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Abstract

In this paper, we examine a machine learning technique presented by Ishii

et al. [7] used to allow for learning in a multi-agent environment and ap-

ply an adaptation of this learning technique to the card game Sheephead.

We then evaluate the effectiveness of our adaptation by running simulations

against rule-based opponents. Multi-agent learning presents several layers

of complexity on top of a single-agent learning in a stationary environment.

This added complexity and increased state space is just beginning to be

addressed by researchers. We utilize techniques used by Ishii et al. to facil-

itate this multi-agent learning. We model the environment of Sheephead as

a partially observable Markov decision process (POMDP). This model will

allow us to estimate the hidden state information inherent within the game

of Sheephead. By first estimating this information, we restore the Markov

property needed to model the problem as a Markov decison problem. We

then solve the problem as Ishii et al. did by using a reinforcement learning

technique based on the actor-critic algorithm [13]. Though our results were

positive, they were skewed by a rules-based implementation of part of the

algorithm. Future research will be needed complete this implementation via

a learning-based action predictor. Future research should also include test-

ing against human subjects thus removing the rules-based bias inherent in

the current algorithm. Given increased processing power, disk space, and

improved AI techniques such as the techniques described above, complex

multi-agent learning problems which once proved difficult may find solutions
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from the AI world.
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Glossary

Belief State a set of probabilities making up the learn-

ing agent’s understanding of the current state

space

Blind within the card game Sheephead, two cards

that are placed face down which can be picked

up during the bidding stage

Fail the set of cards that are not trump

Hand describes both a complete process of dealing

the cards, the bidding stage, the play of all

cards by all players, and scoring as well as the

set of cards a player has at any time

Nola within the card game sheephead, a seperate

game that results from no player picking up

the blind during the bidding state that ends

by either one player taking all of the tricks in

which the other four players pay him, or by

the last player who took a trick paying the

other four players

RL reinforcement learning
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Schmere playing points on a trick to be taken by some-

one else, typically used in terms of playing

points on your partner’s trick in order to in-

crease the team score for that hand

Spitz another name for the joker in sheephead

State Space consists of all possible variables (both hidden

and visible) making up the existing environ-

ment within the learning scenario

Trick the play of a single card by all players, won by

the player who plays the highest cards based

on the rules of Sheephead and the current type

of game played

Trump a set of cards within Sheephead during regular

(not Nola) play that are always higher than

non-trump card regardless of the order of play

Unknown Card a card placed face down by the player who

picks up the blind when they do not have a

fail suit in their hand without also having the

ace of that fail suit, which is played when the

called ace trick is played
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1 Introduction

Many machine learning scenarios involve very dynamic environments, making

traditional static learning techniques difficult to employ. We define static

learning as machine learning within the context of a stationary or static

environment. This type of learning includes problems such as that of solving

a Rubik’s cube or a crossword puzzle.

The dynamic environment described above is especially true for multi-

agent games where there exists a vast amount of state space, much of it

hidden from the learning agent. Multi-agent learning describes a scenario in

which two or more agents exist that are employing some form of machine

learning within the environment and within the confines of the scenario or

game setup. State space describes the variables that define the environment

or context of the given game. For example, in the card game Hearts, state

space would define the cards that have been played, the cards in each player’s

hand, and the state of the current hand and trick. Games such as those that

involve multiple players, dynamic team attributes including individual and

team rewards, and complex rules provide a challenge for AI techniques such

as decision trees, neural networks, and other supervised training algorithms.

Games involving hidden state space or variables belong to a group of

games classified as imperfect information games. The games Hearts and

Sheephead, specifically, which are both discussed in this paper, belong to

a subset of imperfect information games referred to as perfect recall games.
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They are defined as such due to previous play being completely visible while

current state (or in the case of Hearts and Sheephead cards in the player’s

hands) remains hidden. Perfect recall games have been shown to be NP-hard

for computer simulation [4].

Challenge such as that of a dynamic learning environment begin to ap-

proach challenges of everyday life and thus are becoming more important to

solve. As our machine learning techniques, as well as the technology they

operate on, improve we are able to start tackling these difficult problems.

We are very good at solving very specific, constrained problems, but seem to

struggle when approaching much more realistic, “real-world” scenarios such

as operating within a group of other dynamic agents. These challenges con-

tinue to push us to understand how the human brain is able to accomplish

what machine learning currently cannot.

In this paper, we propose a technique for learning within this scenario

of multi-agent learning, as well as dealing with the difficulty of imperfect

information games. We will delve into the details of the learning algorithm

presented by Ishii et al. [7], and then present an implementation of our own

research based on their research.

The game we will be using for this project and future work is our family

card game Sheephead. Sheephead is a multi-player card game in which every

player keeps his or her own score, but plays each individual hand with a

partner or partners. These rules, as well as others, contribute to making it

a good example of a dynamic learning environment. We will describe these

2



and other complexities associated with this game in Chapter 2.

Ishii et al. base their algorithm or learning technique on the card game

Hearts [7]. This is similar to Sheephead in that each individual must learn

while playing against other individual agents who will adjust and adapt their

playing techniques. Hearts, as well as Sheephead, consists of a very large

hidden state space making brute force types of approaches next to impossible.

In this paper, we will first examine the background details involving the

algorithm presented by Ishii et al. that will be used in this work. This includes

examining the various components of this algorithm, as well as those that

parts of the algorithm presented here are based on. We will then give a

brief description of the game of Sheephead, including a subset of the rules.

(We only describe a subset of rules for brevity’s sake, as well as to focus

on those that are used in this simulation.) Methods will then be presented

in the initial setup of the project and simulation. We will then conclude

with a presentation of initial results of the simulation and summary of work

currently done on the project, as well as suggested future work.

2 Background

2.1 Games and Machine Learning

Machine learning techniques for games such as checkers [12], Hearts [7],

and chess [11] have seen significant gains with techniques such as Bayesian

networks, neural networks, and hidden Markov models. Research such as
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Tesauro [17] involving learning within the game of Backgammon and Gins-

berg involving learning within the game of bridge [6] continue to advance

this area of learning.

Tesauro’s work involved utilizing neural networks and reinforcement learn-

ing to play the game of backgammon. It was very effective in interrogating

a large number of scenarios and learning throughout play resulting in a pro-

gram capable of performing well against even expert players. An important

characteristic of Tesauro’s work is the fact that the entire game is observable,

i.e., all states within the game are known by the pieces on the board [17].

Ginsberg, prior to Tesauro, focused on a learning agent capable of playing

the game Bridge. This research worked on solving problems with imperfect,

unobservable games such as that of our research. It used techniques such

as partitioned search and Monte Carlo methods. GIB, the learning agent

created in their work, performed very well at competitions with various other

learning agents. Over two very large competitions, it lost only one match

to another learning agent. No resultsm, though, were given regarding play

against a human agent. So, while performance was good, it was still just

relative to other learning agents and algorithms [6].

We will investigate one specific approach within this project which builds

on several learning techniques to achieve learning and performance objec-

tives. This approach, presented by Ishii et al. [7], shows a reinforcement

learning (RL) technique which works with the game of hearts, modeled as a

partially observable Markov decision process (POMDP). After we describe
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the problem of multi-agent learning within the context of perfect and imper-

fect information games further, we will then delve into the details of several

of the techniques used within the algorithm.

