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Improved Storm Data Processing using 
Concurrent Computing Approaches 
Shauna Smith (Department of Computer Science) 

Rebecca Bates, Faculty Mentor (Department of Computer Science)  

Deborah Nykanen, Faculty Mentor (Department of Mechanical and Civil Engineering) 

Abstract 
A previous research study conducted at Michigan Technological University by Dr. Deborah 

Nykanen and her colleague Dr. Daniel Harris analyzed storm data in order to develop algorithms 

that will allow coarse resolution rainfall forecasted by weather models to be optimally used in 

high resolution hydrology models with the goal of improving stream flow predictions and early 

detection algorithms that can be used to warn communities about potential flash floods. This 

research was performed by analyzing a series of independent radar images derived from Weather 

Surveillance Radar-1988 Doppler (WSR-88D) data obtained from Dr. James A. Smith at 

Princeton University using a series of computer programs written by the original researcher and 

her colleagues. The program was run using a sequential algorithm that can take up to 17 hours to 

execute. Because of the structure of the problem, there was an opportunity for applying 

concurrent computing techniques to the program code. In order to speed up the program 

execution time, several different concurrent computing approaches have been applied to the 

code. Speedup analysis has been conducted for each different concurrent approach improving the 

code execution time by up to a factor of 93. The analysis results show how different concurrent 

approaches affect the speedup of code. The faster code will aid in analyzing future storm data, 

allowing more data to be analyzed in a shorter amount of time, and will eventually be used in 

improving lead time on high resolution stream flow predictions and flash flood warnings. The 

speedup provided by the concurrent computing approaches has been verified on previously 

analyzed data.  

Introduction 
Research conducted at Michigan Technological University by Dr. Deborah Nykanen and her 

colleague Dr. Daniel Harris analyzed storm data in order to develop algorithms that will allow 

coarse resolution rainfall forecasted by weather models to be optimally used in high resolution 

hydrology models. The goal of that research was to improve stream flow predictions and early 

detection algorithms that can be used to warn communities about potential flash floods. The 

research was performed by analyzing a series of independent radar images derived from Weather 

Surveillance Radar-1988 Doppler (WSR-88D) data obtained from Dr. James A. Smith at 

Princeton University using a series of computer programs written by the original researcher and 

her colleagues (Harris, 1998; Nykanen and Harris, 2003). The problem with these programs was 

that they used sequential algorithms that took up to 17 hours to execute.  The structure of the 

problem, where many independent calculations are made, created an opportunity for applying 

concurrent programming techniques to the sequential code.  Because of this opportunity, the goal 

of this research project is to make the code faster by applying concurrent programming 

techniques. In the future, the new code can be used to analyze future storms more quickly and 

efficiently.  
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In this paper, background of concurrent computing will be presented followed by a description of 

the rainfall analysis algorithm and storm data used in this project. The methodology used to 

apply concurrent computing approaches and the results of each method is also presented. It 

concludes with a summary and future work for the project.  

Concurrent Computing Background 
“Two events are said to be concurrent if they occur within the same time interval. Two or more 

tasks executing over the same time interval are said to execute concurrently” (Hughes & Hughes, 

2004, p. 2). The concept of concurrency can be applied to computing when there is the 

possibility that multiple things can or need to be happening at the same time. Concurrent 

computing is also often known as parallel computing. 

Parallel vs. Distributed Programming 

There are two different ways of implementing concurrency within a computer program. One way 

is to implement parallel programming. Parallel programming is the assignment of work to two or 

more processors within a single physical or virtual computer as processes or threads (Hughes & 

Hughes, 2004, p. 3). Another way of implementing concurrency is to use distributed 

programming. Distributed programming is the assignment of work to two or more processors 

that might not exist on the same computer as processes (Hughes & Hughes, 2004, p. 3). These 

approaches can also be implemented as a hybrid of parallel and distributed programming. The 

hybrid can occur if there are multiple processors on a single physical computer and that 

computer lies within an accessible network of many other distributed computers. To determine 

whether to implement a parallel, distributed, or hybrid programming approach, the problem that 

is going to be solved using some type of concurrent computing approach needs to be analyzed 

and fit into one of these different designs.  

