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MEASURING NOBLE GASES IN COMA SAMPLES FROM COMET WILD 2 

Jacob Simones (Physics and Astronomy) 

Dr. Russell Palma, Faculty Mentor (Physics and Astronomy) 

ABSTRACT 

Since comets originated during the formation of the solar system, the processes of 

solar system formation can be better understood through compositional analysis of 

cometary material.  A low density, silicon-based substance called aerogel was used by 

NASA’s Stardust spacecraft to collect coma samples from comet Wild 2.  Aerogel not 

from the spacecraft (“non-flight”) was investigated to determine the possibility of 

measuring noble gases in Stardust samples.  Gas evolved from heated, non-flight aerogel 

was measured initially using a residual gas analyzer, then a high-sensitivity mass 

spectrometer.  Levels of helium and neon isotopes observed from both instruments were 

sufficiently low that noble gases from Stardust samples were measured using the same 

technique.  Intrinsic helium and neon was not identified in flight aerogel without apparent 

cometary material.  Helium and neon were detected above background in flight samples 

containing impact particle tracks. 
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INTRODUCTION 

Material not incorporated into the sun formed a protoplanetary disk from which 

the planets and other solar system bodies condensed.  The compositions of these bodies 

should be similar to that of the sun under the assumption that solar and disk material 

came from a common source.  However, the compositions of bodies throughout the solar 

system are known to be wildly different from one another.  These differences are 

attributed to physical and chemical processes, but the exact sequence of events that 

occurred to form the solar system remains unknown. 

Studying the evolution of the solar system requires knowing what the early solar 

system was like compositionally.  Elemental abundances and isotopic compositions from 

numerous planets and satellites have been studied, so constraints can be put on current 

formation theories by comparison with information from early solar system materials.  

The inert noble gases are of particular interest because they are good indicators of 

elemental and isotopic mass fractionations caused by chemical and physical processing 

(Pepin 2006). 

Characterizing noble gases in the protoplanetary disk requires finding a source of 

material that has remained unchanged since that period.  Comets are an important 

resource in that they are artifacts from the formation of the solar system, and were 

accordingly the focus of NASA’s Stardust mission.  This mission was designed mainly to 

collect samples of material from comet Wild 2 and return them to earth for analysis.  Far 

from the sublimating effect of solar radiation, comet Wild 2 has spent most of its life 

well-preserved in the outer region of the solar system.  A recent interaction with Jupiter 

decreased Wild 2’s perihelion distance, conveniently bringing the comet closer to earth 

for study.  The Stardust spacecraft encountered the nucleus of comet Wild 2 to collect 

samples of coma gas and dust by impact into aerogel, a very low density, silicon-based 

material that has been shown to be effective at stopping and preserving high velocity 

particles.  Tracks were observed in the aerogel, revealing the trajectories of the particles 

as they were captured.   

Due to their relative importance as tracers of fractionation and transportation in 

the solar system, the measurement of noble gas isotopes in Stardust samples was the 

primary objective in this study.  Flight aerogel gas can be classified as either cometary, 
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intrinsic to the aerogel, or from some other source.  Cometary gas was expected to 

originate from captured particles and particle fragments scattered along the tracks.  As an 

additional cometary gas source, it was anticipated that gas may have been trapped within 

bubbles formed as particles melted aerogel along the entry path.   

EXPERIMENT 

The proposed method for obtaining trapped gases from flight samples was to heat 

the aerogel in a stepwise fashion.  The advantage of step heating is that the amount of 

outgassing in the sample is temperature controlled; more tightly held volatiles are 

released at higher temperatures.  A two-phase approach was undertaken for processing 

the flight samples: an initial, low temperature heating phase (no more than about 200 °C) 

to release potential surface gases and a high temperature phase (upwards of 1000 °C) for 

the release of coma gas.  The low temperature phase was important as a means of 

discarding any contaminating gas that would otherwise compete with the coma gas in the 

mass spectrometer.  Heating has been effective in measuring gas from interplanetary dust 

particles (some of which are thought to have originated from comets), but it was 

unknown whether or not noble gas concentrations in non-flight, or blank, aerogel would 

be low enough to permit detection of gases at the levels anticipated in flight samples.   

The feasibility of this technique was first investigated by making measurements 

of the volatile composition of aerogel block E226-5B with a residual gas analyzer (RGA).  

This non-flight aerogel was identical to that flown on the Stardust spacecraft.  The first 

sample cut from block E226-5B had an area of ~0.5 cm
2
 and was enclosed in a platinum

envelope attached to two wire leads on a flange (Figure 1).  The flange was attached to a 

vacuum system and the external leads on the flange were connected to a power supply.  