2.1.1 The Multi-Agent Learning Problem

While much of the past machine learning research was focused on single-agent

learning scenarios, this has recently shifted to include multi-agent scenarios

[6]. The complexity of the multi-agent learning scenario arises because of to

several aspects including accounting for the opponent’s strategy, accounting

for that strategy changing, and dealing with the increased state space caused

by hidden variables due to the multiple agents. While reinforcement learning

techniques such as Q-learning, a reinforcement learning technique introduced

by Watkins in 1989 [18], have done well in single agent repeatable scenarios,

they have struggled with multi-agent problems or games.

The major difficulty with many of the single-agent reinforcement learning

techniques is that the mathematics relies on the environment being station-

ary, or consisting of a finite set of unchanging variables. More specifically, if

there are two or more agents, the scenario will not actually have a Markov

property utilized in formulating the problem as a Markov decision problem

[7]. This presents a problem when other agents act in a manner or strategy

unknown to the learning agent. Further complicating things, other agents

will be learning or adjusting their strategy just like the main learning agent

will, thus resulting in a constantly evolving game state [14]. These difficulties
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lead to an ever increasing state space in regards to the problem description

due to the addition of an exponentially large set of variables. This ever in-

creasing state space makes solutions more difficult and complex. Brute force

techniques are no longer an option and reinforcement learning becomes a

necessity [11].

Multi-agent learning problems also introduce the additional complexity

of needing to adjust quickly to an ever changing environment. This includes

both the change in strategy of the learning agent and actions by the learning

agent regarding the other learning agents as well as the change to the envi-

ronment caused by the other agents. Overall, the problem of dealing with a

multi-agent environment is much more complex than that of a single-agent

environment.

2.1.2 Perfect Recall Games

Games dealing with unobservable state information are referred to as imper-

fect information games. Imperfect information games can be further classi-

fied based on the agent or agents’ ability to observe all previous plays made

within the game. Imperfect recall games describe those games in which a play

can be made by a player that is not observable to every other player. We

look at perfect recall games in this research in which all plays are observable

to all players [5].

Perfect recall games means that all previous play is known and discrete.

This is advantageous as it allows us to utilize reinforcement learning tech-
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niques without having to estimate past performance. If past performance

was not discretized, we would need to constantly adjust our learning to the

constantly adjusting perceived performance of past actions. Also, due to the

context of our research, i.e., card games, we have a set block of play that

can be “assessed” at very specific times, namely at the end of each trick and

each hand.

The difficulty in perfect recall games, or more generally in imperfect in-

formation games, arises from the lack of state knowledge during play. In the

context of Sheephead, this results from not knowing the cards in the other

player’s hands. This can be addressed by estimation techniques to gain a

belief state of what the current environment is. We use information such

as historical play, game knowledge and known state information to estimate

probabilities of the missing state information.

2.2 Ishii et al. Algorithm Background

In this section we describe the algorithm techniques used by Ishii et al. and

state the specific issues addressed in their work. The issues are all related

to learning within the confines of a multi-agent, dynamic environment or

scenario. The three aspects represent symptoms of such an environment and

are listed below:

• Learning within a scenario involving other learning agents.

• Learning within a scenario involving unobservable state space.
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• Learning within the bounds of available processing time and space.

The techniques used as part of the Ishii et al. algorithm are described

below and are made up of generic techniques in dealing with areas such as

function approximation, modeling unobserveable state space and feature ex-

traction. The techniques are all used in order to deal with scenarios described

above in an effective and efficient manner.

2.2.1 Partially Observable Markov Decision Process (POMDP)

The algorithm used in this research follows the model of a partially observable

Markov decision process (POMDP). A partially observable Markov decision

process is similar to a Markov decision process, but also models a hidden state

scenario where the learning agent needs to maintain a belief state regarding

the current environment [7].

A POMDP is defined by the following aspects:

• S - set of states

• A - set of actions

• X - set of observations

• P (st+1|st, at) - state transition probability

• P (xt|st) - observation probability

• R(st, at) - reward function
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• An agent is in state st at time t.

• By taking action at the agent reaches state st+1 with probability P (st+1|st, at).

• An unobservable state must be defined by a set of probabilites around

the state of certain variables or features.

Given the above aspects, the POMDP gives us the mechanisms to represent a

game such as Sheephead in which we need to maintain the known or observ-

able state, transition probabilities, reward functions to support the learning

of the environment and the transition probabilities realized by the playing of

cards within a hand.

2.2.2 Feature Extraction

Feature extraction is a technique used to reduce the complexity of the state

space and thus reduce the processing time and data size. A scenario such as

that in a card game can consist of a very large number of potential states

due to the hidden nature of cards in each player’s hand. To deal with this

large space, we use feature extraction to reduce the dimensions to something

more manageable that can be processed in a reasonable amount of time.

Feature extraction involves taking certain important aspects of the state

and describing those rather than the entire state. For example, in the case

of a card game, the features might consist of where certain cards lie, how

many of a type of card still have not been played, and how many total

cards have been played. This technique allows us to use a small number of

9



feature dimensions to represent the entire state space which could consist of

an exponential number of potential possibilities. The increase in importance

for those features found to be valuable from our learning algorithm helps

us overcome the need to represent the entire state space. In the example

of cards, this would be the set of all possible scenarios of cards played. In

Sheephead, because we use a 32 card deck, this would be 32!.

2.2.3 Function Approximation - NGNet / EM Algorithm

We use the technique of function approximation to improve performance and

allow for working with a large number of dimensions. This allows us to map

a large set of input parameters to a large set of output parameters without

exponential processing. More specifically, within this research, we use feature

extraction to remove layers of summation by turning such calculations into a

linear function evaluation.This is especially important in our research as the

state space consists of a large number of known parameters as input and a

large number of learned information as output.

To handle function approximation within this research we will use Nor-

malized Gaussian Networks (NGNet) [10] to allow for this function approxi-

mation. NGNets use linear techniques to approximate multi-dimension Gaus-

sian distributions. This is just one way to map mutliple features or dimen-

sions to a function that allows us to evaluate potential values very quickly

and with limited memory or space. This is represented by equations 1 and 2.

10



y =
M∑
y=1

(
Gi(x)∑M
j=1Gj(x)

)
(Wix+ bi) (1)

and

Gi(x) ≡ (2π)−1/2exp
[
−1

2
(x− µi)

′∑−1
i

(x− µi)
]

(2)

where

• M - number of units or events,

• ′ - denotes a transpose,

• Gi(x) - N -dimensional Gaussian function which has an N -dimensional

center µi and an (N×N)-dimensional covariance matrix
∑

i,

• Wi - (D×N)-dimensional linear regression matrix, and

• bi - D-dimensional bias vector.

We then use a multi-dimension version of the Expectation-Maximization

(EM) algorithm to match the set of input dimensions to the appropriate

NGNet maximizing on log-likelihood. The EM algorithm is a technique used

to approximate a set of gaussian distributions based on the data tested. We

first define θ as the set of model parameters, i.e. mean, µi, and variance
∑

i,

associated with the above function. We then apply the EM algorithm to the

above functions in two steps to find the expected value of the parameters
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given the initial assumptions and then to maximize the likelihood given the

model and the data.

Expectation Step:

Pij(ci|Xj) = αP (Xj|ci)P (ci) = Pij (3)

Ni =
∑
j

Pij (4)

where α =the learning rate between 0 and 1.

