

Minnesota State University mankato

Minnesota State University, Mankato Cornerstone: A Collection of Scholarly and Creative Works for Minnesota State University, Mankato

All Graduate Theses, Dissertations, and Other Capstone Projects

Graduate Theses, Dissertations, and Other Capstone Projects

2012

Modeling Potential Impacts of Heavy Metals and BTEX Compounds from the former Year-A-Round Cab Company on Hiniker Pond

Jason Nolan Minnesota State University - Mankato

Follow this and additional works at: https://cornerstone.lib.mnsu.edu/etds

🗳 Part of the Environmental Sciences Commons, and the Hydrology Commons

Recommended Citation

Nolan, J. (2012). Modeling Potential Impacts of Heavy Metals and BTEX Compounds from the former Year-A-Round Cab Company on Hiniker Pond [Master's thesis, Minnesota State University, Mankato]. Cornerstone: A Collection of Scholarly and Creative Works for Minnesota State University, Mankato. https://cornerstone.lib.mnsu.edu/etds/112/

This Thesis is brought to you for free and open access by the Graduate Theses, Dissertations, and Other Capstone Projects at Cornerstone: A Collection of Scholarly and Creative Works for Minnesota State University, Mankato. It has been accepted for inclusion in All Graduate Theses, Dissertations, and Other Capstone Projects by an authorized administrator of Cornerstone: A Collection of Scholarly and Creative Works for Minnesota State University, Mankato.

MODELING POTENTIAL IMPACTS OF HEAVY METALS AND BTEX COMPOUNDS FROM THE FORMER YEAR-A-ROUND CAB COMPANY ON HINIKER POND.

By

JASON NOLAN

A Thesis Submitted in Partial Fulfillment of the

Requirements for the Degree of

Master's of Science

In

Environmental Science

Minnesota State University, Mankato

Mankato, Minnesota

July 2012

Date_____

Modeling Potential Impacts of Heavy Metals and BTEX Compounds from the former Year-A-Round Cab Company on Hiniker Pond.

Jason Nolan

This thesis has been examined and approved by the following members of the thesis committee.

Beth Proctor, Ph.D., Advisor

Cynthia Miller, Ph.D.

Steven Mercurio, Ph.D.

ACKNOWLEDGEMENTS

This project would not have been possible without the support and encouragement of the following people. Thanks to:

Dr. Beth Proctor for her time and effort that without which I would have never finished this thesis and for her leadership and expertise that taught me more than I would have ever imagined. To my committee members Dr. Cindy Miller and Dr. Steven Mercurio for their time, thought, support, and expertise that also helped make this thesis possible. Dr. Steve Bohnenblust for his assistance with statistical analysis of data. I would also like to thank my research intern Sam Watts for his hours of work in the field and in the lab. This project would not have been possible without the gracious financial support of the Department of Biological Sciences, Minnesota State University- Mankato.

ENVIRONMENTAL SCIENCE

A Determination of Possible Heavy Metal and Organic Pollutant Contamination of Hiniker Pond Mankato, Minnesota. Jason P. Nolan, M.S. Minnesota State University, Mankato. 2012 173 pp.

The Year-A-Round Cab Company (an industrial metal preparation, painting, and welding facility) in Mankato, MN has a history of numerous environmental violations. The site is located 300 yards north of Hiniker Pond, a popular swimming spot. The primary purposes of my research were to determine if BTEX (ethyl benzene, toluene, and xylenes) and heavy metals had reached Hiniker Pond, and model estimated contaminate plumes from the Year-A-Round Cab Company. Lead, cadmium, and chromium were found in sediments at levels of up to 30 times higher near the site as compared to the control lake, Hallett's Pond. Although BTEX were not found in surface water or sediment samples, it has been confirmed to be in manholes on the site at levels of up to 6,000 mg/L by the MPCA in September, 2010. GFLOW, MODFLOW and the transport engines MT3DMS (lead as surrogate) and RT3D (toluene as surrogate) were used to predict the spread of contamination off site. Based on the modeling, heavy metal contamination most likely has occurred through surface runoff and BTEX contamination is possible through groundwater flow. A comprehensive testing plan should be developed based on current models to understand the full extent of the BTEX, lead, cadmium, and chromium contamination. Column studies should be completed to refine the GFLOW and MODFLOW models.

TABLE OF CONTENTS

CHAPTER

I.	INTRODUCTION	1
II.	LITERATURE REVIEW	5
	A. BTEX Compounds	5
	B. BTEX Transport and Fate	6
	C. Heavy Metals	8
	1. Cadmium	9
	2. Lead	10
	3. Chromium	11
	D. Heavy Metal Transport	13
	E. pH	13
	F. Dissolved Oxygen	14
	G. Sulfates	14
	H. Eutrophication	15
	1. Phosphorus	15
	2. Nitrogen	16
	I. Escherichia coli (E. Coli)	16
	J. Water Clarity	17
	K. Conductivity	18
	L. Carlson's Trophic State Index	18

	M. Ground Water Flow Modeling	20
III.	DESCRIPTION OF STUDY AREA	26
	A. Hiniker Pond	26
	B. 110 and 112 West lind Street Sites	29
	C. Hallett's Pond	34
IV.	MATERIALS AND METHODS	36
	A. Sample Collection	36
	B. BTEX Compounds and Cadmium, Chromium,	36
	and Lead	
	1. Water Samples	36
	2. Sediment Samples	37
	3. Analysis of Water and Sediment Samples	38
	for BTEX and Metals	
	C. Field Parameters	38
	D. Nutrients, Sulfates, and E. Coli Water Samples	39
	E. Statistical Analysis	40
	F. Carlson Trophic State Index	40
	G. Rainfall Data	40
	H. ARC GIS	40
	I. Ground Water Modeling	41
	1. GFLOW	41
	2. MODFLOW	41

		a. Heavy Metal Transport	44
		b. BTEX Transport	45
V.	RESULTS		46
		A. BTEX and Metals	46
		B. Field Parameters and Nutrient Testing	47
		C. Statistical Analysis	50
		D. Carlson Trophic State Index	52
		E. Rainfall Data	52
		F. Ground Water Flow Modeling	53
		1. GFLOW	53
		2. MODFLOW	54
VI.	DISCUSSIO	Ν	66
		A. BTEX and Heavy Metals	65
		B. Water Quality	70
		1. Total and Reactive Phosphorus	70
		2. Nitrate and Nitrite	74
		3. Sulfates and Conductivity	77
		4. Temperature and pH	80
		5. Dissolved Oxygen	83
		6. E. Coli	86
		C. Conclusions	88
		D. Recommendations	88

1. Heavy Metals	88
2. BTEX	89
3. Modeling	89
4. Nutrient Testing	89
REFERENCES	90

iv

List of Acronyms, Abbreviations, and Specific Terms

ACOE- The United States Army Corps of Engineers

BTEX- Benzene, Toluene, Ethyl Benzene, and Xylenes (m, o, p)

EPA- United States Environmental Protection Agency

GFLOW- Ground water Flow model

Log Kow- Log of the octanol-water partition coefficient

MODFLOW- the U.S. Geological Survey modular finite-difference flow model, which is a computer code that solves the groundwater flow equation.

MPCA- Minnesota Pollution Control Agency

MT3DMS- Modular Transport Three Dimensional Model Simulator

NRCS- Natural Resource Conservation Service

PE Ladder- The measure of negative logarithm of the electron potential from lowest to highest of a compound

pH- The negative log of the concentration of H+ ions in a solution

Porosity- ability of an aquifer to transmit water

RT3D- Reactive Transport in 3-Dimensions

Specific Yield- the amount of water an aquifer will yield under gravity

Storativity- the amount of water released per unit volume of aquifer

Superfund- Referring to the United States Comprehensive Environmental Response, Compensation, and Liability Act's fund to remediate pollution sites.

USDA- United States Department of Agriculture

USDPH- U.S. Department of Public Health and Human Services

USGS- United State Geological Survey

APPENDICES

Appendix I-	1985 Soil Testing Results for Heavy Metals and Volatile Organic Compounds, 110 West Lind Street, Mankato, MN. Year-A-Round Cab Company	97
Appendix II-	Minnesota Pollution Control Agency Case Development Form December 23, 2010	111
Appendix III-	1986 Complaint Against Year-A-Round Cab Company for Allegedly Burying Drums On-Site	118
Appendix IV-	1986 Letter from MPCA to Year-A-Round Cab Company Indicating 20-30 Drums of Hazardous Waste On-Site	120
Appendix V-	1985 Felony Criminal Complaint Against Year-A-Round Cab Company Indicating Two Alleged Counts of Illegal Disposal of Hazardous Waste	123
Appendix VI-	GPS Coordinates of Sampling Sites	133
Appendix VII	Calculations and Data Sources for GFLOW and MODFLOW Groundwater Models	135
Appendix VIII-	Detailed Results of Laboratory Analysis Conducted on Water Samples Collected May 19, 2011 by Minnesota Valley Testing Laboratories, New Ulm, Minnesota	141
Appendix IX -	Detailed Results of Laboratory Analysis Conducted on Soil/Sediment Samples Collected May 19, 2011 by Minnesota Valley Testing Laboratories, New Ulm, Minnesota	154
Appendix X-	Detailed Field Parameter, Nutrient Level, Sulfate, and E. Coli Results, May-November 2011	163
Appendix XI-	Linear Regression for Total Phosphorus Measures on the Surface of Hiniker Pond and Total Weekly Rainfall May-November, 2011	170
Appendix XII	Figure 38. Sulfate levels for Hiniker and Hallett's Ponds At the surface and depth of 10 foot for May-November 2011.	172

LIST OF TABLES

I.	Properties of BTEX compounds	5
II.	Summary of water quality parameter holding times and standard methods of analysis for targeted metals and BTEX compounds	37
III.	Summary of sediment parameter holding times and standard methods of analysis for targeted metals and BTEX compounds	38
IV.	Summary of standard methods used to measure select water qualities in the field	38
V.	Summary of water quality holding times and standard methods of analysis	39
VI.	Levels of heavy metals (Cd, Pb, Cr) and BTEX in water samples collected on May19, 2011 by site	46
VII.	Levels of heavy metals (Cd, Pb, Cr) and BTEX in surface sediment samples collected on May19, 2011 by site	46
VIII.	Summary of the dates water quality measurements were taken by site	47
IX.	Descriptive statistics for US-14 ditch by parameter for sampling season May-November, 2011.	48
X.	Descriptive statistics for Oxbow Lake by parameter for sampling season May-November, 2011.	48
XI.	Descriptive statistics for Hiniker Pond by parameter for sampling season May-November, 2011.	49
XII.	Descriptive statistics for Hallett's Pond by parameter for sampling season May-November, 2011.	50
XIII.	Summary of a Wilcoxon non-parametric T-test of Hiniker Pond vs. Hallett's Pond for data collected May – November 2011.	51
XIV.	Summary of Carlson Trophic State Index by water body in 2011	52
XV.	Regional rainfall data based on 7-day totals from the National Weather Service for Mankato, MN, May to November, 2011.	53

LIST OF FIGURES

1.	The structure of several BTEX compounds	5
2.	Speciation of cadmium in the aqueous environment	9
3.	Speciation of lead in the aqueous environment	11
4.	Speciation of Chromium in the aqueous environment	12
5.	Carlson's Trophic Scale Index Chart	19
6.	Anticipated effects of various TSI levels on a water body	19
7.	Aerial view of future Hiniker Pond Mankato, MN in 1938 before excavation	27
8.	Aerial view of Hiniker Pond Mankato, MN in 1973 at cessation of mining	28
9.	Aerial view of Hiniker Pond and Oxbow Lake, Mankato, MN in 2009	29
10.	Site overview of Hiniker Pond, US-Ditch 14, Oxbow lake, and 110 W. Lind St.	30
11.	Unknown subsurface drainage from internal waste drains, 110 W. Lind St.	32
12.	Known subsurface drainage into US-14 ditch at 110 W. Lind St.	33
13.	Aerial Photo of Hallett's Pond 2009	35
14.	GFLOW model results showing estimated subsurface water flow for Hiniker Pond and surrounding areas, North Mankato, MN	54
15.	A three-Dimensional view of Hiniker Pond area with all hydrological features using Visual MODFLOW Premier	56
16.	Estimated heavy metal plume (lead as a surrogate) from Year-A-Round Cab Company after 30 days.	57
17.	Estimated heavy metal plume (lead as a surrogate) from Year-A-Round Cab Company after 329 days.	58

 Estimated heavy metal plume (lead as a surrogate) from Year-A-Round Cab Company after 1623 days. 	59
19. Estimated BTEX plume (Toluene as a surrogate) from Year-A-Round Cab Company after 30 days.	61
20. Estimated BTEX plume (Toluene as a surrogate) from Year-A-Round Cab Company after 90 days	62
21. Estimated BTEX plume (Toluene as a surrogate) from Year-A-Round Cab Company after 365 days.	63
22. Estimated BTEX plume (Toluene as a surrogate) from Year-A-Round Cab Company after 1,826 days	64
23. Heavy sheening present in Oxbow Lake on May 19, 2011	67
24. Drainpipe confirmed by MPCA to be running from internal drains of former Year-A-Round Cab Company into US-14 Ditch with sheening and discoloration.	68
25. Heavy metals found in sediment at study locations, May 19, 2011	69
26. Total phosphorus measured in Hiniker and Hallett's Pond May – November 2011 recorded in mg/L P in surface water samples	71
27. Reactivephosphorus measured in Hiniker and Hallett's Pond MayNovember 2011 recorded in mg/L P in surface water samples	72
 Total weekly precipitation for Mankato and surrounding areas in inches, May -November 2011. 	73
29. Surface N-NO3 measured in mg/L in surface water samples from Hiniker and Hallett's Ponds May - November 2011.	75
 N-NO3 measured at a depth of 10 feet in mg/L in surface water samples from Hiniker and Hallett's Ponds May - November 2011. 	76
 Surface sulfate levels in Hiniker and Hallett's Pond measured as mg/L SO4 from May - November 2011. 	78
32. Surface conductivity levels in Hiniker and Hallett's Pond measured as mohm/cm from May - November 2011.	79

ix

 Surface water temperatures in degrees celsius for Hiniker and Hallett's Ponds May - November 2011. 	81
34. Surface water pH of Hiniker and Hallett's Pond May – November 2011	82
35. Dissolved oxygen levels in Hiniker Pond measured in mg/L at 5 foot interval May- November 2011	84
36. Total Dissolved oxygen levels in Hallett's Pond measured in mg/L at 5 foot interval May- November 2011	85
 E. Coli levels in Hiniker and Hallett's Ponds in CFU/100ml samples May-November 2011 	87
38. Sulfate levels in Hiniker and Hallett's Ponds, Mankato, MN May 2011-November 2011	174

CHAPTER I

INTRODUCTION

Hiniker Pond (MNDNR Lake # 07-014700) is a very popular swimming area in Mankato, Minnesota. It was an active gravel pit from 1936 to 1972 (Preuhs, 1998). During its operation, approximately one million cubic yards of sand and gravel were removed and rinsed at a wash station setup on the pond (Fischenich, 2009; Preuhs, 1998). Hiniker Pond covers 18-acres and has a maximum depth of 21 feet with an average depth of 9 feet (Minnesota DNR, 2007; United States, 1980).

Adjacent to Hiniker pond is a small oxbow that was formed when the U.S. Army Corps of Engineers (ACOE) moved the Minnesota River in the early 1950's as part of a flood control project (Water Resource Center, Minnesota State University, 2002). It is locally referred to as "Oxbow Lake" (Minnesota Pollution Control Agency, 2010a). A gate valve flow over system allows water to travel between the two water bodies (United States, 1980). A drainage ditch, known as the US-14 ditch flows into Oxbow Lake as well as a seasonal overflow canal that originates from Spring Lake, a small water body located to the south of Hiniker Pond (Minnesota Pollution Control Agency, 2010a).

In 1975 the Hiniker Pond was sold to the City of Mankato, Minnesota for one dollar (Blue Earth County Minnesota, 1975). Due to the heavy use of Hiniker Pond as a "rebel swimming hole," the City of Mankato worked with the ACOE to develop the pond and surrounding property into the multi-use recreational park that it is today (United States, 1980). According to the ACOE (1980), Hiniker Pond was considered to have "excellent water quality for recreational use", but Oxbow Lake was considered unsuitable for recreation due to a high fecal coliform bacteria count (United States, 1980).

In the September of 2010, the Minnesota Pollution Control Agency (MPCA), found a site 300 yards north of Hiniker Pond at 110 West Lind Street, North Mankato, Minnesota, to be contaminated with organic chemicals. The site was used for metal forming, welding, preparation and painting from at least 1966 through 2010 (Minnesota Pollution Control Agency, 2010b). There has been a long history of heavy metal disposal on site and numerous other environmental problems (see appendix I-IV) (Minnesota Pollution Control Agency, 2010b; Minnesota Pollution Control Agency, 2010c; State of Minnesota, 1985). Suspected disposal onsite included incinerator ash, metal cleaning and painting solvents. The West Lind site is currently being considered for listing as a state superfund site or long term remediation site by the state of Minnesota (Minnesota Pollution Control Agency, 2010a). Year-A-Around Cab Company owned the site from 1966 until 2010, and specialized in the preparation and painting of farm tractor cabs, farm implements, and corn stoves (Burman, 2011). In 2010 the property was purchased by Herataus properties.

Tests conducted by the MPCA on September 24, 2010 found high levels of ethyl benzene, toluene, and xylenes (ortho, meta, and para), in the following levels in manholes. The MPCA data are presented below:

ethyl benzene	1,901	ppm
toluene	638	ppm
m-Xylene and p-Xylene	6,847	ppm
o-Xylene	2,169	ppm
(Minnesota P	ollution	Control Agency, 2010c)

Benzene, toluene, ethyl eenzene, and isomers of xylene are referred to as BTEX compounds.

The MPCA has confirmed that manholes from the facility flow directly into the US-14 ditch (Minnesota Pollution Control Agency, 2010c). The MPCA found that the paint washing system and underground storage tanks empty directly into a drainage field behind the buildings, and in turn drain into the US-14 ditch.

In 1985 samples from the tanks mentioned above had chromium (Cr), lead (Pb), and cadmium (Cd) in the following levels:

Chromium	18,000 ppb
Lead	520 ppb
Cadmium	210 ppb
	(State of Minnesota, 1985).

In July 1985 soil samples taken from 4 holes (#16, 18, 19, 20) at depths between 1-1.5 feet had up to 200 μ g/g of toluene and xylenes plus over 50 μ g/g of ethyl benzene. A diagram where the samples were collected and results of analyses are included in Appendix I.

Hallett's Pond, formally known as "unnamed lake 52-0001" in Saint Peter, Minnesota served as a comparison site (Minnesota DNR, 1999). Hallett's Pond is very similar to Hiniker pond in that it was a gravel pit that was closed and sold to the City of St. Peter in 1974 (Linehan, 2007). Hallett's Pond covers 12 acres and has a maximum depth of 35 feet with an average depth of 12 feet (Minnesota DNR, 1999). It is used for fishing, but swimming is not allowed. It is also used for emergency storm water storage and discharge. The purpose of my research was three fold: (1) determine if there were higher levels of BTEX compounds and heavy metals (Cd, Cr, and Pb) in Hiniker Pond, Oxbow Lake, and/or the US-14 ditch when compared to Hallett's Pond; (2) develop surface water and ground water models with GFLOW and MODFLOW to estimate the transport and fate of BTEX compounds and heavy metals from Year-A-Round Cab Company at different time intervals; and (3) determine if seasonal levels of total phosphorous (TP), ortho phosphorus (P-PO4), nitrogen in the form of nitrate (N-NO3), nitrite (N-NO2), and ammonia (N-NH3), sulfates (SO4), E. Coli, Secchi Disk, pH, conductivity, temperature, and dissolved oxygen (DO) were different between Hiniker Pond and Hallett's Pond.

CHAPTER II

LITERATURE REVIEW

A. BTEX Compounds

Benzene, toluene, ethyl benzene, and the three isomers of xylene, are collectively known as BTEX. The structure of several BTEX compounds are presented in Figure 1, and the chemical characteristics of BTEX compounds are summarized in Table 1.

(EUGRIS, 2012).

Figure 1. The structure of several BTEX compounds (EUGRIS, 2012)

	Table 1. Troperties of DTEX compounds					
Compound	Mole weight	Density	Boiling	Water	Vapor	Log
	g mole ⁻¹	g ml ⁻¹	point °C	solubility	pressure	K _{ow}
			-	mg l ⁻¹	mm Hg	
Benzene	78	0.88	80.1	1780	76	2.13
Toluene	92	0.87	110.8	535	22	2.69
o-Xylene	106	0.88	144.4	175	5	2.77
m-Xylene	106	0.86	139	135	6	3.20
p-Xylene	106	0.86	138.4	198	6.5	3.15
Ethyl	106	0.87	136.2	152	7	3.15
benzene						

Table I. Properties of BTEX compounds

(EUGRIS 2012)

BTEX compounds are found in many petroleum products including gasoline, fuel oil waste, and in a wide variety of common contaminants such as industrial cleaning wastes (Chang Chien et al., 2010). BTEX compounds are extremely dangerous to human health, are not easily degraded, and even trace amounts pose a threat to human life and aquatic organisms (Kahan & Donaldson, 2010). BTEX compounds are listed as carcinogens, endocrine disruptors, neurotoxins, and reproductive inhibitors by the U.S. Department of Health (U.S. Department of Health and Human Services, 1986). In studies, they have also been linked to kidney and liver damage (Batlle-Aguilar et al., 2009). Benzene is known to cause bone marrow damage leading to anemia and Lukemia.

B. BTEX Transport and Fate

There are many processes that affect the mobility and persistence of BTEX compounds in the environment. These processes include dispersion in water, sorption by soil organic matter (SOM), volatilization into the air or into soil air spaces, and microbial degradation. They can also undergo oxidation, reduction, hydrolysis, and polymerization reactions (Batlle-Aguilar et al., 2009; Epstein & Chaney, 1978; Kahan & Donaldson, 2010). The type of degradation is dictated by the medium (water, soil, or air), as well as pH, surface activity, and solubility (Epstein & Chaney, 1978).

Chang et al. (2010) recently completed a study on how BTEX compounds are transported or absorbed by Humic Acids (HA) in SOM. This occurs because aromatic hydrocarbons are very hydrophobic, having low water solubility (Chang Chien et al., 2010). Chang et al. confirmed that HA's had a higher sorption rate of BTEX compounds (toluene used as the indicator) at lower pHs. Larger BTEX compounds were absorbed by SOM and contamination was transported less distance, therefore remaining closer to the initial source of contamination (Chang Chien et al., 2010).

Kahan, T., & Donaldson, D., (2010) looked at how BTEX compounds in surface water degrade with cold temperatures and ice. In the normal degradation process, hydroxyl radicals in the atmosphere react with BTEX and remove them in small quantities over time (Batlle-Aguilar et al., 2009). This process occurs naturally in surface waters and is a very slow process. They found that when aromatic hydrocarbons were present on the surface of ice, that the ice-air interface would block hydroxyl radicals. This causes the BTEX compounds to become more persistent in an area that experiences freezing temperatures (Kahan & Donaldson, 2010).

Microbial degradation of the BTEX compounds is very dependent on dissolved oxygen levels, pH, and temperature. Under anaerobic conditions the presence of nitrates and sulfates are important (Epstein & Chaney, 1978). Morgan et al. (1993) studied the rate and extent of biodegradation of BTEX compounds in ground water and found that elevating the incubation temperature of the test sample, and the addition of inorganic or organic nutrients had no affect on the rate or extent of biodegradation of BTEX. The only limiting factor they could find associated with the degradation of BTEX was oxygen (Morgan et al. 1993). Morgan et al.(1993) also studied degradation of BTEX compounds under anaerobic conditions. No breakdown occurred unless nitrates were added to increase microbial activity and respiration. Morgan et al. (1993) was able to achieve biodegradation, at a much slower rate than in an aerobic environment, of benzene, ethyl-benzene, toluene, m-xylene, and p-xylene, but o-xylene was unaffected. BTEX compounds can also biodegrade under strict anaerobic conditions, degrading

simultaneously as sulfate reduction occurs, but less favorable under denitrifying conditions (Cunningham et al., 2001). Due to the persistence of these compounds under anaerobic conditions, they can be transported rather long distances (Cunningham et al., 2001).

C. Heavy Metals

The term heavy metal generally refers to metals that have a specific density of at least 5 g/cm3 (Järup, 2003). Heavy metals identified at the Year-A-Round site by the MPCA are Cd, Cr, and Pb (State of Minnesota, 1985). The eco-toxicological impact of a metal in water is highly dependent on pH, alkalinity, hardness of the water, and the presence of other ions, such as sulfates (Malakootian, Nouri, & Hossaini, 2009). Heavy metals currently are the most common problem in soil contamination and are present in at least 60% of the sites listed on U.S. Environmental Protection Agency's (EPA) National Priority List (Peters, 1999). Heavy metals do not degrade and tend to accumulate in organisms and systems over time, causing numerous disorders and diseases in humans (Malakootian et al., 2009). Metals found on this site that pose the highest risk to human health, when factoring in exposure, dose, toxicity, and route of exposure are lead, cadmium, and chromium (Järup, 2003; Minnesota Pollution Control Agency, 2010c). The form a metal will take when it is in sediments is very dependent on the pH and Eh (electron activity) of the water.

1. Cadmium

Cadmium (Cd), which naturally occurs in ore together with lead, is typically used as color a pigment in industrial paint, as a chemical stabilizer in PVC products, and in household batteries (Järup, 2003). Cadmium exposure to humans in developed nations has increased dramatically over the twentieth century due to the increased use and lack of recycling of the products coupled with increased dumping of household waste (Järup, 2003). In surface or ground water, insoluble Cd compounds can form (Figure 2) and will be deposited in sediment (Wang, Chen, Yeh, & Shue, 2001).

At low pH's, Cd uptake in soils by plants is optimized (Järup, 2003; Wang et al., 2001). The health effects of Cd include kidney damage, particularly damage to tubules, resulting from renal lesions, and an increase in kidney stones. Long-term exposure can cause mineralization of the bones or early onset osteoporosis, similar to that seen in Japan with the Itai-Itai (ouch-ouch) disease incident (Järup, 2003).

Figure 2. Speciation of cadmium in the aqueous environment (shaded areas are insoluble compounds) (US EPA 2007)

2. Lead

Lead (Pb) is a naturally found in ore with cadmium. It is commonly used in industrial paints that protect metals subjected to high corrosion conditions and in automotive batteries (Järup, 2003). Lead exposure is one of the most common toxic exposures to humans in the 20th century. These exposures usually occur equally between both inhalation and ingestion from food (Järup, 2003). Lead has a history of causing permanent neurologic damage and has been linked to lowered IQ scores in adults when exposed during childhood (Järup, 2003). While the half-life of Pb in the blood is only usually 1 month, it can persist in the skeleton for up to 30 years (Järup, 2003). Long-term exposures to lead can cause peripheral nervous system deterioration, psychosis, reduced consciousness, and death. Lead forms insoluble compounds in an aqueous environment (Figure 3). (Wang et al., 2001).

Figure 3. Speciation of lead in the aqueous environment (shaded areas are insoluble compounds) (US EPA 2007)

The chemical composition of the compounds in Figure 3 is as follows: Anglesite, PbSO4; Cerussite, PbCO3; Hydrocerussite, Pb3(CO3)2(OH)2; Galena, PbS; and Plattnerite, PbO2.

3. Chromium

Chromium (Cr) is a widely used metal in industrialized nations. Chromium is used extensively as a pigment in paints, industrial paint primers, electroplating, and steel productions (Goldoni et al., 2006; Sabty-Daily, Luk, & Froines, 2002). It has two oxidation states, trivalent (Cr III) and hexavalent (Cr VI). Chromium (III) is naturally occurring in the environment, is needed in the body as an essential nutrient and its toxicity is considered to be very low (Demir & Arisoy, 2007). Chromium (VI) does not normally occur in the environment, is recognized as being highly toxic, and classified as a Class I human carcinogen by the International Agency for Research on Cancer (IARC) (Goldoni et al., 2006). Chromium (VI) is the form that is used in industrial paints and primer due to the red color and superior ability to inhibit corrosion (Sabty-Daily et al., 2002). Both Cr (VI), which is much more toxic to humans, and Cr (III) can exist as a solid or in aqueous forms, as an oxide or hydrated oxide when in solution and will bond with other species to form soluble and insoluble compounds as seen in Figure 4. (Demir & Arisoy, 2007).

Figure 4. Speciation of Chromium in the aqueous environment (shaded areas are insoluble compounds) (US EPA 2007)

D. Heavy Metal Transport

The movement of metals in soil, surface water, and in ground water is very complex. In soils the transport, fate, mobilization, or immobilization of these metals are controlled by a range of factors that include: SOM, pH (soil acidity), the metal species

(oxidized or reduced form dependent on anaerobic or aerobic conditions), and Cation Exchange Capacity (CEC) of the soils (Baumann et al., 2006). According to Epstein (1978) heavy metals applied to soils will be immobilized through REDOX (dependent on dissolved oxygen) reactions, adsorption by colloids, bind with soil organic matter, or be taken up by plants. Generally uptake by plants happens when the pH is below 7.5 (Epstein & Chaney, 1978). According to Hochella et al. (2005) Pb and Cr will form sulfates or metal hydroxides, while Cd will form carbonates or phosphates.

In water, pH, alkalinity, presence of carbonates, phosphates, sulfates, and hydroxides are factors that would decide immobilization or transport (Epstein & Chaney, 1978; Hochella Jr. et al., 2005; Wang et al., 2001). Heavy metal transport in the ground water environment was heavily dependent on colloids of differing sizes (Baumann, Fruhstorfer, Klein, & Niessner, 2006). Colloids are particles between 5-200 nanometers and can have a positive, negative or zero charge. Negatively charged colloids interact with free metal ions (positively charged). In soils and groundwater the colloid-metal ion complex may cause "clogs" in the system (Baumann et al, 2006).

E. pH

The solubility's of many substances are affected by the pH of the solution. Under basic conditions many metals form insoluble compounds (hydroxides) while under acidic conditions they are soluble. Under acidic conditions, metals are more likely to form complexes including carbonates, bi-carbonates, chlorides, and sulfates (Peters, 1999). The pH of many eutrophic/hyper eutrophic lakes change during 24-hour diurnal cycle due to photosynthesis (Carpenter et al., 1998). In soils, SOM is more likely to bind heavy metals at pHs at or below pH 7.5. For copper with each unit of pH increase, the activity decreases by 100 fold (Epstein & Chaney, 1978). Toluene was found to have a higher sorption rate in lake sediment with high humic acid content between the pHs of 4-8 (Chang Chien et al., 2010).

F. Dissolved Oxygen

Dissolved oxygen (DO) is essential for supporting life, an important indicator of ecosystem health, and determines if microbial degradation will be aerobic or anaerobic. In nutrient rich lakes abundant algae growth is common. When these algae blooms die off they result in decreased DO levels due to microbial degradation (Carpenter et al., 1998). The DO solubility is temperature dependent. Oxygen is more soluble in cold water than warm water. Dissolved oxygen is the electron acceptor. If DO is limited other compounds (N-NO3, SO4, etc.) become the electron acceptor per the pE ladder. This can influence the form of the metal and there by the solubility and toxicity of metals (Epstein & Chaney, 1978;Hochella Jr. et al., 2005).

G. Sulfates

Sulfate compounds heavily influence heavy metal transport and availability different metal. Sulfate is the oxidized form of sulfur and most metal sulfates except lead sulfate are soluble (Hochella Jr. et al., 2005). The reduced form of sulfur is sulfide. Most metal sulfides are insoluble, and hydrogen sulfide (H2S) is toxic (Chang Chien et al., 2010). Sulfates are ecologically important in the aquatic realm, are necessary for plant growth and when in short supply decrease phytoplankton growth. Sulfates are important in the anaerobic degrade BTEX compounds in groundwater and are a key predictor to the mobilization of heavy metals under sulfate reducing conditions (Batlle-Aguilar et al., 2009).

H. Eutrophication

Eutrophication accounts for about half of the impaired lakes on the US impaired waters listings. Eutrophication is usually caused by excessive inputs of phosphorus. Nonpoint source pollution of nutrients includes agriculture (fertilizers and animal wastes), residential and urban areas (commercial fertilizers), and soil erosion (Carpenter et al., 1998). Point sources include discharges from sewage treatment plants and industrial sources. Eutrophication often results in is the excessive growth of algae (blooms) that can affect the DO and pH of lake water.

Kattner et al. found that in gravel pits many decades after their closure, the sediment and dead organic material start to seal them off from groundwater movement (Kattner, Schwarz, & Maier, 2000). Kattner et al. believed this "sealing off" might help prevent eutrophication.

1. Phosphorus

Phosphorus is found in two forms: total phosphorus (TP) and orthophosphorus (P-PO4). Orthophosphorus is water-soluble and can be used by plants immediately (Carpenter et al., 1998). Phosphorus is the limiting nutrient controlling algae growth in lakes. Phosphorous adsorbs easily to soil particles and runoff containing large amounts of soil usually are responsible for large phosphorous additions to water bodies (Kattner et al., 2000; Reckhow, 1979).

2. Nitrogen

Nitrogen is found in several forms (nitrate, nitrite, and ammonia) in aquatic systems. Nitrate is the most oxidized form of nitrogen and ammonia is the most reduced for of nitrogen. On the pE ladder, nitrate follows oxygen as the electron acceptor. When DO levels are very low or zero, nitrate becomes the electron acceptor. When ammonia is converted to nitrite or nitrate, large quantities of oxygen are used (Carpenter et al., 1998; Helmer & Labroue, 1993). Nitrogen can be introduced into a lake through non-point source pollution from the atmosphere (automobile combustion), manure runoff, fertilizers, wastewater, and soil erosion. Atmospheric deposition is believed to be the main source of increased N in the eutrophication process with the influx of N correlating to an increase in fossil fuel emissions during the same period of time historically since 1900 (Carpenter et al., 1998).

I. Escherichia coli (E. coli)

The US Environmental Protection agency has encouraged the adoption of E. coli as a new standard of waterborne pathogen testing. E. Coli bacteria are a sub-group of fecal coliform bacteria. Both are used as indicator organisms to predict water contamination (Minnesota Pollution Control Agency, 2008a). They originate from human and animal feces as a product of the digestive system.

Factors that affect the behavior and survival of E. coli bacteria in urban areas include seasonal weather, water temperature, sewage overflows, and rainfall. In urban areas, the most likely sources of E. coli include sewage overflow and storm water runoff as well as pet and bird feces. The current E. coli swimming standard for acceptable

surface water is an 126 cfu/100ml maximum monthly average (minimum of 5 samples in the 30 day period) and 235 cfu/100ml maximum any single test. When these levels are exceeded the water is considered impaired, swimming is not recommended, and an advisory is issued (Minnesota Pollution Control Agency, 2008a).

J. Water Clarity

Transparency is measured using a Secchi disk. The Secchi disk provides a direct measurement of light transmission and an indirect measurement of suspended material in the water. Overtime, Secchi data can be use to show trends and predict eutrophication (Carlson & Simpson, 1996). Turbidity, closely related to Secchi disk measurements, is a measure of how cloudy or murky water is. Turbidity is caused by suspended particles in water or dissolved solids that scatter light. The solids and particles are more often than not from sediment and are composed of clays, silt, fine organic and inorganic matter, algae, and other microscopic organisms. High turbidity decreased the aesthetic value of waters as well as harming fish and other aquatic life reducing food supplies, decreasing light for photosynthesis, and affecting gill function. Natural and human sources of turbidity include erosion from upland areas or development, or increased phosphorus levels then causing increased algal growth. The current standard for recreation is 25 Nephelometric Turbidity Units (NTU)'s (Minnesota Pollution Control Agency, 2008b).

K. Conductivity

Conductivity is the ability of a substance to conduct electricity in water. It is an indicator of the amount of dissolved ions in the water (Minnesota Pollution Control

Agency, 2008b). Road salt is a substance that would cause increased conductivity in an urban area from non-point source run-off. This can be associated with the increased salinity of surface water body, which can cause shifts in pH and stress fish and other organisms due to the increased chloride concentrations, as well as free sulfates that are present in a system (Kattner et al., 2000).