Process vs. Thread 

There are two basic ways of splitting up work that a computer has the capability to schedule and 

manage. These two ways are either to create processes or to create threads. “A process is a unit 

of work that is created and managed by the operating system” (Hughes & Hughes, 2004, p. 37). 

A thread, on the other hand, is a unit of work that is created within a process and that shares 

resources with other threads.  

The main difference between a process and a thread is that a process has its own address space 

and a thread does not (Hughes & Hughes, 2004, p. 102). This difference causes both advantages 

and disadvantages for implementing threads rather than processes. The advantages and 

disadvantages are outlined in Table 1. 

Table 1: Implementing Threads vs. Processes (Hughes & Hughes, 2004, p. 108) 

Advantages of Implementing Threads Disadvantages of Implementing Threads 
Fewer system resources needed during context 

switching 

Requires synchronization for concurrent 

read/write access to memory 

Increased throughput of an application Can easily pollute address space of its process 

No special mechanism required for 

communication between tasks 

Only exist within a single process and 

therefore not reusable 

Simplification of program structure 
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Good Computing Performance 

When designing parallel algorithms, it is important to consider the following question: what is 

good computing performance? The intuitive notion is that the program runs fast, uses a small 

number of processors, and uses a small amount of memory. However, a more expert notion of 

good computing performance means that the program maintains a balanced load, has low 

overhead, and implements a scalable algorithm.  

The concepts of a balanced load, low overhead and scalable algorithms are very important to 

understand when dealing with the design and creation of concurrent computer algorithms. If 

work has been distributed evenly across multiple processors and all processors are staying busy 

for the same amount of time, then a parallel algorithm is considered to have a balanced load.  

The communication between separate processing entities in a concurrent algorithm can take extra 

time that a sequential algorithm would not require. The extra communication time is typically 

known as overhead. And lastly, a scalable algorithm is one that can take advantage of more 

processors if more were to become available. The goal of implementing any type of concurrent 

computing is to keep all available processors busy doing useful work for as long as possible 

(Haglin et al., 2008). Thus, a good parallel algorithm will result in a balanced load and minimal 

overhead and will be scalable if the number of available processors increases.  

Where Concurrent Computing is used 

Parallel computing can easily be used on programs that need more work done over a given time 

frame, need a simplified solution, need to be faster, can make use of specially designated 

processors, or address large problems with time-consuming sequential solutions (Hughes & 

Hughes, 2004, p. 3-6). One example of an area where concurrent computing is being used is in 

data visualization. One specific data visualization program that uses concurrent algorithms is a 

program that uses structural information obtained through X-ray crystallography and electron 

microscopy to determine spherical-virus structures (Martin & Marinescu, 1998). There is a need 

for concurrency in this type of application because of the large amounts of data that need to be 

processed in order to create a visualization. 

Weather analysis and weather prediction are very important procedures that benefit from the use 

of concurrent computing. “The use of numerical weather prediction models to provide input of 

spatial rainfall patterns for distributed hydrologic models has gained increasing popularity over 

the past decade to study the hydrologic response of alpine catchments” (Nykanen, 2008). These 

models are very dependent on the quality and resolution of the input precipitation data. The data 

can often be quite large, especially if the storm lasts for a long time or covers a large area. 

Because of the large amount of data and the computation intensive algorithms used for weather 

analysis, concurrent computing is an important tool for weather analysis and prediction. 

