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Introduction 

 

An important concept in meteorology, cloud physics, weather, and 

atmospheric sciences is the Lifting Condensation Level (LCL). It expresses the 

height above the ground (AGL) at which isentropically ascending moist (humid) 

air parcel reaches water-vapor saturation pressure or RH=100%. This is the 

minimum height at which some cloud bases may be formed (e.g., cumulus clouds) 

as illustrated in Figure 1. Air and dew point (DP) temperatures, and to a smaller 

extent local atmospheric pressure, control the condensation process and the 

formation of clouds. Theoretically, condensation and cloud formation would start 

at the LCL, or practically bit higher depending on the availability of the 

condensation nuclei (CN). Since LCL defines bases of cumulus clouds due to 

vertical air motion it also significantly affects flight operations. Normally, an ideal 

flat ground surface is assumed when considering air parcel lifting. However, Wetzel 

(1990) used a simple parcel method for prediction of cumulus onset over 

heterogeneous land surfaces. In addition to LCL, we may also define LDL and LFL, 

for which recent estimates were given by Romps (2017). While LCL 

(condensation) and LDL (deposition, sublimation) involve heterogeneous 

nucleation, LFL involves homogenous nucleation over solid phase (ice) which may 

involve substantial metastable super-cooling of water vapor (Romps, 2017). For 

more details on LCL, LDL, LFL and related processes consult Dutton (2002), 

Romps (2017), Rogers (1979), Saucier (1989), and Wallace and Hobbs (2006). 

LCL can be graphically determined from the Skew-T vs. Log-p diagrams using 

Normand’s rule (Wallace & Hobbs, 2006). Of aviation-weather oriented books, 

Bradbury (2000) provided decent analysis of the LCL phenomena and the 

conditions under which condensation occurs, but does not mention or evaluate LCL 

itself. Some other useful pilot and aviation-oriented books dealing with thermals, 

lifting phenomena, cumulus clouds formation, etc., are by Cosgrove (1990), 

Federal Aviation Administration (FAA; 2016), Jeppesen (2015), Lester (2007), 

Piggot (1996), and Reichmann (1993). 

 

The first historically recorded definition and treatment of LCL and cloud 

formation is due to Espy (1836). The famous meteorologist of the 19th century 

recognized the importance of latent heat during the time when “heat” was still 

described through an old and defunct “caloric theory” and the now obsolete notion 

of “ether”. McDonald (1963) and Romps (2017) provided many historical accounts 

and description of Espy’s work and subsequent LCL estimates by other authors. In 

fact, Romps (2017) recently succeeded in deriving an exact formulation of LCL, 

LFL and LDL heights using optimized constant thermodynamic properties. The 

solution of the Romp’s model equations is somewhat complicated and requires the 

understanding of Lambert’s W special function. More on the Lambert functions 
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(Swiss polymath Johann Heinrich Lambert 1728-1777), which has many 

applications in theoretical and applied mathematics, science, and engineering, can 

be found in Corless et al. (1996) and Zwillinger (2018). It is interesting to note that 

coincidentally J. H. Lambert also introduced albedo into optics. Terrestrial albedo 

plays dominant role in energy balance of Earth. A nomenclature is provided at the 

end of the article. 

 

Mathematical Models of LCL 

 

Here, we present some known formulations and LCL estimations and then 

derive new model for LCL predictions. Using thermodynamic principles of moist 

air (Daidzic, 2019a), we also derive a nonlinear implicit equation for LCL 

temperature, which does not have explicit solution and must be solved numerically. 

We use the method of fixed-point iterations to predict LCL temperature. From LCL 

temperatures, we can then estimate LCL heights and pressures. Differences 

between the geopotential (H) and the orthometric (z) heights are neglected. 