The sample was heated from 50 °C to ~1000 °C in eleven steps, each step lasting for one 

hour.  Gas measurements were taken periodically throughout each step with the RGA set 

to scan over a mass range of 1 to 50 u. 

The results from each temperature step were superimposed on a plot of partial 

pressure versus mass, as displayed in Figure 2.  The partial pressures of He, Ne, and Ar in 
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Figure 1.  The sample holder used during gas 

extraction. 
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Figure 2.  A composite plot of the RGA partial pressure measurements of gas components in E226-5B for 

eleven temperature steps from 50 to 1000 °C. 

the system never exceeded 10
-8

 Torr at any time during measurement.  This amount is

negligible relative to the maximum amounts observed for H2O and CO2, which were 

above 10
-7

 Torr, and H2 and CO, which exceeded 10
-5

 Torr.  These results showed that as

long as the dominant peaks could be reduced, heating to outgas Stardust samples was 

worth pursing on a higher sensitivity measuring system. 
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A second sample was cut from block E226-5B in order to accurately determine 

the He and Ne composition of blank aerogel.  The sample had an approximate area of 1.5 

mm
2
 and was loaded into a platinum envelope and attached to a vacuum system in the

same manner as the first sample.  To reduce the amounts of H2, H2O, CO, and CO2, the 

system was fitted with getters (cartridges of gas-adsorbing alloys), and liquid nitrogen-

cooled charcoal.  In addition to the adsorption of heavy components, these materials also 

adsorb Ar.  While it was possible to isolate Ar from the charcoal and getters, the amounts 

of Ar expected were extremely small (if present at all), and in this initial study the focus 

was He and Ne isotopic compositions. 

The sample was heated to 310 °C for 15 seconds, and the evolved gas was 

purified by the getters and charcoal for 10 minutes.  After purification, the gas was 

analyzed for individual counts of He, Ne, 
40

Ar, CO2 and H2O using a high-sensitivity

mass spectrometer.  The detection sensitivities of the instrument for 
4
He and 

20
Ne were

4.4 x 10
-13

 cm
3
 STP/cps and 1.2 x 10

-12
 cm

3
 STP/cps respectively.  Eight more steps were

performed for temperatures of 640, 840, 970, 1070, 1140, 1200, 1250, and 1330 °C.  The 

gas acquired at each step was allowed to accumulate in the system such that every 

measurement taken was of a cumulative amount.  To determine the amount of indigenous 

gas in the system that contributed to these measurements, the same piece of aerogel was 

reheated using the same procedure. 

The cumulative amount of He for the heat and reheat runs is plotted as a function 

of temperature in Figure 3.  The amount of He detected during the initial heating was not 

statistically different from the background (reheat run) for lower temperatures.  Helium 

was detected above background at 1330 °C, suggesting aerogel may have an intrinsic 

background concentration of He that must be considered when analyzing Stardust 

samples.  The amount of 
20

Ne measured at each step was corrected for contributions from

H2
18

O using the ratio H2
18

O/ H2
16

O = 2.06 x 10
-3

.  The water contribution comes from the

atmospheric oxygen isotope ratio 
18

O/
16

O.  Cumulative Ne is plotted against temperature

in Figure 4.  The amount of Ne from the initial heating was not statistically different from 

the background suggesting aerogel does not have an intrinsic Ne concentration at our 

detection level. 
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Figure 3.  Amounts of 
4
He obtained from the initial heatings of E226-5B and C044 compared with the 

respective backgrounds. 
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Figure 4.  Amounts of 
20

Ne obtained from the initial heatings of E226-5B and C044 compared with the 

respective backgrounds. 
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The intrinsic aerogel gas composition was further determined with the analysis of 

another aerogel sample, Keystone C044.  This was flight aerogel, approximately 1.5 mm
3

in volume, and did not contain any apparent cometary material.  The sample was initially 

heated to 200 °C for 20 seconds with 10 minutes exposure of the gas to the getters and 

charcoal before measurement of the Ne isotopic composition, followed by the same 

analysis for He.  This initial, low temperature heating was done to release any 

contamination loosely held by the sample and sample holder.  The sample gas was 

liberated in three 15 second heating steps, 1140, 1250, and 1330 °C with a 10 minute 

purification time after each step. Cumulative gas measurements were taken after the final 

heating step, in the same order as the low temperature heating.  Neon was always 

measured before He because of the interplay between hydrogen deuteride (HD) and 
3
He

in the system.  Hydrogen levels tended to decrease with getter exposure, which was 

desirable because HD interfered with the measurement of 
3
He.  By making Ne 

measurements first, the getters had a longer period of time to reduce hydrogen levels, 

improving the accuracy of 
3
He analysis for C044.

