander, 2004; Lipshutz, 1969; Struik, 

1988). Loxodrome is a straight line on a Mercator cylindrical conformal 

projection. For example, on a polar stereographic conformal projection a 

Loxodrome becomes a logarithmic spiral (Lipshutz, 1969; Struik, 1988; 

Alexander, 2004) about respective poles. Conformal Mercator cylindrical chart 

provides for uniform stretching throughout the chart (N-S and E-W) resulting in 

preservation of local angles (conformality) delivering isotropic Representative 

Fraction (RF) or scale. The local and the total stretching from the Equator on 

spherical Earth is expressed mathematically as: 
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The method of calculating total stretching in the medieval time was de-

facto numerical integration and was referred to by Edward Wright as “perpetual 

addition of Secants” (Alexander, 2004). Naturally for Mercator cylindrical 

projections with the line of contact coinciding with the Equator, the poles 

(singular points on sphere) cannot be represented as the total stretching goes to 

infinity. One could use oblique or transverse cylindrical projections instead to 

depict poles (De Remer and McLean, 1998; Jeppesen, 2007; Underdown and 

Palmer, 2001).  

 

Using Equation (A11) with one vector being collinear with the lines of 

longitude ( 0  .,const ), while the other represents Loxodrome on a 

sphere, one obtains: 
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Using the first fundamental form for sphere this can be written as: 
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Integrating Equation (E3), we obtain: 
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And finally using Equation (E1): 
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This leads to a constant course or bearing between two points connected 

by a Loxodrome on Mercator chart: 
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Here, M’s are called meridional parts (mer-parts) for respective latitudes 

(Williams, 1950). Loxodromic distance can be easily calculated using the 

knowledge of differential geometry (Lipshutz, 1969; Struik, 1988). Employing 

Equation (A10), the arc-length of Loxodrome part becomes: 
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Since, 
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As the TC angle (measured from TN) approaches 90o (but not 90o itself) 

the Loxodrome length sharply increases. Kos et al. (1999) obtained similar result 

utilizing co-latitudes and using similar differential geometry arguments. However, 

by not using absolute value of co-latitude differences their Loxodrome distance 

can become negative. Alexander (2004) derived Loxodrome distance using: 
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where from Equation (E1): 
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A practical expression for constant TC (bearing) rhumb line navigation 

between two points on spherical Earth is now: 
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One has to be careful when the Loxodrome is crossing Greenwich anti-

meridian or approximately the International Date Line (IDL). Conformal 

Mercator chart can be easily constructed by using X and Y coordinates as (Struik, 

1988): 
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Loxodromes on an ellipsoidal Earth can be also easily calculated in which 

case the stretching has to include the eccentricity (Alexander, 2004; Bennett, G. 

G., 1996; Williams, 1950). The latitudes of the corresponding mer-parts are: 
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Although the Loxodrome is a curve spiraling infinitely around the SP and 

the NP, the distance is always finite except for angle of 90o (cos π = 0): 

 

  






 0

80010
NM

cos

,

cos

R
L NPSP       (E11) 

 

 

 

 

52

International Journal of Aviation, Aeronautics, and Aerospace, Vol. 4 [2017], Iss. 1, Art. 2

https://commons.erau.edu/ijaaa/vol4/iss1/2
DOI: https://doi.org/10.15394/ijaaa.2017.1160



 
 

Appendix F 

 

SEQM to WMKK route printout 
 
DATE: 20161213 
TIME: 08:42:40 
 
            Air Navigation Solutions - Orthodromes and Loxodromes on spherical Earth ver 7.2 
 =================================================================== 
 
            Author: Dr. Nihad E. Daidzic, 12/2016, All rights reserved 
            AARNAV Calculator created using True Basic ver. 5.5 
 
            Note: Latitudes: N(+), S(-); Longitudes: E(+), W(-) 
            Note: All true courses (TC) are geographic 0-360 angular degrees 
 
            Route: SEQM to WMKK 
 
            Route: Quito, Pichincha, Ecuador   to   Kuala Lumpur, Selangor, Malaysia 
            ********************************************************************************** 
 
                                                               LATITUDE      LONGITUDE   QUADRANT 
 
Departure   (P1): ICAO, Lat, Long, (Quadrant): SEQM   -00.1133320    -078.3586100      (3) 
Destination (P2): ICAO, Lat, Long, (Quadrant): WMKK  +02.7455780  +101.7099170      (1) 
 
Shorter change of longitude = 179.931 [deg] (must be less than 180 deg) 
Change of latitude =   2.859 [deg] 
 
Central Angle = 177.367 [deg] 
 
Crossing Equator: YES   Crossing Prime Meridian: NO   Crossing IDL or ±180 deg E/W: YES   Nearest Pole: NP   
Hdg: W st 
 
Altitude [ft] = 36,000 
 
Orthodrome (Great Circle arc) Route is: 19,756.26  [km] or 10,667.53 [NM] long 
 
SEQM Orthodrome Departure Course [deg] is 358.510 
WMKK Orthodrome Arrival (Final) Course [deg] is 181.492 
 
Vertex Lat: NORTH +88.5099 [deg] 
 
Loxodrome Route is 20,037.09 [km] or 10,819.16 [NM] long 
Loxodrome constant course is 270.911 [deg] 
 
Loxodrome is   151.63 [NM] or   1.421 percent longer than Orthodrome 
 
                        Orthodrome (O) and Loxodrome (L) Waypoints along respective route                      
============================================================ 
 Waypoint     O_Latitude [deg]   O_Longitude [deg]    L_Latitude [deg]    L_Longitude [deg] 
 