L. Carlson's Trophic State Index

The Carlson Trophic State Index (TSI) is the most widely used standard to classify lake trophic state in the United States (Carlson & Simpson, 1996). Trophic state is the productivity of a lake (Carlson & Simpson, 1996). It is an easy way to characterize a lakes overall health using total phosphorus, Secchi disk, and Chlorophyll-A measurements. The Carlson's Trophic Index is presented in Figure 5. The trophic levels range from Oligotrophic (nutrient poor), Mesotrophic, Eutrophic (nutrient rich), and Hyper-eutrophic (very nutrient rich) (Carlson & Simpson, 1996). The anticipated effects of various TSI levels on a water body are summarized in Figure 6.

Figure 5. Carlson's Trophic State Index Chart (Carlson & Simpson, 1996)

TSI < 30	Classical Oligotrophy: Clear water, oxygen throughout the year in the hypolimnion, salmonid fisheries in deep lakes.
TSI 30-40	Deeper lakes still exhibit classical oligotrophy, but some shallower lakes will become anoxic in the hypolimnion during the summer.
TSI 40 - 50	Water moderately clear, but increasing probability of anoxia in hypolimnion during summer.
TSI 50-60	Lower boundary of classical eutrophy: Decreased transparency, anoxic hypolimnia during the summer, macrophyte problems evident, warm-water fisheries only.
TSI 60-70	Dominance of blue-green algae, algal scums probable, extensive macrophyte problems.
TSI 70-80	Heavy algal blooms possible throughout the summer, dense macrophyte beds, but extent limited by light penetration. Often would be classified as hypereutrophic.
TSI > 80	Algal scums, summer fish kills, few macrophytes, dominance of rough fish.

Figure 6. Anticipated effects of various TSI levels on a water body (Carlson & Simpson, 1996)

M. Ground Water Flow Modeling

Computer ground water models are used to simulate the water levels of certain areas, the flow patterns, and the transport of chemical constituents. They provide hydro geologists the means to organize massive amounts of data, to display the data in a visible way, and they help forecast future water demands (US Geological Survey, 2009). Models take a mathematical approach to make estimates over a given time period, based on the change in dependent variables, including properties of the aquifer and contaminant characteristics (US Environmental Protection Agency, 1992). In 1935 the United States Geological Survey (USGS) first recognized groundwater flow modeling based on the research of C.V. Theism (US Geological Survey, 2009). Theis determined that the flow of groundwater through porous media was similar to the flow of heat through materials and developed a simplified formula that was an accurate estimate of subsurface water flow (US Geological Survey, 2009). The Theis formula led to numerical groundwater modeling developed by the USGS that could take into account many different factors in various aquifer systems (US Geological Survey, 2009).

GFLOW is a two-dimensional program that follows a step-wise modeling concept using a single layer element analytical code, based on Dupuit-Forcheimer assumptions (Dunning et al., 2003). Dupuit-Forcheimer assumptions state that the majority of the flow in an aquifer is essentially horizontal and vertical flow can be ignored (Fetter, 2001). These assumptions will be true and a two-dimensional model can be valid if the study area of lateral flow is large enough to make the vertical flow, or depth of the aquifer is essentially inconsequential (Dunning et al., 2003). The stepwise modeling concept can used to solve for a single layer solution to determine heads, flux, and flow rates and patterns (Haitjema, 2000). GFLOW does not support multi aquifer flows nor does it take into account vertical conductivities that may be important in determining the true flow pattern in the aquifer (Haitjema, 2000). Generally, inaccuracies can occur in cases of varying aquifer thickness, fractures in confining layers, or a leaky unconfined aquifer (US Environmental Protection Agency, 1992).

MODFLOW was created by the USGS in 1983 as a finite modular threedimensional ground water flow computer code. The MODFLOW code can be used by a number of interfaces and allows for the addition of add-on packages to trace particle flow or contamination spread (US Geological Survey, 2009). MODFLOW can import a twodimensional GFLOW output file to add a third-dimension of vertical flow to the model with additional parameter input. The addition of vertical flow will allow the modeling of multiple aquifers, leaky aquifers, and fractured confining layers, greatly increase the accuracy of the model (Gao, 2011; US Environmental Protection Agency, 1992; Fetter, 2001).

MODFLOW differs from GFLOW by using a finite difference solution as the primary modeling method. MODFLOW is accepted as an industry standard both in North America as well as in Europe to model groundwater flows (Gao, 2011). In MODFLOW, layers are setup to represent three-dimensional lattices of the earth based on soil, aquifer, and bedrock properties and dimensions (Gao, 2011).

MODFLOW requires that you add surface terrain elevations and hydrological features such as constant head boundaries, sinks, rivers, and lakes. These features determine the direction and amount of flow of groundwater in the model. Evapotranspiration and annual recharge values must be added as well. Known head
values from well and boring logs are used to increase the accuracy of the model and the output will be in the form of a potentiometric map showing flow directions, velocities, flux, boundaries (Gao, 2011). The output from this step is saved and can be used later to determine contaminant transport and estimate pollution spread.

Along with the numerical solutions to calculate regional ground water flow, algorithms that solve advanced linear equations can be used to simulate contaminant transport (Prommer et al., 2002). Once a ground water solution has been achieved through MODFLOW, contaminate transport can then be modeled with the potentiometric output from MODFLOW. The algorithms account for the main principles of the transport of solutes: diffusion, advection, dispersion, and retardation. Diffusion is the process of a solute flowing from a place of higher concentration to lower concentration based on chemical activity; advection is the process by which moving groundwater carries dissolved solutes; dispersion is a process that dilutes the solute and lowers it's concentration though mechanical and hydrodynamic means; retardation is the chemical and physical processes that slow a solute's movement, working directly against advection (Fetter, 2001). Diffusion is solved by using Fick's Law in the following equation (Fetter, 2001):

F=-D
$$dC/dx$$
 (Fetter Equation 10.2)

where: F = mass flux of solute per unit area per unit timeD = diffusion coefficient (area/time)C = solute concentration (mass/volume)<math>dC/dx = concentration gradient (mass/volume/distance) Advection is determined by Darcy's law in the following equation (Fetter, 2001):

 $v_x = - K/n_e X dh/dl$ (Fetter Equation 10.4) where: $v_x =$ average linear velocity K = hydraulic conductivity $n_e =$ effective porosity dh/dl = hydraulic gradient

Dispersion occurs by both mechanical and hydrodynamic means. Mechanical dispersion is dependent on three factors: fluid moves faster through the center than edges of a pore due to friction; some fluid travels in longer pathways than other fluid due to the route between media particles it takes; fluid travels faster through larger pores than small ones (Fetter, 2001).

Hydrodynamic dispersion combines the processes of molecular diffusion and mechanical dispersivity. It is impossible to solve the molecular and mechanical dispersivity separately, so a coefficient is used. The following equation describes hydrodynamic dispersion (Fetter, 2001):

	$D_L = a_L v_x + D^*$	(Fetter Equation 10.6)
where:	$D_{\rm L} = $ longitudinal coefficient of hy	drodynamic dispersion
	$a_L =$ dynamic dispersivity $v_x =$ average linear groundwater v_0	elocity
	$D^* =$ effective molecular diffusion	coefficient

Retardation is based on the adsorption of a solute or contaminant to the soil or aquifer material. It can be estimated with an adsorption isotherm, or an equation that estimates sorption. When an adsorption relationship can be plotted as a straight line on log-log paper, it can be described by the Freundlich Isotherm, in following equation (Fetter, 2001):

$$C^* = K_f C^j$$
 (Fetter Equation 10.11)

where: $C^* = \text{mass of solute sorbed per bulk unit dry mass of soil}$ C = solute concentration $K_f, j = \text{coefficients}$

In contrast, a Langmuir Isotherm is determined by plotting C/C* versus C on arithmetic paper. If the points fall on a straight line, then a Langmuir Isotherm is correct, and is described in the following equation (Fetter, 2001):

 $C/C^* = 1/\beta_1 \beta_2 + C/\beta_2 \qquad (Fetter Equation 10.13)$

where: C = equilibrium concentration of the ion in contact with the soil (mg/L) $C^* =$ dynamic dispersivity $\beta_1 =$ average linear groundwater velocity $\beta_2 =$ effective molecular diffusion coefficient

Either a Langmuir or Freundlich can be used to determine adsorption of a solute to materials, based on which isotherm is most accurate to the data plotted after a column study has been completed. Biological degradation of organic compounds is another means by which the spread of a solute can be slowed.

There are numerous contaminant transport engines available to use with MODFLOW. These include MT3DMS, RT3D, and PHT3D. These engines use a finite difference upstream solution that is capable of accounting for natural degradation, dispersion, and diffusion, that can be based on calculated or default values including sulfate reduction, nitrate reduction, and the difference in aquifer materials (Prommer et al., 2002). When using MT3DMS, developed by the USGS, electron receptors are used to determine sorption along with the option of using a Freundlich or Langmuir adsorption isotherm curve (Shlumberger Water Services, 2012). The engine PHT3D uses the same method, but takes into account the USGS geochemical code PHREEQC-2 that predicts fate based on constant and default parameters (Shlumberger Water Services, 2012). The RT3D engine is similar to the MT3DMS engine, but is specifically designed to work with BTEX compounds. Default values for sulfates, irons, and oxygen can be used coupled with default isothermal constants to simulate natural sorption and biodegradation in most aquifer types (Prommer et al., 2002).

CHAPTER III

DESCRIPTION OF STUDY AREA

A. Hiniker Pond

Hiniker Pond (MNDNR Lake # 07-014700) is an 18-acre pond with a maximum depth of 21 feet and an average depth of 9 feet (Minnesota DNR, 2007; United States, 1980). The site where Hiniker Pond is located, Government Lot 2 in Section 1 Township 108 North, Range 27 West, was purchased by the Hiniker family, on January 25, 1936 (Blue Earth County Minnesota, 1936). In 1936 the land was very close to the Minnesota River and was part of a meander that had not been previously farmed (Figure 7.)

When Mr. Hiniker began plowing the property he found that the land was almost (USDA 1938)
When Mr. Hiniker began plowing the property he found that the land was almost pure gravel and sand so he started a sand and gravel company on the site (Preuhs, 1998).
He found that the water table was only 2-3 feet deep, which led him to start a mining process known as "slack line cable-way mining" (Preuhs, 1998). In 1946 Joseph Hiniker sold the gravel pit to his son for five thousand dollars (Blue Earth County Minnesota, 1946). From 1946 until it was closed in 1972, approximately one million cubic yards of sand and gravel were removed from the gravel pit site (Preuhs, 1998). Due to urban sprawl and impending retirement, John Hiniker sold the closed gravel pit to the City of Mankato, Minnesota for one dollar on August 12, 1975 (Preuhs, 1998; Blue Earth County Minnesota, 1975; Fischenich, 2009). An aerial view of Hiniker Pond and nearby Oxbow Lake can be seen in Figure 8.

Figure 8. Aerial view of Hiniker Pond Mankato, MN in 1973 at cessation of mining

Adjacent to Hiniker Pond is a small Oxbow that was created when the ACOE moved the Minnesota River in the early 1950's (Water Resource Center, Minnesota State University, 2002). Hiniker Pond and Oxbow Lake are connected by a gate well system that allows water to travel between the two water bodies (United States, 1980). The US-14 ditch runs along US-14 and then drains into Oxbow Lake. South of Oxbow Lake is the remains of the old North Mankato dump which was in operation from 1950 until 1973. It is located 500 yards due south of the southern most point of Hiniker Pond (U.S. Department of Public Health and Human Services, 2001).

In the 1980's Hiniker Pond was a very popular "rebel swimming hole" so the City of Mankato worked with the ACOE to develop the pond and surrounding property into the multi-use recreational park that it is today as seen in Figure 9 (United States, 1980).

(USGS 1973)

According to the ACOE (1980), Hiniker Pond was considered to have excellent water quality for recreational use. However, Oxbow Lake was considered unsuitable for anything due to high levels of fecal coliform bacteria. The ACOE (1980) also predicted that should there ever be a problem with the water quality at Hiniker Pond, the easiest solution would be to drain the pond and allow natural ground water to refill it.

Figure 9. Aerial view of Hiniker Pond and Oxbow Lake, Mankato, MN in 2009 (USDA 2009)

B. 110 and 112 West Lind Street Sites

Approximately 300 yards north of Hiniker Pond at 110 and 112 West Lind street was where the Year-A-Round Cab Company was located (Figure 10.). Year-A-Round

Cab Company, specialized in the preparation and painting of industrial equipment (Burman, 2011). The company was founded in 1966 by Charles Anderson and was in operation until 2010, when it was sold to Herateus Properties. After the sale, Mr. Herateus found Underground Storage Tanks (UST's) and an abandoned industrial water well (Minnesota Pollution Control Agency, 2010c). Mr. Herataus contacted the MPCA who tested the sludge in manholes/tanks (Minnesota Pollution Control Agency, 2010c).

Figure 10. Site overview of Hiniker Pond, US-14 ditch, Oxbow lake, and 110 W. Lind St. (Minnesota Pollution Control Agency, 2010b)

In September 2010 the MPCA sampled sludge on the West Lind St. site and the

following level of compounds were found:

Ethyl Benzene	1,901	ppm
Toluene	638	ppm
m-Xylene and p-Xylene	6,847	ppm
o-Xylene	2,169	ppm
(Minnesota P	ollution	Control Agency, 2010c)

Prior to September 2010 there were numerous issues with the site. Some of the environmental issues are presented in Appendix I-IV. In 1985 soil samples were found to contain metals at the levels listed below:

Chromium	18,000 ppb
Lead	520 ppb
Cadmium	210 ppb
	(State of Minnesota, 1985)
In July 1985 soil samples taken from 4 hole	es (#16, 18, 19, 20) at depths between 1-1.5
feet had up to 200 ug/g of toluene and xyle	nes plus over 50 ug/g of ethyl benzene.

Details of the contamination and soil survey completed by the MPCA are presented in Appendix I. The MPCA confirmed that some drainage pipes from the facility flow directly into the ditch. There are numerous drains in the facility that have unknown pipe routing or final termination, most notably ones from the painting preparation and materials cleaning room (Figure 11.) (Minnesota Pollution Control Agency, 2010c). Additionally, the MPCA found that a paint waste tank and underground storage tanks empty directly into a drainage field behind the buildings, which in turn drain into the US-14 ditch (Figure 12.) (Minnesota Pollution Control Agency, 2010c). . The site is currently being considered for listing as a state superfund site for long term remediation (Minnesota Pollution Control Agency, 2010a).

Figure 11. Unknown subsurface drainage from internal waste drains, 110 W. Lind St. (Minnesota Pollution Control Agency, 2010b)

There is a lengthy history of fines and charges per the MPCA against Year-A-Round Cab Company. These are presented in Appendix II. The case development form supplied by the MPCA details the unknown status of drainage routing as well as all previous fines and violations and a noted concern about the long-term affect on nearby Hiniker Pond (Appendix II.) (Minnesota Pollution Control Agency, 2010a).

Figure 12. Known subsurface drainage into US-14 ditch at 110 W. Lind St. (Minnesota Pollution Control Agency, 2010b)

Concerns about illegal fill activities that have taken place, written complaints by workers and citizens whom allegedly had spoken to the previous owner of the site about burning of drums in out buildings are presented in Appendix III. A MPCA letter formally confirming the presence of drums containing hazardous waste and requiring them to be disposed of is presented in Appendix IV (Minnesota Pollution Control Agency, 2010a). A criminal complaint was later filed against the owner for the alleged burial of hazardous waste drums, possible burning of hazardous waste, and improper disposal methods as well as disregarding administrative orders issued by the MPCA (Appendix V.) (Minnesota Pollution Control Agency, 2010a).

C. Hallett's Pond

Hallett's Pond "unnamed lake 52-0001," is located in the City of Saint Peter, Minnesota. It was formerly a gravel pit that was closed and sold to the city (Linehan, 2007). Hallett's Pond was mined in the 1930's. After it closed it became an unofficial swimming area until 1974 when the City of St. Peter purchased it. The city banned swimming, and used the pond for storm water run-off.

Hallett's Pond is 12 acres in size, has a maximum depth of 35 feet, and is very similar to that of Hiniker Pond as you can see in Figure 13. (Minnesota DNR, 1999). Immediately next to Hallett's Pond is a new storm water run-off holding pond, which is connected to Hallett's pond by an overflow grating. Occasionally, the new storm water pond receives untreated sewage from the adjacent wastewater treatment plant (Linehan, 2007).

Figure 13. Aerial Photo of Hallett's Pond 2009

(USDA 2009)

CHAPTER IV

MATERIALS AND METHODS

A. Sample Collection

Water and sediment samples were collected bi-weekly from Hiniker Pond, Hallett's Pond, Oxbow Lake and US-14 ditch from May to November 2011. The GPS coordinates for the sampling location at each site are provided in Appendix VI. These samples were collected using methods and containers provided by the Minnesota Valley Testing Laboratory, New Ulm, MN (MVTL). All collection procedures and analytical methods conform to U.S. EPA protocols.

B. BTEX Compounds, Cadmium, Chromium, and Lead

1. Water Samples

For BTEX monitoring, surface water samples were collected, placed in bottles containing hydrochloric acid (no headspace) and put into an ice filled cooler. They were transported to MVTL under chain of custody. Per EPA Quality Control (QC) procedures a field duplicate and field blank were included. For metal monitoring (Cd, Cr, Pb), surface water samples were collected at the same time and location as the BTEX samples. The water was placed in containers containing nitric acid, placed into a cooler and transported to MVTL under chain of custody. Standard EPA QA procedures were followed. Summarized in Table II is the EPA methods and holding times for the BTEX

and heavy metals.

Table II. Summary of water quality parameter holding times and standard methods of analysis for targeted metals and BTEX compounds

	Maximum			
Parameter	Holding Time	Method		
Chromium	6 months	SW6010		
Cadmium	6 months	SW6010		
Lead	6 months	SW6010		
Ethyl Benzene	14 days	SW8260B		
Toluene	14 days	SW8260B		
Xylenes-O	14 days	SW8260B		
Xylenes-M & P	14 days	SW8260B		

(U.S. Environmental Protection Agency, 2003)

2. Sediment Samples

Sediment samples were collected from Hiniker Pond, Hallett's Pond, Oxbow Lake and US-14 ditch. Sediment samples were collected from the deepest water in Hiniker Pond and Hallett's Pond with an Ekman dredge. Sediments were collected from Oxbow Lake and US-14 ditch with a shovel. For organic analyses, thirty grams of sediment were placed into each container and methanol was added on top the sediment. The samples were placed in an ice chest and transported to MVTL under chain of custody. Sediment for metal analyses were placed in the appropriate polypropylene containers, placed in the ice chest, and transported to MVTL under chain of custody. A field duplicate and field blank were also taken. Summarized in Table III are the EPA methods and holding times for the organic and metals measured in the sediment samples from Hiniker Pond, Hallett's Pond, Oxbow Lake and US-14 ditch in 2011.

Parameter	Maximum Holding Time	Method
Chromium	6 months	SW-846 6010
Cadmium	6 months	SW-846 6020
Lead	6 months	SW-846 6010
Ethyl benzene	14 days	8021
Toluene	14 days	8021
Xylenes-O	14 days	8021
Xylenes-M & P	14 days	8021

Table III. Summary of sediment parameter holding times and standard methods of analysis for targeted metals and BTEX Compounds

(U.S. Environmental Protection Agency, 2003)

3. Analysis of Water and Sediment Samples for BTEX and Metals

Water and sediment samples were analyzed by MVTL for BTEX, cadmium,

chromium, and lead because the appropriate equipment was not available at Minnesota

State University-Mankato. Due to financial constraints, these analyses were conducted

one time on May 19, 2011.

C. Field Parameters

Listed in Table IV are methods used to measure select water quality parameters in the field.

Table IV. Summary of standard methods used to measure select water qualities in the field

Parameter	Method
Temperature	SM 2550
Dissolved Oxygen	SM 45000-G
рН	EPA 9040A
Conductivity	EPA 120.1
Secchi Disk	N/A
Copper	HACH 8506

(U.S. Environmental Protection Agency, 2003)

For Hiniker Pond and Hallett's Pond, temperature, dissolved oxygen, and conductivity were measured at intervals of 5 foot from the surface of the lakes. Secchi Disk and pH were measured at the surface. For US-14 ditch and Oxbow Lake, temperature, conductivity, dissolved oxygen, pH, and turbidity tube were measured on the surface only and Secchi Disk readings were not taken.

D. Nutrients, Sulfates, and E. Coli Water Samples

Surface water samples were also collected bi-weekly from May until November 2011. In addition, water was collected from a depth of 10ft in Hiniker Pond and Hallett's pond. These water samples were analyzed for total phosphorus (TP), soluble reactive phosphorus (P-PO4), nitrate (N-NO3), nitrite (N-NO2), ammonia nitrogen (N-NH3), sulfates (SO4), E. Coli, and copper (Cu). Summarized in Table V is a list of water quality parameters and its holding time and method of analysis.

	Maximum	
Parameter	Holding Time	Method
E. coli	24 hours	EPA 1903
P-PO4	24 hours	EPA 365.2
ТР	24 hours	EPA 365.4
N-NO3	28 days	EPA 352.1
N-NO2	28 days	EPA 353.2
N-NH3	28 days	EPA 350.1
SO4	28 days	EPA 4035
	•	

Table V. Summary of water quality holding times and standard methods of analysis

(U.S. Environmental Protection Agency, 2003)

Standard EPA QA/QC procedures were followed. These included field duplicates, field blanks, laboratory blanks, laboratory duplicates, were analyzed. All of these samples were analyzed at Minnesota State University, Mankato, MN.

E. Statistical Analysis

SPSS was used to calculate descriptive statistics (mean, standard deviation, standard error, and), a Wilcoxon 1 way T-test was used to calculate P-values (Non-Parametric) and Sigma Plot was used to plot linear regressions.

F. Carlson Trophic State Index

The Carlson's Trophic State Index was determined using two parameters, total phosphorous and Secchi disk.

G. Rainfall Data

Rainfall data was from May-November 2011was downloaded from the National Weather Service (NWS). The NWS data are an average of 3 different stations close to Mankato and St. Peter, MN. There locations include: The Mankato Regional Airport, Minnesota State University, Mankato Campus, and the Minnesota Department of Transportation Mankato field office.

H. ARC GIS

ARC GIS 10 was use to geo-reference all US Department Agriculture (USDA) and US Geological Survey (USGS) Digital Elevation Maps (DEM) and digital aerial photos, or Orthophoto Quadrangles (DOQ). The maps were layered after they were georeferenced to document changes that occurred over since the 1930's. Well data were downloaded from the Minnesota County Well Index and plotted.

I. Ground Water Modeling

1. GFLOW

GFLOW (Haitjema software version 2.1.2) was used to model groundwater flow through the aquifer in the area of Hiniker Pond and Oxbow Lake. This was a twodimensional model to determine the potentiometric field to determine flow paths. Constant head elevations were retrieved by using the depth to ground water information from the county well index data (Minnesota Department of Health, 2012). The well and boring data logs are presented in Appendix VII. Hiniker Pond was used as a constant head boundary due to its documented elevation (Minnesota DNR, 2007). The Minnesota River was used as a sink for the area due to the nature of the decreasing ground water elevation and known draw towards the river. US EPA DOQ's were retrieved through GFLOW and used as a base map. Based on the GFLOW output, flow paths were drawn using Adobe Illustrator.

2. MODFLOW

Visual MODFLOW Premier, an interface from Schlumberger Water Services Inc.,that uses the MODFLOW computer code was used to build a three-dimensional model of subsurface water flow. The model was designed to cover the area of Hiniker Pond and Oxbow Lake running from the old North Mankato dump on the south to US-14 on the north and from the Minnesota River on the East, west to the bluffs in North Mankato. This area was chosen based on historical imagery of the area before the Minnesota River meander was cutoff making it fairly homogenous throughout as shown in Figure 7. The area was approximately 400 meters wide and 450 meters from south to north so a grid of 40 by 45 cells were used, making all cells about 10 meters square. An annual recharge rate of 28 inches per year and an annual evapotranspiration rate of 23 inches per year were applied to the model based local knowledge (Hippie, 2012). Hiniker Pond and Oxbow Lake were added as lake features, using depths and properties as indicated by the Minnesota DNR (Minnesota DNR, 2007). The Minnesota River was added as a river boundary using an average depth of 12 feet (Hoppie, 2012). Both the lake and river boundary areas and shapes were input by tracing the features on the DOQ of the area.

The surface layer of the model was based on the latest soil survey completed in 1983 by the Natural Resource Conservation Service (NRCS). The top layer corresponds to code 1007, (Alluvial Outwash) and values used for this layer were calculated from available data from the survey (Natural Resource Conservation Service, 1983). Topographical data was downloaded from the USDA with 2-foot elevation differentials and applied to the surface to show terrain. This layer was made 5 feet thick based on a boring report from the Minnesota Department of Transportation from 1969 at the US-14 overpass from the north, the NRCS soil survey report, and the report by the USDPH on the old North Mankato dump on the south (Minnesota Department of Transportation, 1969; Natural Resource Conservation Service, 1983; U.S. Department of Public Health and Human Services, 2001).

The second layer of the model was designed using values that were calculated in the lab. A sample of aquifer material was collected from 2 feet below the sediment of Hiniker Pond. The conductivity was calculated from a constant head test conducted using a piezometer following standard lab methods (Hoppie, 2012). Porosity and bulk density were calculated using a quanta chrome pycnometer and a certified scale (Hoppie, 2012). The equations, reports, and data used to determine final values are presented in Appendix VII. The elevation of the top of layer two was achieved using the top layer elevation data and using ARC GIS to subtract five feet from it to represent the assumed thickness of the top layer. The bottom of layer two was set to the bedrock, known to be at about 700 feet above sea level from the geological atlas for Nicollet County, MN (Water Resource Center, 2012).

The values for the last layer, the bedrock, were set to near to zero as possible and the layer was made 1 foot thick with a slight elevation change from 700 feet on the south to 693 feet on the north based on the geological atlas and US-14 boring report (Minnesota Department of Transportation, 1969; Water Resource Center, 2012). Values that were required for each layer include storativity (the amount of water released per unit volume of aquifer), specific yield (the amount of water an aquifer will yield under gravity), conductivity (the flow rate in an aquifer), and porosities (ability of an aquifer to transmit water) were calculated using equations or available data as presented in Appendix VII. MODFLOW was set to 9,990 days (27 years approximately) to represent the total time frame that Year-A-Round Cab Company had been in business (Minnesota Pollution Control Agency, 2010c).

a. Heavy Metal Transport

MT3DMS was used as the engine to predict heavy metal contaminant transport using lead as the surrogate. This engine is the best choice when biodegradation is not a factor when dealing with heavy metals that are persistent (Prommer et al., 2002). The adsorption coefficients were also most appropriate with the MT3DMS engine with lead only having one oxidation state. The initial concentration of lead was based on the assumption of a constant leakage of 1 mg/L per day for 9,990 days (27 years). This was the best estimate of constant leakage from the paint tanks on the site since the first complaint in 1985 (Minnesota Pollution Control Agency, 2010c).

A Langmuir sorption curve was used with values used for calculations presented in Appendix VII. Langmuir was used over Freundlich due to the losses from a single spill incident assumed to be two orders of a magnitude greater through the ground and a very little clay in the soils of the region. The engine was run using the conductivity for the media as calculated in the lab of 59 feet per day horizontally. Vertical conductivity was set to 5.9 feet per day based on default vertical conductivity solutions in the model. Changing the conductivity, dispersivity, and adsorption coefficients tested the model's sensitivity to parameter adjustment. This process allowed the groundwater model to be delineated for the maximum, minimum, and most probable extent of contamination. The model was run and outputs were recorded at different time intervals to show the size and extent of the lead contamination plume.

b. BTEX Transport.

The RT3D transport engine was used to model BTEX compound transport of a simulated leak. The engine was chosen because of the available built in default parameters for sulfates, iron, and oxygen in the soil and the chemical properties of BTEX already existing in the code. The option of using a first order engine was used with default values to simulate an aerobic environment for biological degradation to occur. The initial concentration for the BTEX plume was based on the assumption of a constant release of 1 mg/L per day for 5 years. Toluene was used as the surrogate for BTEX compounds. A Langmuir adsorption curve was used due to the chemical properties of

BTEX based on prior research by Prommer et al. (Prommer et al., 2002). Aquifer properties were manipulated from the calculated values to determine the maximum, minimum, and most probable extent of contamination. The data used for aquifer properties in the model is presented in Appendix VII. The model was run and outputs were recorded at different time intervals to show the size and extent of the BTEX contamination plume.

CHAPTER V

RESULTS

A. BTEX and Metals

Results of analyses for BTEX compounds and heavy metals in water and in sediment are summarized in Table VI and VII respectively. These analyses were only conducted once due to financial limitations. Detailed laboratory results for all organic compounds in water are in Appendix VIII and sediment results are in Appendix IX.

	-			Ethyl		m/p/o
	Cadmium	Chromium	Lead	Benzene	Toluene	Xylenes
Water Body	$(\mu g/L)$	(µg/L)	$(\mu g/L)$	$(\mu g/L)$	$(\mu g/L)$	$(\mu g/L)$
US 14 Ditch	< 0.005	< 0.01	< 0.03	< 1	<1	<1
Oxbow Lake	< 0.005	< 0.01	< 0.03	< 1	<1	<1
Hiniker Pond	< 0.005	< 0.01	< 0.03	< 1	<1	<1
Hallett's Ponc	a < 0.005	< 0.01	< 0.03	< 1	<1	<1

Table VI. Levels of heavy metals (Cd, Pb, Cr) and BTEX in water samples collected on May19, 2011 by site

Table VII. Levels of heavy metals (Cd, Pb, Cr) and BTEX in surface sediment samples collected on May19, 2011 by site

				Ethyl		m/p/o
	Cadmium	Chromium	Lead	Benzene	Toluene	Xylenes
Water Body	(mg/kg)	(mg/kg)	(mg/kg)	(µg/kg)	(µg/kg)	(µg/kg)
US 14 Ditch	1.25	20.7	30.8	< 50	< 50	< 50
Oxbow Lake	0.471	11.6	7.01	< 50	< 50	< 50
Hiniker Pond	0.208	3.49	< 0.694	< 50	< 50	< 50
Hallett's Pond	d 0.129	2.01	< 0.709	< 50	< 50	< 50

B. Field Parameters and Nutrient Testing

Summarized in Table VIII are the dates field water quality measurements and samples were collected for analyses for nutrients, sulfates, and E. coli by location.

Date (2011)	Hiniker Pond	Hallett's Pond	Oxbow Lake	US-14 ditch*
May 19	XX	XX	XX	XX
June 1	XX	XX	XX	
June 14	XX	XX	XX	XX
June 22	XX	XX	XX	XX
July 12	XX	XX	XX	
July 27	XX	XX	XX	XX
August 15	XX	XX	XX	XX
August 30	XX	XX	XX	
September 13	XX	XX	XX	
September 27	XX	XX	XX	
October 11	XX	XX	XX	
October 25	XX	XX	XX	
November 9	XX	XX	XX	

Table VIII. Summary of the dates water quality measurements were taken by site

*US-14 ditch was unable to be sampled due to lack of water on some occasions

Summarized in Table IX, X, XI, and XII are the means, minimums, maximums, range, and standard errors of all field parameters, phosphorus, nitrogen, sulfates, and E. coli levels for each water body. Detailed results are presented in Appendix X.

Parameter	# of Samples	Minimum	Maximum	Mean	Standard	Standard
	Samples	winning				Deviation
E. ecoli (CFU/100ml)	3	488.4	1,203.3	780.17	216.57	375.12
Turbidity (cm)	4	4	29	16.75	6.80	13.60
рН	4	4.1	8.6	7.03	1.00	2.00
Conductivity Surface (mohm/cm)	5	0.180	1.967	1.00	0.39	0.86
Temperature Surface (°C)	5	15.9	28.0	21.94	2.27	5.07
Dissolved Oxygen Surface (ppm)	5	4.40	15.11	7.61	1.98	4.44
TP Surface (ppm)	5	0.13	1.30	0.44	0.22	0.49
P-PO4 Surface (ppm)	5	0.03	0.14	0.09	0.02	0.04
N-NO2Surface (ppm)	5	0.0062	0.0462	0.0248	0.01	0.02
N-NO3Surface (ppm)	5	0.7	1.4	0.94	0.12	0.27
N-NH3 Surface (ppm)	2	0.1	5.0	2.55	2.45	3.46
SO4 Surface (ppm)	4	0.2	284.0	105.68	66.62	133.23
Copper Surface (ppm)	2	0.019	1.990	1.00	0.99	1.39

Table IX. Descriptive statistics for US-14 ditch by parameter during sampling season May- November 2011

Table X. Descriptive statistics for Oxbow Lake by parameter during sampling season May- November 2011

	# of				Standard	Standard
Parameter	Samples	Minimum	Maximum	Mean	Error	Deviation
E. ecoli (CFU/100ml)	10	22.60	2419.60	1546.48	334.50	1057.77
Turbidity (cm)	11	2.00	32.00	14.91	2.63	8.73
рН	12	5.70	7.50	6.81	0.14	0.47
Conductivity Surface (mohm/cm)	12	0.12	1.20	0.53	0.09	0.33
Temperature Surface (°C)	12	6.70	26.00	17.63	1.41	4.87
Dissolved Oxygen Surface (ppm)	12	0.24	6.80	3.26	0.72	2.49
TP Surface (ppm)	12	0.10	1.11	0.49	0.10	0.34
P-PO4 Surface (ppm)	12	0.02	0.44	0.15	0.03	0.12
N-NO2 Surface (ppm)	12	0.0075	0.7650	0.1122	0.06	0.21
N-NO3 Surface (ppm)	12	0.10	1.20	0.63	0.10	0.36
N-NH3 Surface (ppm)	3	0.20	3.70	1.50	1.11	1.92
SO4 Surface (ppm)	11	0.20	114.80	33.57	11.74	38.93
Copper Surface (ppm)	2	0.02	0.03	0.03	0.01	0.01

	# of				Standard	Standard
Parameter	Samples	Minimum	Maximum	Mean	Error	Deviation
E. ecoli (CFU/100ml)	13	0.0	2,419.6	198.21	185.26	667.96
pН	13	4.5	8.0	7.23	0.25	0.90
Conductivity Surface	12	0.086	1 1 2 2	1.05	0.01	0.05
(mohm/cm)	15	0.980	1.125	1.05	0.01	0.03
Conductivity 5ft	13	0.986	1 141	1.06	0.02	0.05
(mohm/cm)	15	0.900	1.171	1.00	0.02	0.05
Conductivity 10ft	13	0 989	1 144	1.07	0.02	0.06
(mohm/cm)	15	0.909	1.1 11	1.07	0.02	0.00
Conductivity 15ft	12	1.010	1.153	1.10	0.02	0.06
Temperature Surface (°C)	13	8.1	30.0	20.40	1.66	5.99
Temperature 5ft (°C)	13	8.2	27.9	19.90	1.59	5.73
Temperature 10ft (°C)	13	8.2	24.4	17.67	1.35	4.88
Temperature 15ft (°C)	12	8.2	20.3	13.58	1.11	3.86
Secchi Disk (M)	13	0.5	2.5	1.38	0.17	0.61
Dissolved Oxygen Surface	13	8 30	15 70	10.07	0.57	2.04
(ppm)	15	0.50	15.70	10.07	0.57	2.01
Dissolved Oxygen 5ft	13	6.98	15.40	9.74	0.58	2.11
(ppm)						
Dissolved Oxygen 10ft	13	0.20	10.00	3.76	0.98	3.53
(ppm)						
Dissolved Oxygen 15ft	12	0.00	8.75	1.23	0.72	2.51
(ppm)	12	0.07	0.66	0.14	0.04	0.16
TP Surface (ppm)	13	0.07	0.00	0.14	0.04	0.10
P PO4 Serfree (mm)	13	0.06	0.15	0.11	0.01	0.03
P-PO4 Surface (ppm)	13	0.02	0.59	0.12	0.04	0.15
P-PO4 10ft (ppm)	13	0.02	0.14	0.06	0.01	0.04
N-NO2 Surface (ppm)	13	0.0003	0.0120	0.01	0.00	0.00
N-NO2 10ft (ppm)	13	0.0026	0.0184	0.01	0.00	0.00
N-NO3Surface (ppm)	12	0.1	1.2	0.71	0.10	0.34
N-NO310ft (ppm)	12	0.4	1.5	0.75	0.08	0.26
N-NH3 Surface (ppm)	3	0.2	3.5	1.43	1.04	1.80
N-NH3 10ft ((ppm)	3	0.1	5.4	2.10	1.66	2.88
SO4 Surface (ppm)	12	97.4	129.4	109.77	3.37	11.68
SO4 10ft (ppm)	12	88.8	123.0	106.08	3.42	11.84
Copper Surface (ppm)	3	0.050	0.864	0.32	0.27	0.47
Copper 10ft (ppm)	3	0.116	1.720	0.84	0.47	0.81

Table XI. Descriptive statistics for Hiniker Pond by parameter during sampling season May- November 2011

	# of				Standard	Standard
Parameter	Samples	Minimum	Maximum	Mean	Error	Deviation
E. ecoli (CFU/100ml)	13	0.0	1,553.1	142.44	118.72	428.06
pH	12	6.4	8.4	7.62	0.17	0.58
Conductivity Surface	12	0.459	0.675	0.57	0.02	0.07
(mohm/cm)	15	0.438	0.075	0.37	0.02	0.07
Conductivity 5ft	12	0.461	0.675	0.59	0.02	0.07
(mohm/cm)	12	0.401	0.075	0.57	0.02	0.07
Conductivity 10ft	12	0.475	0.684	0.59	0.02	0.06
(mohm/cm)	12	0.175	0.001	0.07	0.02	0.00
Conductivity 15ft	10	0.540	0.936	0.66	0.04	0.11
Temperature Surface (°C)	13	8.3	30.4	20.74	1.71	6.15
Temperature 5ft (°C)	12	8.5	29.2	20.33	1.78	6.17
Temperature 10ft (°C)	12	8.7	26.3	19.55	1.60	5.56
Temperature 15ft (°C)	10	8.7	24.1	18.21	1.68	5.30
Secchi Disk (M)	12	0.8	3.5	2.19	0.28	0.97
Dissolved Oxygen Surface	13	8 20	17.00	10.00	0.63	2 27
(ppm)	15	0.20	17.00	10.07	0.05	2.27
Dissolved Oxygen 5ft	12	7.80	19.00	10.24	0.88	3.03
(ppm)	12	7.00	19.00	10.21	0.00	5.05
Dissolved Oxygen 10ft	12	7 90	16 10	10.87	0.78	2.70
(ppm)	12	1.50	10.10	10.07	0.70	2.70
Dissolved Oxygen 15ft	11	0.66	18.50	7.50	1.64	5.45
(ppm)						
TP Surface (ppm)	13	0.02	0.90	0.15	0.06	0.23
TP 10ft (ppm)	13	0.03	0.11	0.07	0.01	0.02
P-PO4 Surface (ppm)	13	0.01	0.16	0.04	0.01	0.05
P-PO4 10ft (ppm)	13	0.01	0.09	0.03	0.01	0.02
N-NO2 Surface (ppm)	13	0.0240	0.0498	0.0350	0.00	0.01
N-NO2 10ft (ppm)	13	0.0243	0.0505	0.0376	0.00	0.01
N-NO3 Surface (ppm)	12	1.2	3.5	2.00	0.23	0.78
N-NO3 10ft (ppm)	12	1.5	3.4	2.32	0.20	0.68
N-NH3 Surface (ppm)	3	0.1	4.7	1.63	1.53	2.66
N-NH3 10ft (ppm)	3	0.1	2.7	1.07	0.82	1.42
SO4 Surface (ppm)	12	27.8	46.8	35.58	1.63	5.65
SO4 10ft (ppm)	12	28.5	45.0	35.74	1.50	5.21
Copper Surface (ppm)	3	0.021	0.037	0.03	0.01	0.01
Copper 10ft (ppm)	3	0.007	0.025	0.02	0.01	0.01

Table XII. Descriptive statistics for Hallett's Pond by parameter during sampling season May- November 2011

C. Statistical Analysis

Results of a statistical analysis using a Wilcoxon non-parametric T-test comparing Hiniker Pond to Hallett's Pond for field parameters, sulfates, and nutrient levels is presented in Table XIII. The lower the P-value for each parameter, the more similar Hiniker and Hallett's Ponds were to each other and any changes were the same for the

other. A P-value of 0.05 was used as a standard showing a 95% confidence interval.