Rainfall Analysis Algorithm 

The rainfall analysis programs used in this work had previously been implemented in a 

sequential form on computers at the Minnesota Supercomputing Institute (Minnesota 

Supercomputing Institute, 2004). The rainfall analysis algorithm could benefit from a hybrid 

approach of parallel and distributed programming because of its structure, where a time-

sequence of data frames is analyzed independently. The rows and columns of the data matrices 

derived from the data frames can also be processed independently. This allows the data to be 

split in two different ways, at the frame level and at the row or column level of the matrices. The 
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• 2 dual-core AMD Opteron chips = 4 logical processors/node 
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• Linux OS 
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structure of the High Performance Computer (HPC) at Minnesota State University, Mankato 

allows for this type of hybrid implementation of both parallel and distributed programming 

(High-Performance Computing at MSU, 2007). Figure 1 features a diagram and description of 

the HPC. One of the key features of the HPC is that there is a master node and 34 worker nodes 

that are assigned processes by the master. 

 

 

 

 

 
 
 
 

Figure 1: High Performance Computer (HPC) 

A flowchart of the sequential rainfall analysis algorithm is shown in Figure 2.  The details of the 

algorithm can be found in Nykanen and Harris (2003). The flowchart below gives a short 

description of the key features of the algorithm and shows where the algorithm loops in order to 

process each of the independent data frames. These frames could be parallelized by sending 

individual frames to different processors on the HPC. The gray box, structure function analysis, 

includes array calculations that can be parallelized. Specific parallel implementations will be 

described later in this work. 

 

 

 

 

 

 

 

 

Figure 2: Rainfall Analysis Sequential Algorithm 

Fort Collins, Colorado Storm 
The rainfall data that was used as test data in this project was taken from a storm that occurred 

near Fort Collins, Colorado on the eastern slope of the front range of the Rocky Mountains on 

July 28 - 29 of 1997 (Nykanen, 2008). It produced record flash flooding causing five deaths and 

$200 million in damage. The data was in the form of a series of independent radar images 

derived from Weather Surveillance Radar-1988 Doppler (WSR-88D) data and was obtained 
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from Dr. James A. Smith at Princeton University (Nykanen, 2008). The Fort Collins, Colorado 

storm data consists of a sequence of 187 rainfall fields derived from WSR-88D radar at 1-km 

horizontal resolution and 6 minute temporal resolution. The extent of the rainfall field in each 

frame is 450 x 450 square kilometers.  Figure 3 represents one of the 187 data frames in the 

sequence of data covering a total of 18 hours and 42 minutes. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Fort Collins, Colorado High Resolution Rainfall Image 

Methodology 
In order to speed up the program execution time, several different concurrent computing 

approaches were applied to the rainfall analysis sequential algorithm. These approaches were 

applied and tested separately in order to determine which approach was best.  

One improvement made in all concurrent programming approaches was the use of “scratch 

space” on each node. Scratch space is a term to represent local hard disk on a node. This disk 

space is available for programs to read from or write to. The sequential algorithm only used disk 

space connected to the master node. When accessing disk space connected to the master node, 

there is some overhead added because of this communication. During the sequential algorithm, 

there is a negligible amount of this overhead when comparing it to the larger amount of overhead 

that would be created if the concurrent approaches listed below all tried to access disk on the 

master node at the same time. This large amount of overhead is created because of interfering 

traffic and limited bandwidth. An advantage to using scratch space is that it is quicker to access 

local disk space than disk space residing on the master node, especially for large distributed 

implementations.  
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The four concurrent programming approaches implemented are outlined below.  

1) Separate distributed processes 

The first concurrent programming approach applied was distributed processing. The Fort 

Collins, Colorado storm had 187 independent radar images that needed to be analyzed. These 

independent radar images are considered to be single independent pieces of data known as 

frames. Each separate distributed process was assigned a single data frame to analyze. All 

processes executed the same calculations but on different data. A single process required the 

exclusive use of a processor. After all frames were completed, another quick process was run 

in order to concatenate all output files. Figure 4 is a graphical representation of the 

distributed processes implementation. The flowchart only represents the sequence of events 

for a single data frame. For the Fort Collins, Colorado storm, there would be 187 processes 

running this sequence of events, each on a separate processor running in parallel. 

