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Abstract: A general unified solution of the plane Couette–Poiseuille–Stokes–Womersley incom-
pressible linear fluid flow in a slit in the presence of oscillatory pressure gradients with periodic
synchronous vibrating boundaries is presented. Oscillatory flow remains stable and laminar with
no-slip boundary conditions applied. Eigenfunction expansion method is used to obtain the exact
analytical solution of the general linear inhomogeneous boundary value problem. Fourier expansion
of arbitrary harmonic pressure gradient and non-harmonic wall oscillations was used to calculate
arbitrary driving of the fluid. In-house developed optimized computational fluid dynamics marching-
in-time finite-volume method was used to test and verify all analytical results. A number of particular
transients, steady-state and combined flows were obtained from the general analytical result. Gener-
alized Stokes and Womersley flows were solved using the analytical computations and numerical
experiments. The combined effects of periodic non-harmonic wall movements with oscillatory pres-
sure gradients offers rich and interesting flow patterns even for a linear Newtonian fluid and may be
particularly interesting for pumping-assist microfluidic devices. The main motivation for developing
a unified solution of the unsteady laminar planar Couette–Stokes–Poiseuille–Womersley flow origi-
nates in a need for, but is not limited to, in-depth exploration of flow patterns in hemodynamic and
microfluidic pumping applications.

Keywords: Couette flow; Poiseuille flow; Stokes’ 1st and 2nd problem; Womersley flow; eigenfunc-
tion expansion; complex Fourier series; moving boundaries; pressure gradient; shear-driven flows;
pressure-driven flows; microfluidics; micropumps

1. Introduction

The solutions of the classical fully-developed steady laminar flows, such as the planar
Couette (CT) and the planar Poiseuille (PO) flows in an infinite slit, have been known
for a long time [1–9]. The Couette flow originates in a fluid motion between two coaxial
cylinders and is shear-driven (wall-driven). If the radii of the cylinders are large, then
planar CT flow is approximated. On the other hand, PO flow is solely pressure-driven. A
planar steady-state Couette–Poiseuille (CP) flow is a linear combination of the CT flow with
one boundary moving at uniform speed and the PO flow between two fixed infinite plates
caused by the steady-state (proverse or adverse) pressure gradients (PG). These classic
solutions of the formidable nonlinear Navier–Stokes (N-S) equations also paved the way to
early investigation of the flow stability and transition to turbulence [2,5,10]. The Womersley
(WO) flow that can be seen as a generalization of the PO flow is pressure-driven caused by
oscillating PGs with fixed conduit boundaries. Such flows have also been known for quite
some time [4,5,7,11–15] and often under different names too. WO-type flow has important
applications in pulsatile arterial hemodynamics and many biological fluid systems [15–17].

Unsteady shear-driven flows with moving boundaries were first tackled with, so-
called, Stokes’ (ST) 1st and 2nd problem [1,4,5]. Stokes’ 1st problem (ST1) treats flow
transients after a single infinite flat plate is suddenly set in uniform motion. A fluid
then asymptotically settles into the steady-state (Couette-like) flow after decay of initial
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transients. Stokes’ 2nd problem (ST2) treats the harmonically vibrating infinite flat plate
problem that sets still semi-infinite fluid in oscillatory motion. The quasi-steady-state (QSS)
flow oscillations take place after the initial transients are attenuated. A fluid closer to the
moving boundary will be more affected by the oscillating wall due to viscous diffusivity,
which is chiefly responsible for the decaying transfer of the linear momentum deeper into
the fluid mass [17–19]. Stokes’ 2nd problem (ST2) is in many respects similar to Kelvin’s
problem of penetration of harmonically induced temperature waves into the semi-infinite
(soil) medium. Carslaw and Jaeger [20] provide detailed analytical solutions and discussion
of this important problem. Thus, ST (ST1 and ST2) and WO flows are by nature unsteady,
while CT and PO flows are steady flows.