Table XIII. Summary of a Wilcoxon non-parametric T-test (bold indicates significant correlation at a 95% confidence interval) between Hiniker and Hallett's Ponds for data collected May – November 2011.

	P-value		
	0.861		
рн	0.061		
Conductivity Surface (mohm/cm)	0.001		
Conductivity 5ft (mohm/cm)	0.002		
Conductivity 10ft (mohm/cm)	0.002		
Conductivity 15ft	0.005		
Temperature Surface (°C)	0.074		
Temperature 5ft (°C)	0.003		
Temperature 10ft (°C)	0.003		
Temperature 15ft (°C)	0.005		
Secchi Disk (M)	0.015		
Dissolved Oxygen Surface (ppm)	0.753		
Dissolved Oxygen 5ft (ppm)	0.583		
Dissolved Oxygen 10ft (ppm)	0.002		
Dissolved Oxygen 15ft (ppm)	0.003		
TP Surface (ppm)	0.157		
TP 10ft (ppm)	0.006		
P-PO4 Surface (ppm)	0.005		
P-PO4 10ft (ppm)	0.003		
N-NO2 Surface (ppm)	0.001		
N-NO2 10ft (ppm)	0.001		
N-NO3 Surface (ppm)	0.003		
N-NO3 10ft (ppm)	0.003		
SO4 Surface (ppm)	0.002		
SO4 10ft (ppm)	0.002		
N-NH3 Surface (ppm)	1.000		
N-NH3 10ft ((ppm)	0.285		
Copper Surface (ppm)	0.109		
Copper 10ft (ppm)	0.109		

Numbers in bold in Table XIII indicate that there was a significant correlation between Hiniker and Hallett's Pond with respect to that parameter. This indicates that the two water bodies responded to seasonal variations similarly. E. Coli, SO4, and dissolved oxygen showed a significant difference between Hiniker and Hallett's Pond in respect to seasonal variation.

D. Carlson Trophic State Index

The Carlson Trophic State Index was determined for Oxbow Lake, Hiniker Pond and Hallett's Pond using average total phosphorous and Secchi Disk levels. These data are presented in Table XIV.

 Table XIV. Summary of Carlson Trophic State Index by water body in 2011

	Mean TP	Mean Secchi/		
Water Body	(ppb)	Turbidity Tube (M)	Value	Description
Oxbow lake	489	0.15	>80	Hyper eutrophic
Hiniker Pond	127	1.39	67	Eutrophic
Hallett's Pond	109	2.18	56	Eutrophic

E. Rainfall Data

Summarized in Table XV are the rainfall data, based on 7-day totals for May to

November 2011. The testing season was significantly drier than in previous years.

Traditionally July is the wettest season, but in this case was very dry while August was

significantly wetter than normal (Minnesota DNR, 2007).

Service for find	intato, mit, may		
	Total Precipita	tion	Total Precipitation
Week of:	(inches)	Week of:	(inches)
4-May	0.38	10-Aug	0.1
11-May	0.34	17-Aug	0.18
18-May	0.45	24-Aug	0
25-May	0.35	31-Aug	0.16
1-Jun	0	7-Sep	0
8-Jun	0.11	14-Sep	0
15-Jun	1.77	21-Sep	0.16
22-Jun	0.69	28-Sep	0
29-Jun	0.27	5-Oct	0
6-Jul	0	12-Oct	0.46
13-Jul	2.62	19-Oct	0
17-Jul	0.68	26-Oct	0
24-Jul	0.09	2-Nov	0
3-Aug	8.11	9-Nov	0

Table XV. Regional rainfall data based on 7-day totals from the National Weather Service for Mankato, MN, May to November 2011

F. Ground Water Flow Modeling

1. GFLOW

The results of the GFLOW model are shown in Figure 14. The flow lines show that the majority of the aquifer (groundwater) flows to the northwest into the Minnesota River.

Figure 14. GFLOW model results showing estimated subsurface water flow for Hiniker Pond and surrounding areas, North Mankato, MN

2. MODFLOW

The MODFLOW simulation showing the layer setup, wells, surface terrains (with 2x vertical exaggeration), lakes, rivers, and bedrock are presented in Figure 15. A heavy metal contamination plume was simulated using the MT3DMS engine using values presented in Appendix VII. Figures 16, 17, and 18 shows the heavy metal plume (lead as indicator) modeled by various time stages, 30 days, 1 year, and 4.5 years, respectively. A conductivity of 59 feet per day horizontally and 5.9 feet per day vertically was used based on lab piezometer test averages (Hoppie, 2012). As the plume undergoes advection and slowly diffuses laterally, it makes contact with the Minnesota River, never contacting

Hiniker Pond or Oxbow Lake through subsurface flow. Using higher and lower conductivities, adsorption coefficients, and dispersivity values, minimum, maximum, and most probable cases of contamination showed negligible difference in the size and extent of the contamination plume. These numbers were determined by using a plus or minus one standard deviation on either side of the averages. Only when dispersivity was changed to be 100 times the calculated conductivity of the aquifer material was lead able to reach Hiniker Pond and Oxbow Lake. However this output is not a possible real life situation.

Figure 15. A three-Dimensional view of Hiniker Pond area with all hydrological features using Visual MODFLOW Premier. The top layer shows terrain, light blue is Hiniker Pond and Oxbow Lake, dark blue indicates the Minnesota River, light brown is the first layer of soil, and dark brown shows the bedrock.

Figure 16. Estimated heavy metal plume (lead as a surrogate) from Year-A-Round Cab Company after 30 days.

Figure 17. Estimated heavy metal plume (lead as a surrogate) from Year-A-Round Cab Company after 329 days.

Figure 18. Estimated heavy metal plume (lead as a surrogate) from Year-A-Round Cab Company after 1623 days.

The results of a simulated BTEX plume were modeled using the RT3D engine. The properties of the layers and the model were not changed from what was used to model the lead contamination plume and are presented in Appendix VII. The BTEX plume models can be seen in Figures 19, 20, 21, and 22 at intervals of 30, 90, 365 days, and 5 years, respectively. The values of conductivity and dispersivity to obtain minimum, maximum, and most probable cases of contamination were calculated by using plus or minus one standard deviation of the averages as with heavy metals. The changes showed no discernable or relevant impact on the general shape, size, or final concentration of the BTEX contamination plume. The plume contacts both Hiniker Pond and Oxbow Lake within 30 days as seen in Figure 19, and continues to grow as it makes contact with the Minnesota River at about one year, and then shrinks as it flows into the river. Cases of minimum and maximum contamination also contacted Hiniker Pond and Oxbow Lake in less than 30 days and the Minnesota River slightly before or after one year, but within a few days.

Figure 19. Estimated BTEX plume (toluene as a surrogate) from Year-A-Round Cab Company after 30 days.

Figure 20. Estimated BTEX plume (toluene as a surrogate) from Year-A-Round Cab Company after 90 days.

Figure 22. Estimated BTEX plume (toluene as a surrogate) from Year-A-Round Cab Company after 1,826 days.

CHAPTER VI

DISCUSSION

A. BTEX and Heavy Metals

BTEX compounds were not found in any of the sediment or water samples. This could be due to a number of factors. One possible reason is the small number of samples taken due to the project's financial constraints. Only surface samples were tested. However, BTEX compounds in soil were found at the site at depths of 1-1.5 feet in 1985 and at an even greater depth in 2010 (manholes). Given the documented contamination, physical evidence such as discolored soils and heavy sheening observed in 2011 at the US-14 ditch and Oxbow lake, Figure 23 and 24 respectively, it is likely that hydrocarbons are present at the site. Our sampling was limited to public access points in US-14 ditch, Oxbow Lake, and Hiniker and Hallett's Ponds. We did not have permission to go on site. (110 and 112 West Lind Street).

The MODFLOW with the RT3D engine suggests that BTEX contamination is likely to enter Hiniker Pond and Oxbow Lake through ground water. This was consistently demonstrated with the model using the minimum, maximum, and most probable cases of contamination. As of September 24, 2010, there was a significant amount of BTEX on site.

Water samples did not contain Pb, Cd, or Cr. However, the GFLOW potentiometric map indicated, if metals were present in Oxbow Lake, they would be

transported into Hiniker Pond. These metals would probably be incorporated in to the sediments. Dissolved oxygen levels in the lower depths of Hiniker Pond were less than 1 mg/L 9 out of 12 times. When DO levels are this low, it is highly probable that Pb, Cd, Cr, and phosphorous nutrients would be mobilized from sediment into the water column. To support this idea, using copper (Cu) as a surrogate for Pb, Cd, and Cr, Cu levels on 7/27/2011 were 1.7 mg/L and DO was near zero. On 10/25/2012, Cu levels were 0.116 mg/L and DO was greater than 2 mg/L. On 10/25/2012 when DO was 2 mg/L Cu levels were ten-fold lower than DO was near zero.

Heavy metals, Cr, Pb, and Cd, were found in sediment samples at varying levels. The US-14 ditch sediment had 30 times higher level of Pb than sediment collected from Hallett's Pond. US-14 ditch had 10 times higher levels of Cd and Cr then Hallett's Pond. These data are shown in Figure 25. Oxbow Lake, which is directly down stream from the US-14 ditch, had 4-5 times higher levels of Pb, Cd, and Cr than Hallett's Pond. Using Pb as a representative of heavy metals, the MODFLOW MT3DMS model indicated that the metals are being transported by surface runoff.

Figure 23. Heavy sheening present in Oxbow Lake on May 19, 2011

Figure 24. Drainpipe confirmed by MPCA to be running from internal drains of former Year-A-Round Cab Company into US-14 Ditch with sheening and discoloration.

Figure 25. Heavy metals found in sediment at study locations, May 19, 2011

B. Water Quality

1. Total Phosphorus (TP) and Reactive Phosphorus (P-PO4)

Hiniker and Hallett's Pond were both classified as eutrophic on the Carlon's Trophic State Index. Oxbow lake is hyper-eutrophic. It is very shallow, only 4 feet deep and receives storm water run-off a number of pipes. Hiniker Pond is influenced by surface runoff from Oxbow Lake and ground water flow, as shown in Figure 14. Hiniker Pond and Hallett's Pond have very similar levels of TP and P-PO4 (Figures 26 and 27 respectively). Throughout most the season the TP and P-PO4 levels were below 0.20 ppm (12 out of 13 times for Hiniker Pond and 11 out of 13 times for Hallett's Pond). After the 8 inches of precipiation (Figure 28) received during the week of 8/3/2011, TP and P-PO4 levels increased dramatically in both Hiniker and Hallett's Ponds. However, TP and P-PO4 levels in Hiniker Pond were two times greater than the increased levels measured in Hallett's Pond. This may be explained by differences in the watershed. Hiniker Pond is surrounded by a park, residential areas, and urban areas, while Hallett's Pond has an externsive a riparian buffer zone. The correlation between precipitation events and changes in surface phosphorus is fairly strong, showing an R value of 0.91 in a linear regression, presented in Appendix XI.

In early September, in Hallett's Pond TP and P-PO4 levels increased dramatically, even higher than 8 inch storm event. This was not related to a storm event or low DO levels in the bottom of the pond (8 mg/L). There was now corresponding increase in Hiniker Pond. There had to be another source of phosphorus to Hallett's Pond.

Figure 26. Total phosphorus measured in Hiniker and Hallett's Pond May - November 2011 recorded in mg/L P in surface water sample

Figure 27. Reactive phosphorus measured in Hiniker and Hallett's Pond May - November 2011 recorded in mg/L P in surface water samples

Figure 28. Total weekly precipitation for Mankato and surrounding areas in inches, May -November 2011.

2. Nitrate and Nitrite

Nitrate measured as N-NO3, fluctuated in both ponds over the sampling season (Figure 29). In samples collected before August 15, 2011 Hallett's Pond had as high as four times the amount of nitrate than was in Hiniker Pond. The storm event the week of August 3, 2011 had an effect on Hiniker and Hallett's Ponds. On Hallett's Pond, the nitrate levels were at their lowest levels after the storm. For Hiniker Pond, the nitrate levels were the highest after the storm. The levels of nitrate 10 feet deep mirrored the surface nitrate levels in both ponds (Figure 30).

Figure 29. Surface N-NO3 measured in mg/L in surface water samples from Hiniker and Hallett's Ponds May - November 2011.

Figure 30. N-NO3 measured at a depth of 10 feet in mg/L in surface water samples from Hiniker and Hallett's Ponds May - November 2011.

3. Sulfates and Conductivity

Sulfate levels were quite different between Hiniker and Hallett's Pond as shown in Figure 31. On average Hiniker Pond maintained a sulfate level of about three times that of Hallett's Pond. Sulfate levels at the surface and 10 foot depths were consistently the same in each pond (Appendix XII).

Conductivity is an indicator of the dissolved ions in water. The conducitvity of Hiniker Pond is higher then the conductivity of Hallett's Pond as shown in Figure 32. This is due to the differences in the sulfate levels described above. The lowest conducitivity in Hallett's Pond was after the storm of event the week of August 3rd, 2011. There was no dilution effect (decrease in conductivity) on Hiniker Pond after the storm event.

Figure 31. Surface sulfate levels in Hiniker and Hallett's Pond measured as mg/L SO4 from May - November 2011.

Figure 32. Surface conductivity levels in Hiniker and Hallett's Pond measured as mohm/cm from May - November 2011.

4. Temperature and pH

The temperature of Hiniker and Hallett's Ponds followed a predictable seasonal change and mirrored each other (Figure 33). The warmest temperature was in July and coolest was the end of October.

The pH profiles for Hiniker and Hallett's Ponds are presented in Figure 34. Other then the July 28th measurements, the ponds have very similar pHs. Hiniker Pond and to a lessor extent Hallett's Pond had a significant drop in pH in mid July. These data points are questionable.

Figure 33. Surface water temperatures in degrees celsius for Hiniker and Hallett's Ponds May - November 2011.

Figure 34. Surface water pH of Hiniker and Hallett's Pond May – November 2011.

5. Dissolved Oxygen

The Dissolved Oxygen (DO) profiles for Hiniker and Hallett's Ponds are presented in Figures 35 and 36 respectively. In Hiniker Pond the surface and 5 foot levels mostly remained above 8 mg/L. However, in the deepest water, the DO was close to zero 9 out of 12 times. For Hiniker Pond the low DO levels in the water just above the sediment allows mass transport of heavy metals and phosphorus into the water.

For Hallett's Pond DO levels in the surface and 5 foot levels also remained above 8 mg/L and was even supersaturated in August. Supersaturation was probably due to algae photosysnthesis. In the deepest water, the DO level was less than 2 mg/L 1 out of 13 times. There was a dramatic increase in DO levels in the deepest waters July 14th. This data point is suspect.

Figure 35. Dissolved oxygen levels in Hiniker Pond measured in mg/L at 5 foot interval May-November 2011

Figure 36. Dissolved oxygen levels in Hallett's Pond measured in mg/L at 5 foot interval May- November 2011

6. E. Coli

E. Coli levels for Hiniker and Hallett's Ponds are presented in Figure 37. E. Coli levels exceeded health standards once after the week of August 3rd storm event. Hiniker Pond had 5 times the levels of E. Coli as that of Hallett's Pond.

Figure 37. E. Coli Levels in Hiniker and Hallett's Ponds in CFU/100ml samples May-November, 2011

C. Conclusions

(1) The results of sediment testing and ground water modeling strongly suggest that the former Year-A-Round Cab Company site was a source of heavy metals to the US-14 ditch, Oxbow Lake, and potentially Hiniker Pond. Based on models, the heavy metals would reach Hiniker Pond primarily through surface water run off. These heavy metals would probably wind up in the sediments. Low DO levels in the deepest water could result in the release of heavy metals back into the water column.

(2) Based on models, if BTEX compounds are being released from the former Year-A-Round Cab Company site, they will reach Hiniker Pond through ground water.

(3) Hallett's Pond is a good reference site for Hiniker Pond excluding sulfates, N-NO3 and DO (deepest water).

D. Recommendations

1. Heavy Metals

Continued and more extensive sampling for heavy metals in the sediment of Hiniker Pond, Oxbow Lake, and US-14 ditch would paint a better picture of probable metal contamination in the area. Funding will need to be found to complete this. Gaining access to the West Lind street site would allow the opportunity to test the soil and compare those results to those in Appendix I. This would also show more evidence as to the source of the metals. More extensive testing of the water at the sediment water interface would be very important to determining if metals are released into the water column under low (less than 2 mg/L) DO conditions. Storm water monitoring would also be important to determining the path of the metals if contamination is spreading by the flow in the ditches. A testing season that has a higher number of storm events would be beneficial.

2. BTEX

BTEX samples should be taken at levels deeper than 1.5 feet in areas where the models indicuated BTEX would probably exist. Gaining access to the site and sampling sediment and groundwater near the manholes in the flow path, at known distances in the estimated plume, and in the direction towards Hiniker Pond and Oxbow Lake would be beneficial to determining contamination if it is present. Ground water sampling wells should be installed based on BTEX MODFLOW models for long term monitoring of the site and adjacent areas.

3. Modeling

More extensive modeling with MODFLOW should be completed. Through the use of column studies, more accurate adsoption, dispersion, and degradation values will be achieved for each metal and BTEX compound being tested for. More soil, sediment, and aquifer material testing will also yield more accurate modeling parameters.

4. Nutrient Testing

Hallett's Pond should be continued to be used as a reference site for Hiniker Pond and Hiniker Pond should be continued to be tested for nutrients due to a lack of long term data available.

References

- Batlle-Aguilar, J., Brouyère, S., Dassargues, A., Morasch, B., Hunkeler, D., Höhener, P., et al. (2009). Benzene dispersion and natural attenuation in an alluvial aquifer with strong interactions with surface water. *Journal of Hydrology, 369*(3), 305-317.
- Baumann, T., Fruhstorfer, P., Klein, T., & Niessner, R. (2006). Colloid and heavy metal transport at landfill sites in direct contact with groundwater. *Water Research, 40*(14), 2776-2786.
- Blue Earth County Minnesota. (1936). Warranty Deed for Lot 2,3,4 in Section 1, Township 108 North, Range 27 West.
- Blue Earth County Minnesota. (1946). Warranty Deed for Lot 2 in Section 1, Township 108 North, Range 27 West.
- Blue Earth County Minnesota. (1975). Warranty Deed for Lot 2 in Section 1, Township 108 North, Range 27 West.
- Burman, J. (2011). (MPCA) Year-A-round site background information and permission to release documents per Minnesota Attorney General's Office. Personal Communication. January 25, 2011.
- Carlson, R., & Simpson, J. (1996). A coordinators guide to volunteer lake monitoring methods. *North American Lake Management Society.*
- Carpenter, S., Caraco, N. F., Correll, D. L., Howarth, R. W., Sharpley, A. N., & Smith,V. H. (1998). Nonpoint pollution of surface waters with phosphorus and nitrogen.*Issues in Ecology, Number 2.*

- Chang Chien, S. W., Chen, C. Y., Chang, J. H., Chen, S. H., Wang, M. C., & Mannepalli, M. R. (2010). Sorption of toluene by humic acids derived from lake sediment and mountain soil at different pH. *Journal of Hazardous Materials*, *177*(1-3), 1068-1076.
- Cunningham, J.A., Rahme, H., Hopkins, G.D., Lebron, C., Reinhard, M. (2001)
 Enhanced in situ bioremediation of BTEX-contaminated groundwater by combined
 injection of nitrate and sulfate. *Environmental Science Technology.* 35, 1663-1670.
- Demir, A., & Arisoy, M. (2007). Biological and chemical removal of Cr (VI) from wastewater: Cost and benefit analysis. *Journal of Hazardous Materials*, 147(1-2), 275-280.
- Dunning, C., Feinstein, D., Hunt, R. J., & Krohelski, J. (2003). Stepwise use of GFLOW and MODFLOW to determine relative importance of shallow and deep receptors. *Ground Water, 41*, 190+.
- Epstein, E., & Chaney, R. L. (1978). Land disposal of toxic substances and water-related problems. *Water Pollution Control Federation, 50*(8), pp. 2037-2042.
- EUGRIS. (2012) Portal for Soil and Water Management in Europe. http://www.eugris.info/FurtherDescription.asp?e=6&Ca=Content_Digests&s=None &Cy=0&Co=6&Gy=114&T=Benzene,%20toluene,%20ethylbenzene,%20and%20x ylene&en=

Fetter, C.W. (2001). <u>Applied Hydrogeology</u>, 4th Edition. Prentice Hall: New York.

Fischenich, M. (2009, February 7). There was more to Hiniker than a pond. *Mankato Free Press.* Mankato, Minnesota.

- Gao, H. (2011). Groundwater modeling for flow systems with complex geological and hydrogeological conditions. *Proceedia Earth and Planetary Science, 3*(0), 23-28.
- Goldoni, M., Caglieri, A., Poli, D., Vettori, M. V., Corradi, M., Apostoli, P., et al. (2006).
 Determination of hexavalent chromium in exhaled breath condensate and environmental air among chrome plating workers. *Analytica Chimica Acta, 562*(2), 229-235.
- Haitjema, H.M. (2012). GFLOW Haitjema Software: Stepwise Modeling. http://www.haitjema.com/stepwise.html
- Helmer, C., & Labroue, L. (1993). Denitrification in gravel-pit lakes. *Hydrobiologia*, *252*(1), 35.
- Hochella Jr., M. F., Moore, J. N., Putnis, C. V., Putnis, A., Kasama, T., & Eberl, D. D. (2005). Direct observation of heavy metal-mineral association from the clark fork river superfund complex: Implications for metal transport and bioavailability. *Geochimica Et Cosmochimica Acta, 69*(7), 1651-1663.

Hoppie, Bryce. (2012). Personal Communication. Parameters for Modeling.

- Järup, L. (2003). Hazards of heavy metal contamination. *British Medical Bulletin, 68*(1), 167-182.
- Kahan, T. F., & Donaldson, D. J. (2010). Benzene photolysis on ice: Implications for the fate of organic contaminants in the winter. *Environmental Science & Technology*, 44(10), 3819-3824.

Kattner, E., Schwarz, D., & Maier, G. (2000). Eutrophication of gravel pit lakes which are situated in close vicinity to the river donau: Water and nutrient transport.

Limnologica - Ecology and Management of Inland Waters, 30(3), 261-270.

- Lee, S., Chang, L., Yang, H., Chen, C., & Liu, M. (1998). Adsorption characteristics of lead onto soils. *Journal of Hazardous Materials*, 63(1), 37-49.
- Linehan, D. (2007, May 13). St. peter aims to develop and protect lake. *Mankato Free Press.* Mankato, Minnesota.
- Malakootian, M., Nouri, J., & Hossaini, H. (2009). Removal of heavy metals from paint industry's wastewater using leca as an available adsorbent *International Journal of Environment Science Technology, 6*(2), 183--190.
- Minnesota Department of Health. (2012). Online County Well Index.

http://www.health.state.mn.us/divs/eh/cwi/index.html

Minnesota DNR. (1999). Lake information-Hallett's pond.

Minnesota DNR. (2007). Lake information-Hiniker pond.

- Minnesota Department of Transportation. (1969). Boring Report US-14 Bridge and US-169, North Mankato, MN.
- Minnesota Pollution Control Agency. (2008a). Bacteria: Sources, types, impact on water quality. *Water Quality/Impaired Waters, 3*(20).
- Minnesota Pollution Control Agency. (2008b). Turbidity: Description, impact on water quality, sources, measures- A general overview. Water Quality/Impaired Waters, 3(21).

Minnesota Pollution Control Agency. (2010a). "Year-A-round" Case Development Form.
- Minnesota Pollution Control Agency. (2010b). Known Subsurface to Surface Drainage, Year-A-Round Site. Maps and Images.
- Minnesota Pollution Control Agency. (2010c). Preliminary Lab Results of Manhole Sudge at "Year-A-Round" Ste. Lab Results.
- Minnesota State University, Mankato Department of Geography. North Mankato [air photo]. 1:20,000. BIP-5-92. Washington, D.C.: U.S. Department of Agriculture Soil Conservation Service, 1938.
- Morgan, P., Lewis, S. T., & Watkinson, R. J. (1993). Biodegradation of benzene, toluene, ethylbenzene and xylenes in gas-condensate-contaminated ground-water. *Environmental Pollution*, 82(2), 181-190.
- Natural Resource Conservation Service. (1983). Complete Soil Survey of Nicollet County, Minnesota.
- Peters, R. W. (1999). Chelant extraction of heavy metals from contaminated soils. Journal of Hazardous Materials, 66(1-2), 151-210.
- Preuhs, D. (1998). An *Interview of john P Hiniker*. Personal Communication February 12, 2011.
- Prommer, H., Barry, D. A., & Davis, G. B. (2002). Modelling of physical and reactive processes during biodegradation of a hydrocarbon plume under transient groundwater flow conditions. *Journal of Contaminant Hydrology*, *59*(1–2), 113-131.
- Reckhow, K. H. (1979). Uncertainty analysis applied to vollenweider's phosphorus loading criterion. *Journal (Water Pollution Control Federation), 51*(8), pp. 2123-2128.

- Sabty-Daily, R., Luk, K., & Froines, J. (2002). The efficiency of alkaline extraction for the recovery of hexavalent chromium from paint samples and the effect of smaple storage on cr(VI) recovery. *The Analyst*, (6), 852-858.
- Shawabkeh, R. & Mahasneh, B. (2004). Encapsulation of Lead Ions in Sand-Cement-Clay Mixture. *The Electronic Journal of Geological Engineering*, 4(41). <u>http://faculty.kfupm.edu.sa/CHE/rshawabk/files/Encapsulation_of_Lead_Ions_in_Sa_nd_Cement_Clay_Mixture.pdf</u>
- Shlumberger Water Services. (2012). Visual MODFLOW Premium Overview. http://www.swstechnology.com

State of Minnesota. (1985). Memorandum Concerning Year-A-Round Cab Company.

- U.S. Department of Agriculture National Agriculture Imagery Program. Mankato West, SE [1 meter digital orthophoto quarter quad] 2009. Available: http://edcsns17.cr.usgs.gov/NewEarthExplorer/. [Accessed on February 22, 2011].
- U.S. Department of Public Health and Human Services. (2001). *Health Consultation, North Mankato Dump. Final Report.*
- U.S. Environmental Protection Agency. (1992). Ground Water Issue: Fundamentals of Ground Water Modeling. Office of Research and Development.
- U.S. Environmental Protection Agency. (2003). Standard quantitative methods for water testing. *Office of Water Reources*,
- U.S. Environmental Protection Agency. (2007). Natural Attenuation of Inorganic Contaminants in Ground Water. Volume 2.

- U. S. Geological Survey. North Mankato [digital air photo]1:20,000. GS-VDIL-1-63.
 1973. Available: http://edcsns17.cr.usgs.gov/NewEarthExplorer/. [Accessed on February 22, 2011].
- U.S. Geological Survey. (2009). U.S. Geological Survey Groundwater Modeling Software: Making Sense of a Complex Natural Resource. Fact Sheet 2009-3105.
- United States. (1980). Hiniker pond : Final supplement, final environmental impact statement, minnesota river, minnesota, mankato-north mankato-le hillier flood control, phase I recreation development plan. St. Paul, Minn.: The Corps.
- Wang, Y. M., Chen, T. C., Yeh, K. J., & Shue, M. F. (2001). Stabilization of an elevated heavy metal contaminated site. *Journal of Hazardous Materials*, 88(1), 63-74.
- Water Resource Center, Minnesota State University. (2002). 200 Years of the Minnesota River. Pamphlet.
- Water Resources Center, Minnesota State University. (2012). Geological Atlas of Nicollet County, Minnesota.

APPENDIX I

1985 SOIL TESTING RESULTS FOR HEAVY METALS AND VOLATILE ORGANIC COMPOUNDS 110 WEST LIND STREET, MANKATO, MN. YEAR-A-ROUND CAB COMPANY

97

YEAR-A-ROUND CORPORATION (MND006457642) Mankato, Minnesota

Condensed Results - Soil Sampling July 25, 1985

Prepared by Bill Thompson MPCA

				SHITBING		-		
Laboratory Sample No.	Sampling Location, Point	Acetone	Toluene	M-Xylene	0-Xylene P-Xylene	NJK*	Ethyl <u>Benzene</u>	Methylene Chloride
126284	Unfenced area - hole 16	1	2.4	11.	20.	3.8	1.0	1
126285	Unfenced area - hole 20	17.	3.3	1.7	1.8	ł	ł	1
126285	Unfenced area - hole 18	1	200.	170.	200,	;	55.	11.
126287	Unfenced area - hole 19	1	120.	120.	130.	1.8	36.	2.7
126288	Black Dirt Pile	1	0.7	1.5	1.1	;	ł	ţ
126289	01d Drum Storage Area	1	1.9	1	1	1	1	1

*MIX = Nethyl [sobuty] Ketone

Method: Soil samples were taken with a bucket auger at depth of 1 - 15 feet. Samples were placed in 40 ml glass vials with teflon lids and immediately placed on ice. The bucker auger was washed with soap and water after each boring, followed by rinsing with defonized water and benzene.

These data are condensed from the Minnesota Department of Health laboratory report sheets. Please refer to these sheets for complete analytical results.

MINNESCIA DUPARTYENT OF NEALTH ENVIRONMENTAL LARGETORY

VOLATTLE HYD-CLANEDAS IN SCLIDS/LIDDIDE

2

AMPLE NUTHER 216254

04TE SAVPLADE 07/25/25 04TE AMALTZEDE 05/07/25 04TE PRIMTEDE 05/15/05

C. L. C. L.		NON-H	ALOGERATE:	14033 0	40.22
	¥.	- Q 2	11313N	TETRA	HADFORDAM
THE PART AND A SUCH	Y		12124	+CTHYL	L ETHTE KET
SEPUt 1004	¥	1.1	102124	NETHY	TALOFOSI T
TAH & COLD & HAL		440	u5/34	TAKLE .	EEALENE
WASTE DAVISION	90		17.10	172-3	14× + 343

10/07

200-5

v v

and the second states.	C N			ŝ	THOTA	D.SDETFLUOROMETHANT		0.2			
MINYL CALCALDE	2.4			•	JK0 TE	Kethake		3			
CHLUNDLINGKS	NG.				DHOID	SWANTSYCRO J. D. D.		10.4			
Sefretens telestel	۲	0.2	N0/00	•	TRICH	LCREFLUDBONTTHANE		*	0.4	Lou L	1
ALLYLINGRIDE	۷	1.1	-0676F	•	4-1-1	LCKLOPDETHYLENE		Y	9.4	1000 0	ň
したがまたのなからしましたが、	¥	0.40	N3/58 1	*	TRANS	-1.2-01010101011470	1.86	¥	0.4	3 u6.11	*0
CIG-1 III CARDACONCAL	×	3.4	7212Y	•	CHLCR.	01018		*	9.4	107 0	× p
- とはまたいので行っている手の、1	v	0.40	1 112/21		01010	1011111111111		*	2.0	130	N.E
コンモンドリットのコアリリアレード、レート		0.41	100/24	•	0 1 8 8 9 0	A TETALACHUCOTOE		*	3.44	1001 1	1.0
いたますにつきの目の目をしてきられたります。	9		"05/ "x.		DECHE	DROPC . TONITALLE		98			
	v	17.D	10/04	•	6-2-1	3%VaCHdc0s07k37		*	4.0	10-1-1	× C
1 -1	Y	0.4	24/45	•	CRAND	-1, 1-01CHL080-1-24	CPENS	*	0.4	180 1	¥.9
1.1. SALETAIN ALOROGIAN LONG	×	0.40	1 UC/64		4-1-5	I CHLOUDPROPAKE		02			
COLUMN COLUMN COLUMN	v	0.2	42/2h	•	1.1.2	-TRICHLORDSTHANE		*	5.4	2 10GF	*19
CINERAL STRUCTURE STORE 1 - PA CREWIN	×	0.40	1 20/6h		1.2-0	2 EA CROETHANE		Y	1.0	101	* 5
AMENDONSCRAPPING AND ATTEND	in the second se			•	DROKO	P.Ck+		*	2.0	101	1
1.1.1.1 TETPACALOPSES-AVa	¥	00	1. 14104		1.2.43	-TSICHLOROPPOPANE		0.7			
SWIMISCHER ADALATION	¥	1.1	1575n	•	1.1.2	- 2- TETSACHLORDETHY	546	ř		120	R.
+2274601434114145	×	1.4	10190		RULUS	26584568E		۷	1.0	120	1
1.1.4. ATRICALVEDTRIBLUCKURAN	•	1.0	UC/52	•	1+3-0	CKLOPOBENCENE		¥	2.0	161	10
144-1414444 ~ GAL 72 AVE	v	0.0	U0.16H	•	1.4.0	ENBINE SOLOTHOD		v	2.0	1410	4
ALCONTRACTORIZED IN CONTRACTOR	1. 212	11.12				"LESS THAN"					
NATIONAL ALLANDA	1				¥.	"#FIK OFTECTED +	EL CH	1225	THANT	UAL.	