 

 

 

 

 

 

 

 

 

 

Figure 4: Rainfall Analysis Algorithm using Distributed Programming 

2) Threading 

Within the sequential rainfall analysis algorithm, the two dimensional autocorrelation 

function was threaded. The two dimensional autocorrelation function is contained in the 

structure function analysis portion of the rainfall analysis algorithm (gray box in Figure 2). 

This portion of the code was a bottleneck, taking up a significant amount of processing time 

per frame. For that reason, it was chosen to be the threaded portion of the code. In this 

implementation, a single process was created that was in charge of processing all frames of 

data. That process requested the exclusive use of an entire node (4 processors). Within that 

single process, four threads were created during the two dimensional autocorrelation function 

and each thread was then allowed the exclusive use of a processor. An individual thread was 

in charge of working on one fourth of the data matrix that was being accessed within the two 

dimensional autocorrelation function. Figure 5 is a graphical representation of how the 

matrix data can be split and processed in parallel using threading. The gray boxes represent 

the function that was threaded.
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Figure 5: Rainfall Analysis Algorithm using Parallel Programming 

3) MPI communication between processes 

Using a similar approach to the threaded method, an approach using MPI communication 

was implemented. “MPI (Message Passing Interface) is a standard of communication used in 

implementing programs that require parallelism” (Hughes & Hughes, 2004, p. 330). Just like 

the threaded implementation, a single process was created that was in charge of processing 

all frames of data. That process requested the exclusive use of an entire node (4 processors). 

The difference between the threaded and MPI implementations was that the two dimensional 

autocorrelation function was broken into four processes instead of threads. Each of these four 

processes was in charge of working on one fourth of the data matrix and was allowed the 

exclusive use of a processor on the node, just like the threaded implementation. Figure 5 also 

graphically represents how the matrix data was split and processed in parallel using MPI 

communication. The difference between implementing processes rather than threads is that 

each process has its own address space while threads are all sharing one single address space. 

This difference causes the advantages and disadvantages of implementing threads rather than 

processes that were mentioned in Table 1. 

4) Hybrid of distributed processing and threading 

The final approach was designed as a combination of (1) using separate distributed 

processing and (2) threading. The Fort Collins, Colorado storm was again broken up into 187 

different processes. Each separate distributed process was assigned a single data frame to 

analyze. A single process required the exclusive use of a node (4 processors) in order to 

implement threading. Again, the two dimensional autocorrelation function was threaded 

within each of the separate distributed processes. Within each single distributed process, four 

threads were created and each thread was then allowed the exclusive use of a processor. An 

individual thread was in charge of working on one fourth of the data matrix during the two 

dimensional autocorrelation function. After all separate distributed processes were complete, 

another quick process was run in order to concatenate all output files. Figure 6 is a graphical 

representation of the hybrid implementation. The flowchart through the hybrid 

implementation is for a single data frame. For the Fort Collins, Colorado storm, there would 

be 187 processes running this sequence of events, each on a separate node running in 

parallel. 
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Figure 6: Rainfall Analysis Algorithm using Distributed and Parallel Programming 

Performance Assessment 
After completing and testing the implementations of the different concurrent programming 

approaches on the HPC, performance assessment based on process time was conducted on each 

approach. The evaluated metrics were the factor of speedup, the amount of overhead (expressed 

in hh:mm:ss), and the percentage of efficiency. The following equations were used to calculate 

each metric: 

 
 Speedup S = TS / T(p) 

 Overhead T0 = p * T(p) - TS 

 Efficiency E = S / p 

The ideal factor of speedup for an algorithm is equal to the number of processors used in the 

parallel implementation. An ideal parallel algorithm would also have no overhead and would be 

100 percent efficient. The number of processors used in each implementation was needed to 

calculate the overhead. These numbers are given in Table 2.  