Numerous experiments have confirmed the validity and theoretical soundness of these
particular basic flows. The general validity of the N-S equations in continuum hydrody-
namic approximation has also been confirmed in numerous experiments. The question of
the molecular, apparent, or effective slip at the liquid–solid boundary is still open and a
topic of intense current research activities. Although based on an entirely different concept,
the Lattice Boltzmann Method (LBM) originating in mesoscopic consideration of the par-
ticle density function on symmetry-preserving lattice including streaming and collision
operators have also confirmed the general validity of the incompressible N-S equations
in a low-Mach number LBM limit [21–24]. The continuum fluid behavior has also been
confirmed by the Molecular Dynamic (MD) and Metropolis Monte Carlo (MMC) simula-
tions on a true microscopic (particle) scale involving Hamiltonian of atomic and molecular
interactions [25–29]. At very small length scales, microscales for gases and nanoscales for
liquids, we do however expect departure from the continuum N-S equations [30,31].

The basic flow models mentioned above have been already used on many occasions
in modeling hemodynamic flow and cardiovascular circulation. Early measurements
by McDonald [32] and Hale et al. [33] were supported by theoretical considerations of
oscillatory pressure-driven flows in elastic tubes by Womersley [34,35]. A good review of
blood flow phenomena in arteries was presented in [36]. Daidzic [17] successfully used the
Womersley flow model to smooth out velocity profiles and recover oscillatory shear stress
information lost during multi-gate Doppler ultrasound measurements of blood mimicking
fluid in blood-vessel-type conduits. Additionally, very recently, Giusti and Mainardi [37]
studied viscoelastic fluid effects in fluid-filled elastic tubes. Although it was suspected for
a long time, it was actually only quite lately shown experimentally that the longitudinal
motion of blood vessel walls exists due to wall shear [38] on the blood vessel interface.

The main goal of this research article is to present a unified theory of laminar New-
tonian fluid flows with moving boundaries (shear-driven) and unsteady PGs (pressure-
driven) for the combined planar CT, PO, ST, and WO, or as termed here, a planar Couette–
Poiseuille–Stokes–Womersley (CPSW) flow. Flow is generated in planar (slit) geometry
between two infinite rigid impenetrable flat plates. Since the walls are parallel and imper-
meable only the axial velocity component remains. Interaction of forced wall oscillations
and applied unsteady PGs results in interesting transient and QSS flow patterns. Specif-
ically, non-harmonic shear and/or pressure forces for linear fluid are discussed for the
first time in a consistent and in-depth manner to the best of our knowledge. In many
instances the hemodynamic flows can be approximated with a Newtonian fluid and so
this theoretical numerical analysis is directly applicable. One of the important applications
of the findings from this study is in the utilization of shear-driven flows and the design
of micropumps.

2. Mathematical Model

Within the realm of continuum hydrodynamics, the N-S equations will be used as
a starting point to describe an unsteady motion of the Newtonian fluid. The flow is in-
compressible and divergence-free. The oscillatory non-harmonic synchro-phased periodic
motion of two solid interfaces in a slit geometry will be modeled using the Fourier expan-
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sion of the arbitrary periodic excitation waveforms. The PGs are modeled by assuming an
infinite pressure disturbances group speed and will thus be time-dependent only [8].

We made few important assumptions: fluid behavior is incompressible, linear, and
time-independent (no internal dynamics) where viscosity is shear- and temperature-
independent, flow remains laminar and isothermal at all times, entrance effects are ne-
glected, boundary walls are rigid and impenetrable, Dirichlet no-slip BCs exist, periodic
oscillations of boundary movement and PGs and hyperbolic effects are neglected. The
IBVP discussed here is well-posed [39,40].