Maximization Step:

µ̂i =

∑
j

Pijxj

Ni

(5)

where µ̂i =the new mean.

σ̂i =

√√√√√√√√
∑
j

Pijx
2
j

Ni

−


∑
j

Pijxj

Ni


2

(6)

where σ̂i =the new standard deviation.

P̂ (ci) =
Ni∑
j

Nj

(7)

where P̂ (ci) =the new class prior used in the expectation step.

We iterate over the EM steps above until we converge on a result. Ishii et

al. use an adaptive, online algorithm which builds upon results from already

12



gathered data [13]. Their approach reduces the processing time because

we are not running the EM algorithm over the entire data set, but rather

introducing and adapting to the new data points since the last run. Ishii

et al. showed the online version to be much faster than the normal EM

algorithm. However, for simplicity, we run the EM algorithm over the entire

set each step. This does increase computation time, but limits the scope

of this research effort as the non-online version of the algorithm is a much

simpler implemenation.

2.2.4 Actor-Critic Algorithm

The actor-critic algorithm provides the foundation for the reinforcement

learning portion of the Ishii et al. algorithm [13]. In the actor-critic algo-

rithm, the critic is responsible for maintaining the state of the system, and

the actor selects an action based on a merit function with regards to state.

The critic then updates itself based on an error evaluation for the given

state transition. This temporal difference (TD) error is evaluated using the

following function:

δ = R(xt+1) + γV (xt+1)− V (xt) (8)

where R is the reward function, V is the value function, and γ is a constant

which affects the rate at which we adjust and is between 0 and 1.

The critic then updates the value function based on the following formula:

13



V (xt)← V (xt) + ηcδt (9)

where ηc is the critic learning rate and is between 0 and 1.

The actor then updates its merit function based on the following formula:

U(xt, at)← U(xt, at) + ηaδc (10)

where ηa is the actor learning rate and is between 0 and 1.

2.3 Algorithm Implementation

The algorithm or learning process presented by Ishii et al. [7] can be de-

scribed from a high level perspective as consisting of a few modules that

work together to provide the full learning scheme. The primary modules are

the state evaluation model and the action control module. The action control

module is then made up of an action selector module and action predictor

modules for all of the other agents participating in the game. Figure 1 shows

these modules as well as the hierarchical relationship amongst them. This

section describes the state evaluation module, the actor-critic algorithm used

in the modules and the action control module.

2.3.1 State Evaluation Module

The state evaluation module is responsible for estimating the current state of

both the observable and unobservable environment around the agent. In the

14



State Evaluation Module

RL Algorithm

Action Control 
Module

Action Selector

Action Predictor 1

Action Predictor 2

Action Predictor n

Figure 1: Basic architecture of the reinforcement learning implementation
scheme reviewed in this paper.

example of Hearts, this consists of the cards in the learning agent’s hand, the

cards that have already been played and the cards in other agents’ hands.

The responsibility of the state evaluation module is to calculate the belief

state over all of the possible scenarios.

Our biggest concern with this module is the ability to enumerate over all

of the state possibilities. Even in the small scenario presented by Ishii et al. [7]

representing the game of Hearts, the state space is so large it required them to

minimize the state space for both computational and storage reasons. They

accomplish this by using the technique of feature extraction. For example,

instead of trying to estimate every card that is in every player’s hand, you

would set certain variables such as how many hearts each player has and who

15



has the queen of spades. The other benefit from feature extraction is certain

limitations based on these features. For example, three features may be tied

together with a total probability of one (i.e., the probability that each player

has a particular card). This allows you to limit the possibilities of the entire

feature set based on interdependencies amongst features.

On top of using feature extraction as a technique to reduce complexity and

size, Ishii et al. also use the technique of function approximation or function

approximators to remove several layers of summation when evaluating the

state after observable actions are made. This reduces summations across the

many features or possibilities. The features are then passed into a multi-

dimensional function which maps to an output set of features, in this case

representing the new state space estimation.

2.3.2 Action Control Module

The action control module consists of the action selector module and a set of

action predictor modules for each of the opponent agents within the scenario.

These modules all work to build a representation of a given agent’s strategy.

The action selector module is responsible for building the learning agent’s

strategy and setting up the output functions that control the agent’s actions.

The action predictor modules are responsible for predicting opponent agents’

actions by modeling their strategy.

The action predictor module works much like the actor-critic algorithm

presented by Barto, Sutton and Anderson [14]. It calculates a merit func-
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tion for all of the possible actions and selects the action based on a specific

probability function. It then updates its merit function by replaying the past

game, which updates a portion of the merit function, and observing the ac-

tual action taken of the agent. The action predictor, like the state evaluation

module, uses both the techniques of feature extraction and function approxi-

mation to reduce the state space of evaluating performance and updating its

merit function.

The action selector module determines actions based on its merit func-

tion similar to the action predictor. However, unlike the action predictor, it

updates its expected error, and likewise its merit function after every play by

iterating over possibilities. It does not iterate over all possibilities though,

but instead uses a pruning technique to reduce the size of the summation

associated with this step. It then simply selects its actions based on a proba-

bility function. This pruning is based on a merit function being evaluated for

only a couple of plays, values under a certain threshold being pruned from

the evaluated possibilities.

2.4 The Game of Sheephead

Sheephead is a zero-sum, multi-player card game involving five or more play-

ers. Each player maintains his or her own score (usually in terms of money).

Within each hand, partners are determined. This can consist of a“one ver-

sus four” scenario, a “two versus three” scenario, or a special scenario called

“Nola” in which each player is essentially on their own.
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Game

Hand

Trick

Cards are Dealt

Bidding Stage

Next Player Plays 
Card

All 5 Players 
Played?

Winner Takes Trick

Hand is Scored

All 6 Cards 
Played?

No

Yes

No

Yes

Done?

Figure 2: This flowchart shows the basic flow of a game of Sheephead. It is
seperated into three levels of play: game, hand, and trick.
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Figure 2 helps to clarify the difference between a game, a hand, and a trick

and illustrates the transition flow of a single trick. As shown in the flowchart

in Figure 2, each hand within Sheephead consists of three states, bidding,

optional partner choice and playing. In the bidding state each player takes a

turn, starting to the right of the dealer, choosing to pick up or not two cards

that were set aside face down during the deal (the blind). Once a player

picks up the cards or everyone passes (decides not to pick up the two card

blind) we move on to the partner choice state. In the partner choice state,

only applicable if the cards are picked up, the player picking up the blind

can call a card which will require the holder to become his or her partner.

Finally, in the playing state, six tricks are played where each player plays a

card.

Results are scored based on a 120 point scale for each hand resulting in

certain players winning and collecting money (usually in quantities such as

nickels and dimes) and certain players paying money. This is determined dif-

ferently based on many scenarios, but in most games it involves determining

the winning team by the team that scores more than 60 points.

While the rules of Sheephead are too extensive to include here we will

include a subset of the rules to show some of the complexities in this game

and simulation. The full set of rules was coded in the simulation. The overall

algorithm is also presented in psuedocode in Apeendix B.

• Players must follow the suit of the lead card when possible.
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• Trump cards, consisting of queens, the joker, jacks and all diamonds,

and are higher than all non-trump cards.