100

ï

ŝ.

«Скледота остарти иг нельти Ријсацијацти. Саритијан

. ·

	25	IT IL L	-JOSOFA	4PICHS IN SCLIPIAL)ules			
ANTANA ANANANA TANAN Antana Antana Antana Antana	-90	P •2 •	ĩ		E174 6 174 5	LANCHOL L'ANETTER PAINTER	226	
		4-M04	AL75EX.	4Te9 (530E 4 0 2)				
ALLER BURNERS			14153	T STP 4R PSO FUP A		۲	. .3	10.000
ETAYL STALF IN CONNECTION	•	-	U 57 5 X	METHYL ETHYL KI	ETONE	·	÷	Un U
	۲	0.00	10/30	ALDEGE TARLES	L XETOKE	ų		-12 / CD
TU-U-M. LINCE SOUND HAL			× ≣ V P D	+ ETHYL EE+Z =05		v	0	16755
LUNDAL WASH INIBON	۲	8	n3/5ň	I-2 + SMSTIX-D	TLEVE			10.151
1- X 7- 4 7		7,7	^ i / ?n					
		HALD?	<u>s</u> mtep	(COOE 464)				
tatokofi Thilde	9			- 112H L07C1 5LUO	PCY ET DA NE	P		
VINT CHLOVEN	2			+ THERE AND A THE ASS		1		
541 to 361 4524	ž			P1 (HL0+01-4014)	11 T 4 4 5	0 K		
Achartske (medaiði	٠	-	Uur 54	 TR3CHLEREFLUGS: 	CNETSAL	۲	0	いたいほう
44.YLE.LUP235	v	5	K82120	- 1,1-010H(0PC)	HTL ERE	¥	5	5.67
******************	·		12127	H TELSTICE TO THE P	LOEOB THTLEAS	v	2	15/37
	•		1111	• 6.44.0 205455		۷	с Э	L. 56P
1 * 4 - 1 T C L C L C C L L C C C C C C C C C C C	v	0	1.11	BISAGYC# THAKE		¥	1	15137

1445040001144240 Almy, Exerto 400 Gelerotei assa	\$22			• •	р 1 сн кото си Ясидиске тракие У и духи 1 сн ко Эт сн король чест сма траке	₽38 ₽38		
Acturkt (m.0%191	v	- 	Uursa	•	TROCHLERSFLUGSCNETHUME	۲	0	UE LEV
44.YLERLJ223	¥	5.41	KSU 20	۲	1, 1-01 CH 10 PC 2 THTL ERE	۳	2	5.5
7.1-2164.910.00	·	2	12120	۲	74 LH 5 - 7 . 7 - 2 LA C 4 L 0 C 0 L 4 L 4 L 4 L 4 L 4 L 4 L 4 L 4 L 4 L	۲	2	16734
.t3=1.2-31CHL95CFTrYL6KE	•	-	LIVEN	•	C.ALD 935555	۲	5.3	L. 56P
	u	0.10	a 1 7 2 4		515447×4×1×4×5	۲	-	19197
1,1,1,1-T21Chickers	¥	6	10131	•	CANSCH TIT MENLOWING	÷		46.34
	v	1.1	64/13/		\$1CHLOPC.7757242142L4	ž		
- 「日本の日子」「日本の「日本の」」	v	0 H.	- 27.54	•	オン・ロークス たんたい かいかんたい ビス・ビー	~	2.6	191.94
	v	ř	12121	*	78445-47,	ť	2:5	10,000
1.1	v	÷.	11.14		1.2-D16415-D846Pamp	3		
54141-642445444544454545454545	v		02/20	٦	34497334207432413244	۲	5	Ч, П,
いたい デート しょうしん いたい いたい ひんしょう いい	v	0.50	012/04		1 . 2 - b) # 4 CM 34 T H A H E	۲	6,90	U.1.5H
2-14/240-14/24/24				•	E A C K D F C & I	Y		14.18
1 • 1 • 1 • • • • • • • • • • • • • • •	•	9.16	-97ED		T, Z, J-Tèll HLDRDPRAPLKE	3		
1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	v	3	03798	٠	1.5.2.4-12 744CML 3406784L EA4	۲	9	46V SN
PERMISSION OF THE PERMISSION O	÷		14164	•	CALC POSEDIESS	۲	8.50	E.
1.1.4. TARCALORIAN INVITE 1.405 THANK	÷	1.4.4	116744	•	1,J-45 [H10 PER [42565	¥	-	1217
1.444434444444444444	v	-	1-2764	•	1 . 4-63 (KL236B411 E48	۲	-	v6/6/
		Ł			A ^m usyf	task		

101

MEUNESOTA BARADINEMT DF HEALTH Eavistone:ktat La÷opationt

.

SALACITY OF AT 2405 ROCKED STILLING

.

:

XCH-MM.C.41MATEC (COPE 462)

DATE SAMPLES 07/25/55 Date Amply262 02/77.5 Date Pathteb 03/56/55

HAPLE NUMBERS 126539 2410 ALARK 31 926390

PAC1-28 1444

ACTUAL STACE SEPONDER 1995 CITIL STACE SEPONDER 1995 CALCER MAN DENDER 1405 CALCER MAN DENDER

HALGETHITED (CGDE 4841)

-

The second se	LPAGAETAANA 1941 (a.gree 1941 (a.gree	?2i			 • RCMSOVERT/LUGROMETS • 246 RDFRJ/VAM • 246 RDFRJ/VAM 	1 N F	9.9 Q		
M. CALSELS M. CALSELS <th>2014년 2014년 1월 1월</th> <th></th> <th>-</th> <th>ND/TO</th> <th></th> <th></th> <th>ł۳</th> <th>0.10</th> <th>12/30</th>	2014년 2014년 1월		-	ND/TO			ł۳	0.10	12/30
-3408-5696584244 -1920640001794247 -1920640001794247 -19206400001794247 -19206400001794247 -19206400001794247 -10206400001794247 -102064000001794247 -1020640000000000000000000000000000000000	VE CAN SEIBE	v	2	112454	a 1,1-65(3) to NOLT HAL BAR		v	8.30	105.16%
-1,2240)((),5250)(),15250) -2550(),5240)((),15250) -2550(),5240) -2550(),5240 -2550(),5240) -2550(),5240 -2550(),5410 -2550(),5410 -2550(),5410 -2550(),5410 -2550(),5410 -2550(),5410 -2550(),5410 -2550(),5410 -2550(),5410 -2550(),5410 -2550(),5410 -2550(),5410 -2550(),5410 -2550(),5410 -2550(),5410 -2550(),5410 -2500(),5400 -2500(),5400 -25	- ひんたん かれなどを見たい	v	1	12164		(hyr.tet	v	5	1
-#EFULORYFRAME ************************************	1.2.2+b1;E020005Th7LE0E	•	3	2076×	A COLCIDINA		v	2	10,154
<pre>/i-i-i-i-i-i-i-i-i-i-i-i-i-i-i-i-i-i-i-</pre>	- DECULOROF THANS	v	05.0	06/5			Y		197 yn
УСРБСИЦИЙ (ЧТЕНИНЕ 0.70 UG/SN РЕДЕЙСАТОНТ/НЯТЕ 0.	- 1- 1- 1- 1 C H 2 M 2 M 2 M 2 M 2 M 2 M 2 M 2 M 2 M 2		-	ND.101	· CARACH TETTACHLORIDE		¥	0.10	10/00
		v	5	b 6/5×	DICHLO. LOSCITONITATLE		ġ		
		v	0.0	19100	TANA STATES STATES STATES		v	9.13	
истератсяностичеся с 0.30 00/60 пойтородиналовалондония Ко соловетески с 0.30 00/60 пойтородиналовалия истератороди с 0.50 00/00 подтески сталовинано истератороди с 0.50 00/00 подтески сталовите истератороди с 0.50 00/00 подтески с 0.50 00/00 истератороди с 0.50 00/00 подтески с 0.50 00/00 истератороди с 0.50 00/00 на 12/01 12/00 00/00 ни с 0.50 00/00 на 12/01 12/01 12/00 ни с 0.50 00/00 на 12/01 12/00 ни с 0.50 00/00 ни с 0.50 00/00 ни 12/01 12/00 ни с 0.50 00/00 ни с 0.50 00 ни	-1264C010-1-1-20PEN	v		HS131	 TEASTANTA 2-0104LG#0-1 		¥	0	ŝ
ссобстокуметных с 1.0 мужа к 1.1 конталенциястияме изиналенциястияме с 1.0 мужа к 1.1 конталенциястияме контестики, контали к 3.50 мали в контестики постестики, контали к 3.50 мали в 1.52 года с 1.52 мали состалия конталентикалентика конталентикалентика конта	201 1 1 1 1 2 1 2 1 4 1 1 4 1 4 1 4 1 4 1		0.30	U4/6M	E SA DI CHLÀ SÙ PAÙS AN E		Ŧ		
аканалайталанан арайтын каалуу малым тараларартын каалаулан тараларартын каалаулан кааларандан каалар калалалалалалалалалалалалалалалалалалал		Ļ	-	124 K	+ 1.1.J-12JCHLERCETSAN	ÿ	r	2	5.75
с		¥	1	14144	1.8-5124CM CET KANE		¥		(e/6)
าเราาร์ระเอิทแน่หน่านหน้า จ. ปะหวิทธิระ 1.501 - 1.521 - 1625 ค.ยุครรรรณาสม 	ALLETATLAINTLETTEN						¥	-	10.53
аладына тапада қаранада қараларына тападар жаларына тападаратан тапа тараларарталары қаралары қараларына қарары қарары қарарана қарарына қараларына қарарына қарарына қарарына қара таралары таралары қарарық қаралары қарары қарары қарарына қарарына қарарына қарарына қарарына қарарына қарарына		۲	5	1446	1 x 2 × 3 - 1 k 2 C v1 C 4 7 F 8 U 4	11	a		
「- ビード・コンジュード・コンジュード・コンジュード・コンジョン・コンジョン) 		¥	2	2000	M. 1. 1.2. P-TETHATHLAGE	∃K₂Ţ≁⊥∃	v	A M	200
マイト・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	later.	•		1.000	+ CULÉRDULEZYE		•	0.70	bê, S
		v			• 1,3-b1 (altart act act at the fit		۲		3/5.1
	·v Limentri Jata Leve	×		1112	- 1.4.DICHIO-008501262		¥	-	10.0

">utilitity structs?" Our "* :

•

.

.

"LESS THAN"

¥

.

1 1 1	ADLY	711.5	6340343	t t	th schlucklings				
AMPL. NUMBERS TOPEST Jeld elakn te teept	C) e a	-26	S.K.w.		DATE DATE DATE	SAMPL ANALY2 FAINT	101.01	125/8	We what whe
		h-N0%	4LC3E944	1:0	(CODE 462)				
ACTON DECENER	ž		1010H		TETRAHYDFORURAN	•	2.0	9.0	5
That Lines W	÷		1215K		PETNYL ETMML KETOKE	*	1.0	181	19
LENIEVE SEP 04 1965	×	0.70	42123		SNOLSH TALGOST TAHIEM		+	UB1	89
TOLALAS MPCA, SOUD & HAL		20.	10100	٠	ETHYL BENZENE Allowedd y Derwerene		- 94	51.	A 2
ALANE WASTE DIVISION	,	20.	U3/6M				2		č.
					20				
		HALCE	GRATES	1003	E 4543				
CHLGADARTHANS	10.2			•	DICALOPDIIFLUOROMETHANE	BX			
VINYL GHLOAIDE	10			٠	P RDMOM ET 5 A NE	NG			
CHLOND#THANE .	44				D TCH LORD FL UCROMETHANE	22	1		
Melastick. CHLOANDA		2.1	NG/2P	•	TRECHLOROF LUGRONE THANK	Ÿ	6.0	0 017	14
ALLYLCHLJRIDE	۷	0.10	N8/50	k	1.1-DICHLORDETMYLENE	~		5 UC/	х, е
1,1-3 10 HL 3 4 0 1 TH 3 A B	v		16/64	*	THANS-1.5-D1 CHLOROBTHYLSNE	v		0 101	ic.
CIJ-1-2-SICHTO-SCIPATEME	v	2.0	U6/6%	•	CHLOROPCIA	•		0 n61	à,
ログロズにいていていていたがあります。	v	0.12	UG/98		DIFFICACINETIARAE	•	-	107	5
1 1 1 2 - LECENTONS CHUCKLARE		-	NS/SP	•	CARDON TETRACHLORIDE	•	-	0 10	ŝ
	* *		100107	,	PLEHEURUPE FION INTER	ž	E	101 0	1
	-		NO ADM	•	TORAS-1. 1-1-01 FML 080-1-98041W			100	
1. 1. 2 TRACKLORDETATIONE	۷	0.30	10/64		1.3-DI CHLOPOPROPANE	No.			
CHLORDS PERCHONONELY ARE	۷		10.76%	*	1.1.2-THICHLOPOSTHAME	•	-	150 0	E.
514-1.3-512ALONG-1-2 ROPENE	¥	0.10	06164		1.2-DIGROMDETHAME	v		0 064	5
2-CMLCASLTHYLUINYL STREP	N ²			*	4 V) JONONA	•	2	uŝ/	5
1.1.1.1.2.5-7433AACHL0.0075PAAN5	v	0:10	K5/20		1.2.3-TR1CHLORDPROPANE	0N			
1.1.2.4TSTRACHLOROTIANAE	v	17 *	MG / SH	٠	1.1.2.2 - TETRACHLOROETHYLENE	Ý	3.0	121	ţ,
日本を見たいたいたちになっていたのである	v	D.+ F	10108		CHLOROSTAZENE	Y	0.7	0 407	č
1.1T.SCNLDAGTAIFLDCODETAND	v	0.73	10.164	•	1.J-BITENLOPDBENZEWE	v	-	101	ŝ,
1、ビークはならしのためがからないない	•		NS/10	•	1 - 4 - DI CHLOPORENZENE	*	4.4	100	ż
ALARY ATTITUTE ANALYS	15 01				C "L125 THAN"				
INTINTIC Altholyd. *					PC "FEAK DETECTED SELOW	1635	THAN	VAL.	144
		-							

MINUESCIA LEPATNENT DE MERLIM Envloqueintal La caatoe

24

ţ×

	APLI MURCHI TRAFT	DEE ARE ARE	455014 140%ee 140%ee 1+24 3 1404+4	DEPART NTALLA MYDDOCA AYDDOCA ALUGENA ALUGENA	100 a a a a a a a a a a a a a a a a a a	DE MEALTH TORY I IN SCLIDIVLIDUTES (CODE 462)	9472 SAMPLO 9472 ANALCO 9473 PALVIC		8.974 8.974 8.974	
	SEPORT SEPORT SEPORT	~~~ ~	2000	05/5/ 05/5/ 05/5/ 05/5/ 05/5/ 05/5/	* 000	1 40-63 1 4			101100 101100 101100	
	CHLOROMETHANE VINYL CALORIDE Galorolithang Ketharlore Chloride Altalorides	828 v v	-	NOVER	** **	110 HLORO CI RLUORONETHAM 2000/00/21+ANE 110 HLORO FLUOROMETHAME RLCHLOROFLUOROMETHAME 717010/00/301714/2000	55.5 × ×	500	167.54 167.54	
	1.1-000810900118841 618-19-1-00041080011841 1.4-0-104-0900118880 1.1-1-1-101041090019480 1.1-1-1-101041080019480 1.1-1-0-101040019480	~ ~ ~ ~ ~ ~	212235	10/50 10/50 10/50 10/50		RANS-1,2-DICHLDROSTWYL НLDSDFORM LIBRCNONETUANE LIBRCNONETUANE LEBLORCHLDROPATELE LEHLORCETONITEILE J2-DITHLDDROPANE			US/5H US/5H US/5H US/6H	
	1.1-01090080-1-P2008285 1.1.1.01090080-1-P200828 1.1.1.1.1.0000808184 090051907080189 010402190708184 010405147108081-1-720884 010405147105081-1-72088	****2	0000	107.00 107.00 107.00	• • •	RANS-1, 3-DICHLORD-1-PR 25-DICHLOROPROPANE 1, 3-THICHLOROPROPANE 21, 3-THICHLOROPROPANE 22-DIRECMOLTHANE REDMCFCAN	N N N N N N N N N N N N N N N N N N N	0000	40730 40730 40730	
	1,1,1,1,4,4,1,5,1,5,0,0,1,4,5,5,1,4,5,1,4,1,4,1,4,1,4,1,4,1,4,1	~~~~		02700 0676X 0676X 0676X		<pre>>3-TRICHLOROPAGEANE >1>2>3-TETEACHLOROETH >1>20201>TETEACHLOROETH >2-DUTCHLOROPENENE >2-DUTCHLOROEENEENE >4-DUTCHLOROEENEENE</pre>	v v v se reve		0.67.30 0.67.30 0.67.30 9.67.30	
25	No. "	8 54:	5			•	LESS THAN"			

		NTN ENV	LESOTA TPDNME	9-9481 NTAL LA	100 E	I DF H≣ALTH NTORY					
		TOA	ATILE	HYDROCA	0.00	seripsvrientes					
in	FLE NUMBER: 126299 LD BLANS #: 126295	10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	T S S S	SHW BHW ALOSEN	160	CODE 462	DATE DATE	EGULINING SAMPLED:	0370	5/25 8/35 \$/85	
3,4,1,4,4,6	THYL LTHRE SEPOR 1965 ENCLAR BLUENC WECK SOMD & HAL OLUENC WECK SOMD & HAL UNSTE DWISON	*** **	000000	00,00 00,000 00,000000		TETRANYDCOPURAN METNYL EJNYL KETONE YETHYL ISOSUTYL KETONE ETNYL EENZENE O-XYLENE P-XYLENE P-XYLENE			000000	10/01 10/02 80/02 80/02 80/02	
			HALOT	4%#TED	620	(5 40¢)					
	BL 2012 - 511 - 812 1 5 281 - 7 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	23				DICHLONDET FLUOROMETHANS SECROMETHANS	16	0 0			
	ALVEST TANK	2			9	DICHLOROFLUGROMETHAVE		2			
20	LETERIC CHLORIDE 	4.1		1010A	• •	TRICHLORCFLUDEDMETHANE 		• •	22.	101.65	
	.1-J.C.A.J. JETHING	e v		19/90	• •	TEREST 1, 2- DICFLOROTTY	王和王		10	NS/Sh	
243	エルーコンスとからなからひょうかんしょうと	v	0.7.D	13164	*	CHLORDFORM		v	- 40	×0700	
	· 如何了这种学生的发展的时候,又是这一个人,我们不是不是一个人。 - 如此一个人的人的学生的人的人,不是是有些	v v	0.00	49755	•	PERSONCRETSING CARGON TETRACK CREDE		••		10,00	
	A C M C D I C P C D C D C D C D C D C D C D C D C D	Y	0.10	12/5a		OICHLO-COCCTONITRILE		an		0.444	
	BADEDER-1-DEDTROTA-5-	v	03.0	15/64	•	1.2-DI CHLORDPROPANE		•	02.	167.6%	
				10/00	•	1 × 1 × 5 × 1 × 1 × 5 × 5 × 5 × 5 × 5 ×	ant she	- an		00,000	
	一部の大田田を見たりたいであった。	Y	0	26/64	•	1,1,2-78 JC 4L.04027 KANE			1.20	16168	
1	10-112-510840sc-1+6406EME	Ý	0.23	n5/5m		1.2-01 PRCMDETRANE		•		06/68	
083	-CHLOROCTHYLVENYL STMUR	20			٠	PRONCECRS		•	P.	10158	
	● 副学会 医内内氏 医白色	• •	0.0	10100	•	1.2.5.5-18.10%0000000000000000000000000000000000	VA FME	ž	.0	10.75%	
1.09	ACTIC LORDERADI	v	11.	N5/6×	•	CHLOROSENIC			10	N0100	
1	* 1 - 1 R L C M L D X D Y R L K L L D X D X D X H X X X X X X X X X X X X X	v	0.50	-0676H	•	3/3-51 CHLOROBEKZERE		~		UG12N	
1	.2-PICHLURGSENZENA	v	-	ue/en	٠	1.4-51 CHLOROBENZENE		-		15134	
5.9.5	NA "JUALITATIV: SFALY PALOALIY SCLUTSA	511				v	1135	- 2447			

105

		Year-A-Round Corp F	ile Copy 1
	SPECTAL SAMPLE D	WTA SHEPT	
		Page	_1_ of _2_
Collected byB	11 Thomson	MDH Coordinator Bill	Servicen
Date Collected		Expected Compl. Date	8/8/85
leport to	Gary Eddy	Date Rec'd By Lab	125
Program Element /	HPCA 26 Chain of Custody Record No 064	Lab. Sample 4 <u> 126284-</u> 933	894444
	**********	*******	
SPECIAL SAMPLE DE	SCRIPTION:	_X_0	ain of Custody
Nater	SedimentSludge	FishSoi (spe	1Other cify)
SAMPLE FIEL NUMBER NUMB	D E3 SAMPLING POINT OR SOURCE	TYPE OF ROTTLES **	TOTAL #
a. 126284 A.B.	C. I. Soil Dump Site, Hole 16	visls	
L. 126285 A.B.	C. L. Soil Dump Site, Hole 20.	vials	
1, 3 c. 126286 A.B.	- C. J. Soil Evep Site, Hole 18 .	viala,	3
d. 126287 A.B.	L- C. Soil Dump Site, Hole 19	viala	3
e. 126288 B.C	. Black Dirt Pile (Backgrou	ed) visla	
1 1. 126209 A.B.	2- Old Drum Storage Area - C. Inside Fence	viels	L. COMPLETED
SPECIAL SAMPLE ANALYSES REQUESTS	D: • Halogenated and Non-H	alogenated Volatile Scan	AUG 2 8 1985 ENVIRONMENTAL L
OTHER ANA SAMPLE AN SPECIAL INSTRUCTI	LISES REQUESTED ALSO AND WILL E BLYSES. LONG AND COMMENTS:	E REPORTED SEPARATELY FRO	N SPECIAL
*** Sep she rec thi	ples previously numbered 125284 ets, they put <u>each vial</u> on a se miving desk personnal numbered is data sheet. See attached for	→302. When PCA filled out parate line, and that's h them. They have been con r information as originall	t the data ow our solidated on y given AG
Cri Cri	ise samples were taken in cooper minal Apprehension for possible sults in standard turn-around ti	ration with the Minnesota a criminal prosecution. F ime. Many thanks.	Bureau of lease report
RESULTS:	***********************************	EN INT	PATERNA
	See attached printouts for	completed data.	SEPDA 2095
	tion manufand for Social Scent	Min Analyzia and a	CA, SOUD & HAI

ate Coller	7-	35-85	coordinator	
lenort to	Garv	Eddy - MPCA	ected Lompi. Date	la los
Program Fla	must d	mpch 24	e ned o by Lab	10/00
riogram ere	Hence #	Col C 06433	. Sample # 1 Po and	
SPECIAL SAM	PLE DESCR	IPTION:	yes m	50 6433
Va	ter _	SedimentSludge	_FishSC	1 <u>2 0</u> 0
		(Note: Please List Town)	(spe	cify)
NUMBER	I FIELD	SAMPLING POINT OR SOURCE	TYPE OF BOTTLES **	CF EACH
126284	I- 1A	Soil Dump Site Hole 16	Vials	1
1>6284	5-18	Soil Dump Sik. Hole 16		1
176284	1-1C	Sail Dump Site Hole. 16		1
126285	T-JA	Soil Dump Site Hole 20	U	1
126285	1-2B	Soil Dump Site Hole 20	14	1
176,285	T-ac	Soil Dump Ste Hole 20		1
NALYSES RE	PLE QUESTED: ER ANALYS PLE ANALY TRUCTIONS RAMPICS	· Helgenited and non-he es requested also AND WILL BE REI SES. AND COMMENTS: were taken in cooperate prehension for Possible	polited separately fro polited separately fro on with the m criminal prosecu	Ogenic S N SPECIAL Manesota Manesota
These so of crime report 1	esults	in stunderd turn-enund		
oth SAM SPECIAL INS These so of Grime report i ESULTS:	esults	in stunderd turn-enond		

**please list bottles received for Special Sample Analysis only .

Collected by Rul	Wiltfing Klinge, Bill Thompson Holl	Coordinator	2 of
Date Collected	-25-85 Esp	ected Compl. Date	
Report to <u>Gary</u>	Eddy - MPCA Dat	e Rec'd By Lab/	6/85
Program Element #	MPCA 26 Lab	. Sample 1 17620	6 - 289
	CAC 06433	Al 18	
COCTAL CANDIE DEGA	harmon d	Ves a	50 6933
SCIENTINE SWITTER DEADER	TELETON2		ain of Custody
Water	Settment Studee	Flah SI	O/(- Debu
Water	SedimentSludge (Note: Please List Town):	FishS	O/COther noify)
Water SANPLE FIELD NUMBER NUMBER	SedimentSludge (Note: Please List Town) [] SAMPLING FOINT OR SOURCE	FishSicspecture	O/L_Other offy) TOTAL # OF EACH
Kater		Fish S (spe TYPE OF ROTTLES ** VIALS	O/COther cify) TOTAL # DF EACH
Hater SAMPLE FIELD NUMBER MIMBER 4262867-38		Fish Si (spe	O/COther ecify) TOTAL # DF EACH
Hater SANPLE FIELD RUNBER MMEER 4262867-38 1262867-38 1262867-38	Sediment	Fish Si (spe TYPE OF BOTTLES ** VIALS II	O/COther ecify)
Hater Hater HINBER HINBER HALE HATER H	Sediment	Fish S (spe TYPE OF ROTTLES ** VIALS II	O/COther cify)
Hater SANPLE FIELD RUNDER MMMER 4262867-38 1262867-38 1262867-38 1262867-38 1262871-48	Sediment	Fish Si (spe VIALS II II	O/COther ecify) TOTAL # DF EACH / / /

"_____OTHER ANALYSES REQUESTED ALSO AND WILL BE REPORTED SEPARATELY FROM SPECIAL SAMPLE ANALYSES. SPECIAL INSTRUCTIONS AND COMMENTS: These samples were taken in cooperation with the Minn early Burry of Criminal Apprehension for possesible criminal Prescription, Please report-results in Standard turn-analy time. Many thanks.

seplease list bottles received for Special Sample Analysis only .

ANALYSES REQUESTED: . Habseneted and non-haloseneted Volatile Organic Scan

Mike Will Paul Ki	Hang Bill	Thomps	on whe	Page	<u>3</u> of
ute Collected 7-2	35-85		Evo	ected Compl. Date	
leport to Gary 1	Eddy -1	mpc A	Dat	a Bacid Bu lab 7/	10/05
rogram Element / /	nRCA 20	2	Lab	Samla # 121 291	- 009
	CdC	06	133	· outpie + 12 - 199 -	
PECIAL SAMPLE DESCRIPT	TTON:			Ves X a	506433
Water	Settiment	Slude		Fin SO	IL and
	(Note: Please	a list Town	,e	(spe	cify)
SAMPLE FIELD I	RAME! THE DOL				TOTAL #
1262 58 I-Backgros	ind Black	Dirt Pi	le.	VIALS	CO EACH
126285 B-B-0490	d u		u.	X4	1
176228 T- Bickon	oni in	++	4	a	1
126239 I-aA	JASINE	STORAGE	AREA		1
126289 I-2B	н	v	11	u	1
126289 I -ac	14	64	**	51	1
PECIAL SAMPLE NALYSES REQUESTED: • OTHER ANALYSES SAMPLE ANALYSES	Halayere f	Jand r SO AND WIL	L BE RE	ologenetel Volqtele PORTED SEPARATELY FRO	Oganie S n special
use samples wore Cominal Apprebion 25045 in standard 2501175:	taken in for pos fum-eno	coopera sible Cr ind Ann	tion w uning t e. N	with the Minness Prescention, Pl Dany thanks,	ta Bureau lease repor
	100				_
	1				THE PARTY OF THE PARTY OF

seplease list bottles received for Special Sample Analysis only .

PQ-00343-01 (12/61)

APPENDIX II

MINNESOTA POLLUTION CONTROL AGENCY CASE DEVELOPMENT FORM DECEMBER 23, 2010

CASE DEVELOPMENT FORM

1. GENERAL CASE INFORMATION:

Case Lead: Joshua Burman	Forum Date/Time: 12/23/10:0930 Forum Location: Desktop Video		
CDF Revision Date: 12/23/10	1		
Scheduled Attendees: Josh Bev She	uua Burman, John Elling, Steve LaRoque, Tanya Maurice, [.] Conerton, Larry Pry, Jon Gegen, Kit Grayson, Paul Kimman, rry Bock, Hannah Pierce		
Regulated Party Name:	 A-1. Charles Merton Anderson Trust (Anderson Trust) A-2. Year-A-Round Cab Co., doing business as Year-A-Round (Year-A-Round) B-1. Hertaus Properties, LLC (Hertaus Properties) B-2. Year-A-Round Cab Co., doing business as Jari USA (Jari) 		
Regulated Party Address:	*see Contacts		
Status of Regulated Party:	 Trust Domestic Corporation Domestic Limited Liability Company Domestic Corporation 		
Regulated Party Contact:	 A-1.c/o Mr. David Lamm Lamm, Nelson, & Cich Law Office 151 Saint Andrews Court, Suite 1310 Mankato, MN 56001-8821 507-345-4607 dlamm@lammnelsoncich.com A-2. See B-2. B-1. c/o Mr. Steven Fink Farrish Johnson Law Office 1907 Excel Dr Mankato, MN 56001-6281 507-625-2525 sfink@farrishlaw.com B-2. Mr. Alan Hertaus (Hertaus) 110 W. Lind St Mankato, MN 56001-0412 507- 625-9381 <u>AHertaus@jariusa.com</u> 		

 Site at Which Noncompliance Occurred:
 110 W. Lind St., Mankato, MN (Factory)

 112 W. Lind St., Mankato, MN (Vacant Lot)

 Date of Violations Confirmation and

 Method of Discovery

 Delta Program Preferred ID#:

 MND006457642

 *Case-involved Agencies

(in addition to MPCA):

- c/o Rick Baird D. Blue Earth County (County)
- E. Minnesota Department of Transportation (Mn/DOT)

c/o Tim Grant; Peter Otterness

2. LEAD PROGRAM/MEDIA IN WHICH THE VIOLATIONS OCCURRED:

Hazardous Wastes, Industrial Division

3. FACTUAL SUMMARY:

Historic Background:

Year-A-Round was founded in 1966 by Charles Merton Anderson and manufactured welded and painted metal products, including farm tractor cabs and implement accessories, mailboxes, and finally corn stoves. The business reached a peak at over 300 employees at the Factory, and has been in a long gradual decline, with only approximately 5-10 employees at the Factory at the time of sale. The majority of these employees were not retained at the time of sale, and the staff and management are therefore essentially new.

Year-A-Round has a long history of hazardous waste mismanagement cited by the MPCA, including confirmed burning, alleged dumping, and failure to evaluate wastes disposed on-site and off-site. Enforcement has included the full range of administrative actions (LOW, NOV, APO, and Stipulation Agreement) and a dismissed criminal case.

Current Case Background:

The Anderson Trust entered into a contract-for-deed with Hertaus Properties for the Factory on 05/20/10. The contract did not include the Vacant Lot, though the two areas were legally one parcel. Mr. Hertaus stated that he attempted to purchase the entire parcel, but the Anderson Trust refused. Subsequently, the parcel was platted and subdivided, under joint application from Mr. Hertaus and the Anderson Trust.

Simultaneously, Mr. Hertaus purchased the Year-A-Round business and operations and now operates it under the assumed name of Jari, USA. Mr. Hertaus has stated that he was and is in no way connected to Mr. Anderson or the Anderson Trust except through this sale.

In clearing the site for use, Mr. Hertaus found Tank YY, the cover of which was buried under soil. [Map101207YearARound.pdf] When opened, Tank YY reportedly smelled of sewage and a strong solvent odor. Dye and camera testing indicated that the majority of plumbing fixtures, both toilet and industrial, in the facility drained to Tank YY, and subsequently to the City sanitary sewer. The soil surrounding Tank YY appeared stained and tested positive for Gasoline-Range Organics (GRO).

Subsequent excavation by Mr. Hertaus has reportedly found additional collection tanks sealed under the Factory at multiple locations. An abandoned water supply well is located on the south side of the Factory.

Mr. Hertaus has requested guidance from all of the involved agencies as to what activities he may perform at the site and what cleanup he must, or is allowed to, perform. Given the historic lack of coordination between the City, County, and MPCA at the site previously, the City and County have requested that their responses be coordinated with the MPCA's.

The City's primary concerns are: 1) the integrity of the wastewater collection system at the Factory and the accumulated contaminants in and potentially be released from that system; 2) the potential presence of contaminants in and under the fill soil on the Vacant Lot.

The County's primary concerns are: 3) sealing of the abandoned water supply well at the Factory; 4) contamination of the surface water and Mn/DOT ditch drainage.

Mn/DOT's primary concerns are: 5) potential presence of contaminants in the US14 ditch.

After the initial inspection on October 4, 2010, under the belief that Mr. Hertaus had in fact outright purchased the Factory property, he was directed to the Voluntary Investigation & Cleanup Program (VIC). They directed him to hire a qualified environmental consultant for the site. The VIC questioning also revealed that Mr. Hertaus was not the actual landowner at the site, and VIC referred him back to Hazardous Waste Compliance & Enforcement staff.

The Factory is currently nearly totally shut down, awaiting direction from the MPCA as to cleanup and allowed activities. Mr. Hertaus has inquired whether Jari may resume manufacturing operations or, alternatively, may sell the Factory property.

4. DOCUMENTATION OF VIOLATIONS:

Documentation of each issue is referenced in the right-hand column of this CDF below.

5. CORRESPONDENCE RELEVANT TO THE VIOLATIONS:

See Documentation.

6. VIOLATIONS:

WATER QUALITY/SEWERING ISSUES

6.1. SURFACE FLOW

At least two interior floor drains of the Factory discharge to an exterior tile line which drains to the eastbound US14 Mn/DOT ditch, which drains to Oxbow Pond. These floor drains are located in the former Maintenance area. The discharge of all other floor drains is unknown. Oxbow Pond drains into Hiniker Pond, which is an undeveloped recreational swimming site.

These floor drains do not appear to have been included in any previous enforcement action to Year-A-Round.

Currently, Hertaus Properties controls the Factory and associated surface flow.

12/07/10 Map of known floor drains discharge 10/12/10 Floor drain tile photographs

[Map101207YearARound.pdf] [Pics101012YearARound.pdf]

6.2. SUBSURFACE FLOW

As of the date of this CDF, it appears that the majority of the drains in the Factory, including the paint booth water wall tank (Tank ZZ) and all known toilets, drain to Tank YY outside the Factory, from there to Tank ZZ under the Factory floor, and subsequently through unlocated piping to a connection with the City sanitary sewer near the east end of the Factory site.

It appears that, either through miscommunication or deliberate misdirection, Year-A-Round previously simultaneously told the MPCA that wastewater from the Factory was discharged to the City sanitary sewer and told the City that no wastewater was discharged from the site except in once-a-decade batch dumps, which the City then monitored.

The status and use of Tank YY (and the rest of the wastewater collection system), and corrective actions to resolve them, were addressed in the 1985 NOV and 1986 draft STIP, however no information was found in the file to indicate what, if any, action was actually taken by Year-A-Round. None of the subsequent inspections or enforcement actions addressed this issue except to note that wastewater from the site was sewered and noted as 'Compliant'. Tank YY, and the entire wastewater collection system, unarguably remained in continuous use.

Prior testing of the sewered discharge of the Factory during batch dumps have now been shown to be ineffective, as all such testing was performed downstream of discharge into the City sewer of the apartment buildings south of the Factory.

Tank YY currently holds approximately 550 gallons of liquid waste. Testing of the sludge in Tank YY shows high toluene (638ppm), xylene (9036ppm), and ethyl benzene (1901ppm). These concentrations are not sufficient to render the sludge a hazardous waste in and of itself.