The sample was reheated using the exact same procedure to obtain a system 

blank.  Before reheating, however, a calibration was run that introduced a large amount 

of gas into the system.  This produced a memory effect that was observed as a He buildup 

in the mass spectrometer.  Test runs of the system were done over the course of several 

days until He levels decreased to an acceptable level.  Keystone C044 was reheated a 

second time, but there were no Ne data acquired using the measurement program 

designed for Ne isotopes.  Also, only the high temperature phase was repeated.  The low 

temperature phase was replaced by one of the test runs from after the calibration.  There 

was no heating involved in the test run, so measurements were taken at room 

temperature, approximately 25 °C. 

The lower portion of Figure 3 shows the amount of 
4
He measured in keystone

C044 compared with hot and cold background levels.  The amount of He from keystone 

C044 is within uncertainty of the background, so in contrast to the non-flight aerogel 

analyzed earlier, flight aerogel had no He above detection levels.  The C044-to-

background comparison for Ne is displayed in the lower portion of Figure 4.  As before, 

corrections were made for H2
18

O using the ratio H2
18

O/ H2
16

O = 2.06 x 10
-3

.  Any Ne
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released was well within background, indicating that if cometary Ne is indeed trapped 

within particles in flight aerogel, it should be possible to detect it. 

Samples S1, S2, and S3 were fragments of a Stardust particle track wall, 

containing melted aerogel and potentially fragments of the original impacting particle.  

These samples were analyzed individually for cometary gas.  Samples S1 and S2 were 

heated first to ~200 °C during bakeout, followed by additional heatings up to ~250 °C as 

a clean up procedure.  Helium and Ne levels for the samples remained within the system 

blank levels during this low temperature phase.  The samples were then heated from ~250 

to ~1075 °C in about ten 15-20 second steps.  The system blank for each sample was 

determined by reheating.  No He or Ne was released above background for S1 and S2.  

Recognizing the possibility that sample gas was lost during the bakout phase for these 

samples, it was decided that the bakeout would be omitted during the analysis of S3.  As 

with S1 and S2, no He or Ne was observed from S3 upon reaching ~1075 °C.  These 

results are shown in Figure 5, where the ranges of 
3
He, 

4
He, and 

20
Ne obtained from the

samples are compared to background levels.  The samples were then heated from 1100 to 

~1400 °C to make sure that they were completely degassed.  Sample S1 began releasing 

gas at ~1250 °C, and gas release for S2 and S3 was initiated at ~1300 °C (Marty et al. 

2007).  Figure 6 shows the total amounts of 
3
He, 

4
He, and 

20
Ne obtained from each

sample compared to background for the high-temperature phase.  Concentrations and 

compositions of He and Ne are given in Table 1. 

Table 1.  Amounts and compositions of He and Ne in stardust samples S1, S2, 

and S3. 

Sample 
4
He (x 10

-11
 cm

3
 STP) 

20
Ne (x 10

-11 
cm

3
 STP) 

4
He/

20
Ne 

S1 7.27 ± 0.36 5.34 ± 0.42 1.36 ± 0.13 

S2 5.26 ± 0.30 0.94 ± 0.14 5.60 ± 0.89 

S3 ≤66.9 ± 2.4 1.06 ± 0.15 ≤63.1 ± 9.2 

Sample 
3
He/

4
He (x 10

-4
) 

20
Ne/

22
Ne 

21
Ne/

22
Ne 

S1 2.92 ± 0.26 10.68 ± 0.35 0.0273 ± 0.0024 

S2 2.47 ± 0.34 9.0 ± 1.6 0.039 ± 0.011 

S3 ≤0.318 ± 0.032 9.3 ± 1.6 0.042 ± 0.018 
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Figure 5.  Amounts of 
3
He, 

4
He, and 

20
Ne from S1, S2, and S3 

measured relative to background after heating up to ~1075 °C. 