• A player must declare a partner by selecting (or calling) an ace of a fail

suit (ace of clubs, ace of spades or ace of hearts) of a card they keep.

• In the scenario when the player declaring the partner only has aces of

the fail suit they have, they must identify an “unknown” card and call

an ace of a fail they do not have. The unknown card will then be played

on the ace trick.

• If the player declaring a partner has all three aces, they then must

declare a partner by selecting (or calling) a ten of a fail suit of a card

they can keep. Partners are unknown then until the fail trick described

above is played.

• In normal play, the order of trump during play is: queen of clubs, joker,

queen of spades, queen of hearts, queen of diamonds, jack of clubs, jack

of spades, jack of hearts, jack of diamonds, ace of diamonds, ten of

diamonds, king of diamonds, 9 of diamond, 8 of diamonds.

• In normal play the order of all non-trump suits (clubs, spades and

hearts) is ace, ten, king, 9, 8, 7.

Nola is a different type of game which is played in a hand when no players

pick up the two card blind during the bidding stage. In a Nola hand:
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• Kings are higher than tens.

• The joker is the seven of diamonds.

• The order of cards during a Nola hand is ace, king, queen, jack, ten, 9,

8, 7.

Two scenarios result from Nola: The winner takes all tricks and gets paid by

other players or the loser takes the last trick and pays all other players.

Scoring:

• Cards are worth points during normal play as follows: ace - 11, ten -

10, king - 4, queen - 3, jack -2

• If the score of a hand ends up 60 to 60, players will pay and receive

double normal payment for the next five hands.

There are a total of 120 points played with each hand resulting in scores

for each team between 0 and 120. In most games (non-Nola games), a score

of 61 or more wins the hand, 91 or more wins the hand with the opposing

team paying twice the normal payment, 120 (or all of the tricks) wins the

hand with the opposing team paying three times the normal payment.

Sheephead was chosen for this research project due to both a high level

of familiarity for the author as well as several similarities to Hearts on which

the Ishii et al. research was based. Those similarities include:

• Zero-sum game (every gain by a player is offset by a loss of another

player or players),
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• Score is maintained per individual,

• Belongs to the class of perfect recall games,

• Set of distinct rules affecting current play state,

• Distinct reward system per trick.

The research of Ishii et al. is adapted specifically for Sheephead to explore

the algorithm. Sheephead provides a good base for this project as it involves

fewer cards than hearts, so processing time is reduced. Any number of rules

cane be included or excluded as needed by simply eliminating hands that

result in those non-normal scenarios from the learning and thus the results

without affecting overall play or the results of the entire history of games.

3 Implementation and Design

This section covers the methods used to implement this research. It covers

both the details of the algorithm itself, including all formulas and mathemat-

ical specifics, as well as the logistics regarding the simulation and gathering

of results.

3.1 Algorithm Details

We first describe the overall process flow regarding the learning agent algo-

rithm. We then show the details of algorithm components organized based
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on the state evaluation module, the action predictor module and the action

selector module.

3.1.1 Transition Flow

Figure 2 shows the overall structure of a game of Sheepead. The learning

algorithm can be described from a high-level perspective by the transition

diagram shown in Figure 3. This diagram shows the transition flow from one

play to the next of the learning agent, including the play of the opponent

agents.

As Figure 3 shows, actions by both the learning agent and opponent

agents (by means of the action predictor) are determined by both observa-

tions and strategy. We represent the strategy of the learning agent by the

action selection module and RL technique described in Section 2.3. We repre-

sent the strategy of each opponent agent, shown in the figure by a superscript

offset from the learning agent, as the action prediction module. The state s

is understood by means of observations x and the creation of a belief state

represented by the state evaluation module.

As seen in Figure 3, the process through one play is that the player

plays based on a combination of strategy, observations and estimation of

opponents’ strategies. The learning agent calculates probabilities for the

given state as well as what the state will be based on calculated probabilities

regarding the opponenents strategy via the action prediction modules. The

action selection process of the learning agent then iterates over all of the
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Figure 3: This diagram shows the transition process flow for the learning
algorithm for one trick t as well as the learning agent at the start of the next
trick t+ 1. A hand is made up of six tricks as each player starts a hand with
six cards. s represents the entire state space, x represents the observation
state, a represents the action played, t represents a trick consisting of each
player playing a single card, the superscript numbers represent the opponent
offset from the learning agent, and φ represents the strategy of the player.
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possibilities and plays the card with a probability resulting from the function

approximator learned via the RL technique.

3.1.2 State Evaluation Module

The state evaluation module is responsible for representing the known state

using feature extraction and function approximation techniques. The state

represenation includes features extracted from the full state space. These

features are selected variables that are represented by either binary or integer

values. These features are then turned into an N-dimensional function by

using the EM algorithm to estimate the function based on the output vector

of the NGNet. The features utilized for this research are shown in Table 1.

Table 1: State Evaluation Features

Feature Data Type Values

Number of trump cards played
or held by agent

int 0 - 6

Number of clubs played or held
by agent

int 0 - 6

Number of spades played or
held by agent

int 0 - 6

Number of hearts played or
held by agent

int 0 - 6

Opponent Player 1 has trump boolean 0 or 1

Opponent Player 2 has trump boolean 0 or 1

Opponent Player 3 has trump boolean 0 or 1
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Feature Data Type Values

Opponent Player 4 has trump boolean 0 or 1

Status of queen of clubs int - not played, agent has it,
played

<-1,0,1>

Status of joker int - not played, agent has it,
played

<-1,0,1>

Status of queen of spades int - not played, agent has it,
played

<-1,0,1>

Status of queen of hearts int - not played, agent has it,
played

<-1,0,1>

Status of queen of diamonds int - not played, agent has it,
played

<-1,0,1>

Status of jack of clubs int - not played, agent has it,
played

<-1,0,1>

Status of jack of spades int - not played, agent has it,
played

<-1,0,1>

Status of jack of hearts int - not played, agent has it,
played

<-1,0,1>

Status of jack of diamonds int - not played, agent has it,
played

<-1,0,1>

Learning Agent is leading
player of trick

boolean 0 or 1

Opponent Player 1 is leading
player of trick

boolean 0 or 1

Opponent Player 2 is leading
player of trick

boolean 0 or 1

Opponent Player 3 is leading
player of trick

boolean 0 or 1
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Feature Data Type Values

Opponent Player 4 is leading
player of trick

boolean 0 or 1

Status of ace and ten of dia-
monds

int - ace played, agent has ace,
ten played, agent has ace

0 - 8 (bitwise)

Status of ace and ten of clubs int - ace played, agent has ace,
ten played, agent has ace

0 - 8 (bitwise)

Status of ace and ten of spades int - ace played, agent has ace,
ten played, agent has ace

0 - 8 (bitwise)

Status of ace and ten of hearts int - ace played, agent has ace,
ten played, agent has ace

0 - 8 (bitwise)

3.1.3 Action Predictor Module

The action predictor is used to predict the card played by each opponent

during a trick. It uses a similar method of prediction as the actor uses (i.e.,

the merit function) in the actor-critic algorithm described in Section 2.2.4.