Page 4 of 7

Additional waste currently entering Tank YY from the Factory flows through the tank and discharges to the City sewer.

Additional floor and equipment drains in the northwest portion of the Factory drain to unknown locations. The trend lines of pipes leaving these floor drains is to the north and northwest.

Currently, Hertaus Properties controls the Factory and associated subsurface flow, however the Anderson Trust has asserted that Hertaus Properties' control is limited to that granted in the contract-for-deed, and does not include demolition of structures or portions of structures.

12/07/10	Map of estimated sewered flow
10/12/10	Tank YY is sewered (+bathrooms)
10/04/10	Tank YY sludge test
10/04/10	Tank YY photographs
03/05/97	Complaint - paint system to soil
01/10/96	Tank YY not sewered claim
12/09/93	Complaint - paint system to drain
10/30/87	Tank YY sewered claim
12/23/86	MPCA inquiry of Tank YY status
06/03/86	Tank YY sewered claim
04/03/86	Tank YY sewered claim
03/12/86	Tank YY not sewered claim
11/06/85	Tank YY not sewered claim
09/30/85	Tank YY assumed description
09/24/85	Tank YY not sewered claim

[Map101207YearARound.pdf] [Msg101012YearARound_DrainPlumbing[RB].pdf] [Doc101004YearARound_SludgeSamplingResults.pdf] [Pics101004YearARound_pdf] [Insp970305YearARound_TankYYIsSewered.pdf] [Cmp931209YearARound_WashBoothNotSewered.pdf] [Cm1931209YearARound_StatementOfDischarge.pdf] [CAL871030YearARound_StatementOfDischarge.pdf] [CAL861223YearARound_TankYYIsSewered.pdf] [Resp860603YearARound_TankYYIsSewered.pdf] [CAL860312YearARound_TelephoneInterview.pdf] [CAL860312YearARound_StatementOfDischarge.pdf] [Doc851106YearARound_StatementOfNobischarge.pdf] [Doc850924YearARound_TankYY.pdf] [Doc850924YearARound_StatementOfNoDischarge.pdf]

LAND CONTAMINATION ISSUES

6.3. VACANT LOT

Very large amounts of fill have been added to the vacant lot since 1985, without apparent and justifiable reason. Simultaneously, numerous allegations of dumping of contaminated soil removed from the Factory site and contents, both liquid and solid, removed from waste drums at the Factory have been made to the City, County, and MPCA. Soil testing in 1985 of a portion of the then-current surface of the Vacant Lot (now estimated to be buried under at least 5 feet, and likely more, of additional fill) revealed various levels of contamination. An apparent decision for unknown reasons was made internally at the MPCA in 1988 to drop corrective actions related to the potential soil contamination.

Almost all of the fill on the Vacant Lot has been performed either without City or County permits or in violation of City or County stop-work orders. Substantial amounts of fill received from verifiable 'clean' sources, including the North Mankato Library Addition (2009) and Mankato Menards Addition (2009), are believed to cover the majority of the site.

Review of staff observations and submitted complaints indicates that if any wastes were dumped or buried on the Vacant Lot, they were not whole drums or other containers, but instead the liquid or solid contents of the drums.

Currently, the Anderson Trust controls the Vacant Lot.

11/08/10	Vacant Lot platted	[Doc101108YearARound_VacantLotPlatting2[CoM].pdf]
10/19/10	Vacant Lot raised 4.5ft since 1996	[Msg101019YearARound_VacantLotElevations[RB].pdf]
07/10/09	Vacant lot additional fill after order	[Msg101019YearARound_DNR-CDOs[RB].pdf]
06/25/09	Vacant Lot fill Stop Work Order	no copy available

09/24/97	Complaint - drum contents dumped	[Insp970924Year ARound_VacantLotDumping.pdf]
12/05/88	Soil sampling requirement dropped	[Doc881205Year ARound_StatusMtg.pdf]
10/09/86	Drum burial complaint	[Cmp861009Year ARound_Drum BurialUnderBuilding.pdf]
07/22/86	Additional MPCA response to fill	[CAL860722Year ARound_FillRequestResponse.pdf]
07/16/86	Additional Fill request	[Resp860716Year ARound_FillRequest.pdf]
06/06/86	MPCA response to fill request	[CAL8606606Year ARound_MPCAResponseToFillRequest.pdf]
11/06/85	Soil contamination map	[Doc851106Year ARound_StatusMtg.pdf]
09/24/85	Soil testing results	[CAL80924Year ARound_SoilTestingResults.pdf]
07/31/85	Soil dumping interview	[Insp850731Year ARound_SoilTestingResults.pdf]
07/31/85	Soil dumping interview	[Insp850731Year/ARound_SoilDumpinghterview.pdf]
07/25/85	Soil contamination sampling & testing	[Insp850725Year/ARound_SoilSampling&TestResults.pdf]
07/10/85	Contaminated soil dumping observation	[Insp850710Year/ARound_VacantLotSurveillance.pdf]

7. CORRECTIVE ACTIONS:

Refer to Superfund Site Assessment and Voluntary Investigation & Cleanup (VIC) Programs

8. PROGRAM/MEDIA SPECIFIC QUESTIONS/INFORMATION:

8.1. Site EPA ID# MND006457642

8.2. Current Generator/TSD/Transporter Status? Non-generator

8.3. Does this case meet the federal definition of a Significant Non-Complier? No

9. INSPECTION HISTORY:

October 12, 2010 October 4, 2010 Numerous inspections preceding each prior enforcement action.

10. ENFORCEMENT HISTORY:

04/29/03	LOW	closed 09/05/03	[LOW030609YearARound.pdf]
05/30/00	NOV	closed 07/25/00	no copy found
02/24/96	STIP	closed 03/25/97	[Stip960220Year ARound.pdf]
01/19/94	NOV	closed 03/25/97	no copy found
02/23/93	APO	closed 03/25/97	[APO930223YearARound.pdf]
04/08/92	NOV	closed 03/25/97	[NOV920408Year ARound.pdf]
12/23/88	LOW	closed 02/16/89	[LOW881223YearARound.pdf]
07/19/88	NOV	closed 02/16/89	[NOV880719Year ARound.pdf]
02/06/86	STIP	withdrawn	[Stip860821Year ARound_Draft2.pdf]
10/04/85	Criminal charge	dismissed 02/12/86	[Doc851004YearARound_CriminalComplaint.pdf]
05/28/85	NOV	closed 02/16/89	[Doc860212YearARound_CriminalDismissal.pdf] [NOV850528YearARound.pdf]

11. PERMIT HISTORY:

None.

Page 6 of 7

APPENDIX III

1986 COMPLAINT AGAINST YEAR-A-ROUND CAB COMPANY FOR ALLEGEDLY BURYING DRUMS ON-SITE

TELEPHORE CALL . . To/Fron Bill Thompson / Larry Briteman Tel No Company - Nicellet, Bown County Sonition . City Menkerto Date Oct. 9, 1986 (3:45 m) Hee'd By Subject Ver- A- Round Corporation, Market Larry said he had bolked to a citizen who and that Minton Anderson had buried drims in one of his est- buildings so es to make the build undefected. The prision was not specific as to which out - building was used or when the build took place. I asked have about the presen and if it was the same concound " citizen that we had dealt with earlier in the case - Long said any this is a different person . Lany and I discussed to came a bit and I thanked him for the c.Il. He advised me to use if as I can. * x MN-COMP-A mapsing 100

APPENDIX IV

1986 LETTER FROM MPCA TO YEAR-A-ROUND CAB COMPANY INDICATING 20-30 DRUMS OF HAZARDOUS WASTE ON SITE

December 23, 1986

. . .

Mr. Merton Anderson Year-A-Round Corporation Highway 169 North Mankato, Minnesota 56001

Dear Mr. Anderson:

RE: General Update

I am taking this opportunity to update you on various items, most of which were discussed in the October 27, 1986 negoitations meeting held at the Minnesota Pollution Control Agency's (NPCA) office.

1. Soil/Ground Water Investigation - Final Report

During the October meeting, Bill Welbes of Twin City Testing (TCT) provided a preliminary report on the soil and ground water investigations that took place last fall at Year-A-Round Corporation (YARC). At that time we asked for a final report so that all the information available could be reviewed and commented on. Mr. Welbes talked to me on November 20, 1986 and indicated that he would complete a final report and provide the Agency with copies. Since we have not to date received a copy of this, we can not respond to some of the questions which you asked at the meeting. Please see that a copy of the report is provided to me as soon as possible, but no later than December 30, 1986.

Financial Statement Review

Soon after the October meeting your accountants provided the MPCA with an August 31, 1986 financial statement. We had requested this statement at the meeting, and had promised to review the statement and provide you with a decision on future Agency actions. At this time I can report to you that the financial review has been completed and a decision is now being made by MPCA management on your situation. I anticipate that a letter will be sent to you within two weeks outlining the MPCA actions.

Phone:....

520 Lafayette Road North, St. Paul, Minnesota 55155 Regional Offices • Duluth/Brainerd/Detroit Lakes/Marshall/Rochester Equal Opportunity Employer Mr. Merton Anderson Page Two

ير ۽ منظور ۽ ج

Disclosure/Annual Update

Linda Tanner of the MPCA's Disclosure Unit has advised me that YARC's disclosure is not up-to-date. Please be advised that an Annual Report sheet will be sent to you in early January, 1987. This is to be completed and returned to Linda Tanner so that your files can be accurate and fees can be calculated correctly. Ms. Tanner's phone number is 612/296-9395 if you have any questions on this process.

4. Tank Examination

The issue of the underground cement tank was also raised at the October, 1986 meeting. At this point I believe that further evaluation is needed. I anticipate the need for a site visit to complete the evaluation.

5. Off-spec paint and waste solvents

You indicated that YARC has stored 15-20 drums of waste paint and thinners which are classified as hazardous wastes. At the meeting you reported that YARC would make arrangements to have these materials shipped off-site for recycling or disposal. Please update me on this situation. If these wastes have not been shipped yet, YARC is now given 60 days in which to remove the wastes off-site for proper management. If this is not done in the time specified, the MPCA will require YARC to apply for a hazardous waste storage permit.

Please take the necessary actions to these items as specified. Call me at 612/296-8454 with any questions or concerns you may have. Thank you for your cooperation.

Sincerely,

Bill Thompson

Bill Thompson Hazardous Waste Enforcement Unit Hazardous Waste Section Solid and Hazardous Waste Division

BT/jmh

cc: Bill Welbes, Twin City Testing, St. Paul Herb Wenkel, Blue Earth County, Mankato Larry Landherr, MPCA Regional Director, Rochester **APPENDIX V**

1985 FELONY CRIMINAL COMPLAINT AGAINST YEAR-A-ROUND CAB COMPANY INDICATING TWO ALLEGED COUNTS OF ILLEGAL DISPOSAL OF HAZARDOUS WASTE

The Complainant, being duly sworn, makes complaint to the above-named Court and states that there is probable cause to believe that the Defendant committed the following offense(s). The complainant states that the following facts establish PROBABLE CAUSE:

I, James D. Massoth, am a Special Agent with the Minnesota Bureau of Criminal Apprehension (BCA). In that capacity, I have investigated the defendant YEAR-A-RGUND CAB CO. (YEAR-A-RGUND) and its president, the defendant Charles Merton Anderson, COE 4/25/27, for the unlawful disposal of hazardous waste. In the course of this investigation I have talked to or interviewed William Thompson of the Minnesota Follution Control Agency (MPCA); the defendant Charles Merton Anderson; Clarence Al Battey, an employee of defendant YEAR-A-RCUND; Walter Wolf and Mitchell Wolf of W. W. Blacktopping, 1400 Lake Street, North Mankato, Minnesota; and Special Agent Marvin Seman of the ECA, who assisted me in this investigation. I have reviewed the Articles of Incorporation of YEAR-A-RCUND. I have also reviewed documents and files on YEAR-A-RCUND provided by the MPCA, as well as reviewed documents and examined material seized under a search warrant executed at the busines situs of the YEAR-A-RCUND corporation. These documents and materials include correspondence, legal papers, purchase receipts for gravel and chemicals, a file labelled hazardous wastes containing safety data sheets, and samples of waste material and chemicals found on the company premises. I have also reviewed laboratory results of soil samples taken from an

PAGE 2 of 9 SJIS COMPLAINT NUMBER(S):

unfenced area to the immediate west of YEAR-A-RCUND's fenced-in plant in Mankato, which property is also owned by YEAR-A-RCUND. As a result of this investigation, I believe the following to be true and correct.

Its articles of incorporation state that defendant YEAR-A-RCUND is a Minnesota corporation engaged primarily in the business of manufacturing and selling cats for agricultural machinery. Listed among the incorporators is defendant Charles Merton Anderson, who is also listed as one of the first directors of the corporation. Defendant Anderson told we that he is the sole owner of YEAR-A-ROUND, and is the president of the corporation. The address of YEAR-A-ROUND is Highway 169 North, Mankato, Minnesota. Both the plant site and all adjacent property referred to in this complaint are located in Blue Earth County, Minnesota.

According to William Thompson of the MPCA, he and other personnel of his agency conducted a preliminary inspection of the YEAR-A-RCUND plant site on March 16, 1985. During this inspection it was discovered that the company washed and painted the parts used in its manufacturing process in such a manner as to generate large guantitites of hazardous waste, including paint thinner solvent containing xylol (xylene). Xylol (xylene) is a volatile hydrocarbon that, according to Thompson, is a hazardous waste under Minn. Stat. ch. 116 and NPCA rules.

During the March 16, 1985, preliminary inspection defendant Charles Merton Anderson represented the company. According to William Thompson's report of that inspection, Anderson told the MPCA that the accumulated wastes from his painting operations were stored in sealed 55-gallon drums on pallets behind the main plant. The MPCA inspectors noted, according to Thompson's report, that:

. . .

"Near the southwest corner of the property, the company had stored about 400, 55-gallon drums (rough estimate). Most of the drums were double-stacked and occupied an area about 30 yeards square. Drums were stored directly against the west fence. The drums were not labeled or marked in any manner to

FORM I-1.1

SECTION/Subdivision

CCT

U.O.C. GOC

PAGE 3 of 9 SJIS COMPLAINT NUMBER(S):

indicate which type of waste was contained. Some drums were marked "Waste." Many drums were open, leaning or tipped over. No segregation of drums according to waste type was present. Many drums were stored either directly on the ground or on a broken or deteriorated pallet. Many drums were rusted and deteriorated. I observed one drum that had been punctured by a forklift prong."

Following a tour of the company premises, the inspection party returned to defendant Anderson's office. There William Thompson told defendant that there should be no shipment of any stored wastes from the site without MPCA approval. Defendant Anderson was also told that evaluation of the wastes needed to be completed in order to determine an appropriate management plan. The overall inspection result, as stated in Thompson's report, was:

"Based on this preliminary investigation, numerous violations were observed. Additionally, since many of the containers stored outdoors were deteriorated, the possibility exists for soil and ground water contamination."

In a letter mailed from the MPCA to defendant Charles Merton Anderson on April 10, 1985, William Thompson wrote:

"This letter will serve to document our phone conversation of April 4, 1985. During that conversation we agreed upon an inspection date and time of April 15, 1985 at about 10:00 a.m.

. . As I stressed during my initial visit on March 15, 1985, and again during our phone conversation, no wastes should be shipped off-site to a landfill or any other facility until management plans have been approved by the MPCA."

PAGE 4 of 9 SJIS COMPLAINT NUMBER(S):

On April 15, 1985, a full inspection of the YEAR-A-RCUND plant site was conducted by the MPCA. Defendant Charles Merton Anderson again represented the corpany. During that inspection, MPCA employees noted that about 400 drums of waste which had previously been stored outside had been moved inside a nearby storage shed. Of those 400 drums, about 180 contained paint sludges, 20 contained wash sludge, and about 200 contained waste solvent.

Also noted by the MPCA during the April 15, 1985, inspection were several damaged drums of waste solvents that were leaking onto the ground in the southwest corner of the plant site near the south edge of the outdoor drum storage area.

As a result of this full inspection the MPCA mailed a hazardous waste Notice of Violation (NOV) dated May 28, 1985, to defendant Charles Merton Anderson as president of YEAR-A-RCUND. In its cover letter forwarding the NCV the MPCA expressly wrote to defendant Anderson that:

> "As indicated in April 10, 1985, correspondence to you, no hazardous or potentially hazardous wastes are to be shipped off-site to a landfill or other facility until management plans have been approved by the MPCA."

In the attached NCV itself, the MPCA listed the hazardous waste violations it found and the requirements which the company must undertake to bring itself into conformity with the law. Among these requirements in the NCV was that:

> "5. Until the Company has obtained an EPA identification number, evaluated all waste streams, and has management plans approved by the MPCA, no hazardous wastes should be shipped off-site."

(Emphasis in the original).

127

FORM 1-1.1

COMPLAINT/INDICTMENT SU SECTION/Subdivi.

1 CCT

U.O.C. GOC

PAGE 5 of 9 SJIS COMPLAINT NUMBER(S):

During my interview of defendant Charles Merton Anderson (during the execution of the search warrant on July 25, 1985) he admitted receiving the above-mentioned documents and letters from the MPCA.

Despite these explicit instructions from the MPCA, I have found out from Walter Wolf that in late June 1985, either defendant Charles Merton Anderson, or his son Michael Anderson, contracted with Wolf's Company (W. W. Blacktopping of Mankato) to remove dirt and crushed rock from inside the southwest corner of YEAR-A-ROUND's fenced-in rock from inside the southwest corner of YEAR-A-ROUND's fenced-in plant site. This is the area of the previously identified drum storage site. On June 26, 1985, Walter Wolf's son, Mitchell Wolf, acting as an employee of W. W. Blacktopping, removed dirt and gravel from the southwest corner of YEAR-A-ROUND's fenced-in area and dumped it over the fence. Mitchell Wolf told me that he was directed in this work by the older person who was in charge at YEAR-A-RCUND. Mitchell Wolf described this older person as a man of tall stature with grav bair, glasses and somewhere in his tall stature with gray hair, glasses and somewhere in his mid-fifties. Defendant Charles Merton Anderson's driving license record shows that he is 6 feet, 2 inches tall; weighs 210 pounds and was 58 years old in June 1985. My own observation of defendant Anderson showed that he had gray hair and wore glasses.

On July 1 and July 3, 1985, William Thompson of the MPCA received information from Herb Wenkels, the Blue Earth County Sanitarian. Wenkels advised having observed approximately ten barrels on fire inside of the fenced-in area at the YEAR-A-RCOND property on July 1, 1985. Wenkels contacted the corporation president, defendant Anderson, who claimed that only paper and wood scraps were being burned in the drums. However, Wenkels found flames shooting from one of the drums and the intensity of the fire indicated that the barrels contained dried paint sludges or similar materials. On July 3, 1985, Herb Wenkels checked the area where the drums were burned and noted evidence of digging in the vicinity of the burn

William Thompson told me that, based on this report from Wenkels, and also because the MPCA had told defendant Anderson that there would be another inspection on July 18, 1985, he decided to conduct a surveillance of the YEAR-A-RCUND site.

FORM I-I.1

SECTION/Subdivision

CCT

U.O.C. GOC

PAGE 6 of 9 SJIS COMPLAINT NUMBER(S):

On July 10, 1985, Thompson conducted his surveillance of YEAR-A-ROUND. During that time he observed defendant Anderson directing an employee in the scraping of surface soils with a tractor and bucket from the area in and around the old outdoor drum storage site located in the southwest corner of YEAR-A-ROUND's fenced-in area. The soils were taken in the bucket to an area outside the fence to the west of the plant and dumped.

After dumping about fifteen bucket loads of soil, the tractor operator graded the dump site using black soil piled nearby to cover up the excavated soils. The tractor operator then spread gravel over the excavated area inside the fence. William Thompson took pictures of this activity using a zoom lens. These photographs have been developed into a number of slides which I have viewed and they show defendant Charles Merton Anderson present during, and directing, the above-described excavating activities.

Clarence A. Battey, an employee of YEAR-A-FCUND working in the maintenance department, has told me that he was the employee driving the tractor during the July 10, 1985 excavation. Battey advised that he was told by defendant Charles Merton Anderson to remove dirt from the southwest corner of YEAR-A-RCUND's fenced-in area and to take the dirt and dump it in a field approximately 100 to 150 feet west of the fence. He further advised that defendant Anderson checked on the progress of the job during the day.

During execution of the search warrant on July 25, 1985, a number of soil samples were taken from bore holes at various locations in the unfenced area west of YEAR-A-ROUND's plant site. These soil samples were analyzed by both the PCA and Minnesota Cepartment of Health. The test results show that the soil contained amounts of toluene and xylenes, which are volatile hydrocarbons considered hazardous wastes under Minn. Stat. ch. 116 and MPCA rules. Components of mineral spirits were also indicated in three of the soil samples. Under Minn. Stat. ch. 115 and 116, such hazardous waste products are to be disposed of only at authorized facilities. The area west of defendant YEAR-A-ROUND's Nankato plant site is not an authorized facility.
1 CCT

U.O.C. GOC

> PAGE 7 of 9 SJIS COMPLAINT NUMBER(S):

The above facts constitute complainant's basis for believing that on the dates specified in the following counts, in the City of Mankato, County of Blue Earth, Minnesota, the defendants YEAR-A-RCUND CAB CO. and Charles Merton Anderson committed the following described offenses:

CHARGE :

IN VICLATICN OF: Minn. Stat. § 115.071, subd. 2b; and 609.05 MAXIMUM PENALTY: Five years/\$25,000

COUNT I

Unlawful Disposal of Hazardous Waste

That on or about June 26, 1985, Charles Merton Anderson and YEAR-A-ROUND CAB CO., each aiding, advising, hiring, counseling, or conspiring with one another, did knowingly, or with reason to know, dispose of hazardous waste in a manner contrary to the provisions of Chapters 115 or 116, or the standards or rules adopted in accordance with those chapters relating to disposal, to wit: by having a contractor (W. W. Blacktopping) remove dirt and gravel contaminated with hazardous waste from the southwest corner of YEAR-A-ROUND's fenced-in plant site and dumping it over the fence into an open area, which location is not permitted for the disposal of hazardous waste.

FORM 1-1.1

1.

COMPLAINT SUPPLEMENT SECTION/Subdivision U.O.C. GOC

CCT

PAGE B of 9 SJIS COMPLAINT NUMBER(S):

CCUNT II

CHARGE:

Unlawful Disposal of Hazardous Waste

Minn. Stat. §§ 115.071, subd. 2b; and 609.05

IN VIOLATICN OF:

MAXIMUM PENALTY:

Five Years/\$25,000

That on or about July 10, 1985, Charles Merton Anderson and YEAR-A-ROUND CAB CO., each aiding, advising, hiring, counseling, or conspiring with one another, did knowingly, or with reason to know, dispose of hazardous waste in a manner contrary to the provisions of Chapters 115 or 116, or the standards or rules adopted in accordance with those chapters relating to disposal, to wit: by instructing and directing an employee to remove soils contaminated with hazardous waste from the southwest corner of YEAR-A-ROUND's fenced-in plant site, dump the soils so removed into an open area west of the fence and grading the dump area with black soil to cover up the excavated soils, which dump area is not a location permitted for the disposal of hazardous waste.

THEREFORE. Complainant requests that said Defendant, subject to bail or conditions of release be: (1) arrested or that other lawful steps be taken to obtain defendant's appearance in court; or

(2) detained, if already in custody, pending further proceedings;

and that said Defendant otherwise be dealt with according to law. COMPLAINANTS SAGNATURE.

JAMES D. MASSOTH

Being duly durhorized to protecute the offense(s) charged. I hereby approve this Complaint. PROSECUTING ATTORNEY'S SIGNATURE:

DATE

PROSECUTING ATTORNEY: NAME TITLE PAUL R. KEMPAINEN Special Assistant Attorney General (612) 295-7573

PAGE 9 of 9

Court Case #:

LINDING OF PROBABLE CAUSE

From the above sworn facts, and any supporting affidavits or supplemental sworn testimony, I, the Issuing Officer, have determined that probable cause exists to support, subject to bail or conditions of release where applicable. Defendant(s) arrest or other lawful steps be taken to obtain Defendant(s) appearance in Court, or his detention, if already in custody, pending further proceedings. The Defendant(s) is/are thereof charged with the abovestated offense.

XX

SUMMONS.

THEREFORE You, THE ABOVE-NAMED DEFENDANT(S. ARE HEREBY SUMMONED to appear on the day of .19 at

AM/PM before the above-named court at

to answer this complaint.

EXECUTE IN MINNESOTA ONLY

IF YOU FAIL TO APPEAR in response to this SUMMONS, a WARRANT FOR YOUR ARREST shall be issued.

IC IRRANT

To the sheriff of the above-named county; or other person authorized to execute this WARRANT. I hereby order. In the name of the State of Minnesota, that the above-named Defendant(s) be apprehended and arrested without delay and brought promptly before the above-named Court (if in session, and if not, before a Judge or Judicial Officer of such Court without unnecessary delay, and in any event not later than 36 hours after the arrest or as soon thereafter as such Judge or Judicial Officer is available) to be dealt with according to law.

		ORDER OF DEFENTION
Since the above-named	Defendant(s)	is/are already in custody;

I hereby order; subject to bail or conditions of release, that the above-named Defendant(s) continue to be detained pending further proceedings.

Bail:

Conditions of Release:

This COMPLAINT - SUMMONS, WARRANT, ORDER OF DETENTION was sworn to subscribed before, and issued by the undersigned authorized Issuing Judicial Officer this day of . 19 JUDICIAL OFFICER:

100.0			
.Na	172	e:	

Signature:

Title

Sworn testimony has been given before the Judicial Officer by the following witnesses:

	States of the local division of the	3
STATE OF MINNESOTA	COUNTY of	Clerk's Signature or File Stamp;
	BLUE EARTH]
State of Min	inesota	
	Plaintiff.	RETURN OF SERVICE
¥\$.		a copy of this COMPLAINT - SUMMO'S in the RANT, ORDER OF DETENTION upon the Pro-
YEAR-A-ROUND CAB CO	MPANY,	Signature of Authorized Service Agen
	Defendant(s)	1
FORM J-1		

APPENDIX VI

GPS COORDINATES OF SAMPLING SITES

GPS Coordinates of Sampling Sites

Site	Latitude	Longitude
Hiniker Pond	44° 11.182' N	94° 01.065' W
Hallett's pond	44° 20.289' N	93° 57.171' W
Oxbow Lake	44° 11.271' N	94° 01.178' W
US -14 Ditch	44° 11.381' N	94° 01.103' W

APPENDIX VII

CALCULATIONS AND DATA SOURCES FOR GFLOW AND MODFLOW GROUNDWATER MODELS

Layer 1 Properties

(trial and error also used to keep cells wet)

Default bulk density: 43.198kg/ft3

B (Aquifer Thickness) = 5 feet Default by Ss (Specific Storage) =0.0001 Sy (Specific Yield) =0.2 Pe (Effective Porosity) =0.2 Pt (Total Porosity) =0.3 Kx/y (Horizontal/Lateral Conductivity)= 3.97feet/day Kz (Vertical Conductivity) (Kxy/10)=0.397 feet/day

Layer 2 Properties

B (Aquifer Thickness) = 50 feet (estimated on borings) Ss (Specific Storage) =0.0001 Sy (Specific Yield) =0.27 (calculated) Pe (Effective Porosity) =0.38 (calculated) Pt (Total Porosity) =0.5 Kx/y (Horizontal/Lateral Conductivity)= 59 feet/day Kz (Vertical Conductivity) (Kxy/10)=5.9 feet/day

Calculations for layer 2:

Conductivity: K as tested in Lab using constant head test:

Trial 1 and 2:

H (cm)	rH (cm)	V (ml)	Constants:	
54	5	104	A (cm3)	31.2
42	5	59	L (cm)	14
69	5	141	t (sec)	60
70	5	288		
45	5	195		
26	5	126		
K=(VL)/(AtH))			

Averages= 0.0233cm/sec=18.4M/day=59.0feet/day

Porosity:

(Vd/Vw)/(Vw)=P Vw Vd 14.687 9.269 15.107 9.560 14.902 9.558 **Dry Density:** 24.911g/9.269cm3 25.589g/9.560cm3 25.768g/9.558cm3 =Averaged: 2.68g/cm3 =2680kg/m3

Averaged P= 0.365

Dispersion default: 32.808 feet/day

Lead parameters:

DL=0.01754L^1.46 Fetter Equation (10.9) L=300M (0.3KM) DL= (0.003) (default 0.011)

SP1= 235 (based on pH of 7.2 in soil on semi logarithmic plot of C/C0 (Lee et al., 1998)

SP2= 0.2 (Shawabkeh, R. & Mahasneh, B., 2004)

Coeff=1 (default)

BTEX parameters:

All used as default

Well Log Report - 00190612

5/17/12 7:10 FM

Alizas	ente Un	éper-	166.5 M							MININEBOTA DEPAI	RTMENT O	IF HEALTH		
	190	61	2		6	and y	Nicolist Maritalia Wast			WELL AND BORING Unty One 9009				
	130	v 1	2		õ	20	55A			REC	ORD		Received Date	
-	-									Menseole State	alas Citago	by INH		
Township	Range	Dir I	Beatle	. Outo	nation	. Develop		774 8.		Well Depth		Dapits Complete	nd Dat	a Wall Completed
						-		7.5 minute		83 R.		82 R.		00/09/1984
100	n	w	1	800	COA.	Uwebo	Nethod	Silverity	Vis manja (14	Crilling Method N	icn-specific	ed Robery		
Well Ad	dress									Delling Fluid		Well Hydrohaster Free PL in PL	nd? 🖂 Yas 🖂] No
NORT	198-97		U M	1 200	01					Use Domesic				
Geologie	call Me	teria	đ		Cal BL/	lar ACK	Hardness SOFT	Fre 0	ин То 1	Casing Type Plan No Above/Delaw	ntic Joint 1 ft.	No Information Dr	velloof 🖂 1	ies 🗹
CLAY					28	LLOW	SOFT	1.	갶	Casing Diame	der .	Weight	Hole Dia	meter
SAND ROCK					B R	OWN	SOPT	76 83	83 83	5 in.10 70	ŧ.	bs.ft.	9 in.to	82 1.
I .										Open Hale than	8.6			
1										Garreen YES	lais JOH	NICH Type stall	dess stael	
										Diameter 4	Sios/Gu 18	eure Length 7	Set Betwee 75 fL a	m nd 82 ft.
										Gladia Water Love				
I										45 ft. than Land	autos (Asias In	Date Measured 00M	0/1694	
I										ft after hn.ps	mping 35	gp.n.		
										Well Hand Comple Pileon adaptor na Cooling Potent	rtion ndesturer ten (=	Model] 12in, above grade Wede and Dedecard		
REMAR	KS									Oreging informat	doe Wel	Goulad? 🗹 Ye	r 🗌 No	
Located b	ig: Mar	starts Verifi	State	inien : Inio	ity nation	Method: (Digitzing Insut Data	Digitized- scale Tablej e: 01/01/1080	1:34,080 a	r langer	Grout Material	Nest C	errent	thom 0 to	35 fl. 0
from owner										Hearest Kasses &	D'lo come	ionizmination antis institution for	M Anna	
-dancer:	- 100		1.290			A: 41019	· .: •###13##			Well disinfected	upon con	upintion? 🗹 1	66 No	
1										Pump 📝 Ha	d installed	Data Installed 04/2	Mark	
										Manufacturer's name Longin of drop Pla	+ 50 ft	Capacity 10 gam	Type Submer	HP <u>0.5.</u> Value <u>230</u> della Material Parate
										Abandaned Walls	Dees pro	perty have any notic	use and not easi	nd weekligt? 🔲 Yee
1										He No				
										Variance Was are	atiance gra	inted from the MCHI	britis will 🗌	Yee 🗌 No
First Ded	nek St	Lee	ence l	omati	m		-	Adapt for 1		St. Pater W	Al Delley		00072	YOLK J
Last Black	St.L	-	e Fan	nation		Depth	to Bedrock 63	£.		Liberate Dur	iness Nam	a Us	Or Reg. No.	Name of Driller
Cou	nty	We	11	nde	хO	nline	Report			19061	2			Printed 5/17/2012 HE-01305-07

http://wdh-egus.health.state.mn.us/cwi/wol_log.asp?wollid=190612

Well Log Report - 00452653

5/17/12 7:10 FM

Alternative Unique Well Ma.		MINNEROTA DEPARTMENT O	AF HEALTH		
A52663 Gently Noted		WELL AND BORING Day Day			
4J2003 GodD 554		RECORD		Received Date	
		Mensecola Statutes Church	by 100		
Well Name MCHOLS, CON45 Transition Process for Random Street Filmation 771 #		Well Depth	Depth Complete	d Date Well	Completed
7.5 minute		55 R.	\$\$ft	03/95	/1960
108 25 W 7 BBACCO Elevation Method topographic 5 feet	nış (H	Delling Method Non-specific	ed Rolary		
Well Address 1102 RIVER DR N NORTH MANKATO NN 58001		Drilling Fluid Dertonie	Weil Hydrohastan Fran FL to PL	el? 🗌 Yes 🗌 No	
		Use Domestic			,
Geological Material Color Hardness From BLACK TOP BLACK HARD 0	То 1	Casing Type Plastic Joint No Abave/Delose 2 ft.	No Information Driv	velikoef 🗌 Yes 🗹	
GRAVEL BROWN SOFT 1 CLAY BROWN SOFT 5	- 6	Casing Diameter	Weight	Hole Diameter	
SAND BROWN SOFT 15	55	5 in. to 50 ft.	lbs.ft.	9 in.to 55	۴.
		Openities from it, to			
		Screen YES Make JOH	NECH Type skills	iere riteri	
		Diameter Slot/Ge 5 10	auza Length 7.5	Set Between 50 ft. and 5	5 n .
		Blatts Water Loval			
		30 ft. fram Land surface 1	Date Measured 000	6/1690	
		0 ft. aller he. purging 9	0 g.pm.		
		Weil Hand Completion Pileon adapter manufacturer Caulog Potection	Nodel 12in. above grade Welle and Borings O	HLID	
NO REMARKS		Growting information Well Geouted? 🗹 Yes 🗌 No			
Located by: Minwesta Geological Survey (Elipticed - scale 1:34,000 er) (Elipticing Table)	langar	Grout Naterial: Next C Grout Naterial: Benton	ement fro de fro	m 0 to 30 ft. m 30 to 42 ft.	0.5 ynda. O
Unique Humber Verification: Information Input Date: 05/05/1968		Neurost Known Source of C	iontamination		
Bystem: UTM-Nad72, Zuce15, Meters X: 419685 Y: 4092204		53_feet IL_direction S	ieptio teakšitnie fiel volation? 🔲 Y	<u>M_type</u> w □ No	
		Handistand's same A	Undel number Hi Hodel number Hi	P <u>0</u> Volta na Matadal	
		Abandened Walls Doss pro	perty have any notin	use and not realed well)	d? 🗌 Yee
		l No			
		Variance Was avariance gra Wel Contractor Carl Andre	anted from the MCH18	arthioned? 🗌 Yee	⊟ No
First Badrock August Cast Badroll Investment		Santar Well Co.	-	00258	VOLK J
Last Brat and brum Daphts Bedrock &		License Duciness Nam	a Lis.	OrReg. No. N	area of Dellar
County Well Index Online Report		452663		Prin	HE-01305-07

http://mdh-agus.health.state.mn.us/cwi/wel_log.asp?wellid=452663

Well Log Report - 00568068

5/17/12 7:10 FM

Albo	eache Un	içar H	63.86	L						NINNEGOTA DEPARTMENT	OF HEALTH		
	568	06	R		County	Nection: Marikato We				WELL AND BO	DRING	Entry Date Update Date	11/10/1008
	500	00	-		Qued ID	55A	-			RECORE)	Received Date	
Walker	as HENRY									Mensecola Statulas Cha	play 1919		W.10
Townshi	Range	Di 6	etien	Bubm	ctions Dave	alian .	810			wai teps	toget compose	-	MANAGESS
				-		the Marked	7.5	minute	and the	en m.	are to		W 10 1003
	**		'				Sh		að far	Construction of the second	and money		
Well A	Idress									Drilling Field Water	Well Hydrohasta Even El. In D	nel? 🗌 Yes 🗌	No
NOR	HMAN	KAIC	MN	5600	3					Use Domestic			
Gasleg SOL	ical Ma	terial			Calar BLACK	Hardnes SOFT	*	From 0	Тө 2	Casing Type Plastic Joints No Abave/Delaw 0 ft.	et No Information D	ivellion? 🖂 1	•• 🗹
CLAY					YELLOW	V SOFT		2	12	Casing Diameter	Weight	Hole Diame	rber
SAND					BROWN	SOFT		ŝ	ŝĨ	5 in.1o 75 ft.	bs.A.	8.75 in. to	81 8.
										OpenHale turn it. is	ι		
										Bareen YES Make CO	OK. Type staicles	u steel	
										Diameter Slot/ 5 10	Awaze Lengil 7.5	h Sat Belwee 76 fL e	n nd ô1 ft.
										Statis Water Loval	Detablement (B	19/10/1	
										PULPHO LINEL (beine b R. afber hn. pumping 3	and surface) 20 gp.m.		
										Well Hard Completion Piless adaptermanufacture Casing Potestion	r MAX95 Nick 1211. above grad		
\vdash					O REMA	RKS				Grouting information W	d Grouted? 🗹 Y	u 🗌 No	
										Grout Material: Bento	nto tra	vm 0 to 30 ft.	2 begs
Located Survey	by: Min	aloven	Gech	gical -	Mathod: D Tatle)	Xgitted-scale 1:3	4,000	or læger (D	lytic ing				
cenque)			Rive.	140	Input Date:	: 06/01/1968				Neurost Known Source of	Contamination		
Bystee:	UM-1	(1010).	Zoon	15.	X: 418397	Y: 4093155				Well disinfected upon or	menion <u>Stepile (and</u> supplicited?	Yes 🗌 No	
										Pump 🗹 Notinutale Manufacturale same <u>AUD</u>	d Data Installed (00/ ACTOR Model	141595 number <u>812850</u>	1P15_Veb20
├										Longin of days Pipe 60 ft.	Capacity 12 gam	Type Submer	the Material Plantic
										le No	and and and and		
										Variance Was avariance of Well Contractor Contification	ranted from the MCH on	ifertienn® 🗌	Yee 🗹 No
First Dec Last Otra	bock K antó	berwe		1	Aquiller Qu Depth to De	unt Darind Arton: J editech – R.	а, der			Searcher Well Co. Liberate Dasiness Na	me Ut	00050 . OrReg. No.	<u>VOLK J</u> Name of Driller
Cou	inty	Wel	l Ir	ndex	c Onlir	ne Report	t			568068			Printed 5/17/2012 HE-01005-07

http://wdh-agus.health.state.ms.us/cwi/wel_log.asp?wellid=568968

APPENDIX VIII

DETAILED RESULTS OF LABORATORY ANALYSIS CONDUCTED ON WATER SAMPLES COLLECTED MAY 19, 2011 BY MINNESOTA VALLEY TESTING LABORATORIES, NEW ULM, MINNESOTA

Page: 1. of 3

1126 N. From St. - New Uhn, MN 56073 - 800-782 3357 - Fax 507-359-2890 1411 S. 12th St. - Biomarck, ND 58302 - 800-279-4805 - Fax 701-258-9724 51 J. Avenue - Nevada, IA 50201 - 800-362-0855 - Fax 515-382-3885 www.mvtl.com

Report Date: 3 Jun 2011 Lab Number: 11-A22680 Mork Order #:22-2238 Account #: 013353 Sample Matrix: GROCHDMATKH Date Sampled: 19 May 2011 9:30 Date Received: 20 May 2011 BETH PROCTOR MN STATE UNIVERSITY/MANKATO

Sample Description: MSU 1A, 1B, 1C

415 MALIN ST MANKATO MN 56001

Temp at Receipti 0.5 € Nethod Nethod Date Analyzed Ro Received Result Analyst AL. Reference 24 May 11 201 28 May 11 20145 10 28 May 11 20145 10 28 May 11 20145 10 24 May 11 20145 10 201 Mater Digestions 0.005 0.01 9.03 c 0.005 c 0.01 c 0.01 #8/5 #9/5 #9/5 394010 Cadmium Chromium 1484 SN6010 SN6011

occ.l Approved by R. D.