 

Based on the research and recommendations by McDonald (1963), 

Lawrence (2005), Romps (2017), and others, we define Espy’s LCL height estimate 

(AGL) as: 

 

( )  125 125 mLCL DPz T T D=  − =                     (1) 

 

Converted to MSL altitude with z0 the elevation of the surface where DP 

and temperature are measured, the LCL becomes: ( )0 125LCL DPz z T T= +  − . In 

terms of RH (>50%), Lawrence (2005) proposes simple expression, which 

transforms into Espy’s estimate Equation (1) when Lawrence’s linear estimate of 

RH is used: 

 

( )  25 100 mLCLz RH=  −                                (2) 

 

Lawrence (2005) also provides improved LCL height estimates using 

relationships for RH, but comparison with other models show excessively large 

deviations: 

 

( )20 100
5

LCLz RH
 

= +  − 
 

          (3) 

 

Estimate of LCL MSL altitude based on the initial (surface) DP depression, 

elevation and DALR vs DPLR difference yields: 
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   ,0 ,0 0
0 0 0 0 0 01000 125 m 410 ft

- 8

AIR DP

LCL

d DP

T T D
z z z z D z D

−
= +  +   +  = + 

 
      (4) 

 

 
 

Figure 1. Graphic representation of moist air lifting and condensation onset at LCL. 

(Not to scale). 

 

Notice that in the above expression, DALR is used, which neglects any 

dependence on the actual specific humidity of air. This yields similar result to an 

LCL estimate (rule-of-thumb) used in FAA and some commercial flight training 

references (FAA, 2016; Jeppesen, 2015) and practical aviation weather textbooks 

(Lester, 2007) in which DP spread is divided by 2.5 (in oC or oK) to arrive at the 

AGL bases of cumulus clouds in thousands of feet: 

 

 ,0 ,0

01000 400 ft
2.5

AIR DP

LCL

T T
z D

−
=  =           (5) 

 

This is because the average difference between the DALR and the DPLR is 

about 8 K/km (9.8-1.8=8.0) or rounded about 2.5 K/1000 ft (Daidzic, 2019b). If the 

temperature is measured in oF, then the denominator in Equation (5) should be 4.4 
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(Jeppesen, 2015; Lester, 2007) with the height expressed in 1000s ft. In the absence 

of additional historic information, we decided to call Equation (5), an FAA LCL 

estimate.  

 

However, LCL height depends on the MALR vs DPLR difference and both 

are functions of specific humidity as well. Air properties are slightly changing as 

moist air ascends thereby increasing relative humidity. Hence, we propose an 

explicit equation for LCL height estimate: 

 

( ) ( ) ( )

1
2

40, 1 0.856 q 6.461 10 1 0.61 q 1
-

DP
LCL DP

M DP d

DT T D
z T T T

T

−

−
 −  

= =  −  −   −    −  
      

      (6) 

 

Specific humidity q depends on the measured air temperature and DP and 

is not a free or independent variable. The expression for the surface specific 

humidity for known air temperature, DP depression, and local atmospheric pressure 

yields (Daidzic, 2019a): 

 

( ) ( )
( )

380.14 6829.36 5417.12
q , , q , exp 54.015 5.1723 lns

D
T D p p T T

p T T T D


 
=    − −  − 

−  
          (7) 

 

Hence, LCL height is a weak function of atmospheric pressure and is often 

ignored, such as in Espy’s, FAA’s, and Lawrence’s estimates. In our estimates 

using Equation (7), the surface atmospheric pressure input is required to compute 

specific humidity. Subsequently, we calculate temperature at LCL from the linear 

relationship (for illustration see Fig. 1): 

 

( ) ( ) ( ),0 0 ,0 0 1 0.856 qLCL Air LCL M Air LCL dT T z z T z z= − −  = − −  −        (8) 

 

In this method, the LCL height is first calculated explicitly from Equations 

(6) and (7) and then the value of zLCL substituted into Equation (8) for known MALR 

to obtain TLCL. As shown in Equation (8), MALR is computed from DALR and the 

specific humidity (Daidzic, 2019) which we can find using Equation (7). Clearly, 

at LCL: 

 

Air DP WB LCLT T T T= = =               (9) 

 

We will now develop an alternate method of estimating LCL parameters. 