2.1. Fluid Flow Model

The general 3D unsteady conservation equations for mass, momentum, and energy
for a linear compressible fluid in conventional tensor and vector notation and Cartesian
coordinates [2,5] yields:

1
ρ

Dρ
Dt = − ∂uj

∂xj

(
= −div

→
u = −∇→u

)
ρ Dui

Dt = fi +
∂σij
∂xj

ρcp
DT
Dt = ∂

∂xj

[
k(T) ∂T

∂xj

]
+ Φ + βT Dp

Dt

p = p(ρ, T)
xi = (x, y, z) ui = (w, v, u)

(1)

We can regard Equation (1) as a sort of “standard model” of continuum (low-Knudsen
number) fluid mechanics. The N-S equations and the thermal energy equation are es-
sentially phenomenological as the linear fluid stress–strain rate and the heat conduction
relationships are semi-empirical. Generally, for Newtonian (linear) fluids, we may write:

σij = −pδij + τij τij = 2µDij + λ ∂uk
∂xk

δij = 2µ
(

Dij − 1
3 δij

∂uk
∂xk

)
+ ξδij

∂uk
∂xk

Dij =
1
2

(
∂ui
∂xj

+
∂uj
∂xi

)
= 1

2
(
∂jui + ∂iuj

)
= 1

2

(
∇→u +∇→u

T
)

ξ =
(
λ + 2

3 µ
)
= 0 ⇒ λ = − 2

3 µ
(
Stokes′ Hypothesis

) (2)

where for conservative forces:

fi = ∇ψ =
∂ψ

∂xi
− ∂p

∂xi
+ fi = −

∂

∂xi
(p + ψ)

and:

β = −1
ρ

(
∂ρ

∂T

)
p=const

µ = const., cp = const., k = const.

The viscous dissipation function is a non-negative expression of the irreversible flow
energy conversion into heat due to deviatoric part of the stress tensor [2,5]:

Φ = τij
∂ui
∂xj

=

(
2µDij + λ

∂uk
∂xk

δij

)
∂ui
∂xj

(3)

The vorticity, which is the curl of vorticity and twice the angular rotation speed, is [2,5]:

ωk = −εijk
∂ui
∂xj

= −εijk∂jui (4)

Typically, it is assumed that the bulk viscosity ξ vanishes (Stokes hypothesis). Addi-
tionally, if the flow is incompressible, the second-viscosity term λ vanishes identically and
all is left from the deviatoric part of the stress tensor is the deformation tensor Dij.

A Newtonian incompressible fluid in an unsteady laminar fully developed flow
(w, v, u) with oscillatory PG components and both walls vibrating periodically in plane slit
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geometry (x, y, z) is investigated. Both the PGs and the wall motion may oscillate in an
arbitrary periodic fashion (ST2). A schematic of the flow geometry is illustrated in Figure 1.
Other than gravity, no other body forces are assumed to be acting.
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Figure 1. General inclined planar flow geometry with two oscillating boundaries. Not to scale.

The unsteady fully developed isothermal laminar flow in an infinite slit geometry
with no-slip BCs and incompressible Newtonian (linear) fluid can thus be reduced to the
following IBVP:

∂u
∂z = 0 ⇒ u = u(y, t)

ρ ∂u
∂t = µ ∂2u

∂y2 −
∂p
∂z (t) + ρ · g · cos γ

0 = − ∂p
∂y + ρ · g · sin γ

(5)

The auxiliary conditions are:

BC : u(+h, t) = Gss + g(t) = G(t) = εu
ssUw +

∞
∑

k=−∞
εu

k
Uw exp

(
ikΩu

0 t
)

BC : u(−h, t) = Rss + r(t) = R(t) = εl
ssUw +

∞
∑

m=−∞
εl

mUw exp
(

imΩl
0t
)

IC : u(y, 0) = z(y)
T = const. ρ = const. µ = const. εu

ss, εl
ss = const. (≤≥ 0)

The BCs are split into the steady-state part due to uniform wall motion (CT component)
and an arbitrary periodic wall oscillation (ST component) described by the appropriate
complex Fourier series. Similarly, the PGs consist of the steady-state (PO) component
superposed onto a linear combination of many (WO) harmonic components. The pha-
sors of the PGs are complex numbers which contain amplitude (modulus) and phase
(argument) information:

− ∂p
∂z (t) + ρ · g · cos γ =

(
− ∂p

∂z

)
ss
+

∞
∑

k=−∞
Pk exp(ikω0t) Pk = |Pk| · eiϕk ∈ C i =

√
−1 (6)