Dan O'Controll, Chemistry Laboratory Menager New Ultry, NW

Separation Limit

The reputing limit was elevened for any easily completing a dilation in coded bilse: $\begin{array}{c} \phi = \cos(2t) & \text{subjective} \\ \phi = \cos(2t) & \text{subjective} \\ \phi = \cos(2t) & \text{subject particles} \end{array}$ $\begin{array}{c} \phi = 1 & \text{subject particles} \\ \phi = 1 & \text{subject particles} \\ \phi = 1 & \text{subject particles} \end{array}$ CONTRACT OF THE THEORY OF THE THE THE THEORY OF THE T

AN EQUAL OPPOSITUNITY EMPLOYER.

1126 N. Foort St. - New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 1411 S. 12th St. ~ Bismarck, ND 58502 - 800-273-6885 ~ Fax 501-258-9724 51 L. Avenue ~ Nevada, IA 50031 - 800-362-0855 ~ Fax 515-382-3885 www.mvfl.com

BETH PROCTOR MN STATE UNIVERSITY/MANKATO 415 MALIN 37 MANKATO MN 56001

Sample Description: MSU 1A, 1B, 1C

Page: 2 of 3

Report Date: 3 Jun 2011 Lab Number: 11-A22600 Work Order: 22-2238 Account #: 013359 Sample Matrix: GROUNDWATER Date Sampled: 19 May 2011 9:30 Sampled By: Date Received: 20 May 2011

Temp at Receipt: 0.5 C

	CAS #	As Seceived Result		Hethod FL	Method Reference	Date Analyzed	Analyst
Scottopa	67-64-1	< 10	ug/L	10	SW82658	1 Jun 11	DHP.
klint Chinedda	107-05-1	< 1	ug/L	1	9W02600	1 Jun 11	DIN P.
Range Gesteron	71-43-2	< 1	100/5	1	5962608	1 Jun 11	DIN P
Recompliant TATA	108-96-1	< 1	ug/1	1	SM85608	1 Jun 11	CINER
Exception and the set	74-97-5	< 1	up/L	1	20032609	1 Jun 11	OWR
Experimental Local Transmission in the second	75-27-4	< 1	an/L	1	\$902603	1 Jun 11	DWR
Erdindin Crit Ordine Charte	75-25-2	< 1	100/L	1	5962603	1 Jun 11	DAG
BIOBOIDIN Beamonethana	74-83-9	< 2	ng/L	2	EM9260B	1 Jun 11	DRUH
D.D. Buttel bannana	104-51-8	< 1	ng/L	1	SM92-603	1 Jun 11	DMR.
nam. Bakasi bara serah	135-98-8	< 1	ug/L	1	SN8260B	1 Jun 11	DMIR.
net-autylinetane	99-16-6	< 1	ug/L	1	SM82.00B	1 Jun 11	DMB.
f-DOLATOGUNGING	66-13-5	s 1	Hg/L	1	DM82608	1 Jun 11	D068.
Garban recrachioride	108-90-7	e î	ug/L	1	SW82608	1 Jun 11	DHR.
Chige operations and a second se	124 - 48 - 1	< 1	00/5	3	SW82605	1 Jun 11	DHP.
CETGEOGEDEGHOUNGTIN	25-00-3	6.1	ug/L	1	UW82608	1 Jun 11	DMP.
CEO Ottane	67-66-3	< 1	ug/L	1	3982608	1 Jun 11	DHE
Ch. DOIR	78-87-8	< 1	um/L	1	3902600	1 Jun 11	DNR.
Chlocomethane	95-59-8	2.5	46/1	1	5¥82608	1 Jun 11	OWB
5-CETGEOJOTOREE	106-47-4	4.1	40/1	1	8162608	1 Jun 11	CIMIN.
d-CUTOLOIOIDANS	98-37-8	2.1	nm/L	1	5902603	1 Jun 11	OWR
Cunene	86-12-9	2.5	ma/L	2	\$9832.603	1 Jan 11	DWB
1,2-Dibramo-3-Galoropropane	106-03-4	2.1	DG/L	1	53682608	1 Jun 11	Dept
1,2-Dibramoetname	74-35-3	21	DOM: L	1	83692×608	1 Jun 11	DMR.
Diptomometrane	14-30-3	2.1	DOT AL.	ĩ	SN0250B	1 Jon 11	DMB.
1,2-Dichlorobenzene	90-20-1 8.44-23-3	2.1	ing fr.	1	SN82605	1 Jun 11	DMS.
1,3-Dichlorobensene	105 45 7	2.1	UR/L		12482668	1 Jun 11	DOGR.
1,4-Dichlorobenzene	100 27 - 0	2.1	1107.57.		3982600	1 Jun 11	DHP.
picalorodifiuoromethane	73-71-5	2.1	1000/12	i.	SW82608	1 Jun 11	D9439.
1,1-Dichloroethone	107-06-2	2.1	1400/2	ĩ	SW82608	1 Jun 11	DNR.
1,2-Dichloroethane	26 26 4	2.1	un/L	1	3W82608	1 Jun 11	DNR.
1,1-Didblorpethene	184-88-9	2.1	and1.	1	3802600	1 Jun 11	DWR
cis-1,2-Dichloroethene	130-33-2	2.1	10/1	î	5202603	1 Jun 11	DWP.
trans-1,2-Didbloroetness	190-60-9	2.5	20/1	ĩ	FatR2 603	1 Jan 11	OWN
Dichlerefluoromethane	75-63-6	2.1	and/L	ĩ	1992609	1 Jan 11	DWR
1,2-Bichloropcopene	78-01-3	2.1	ange at	î	SM02608	1 Jan 11	DWR
1,3-Dichloropropane	142-20-9		DOL 1	î	F2682608	1 Jun 11	DMM
2,2-Dichlenopapane	599-20-T	2.1	DOL T	ĩ	20082-00B	1 Jun 11	DMR.
1,1-pichloropropens	201-20-0	3.4	togy to	1	OME2-575	1 700 11	DHR.
cis-1,3-Dichloropropese	10361-81-8	- 1	Log C	1	GM82405	1 Jun 11	DMS.
trans-1,3-Dichloropropene	10061-02-6		ogr s	5	10482458	1 Jun 11	DINE.
Third Nandaro	100-41-4		1000	-	10 10 10 10 10 10 10 10 10 10 10 10 10 1	- 11410 - 11	

meporting limit The reporting limit was slavated for any smalphe requiring a dijution as model believ $\begin{array}{rcl} B &= Dow & to complex matrix & d = Dow to complex matrix & d = Dow to complex matrix & d = Dow to internal standard response & d = Dow to internal stan$ CENTRALINE WE AND \$ 1021-01-128 HE LINE \$ 009447480 HE RECENT \$ 14121 \$ DECEMBER 101 0000 \$ 0000 \$ 000 1000 \$ 0000 ENTERTEMENDER, REI LAD & OCT-013-123 RE LAD & 2020423000 NEW MODE & 1012-01 NEW REINER & PORT AND ADDRESS OF A

1126 N. Front St. – New Ulm, MN 56073 ~ 800-782-3557 – Fax 507-359-2800 1411 S. 12th St. – Bismarck, ND 58502 ~ 800-279-6885 – Pax 701-258-9724 51 L. Avenue – Nevada, IA 50201 ~ 800-362-0855 – Fax 515-382-3885 www.mvtl.com

Temp at Receipt: 0.5 C

BETH PROCTOR MN STATE UNIVERSITY/MANKRIO 415 MALIN ST MANKATO MN 56001 Report Date: 3 Jun 2011 Lab Number: 11-A22680 Work Order: 22-2238 Account #: 013359 Sample Matrix: GROUNDWATER Date Sampled: 19 May 2011 9:30 Sampled By: Date Received: 20 May 2011

Sample Description: MSU 1A, 1B, 1C

	CRS #	As Received Result		Method BL	Nethod Reference	Date Analyzed	Analyst
Ethyl Ether	68-29-7	< 1	10/L	1	31092.603	1 Jan 11	DWR
Resachlorobutadiene	07-68-3	< 1	10/1	1	5902609	3 740 11	DVD
p-Isopropyltoluese	99-87-6	< 1	10/1	1	5462603	1 Jun 11	OWN
Hethyl Ethyl Ketone	78-93-3	× 5	10/1	5	310932603	1 Jun 11	OWR
Sethyl Isobutyl Katona	108-10-1	< 2	10/1	2	31022609	1 Jun 11	OWP
Methyl text-butyl Ether	1634-04-4	< 2	10/1	2	5982609	3 Jun 11	DATE
Methylene Chloride	75-09-2	< 2	10/1	2	3952605	1 Jun 11	OWR
Sephthalene	91-20-3	< 2	wer/L	2	31092600	1 Jun 11	OWP
a-Propylbenzeze	103-65-1	< 1	100/1	1	5902609	1 .748 11	CIME
ityrene	100-42-5	< 1	100/1	1	5962600	1 Jun 11	COMP.
1,1,1,2-Tetrachloroethase	630-20-6	< 1	40.15	î	1700820 6200	1 Jun 11	COMP.
1, 1, 2, 2-Tetrachloroethase	78-34-5	\$ 1	we file	ĩ	20022624	1	DMP
retrachloroethene	127-19-4	< 1	1000.075	1	9982600	1 2010 11	DOM N.
Tetrahydroferas	109-99-9	< 5	Ug/L	ŝ	20182420	1 Jun 11	Line p.
To7 e	108-88-3	\$ 1	UT/L	ĩ	100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 200 11	DOUD.
Trichlorobenzene	87-61-6	2 î	tory of the		OWEGEED	1 203 11	LINER.
1.2.4-Trichlonshessess	120-02-1	e î	LAN ST.		1049 7.070	1 000 11	LOND.
1, 1, 1-Trichloroethane	$T_{1} = 0.0 - 0.0$	2.1	Deg / G		104 0 10 0 0 0 0	1 2123 11	LOCH.
1, 1, 2=Trichloroethane	79-00-5	21	targy to		DHELDUD CHEDDON	1 200 11	LINER.
reichlorsethers	79-01-6	21	tog r to		0002000	1 208 11	LWG.
Trichlorofluoromethane	7%-6%-4	2.1	ogra		2010 2 2 2 2 2 2	1 200 11	Deck.
1, 2, 3=Trichloropropage	Bi6-18-4	2.1	tong y to		DM # 2/00 D	1 200 11	DBOR.
Trichlorobri fluoroathana	76-10-1	2.1	tog / Li		000 8 2 9 0 0 P	1 Jun 11	LINER.
1.2.4-Trimethylbergene	55-63-6	21	ugr L		2010/22/07/201	1 Jun 11	Deelle.
1 3 S-Frimethulbeciese	20-02-0	5 A	Odis	1	SN#2938	1 Jun 11	Deta:
ling for a same soy and the set	100-07-8	5.4	Lig/L	1	59482/00B	1 Jun 11	DMR.
studene and solutions	10-01-0	* 1	Ug/L	1	20482/6GB	1 Jun 11	Della.
- Aylene end p-Aylene	113601-23-1	< 1 - 1	og/L	1	SME2608	1 Jun 11	Della:
	20-41-5	< 1	11g/L	1	59482/60B	1 Jun 11	DALL

DIRROWUFLOUROMETHASE (SUBROGATE) RECOVERY: 97 % TOLORSE-48 (SUBROGATE) RECOVERY: 92 % 4-BROWDFLDUROMERSIZEE (SUBROGATE) RECOVERY: 97 %

Approved by: R.S. 000 Ű

Dan O'Connell, Chemistry Laboratory Manager New Line, MN

Reporting Limit

ACIL

1126 N. Front St. ~ New Ulm, MN 56073 - 800-782-3557 - Fax 507-359-2890 1411 S. 12th St. - Biomark, ND 58502 - 800-279-6885 - Fax 701-258-9724 51 L. Avenue - Nevada, IA 50201 - 809-362-6855 - Fax 515-382-3885 www.mv0.com

Page: 1 of 3

BETH PROCTOR ME STATE UNIVERSITY/MANKATO 415 MALIN ST MARKATO MN 56001 Report Date: 3 Jan 2011 Lab Number: 11-A22601 Work Order #:22-2230 Account #: 013359 Bample Matrix: GROUNDWATER Date Sampled: 19 May 2011 10:00 Date Neceived: 20 May 2011

Sample Description: MSU 2A, 2B, 2C

Temp at Receipt: 0.5 C

	As Received Result	Method RL	Hethod Reference	Date Analyzed	Akelyst
Rater Digestions Codmins Coronnum Lead	< 0.005 mg/L < 0.01 mg/L < 0.03 mg/L	0.805 0.81 0.83	1046030 006030 006030	26 May 11 26 May 11 10:45 26 May 11 20:45 26 May 11 20:45	2965 92 94 94 94

Das D'Connell, Chemietry Laboratory Manager: New UNI, MN

Aspecticity Links

The reporting limit was alwarded for any analyse regulting a diminion of coded below: # - Dee to analyse the interval and the second below: * - Dee to analyse gravity = - Dee to analyse the second analyse of other similars * - Dee to analyse the second analyse of the sec

CONTINUENTIAL IN LAR & M1+015-125
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O

AN EXPLAL OPPOSITUNETY EMPLOYER.

1126 N. Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 1411 S. 12th St. – Birmarck, ND 58502 – 800-279-6885 – Fax 701-258-9724 51 L. Avenue ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

HETH PROCTOR NN STATE UNIVERSITY/MARKATO 415 MALIN ST NANKATO NN 56001 Report Date: 3 Jun 2011 Lab Number: 11-A22401 Work Order: 22-2238 Account 4: 013359 Sample Matrix: GROUNDWATER Date Sampled: 19 May 2011 10:00 Sampled By: Date Received: 20 May 2011

Sample Description: MSU 2A, 2B, 2C

Temp at Receipt: 0.5 C

	CAS #	As Received Result		Hethod 3L	Nethod Reference	Date Analyzed	Analyst
Acetone	67-64-3	< 10	ug/L	10	SNE260B	1 Jun 11	DHD.
Allyl Chloride	107-05-1	< 1	ug/L	1	5W#2/99B	1 Jun 11	C903.
Benzene	71-43-2	< 1	0975	3	SM 8 2:60 M	1 Jun 11	DHR.
Bromobenzene	108-86-1	< 1	ug/L	1	SWE200B	1 Jun 11	DHP.
Bromschloromethane	74-97-5	< 1	ug/L	1	SW1200D	1 Jun 11	DMIN.
promodichloromethane	75-27-4	< 1	ug/L	1	DW122620	1 Jun 11	C008.
Bromoform	75-25-2	< 1	Ug/L	3	8W82698	1 Jun 11	DHR.
Bromomethane	74-83-9	< 2	ug/L	2	SW8200B	1 Jun 11	DHIP.
n-Butylbenzene	104-51-0	< 1	ug/L	1	5W82600	1 Jun 11	D94.9.
sec-Butylbenzene	135-98-8	< 1	ug/L	1	UNARS FEED	1 Jun 11	CRER.
t-Butylbenzene	98-06-6	< 1	0975	3	SW62608	1 Jun 11	DHP.
Carbon Tetrachloride	56-23-5	< 1	ug/L	1	SW02600	1 Jun 11	DHFR.
Chlorobenzene	108-90-7	< 1	ug/L	1	SW62600	1 Jun 11	DMP.
Chlorodibromomethane	124-48-1	< 1	98/5	1	3962608	1 Jun 11	DNR.
ChJ athens	75-00-3	< 1	ug/L	1	SW02600	1 Jun 11	DNR
Chù Anna	67-66-3	< 1	ug/L	1	SW02600	1 Jun 11	DNP
Chloromethane	74-07-3	< 1	100/1	1	3962608	1 Jun 11	DN R
2-Chlorotoluene	95-49-8	< 1	1440/15	1	3992608	1 Jun 11	DNR
4-Chlorobaluese	106-43-4	< 1	ug/L	1	SW02600	1 Jun 11	ONE
CIEREE	98-02-0	< 1	an/L	1	5962608	1 Jun 11	CINER.
1.2-Dibromo=3-chloropropene	98-12-8	< 2	100.02	2	31022608	1 Jun 11	OWR
1.2-Dibromostkans	106-93-0	< 1	10/1	1	3902609	1 Jun 11	OWR
Dibromonethage	74-95-2	< 1	10/1	1	5802600	1 Jun 11	OWR
1.2-Dichlorobenzeze	95-50-1	6.5	10/1	1	51052603	1 Jun 11	DWPS
1.3-Dictlorobergers	541-73-1	4.1	10.01	ĩ	3 10 12 6 0 10	1 Jun 11	DWB.
1.d-Dichlarohannano	116-16-2	< 1	40/1	î	3892609	1 Jun 11	OWR
tickloredifluoromethace	75-71-0	2.1	30/1	ĩ	5802600	1 Jun 11	DWPI
1.1-Dictlorostbase	75-34-3	6.1	10/1	ĩ	3482603	1 Jun 11	OWN
1.2=Dictlocrathans	107-06-2	< 1	40/1	î	31022608	1 Jun 11	OWR
1.1-Dichlaroathare	25-25-4	< 1	10/1	1	\$102609	1 Jan 11	OWR
cia-1.3-bichloroethere	156-59-2	× 1	10/1	1	51032603	1 Jun 11	DWB
trans-1.2-Dicblorgathers	156-60-5	3 1	10/1	ĩ	2100260m	1 Jun 11	OWR
This with Low your Fill your promote to be a printed	25-43-4	< 1	80/1	î	5802603	1 Jap 11	IWR
1.2-TLOLLOULOPECHER	78-97-5	2.1	ng/L	ĩ	53052603	1 Jun 11	TWP
1 3-01 cbl oconconana	142-28-9	2.1	and/L	ĩ	ENG2 6CTR	1 Jun 11	2975
2. 2-Di chi nemenana	555-20-2	2.1	20/1	î	SM92608	1 Jap 11	TWP
1.1-Dichlenopropena	563-50-6	< 1	pg/L	1	5462608	1 Jun 11	DWPI
cia-1 3-bich propropers	10061-01-5	4.1	DOM: N	ĩ	EXERCISE.	1 Jun 11	DWPS
brane 1. 1. Dicklosserene	10061-02-6	< 1	DO/L	î	1003260B	1 Jun 11	TWR
Ethol Rename	100-41-4	< 1	DO/L	ĩ	5802.602	1 Jpp 51	TWD
stays pensente	1000-01-0		and i we		and the forum	- 10 Mar - 41 - 41	

. Reparting limit The opporting limit was elevated for any analyte requiring a distribution in cached Delow: B = Don to sample matrix B = Don to compandantian of where analytes I = Don to sample qualify + Tool to inverse Campingering We Law # 127-015-125 #T Law # 50500700 #D M0000 # 1010-W ND M000 # # 5-500 IA LAW #1 122 IR LAW #1 001

CERTIFICATION WE LAW # 127-112-125 #1 140 # 5556407001 KD HOURD # 1122-H KD MADE # 1-222 II. LAW #1 121 ID. LAW

AN EQUAL OPPORTUNITY EMPLOYER

ACIL

1126 N. Front St. ~ New Ulm, MN 56073 - 800-782-3557 - Fax 507-359-2690 1411 S. 12th St. ~ Bismarck, ND 58502 ~ 800-279-6865 ~ Fax 701-258-9724 51 L. Avenue ~ Nevada, IA 50201 - 800-362-0855 ~ Fax 515-382-3885 www.mvil.com

Page: 3 of 3

BETH PROCTOR MN STATE UNIVERSITY/MANNATO 415 MALIN 57 MANKATO MN 56001 Report Date: 3 Jun 2011 Lab Number: 11-A22601 Work Order: 22-2238 Account #: 013359 Sample Matrix: GROUNDWATER Date Sampled: 19 May 2011 10:00 Sampled By: Date Received: 20 May 2011

Sample Description: MSU 2A, 2B, 2C

Temp at Receipt: 0.5 C

	CAS #	As Received Result		Method RL	Method Reference	Date Analyzed	Analyst
Ethyl Ether	60-29-7	< 1	Ug/L	1	5982600	1 Jun 11	DNR
Hexachlocobstadiene	67=68=3	< 1	ug/L	1	SW62658	1 Jun 11	DMP.
p-Isopropyltoluene	99=87=6	× 1	ug/L	1	999260e	1 Jun 11	COCR.
Methyl Ethyl Hetone	78-93-3	< 5	ug/L	5	SW82000	1 Jun 11	DHR.
Methyl Isobutyl Hetone	109-10-1	< 2	ug/t	2	DW82605	1 Jun 11	DHR.
Methyl tert-butyl Ether	1634-04-8	< 2	ug/L	2	20182628	1 Jun 11	D943
Methylene Chloride	75-09-2	< 2	ug/L	2	SW8260B	1 Jun 11	DM R
Naphthalens	91-20-3	< 2	09/5	2	5W8240D	1 Jun 11	DHR.
n-Propylbenzene	103-65-1	< 1	ug/L	1	SN#2605	1 Jun 11	DHR
Stynese	100-42-5	< 1	ug/L	1	SNE2-638	1 Jun 11	D008
1, 1, 1, 2-Tetrachloroethane	630-20-6	< 1	ug/L	1	SN8200D	1 Jun 11	DOGR.
1,1,2,2-Tetrachloroethane	79-34-5	< 1	ug/b	1	5N82405	1 Jun 11	DHR
Tetrachloroethene	127-19-4	< 1	ug/L	1	SN#2638	1 Jun 11	DMIR.
Tetrahydrofuran	109-99-9	< 5	ug/L	5	SNE293B	1 Jun 11	DOD:N.
Tol a	109-69-3	< 1	Ug/L	1	5N82-00B	1 Jun 11	DHIR.
1,1 /richlorobenzene	87-61-6	< 1	ug/t	1	SN#260B	1 Jun 11	DMIN.
1,2,4-Trichlorobenzene	120-82-1	< 1	ug/L	1	SNE2:60B	1 Jun 11	DAGE
1, 1, 1-Trichloroethane	71-55-6	< 1	ug/L	1	SN82-00B	1 Jun 11	DMR.
1,1,2-Trichloroethane	79-20-5	< 1	09/5	1	5N12-00B	1 Jun 11	DHIR.
Trichloroethere	79-01-6	< 1	ug/L	1	SN8260B	1 Jun 11	DMIN.
Trichlorofluoromethane	75-69-4	< 1	ug/L	1	SN82-938	1 Jun 11	1001
1,2,3-Trichloropropane	9-6-18-4	< 1	09/5	1	5N82-60B	1 Jun 11	DWR.
Trichlorotrifluoroethane	76-13-1	< 1	ug/t.	1.	EN#260B	1 Jun 11	DMD.
1,2,4-Trimethylbenzene	95-63-6	< 1	ug/L	1	SM82608	1 Jun 11	DMIN.
1, 3, 5-Trimethylbenzene	108-67-8	< 1	ug/L	1	SN82-608	1 Jun 11	DMM.
Vizyl Chloride	75-01-4	< 1	69/L	1	5M8260B	1 Jun 11	DWD.
m-Hylene and p-Hylene	179601-23-1	< 1	ng/L	1	SN82608	1 Jun 11	DMB.
o-zylene	55-47-6	< 1	ug/L	1	SM82-603	1 Jun 11	Dette

UERNONOFLOGROMETHARE (SURROGATE) RECOVERY: 93 % TOLIMER-40 (SURROGATE) RECOVERY: 92 % 4-BRONOFLOGROMERIZEE (SURROGATE) RECOVERY: 97 %

Den O'Connell, Chemistry Laboratory Manager New Ulm, MN

reporting timit

1126 N. From St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-339-2880 1411 X. 12dr St. ~ Humanik, ND 58802 ~ 800-279-6885 ~ Fax 701-258-8724 511 L. Avenue ~ Nevada, LA 50201 ~ 800-562-0855 ~ Fax 515-382-3885 www.mvd.com

Page: 1 of 3

BETH PROCTOR MN STATE UNIVERSITY/MANNATO 415 MALIN ST MANKATO MN 56000 Report Date: 3 Jun 2011 Lab Number: 11-A22882 Work Order #:22-2238 Account #: 013359 Sample Matrix: GROUNDWATER Date Sampled: 19 May 2011 11:00 Date Received: 20 May 2011

Sample Description: NSU 3A, 3B, 3D

Temp at Receipt: 0.5 C

	As Received Result	Mational ML	Method. Reference	Analyced	Realyst
Water Digestions Cadmium Chrondum Leo0	< 0.015 mg < 0.01 mg < 0.01 mg	01. 0.03 25. 0.01 25. 0.03	SW6010 SWC010 SWC010	26 May 11 26 May 11 20:45 26 May 11 20:45 29 May 11 20:45	.7M3 84 191 191

Approved by R. D. 2000

Dam O'Connell, Chemistry Laboratory Manager, New Unit, NN

reporting sight

The reporting limit and elevated for any marry's requiring a filtering as filtering as the observed of the same of

AN ROLM. OFFICIER NET WEFLICTER

1126 N. Front St. - New Ulm, MN 56073 - 800-782-3557 - Fax 507-359-2890 1411 S. 12th St. - Bismarck, ND 58902 - 800-279-6885 - Fax 501-258-9724 51 L. Avenue - Nevada, IA 50201 - 800-362-0855 - Fax 515-382-3885 www.mvtl.com

BETH PROCTOR MR STATE UNIVERSITY/MANKATO 415 MALIN ST MANKATO MN 56001 Report Date: 3 Jun 2011 Lab Number: 11-A22682 Work Order: 22-2238 Account #: 013359 Sample Matrix: GROUNDWATER Date Sampled: 19 May 2011 11:00 Sampled By: Date Received: 20 May 2011

Sample Description: MSU 3A, 3B, 3C

Temp at Receipt: 0.5 C

	CAS #	As Received Result		Mathod BL	Method Reference	Date Analyzed	Analyst
Lostone	67-64-1	< 10	ug/L	11	SW8260B	1 Jun 11	DMB.
Allyl Chloride	107-05-1	< 1	ug/L	1	E#62608	1 Jun 11	2,8401
Denzene	71-43-2	< 1	ug/L	1	20032608	1 Jun 11	DWR.
Bramobenzene	109-86-1	< 1	ug/L	1	SM02608	1 Jun 11	DWR.
Bromochloromethane	74-97-5	< 1	ug/L	1	5M8260B	1 Jun 11	DMG.
Bromodichloromethane	75-27-4	< 1	09/L	1.	EN8260B	1 Jun 11	2901
BromoEorm	75-25-2	< 1	ug/L	1	SN9260B	1 Jun 11	DelR.
Bromomethane	74-83-9	< 2	ug/L	2	5M82.60B	1 Jun 11	DMIN.
n-Butylbenzene	104-51-8	× 1	ug/L	L	EN8260B	1 Jun 11	2901
sec-Butylbenzene	135-98-8	< 1	09/L	1	SN9260B	1 Jun 11	D9IR.
t-Botylbensene	99-06-6	< 1	ug/L	1	SN82-60B	1 Jun 11	DHIR.
Carbon Tetrachloride	56-23-5	< 1	UG/L	5	5N92-00B	1 Jun 11	DMIN.
Chlorobenzene	108=90=T	< 1	ug/L	1	5N#260B	1 Jun 11	DBDR.
Chlorodibromomethane	124-49-1	< 1	ug/L	1	SNE2-93B	1 Jun 11	DHIR.
ch) sthate	75-00-3	< 1	ug/L	1	SN82-00B	1 Jun 11	DHIS.
Chl Jorn	67-66-3	< 1	Ug/L	1	SN82605	1 Jun 11	COOR.
Chloromethane	T4-8T-3	≤ 1	ug/b	1	SN82608	1 Jun 11	DMR.
2-Chlorotoluene	95-49-8	< 1	ug/L	1	SN#200B	1 Jun 11	DMR.
d-thloratolyene	106-43-4	< 1	ug/L	1	SN1200D	1 Jun 11	DMIR.
Cusene	58-82-8	< 1	ug/L	1	EN8260B	1 Jun 11	COCH.
1.2-Dibromo-3-chloropropane	96-12-8	< 2	ug/L	2	SWE260B	1 Jun 11	DHR.
1.2-Dibromoethane	106-93-4	< 1	ug/L	1	SW8200D	1 Jun 11	DHER.
Dibromomethane	74-95-3	< 1	ug/L	1	5W82605	1 Jun 11	0008
1.2-Dichlorobenzene	95-50-1	< 1	09/5	3	SW82608	1 Jun 11	DRFR.
1.3-Dichlorobensene	5 - 1 - 7 - 1	< 1	ug/L	3	SW12608	1 Jun 11	DHP.
1,4-pichlorobezzeze	106-46-7	< 1	UG/L	1	5982400	1 Jun 11	DMR.
Dichlorodifluoromethere	75-71-8	< 1	UG/L	1	0W82600	1 Jun 11	COUR.
1.1=Dichloroethene	75-34-3	< 1	ug/L	3	9W92608	1 Jun 11	DNR.
1.2-Dichloroethane	107-06-2	< 1	ug/L	1	9992600	1 Jun 11	DNP.
1.1-Dichlorcethene	75-35-4	< 1	ug/L	1	SV82600	1 Jun 11	DNP.
cis-1.2-Dichlorostheme	156-59-2	< 1	UR/D	1	07W82600	1 Jun 11	DMP.
trans-1, 2-Dichloroethene	156 - 62 - 5	< 1	ug/t	1	29922608	1 Jun 11	DNR
pichlorofluoromethape	75-43-4	< 1	UG/L	1	SW02600	1 Jun 11	DNR
1.2-Dichloropropage	78-87-5	< 1	ug/L	1	5W62608	1 Jun 11	DNP.
1.3=Dichloropropage	142-28-9	< 1	149.75	1	279/8/2 6 0 00	1 Jun 11	DRF.
2.2-Dichloropropage	594-28-7	< 1	ug/L	1	SW02608	1 Jun 11	DNR
1,1-Dichloropropene	563-58-6	< 1	ug/L	1	5W62608	1 Jun 11	DN FI
cis=1,3=Dichlocopropers	10061-01-5	< 1.	14475	1	39882608	i gun ii	DIN R.
trans-1, 3-Dichloropropese	10061-02-6	< 1	ug/L	1	SW02600	1 Jun 11	DNR
Sthyl Benzene	100-41-4	< 1	ug/L	1	SW52608	1 Jun 11	DMP.