First, we define RH as (Daidzic, 2019a, 2019b): 
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( )

( )
1

100 s

e TRH

e T


 
= =  
 

            (10) 

 

Taking the natural logarithm of RH, we obtain: 

 

( ) ( ) ( )ln ln ln sT e T e T = −                (11) 

 

The Clausius-Clapeyron equation with an ideal-gas approximation 

(Daidzic, 2019a; Iribarne & Cho, 1980; Iribarne & Godson, 1981; Tsonis, 2007; 

Wallace & Hobbs, 2006) yields: 

 

2

s v s

v

de l e

dT R T


=


                (12) 

 

Isentropic lifting of moist air at constant specific humidity can be obtained 

by differentiating Equation (10) resulting in: 

 

( ) ( ) ( ) ( )
1

ln ln ln ln
1 1

m m v
s

m m v

l
d d T d e d T d

R T

 


 

 
= − = +  

− −  
       (13) 

 

Here we utilized the fact that (Daidzic, 2019a): 

 

( ) ( ) ( )ln ln ln0.622 lnd e d r d p= − +            (14) 

 

At LCL, the RH is 100% (φ=1) and the temperature and pressure reach LCL 

values. After integration between surface values (φ, T, p) and condensation limits 

(φLCL=1, TLCL, pLCL), by neglecting small changes of some thermodynamic 

properties, we obtain:  

 

( ) ( )
1

1
ln ln

1

LCL LCLT T

m v

m vT T

l
d d T d

R T







 
= +  

−  
             (15) 

 

Integrating and using moist air thermodynamic relationships (Daidzic, 2019a): 

 

1 1
exp v

v DP

l

R T T


  
= −  

  
            (16) 
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we obtain an implicit nonlinear equation in TLCL:  

 

1 1 1 1
ln

1

v m LCL v

v DP m v LCL

l T l

R T T T R T T





    
− = + −    

−     
        (17) 

 

The above nonlinear equation has no explicit solution in terms of LCL 

temperature. To find unknown temperature at LCL we resort to using a numerical 

root-finding solver. Tsonis (2007) suggests numerically solving Equation (17), but 

does not demonstrate it. We could also use Bolton’s (1980) theoretical series-

approximation of Equation (17). While Bolton (1980) avoided solving nonlinear 

equation in his original work, we propose a simple numerical method of successive 

approximations or fixed-point iteration (Chapra & Canale, 2006) to solve nonlinear 

Equation (17). Rearranging the terms in Equation (17), we obtain: 

 

( ) ( )
( )

( ) ( )

1

1 4

1

1
q ln q 6.461 10 1 0.25 q

1

1, 2,

n
n LCL m v

LCL

DP m v

LCL DP

T R
T A A

T T l

T T n





−

+ −
    

= −  =   +       −     

= =

    (18) 

 

For the starting (initial) value for TLCL, we chose readily available reported, 

measured or estimated TDP at the surface elevation z0. This numerical algorithm 

results in moderately rapid convergence in all the cases we tested. Of course, TLCL 

is lower than the surface measured DP temperature. The convergence of Equation 

(18) is reasonably fast (5-6 iterations for 5 significant digits accuracy). The 

convergence criteria are defined for absolute difference between two subsequent 

iterations to be less than an arbitrary chosen small number: 

 
( ) ( )1

1,2,3,
i i

LCL LCLT T i
+
−  =                       (19) 

 

This simple procedure can be easily coded in any programming language 

(Basic, C++, Fortran, Matlab, etc.), spreadsheet program, scientific/engineering 

calculators, or even performed manually using hand-held portable calculators. 