This is also the method that we use in the action selection module. The action

prediction module predicts an action for agent Mi based on the following

formula:

P (ait|yit(at, Ht, K), θi) =
exp(U i(yit(at, Ht, K), ait)/T

i)∑
ait∈Ai exp(U i(yit(at, Ht, K), ait)/T i)

(11)

where

• Ai denotes the set of possible actions (ai for the agent at a particular

time t),
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• Ht represents the historical state of the current game at time t,

• K represents the overall game knowledge which is static,

• Ti is a constant that represents the randomness of the agent’s actions,

and

• U i(yit(at, Ht, K), ait) approximates the merit function U(xt, at) per [7]

as described in the actor-critic algorithm (Section 2.2.4).

Like the state evaluation module, we use a feature extraction technique

to reduce the input to the action predictor module. The features used as

input are based on probabilities and incorporate game state into the logic.

As an example, we consider the feature of a player having a card higher than

those played within a particular suit. We know if the player has not followed

suit in a previous play when that suit was led, that this probablity is 0, thus

adjusting all the other players’ probabilities as well. The learning output

of the function approximator learns and approximates the probabilities of

ways that a player will respond to the various playing scenarios. In the given

example when a player has a higher card, the learned feature will be the

probability that the player will play that particular card. The features used

as input to the action predictor and as output from the action predictor are

in Tables 2 and 3.
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Table 2: Action Predictor Inputs

Number Input

1 If the leading card is a trump, the expected number
of trump cards held by the opponent which are weaker
than the strongest card already played in the current
trick, otherwise zero.

2 If the leading card is a trump, the expected number of
trump cards held by the opponent, which are stronger
than the strongest card already played in the current
trick, otherwise zero.

3 If the leading card is a club, the expected number of
clubs held by the opponent, which are weaker than the
strongest card already played in the current trick, oth-
erwise zero.

4 If the leading card is a club, the expected number of
clubs held by the opponent, which are stronger than
the strongest card already played in the current trick,
otherwise zero.

5 If the leading card is a spade, the expected number of
spades held by the opponent, which are weaker than
the strongest card already played in the current trick,
otherwise zero.

6 If the leading card is a spade, the expected number of
spades held by the opponent, which are stronger than
the strongest card already played in the current trick,
otherwise zero.

7 If the leading card is a heart, the expected number of
hearts held by the opponent, which are weaker than the
strongest card already played in the current trick, oth-
erwise zero.
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Number Input

8 If the leading card is a heart, the expected number of
hearts held by the opponent, which are stronger than
the strongest card already played in the current trick,
otherwise zero.

9 The probability that the opponent has the queen of
clubs.

10 The probability that the opponent has the joker.

11 The probability that the opponent has the queen of
spades.

12 The probability that the opponent has the queen of
hearts.

13 The probability that the opponent has the queen of di-
amonds.

14 The probability that the opponent has the jack of clubs.

15 The probability that the opponent has the jack of
spades.

16 The probability that the opponent has the jack of hearts.

17 The probability that the opponent has the jack of dia-
monds.

18 The probability that the opponent has the ace of dia-
monds.

19 The probability that the opponent has the ace of clubs.

20 The probability that the opponent has the ace of spades.

21 The probability that the opponent has the ace of hearts.

22 The probability that the opponent has the ten of dia-
monds.
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Number Input

23 The probability that the opponent has the ten of clubs.

24 The probability that the opponent has the ten of spades.

25 The probability that the opponent has the ten of hearts.

26 The lead player of the current trick.

Table 3: Action Predictor Outputs

Number Output

1 If the leading card is a trump, the merit value for the op-
ponent playing a card which is weaker than the strongest
card already played in the current trick.

2 If the leading card is a trump, the merit value for the
opponent playing a card which is stronger than the
strongest card already played in the current trick.

3 If the leading card is a club, the merit value for the op-
ponent playing a card which is weaker than the strongest
card already played in the current trick.

4 If the leading card is a club, the merit value for the oppo-
nent playing a card which is stronger than the strongest
card already played in the current trick.

5 If the leading card is a spade, the merit value for the op-
ponent playing a card which is weaker than the strongest
card already played in the current trick.

6 If the leading card is a spade, the merit value for the
opponent playing a card which is stronger than the
strongest card already played in the current trick.
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Number Output

7 If the leading card is a heart, the merit value for the op-
ponent playing a card which is weaker than the strongest
card already played in the current trick.

8 If the leading card is a heart, the merit value for the
opponent playing a card which is stronger than the
strongest card already played in the current trick.

9 The merit value that the opponent will play the queen
of clubs.

10 The merit value that the opponent will play the joker.

11 The merit value that the opponent will play the queen
of spades.

12 The merit value that the opponent will play the queen
of hearts.

13 The merit value that the opponent will play the queen
of diamonds.

14 The merit value that the opponent will play the jack of
clubs.

15 The merit value that the opponent will play the jack of
spades.

16 The merit value that the opponent will play the jack of
hearts.

17 The merit value that the opponent will play the jack of
diamonds.

18 The merit value that the opponent will play the ace of
diamonds.

19 The merit value that the opponent will play the ace of
clubs.
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Number Output

20 The merit value that the opponent will play the ace of
spades.

21 The merit value that the opponent will play the ace of
hearts.

22 The merit value that the opponent will play the ten of
diamonds.

23 The merit value that the opponent will play the ten of
clubs.

24 The merit value that the opponent will play the ten of
spades.

25 The merit value that the opponent will play the ten of
hearts.

26 The merit value that the opponent will play the nine of
diamonds.

3.1.4 Action Selection Module

The action selection module works in a similar fashion to the action predictor

module. It bases its action on the merit function of the actor-critic algorithm

described in Section 2.2.4. It then plays the rest of the hand based on the

action predictor module, choosing the action which results in the highest

merit value for all actions. In Ishii et al., they use a pruning technique which

runs the merit function only on the first couple of actions and eliminates all

low values up front, enumerating only those remaining to find the maximum

merit value. We, however, enumerate over all possibilities in order to reduce
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the development time needed for our approach. We are also able to do this

because of the limited number of plays per trick [9], and no constraint put

on overall test time regarding real-time play. The action selection module

then simply plays the card with the highest merit value over the remainder

of plays in that hand.

3.2 Simulation Architecture

In this section we describe the code implementation of the algorithm adapta-

tion. This description includes a review of the system and code architecture

showing both class and process flow diagrams. We use this section to de-

scribe the architecture and patterns of the source code and application used

for implementation.

3.2.1 Application Architecture

The simulation was written as a single command-line Java application. The

application architecture was kept simple so as to minimize the amount of

impact the overhead could have on either performance or quality. Eclipse

was used for all development and testing.

Results are written to a flat file by the Java application. A line is writ-

ten for every one-hundredth hand, recording each player’s score (money) in

comma delimited columns. The results are graphed using Microsoft Excel to

show the performance of each run.

Special attention was paid to the random number generator used to select
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card plays and predictions based on probabilities. Due to the heavy usage

of random number generation as well as the close proximity with regards to

time of each call, we take special care to use a single seeded random number

generator. After testing with a few non-platform random number generators

and no significant differences, the platform built-in random number generator

was used for final results.

Figure 4 shows the high-level view of all components of application ar-

chitecture and the relationships between them. As shown in the figure we

have a small number of components which should hopefully minimize the

potential for individual components to skew the results or performance.