The steady-state (static) part of the PG includes gravity component:(
−∂p

∂z

)
ss
= Πss + ρ · g · cos γ = Pss = const. Πss ≤≥ 0 Pss ≤≥ 0 γ ∈ [0, π]

Although the real-valued steady-state externally applied PG and the DC-value, or
average-value, zero-order Fourier coefficient have different origins they can be lumped together.
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Expressions for oscillating PGs and wall movement are conveniently given in a com-
plex form greatly simplifying theoretical analysis. All periodic functions for the PGs and the
BCs are real-valued, thus possessing conjugate symmetry, (C∗n = C−n) [39–42]. The complex
Fourier series can be converted into the classical or the phase form for an arbitrary function:

f (t) =
∞
∑

n=−∞
Cneinω t = A0

2 +
∞
∑

n=1
[An cos(nω t) + Bn sin(nω t)]

= A0
2 +

∞
∑

n=1
Dn cos(nω t + ϕn) =

A0
2 +

∞
∑

n=1
Kn sin(nω t + φn)

(7)

where:

Dn = Kn =
√

A2
n + B2

n = 2
√

CnC−n = 2|Cn| ϕn = − tan−1
(

Bn

An

)
φn = tan−1

(
An

Bn

)
The complex Fourier coefficients are calculated using the inherent orthogonal property

of conjugate complex exponentials:

Cn = 〈 f ,ϕ∗n〉
‖ϕn‖2 = 1

T

T∫
0

f (t) · e−inω tdt

‖ϕn‖2 = 〈ϕn, ϕ∗n〉 = 1
T

T∫
0

einω t · e−inω tdt = T n = 0,±1,±2, . . .
(8)

It is convenient to express the complex Fourier coefficients as phasors where the
modulus is |C−n| = |C∗n| = |Cn|, and the phase satisfies φ−n = −φn. The complex Fourier
series now yields:

f (t) =
∞

∑
n=−∞

Cn ϕn =
∞

∑
n=−∞

〈 f , ϕ∗n〉
‖ϕn‖2 ϕn = C0 +

∞

∑
n=1

[
Cneinω t + C−ne−inω t

]
= C0 +

∞

∑
n=1

2|Cn| cos(nω t + φn) (9)

One must be careful when calculating the phase constant. All quadrants must be
inspected as the inverse tangent is not a single-valued function. The modulus of the
complex Fourier coefficient must be a real non-negative number. The complex Fourier
coefficients carry the information from both, the real and the imaginary, part if the function
is neither even nor odd (An = 2 · <{Cn}, Bn = −2 · ={Cn}). For an even real-valued
function, Cn = C−n = C∗n = An/2 (An = A−n), while for an odd real-valued function,
C−n = −Cn = Bn/2, B−n = −Bn, and, C0 = A0 = 0. Any function can be represented as
the sum of respective even and odd functions. In the case of non-harmonic periodic wall os-
cillations, the Fourier series will necessarily contain both, real and imaginary, components.

Due to the mass conservation the only velocity component surviving is the longitudinal
(axial) along the conduit axis. Due to the divergence-free flow, the second-viscosity term
disappears identically from the general strain rate expression (bulk viscosity is zero) without
the need to invoke Stokes’ hypothesis. Although we calculate dissipation function, the
energy equation is not solved explicitly as the flow is enforced to remain isothermal.
Alteration of physical properties due to temperature changes are thus neglected and
difficult nonlinear coupled problem is avoided. As the slit thickness is small, the gravity
plays no significant role in the lateral direction and the pressure is uniformly distributed
in each cross-section. However, the gravitational potential may be important for driving
flows in non-horizontal slits.
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2.2. Dimensional Form of the IBVP

The main IVBP in compact dimensional form yields:

ρ ∂u
∂t = µ ∂2u

∂y2 + Γ(y, t)
BC : u(+h, t) = G(t)
BC : u(−h, t) = R(t)
IC : u(y, 0) = f (y)

(10)

The expression for PG source function (only time dependent here but we keep spatial
dependence for generality), is:

Γ(y, t) = Pss +
∞

∑
m=−∞

Pm exp(iωmt) = Pss + P0 +
∞

∑
m=1

2|Pm| cos(mω0t + φm) (11)

Additionally, for BCs:

G(t) = Gss + g(t) = εu
ssUw +

∞
∑

k=−∞
εu

kUw exp
(
iΩu

k t
)
= εu

ssUw + εu
0Uw + Uw

∞
∑

k=1
2
∣∣εu

k

∣∣ cos
[(

kΩu
0 t + φk

)]
R(t) = Rss + r(t) = εl

ssUw +
∞
∑

j=−∞
εl

jUw exp
(

iΩl
jt
)
= εl

ssUw + εl
0Uw + Uw

∞
∑

j=1
2
∣∣∣εl

j

∣∣∣ cos
[(

jΩl
0t + ψj

)] (12)

In the case of the periodic wall motion, there will be no Couette velocity components
(εl

ss = εu
ss = 0). In the case of an odd wall-driving function, the (Stokes’ component) DC-

value will be zero. In the case of an even function, a non-vanishing velocity DC-component
can be regarded as a standalone steady-state value. The ICs are general and an arbitrary
velocity distribution at time zero can be specified.

2.3. Nondimensional form of the IBVP

Transforming general CPSW flow into dimensionless form is difficult. There are
several choices of the characteristic velocity [5,7]. In the case of the classic CT flow, the
plate’s uniform velocity is the characteristic velocity and could never be exceeded in the
flow field. For a planar PO flow, the maximum velocity in the center of the parabolic
profile which is a function of the uniform PG can be used as a characteristic velocity.
For the oscillatory PG (WO-component) we could use amplitude and frequency of any
harmonic as a characteristic velocity. It is recommended to use the one with the largest
magnitude [7] to ensure range [0, 1], but that is not always possible. Let us now define new
dimensionless variables:

u∗ = u
U0

y∗ = y
h t∗ = t

tD
= t ν

h2 = t
h2/ν

ω∗ = ω h2

ν Ω∗ = Ω h2

ν tD = h2

ν

P∗ss =
Pss h2

2µ Uch
P∗0 = P0 h2

2µ Uch
|Pm|∗ = |Pm | h2

2µ Uch
Γ∗ = Γ h2

µ Uch
τ∗ = τ h

µ Uch
Φ∗ = Φ h2

µ U2
ch

(13)

The velocity scaling will change depending on the particular flow situation, i.e.,
presence of the wall movement or steady and/or dynamic PGs. The characteristic velocity
could be uniform wall velocity, maximum plane PO velocity in the slit centerline or the
mth-harmonic WO velocity caused by respective dynamic PG oscillations:

Uch = Uw or Uch =
Pss h2

2µ
or Uch =

P0 h2

2µ
or Uch =

|Pm|
ρ ωm

(14)

One can now define a Womersley (WO) number which is often also referred to as the
“Witzig” number [37] or the “kinetic Reynolds” number (square of the WO number) [2,5,7]:

αω = h
√

ω

ν
αΩ = h

√
Ω
ν

ω∗ = α2
ω = h2 ω

ν
Ω∗ = α2

Ω = h2 Ω
ν

(15)
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The WO-number, αn = α0
√

n, has a very specific physical meaning and can be thought
of as the ratio of the half channel height versus Stokes’ or viscous penetration layer. For
example, due to wall oscillations the momentum (or more appropriately—vorticity) is
being diffused. The ensuing pseudo “shear-waves” are purely dissipative (and dispersive)
and attenuate exponentially with distance from the solid vorticity-generating surfaces.
Alternatively, we may think of the WO number as the ratio of times due to diffusion and
oscillation or as the ratio of velocities due to oscillations and viscous momentum diffusion:

αΩ =
h√

ν/Ω
∼=

h
δ

Ω∗ = α2
Ω =

h2/ν

1/Ω
=

tdi f f usion

toscillation
Ω∗ = α2

Ω =
Ω h
ν/h

=
uoscillation
udi f f usion

A very high WO number (>10) would in this case mean that the lateral channel
dimension is much larger than the zone of influence (radius of action) of the moving surface
and that the bulk of the fluid will not “feel” its presence:

αΩ =
√

Ω∗ >> 1 ⇒ h >> δ, toscillation << tdi f f usion, uoscillation >> udi f f usion

For small WO numbers, the viscous penetration layer extends practically instantly
over the entire lateral flow domain and diffusion is rapid compared to slow wall oscilla-
tions. In this case, we have a sort of quasi-steady-state planar PO flow where the fluid
follows the slow boundary motion with vanishing phase lag. Hence, we arrive at the
quasi-equilibrium solutions:

αΩ =
√

Ω∗ << 1 ⇒ h << δ, toscillation >> tdi f f usion, uoscillation << udi f f usion

By using the dimensionless variables, defined in Equation (13), and substituting them
into Equations ((10)–(12)), we obtain the non-dimensional IBVP:

∂u∗
∂t∗ = ∂2u∗

∂y∗2 + Γ∗(y∗, t∗)
BC : u∗(+1, t∗) = G∗0 + g∗(t) = G∗(t∗)
BC : u∗(−1, t∗) = R∗0 + r∗(t) = R∗(t∗)
IC : u∗(y∗, 0) = f ∗(y∗)

(16)

with
Γ∗(y∗, t∗) = 2P∗ss +

∞
∑

n=−∞
2|P∗n | exp[i(nω∗0 t∗ + ϕn)] = 2P∗ss + q∗(y∗, t∗)

G∗(t∗) = εu∗
ss +

∞
∑

k=−∞
εu∗

k exp(ikΩ∗0t∗)

R∗(t∗) = εl∗
ss +

∞
∑

m=−∞
εl∗

m exp(imΘ∗0t∗)

(17)

where:

(εu
ss)
∗ = εu

ss
Uw

Uch
(εu

k)
∗ = εu

k
Uw

Uch
P∗ss =

Pssh2

2µ Uch
|P∗n | =

|Pn|h2

2µ Uch

The asterisk here refers to dimensionless and not the complex conjugate values. In
order to avoid cluttering the symbols and equations we are going to intentionally omit
asterisk superscript for dimensionless quantities in subsequent derivations.

2.4. Boundary Conditions and Stability of Pulsatile Flows

The question of Dirichlet’s no-slip BCs for velocity in micro-fluidic flows of similar
geometry has already been thoroughly discussed in [18]. Additionally, the general mixed
BCs often referred to as Robin BCs for fluid velocity can be expressed as in the case of
partial slip:

∆uwall = u
(
0+, t

)
− uwall = Ls

(
∂ u
∂y

)
y→0+

(18)
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where Ls is Navier–Maxwell slip length. Here, we have assumed full no-slip condition in
both forward and return wall motion and the Robin BC boils down to Dirichlet BC.

The classical linear stability theory [2,4–6,10] predicts absolute stability for steady
planar CT and PO flows in rigid tubes, i.e., entirely contrary to experimental evidence.
On the other hand, plane PO flow has critical Reynolds number of about 5750 obtained
by solving the Orr-Sommerfeld equation [2,4–6,10]. Experimentally, the first Tollmien–
Schlichting (TS) wave appears, and the onset of flow transition occurs at Reynolds numbers
as low as 360. The stability of pulsatile flows in cylindrical and plane geometries is of equal
importance and is gaining more importance for microfluidic applications. The science of
the flow stability is vast and cannot be treated here in any detail. It suffices to say that the
maximum Reynolds number occurring in our analysis stays well below the critical and the
assumption of an all-time laminar flow thus seems appropriate.