. Reporting limit The reperting limit was elevated for any shully a country of country and below: $\Phi = 0$ to settly a settly $\theta = 0$ to settly $\theta = 0$ to settly $\theta = 0$ to settly $\theta = 0$ be to introduce an other analytic $\theta = 0$ be to introduce $\theta = 0$ be the set $\theta = 0$ be to introduce $\theta = 0$ be the set $\theta = 0$ be to introduce $\theta = 0$ be the set $\theta = 0$

CENTERTOATION: NO LAD # 027-01/5-320 NO LAB # 0004471800 ND HIDES # 1013-8 ND HUDES # 8-040 25 ND/20 # 8-040 25 ND/20 HIDES ND HI

AN EQUAL OPPORTUNITY EMPLOYEE

ACIL

1126 N. Front St. - New Ulm, MN 56073 - 800-782-3557 - Fax 507-359-2890 1411 S. 12th St. - Bismarck, ND 58902 - 800-279-6885 - Fax 701-288-9724 51 L. Avernae ~ Nevada, IA 50201 ~ 800-362-0855 - Fax 515-382-3885 www.mvtl.com

ACIL

BETH PROCTOR MN STATE UNIVERSITY/MANKATO 415 MALIN ST MANKATO MN 56001 Report Date: 3 Jun 2011 Lab Number: 11-A22682 Work Order: 22-2238 Account #: 013359 Sample Matrix: GROUNDWATER Date Sampled: 19 May 2011 11:00 Sampled By: Date Received: 20 May 2011

Sample Description: MSU 3A, 3B, 3C

Temp at Receipt: 0.5 C

	CAS #	As Received Result		Method RL	Method Reference	Date Analyzed	Analyst
Ethyl Ether	60-29-T	< 1	ug/5	1	3W62608	1 Jun 11	DNR.
MessachLorobutadiene	87-68-3	< 1	14g/1	1	SW02600	1 Jun 11	DNR
p-isopropyltoloese	98-97-6	< 1	ug/L	1	SM02600	1 Jun 11	DNP:
Hethyl Ethyl Estons	78=93=3	< 5	100/2	5	ISW6260B	1 Jun 11	CINE PL
Hethyl Isobutyl Setone	108-10-1	< 2	19.75	2	3W62608	1 Jun 11	DNR
Hethyl tert-batyl Sther	1630-04-6	< 2	100/1	2	3992609	1 Jun 11	DWR
methylene Chloride	75-09-2	< 2	'ag/L	2	5962600	1 Jun 11	ONE
Saphthalene	91-20-3	< 2	10/1	2	31052608	1 Jun 11	OWN
n-Fropylbenzene	103-65-1	< 1	19.12	1	31092608	1 Jun 11	OWR
Styrene	180-42-5	< 1	10/1	1	5902609	1 Jun 11	OWR
1,1,1,2-Tetrachloroethane	630-20-6	< 1	10/1	1	5¥82608	1 Jan 11	OWN
1,1,2,2-Tetrachloroethane	75-34-5	< 1	10.1	1	3102608	1 Jun 11	2995
Tetrachloroethene	127-18-4	< 1	10/1	1	31092608	1 Jan 11	DWR
Teteshyürofuran	109-99-9	< 5	ug/L	5	5982608	1 Jun 11	DAL
To' +	108-88-3	< 1	ug/L	1	8462608	1 Jan 11	DAM
1 Trichlocobenzere	87-81-6	< 1	10.01L	1	2M92608	1 Jan 11	2998
1.2.4-Trichlorobenzene	120-82-1	< 1	ug/L	1	5002608	1 Jun 11	DWR.
1,1,1-Trichloroethane	71-55-6	< 1	ug/L	1	5462608	1 Jun 11	DMH:
1,1,2-Trichloroethane	75-00-5	× 1	ug/L	1	E4482.608	1 Jan 11	2901
Trichloroethene	79-01-6	< 1	ng/L	1	SM9260B	1 Jun 11	DWR.
Trichlorofluoromethane	75-69-4	< 1	ug/L	1	SM8260B	1 Jun 11	DMGI
1,2,3-Trichloropropane	96-18-4	< 1	ug/L	1	5M8260B	1 Jun 11	Detti
Trichlorotrifluoroethane	76-13-1	< 1	109/L	1	EM9260B	1 Jun 11	Della.
1.2.4-Trimethylbensene	95-63-6	< 1	ng/L	1	SN92-60B	1 Jun 11	DWR.
1,3,5-Trimethylbenzene	109-67-8	< 1	ug/L	1	SM82.60B	1 Jun 11	Deta:
Visyl Chloride	75-01-4	= 1	og/L	1	EM82/60B	1 Jun 11	2901
m-Hylene and p-Hylene	179601-23-1	< 1	ng/t.	1	SN92-608	1 Jun 11	Dell9.
o-mylene	95-47-6	< 1	ug/L	1	SM82-60B	1 Jun 11	DMUN.

DIBROHUFLIGHOMETHABE (SUPPORTE) RECOVERY: 98 % TOLLERE-DÉ (SUPROGRTE) RECOVERY: 94 % 4-SROHUFLIGHORENEEME (SUPROGRTE) RECOVERY: 94 %

Dan O'Connell, Chemistry Laboratory Manager. New Ulm, MN

AN EQUAL OPPORTUNITY EMPLOYEE

Reporting Limit

1126 N. Front St. - New Ulm, MN. 56073 - 800-782-3557 - Fax. 507-359-2850 1411 S. 12th St. - Biomark, ND 56802 - 809-279-6885 - Fax. 501-258-9724 51 L. Avenue - Nevada, IA 50201 - 800-362-6855 - Fax. 515-382-3885 www.mvel.com

Page: 1 of 3

. BETH PROCTOR MN STATE UNIVERSITY/MANKATO 415 MALIN ST MANKATO MN 56001

Beport Date: 3 Jun 2011 Lab Number: 11-A22003 Work Order #:22-2239 Account #: 013359 Sample Matrix: GROONDMATER Date Sampled: 19 May 2011 13:30 Date Received: 20 May 2011

Sample Description: MSD 5A, 5B, 5C

Temp at Beceipt: 0.5 C

	Na Rocalyan Desolt	Method BL	Nethod Reference	Date Analysed	Analyst
Mater Digesticas Cadmium Chronolum Leod	<pre>0.015 mg/L < 0.01 mg/L < 0.01 mg/L < 0.03 mg/5</pre>	0.005 0.01 0.03	546010 096010 286010	26 May 11 26 May 11 20:45 26 May 11 20:45 26 May 11 20:45	JHS MM RH RH

Approval by:	R. D. 200-20	
	Dan O'Connell, Chemistry Laboratory Manager: New Ulm, MN	

Importing Lists

The reporting limit was elemented for ony analyte requiring a minimum at coded balow. $\frac{\mu}{r} = \frac{1}{2} \log \frac{1}{10} \max_{i=1}^{2} \max_{i=1}^{2} \log \frac{1}{10} \log \frac{1}{10}$ CREEDWINTON AN AN W LAN # 107-003-105 WE LAN # 99500100 NO BUCHE # 1003-8 IN ANTON # N-COL IN LAN #1 100 10 LAN #1 010 EPECEPTION. NO 34 # 127-023-125 WE LOA # 3790101403 X0 35202 # 00007# in warring # 37540 in Loa X 110 in Loa AN EQUAL OPPORTUNITY EMPLOYER.

1126 N. Front St. – New Uhn, MN 56073 – 800-782-3557 ~ Fax 507-359-2890 1411 S. 12th St. – Bismarck, ND 58502 – 800-279-4885 – Fax 701-258-9724 51 I. Avenne ~ Nerada, IA 50201 ~ 800-362-0855 – Fax 513-382-3885 www.mvtl.com

Page: 2 of 3

BETH PROCTOR MN STATE UNIVERSITY/MANKATO 415 MALIN ST MANKATO MN 56001

Report Date: 3 Jun 2011 Lab Number: 11-A22683 Work Order: 22-2238 Account 4: 013359 Account *: 013355 Sample Matrix: GROUNDWATER Date Sampled: 19 May 2011 13:30 Sampled By: Date Received: 20 May 2011

Sample Description: MSU 5A, 5B, 5C

Temp at Receipt: 0.5 C

	CAS #	As Received Result		Mathod RL	Nethod Reference	Date Analyzed	Analyst
Acetase	67-64-1	< 10	ug/L	10	SN8260B	1 Jun 11	DWR.
Allyl Chloride	107-05-1	< 1	09/L	1	5N9260B	1 Jun 11	DMB.
Benzene	71-43-2	< 1	ug/L	1	8N8260B	1 Jun 11	2.909
Bromobenzene	109-86-1	< 1	ug/L	1	SNE2-60B	1 Jun 11	DMR.
Bromochloromethane	T4-9T-5	< 1	ug/L	1	SN1260B	1 Jun 11	DMIR.
Bromodichloromethane	75-27-4	< 1	US/L	1	5N9260B	1 Jun 11	DMIN.
Bromoform	75-25-2	< 1	ug/L	1	SN8260B	1 Jun 11	2005
Bromonethane	74-83-8	< 2	ug/L	2	SN82038	1 Jun 11	DMR.
n=Butylbenzene	104-51-5	< 1	ug/L	1	5N12-00B	1 Jun 11	DHIR.
sec-Batylbenzene	135-98-8	< 1	ug/L	1	5N8260B	1 Jun 11	DMR.
t-Butylbenzene	99-D6-6	< 1	ug/L	1	SN82-638	1 Jun 11	DHR.
Carbon Tetrachloride	56-23-5	< 1	ug/L	1	SN1200B	1 Jun 11	DHR.
Chlopobenzene	108-90-T	≤ 1	ug/L	1	SN12005	1 Jun 11	DMIR
Chlorodibromomethane	124-48-1	< 1	ug/t	1	8N82638	1 Jun 11	COCR.
(h) ethane	75-00-3	< 1	ug/L	1	SNI200B	1 Jun 11	DHP.
Chi form	67-66-3	< 1	ug/L	1	SN1200D	1 Jun 11	DMR.
Chloromethane	T4-8T-3	< 1.	ug/L	1	DN#260B	1 200 11	DMB.
2-thiorotolwene	95-49-8	< 1	ug/L	5	SW8260B	1 Jun 11	DHR.
4-thlorotoluene	106-43-4	< 1	ug/L	1	SW1200B	1 Jun 11	DMP.
Camene	58-82-8	< 1	UT/L	1	5W82695	1 Jun 11	DMR.
1,2-pibromo-3-chloropropane	96-12-8	< 2	ug/L	2	SN92608	1 Jun 11	DOCR.
1.2-pibromoethane	106-93-4	< 1	UG/L	3	SW1260B	1 Jun 11	DNR.
Dibromomethane	74-95-3	< 1	ug/L	1	SW8200D	1 Jun 11	DMR.
1.2-Dichlorobenzene	95-50-1	< 1.	ug/L	1	DW82605	1 Jun 11	DMR.
1,3-Dichlorobessese	5 - 4 - 7 - 3 - 3	< 1	ug/t	3	200782600	1 Jun 11	DODE NO.
1.4-bichlorobenzene	106-46-7	< 1	UG/L	1	SW1200B	1 Jun 11	DNR.
Dichlorodifluoromethane	75=T1=8	< 1	ug/L	1	SW82495	1 Jun 11	DMS.
1,1-Dichloroethane	75 - 34 - 3	< 1	ug/L	3	SW62608	1 Jun 11	DDER.
1,2-Dichlorcethane	107-06-2	< 1	ug/L	1	9992608	1 Jun 11	DHR.
1.1-Dichlorcethene	75-35-4	< 1	ug/L	1	SV12000	1 Jun 11	DMR.
cis-1,2-Dichloroethene	156-59-2	< 1	Ug/L	1	0W82600	1 200 11	DMB.
trans-1,2-Dichloroethene	156-60-5	< 1	ug/L	1	SW92608	1 Jun 11	DRR.
Bichlorofluoromethane	75-43-4	< 1	UT/L	1	SW02000	1 Jun 11	DMR.
1.2-Dichloropropane	78=87=5	≤ 1	ug/L	1	5W82605	1 Jun 11	DMB.
1.3-Dichloropropage	142-28-9	< 1	GG/D	1	20182608	1 Jun 11	DRF.
2,2-bichloropropase	594-20-7	< 1	ug/L	1	SW02600	1 Jun 11	DNR.
1.1-Dichloropropens	563-58-6	< 1	UT/DU	1	5982400	1 Jun 11	DNR
cis-1.3-Dichloropropere	10061-01-5	< 1.	9975	1	20082608	1 Jun 11	DMR.
trans-1, 2-Dichloropropear	10061-02-6	< 1	ug/L	1	20022608	1 Jun 11	DHR
Ethyl Benzene	100-41-4	< 1	ug/L	1	SW02600	1 Jun 11	DNR.

reporting simit The reperting limit was simulated for any sharper requiring a clinition on model below: $\begin{array}{c} 0 = \text{Due to sample matrix} & \mathbf{0} = \text{Due to sample quartity} & \mathbf{0} = \text{Due to sample quartit$

CENTERION/1001 000 (AD # 021-011-120 MC 1AA # 0000413000 100-0120A # 1013-0 NO 000100 # 0-043 3A 1AD #1 132 3A 1AD #1 122 NVTL guarantee the scottary of the undpite down on the maps substituted for being. It is not possible for MVTLs to summarize all substituted on a particular sample will be the same or any other same of same or any other same of the same or any other same of the same or any other same of the same or any other same or any other same of the same of the same or any other same of the same of the same or any other same of the same of the same of the same of the same or any other same of the sa

AN EQUAL OPPORTUNITY EMPLOYES.

I126 N. Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2800
 I411 S. 12th St. ~ Bisemarck, ND 58502 ~ 800-279-6885 ~ Fax 701-258-9724
 51 L. Avenue ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-362-3885
 www.mvtl.com

Page: 3 of 3

BETH PROCTOR MN STATE UNIVERSITY/MANNATO 415 MALIN ST MANKATO MN 56001 Report Date: 3 Jun 2011 Lab Number: 11-A22683 Work Order: 22-2238 Account #: 013359 Sample Natrix: GROUNDWATER Date Sampled: 19 May 2011 13:30 Sampled By: Date Received: 20 May 2011

Sample Description: MSU 5A, 5B, 5C

Temp at Receipt: 0.5 C

	CAS #	As Received Result		Nethod ML	Method Reference	Date Analyzed	Analyst
Sthyl Sther	60-29-3	< 1	ug/L	1	SN8260B	1 Jun 11	DAIR
Hesachlorobutadiene	87-68-3	< 1	09/L	1	SN82-00B	1 Jun 11	1903
p-Isopropyltoluene	59-87-6	< 1	ug/L	1	5N82-60B	1 Jun 11	2908
Methyl Ethyl Ketone	78-93-3	< 5	ug/L	5	SN82608	1 Jun 11	Della
Methyl Isobutyl Netone	109-10-1	< 2	ug/L	z	SN02-603	1 Jun 11	Della
Methyl test-butyl Ether	1634-04-4	< 2	ng/L	2	59482.60B	1 Jun 11	DWDI
Methylene Chloride	75-89-2	4.2	ug/L	2	EM8260B	1 Jun 11	D9/R
Maphthalese	91-20-3	< 2	ug/L	z	\$992608	1 Jun 11	TWIN
n-Propylbensene	103-65-1	< 1	ng/L	1	5¥82608	1 Jan 11	DWPI
Styrene	100-42-5	< 1	ng/L	1	81482608	1 Jun 11	DWR
1, 1, 1, 2-TetrachLoroethane	630-20-6	< 1	ug/L	1	53692608	1 Jan 11	TWP
1,1,2,2-TetrachLoroethane	79-34-5	< 1	un/L	1	5902603	3 Jun 13	DWE
Tetrachloroethene	127-18-4	< 1	10/1.	1	5462603	1 Jun 13	DVE
Tetrahydroduran	109-99-9	< 5	10/1	ŝ	3M82608	1 Jan 11	DWD.
70.' 8	108-88-3	< 1	10/1	i	3892609	1 Jan 11	INP
3/3 Frichlorobenzene	91-61-6	< 1	10/1	1	5902609	3 340 11	CM F
1,2,4-Trichlorobensene	120-92-1	< 1	10/1	ĩ	5852600	1 Jan 11	120401
1,1,1-Trichloroethase	21-55-6	< 1	20/1	î	31082601	1 Jun 11	ONE
1,1,2-Trichloroethane	78-00-5	< 1	um/1	1	9902609	1 Jun 11	CIME .
Trichloroethese	78-01-6	< 1	100/1	ĩ	5952600	h Jun 11	COMP.
Trichlorofluoromethane	25-69-4	< 1	wer/L	î	stanich 6 ber	1 Jun 11	OWP
1,2,3-Trichloropropane	96-19-4	< 1	and h	1	9992609	1 740 11	DOM: N
Trichlorotrifluoroethane	76-13-1	< 1	Law Co.	1	0002600	1 Am 11	LINE.
1.2.4-Trimethylbennese	35-63-6	< 1	WW.C.	1	120012100	1	COM PL
1, 3, 5-Trimethylbenzene	108-67-8	6.1	107.07.	î	00002674	1 240 11	DOM: N
Vinyl Chloride	75-01-4	< 1	tage of the	1	QUECEED	1 700 11	LINE.
m-Xylene and m-Xylene	179601-23-1	e 1	LAT IT.	1	0482420	1 348 11	LINK PL
g-Xylene	101-47-K	2.1	LAT IT.	1	10000000000	1 248 11	COM P.
	22 41-0		ond is no		0462690	1 203 11	104.8

DIRROMOTIJONCHETHAME (SURBOGATE) RECOVERT: 97 % TOLJEME-GR (SURBOGATE) RECOVERT: 93 % 4-DROMOFIJOROBENZEME (SURBOGATE) RECOVERT: 97 %

Dan O'Connell, Chemistry Laboratory Managar New Ulan, MN

Reporting Limit

The reporting limit will disvolve any analysis requiring a silubiles as coded by by the first of the code of the second s

APPENDIX IX

DETAILED RESULTS OF LABORATORY ANALYSIS CONDUCTED ON SOIL/SEDIMENT SAMPLES COLLECTED MAY 19, 2011 BY MINNESOTA VALLEY TESTING LABORATORIES, NEW ULM, MINNESOTA

1126 N. Front St. – New Ulm, MN 56073 ~ 800.782.3557 ~ Fax 507.359.2890 1411 S. 12th St. ~ Bismarck, ND 58502 ~ 800.279-6885 ~ Fax 701.258.4724 51 L. Avenae ~ Nevada, IA 50201 ~ 800.362.0855 ~ Fax 515.382.3885 www.mvtl.com

Page: 1 of 2

BETH PROCTOR MN STATE UNIVERSITY/MARKATO 415 MALIN ST MANEATO MN 56001

Report Date: 3 Jun 2011 Lab Number: 11-N5323 Work Order #:22-2238 Account #: 013359 Sample Matrix: SOLL Date Sampled: 19 May 2011 9:30 Date Received: 20 May 2011 Date Received: 20 May 2011 PO #: PREPAID

Sample Description: MSU 1 SEDIMENT

Temp at Receipt: 0.5 C

	As Received Result		Hethod FL	Method Beference	Nate Analyzed	Analyst
DEO Selvent Addition					26 May 11	219
ICF-MR Wet Digestion				3w-816 3050	23 May 11	RBE
Wet Digestion				SW-846 3050	23 May 11	DDF.
Percent Moistare	48.9		S/A	WI LUST	26 May 11	DRF.
Chloroethane	* < 50	10/85	50	8021	26 May 11	DNR
thioromethane	* < 200	10.50	200	8021	26 May 11	DNR
Bromomethane	* < 100	10.0770	100	9021	26 May 11	OWN
Dichlorodifluoremethane	* < 200	100/80	2.00	8021	26 May 11	DWR
Visyl Chloride	* < 100	ug/Kg	100	8021	26 May 11	DWR
Methylene Chloride	* < 100	100/700	100	8021	26 May 11	DWR
Trichlorofluoromethane	* < 51	ng/mg	50	8021	26 May 11	DWB
1,1-Dichloroethene	* < 51	ng/Kg	50	8021	26 May 11	DWR
1.1-Dichloroethane	* < 50	ug/Kg	50	8021	16 May 11	DWR
trans-1,2-Dichloroethene	* < 50	109/109	50	8021	26 Hay 11	DWD
oreform	* < 55	ng/Kg	50	8021	26 Hay 11	DWB
r-Dichloroethane	* < 50	ug/Kg	50	8021	26 May 11	DWR
1, 1, 1-Trichloroethane	* < 50	100/100	50	8021	26 Hay 11	DWIN
Carbos Tetrachloride	* < 50	10g/10g	5-0	8021	26 Hey 11	DMD:
Bromodichloromethane	* < 50	ug/Kg	50	8021	26 may 11	DWR.
1.2-Dichloropropase	* < 50	ug/Kg	59	8021	26 May 11	DMIN.
trans-1,3-Bichloropropene	* < 50	09/199	55	8021	26 May 11	Date
Trichlorpethene	* < 50	ug/Kg	50	8021	26 May 11	DMR.
Chlorodibromomethane	* < 50	ug/10g	50	8021	26 May 11	Della.
1,1,2-Trichlorpethane	* < 50	ug/Kg	30	8021	26 May 11	DHIR.
cis-1.3-Dichloropropens	* < 50	08/198	50	0021	24 May 11	D965.
lconoform	* < 50	ug/Ng	50	8021	26 May 11	DMR.
1,1,2,2-Tetrachloroethane	* < 50	ug/Kg	30	8321	26 May 11	DHIR.
Tetrachloroethene	* < 50	48/109	50	9021	26 May 11	DM9.
Chlocobenzene	* < 50	ug/Ng	50	8121	26 May 11	DOER.
Benzene	* < 50	ug/lig	50	8121	26 May 11	DHP:
Toluene	* < 50	ug/Kg	80	9821	26 May 11	DMR
Ethyl Benzene	* < 50	44/84	50	0021	26 May 11	COK P.
1.2-Dichlorobenzene	* < 50	40/89	50	8021	26 May 11	DNR
1.3-DichloroBenzene	* < 50	40/80	50	8021	26 May 11	DNR
1,4-Bichlorobensene	* < 50	10/52	50	9021	26 May 11	DN FI
cis-1,2-Dichloroethene	* < 50	20/80	50	8021	26 May 11	DWR
1.3-Dichlocopropane	* < 50	ug/Kg	50	8021	26 May 11	DWR
1,2,3-Trichleropropane	* < 50	109/89	50	8021	26 May 11	DWPI
Allyl Chloride	* < 50	10g/#g	50	8021	26 May 11	DMR.
1. Z-Di Issanda Bhann	+ < 50	nm/Km	50	8021	26 May 11	DWR

b. Bayerbing Linit

CEMITIFICATION: NO LAB # 827-815-815 WI LAB # \$99567568 KB MICRO # 1012-01 HD MR/CB # R-040 EA LAB # 1 123 EA LAB # 1 002 MYTL parameters the accuracy of the analysis does not be sample submitted for bulks. It is inclosed by first Micro M

AN EQUAL OPPORTUNITY EMPLOYER

MEMBER ACIL

1126 N, Front St. ~ New Ulm, MN: 56073 - 800-782-3557 - Fax: 507-359-2890 1411 S. 12th St. - Bismarck, ND:58502 - 800-279-6885 - Fax: 701-258-9724 51 L, Avenue - Nevada, IA:50201 - 800-302-6855 - Fax: 515-362-3885 www.nvil.com

BETH PROCTOR. MN STATE UNIVERSITY/MANKATO 415 MALIN ST MANHATO MN 56001

Report Date: 3 Jun 2011 Lab Number: 11-H5323 Work Order #:22-2238 Account #: 013339 Sample Matriw: BOIL Date Sampled: 19 May 2011 9:30 Date Received: 20 May 2011 PO #: PREPAID

Sample Description: MSU 1 SEDIMENT

Temp at Receipt: 0.5 C

Page: 2 of 2

	As Rocal Result	tert	Method Mt.	Method Beference	nate Analyzed	Analyst
Hethyl Ethyl Ketone wytyl isobotyl Retors twindryhldobran wyglene and pryglese orgylese fumane 1.1.1.2.Tetrachloroethane 1.1.1.2.Tetrachloroethane Ethyl Ether Notore Notoreethane 3.5-tichloropethane Rosechiloromethane hyl tert-botyl Ether yren n-worgylenzens Rrosebenses 2-Chlorotolsere 1.3.5-tilmethylbezzens 4-Chlorotolsere 1.3.5-tilmethylbezzens teButylbertere 1.2.4-tilmethylbezzens sec-Sutylbertere 1.2.4-tilbethylbezzens sec-Sutylbertere 1.2.4-tilbethylbezzens sec-Sutylbertere 1.3.5-tilbethylbezzens sec-Sutylbertere 1.2.4-tilbethylbezzens sec-Sutylbertere 1.2.4-tilbethylbezzens sec-Sutylbertere 1.3.5-tilbethylbezzens sec-Sutylbertere	An Recal Hesult Hesult + < 500 +	4412 USL/20	Method #1. 200 200 200 200 200 200 200 200 200 20	Method Beference 8821 8821 8821 8821 8821 8021 8021 8021	Date Analyzed 26 May 11 26 May 11 26 May 11 28 May 11 28 May 11 28 May 11 26 May 11	Analyst DNR DNR DNR DNR DNR DNR DNR DNR DNR DNR
1,2-bihrbac-3-chloropropane 1,2,4-frichlorobanomi Exechlorobutadisree Baphtholeos 1,2,3-frichlorobanoes Dichloroflacrobethane Dichloroflacrobethane Dichloroflacrobethane Dichloroflacrobethane Dichloroflacrobethane Chronius Leos Cadmium	* < 100 * < 50 * < 50 * < 50 * < 50 * < 50 * < 50 * < 7.01 0.471	00\x8 u0\x8 u0\x8 u0\x8 u0\x8 u0\x8 u0\x8 u2\x8	100 50 50 50 50 50 50 50 50 50 50 50 50 5	0021 0021 0021 0021 0021 0021 0021 0021	28 May 11 28 May 11 26 May 11 14:DI 36 May 11 14:SL	DMR DMR DMR DMR DMR CMR SH SH DH TB

1-CALORO-4-FLUINDBERIERE (INTERGRITH) BROOVERY - 57 %

* WDCs reported on Dry basis.

Advoved by R.Q. oa

Das O'Connell, Chemistry Laboratory Manager New Ulin, MN

Asperting Links

CHARTIFICATION ON LAW & RT-515-125 BI LAW & SHEATHER BE MICH. # 1510-R BE MICH. # 1-040 14 LAW # 110 14 LAW # 510

WTT details for the second of the analysis does not be sample solutioned to building. It is not provide the VTTL to provide that is not evaluated on a particular laught full to the same using the people solution of controls and obtained on a particular laught full to the same using the people solution of controls and obtained on a particular laught full to the same using the people solution of controls and obtained on a particular laught full to the same using the people solution of controls and obtained on a particular laught full to the same using the people solution of controls and obtained on a particular laught full to the same using the people solution of controls and obtained on a particular laught full to the same using the people solution of people solut

AN EQUAL OPPORTUNITY INSPLOYEE.

156

1126 N. Front Sc. ~ New Lilm, MN 56073 - 800-782-3557 ~ Fax 507-359-2890 1411 S. 12th Sc. ~ Bismarck, ND 58502 - 800-279-6885 - Fax 701-258-9724 51 L. Avensz ~ Nevada, IA 50201 - 800-362-0855 - Fax 515-382-3885 www.mvil.com

Page: 1 of 2

BETH PROCTOR MN STATE UNIVERSITY/WANKATO 415 MALIN ST MANKATO MN 56001

Report Date: 3 Jun 2011 Lab Number: 11-05324 Work Order #122-2238 Account #: 013359 Sample Matrix: SOIL Date Sampled: 19 May 2011 10:00 Date Received: 20 May 2011 PO #1 PREPARD

Sample Description: MSU 2 SHOIMENT

Temp at Receipt: 0.5 C

	As Recei Result	they.	Method BL	Nothod Reference	bais analyzed	Analyst
TWO Bolvest Addition 129-85 Wet Digestion Percebt Monstars Chicoasthare Discosthare Discosthare Discosthare Discosthare Discosthare Discosthare Discosthare Discosthare Discosthare Discosthare Discosthare Discosthare 1,1-Discosthare 1,1-Discosthare 1,1-Discosthare 1,1-Discosthare 1,1-Discosthare 1,1-Discosthare 1,1-Discosthare 1,1-Discosthare 1,1-Discosthare 1,1-Discosthare 1,2-Discosthare 1,2-Discosthare 1,2-Discosthare Discosthare 1,2-Discosthare 1,2-Discosthare 1,2-Discosthare 1,2-Discosthare 1,2-Discosthare This of the set as 1,2-Discosthare 1,2-Discosthare 1,2-Discosthare 1,2-Discosthare 1,2-Discosthare 1,2-Discosthare 1,2-Discosthare 1,2-Discosthare 1,2-Disconsthare 1,2-Dis	As Recei Result 99.7 • < 50 • < 200 •	ved % ug/8g ug	Nethod BL 8/7A 50 2000 1000 1000 1000 1000 500 500 5	Nethod Reference SW-846 3030 SW-846 3030 SW-846 3030 WT 1387 9021 8021	0418 Analyzed 24 May 11 25 May 11 26 May 11 27 May 11 26 May 11 26 May 11 27 May 11 27 May 11 28 May 11 28 May 11 29 May 11 29 May 11 20 May	Analyst SJ SJ SJ SJ SJ SJ SJ SJ SJ SJ SJ SJ SJ
<pre>http://www.science.com/ Hromoform I.J.J.2.2-Twrtachloroethawe Tatrachloroethawe Chlorobenuste Bengins Toluane Echyl Bengene J.2-Dicklorobencese J.2-Dicklorobencese J.3-Gichlorobencese nis-1.3-Couchloroethere J.3-Gichlorobenee Aliyi (Thioribe 1.2-Dibromoethame</pre>	* + + + * * * * * * * * * * * * *	102/Kg 102/Kg 102/Kg 102/Kg 102/Kg 102/Kg 102/Kg 102/Kg 102/Kg 102/Kg 102/Kg 102/Kg 102/Kg 102/Kg	50 50 51 51 51 50 50 50 50 50 50 50 50 50 50 50 50 50	8021 8021 8021 8021 8021 8021 8021 8021	26 may 11 16 may 11 26 May 13 26 May 13 26 May 11 26 May 11 26 May 13 26 May 13 27 May 14 28 May 13 29 May 13 29 May 13 29 May 13 20 May 14 20 May 14 20 May 14 20 May 14 20 May 14 20 May 14	DWD DWD DWD DWD DWD DWD DWD DWD DWD DWD

-. Neperting Linit

The reporting limit our elevated for any analyte regulating a dilution at under brind θ = 000 for measurations of other analytes θ = 000 for measurations of other analytes t = 000 for measurations at under analyte t = 000 for measurations at under analytes t = 000 for measurations at under a single quantity.

DETUTION NO. NO. LAS & 027-011-127 (E) LAS & BORLETING (E) DETUTION (E) LAS A BORLETING (E) LA

AN INFAL OPPORTUNITY IMPLOYED

MEMOR ACIL

1126 N. Front St. - New Ulm, MN. 56073 ~ 800-782-3557 - Fax. 507-359-2890 1411 S. 12th St. - Birmarck, ND 58502 - 800-279-5885 - Fax. 701-235-9724 51 I. Ansmus. - Nevada, IA 50201 - 690-362-0855 ~ Fax. 515-382-3885 www.mvd.com

BETH PROCTOR MN STATE UNIVERSITY/MANKATO 415 MALIN 57 MANKATO MN 54001

Baport Bate: 3 Jun 2011 Lab Number: 11-95324 Work Order 4:22-2238 Account 4: 013359 Sample Matrix: BOIL Date Sampled: 19 May 2011 10:00. Date Beceived: 20 May 2011 PO #: PSEPAID

Sample Description: MSU 2 SEDIMENT

Temp at Receipt: 0.5 C

	As Receive Result	ent.	Method SL	Nethod Reference	Date noslyred	Realyst
<pre>Mathyl Bthyl Ketote Mathyl Jochutyl Metons Tetrahydrofuran a-dylams and prWylens Dusete 1,1,1,1-Tetrachloroethans 1,1,1,1-Tetrachloroethans Tetrahoroethifuwoethans Wilkens Nibrosomethans 1,2-500hloromethans Nyl tert-butyl Bthes yress n-Priopylbesises sconobanoss 2-Chioroethouse sconobanoss -Chioroethouse t-Outylbenies t-Outylbenies t-Outylbenies t-Outylbenies t-Outylbenies t-Outylbenies t-Sutylbenies p-Isopropylcolorie p-Rapropylcolorie 1,-0100000-7-chioropropate 1,-0100000-7-chioropropate</pre>	As Pocsi's Basult * < 500 *	10 10 10 10 10 10 10 10 10 10	RELISS RELISS 300 200 500 50 50 50 50 50 50 50 50	Perferences Perferences 0021	26 May 11 26 May 11 27 May 11 28 May 11	Resultynt Doff Doff Doff Doff Doff Doff Doff Dof
1,3,9-Trichlorobensetw Hearachiorobensetw Hapbthalenw 1,2,3-Trichlorobensetw Bichlorofluorobensetw Chronium Leed Cacutum	10.55 10.55 10.55	10/Kg 10/Kg 10/Kg 10/Kg 10/Kg 10/Kg 10/Kg 10/Kg	50 50 50 0,#30 2,49 0,010	8021 8021 8021 8023 8023 804-846 601D 504-846 6010 504-846 6020	16 May 11 26 May 11 36 May 11 16 May 11 26 May 11 14/01 26 May 11 14/01 21 May 11 14/31	DWB DWB DWB DWB DWB SA SA SA SA SA

1-CHLORO-Q-PLATORCHERIER (MURRICARE) ADDOVERT: 38 %

. VOCs reported on Dry Bedia.

Dan O'Connell, Chemistry Laboratory Monager: New UNIV, MN

a Reporting Limit.

AN BRUAL OPPORTUNETT EMPLOYER.

158

A IT M III ACIL

1120 N. Front St. - New Ulm, MN 56073 ~ 600.782.5637 ~ Fax 507-359-2890 1411 S. 12th St. ~ Bismarck, ND 58502 ~ 800-279-6485 - Fax 701-258-9724 51 L. Avense ~ Nevada, IA 50207 - 800-362-0855 - Fax 515-382-3885 werearritherm

HETH FROCTOR MN STATE UNIVERSITY/MASKATO 415 MALIN ST MANROATO MEN 56001

Report Date: 3 Jun 2011 Lab Number: 11-H5325 Work Order #122-2238 Account #: 013359 Semple Section Sample Matrix: SOLL Date Sampled: 19 May 2011 11:00 Date Seceived: 20 May 2011 PO 4: PREVAID

Sample Description: MSU 3 SEDIMENT

Temp at Receipt: 0.5 ⊂

	Re Recal Result	ved	Nethod RL	Hethod Reference	Tate Analyzad	Analyst
<pre>DBD Solvent Addition ICP-MS Net Digestion Mercent Soluture Chiercethame Chiercethame Chiercethame TechloroficTurrementhame Yiny1 Chields TrichlorofitDurremethame Yiny1 Chields Trichlorofitoromethame 1.1-Dichloroethume Chiercethume and Chiercethume I.1-Dichloroethume I.1.1-Trichloroethume I.1.2-Dichloroethume I.1.2-Dichloroethume I.2-Dichloroethume I.2-Dichloroethume I.2-Dichloroethume Trichloroethume Chiercethume Chiercethume Chiercethume Chiercethume Chiercethume Barnestane</pre>	Am Facult Result Result 660.6 < < 50 < < 200 < < 200	ved % ug/Kg ug	Method RL 90 200 100 200 100 200 100 50 50 50 50 50 50 50 50 50 50 50 50 5	Pachod Reference SN-846 3055 EN-846 3055 EN-846 3055 EX-846 3055 E	Telle Anolysmed 28 Hay 21 23 Hay 21 23 Hay 21 24 Hay 21 25 Hay 21 26 Hay 11 26 Hay 11 27 Hay 11 28 Ha	Analyst SP P200 P200 P200 D400
Toluene sthul Hentene 1,2-Bichlorobensene 1,3-Dichlorobensene 1,4-Dichlorobensene cis-1,2-Dichlorobensene	* < 50 * < 50 * < 50 * < 50 * < 50 * < 50 * < 50	40/84 40/84 40/84 40/84 40/84	50 50 50 50 50	0021 9421 9021 9021 9021 9021 9021	26 May 11 26 May 11 26 May 13 26 May 13 26 May 13 26 May 13	DATE DATE DATE DATE DATE DATE
cis-1,2-Dichloroethene 1,3-Dichloropropane 1,3,3-Trichloropropene Allyl Chloride 1,2-Dibrosothane	* < 50 * < 50 * < 50 * < 50 * < 50	103/50 103/50 103/60 103/60 103/60	50 50 50	#021 #021 #021 #021 #021	26 May 11 16 May 11 16 May 11 26 May 11 26 May 11	DWR DWR DWR DWR
- 10						

...... begarding Limit Reporting Levis
 The importing limit was elevated in two any statute proprint a subject to consequence of another interport of the set of th

AN INCAL OPPOSITUNITY IMPLOYED

HEMDE ACIL

1126 N. Front St. – New Ulm, MN 56073 – 800-782-3557 – Fax 507-359-2890 1411 S. 12th St. – Bismarck, ND 58502 – 800-279-6885 – Fax 701-258-3724 51 L. Avenar – Nevada, LA 50201 – 800-362-0855 – Fax 515-382-3885 mosloom

Page: 2 of 2

RETH PROCTOR MN STATE UNIVERSITY/MANEATO 415 MALIN ST. MANKATO MN 56001

Report Date: 3 Jun 2011 Lab Number: 11-8525 Work Order #:22-2238 Account #: 013359 Sample Matrix: BOIL Date Sampled: 19 May 2011 11:00 Date Received: 20 May 2011 PO #: PREPAID

Sample Description: MSU 3 SEDIMENT

Temp at Receipt: 0.5 C

	Ro Receiv Result	w£	Method RL	Hethod Reference	noal ysea	Analyst
Mathyl Sthyl Setons	* < 3E0	ug/Kg	501	1023	26 Hay 11	DWR
Methyl Isobutyl Retone	< 200	og/Eg	5.08	#021	26 Hay 51	SWB .
Tetrahydrofuren	 + < 580. 	ug/Kg	501	8021	26 May 11	DWR .
m-Wylane and p-Wylane -	7.4.98	199/Kg	50	8021	26 Hay 11	IWB
o-mylene	7.4.51	00/80	50	#021	26 Hay 11	OWN
Cusene	* < 51	ing/Kig	5.0	#021	26 May 11	DWB -
1,1,1,1-Tetrachiorowthane	+ < 31	og/Kg	50	0.21	26 May 11	288
1, 2-Oithloropropens	F < 30	119/50	50	#0.23	26 Hey 11	DWI1
Trichlorstrifluorosthans	$\tau < 50$	09/100	50	#021	26 May 11	DWH.
Ethyl Ether	+ < 50	-ug/kg	50	8021	26 may 11	DWR
Adetone	+ < 500	ug/Kg	501	8021	26 May 11	DWR .
Dibromomethane	 K - 5 R 	ug/Kg	90	8021	26 Hay 11	DWD.
2,3-Dichloropropane	$\tau < 400$	09/109	101	8023	26 May 31	TWE
BromochLoromethane	+ < 50	ing/Kg	50	8021	26 may 11	1943
hyl tert-butyl Ether	 K < 50 (ng/Kg	50	8023	26 Hey 11	DWII
/rene	< < 50	00/80	50	8021	26 Hey 11	DAG
m-Propylitenzene	+ < 50	ug/kg	50	8021	26 may 11	CW11
Bronchenzene	+ < 85	Gg/Rg	50	8021	26 may 11	DWR
2-Chlecotoluene	7. 4.30	ua/Ra	50	8021	26 Hey 11	DMD.
1, 3, 5-Trimethylbenzens	* < 50	ng/Rg	50	8021	2% may 11	THE
#-Chlorotslusne	+ < 50 ·	og/Ka	: 50	8021	24 may 11	2963
t-Sutylbenzere	7.4.30	100/100	50	8023	26 Hey 11	1992
1,2,4-Trimethylbenzene	Y < 50	00/80	64	8021	26 Mey 11	DATE
sec-Sctylbenzese	+ < 50	log/Mg	50	8021	26 may 11	Dém.
n-Isopropyltoluses	+ < 30	ud/Kg	50	8021	26 May 11	Della
n-Butylbengene	* < 50	ua/Ra	50	8021	26 Hey 11	Della.
1,2-mabromo-2-chioroprobate	7 < 500	129/109	105	8021	200 Way 11	13000
1.2.4-Trichlorobensens	* c 30	-og/Kg	-54	8021	24 May II	DéG:
Wexachlocobatediane	+ < 50	ust/Ke	50	8023	26 Nev 11	DHIII
Naphthalene	r < 50	00/80	340	8021	26 May 11	DATE
1,2,3-Trichlonsbessess	7. 4.40	449/100	60	8021	26 may 11	C2001
fitchLorofluoromethane	+ 6-40	ug/Kg	. 55	8023	26 Nev 11	DHR
Chromotom	/3.45	ma/Ra	0.231	594-#44 KO1D	26 Nev 11 14:01	RH.
Lead	(< 0.441	ma/ma	0.691	TM-844 6010	26 May 11 14181	K 31
Carbolium	0.200	ma / Ka	0.002	SM-848 6010	31 May 11 14:21	100

1-сислио-4-язловояванских плиносалуд-явлоният: 96 в

* VOCs reported on Dry basis.