Atmospheric air pressure at LCL follows from the wet-adiabat equation (Daidzic, 

2019a; Iribarne & Cho, 1980; Iribarne & Godson, 1981; Tsonis, 2007; Wallace & 

Hobbs, 2006): 

 

1

m

mLCL
LCL

T
p p

T



 − 
=  

 
             (20) 
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Bolton (1980) gives explicit series approximation for TLCL, while Romps 

(2017) gives exact solution of TLCL in his moist air adiabatic ascent model in terms 

of Lambert’s W special functions from which then LCL height and pressure are also 

computed.  Bolton’s (1980) approximation of TLCL yields: 

 

 
1

55 K
1 ln

55 2840

LCLT

T


= +

−
−

                          (21) 

 

Assuming LRs are constant, we can express the LCL height in several ways: 

 

( )
,0 ,0 ,0 ,0 ,0 ,0 0

0

Air LCL DP LCL Air DP Air DP

LCL

M DP M DP LCL LCL

T T T T T T T T D
z z

− − − −
− = = = = =

   −  
    (22) 

 

Using the first equality from Equation (22) and the expression for MALR 

(Daidzic, 2019b), we can express LCL height using Bolton’s estimate directly as: 

 

( )
1

0
0

1 1 ln
1 0.856 q 55

55 2840
LCL d

d pd

g
z z T

T c


−  

− = +  − − −  =  
 −   

         (23) 

 

The question is how sensitive or uncertain LCL height estimates are to small 

perturbations of influence parameters. The total differential for LCL height from 

the first equality above yields: 

 

LCL LCL LCL
LCL LCL M

LCL M

z z z
z T T

T T

      
 =  +  +     

      
      (24) 

 

After evaluating partial derivatives, the relative change of LCL height becomes: 

 

( )
0

0 0

1LCL LCL LCL M

LCL LCL LCL LCL M

z T TT T

z T T T T T T

     
= − −   

− −    
      (25) 

 

We could apply the same methodology to other equalities in Equation (22). 

For example, measured surface air temperature is 300 K (≈ 27oC), LCL temperature 

is 280 K (≈ 7oC), and MALR is 9.5 K/km. LCL height is then about 2.1 km (≈ 6,900 

ft). By evaluating small linear perturbations around stationary perturbation points 

“0” in Equation (25), we obtain: 
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 15 14LCL LCL M

LCL LCL M

z TT

z T T

  
=  −  −


        (26) 

 

Accordingly, a 1% increase in surface DB air temperature (3 oK or from 27 

to 30oC) will cause significant 15% increase of the LCL height (from 2.1 km to 

about 2.42 km). Similar sensitivity would exist with DP temperature measurement. 

A 1% increase in LCL temperature (2.8 oK or from 7 to 9.8oC) will cause 14% 

decrease in the LCL height (from 2.1 km to about 1.81 km). A 1% MALR change 

(9.5 ± 0.095 K/km) will only produce 1% change in LCL height (2,100 ± 21 m). 

Thus, LCL height is directly very sensitive to air temperatures and inversely to LCL 

temperatures estimations or measurements and inversely linearly sensitive to LR 

changes. This represents major effect in weather forecasting. Hence, accurate 

measurements of air and DP temperatures are essential for accurate estimations of 

LCL heights. Air pressure at LCL assuming isentropic ascent of moist air until RH 

reaches 100% is now easily computed using the Poisson’s equation given in 

Equation (20). 

 

Results and Discussion 

 