3.2.2 Class Architecture

In this section we describe the class architecture used within the Java appli-

cation described above. We review the main classes and relationships used

to support the simulation functionality. The architecture was motivated by

the need for simplicity as well as the ability to quickly make modifications

to the simulation during initial runs. The need for simplicity, as previously

noted, will help us minimize the potential for performance or quality bugs

within the code.

We show a subset of the class architecture in Figure 5. The architecture

incorporates player interfaces to allow us to easily swap out a combination

of players during each simulation run. A card game provides for a fairly

straight-forward object mapping as shown in the figure. We map domain
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Play variable 
number of hands
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Import results

Microsoft Excel

Export chart

Results chart

Figure 4: The basic architecture of the simulation application. The majority
of processing and logic is run within the Java simulation application shown
on the left. Microsoft Excel, shown on the right, is only used in gathering
and presenting the results.
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Figure 5: A subset of the code architecture used within the Java application.
The simulation comprises the entire test run. A simulation is made up of
many hands. Each hand has exactly five players participating. Player is a
base object implementing the IPlayable interface. Each type of player is then
a subset of Player.
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objects such as a simulation, card, deck, player and hand directly to class

objects. The relationships between each follows as such:

• A simulation is made up of zero to many hands.

• A hand is played by players.

• A player has cards during a game.

• A deck is made up of 32 cards.

4 Experimental Methodology

The simulation was run per the description of the algorithm details in the

previous section. An initial simulation was run to evaluate performance im-

provements of a rule-based agent vs. an agent that plays cards at random.

This initial evaluation was used to prove the ablity of the rule-based perfor-

mance in which we will base our learning performance on. Performance was

then measured by comparing the learning agents with rule-based agents.

Certain limitations were imposed on our implementation of the learning

algorithm. These limitations were done for two reasons. The first, and

most important reason, was to limit the scope of this project and make it

manageable within the given time frame and resources. The second was

to adjust the Ishii et al. algorithm to the more rule-based nature of the

Sheephead game.
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The largest adjustment from the original algorithm was to replace a

learning-based action predictor with a rule-based one. This was possible

due to the very strict rule-based play involved in what cards can and cannot

be played, and what cards should be played in certain scenarios. This could

be considered a “cheating” experiment because we were going against a rule-

based opponent. A rule-based agent would obviously be more susceptible to

losing to a rule-based action prediction.

The simulation was modeled and written using the Java programming

language. The simulation itself was built to be configurable to allow for

various scenarios of players and numbers of hands. Support was added for

the dynamic creation and modification of the agents themselves. As part of

this portion of the research, specific to this paper, three agents were coded:

a random play agent, a rule-based agent and a learning agent implementing

the algorithm described in this paper.

Included in the simulation are all of the game rules and complexities

representing the full game of Sheephead except for the sub-game of Nola.

This was not included because of the increased complexity and the difficulty

expressing this as a rule-based action predictor. There are a few areas of

the game where all players, including the rule-based player, act the same

such as the bidding stage. This will focus the learning efforts initially to a

smaller number of game situations. These additional game stages can easily

be reintroduced to the learning stage at a later date.

Results from the simulation are written to a file based on scoring of each
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hand. Scoring is described in detail in Appendix A.

5 Results and Discussion

Results overall show that the rule-based agents perform significantly better

than the random players. The results also show that as long as there are

more than 2 rule-based agents, the learning agent performed better than the

rule-based agents. Each test consisted of tracking money won for all players

every 100th hand of a 100,000 hand simulation.

Figure 6 shows one rule-based agent against four random players. In

this test the rule-based agent performed significantly better than all random

agents. Figure 7 shows thow rule-based agents against three random players.

In this scenario the rule-based agent performed significantly better than the

random agents like the previous two scenarios. Figures 8 and 9 show the

same results, the rule-based agents peforming better than the random agents

in scenarios of three rule-based agents vs. two random agents and four rule-

based agents vs. one random agent.

Figure 10 shows one learning agent vs. four rule-based players. In this

scenario the learning agent performed significantly better than all four rule-

based players. Likewise, Figure 11 shows two learning agents perform sig-

nificantly better than three rule-based players. Figure 12 however shows us

a change in which only one of three learning agents performs significantly

better than the rule-based players. The other two learning agents performed
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about the same as one of the rule-based players. The other rule-based players

performed significantly worse than the other four agents. Figure 13 shows

the results with only one rule-based player. The rule-based player performs

worse than all of the learning agents, but only slightly worse than the lesser

of the learning agents.

When the learning agent had to compete with less than three rule-based

agents, it lost the advantage of the rule-based action predictor which actually

would backfire when it had three other agents competing who would also work

off of action predictions based on rules. This resulted in very poor action

predictions and thus very poor results.

One interesting note to the data was that position seemed to affect the

players. Initial tests showed that while a rule-based player performed sig-

nificantly better on each run and at least one random player performed the

worst, the other players typically varied based on where they were sitting.

There did not appear to be anything consistent about how the data varied

amongst the other players outside of one rule-based player always perform-

ing better and one random player always performing worse. Future research

will hopefully give us an explanation as to why this is happening as a lim-

ited amount of time was spent on this as part of this specific study. This

led us to believe it would be important to execute runs with various seating

arrangements eliminate that as something that might skew the data. This

should only be done in large batches though, so as not to affect the typical

play of the game which would be several hands played with the same seating
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Figure 6: Results are shown for 100,000 simulations with 1 rule-based player
and 4 random players. The y axis represents hand number divided by 100.
The x axis represents the running score (money) of the player.

arrangement.
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Figure 7: Results are shown for 100,000 simulations with 2 rule-based players
and 3 random players. The y axis represents hand number divided by 100.
The x axis represents the running score (money) of the player.

Figure 8: Results are shown for 100,000 simulations with 3 rule-based players
and 2 random players. The y axis represents hand number divided by 100.
The x axis represents the running score (money) of the player.
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Figure 9: Results are shown for 100,000 simulations with 4 rule-based players
and 1 random player. The y axis represents hand number divided by 100.
The x axis represents the running score (money) of the player.

Figure 10: Results are shown for 100,000 simulations with 1 learning agent
and 4 rule-based players. The y axis represents hand number divided by 100.
The x axis represents the running score (money) of the player.
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Figure 11: Results are shown for 100,000 simulations with 2 learning agents
and 3 rule-based players. The y axis represents hand number divided by 100.
The x axis represents the running score (money) of the player.

Figure 12: Results are shown for 100,000 simulations with 3 learning agents
and 2 rule-based players. The y axis represents hand number divided by 100.
The x axis represents the running score (money) of the player.
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Figure 13: Results are shown for 100,000 simulations with 4 learning agents
and 1 rule-based player. The y axis represents hand number divided by 100.
The x axis represents the running score (money) of the player.

6 Conclusion and Future Work

Given the complex scenario of multi-agent games, machine learning within

one is extremely difficult. Ishii et al. [7] presented a successful technique for

tackling this problem, specifically within the card game Hearts. While the

research presented in this paper is only the start of implementing the full

technique for the more complex game Sheephead, it does begin to demon-

strate the uniqueness of the scenario in the complexity of the game itself

and the difficulty of applying machine learning techniques to imperfect infor-

mation situations. By setting the benchmark of performance with an initial

version of the algorithm, as well as setting up the simulation software it-

self, we prepare for future work implementing all modules of the learning
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algorithm described in Section 2.