(ccSTP) 
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Figure 6.  Amounts of 
3
He, 

4
He, and 

20
Ne in ccSTP from S1, S2, 

and S3 measured relative to background after heating from 1100 

°C up to 1400 °C. 
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DISCUSSION 

That He and Ne were not observed from S1, S2, and S3 until relatively high 

temperatures indicates that the gas was sited in particles, not aerogel bubbles.  At 

temperatures of ~1200-1250 °C, the He diffusion coefficients for vitreous silica (Marty et 

al. 2007) are large enough for glassy aerogel with dimensions on the order of 1 mm to 

completely degass within ~10 seconds.  For the ≤100 μm size scale associated with 

melted aerogel along the particle tracks, the degassing process would only take ~1 second 

or less.  Additionally, typical gas release temperatures for interplanetary dust particles are 

around 500 °C, which is much lower than ~1250 to ~1300 °C observed for the Stardust 

samples.  The particles in Stardust samples are therefore distinctly different from 

interplanetary dust particles in that they must have formed at higher temperatures.  This is 

a surprising result as comets are typically thought to have formed in the cooler, outer 

solar system, but is consistent with the dominant refractory grain mineralogy of the 

Stardust particles (Brownlee et al. 2006).  At least in the case of the particles captured 

from Wild 2, material originating closer to the sun must have migrated outward by some 

means to be incorporated into comets. 

The results in Figures 3 and 4 support prior investigation (Marty et al. 2006) that 

blank aerogel does not contain detectable He and Ne above background.  Terrestrial 
3
He

abundances are consistently lower than extraterrestrial, so the measurement of excess 
3
He

signifies that cometary gases are in fact present in Stardust samples.  The 
3
He diffusion

coefficient for Stardust particles is more than 15% larger than that of 
4
He at the 

maximum step-heating temperature.  However, excess
 3

He was not measured for repeat

maximum temperature heatings making an experimental perturbation in the relative 

abundance of 
3
He to 

4
He unlikely (Marty et al. 2007).  Production rates of spallogenic

3
He and 

21
Ne from galactic cosmic ray irradiation at the surface to a depth of 1 m are

correspondingly ~5-7 x 10
-9

 cm
3 

STP/g per Ma and ~2-3 x 10
-9

 cm
3 

STP/g per Ma.  The

minimum amounts of 
3
He and 

21
Ne in particles from S1, S2, and S3 were estimated at ~6

x 10
-5

 and ~3 x 10
-4

 cm
3 

STP/g respectively.  It would require ~1000 Ma to produce just

10% and <2% of the estimated 
3
He and 

21
Ne by means of spallation due to galactic

cosmic rays (Marty et al. 2007).  The amount of mass lost from Wild 2 since its last 
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apparition in 1974 has been estimated by Brownlee et al. (2004) to be ~1 m, so Stardust 

particles were probably buried until recently where irradiation by galactic cosmic rays 

would have been negligible.  Although long-term irradiation on an ancient surface is a 

possibility, no more than ~50% of the 
3
He and 5% of the 

21
Ne measured in Stardust

samples could be spallogenic according to the above estimate of minimum gas quantities 

present, given 4500 Ma for the age of the solar system (Marty et al. 2007).  It is therefore 

unlikely that spallation from galactic cosmic ray irradiation has contributed any 

significant 
3
He and 

21
Ne to the cometary gas in Stardust samples.

Accurately determining the cometary He and Ne isotopic ratios is critical in 

discerning when and from what source comets acquired noble gases.  The average 

3
He/

4
He ratio was measured to be ~2.7 x 10

-4
.  This is between the value for the

atmosphere of Jupiter, (1.66 ± 0.05) x 10
-4

, and the respective values for the sun in its

post-deuterium burning phase and the current solar wind, (3.65 ± 0.38) x 10
-4 

and (4.82 ±

0.04) x 10
-4

.  The 
20

Ne/
22

Ne isotopic ratios most accurately determined between this

study and the analysis of samples from the same particle track at the Centre de 

Recherches Petrographiques et Geochimiques in France are within the range accociated 

with primitive meterorites, 10.1 to 10.7 (Marty et al. 2007).  Stardust Ne isotopic ratios 

are in contrast very different from current solar wind values, eliminating solar wind as an 

exclusive Ne source.  The observed Ne ratios could be alternatively explained by mixing 

a Ne composition similar to either the solar wind or primitive meteorites with a terrestrial 

Ne contaminant.  As stated by Marty et al. (2007), however, the 
21

Ne/
22

Ne and 
4
He/

20
Ne

ratios measured in some samples are too low to be consistent with the mixing model.  A 

second alternative is that the cometary Ne composition is unique from other volatile 

sources in the solar system.  Further research must be done so that cometary He and Ne 

isotopic ratios may be compared with those of specific noble gas sources. 
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