Table 2: Number of Processors Used in Concurrent Implementations 

 Number Of Processors 
Separate Distributed Processes 94 

Threading 4 

MPI Communication 4 

Distributed Processing and Threading 128 

TS : baseline time 

T(p) : time using p processors 

p : number of processors used 
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Timing Results 
The timing results for the sequential algorithm and all concurrent approaches implemented on 

the HPC are listed in Table 3. The times were recorded as total processing time until completion 

and average processing time per data frame.  

Table 3: HPC Timing Results 

 Total Process Time Average Time Per Frame 
Serial Implementation (baseline) TS = 17:16:38 00:05:33 

Separate Distributed Processes T(p) = 00:11:07 00:05:12 

Threading T(p) = 07:26:52 00:02:23 

MPI Communication T(p) = 05:35:16 00:01:48 

Distributed Processing and 
Threading 

T(p) = 00:16:24 00:02:14 

(All results given in format hh:mm:ss) 

Performance Assessment Results 
The performance assessment results for each concurrent programming implementation are listed 

in Table 4. The performance assessment metrics include factor of speedup, amount of overhead 

(expressed in hh:mm:ss), and percentage of efficiency. 

Table 4: Performance Assessment Results 

 Speedup S Overhead T0 Efficiency E 
Separate Distributed Processes 93.25 00:08:20 99.20% 

Threading 2.32 12:30:50 58.00% 

MPI Communication 3.09 05:04:26 77.30% 

Distributed Processing and Threading 63.21 17:42:34 49.38% 

Analysis 
The concurrent algorithm implementations were analyzed by comparing the different 

performance assessment results and weighing the benefits and disadvantages of each 

implementation based upon these results. The notion of scalability was also analyzed based upon 

the HPC timing results and the performance assessment results. 

Speedup Analysis 

Both implementations using separate distributed processes across multiple processors provided 

the two highest factors of speedup. The ability to take advantage of multiple available processors 

decreased the total execution time until completion. A shorter execution time results in a higher 

factor of speedup.   

A rule of thumb when analyzing speedup is that the ideal speedup should be equal to the number 

of processors used in the parallel implementation. In the separate distributed processes 

implementation, the number of processors used was 94 and the factor of speedup was 93.25. 

These numbers are very close, implying that the implementation resulted in nearly ideal speedup.  

In the threaded and MPI communication implementations, 4 processors were used. Neither of 

these two approaches came as close to obtaining ideal speedup. In the distributed processing and 
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threading approach, 128 processors were used but the factor of speedup was only 63.21. The 

factor of speedup in this approach was only one half of the amount of processors used. 

The threaded, MPI communication, and hybrid implementations might not have succeeded in 

obtaining ideal speedup, but they were able to cut down on the average processing time per data 

frame. The use of threading or MPI communication provided shorter execution time during the 

bottleneck portion of the code, which resulted in shorter average processing time per data frame. 

This decrease in average time per data frame is very important because of how it can be 

implemented in hybrid approaches of distributed and parallel processing, especially for 

implementations using smaller storm data or on a system with fewer processors.   

Overhead Analysis 

The equation used to calculate overhead in this project requires the term “overhead” to be 

defined slightly differently than normal. Traditionally, overhead is defined as the extra time it 

takes to communicate between separate processing entities in order to utilize parallel 

programming techniques. The equation used to calculate overhead (T0 = p * T(p) - TS) works 

well to calculate the extra communication time for algorithms that have a well balanced work 

load. The problem with the parallel rainfall analysis algorithms used in this project was that they 

did not have the quality of having a well balanced work load. This problem caused the overhead 

calculation to also include processor idle time, not just extra communication time. Because of the 

unbalanced processor load, some of the processors would stand idle while others were busy 

working.  

In terms of the overhead calculated, the separate distributed processes implementation provided 

the least amount of overhead while the distributed processing and threading implementation had 

the highest amount of overhead. When comparing these results, it is important to keep in mind 

whether or not a high amount of overhead is worth a large factor of speedup and faster execution 

time. A final decision between implementations would require an analysis of the tradeoffs 

between speedup, overhead, and efficiency for a given context. 