While multi-agent gaming adds a tremendous amount of complexity to

machine learning approaches it also offers highly valuable solutions to poten-

tial real-world problems. In this work, we found ourselves getting closer and

closer to approximating real world thinking and interactions amongst agents.

Through the research shown in this paper, we present techniques for dealing

with the problem of learning within a world that is changing and collaborat-

ing or competing with other agents who are learning alongside of us. Future

work will take this further by implementation of the technique in full for the

game of Sheephead and examining the impact of seating arrangements in the

game.
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A Sheephead Rules

In this section we describe the full set of rules for the card game Sheephead.

The game of sheephead is made up of a variable number of hands, each

resulting in some of the players getting paid, and the other players paying

money. Each hand consists of five players. If more than five players are

sitting at the table, the dealer and however many number of players behind

the dealer must sit out until five are left. Players can play as many hands as

they choose as each hand is distinct and does not impact any other hands.

Players’ money increases or decreases with each hand played until players

decide to stop.

The deck in sheephead is made up of 32 cards. This includes the following

cards:

• 7, 8, 9, 10, jack, queen, king, ace of clubs

• 7, 8, 9, 10, jack, queen, king, ace of spades

• 7, 8, 9, 10, jack, queen, king, ace of hearts

• 8, 9, 10, jack, queen, king, ace of diamonds

• one joker

Play begins by the current dealer dealing the cards to each player. This

includes dealing 6 cards to each player and placing two cards face down on

the table. These two cards are referred to as the blind. The players then each
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have an opportunity to pick up the two card blind. This decision is usually

made based on how good each player’s cards are. A player with good cards

is more inclined to pick up the two card blind. The player to the left of the

dealer is the first to be given an opportunity to pick up the cards or not. If

he passed or does not pick up the cards, the player to his left is then given

the opportunity to pick up the cards. This continues counter-clockwise until

one player picks up the blind or all five players, including the dealer, pass. If

a player picks up the two card blind, play continues using the normal rules

described below. If all five players pass, play continues with Nola rules as

described below the normal rules. After the hand is played the player to the

left of the dealer becomes the next dealer and the process repeats.

A.1 Normal Play

During normal play we have already established a player has picked up the

two card blind. The player first buries, or places face down, two cards in

their hand. They automatically win these cards and the points associated

with them. The player must then either declare a partner, or state that they

will play the hand alone. If they declare a partner they will playing the hand

two (the player who picked up the blind and a partner) against three (the

other three players). If they play it alone it will be the player picking up the

blind versus the other four players.

The player picking up the blind declares a partner (if they do not play

the hand alone) by announcing a card which his or her eventual partner will
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have. This is done by abiding by the following rules:

• If a player has a card of a fail suit in their hand in which they do not

have the ace of that same suit in their hand, they must declare an ace

of a suit in which this condition holds.

• If a player does not meet the above criteria, but does not have all three

fail suit aces, they must pick a fail suit card in their hand, place it face

down and declare an ace of a fail suit they do not have in their hand.

This is known as calling an unknown ace.

• If a player has all three fail aces in their hand they must declare a ten

of one of the fail suits which they do not hold in their hand.

• If a player does declare a card which they have in their hand, they then

must play the hand alone.

Play then begins with the player to the left of the dealer leading. Each

trick consists of every player playing one card. The winning player based

on card order, described below, takes the trick and keeps those cards. The

winning player then leads the next trick. The first card played in each trick

determines the suit of the trick. Each player must follow, or play a card

of that suit, if they are able to. Suits consist of trump, clubs, spades and

hearts. Trump is a special suit that if played when a fail suit is played, is

always higher than the fail suit played first. The suits and order of cards

within each suit is listed below:

53



• trump - queen of clubs, joker, queen of spades, queen of hearts, queen of

diamonds, jack of clubs, jack of spades, jack of hearts, jack of diamonds,

ace of diamonds, ten of diamonds, king of diamonds, nine of diamonds,

eight of diamonds

• clubs - ace of clubs, ten of clubs, king of clubs, nine of clubs, eight of

clubs, seven of clubs

• spades - ace of spades, ten of spades, king of spades, nine of spades,

eight of spades, seven of spades

• hearts - ace of hearts, ten of hearts, king of hearts, nine of hearts, eight

of hearts, seven of hearts

After all six tricks have been played the hand is scored. Each team counts

the points of all of the cards they have won or buried (the player who picked

up the blind) based on the point values listed below:

• aces = 11

• tens = 10

• kings = 4

• queens = 3

• jacks = 2
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This adds up to a total of 120 points. Money is then exchanged based on

the rules below. The team with the player who picked up the cards will be

referred to as team A and the other team will be referred to as team B.

If the player picking up the blind played alone:

• If the player picking up the blind took all six tricks, all other players

pay that player 25 cents.

• If the player picking up the blind scored between 91 and 119 points, all

other players pay that player 20 cents.

• If the player picking up the blind scored between 61 and 90 points, all

other players pay that player 15 cents.

• If the player picking up the blind scored between 31 and 60 points, that

player pays all other players 20 cents.

• If the player picking up the blind scored between 1 and 30 points, that

player pays all other players 25 cents.

• If the player picking up the blind took zero tricks, that player pays all

other players 30 cents.

If the player picking up the blind called a partner:

• If team A took all six tricks, team B pays the player who picked up the

blind 30 cents and the partner 15 cents (each player of team B paying

15 cents).
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• If team A scored between 91 and 119 points, team B pays the player

who picked up the blind 20 cents and the partner 10 cents (each player

of team B paying 10 cents)

• If team A scored between 61 and 90 points, team B pays the player

who picked up the blind 10 cents and the partner 5 cents (each player

of team B paying 5 cents)

• If team A scored between 31 and 60 points, the player who picked up

the blind pays 20 cents and the partner pays 10 cents (each player of

team B recieves 10 cents)

• If team A scored between 1 and 30 points, the player who picked up

the blind pays 30 cents and the partner pays 15 cents (each player of

team B recieves 15 cents)

• If team A takes no tricks, the player who picked up the blind pays 40

cents and the partner pays 20 cents (each player of team B recieves 20

cents)

If a game ends with each team scoring 60 points, payments on the next five

games will be double.

A.2 Nola

Nola is played when each player passes when given the opportunity to pick

up the two card blind. The rules of Nola are very different from normal play
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described above. There is no longer trump and the order of cards within

suits is shown below:

• clubs - ace of clubs, king of clubs, queen of clubs, jack of clubs, ten of

clubs, nine of clubs, eight of clubs, seven of clubs

• spades - ace of spades, king of spades, queen of spades, jack of spades,

ten of spades, nine of spades, eight of spades, seven of spades

• hearts - ace of hearts, king of hearts, queen of hearts, jack of hearts,

ten of hearts, nine of hearts, eight of hearts, seven of hearts

• diamonds - ace of diamonds, king of diamonds, queen of diamonds, jack

of diamonds, ten of diamonds, nine of diamonds, eight of diamonds,

joker

Given these differences, Nola hands are played in the same way as normal

hands.

B Simulation Algorithm

In this appendix we will show the algorithm used in the simulation. This

will be shown at a fairly high level, but should help with understanding how

the simulation was written and run. Figure 2 shows a high-level overview of

the alogrithm shown.