LCL height computations (solid lines) as functions of surface air 

temperature and for various surface DP depressions (2-15 K) as parametric curves 

are shown in a rather busy graph in Fig. 2. LCL height using our model is based on 

simultaneously solving Equations (6) and (7). In addition to our model derived here, 

comparison with various other models is presented. Hence, we present LCL heights 

computations from Lawrence’s model (dashed lines), Espy’s (doted lines), FAA’s 

(dense dashed lines), and Bolton’s LCL height estimate using Equation 23 

(symbols). LCL heights computed from our model (Equations. 6, 7, 8, and 20) are 

weakly dependent on specific humidity. The effect is strongest at high air 

temperatures and high DPs (low DP depressions). Estimations of LCL heights 

typically do not carry explicit atmospheric pressure dependence as seen from the 

simple Espy’s and FAA’s estimates. However, our model does account for 

atmospheric pressure dependence. We performed several computations with 

reduced atmospheric pressures (900, 800 mbar, etc.). The LCL height difference 

compared to SL ISA pressure is indeed low on the order of few meters only 

(temperature dependent 1-4 m for each 100 mbar lower atmospheric pressure) 

depending on the actual DP depression and air temperature. Romps (2017) also 

emphasizes the requirement for surface air pressure input in LCL computations. At 

low DP depressions (high DPs), the effect of specific humidity is minimal and the 

LCL height is almost constant and independent of air temperature. Of various older 

LCL-height models used, Bolton’s LCL estimate gives overall the best match 

overestimating LCL heights a bit at higher temperatures. Bolton’s LCL height 
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approximations are based on Equations. (21) for TLCL and (22) for zLCL in constant 

LR atmosphere or directly solving Equation (23). 

 

 
 

Figure 2. LCL height computations using various models. 

 

The model derived here also correctly predicts the trend in which LCL 

heights decrease with increasing DP temperatures (or decreasing DP depressions) 

at constant air temperatures. Lawrence’s LCL height estimate with RH computed 

using Clausius-Clapeyron phase-transition equation (Daidzic, 2019a) is only 

acceptable at high RHs and lower temperatures. Lawrence’s LCL estimates using 

linear RH approximation (Lawrence, 2005) shows even larger discrepancies. It was 

difficult to compare numerical values from our model directly with other published 

models as results are normally presented graphically only. However, Romps (2017) 

at one point in his article provides a numerical value of LCL height of 1,435 m for 

an air parcel having ISA SL temperature of 300 K (26.85oC) and RH of 50%. Our 

model delivers LCL height of 1,400.35 m (about 35 m or 115 ft difference) at the 

same SL pressure, air temperature, and RH (DP is 15.76oC or 288.91 K and DP 
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depression is 11.09oC). Computed TLCL is 13.32oC and pLCL is 861.76 mbar. This 

is somewhat disappointing and larger difference than expected or about 2% 

accounting for stated maximum uncertainties in Romps’ model. Espy’s, FAA, and 

Bolton’s estimates returned heights of 1,386.25, 1,352.11, and 1,430.85 m for same 

conditions respectively. Bolton’s model (Bolton, 1980) came within 5 m (16.5 ft) 

of Romps’, but that may have been just a coincidence. 

 

 
 

Figure 3. LCL temperature and pressure at SL ISA surface and air temperature of 

30oC. 

 

Hence, it is not possible to make full comparison with Romp’s model until 

all numerical values are available, which may be done in the future contribution. 

One of the possible, yet small, sources of discrepancy between our and Romp’s 

model is due to using different numerical values for various thermodynamic 

parameters and coefficients. In addition, we used simple constant-coefficients 

phase transition models based on Clausius-Clapeyron equation and our theoretical 

water-vapor saturation model is also less accurate (assumes water-vapor is an ideal 

gas) then Romp’s. In general, errors in our model compared to Romps’ (2017) are 

on the same order of magnitude as Bolton’s. We did not optimize thermodynamic 
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parameters to minimize overall error. More effort may be spent in the future to 

understand all the sources of discrepancies. Nevertheless, our present model still 

provides decent accuracy and simplicity in the presence of many uncertainties and 

approximations made. 

 

 
 

Figure 4. LCL temperature and pressure at SL ISA surface and air temperature of 

20oC. 