 WAYPT  1          -00.113332         -078.3586100           -00.113332          -078.3586100 
 WAYPT  2         +63.922014         -081.4082960           -00.064858          -081.4082960 
 WAYPT  3         +76.237071         -084.4579820           -00.016384          -084.4579820 
 WAYPT  4         +80.705837         -087.5076679          +00.032090          -087.5076679 
 WAYPT  5         +82.980161         -090.5573539          +00.080564          -090.5573539 
 WAYPT  6         +84.350390         -093.6070399          +00.129037          -093.6070399 
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 WAYPT  7         +85.262914         -096.6567259          +00.177511          -096.6567259 
 WAYPT  8         +85.912150         -099.7064119          +00.225985          -099.7064119 
 WAYPT  9         +86.396131         -102.7560979          +00.274458          -102.7560979 
 WAYPT 10        +86.769589         -105.8057838          +00.322932          -105.8057838 
 WAYPT 11        +87.065458         -108.8554698          +00.371405          -108.8554698 
 WAYPT 12        +87.304732         -111.9051558          +00.419877          -111.9051558 
 WAYPT 13        +87.501416         -114.9548418          +00.468350          -114.9548418 
 WAYPT 14        +87.665206         -118.0045278          +00.516822          -118.0045278 
 WAYPT 15        +87.803019         -121.0542138          +00.565294          -121.0542138 
 WAYPT 16        +87.919918         -124.1038997          +00.613765          -124.1038997 
 WAYPT 17        +88.019689         -127.1535857          +00.662236          -127.1535857 
 WAYPT 18        +88.105213         -130.2032717          +00.710706          -130.2032717 
 WAYPT 19        +88.178716         -133.2529577          +00.759176          -133.2529577 
 WAYPT 20        +88.241941         -136.3026437          +00.807646          -136.3026437 
 WAYPT 21        +88.296264         -139.3523297          +00.856115          -139.3523297 
 WAYPT 22        +88.342780         -142.4020156          +00.904583          -142.4020156 
 WAYPT 23        +88.382367         -145.4517016          +00.953050          -145.4517016 
 WAYPT 24        +88.415727         -148.5013876          +01.001517          -148.5013876 
 WAYPT 25        +88.443421         -151.5510736          +01.049983          -151.5510736 
 WAYPT 26        +88.465896         -154.6007596          +01.098449          -154.6007596 
 WAYPT 27        +88.483498         -157.6504456          +01.146913          -157.6504456 
 WAYPT 28        +88.496493         -160.7001315          +01.195377          -160.7001315 
 WAYPT 29        +88.505071         -163.7498175          +01.243840          -163.7498175 
 WAYPT 30        +88.509355         -166.7995035          +01.292302          -166.7995035 
 WAYPT 31        +88.509406         -169.8491895          +01.340763          -169.8491895 
 WAYPT 32        +88.505226         -172.8988755          +01.389223          -172.8988755 
 WAYPT 33        +88.496754         -175.9485615          +01.437683          -175.9485615 
 WAYPT 34        +88.483869         -178.9982474          +01.486141          -178.9982474 
 WAYPT 35        +88.466382         +177.9520666         +01.534598          +177.9520666 
 WAYPT 36        +88.444030         +174.9023806         +01.583054          +174.9023806 
 WAYPT 37        +88.416468         +171.8526946         +01.631509          +171.8526946 
 WAYPT 38        +88.383253         +168.8030086         +01.679962          +168.8030086 
 WAYPT 39        +88.343826         +165.7533226         +01.728415          +165.7533226 
 WAYPT 40        +88.297488         +162.7036367         +01.776866          +162.7036367 
 WAYPT 41        +88.243368         +159.6539507         +01.825316          +159.6539507 
 WAYPT 42        +88.180375         +156.6042647         +01.873765          +156.6042647 
 WAYPT 43        +88.107142         +153.5545787         +01.922212          +153.5545787 
 WAYPT 44        +88.021935         +150.5048927         +01.970658          +150.5048927 
 WAYPT 45        +87.922543         +147.4552067         +02.019102          +147.4552067 
 WAYPT 46        +87.806103         +144.4055208         +02.067546          +144.4055208 
 WAYPT 47        +87.668855         +141.3558348         +02.115987          +141.3558348 
 WAYPT 48        +87.505772         +138.3061488         +02.164427          +138.3061488 
 WAYPT 49        +87.309992         +135.2564628         +02.212866          +135.2564628 
 WAYPT 50        +87.071902         +132.2067768         +02.261303          +132.2067768 
 WAYPT 51        +86.777629         +129.1570908         +02.309738          +129.1570908 
 WAYPT 52        +86.406394         +126.1074049         +02.358172          +126.1074049 
 WAYPT 53        +85.925643         +123.0577189         +02.406604          +123.0577189 
 WAYPT 54        +85.281364         +120.0080329         +02.455034          +120.0080329 
 WAYPT 55        +84.377011         +116.9583469         +02.503463          +116.9583469 
 WAYPT 56        +83.021678         +113.9086609         +02.551890          +113.9086609 
 WAYPT 57        +80.778931         +110.8589749         +02.600314          +110.8589749 
 WAYPT 58        +76.396247         +107.8092890         +02.648738          +107.8092890 
 WAYPT 59        +64.463409         +104.7596030         +02.697159          +104.7596030 
 WAYPT 60        +02.745578         +101.7099170         +02.745578          +101.7099170 
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