SIMULATIONRUN:
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CREATEPLAYERS;

for i = 1 to NUMBEROFHANDS do

DEALHAND;

PLAYHAND;

if i mod 500 = 0 then

for j = 1 to 5 do

WRITEOPUTPLAYERMONEY j;

end for

end if

if i mod 100 = 0 then

REARRANGEPLAYERS;

end if

SETNEXTDEALER;

end for

DEALHAND:

for i = 1 to 5 do

GIVE3CARDSTOPLAYER i;

end for

GIVE2CARDSTOBLIND;

for i = 1 to 5 do

GIVE3CARDSTOPLAYER i;

end for
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PLAYHAND:

BID;

for i = 1 to 6 do

for j = 1 to 5 do

PLAYCARD CURRENTPLAYER;

SETNEXTPLAYER;

end for

SCORETRICK;

end for

SCOREHAND;

BID:

for i = 1 to 5 do

PICKEDUP = false;

if PICKUP i then

PICKEDUP = true;

PICKUPBLIND i;

DECLAREPARTNER i;

BREAK;

end if

end for

if ! PICKEDUP then
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ISNOLA = true;

else

ISNOLA = false;

end if

SCOREHAND;

SCORETRICK:

MAXPLAYER = null;

MAXCARD = null;

for i = 1 to 5 do

if MAXCARD == null OR CARD i ¿ MAXCARD then

MAXCARD = CARD i;

MAXPLAYER = PLAYER i;

end if

end for

for i = 1 to 5 do

ADDPOINTS CARDPOINTS, i, MAXPLAYER;

end for

SCOREHAND:

DOUBLEMULTIPLIER = 1;

if ISDOUBLES then

DOUBLESMULTIPLIER = 2;
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end if

if ISDOUBLES then

DOUBLESCOUNTER–;

if DOUBLESCOUNTER == 0 then

ISDOUBLES = false;

end if

end if

if ISNOLA then

for i = 1 to 5 do

if TOOKALLTRICKS i then

ADDMONEY i, .20 * DOUBLESMULTIPLIER

for j = 1 to j do

if i <> j then

SUBTRACTMONEY i, .05 * DOUBLESMULTIPLIER

end if

end for

BREAK;

else if TOOKLASTTRICK i then

SUBTRACTMONEY i, .20 * DOUBLESMULTIPLIER

for j = 1 to j do

if i <> j then

ADDMONEY i, .05 * DOUBLESMULTIPLIER

end if
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end for

BREAK;

end if

end for

else

for i = 1 to 5 do

if ISMAINPLAYER i then

if PLAYEDALONE then

if PLAYERPOINTS i == 120 then

ADDMONEY i, 1 * DOUBLESMULTIPLIER

for j = 1 to j do

if i <> j then

SUBTRACTMONEY i, .25 * DOUBLESMULTIPLIER

end if

end for

BREAK;

else if PLAYERPOINTS i ¿ 90 then

ADDMONEY i, .8 * DOUBLESMULTIPLIER

for j = 1 to j do

if i <> j then

SUBTRACTMONEY i, .20 * DOUBLESMULTIPLIER

end if

end for
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BREAK;

else if PLAYERPOINTS i ¿ 60 then

ADDMONEY i, .6 * DOUBLESMULTIPLIER

for j = 1 to j do

if i <> j then

SUBTRACTMONEY i, .15 * DOUBLESMULTIPLIER

end if

end for

BREAK;

else if PLAYERPOINTS i == 30 then

SUBTRACTMONEY i, .8 * DOUBLESMULTIPLIER

for j = 1 to j do

if i <> j then

SUBTRACTMONEY i, .20 * DOUBLESMULTIPLIER

end if

end for

ISDOUBLES = true;

DOUBLESCOUNTER = 5;

BREAK;

else if PLAYERPOINTS i ¿ 30 then

SUBTRACTMONEY i, .8 * DOUBLESMULTIPLIER

for j = 1 to j do

if i <> j then
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SUBTRACTMONEY i, .20 * DOUBLESMULTIPLIER

end if

end for

BREAK;

else if PLAYERPOINTS i ¿ 0 then

SUBTRACTMONEY i, 1 * DOUBLESMULTIPLIER

for j = 1 to j do

if i <> j then

SUBTRACTMONEY i, .25 * DOUBLESMULTIPLIER

end if

end for

BREAK;

else if PLAYERPOINTS i == 60 then

SUBTRACTMONEY i, 1.25 * DOUBLESMULTIPLIER

for j = 1 to j do

if i <> j then

SUBTRACTMONEY i, .30 * DOUBLESMULTIPLIER

end if

end for

BREAK;

end if

end if

else
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if PLAYERPOINTS i == 120 then

ADDMONEY i, .3 * DOUBLESMULTIPLIER

for j = 1 to j do

if i <> j then

if ISPARTNER j then

ADDMONEY i, .15 * DOUBLESMULTIPLIER

else

SUBTRACTMONEY i, .15 * DOUBLESMULTIPLIER

end if

end if

end for

BREAK;

else if PLAYERPOINTS i ¿ 90 then

ADDMONEY i, .2 * DOUBLESMULTIPLIER

for j = 1 to j do

if i <> j then

if ISPARTNER j then

ADDMONEY i, .10 * DOUBLESMULTIPLIER

else

SUBTRACTMONEY i, .10 * DOUBLESMULTIPLIER

end if

end if

end for

65



BREAK;

else if PLAYERPOINTS i ¿ 60 then

ADDMONEY i, .1 * DOUBLESMULTIPLIER

for j = 1 to j do

if i <> j then

if ISPARTNER j then

ADDMONEY i, .05 * DOUBLESMULTIPLIER

else

SUBTRACTMONEY i, .05 * DOUBLESMULTIPLIER

end if

end if

end for

BREAK;

else if PLAYERPOINTS i == 60 then

SUBTRACTMONEY i, .2 * DOUBLESMULTIPLIER

for j = 1 to j do

if i <> j then

if ISPARTNER j then

SUBTRACTMONEY i, .1 * DOUBLESMULTIPLIER

else

ADDMONEY i, .1 * DOUBLESMULTIPLIER

end if

end if
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end for

ISDOUBLES = true;

DOUBLESCOUNTER = 5;

BREAK;

else if PLAYERPOINTS i ¿ 30 then

SUBTRACTMONEY i, .2 * DOUBLESMULTIPLIER

for j = 1 to j do

if i <> j then

if ISPARTNER j then

SUBTRACTMONEY i, .1 * DOUBLESMULTIPLIER

else

ADDMONEY i, .1 * DOUBLESMULTIPLIER

end if

end if

end for

BREAK;

else if PLAYERPOINTS i ¿ 0 then

SUBTRACTMONEY i, .3 * DOUBLESMULTIPLIER

for j = 1 to j do

if i <> j then

if ISPARTNER j then

SUBTRACTMONEY i, .15 * DOUBLESMULTIPLIER

else
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ADDMONEY i, .15 * DOUBLESMULTIPLIER

end if

end if

end for

BREAK;

else if PLAYERPOINTS i == 0 then

SUBTRACTMONEY i, .4 * DOUBLESMULTIPLIER

for j = 1 to j do

if i <> j then

if ISPARTNER j then

SUBTRACTMONEY i, .2 * DOUBLESMULTIPLIER

else

ADDMONEY i, .2 * DOUBLESMULTIPLIER

end if

end if

end for

BREAK;

end if

end if

end for

end if
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