Efficiency Analysis 

The use of separate distributed processes had a very impressive efficiency of 99.20%, which was 

the most efficient approach implemented. However, the hybrid of distributed processing and 

threading provided the worst efficiency of 49.38%. The threading, MPI communication, and 

hybrid approaches all suffered in efficiency assessment because of having an unbalanced work 

load. In all of these implementations, some processors would sit idle while only one of the 

processors was doing any work.  

Scalability Analysis 

All performance assessment results depend on the number of available nodes and number of data 

frames that exist within a particular storm. These dependencies have a big impact on the 

scalability of each of the concurrent programming approaches, especially the approaches 

involving distributed programming. 

For example, the Fort Collins, Colorado storm could have completed in approximately 5 minutes 

and 12 seconds (average time per data frame) using the separate distributed processes algorithm 

on a system with at least 187 available processors. This way, each separate distributed process 

would get its own processor instead of each processor being in charge of two processes like the 

implementation on the HPC. If the HPC had only 13 more nodes, the Fort Collins, Colorado 
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storm could have completed in that approximated time. On the other hand, if the Fort Collins, 

Colorado storm had 136 or less data frames, the HPC would be able to provide the approximated 

execution time of 5 minutes and 12 seconds because there would be enough available processors 

to assign one single distributed process to a single processor. 

Conclusion 
After analyzing the performance assessment results, the best concurrent programming approach 

implemented on the HPC using the Fort Collins, Colorado storm data was separate distributed 

processing. This approach had the fastest execution time, the highest factor of speedup, was the 

most efficient, and had the least amount of overhead.  

However, because all assessment results depend on the number of available nodes and number of 

data frames, the combination of distributed processing and threading could outperform the 

separate distributed processing implementation on a larger node system or a smaller storm. 

Threading was able to cut the average time per data frame in half and distributed processing 

provides the ability to utilize multiple processors across many nodes. Both of these techniques 

help obtain the result of a faster execution time and higher factor of speedup. 

For example, if the Fort Collins, Colorado storm only had 34 frames of data, it would be able to 

complete execution in approximately 2 minutes and 14 seconds on the HPC if all 34 worker 

nodes were available. Similarly, the Fort Collins, Colorado storm would also complete execution 

in only approximately 2 minutes and 14 seconds on a large system that consisted of 187 nodes.  

The dependency on number of available nodes and number of data frames has a big impact on 

the scalability of each concurrent algorithm. Therefore, these dependencies can help or hinder 

the use of different implementations, especially when using a distributed programming approach.  

Since the goal of this research project was to create a fast algorithm that would contribute to the 

ultimate goal of warning communities about flash floods, speedup is the most important 

performance assessment metric. With this goal in mind, the separate distributed processes 

implementation was the best solution on the HPC but there is still the possibility that the 

distributed processing and threading approach could be even faster in warning communities on a 

larger node system. 

Future Work 
Since the rainfall analysis algorithm will eventually be used in improving stream flow 

predictions and early detection algorithms that can be used to warn communities about potential 

flash floods, it is paramount that concurrent computing implementations do not alter the accuracy 

and correctness of the rainfall analysis. In order to ensure that these parallel changes are not 

affecting the integrity of the output, the code needs to be tested multiple times using the Fort 

Collins, Colorado storm data by running it on various machines using different concurrent 

computing approaches and then comparing the output to the serial implementation results.  

Additional tests using storm data from other case studies are also needed. 

The conclusions of this project lead directly into future work related to the scalability of the 

parallel implementations. There are two ways to analyze the scalability in terms of distributed 

processing: 

1) Implement rainfall analysis programs on a larger node system 
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2) Test using different sized storms (different number of data frames) 

In either case, the scalability of the algorithms with respect to distributed programming can be 

analyzed. More research should also be conducted on the scalability of the threaded and MPI 

communication approaches by increasing the number of available processors to more than 4. 

This would allow more than 4 processes or threads to be created within the two dimensional 

autocorrelation function, possibly further decreasing the average processing time per data frame. 
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