Dan O'Connell, Chemietry Laboratory Manager New Ulrs, MN

The regarding limit was alwayed for any shalper requiring a dilution at come balow: $\begin{array}{c} s = 2 \\ s$

CARTIFICATION IN AN A 12-111-125 WI LAN A MEMOTINE BUILDED & 2011-11 ID WRITH & S-OFT ID. LAN A, 121 ID LAN A, 121

Interface of the series of the

AN REALAL OFFICIETUNITY EMPLOYIES.

160

1126 N. From St. - New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 1411 S. 12th St. ~ Bismarck, ND 58502 - 800-279-6885 - Fax 703-258-9724 51 J. 3ventae - Nevada, IA 50201 ~ 800-362-6855 - Fax 515-382-3885 newsmittle.om

Page: 1 of 2

BETH PROCTOR MEN STATE UNIVERSITY/MANKATO 415 MALIN ST MANKATO MN 56001

Report Date: 3 Jun 2011 Lab Number: 11-05326 Work Order #:22-2230 Account #: 013359 Sample Matrix: SOLL Date Sampled: 19 May 2011 13:30 Date Received: 20 May 2011 PO #: PREFAID

Sample Description: MSU 5 SEBIMENT

Temp at Receipt: 0.5 C

	As Secei Besalt	oral (Method SL	Nethod Deference	Date Mulyzed	Analyst
DRO Solvent Addition				59-046 3030	28 May 11 23 May 11	57 R93
Web Digestion				SM-846 3380	23 May 11	NUR
Percent Bossball	92.1		37.4	NI LUST	26 May 11	DM R
chloroethaze	* 6 50	100/21	5.0	9021	26 May LL	DMP.
Chloromethane	* < 204	10/25	200	8021	26 May 11	OHR
Economethane	* < 101	up/Rg	100	8021	26 May 11	0470
Dichlorodiflucounethans	* 4 200	10.50	200	8021	26 May 11	CHE
visyl chloride	* < 10b	10/24	100	#021	26 May 11	DWR-
Methylana Chimride	* < 15D	ug/Kg	100	WORL	26 May 22	OWT
Trichlorofluorseethaut	+ < 50	-ug/Kg	50	8021	26 May 11	DWR .
1.1-Dichloroethene	A 4 50	ua/Ka	50	8025	26 Bay 33	DWR:
1.1-michloroethane	* x 35	ng/mg	50	8021	26 may 11	DWR
trans-1,2-01 chlorisetherie	+ < 50	ug/Kg	50	8025	16 May 11	TW11
Incohen	* < 5p	100/60	5.2	8021	26 Hey 11	TWN
J-modul orgentane	* 6 50	09789	- 50	6023	26 may 11	D#61
1.1.1-Trichloroethane	* < 4D	Lug/Kg	50	8023	16 May 11	DWIT
Carbon TakeardsLord in	* < 50	ug/Kg	50	6023	26 May 11	Distra
Becomplice locomethane	+ < 50	00/80	58	8021	26 May 11	DBIR.
1.2-Frichlapponets	* < 50	Lag/Wg	50	8021	26 May 11	D#83
tranks1. Schick Loristensen	+ < 50	.ua/%a	51	8022.1	24 Map 11	DALA
TricklanosTheig	+ < 50	00/20	50	9021	16 May 11	C969
ch Louisd Strongenetic and	 K 50. 	1482/103	50	6021	26 May 11	DNW.
1. 1. 2. Prickler methods	* < 50	up/Ka	50	0021	26 May 11	DMR
and a range of the second seco	# x 50	in the	50	9521	26 May 11	ONE
Reside All a statistic operative	 	100/24	50	0821	26 May 11	ONE
1 1 2 2-Retractilographene	# 6 NO	40/89	50	8121	26 May 11	DIFR
The barrier of the second barriers	+ 2 60	111/20	8.0	9021	26 May 15	ONE
Chill an and the second	+ + 50	are/Km	50	8521	26 May 13	UNK
LUTCODALICADA	4 4 101	10/21	50	8021	26 May 13	UNK
mod manage	4 4 50	40/89	80	ROZI	06 May 11	JWR .
The hard a Report of some of	4 1. 20	un/Kn	80	8021	26 Hay 23	398
2. 2-Dichlorobertens	4 4 50	100.780	50	8021	26 Bay 31	TWE
1. 2. ministration and	4 4 44	100 100	50	8021	26 May 11	IWR.
1, 3-Dichicordeniero	+ 2 55	100 / 8.00	- 20	8027	16 may 11	TWE
1,4-OLENLOCODENIERS	4 4 55	tory / Kin	6.0	8021	26 Hey 11	DWH.
1 5-might entrymand	4 4 40	102/102	50	8021	26 Bby 11	290
1. 7. Set of Copies	1 2 50	110.000	5.0	8021	14 Hey 11	DAG
that a trachiopoproperse	+ 6 10	turn / Ker	6.8	8023	26 May 11	2008
1,2-Dibromosthane	+ < 50	492109	51	1500	26 Bby 11	DBD9

- PREVENTING ADDRESS The repertury limit out elevelse for any shalp's reputring a silution on coded Selon: $\frac{\theta}{\theta} = 0$ we be sample matrix $\theta = 0$ we be comparation at other conjuter 1 = 0 be to angula quarking $\theta = 0$ to internal product reputring INFORMATION ON ANY A ANTI-ALL-LDS OF LAS & SUB-ALL-LDS ON A SUB-ALL-LDS ON A LALL- ON SAFEK & R-FMA TH LAS & SN 34 140 1- 101 VATE, parameters for incoming of the conduct does not be supply sobrated for setting. It is not provide for VATE, as parameter that a true work thrankel as a parameter will be dor used on any effort sample address all conditions officially the respect on the totals, including completing to VATE, so a main individual and excelsions, all experiences are solvabled as for conditional property of classes, and address the provide same of total and total and

AN EQUAL OPPORTUNITY EMPLOYER.

MEMBER ACIL

1126 N. Franz Sr. ~ New Ulm, MN: 56073 ~ 800.782.3557 ~ Fax: 507.359.2890 1411 S. 12th Sr. ~ Biomarck, ND: 58502 ~ 800.279-6885 ~ Fax: 701.258.9724 51 L. Avenue ~ Nevada, IA: 50201 ~ 800.342.6855 ~ Fax: 515.382.5885 www.mwil.com

Page: 2.of 2

BETH PROCTOR MN STATE UNIVERSITY/MANKATO 415 NALIW ST MANKATO MN 56001 Report Date: 3 Jun 2013 Lab Number: 11-85326 Nork Order #122-2238 Account #1 013359 Sample Matrix: SOIL Date Sampled: 19 May 2011 13:30 Date Seceived: 20 May 2011 PO \$: PREPAID

Sample Description: MSU 5 SEDIMENT

Temp at Receipt: 0.5 C

	As Recal	bak	Mathod 3L	Nethod Reference	Analyzed	Analyst
Wethyl Ethyl Satone	* < 300	14g/Rg	500	8021	26 May 11	DHI
Mathyl Isobutyl Metone	* < 200	ug/10g	200	8021	26 Bay 11	DHE
Tetrahydrofuran	* < 800	V97159	310	6021	26 May 11	DALK
e-Nylere and p-Nylere	* <: 50	ug/Rg	.50	8021	04 May 11	2001
a-xylene	* < 50	ug/Ng	50	8021	36 May 11	DHID
Canana	* < 50	ug/Kg	59	0021	26 Bby 11	DALL
1,1,1,2-Twirschlorowitabs	* < 50	08/108	51	8021	36 May 11	2901
1,1-Dichloropropens	 < 50 	ug/Kg	54	8021	26 May 11	0440
Trichlorotrifluoroethane	* < 50	10g/10g	50	8023	26 Bey 11	DHIR
Ethyl Ether	* < 50	00/190	50	0021	26 may 11	DMDI.
Acetose	+ < 500	- ug/mg	540	6023	16 May 11	1900
million once thane	* < 50	ug/kg	50	8021	26 May 11	DWIR
2,2-bichleropropage	* < 180	1007100	100	8021	26 Mey 11	DWR
Broeachlordmethane	* < 60	09/10	50	8021	26 May 31	DWIT
thyl tert-butyl Ether	* + 55	- ug/mg	50	8021	26 may 11	2000
YEARA	A < 30	1027Rg	60	8025	26 Hay 31	1969
n-Propylbenzene	* < 51	ug/Kg	50	#021	26 Hay 11	1949
Bronobenzene	2 4 51	10,7810	50	8021	16 Hay 11	1941
2-Chlecotoluese	* 4.52	103/80	.60	8001	26 May 11	TWO:
1,3,5-Trimethyltensene	* < 32	ug/Kg	50	1208	26 May 11	DWD
4-Chlorotolusne	* < 53	69754	50	#021	26 May 52	DWN
1-Botylbansene	A 4 50	10,28.0	60	8021	26 May 21	DWD.
1,2,4-Trimethylkenrene	* < 51	ud/Rg	50	8021	26 Hay 03	OWR
sec-Butylbenzene	* < 51	80/83	- 50	8021	26 884 13	DVR.
p=Tsopropyltoluane	 * < 50 	-44/FH	50	#001	36 May 13	DNR.
n-Ratylbensene	* < 51	10/82	50	0001	26 May 11	OWR
1,2-tiltraso-3-chioropropase	* < 100	1013/810	100	#021	26 May 11	DMD:
1, 2, 4-Trichlornbennene	* < 50 .	10/81	50	0001	26 May 11	DMR
Herechlorobistadiene	* < 50	10/81	50	8021	26 May 11	DRK
Washthalese	* < 50	10/81	50	8021	26 May 11	DER
1.2.3-Trichlorobensere	4 x 51	un/ar	-50	9021	25 May 11	DWR
Dichloroflogromethese	*/2 50	1. 10/81	5.0	8001	26 May 11	TINK .
Thromium	/ 2.01	mp/%g	8.236	39-816 6010	26 Bay 11 14-01	964
Lead	4 0.709	/ mm/%g	0.708	SW-916 6510	26 May 11 18-01	DEI
Cedmium	0.128	ma/Kg	0.001	SW-046 4020	35 May 11 18-81	111

1-ORLOND-4-FLUTOROBERIZERE (SUBJOGATE), ABCOMERT: 89 &

" WOCS reported on Dry basis.

Date O'Connell, Chemistry Laboratory Manager: Nov Ulrs. MM

Repeating Lines

NO REQUE & LOCI-R. 10 MAYIN & R-DAY. 18 148 8; 120 15 168 8; 122 continuentes e sus e tri-thi-the si use e essurem

METALISTICATION FOR A PARTY OF THE INSTANCE THE OWNER OF INSTANCE IN STRUCTURE IN THE OWNER IN THE OWNER OF INSTANCE OF INSTAN

AN INCLASS OPPOPTENTTY IMPLOTES.

EMBE ACIL

APPENDIX X

DETAILED FIELD PARAMETER, NUTRIENT LEVEL, SULFATE, AND E. COLI RESULTS MAY-NOVEMBER 2011

	E. ecoli (CFU/100ml		Conductivity Surface	Conductivity 5ft	Conductivity 10ft
Date	`)	рН	(mohm/cm)	(mohm/cm)	(mohm/cm)
5/19	2.0	7.9	1.098	1.114	1.144
6/1	2.0	6.8	1.041	1.095	1.133
6/14	98.7	7.9	1.119	1.119	1.127
6/22	5.1	7.3	1.086	1.117	1.138
7/12	6.3	7.3	1.123	1.141	1.128
7/27	4.1	4.5	1.057	1.073	1.112
8/15	2,419.6	7.1	1.060	1.058	1.070
8/30	0.0	7.9	1.011	1.012	1.045
9/13	4.1	7.5	1.014	1.014	1.042
9/27	18.7	7.1	0.999	1.000	1.002
10/11	4.1	7.4	0.986	0.986	0.989
10/25	3.0	7.2	1.019	1.019	1.019
11/9	9.0	8.0	1.011	1.010	1.010
	Date 5/19 6/1 6/14 6/22 7/12 7/27 8/15 8/30 9/13 9/27 10/11 10/25 11/9	E. ecoli (CFU/100ml)Date)5/192.06/12.06/1498.76/225.17/126.37/274.18/152,419.68/300.09/134.19/2718.710/114.110/253.011/99.0	E. ecoli (CFU/100mlDate)pH5/192.07.96/12.06.86/1498.77.96/225.17.37/126.37.37/274.14.58/152,419.67.18/300.07.99/134.17.59/2718.77.110/114.17.410/253.07.211/99.08.0	E. ecoli (CFU/100mlConductivity SurfaceDate)pH(mohm/cm)5/192.07.91.0986/12.06.81.0416/1498.77.91.1196/225.17.31.0867/126.37.31.1237/274.14.51.0578/152,419.67.11.0608/300.07.91.0119/134.17.51.0149/2718.77.10.99910/114.17.40.98610/253.07.21.01911/99.08.01.011	E. ecoli (CFU/100mlConductivity SurfaceConductivity 5ftDate)pH(mohm/cm)(mohm/cm) $5/19$ 2.07.91.0981.114 $6/1$ 2.06.81.0411.095 $6/14$ 98.77.91.1191.119 $6/22$ 5.17.31.0861.117 $7/12$ 6.37.31.1231.141 $7/27$ 4.14.51.0571.073 $8/15$ 2,419.67.11.0601.058 $8/30$ 0.07.91.0111.012 $9/13$ 4.17.51.0141.014 $9/27$ 18.77.10.9991.000 $10/11$ 4.17.40.9860.986 $10/25$ 3.07.21.0191.019 $11/9$ 9.08.01.0111.010

	Conductivity	Temperatur			
	15ft	e Surface	Temperature	Temperatur	Temperatur
Date	(mohm/cm)	(°C)	5ft (°C)	e 10ft (°C)	e 15ft (°C)
5/19	1.152	18.1	16.0	12.7	9.6
6/1	1.153	19.7	18.5	13.7	10.0
6/14	1.139	20.5	20.7	18.5	11.0
6/22	1.128	22.4	21.8	18.2	11.1
7/12	1.134	26.5	26.4	20.8	18.9
7/27	1.112	30.0	27.9	22.1	14.7
8/15	1.110	26.5	25.4	24.4	14.7
8/30	1.153	24.1	24.1	23.3	15.8
9/13	1.099	22.1	22.6	21.6	20.3
9/27	1.012	17.3	17.1	16.9	16.7
10/11		17.9	18.0	17.3	
10/25	1.019	12.0	12.0	12.0	12.0
11/9	1.010	8.1	8.2	8.2	8.2
	Date 5/19 6/1 6/14 6/22 7/12 7/27 8/15 8/30 9/13 9/27 10/11 10/25 11/9	Conductivity15ftDate(mohm/cm)5/191.1526/11.1536/141.1396/221.1287/121.1347/271.1128/151.1108/301.1539/131.0999/271.01210/111.01910/251.01911/91.010	Conductivity 15ftTemperatur e SurfaceDate(mohm/cm)(°C)5/191.15218.16/11.15319.76/141.13920.56/221.12822.47/121.13426.57/271.11230.08/151.11026.58/301.15324.19/131.09922.19/271.01217.310/1117.910/251.01912.011/91.0108.1	Conductivity 15ftTemperatur e SurfaceTemperatureDate(mohm/cm)(°C)5ft (°C)5/191.15218.116.06/11.15319.718.56/141.13920.520.76/221.12822.421.87/121.13426.526.47/271.11230.027.98/151.11026.525.48/301.15324.124.19/131.09922.122.69/271.01217.317.110/1117.918.010/251.01912.012.011/91.0108.18.2	ConductivityTemperatur e SurfaceTemperatureTemperature e 10ft (°C)Date(mohm/cm)(°C) $5ft$ (°C)e 10ft (°C) $5/19$ 1.152 18.1 16.0 12.7 $6/1$ 1.153 19.7 18.5 13.7 $6/14$ 1.139 20.5 20.7 18.5 $6/22$ 1.128 22.4 21.8 18.2 $7/12$ 1.134 26.5 26.4 20.8 $7/27$ 1.112 30.0 27.9 22.1 $8/15$ 1.110 26.5 25.4 24.4 $8/30$ 1.153 24.1 24.1 23.3 $9/13$ 1.099 22.1 22.6 21.6 $9/27$ 1.012 17.3 17.1 16.9 $10/11$ 17.9 18.0 17.3 $10/25$ 1.019 12.0 12.0 12.0 $11/9$ 1.010 8.1 8.2 8.2

			Dissolved			
			Oxygen	Dissolved	Dissolved	Dissolved
Lake/		Secchi Disk	Surface	Oxygen 5ft	Oxygen 10ft	Oxygen 15ft
Waterbody	Date	(M)	(ppm)	(ppm)	(ppm)	(ppm)
HINIKER	5/19	1.5	15.70	10.20	3.50	
HINIKER	6/1	1.0	11.20	10.10	0.20	0.00
HINIKER	6/14	1.5	8.93	9.04	0.75	0.08
HINIKER	6/22	2.5	8.40	7.60	1.70	0.07
HINIKER	7/12	2.5	8.50	10.00	10.00	2.00
HINIKER	7/27	1.8	11.30	15.40	0.40	0.20
HINIKER	8/15	1.8	9.00	8.60	2.00	0.20
HINIKER	8/30	1.0	11.50	11.40	0.30	0.00
HINIKER	9/13	1.0	10.20	10.50	2.50	0.10
HINIKER	9/27	0.5	8.54	6.98	3.60	0.60
HINIKER	10/11	1.0	9.40	9.40	6.90	0.20
HINIKER	10/25	1.0	8.30	7.90	7.60	2.50
HINIKER	11/9	1.0	10.00	9.45	9.45	8.75

		Total P		P-PO4		N-NO2
Lake/		Surface	Total P 10ft	Surface	P-PO4 10ft	Surface
Waterbody	Date	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
HINIKER	5/19	0.10	0.12	0.10	0.14	0.0069
HINIKER	6/1	0.10	0.11	0.08	0.11	0.0030
HINIKER	6/14	0.09	0.06	0.12	0.11	0.0076
HINIKER	6/22	0.10	0.08	0.04	0.02	0.0037
HINIKER	7/12	0.09	0.11	0.03	0.04	0.0013
HINIKER	7/27	0.10	0.14	0.06	0.04	0.0120
HINIKER	8/15	0.66	0.10	0.59	0.05	0.0061
HINIKER	8/30	0.08	0.15	0.04	0.05	0.0064
HINIKER	9/13	0.10	0.13	0.26	0.02	0.0003
HINIKER	9/27	0.15	0.09	0.09	0.02	0.0053
HINIKER	10/11	0.07	0.08	0.02	0.02	0.0070
HINIKER	10/25	0.14	0.13	0.02	0.04	0.0015
HINIKER	11/9	0.10	0.11	0.14	0.10	0.0046
			N-NO3			
Lake/		N-NO2 10ft	Surface	N-NO3 10ft	SO4 Surface	SO4 10ft
Waterbody	Date	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
HINIKER	5/19	0.0071	0.6	0.8		
HINIKER	6/1	0.0064	1.0	0.7	115.0	114.0
HINIKER	6/14	0.0071	1.1	0.6	129.4	121.0
HINIKER	6/22	0.0032	0.7	0.8	117.0	117.0
HINIKER	7/12	0.0026	0.5	0.7	117.8	111.8
HINIKER	7/27	0.0184	0.8	0.7	101.6	99.4
HINIKER	8/15	0.0147	1.2	1.5	97.6	88.8
HINIKER	8/30	0.0118	0.1	0.8	127.0	123.0
HINIKER	9/13	0.0087	0.4	0.4	100.8	91.2
HINIKER	9/27	0.0031	0.5	0.6	97.6	94.2
HINIKER	10/11	0.0068	0.5	0.8	102.0	106.4
HINIKER	10/25	0.0042			114.0	110.0
HINIKER	11/9	0.0044	1.1	0.7	97.4	96.2
		N-NH3		Copper		
Lake/		Surface	N-NH3 10ft	Surface	Copper 10ft	
Waterbody	Date	(ppm)	(ppm)	(ppm)	(ppm)	
HINIKER	5/19					
HINIKER	6/1					
HINIKER	6/14					
HINIKER	6/22					
HINIKER	7/12	3.5	5.4			
HINIKER	7/27	0.6	0.8	0.864	1.720	
HINIKER	8/15	0.2	0.1	0.050	0.690	
HINIKER	8/30					
HINIKER	9/13					
HINIKER	9/27					
HINIKER	10/11					
HINIKER	10/25			0.050	0.116	
HINIKER	11/9					
				Conductivity	Conductivity	Conductivity
-----------	---------	--------------	--------------	--------------	--------------	--------------
Lake/		E. ecoli		Surface	5ft	10ft
Waterbody	Date	(CFU/100ml)	рН	(mohm/cm)	(mohm/cm)	(mohm/cm)
HALLETT	5/19	3.1	8.2	0.675	0.675	0.684
HALLETT	6/1	33.6	7.9	0.620	0.661	0.665
HALLETT	6/14	18.1	8.3	0.668	0.668	0.671
HALLETT	6/22	1,553.1	7.5	0.572		
HALLETT	7/12	7.4		0.577	0.577	0.595
HALLETT	7/27	0.0	6.4	0.524	0.525	0.564
HALLETT	8/15	221.1	7.9	0.458	0.461	0.475
HALLETT	8/30	3.0	8.4	0.475	0.675	0.568
HALLETT	9/13	1.0	7.6	0.511	0.511	0.511
HALLETT	9/27	5.1	7.5	0.565	0.565	0.566
HALLETT	10/11	5.2	7.0	0.584	0.583	0.584
HALLETT	10/25	0.0	7.2	0.604	0.605	0.608
HALLETT	11/9	1.0	7.6	0.628	0.627	0.628
		Conductivity				
Lake/		15ft	Temperature	Temperature	Temperature	Temperature
Waterbody	Date	(mohm/cm)	Surface (°C)	5ft (°C)	10ft (°C)	15ft (°C)
HALLETT	5/19	0.708	17.6	17.1	15.9	12.9
HALLETT	6/1	0.693	19.3	18.8	18.4	12.4
HALLETT	6/14	0.678	21.4	21.4	20.9	20.0
HALLETT	6/22		23.0			
HALLETT	7/12	0.679	27.5	27.8	25.1	19.0
HALLETT	7/27	0.602	30.4	29.2	26.3	24.1
	o / / =		~	~~ ~	~ ~ ~	~~ ~

HALLEII	6/14	0.678	21.4	21.4	20.9	20.0
HALLETT	6/22		23.0			
HALLETT	7/12	0.679	27.5	27.8	25.1	19.0
HALLETT	7/27	0.602	30.4	29.2	26.3	24.1
HALLETT	8/15	0.570	27.7	26.3	25.3	23.8
HALLETT	8/30	0.936	23.7	24.2	24.0	21.4
HALLETT	9/13	0.540	22.4	22.8	22.9	22.6
HALLETT	9/27	0.575	17.5	17.4	17.4	17.2
HALLETT	10/11		18.2	17.9	17.7	
HALLETT	10/25		12.6	12.6	12.0	
HALLETT	11/9	0.627	8.3	8.5	8.7	8.7

			Dissolved Oxygen	Dissolved	Dissolved	Dissolved
Lake/	_ .	Secchi Disk	Surface	Oxygen 5ft	Oxygen 10ft	Oxygen 15ft
W ater body	Date	(M)	(ppm)	(ppm)	(ppm)	(ppm)
HALLETT	5/19	3.5	10.40	9.90	12.30	
HALLETT	6/1	3.5	8.20	8.00	7.90	14.70
HALLETT	6/14	2.0	8.24	8.30	8.90	4.20
HALLETT	6/22		9.90			
HALLETT	7/12	3.5	8.40	7.80	16.02	18.50
HALLETT	7/27	1.8	10.80	12.10	16.10	2.30
HALLETT	8/15	0.8	17.00	19.00	11.30	4.00
HALLETT	8/30	0.8	10.80	10.86	10.70	0.66
HALLETT	9/13	2.0	9.00	9.00	9.30	3.70
HALLETT	9/27	1.5	10.00	9.76	9.51	7.99
HALLETT	10/11	2.5	9.00	8.50	8.70	6.60
HALLETT	10/25	2.0	9.30	9.30	9.40	9.60
HALLETT	11/9	2.5	10.12	10.31	10.25	10.26

						167
Lake/ Waterbody HALLETT HALLETT HALLETT HALLETT HALLETT HALLETT HALLETT HALLETT HALLETT HALLETT HALLETT HALLETT	Date 5/19 6/1 6/14 6/22 7/12 7/27 8/15 8/30 9/13 9/27 10/11 10/25 11/9	Total P Surface (ppm) 0.05 0.05 0.11 0.09 0.10 0.02 0.27 0.04 0.11 0.90 0.05 0.07 0.10	Total P 10ft (ppm) 0.05 0.05 0.06 0.09 0.08 0.08 0.08 0.03 0.04 0.08 0.04 0.04 0.04 0.04 0.11 0.08 0.08	P-PO4 Surface (ppm) 0.04 0.04 0.05 0.01 0.04 0.02 0.16 0.01 0.01 0.02 0.02 0.02 0.02 0.03 0.12	P-PO4 10ft (ppm) 0.05 0.05 0.05 0.01 0.02 0.01 0.02 0.04 0.01 0.02 0.04 0.01 0.02 0.02 0.02 0.03 0.09	N-NO2 Surface (ppm) 0.0487 0.0416 0.0485 0.0498 0.0332 0.0315 0.0310 0.0243 0.0240 0.0253 0.0262 0.0363 0.0350
Lake⁄ Waterbody	Date	N-NO2 10ft (ppm)	Surface (ppm)	N-NO3 10ft (ppm)	SO4 Surface (ppm)	SO4 10ft (ppm)
HALLETT	5/19	0.0436	3.5	3.3		45.0
	6/1 6/14	0.0424	3.0	3.4	46.8	45.0
HALLETT	6/22	0.0505	1.9	2.0	43.9 39.0	44.0
HALLETT	7/12	0.0404	1.5	2.3	34.0	35.6
HALLETT	7/27	0.0484	1.3	2.3	27.8	31.4
HALLETT	8/15	0.0398	1.2	1.5	29.3	30.2
HALLETT	8/30	0.0258	1.7	2.0	38.0	36.0
HALLETT	9/13	0.0243	1.5	1.7	30.7	28.5
HALLETT	9/27	0.0261	1.5	2.0	34.1	34.1
HALLETT	10/11	0.0282	1.7	1.7	34.5	35.9
HALLETT	10/25	0.0342			32.6	32.3
HALLETT	11/9	0.0353	2.0	2.2	36.2	34.9
Lako/		N-NH3 Surface		Copper	Coppor 10ft	
Waterbody	Date	(nnm)	(nnm)	(nnm)	(ppm)	
HALLETT	5/19	(ppiii)	(ppin)	(ppin)	(ppin)	
	6/1					
HALLETT	6/14					
HALLETT	6/22					
HALLETT	7/12	4.7	2.7			
HALLETT	7/27	0.1	0.1	0.021	0.014	
HALLETT	8/15	0.1	0.4	0.021	0.007	
HALLETT	8/30					
HALLETT	9/13					
HALLETT	9/27					
HALLETT	10/11					
HALLETT	10/25			0.037	0.025	
HALLETT	11/9					

Lake/					Conductivity Surface	Temperature
Waterbody	Date	E. ecoli	Turbidity	рН	(mohm/cm)	Surface (°C)
OXBOW	5/19	22.6	-	7.2	1.202	14.2
OXBOW	6/1	2,419.6	17	6.4	0.253	14.5
OXBOW	6/14	142.4	7	6.8	0.727	17.1
OXBOW	6/22	2,419.6	13	6.8	0.464	19.5
OXBOW	7/12	2,419.6	13	6.7	0.119	22.2
OXBOW	7/27	2,419.6	15	5.7	0.187	26.0
OXBOW	8/15	1,299.7	32	7.0	0.432	22.0
OXBOW	8/30		25	6.9	0.419	18.4
OXBOW	9/13		22	7.4	0.272	18.7
OXBOW	9/27	178.2	7	6.8	0.938	16.2
OXBOW	10/11	2,419.6	11	6.7	0.790	16.0
OXBOW	10/25	488.4	39	6.9	0.461	11.0
OXBOW	11/9	1,723.9	2	7.5	0.594	6.7
		Dissolved				
		Oxygen	Total P	P-PO4	N-NO2	N-NO3
Lake/	_ .	Surface	Surface	Surface	Surface	Surface
Waterbody	Date	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
OXBOW	5/19	6.80	0.10	0.09	0.0075	0.1
OXBOW	6/1	0.24	0.90	0.44	0.0323	0.5
OXBOW	6/14	1.04	0.56	0.16	0.0147	0.9
OXBOW	6/22	4.40	0.29	0.14	0.0365	0.6
OXBOW	7/12	5.70	0.16	0.08	0.0460	0.8
OXBOW	0/45	4.60	0.14	0.07	0.0473	1.1
OXBOW	0/10	2.00	0.22	0.08	0.1142	1.2
	0/30	0.00	0.44	0.00	0.0220	0.0
	9/13	0.72	0.47	0.20	0.1000	0.3
	9/27 10/11	1.50	0.47	0.02	0.0123	0.0
	10/11	0.41	0.96	0.22	0.7050	0.2
OXBOW	11/9	4.72	0.50	0.02	0.1398	0.3
		SO4	N-NH3	Copper		
Lake/		Surface	Surface	Surface		
Waterbody	Date	(ppm)	(ppm)	(ppm)		
OXBOW	5/19					
OXBOM	6/1	14.0				
OXBOW	6/14	5.8				
OXBOM	6/22	24.8	o –			
OXBOM	//12	1.3	3.7	0.000		
OXBOM	//27	0.2	0.2	0.032		
OXBOM	8/15	34.4	0.6	0.021		

0.066

19.3

6.8

96.2

114.8

104.4

51.7

OXBOW

OXBOW

OXBOW

OXBOW

OXBOW

OXBOW

8/30

9/13

9/27

10/11

10/25

11/9

Lake/					Conductivity	Temperature
Waterbody	Date	E. ecoli	Turbidity	pН	Surface	Surface (°C)
DITCH 14	5/19				1.967	15.9
DITCH 14	6/1					
DITCH 14	6/14		6	8.6	0.832	18.7
DITCH 14	6/22	1,203.3	29	7.5	0.185	20.9
DITCH 14	7/12					
DITCH 14	7/27	648.8	28	4.1	0.180	28.0
DITCH 14	8/15	488.4	4	7.9	1.822	26.2
DITCH 14	8/30					
DITCH 14	9/13					
DITCH 14	9/27					
DITCH 14	10/11					
DITCH 14	10/25					
		Dissolved				
		Oxygen	Total P	P-PO4	N-NO2	N-NO3
Lake/	_ .	Surface	Surface	Surface	Surface	Surface
Waterbody	Date	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
DITCH 14	5/19	4.40	0.13	0.10	0.0062	0.9
DITCH 14	6/1	45.44	0.07	0.07		
DITCH 14	6/14	15.11	0.37	0.07	0.0328	1.4
DITCH 14	6/22	4.66	0.20	0.11	0.0120	0.9
DITCH 14	7/12	5 00	0.00	0.44	0.0007	07
DITCH 14	1/27	5.80	0.20	0.14	0.0267	0.7
DITCH 14	8/15	8.10	1.30	0.03	0.0462	0.8
DITCH 14	8/30					
DITCH 14	9/13					
	9/27					
	10/11					
DITCH 14	10/25					
L eke/		Sulfates	N-NH3	Copper		
Lake	Data	Surrace (nnm)	Surface	Sur lace		
	5/10	(ppin)	(ppn)	(ppin)		
	5/19 6/1					
	6/17	121 2				
	6/22	0.2				
	7/12	0.2				
	7/97	73	0 1	0.010		
	8/15	7.3 284 0	5.0	1 000		
	8/20	204.0	5.0	1.330		
	0/30					
	Q/27					
	10/11					
DITCH 14	10/25					
	10/20					

APPENDIX XI

LINEAR REGRESSION FOR TOTAL PHOSPHORUS MEASURED ON THE SURFACE OF HINIKER POND AND TOTAL WEEKLY RAINFALL MAY- NOVEMBER 2011

Linear Regression for Surface TP Hiniker Pond and Total Weekly Precipitation

Data source: Data 1 in Notebook1

Col 3 = 0.0887 + (0.0702 * Col 2)

N = 13 Missing Observations = 0

R = 0.991 Rsqr = 0.981 Adj Rsqr = 0.980

Standard Error of Estimate = 0.022

	Coefficie	nt Si	td. Error	t	Р
Constant	0.0887		0.00659	13.459	< 0.001
Col 2	0.0702	2	0.00291	24.112	< 0.001
Analysis of	Variance:				
-	DF	SS	MS	F	: Р
Regression	1	0.288	0.288	581.4	412 <0.001
Residual	11	0.00545	0.00049	96	
Total	12	0.294	0.0245		
Normality T	Cest (Shapi	ro-Wilk)	Passed	(P = 0.698	3)
Constant Va	ariance Tes	st: Passe	ed $(P = 0.3)$	52)	
Power of pe	rformed te	st with al	pha = 0.050	: 1.000	

APPENDIX XII

FIGURE 38. SULFATE LEVELS FOR HINIKER AND HALLETT'S PONDS AT THE SURFACE AND DEPTH OF 10 FEET.

Figure 38. Sulfate levels in Hiniker and Hallett's Ponds, Mankato, MN May 2011-November 2011