 

 Instead of LCL height, we could have computed LCL temperature first, 

such as by using successive approximations from Equation (18) and then compute 

LCL height and pressure. LCL height is computed from Equation (22) for known 

TLCL. LCL temperatures and pressures using our iterative numerical solver at air 

temperatures of 30oC, 20oC, and 10oC as a function of DP temperatures are shown 

in Figures. 3, 4, and 5 respectively. Comparison of Bolton’s approximation and 

nonlinear model for TLCL developed here is shown. In general, the following 

relationship between various temperatures exist TLCL < TDP < TWB < T < TV 

(Daidzic, 2019a, 2019b; Dutton, 2002; Iribarne & Godson, 1981; Stull, 2016; 

Tsonis, 2007). 
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Bolton’s approximation is plotted in the same figures. We found that the 

absolute deviations using Bolton’s (red dotted lines) equation (Equation 21) is less 

than 0.4oC compared to our solutions (black solid lines) given by iterative 

procedure in Equation (18). It is often very difficult to visually resolve small 

differences in presented results. As the air temperature decreases, so does the 

absolute error using Bolton’s approximation in the temperature range used. 

Although, appearing linear, the lines do have small curvatures to it. Atmospheric 

pressures at LCL are computed using Equation (20). 

 

 
 

Figure 5. LCL temperature and pressure at SL ISA surface and air temperature of 

10oC. 

 

Conclusions 

 

In this research article, we presented a new mathematical model of lifting 

condensation level dynamics. The computational results are compared to other 

commonly-used LCL models. We estimate the LCL height, temperature, and 

pressure, which control the bases of the cumulus clouds formations. In fact, two 

different methodologies are present – one that numerically solves nonlinear implicit 

equation in LCL temperature and the other that first solves explicit equation in LCL 
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height and then computes LCL temperature using MALR. Both approaches are 

based on the theoretical Clausius-Clapeyron equation for water vapor-liquid phase 

transition where water vapor is regarded as an ideal gas. Our model predictions are 

more accurate and physically more realistic than the predictions by Espy and 

formulas used commonly by the FAA and others in aviation education. Model 

developed here also includes the effect of specific humidity and 

atmospheric/barometric pressure. Our model predictions also compare well with 

the Bolton’s (1980) model and come close to the results of recently derived exact 

LCL solution of Romps (2017). More efforts are required to understand 

discrepancies from Romps’ model. No comparison with the experimentally 

collected atmospheric and weather data was performed at this point, but that could 

be conducted in a future investigation. 
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Nomenclature 

 

Greek 

 

  −   Isentropic coefficient. 

  −   Relative humidity. 

3kg/m     Density (mass). 

 

 K/m   Lapse rate. 

 

Alphabetic 

 

 kJ/kg Kc  Specific heat capacity. 

 Pae   Water vapor pressure. 

2m/sg     Terrestrial gravitational acceleration. 

 J/kgl   Mass specific latent heat (vaporization, fusion, etc.). 

 Pap   Pressure (thermodynamic). 

 q −   Specific humidity. 

 r −   Mixture ratio. 

 mz   Height (Orthometric). 

 

 KD   Dew point depression (spread). 

 mH   Height (Geopotential). 

 J/kg KR  Gas constant (gas specific). 

 KT   Temperature. 

 

Subscripts 

 

d  Dry. 

m  Mixture. 

p  Constant pressure process. 

s  Saturated. 

v  Vapor, wet. 
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DP  Dew point. 

LCL  Lifting Condensation Level. 

M  Moist (humid). 

WB  Wet Bulb. 

 

 

Abbreviations 

 

CN  Condensation nuclei. 

D  Dew point depression (spread). 

DB  Dry Bulb 

DALR  Dry Adiabatic (Air) Lapse Rate. 

DP  Dew Point [K]. 

DPLR  Dew Point Lapse Rate. 

LCL  Lifting Condensation Level. 

LDL  Lifting Deposition Level. 

LFL  Lifting Freezing Level. 

LR  Lapse Rate [K/m]. 

MALR  (unsaturated) Moist Air Adiabatic Lapse Rate. 

RH  Relative humidity. 
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