3. Methods and Materials

To obtain the closed-form analytical solution of this linear non-homogeneous IBVP
problem we use the powerful method of eigenfunction expansion (EEM) [39–43]. The entire
linear non-homogeneous IBVP problem can be treated directly by EEM. However, in order
to arrive at a general solution in a physically more transparent way we will decompose the
velocity field into a steady-state, transient and quasi-steady-state (QSS). This is permissible
as the governing PDE is linear and the general principle of linear superposition applies.
Keeping in mind that all variables are dimensionless, we can write for the velocity field:

u(y, t) = uss(y) + v(y, t) + w(y, t) (19)

The first component on the RHS is the steady CP flow that may also contain DC PG
components from the respective Fourier expansions. The 2nd term represents transient
response to ICs and will vanish after the finite amount of time (rapidly in most cases).
The 3rd velocity component represents the QSS velocity field (ST-WO component) as a
response to arbitrary non-harmonic boundary motion and unsteady PG. However, the third
component may also contain some transient responses due to phase information contained
in the Fourier expansions.

To solve resulting IBVPs by EEM we invoke the formidable and well-developed math-
ematical apparatus of self-adjoint linear operators in infinite-dimensional separable Hilbert
function space [44–48] (or L2-metric space in particular). It is the same theoretical basis
that lies at the mathematical foundation of the quantum mechanics. The eigenfunctions of
the self-adjoint (Hermitian) linear differential operator in Hilbert space form a closed and
complete basis set and are used in generalized Fourier series expansions.

3.1. Solution of the Steady-State BVP

The first BVP defines steady CP flow and is described in a dimensionless form as:

0 = d2uss
dy2 + 2Pss

BCs : v(+1) = Gss = εu
ss v(−1) = Rss = εl

ss Pss = const.
(20)

The solutions for the dimensionless velocity field, flow rate, velocity gradient, tangen-
tial stress, vorticity, and dissipation (Pss ≤≥ 0, −1 ≤ y ≤ +1) are:

uss(y) =
[

Pss
(
1− y2)+ εu

ss+εl
ss

2 +
(

εu
ss−εl

ss
2

)
y
]

Qss =
(

εu
ss + εl

ss

)
+ 4Pss

3 = 2 · uss

∂u(y,t)
∂y = duss(y)

dy =
(

εu
ss−εl

ss
2

)
− 2 · Pss · y τzy = duss(y)

dy =
(

εu
ss−εl

ss
2

)
− 2 · Pss · y

ωz = − duss(y)
dy = 2 · Pss · y−

(
εu

ss−εl
ss

2

)
φ =

(
duss
dy

)2
=

[(
εu

ss−εl
ss

2

)2
− 2 ·

(
εu

ss − εl
ss

)
Pss · y + 4 · P2

ss · y2
] (21)

In general CP flow, the uniform wall velocity (of a faster moving wall) is used to obtain
the dimensionless form and the non-dimensional PG can assume any value (Pss ≤≥ 0).
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Clearly, a plethora of uniform wall movements in combination with a choice of static
(proverse or adverse) PGs are possible.

If bounding infinite walls are immovable, we obtain the classical plane PO flow,
uss(y) = Pss

(
1− y2), with, Pss = 1. In the plane PO flow, the wall velocity is zero and

cannot be used for scaling purposes. Therefore, the characteristic velocity is the maxi-
mum velocity in the center and dimensionless PG must be Pss = 1, in accordance with
Equations (13) and (14).

3.2. Solution of the Homogeneous IBVP

An infinite-dimensional Hilbert space is an inner-product separable normed metric
space with definite algebra and topology. Completeness of eigenfunctions in L2 or Hilbert
space is guaranteed by, often called, Parseval’s equality [39–43] which forms the equivalence
part of the Bessel’s inequality and represents energy conservation principle (completeness of
eigenfunctions). The L2 or mean-square convergence is automatically assured for complete
basis sets only requiring that the function is square-integrable in the Lebesgue integral
(absolute) sense or is Lebesgue-measurable [44–50]:

‖ f ‖2 =

b∫
a

| f (x)|2dx < ∞ (22)

The mathematical apparatus of functional analysis and L2 space used here is based
on the celebrated Riesz–Fisher theorem [44–47] which establishes the isomorphism of
vector space l2 and function space L2 as Hilbert spaces. Assuming a complete basis set
of eigenfunctions, a Lebesgue square-integrable function (vast majority also Riemann-
integrable) can be represented as a linear combination of orthonormal eigenfunctions:

f =
∞

∑
n=1

CnYn f =
∞

∑
n=1
〈 f , Yn〉Yn

where the generalized Fourier coefficients Cn = 〈 f , Yn〉 follow from orthogonality:

〈 f , Ym〉 =
∞

∑
n=1

Cn〈Yn, Ym〉 =
∞

∑
n=1

Cnδnm = Cm 〈Yn, Yn〉 = ‖Yn‖2 = 1 (23)

The second problem is a simple homogeneous IBVP with modified ICs originating
due to steady-state CP flow:

vt = vyy
BCs : v(+1, t) = v(−1, t) = 0
IC : v(y, 0) = f (y)− uss(y) = F(y)

(24)

This is a parabolic PDE problem that can be solved using the SOV [31–34] method
(sometimes also called Fourier method). The solution of the simple Sturm–Liouville
(−Y′′n = λnYn) BVP is:

v(y, t) =
∞

∑
n=1

An · Tn(t) ·Yn(y) (25)

The cosine eigenfunction would be a solution of the BVP if the flow is symmetric (BCs
are identical or periodic). The eigenvalues (zeros) of the cosine eigenfunctions are:

λn = k2
n =

[
(2n− 1)

π

2

]2
n = 1, 2, 3, . . . (26)
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However, when problems are asymmetric, we need both cosine and sine eigenfunc-
tions appearing alternatively and with changing signs. The general asymmetric solution
can be thus represented by the following eigenvalues and eigenfunctions:

λn = k2
n = (nπ)2 Yn(y) = sin

[
kn

(
y + 1

2

)]
n = 1, 2, 3, . . . (27)

This eigenfunction is basically a sum of cosine and sine eigenfunctions appearing
alternatively in infinite sums. All eigenvalues here must be non-negative real numbers as
required by the regular Sturm–Liouville (S-L) theory [39–43,51–54]. Classical Fourier series
are only one of the infinitely many possible complete eigenfunction basis sets.

We mostly treat symmetric flows here with cosine eigenfunctions, describing a com-
plete basis set of normalized and orthogonal (orthonormal) eigenfunctions:

〈Yn, Ym〉 =
+1∫
−1

Yn(y) ·Ym(y) dy =

+1∫
−1

cos(kny) · cos(kmy) dy = δnm 〈Yn, Yn〉 = ‖Yn‖2 = 1

We have not yet stated ICs explicitly. For example, a PO parabolic velocity profile in a
slit could be used for studying stopping (shutdown) flow dynamics. For simplicity and
to obtain fast closed-form solutions, we assume uniform velocity profiles only (say, zero
or one):

IC : ε0
i = εi

U0

Uch
0 ≤ ε0

i ≤ 1

The Fourier coefficients of the 2nd IBVP are now:

An =
〈F, Yn〉
‖Yn‖2 = 〈F, Yn〉 = (−1)n+1 2

kn

[
ε0

i −
2Pss

k2
n
−
(

εu
ss + εl

ss
2

)]
kn =

(2n− 1)π
2

n = 1, 2, 3, . . . (28)

The complete solution of the symmetric (decaying) transient flow is a linear superpo-
sition involving several ICs:

v(y, t) =
∞

∑
n=1

(−1)n+1 2
kn

[
ε0

i −
2Pss

k2
n
−
(

εu
ss + εl

ss
2

)]
· e−k2

nt · cos(kny) (29)

The first term in the above Fourier expansion describes the effect of the initial velocity
distribution. The second term gives transients due to sudden application of the constant PG,
while the third component is the response to the sudden instant finite uniform movement
(ST1 problem) of the upper and/or lower infinite plate at time zero. Negative exponen-
tial factor ensures decaying flow with higher flow harmonics diminishing more rapidly.
Starting and stopping flow transients can be deduced from the general solution here.

3.3. Solution of the Non-Homogeneous IBVP for Symmetric Flows

The third and final IBVP problem which has both inhomogeneous PDE and BCs.

wt = wyy + q(y, t)
BCs : w(+1, t) = g(t) w(−1, t) = r(t)
IC : w(y, 0) = 0

q(y, t) =
∞
∑

m=−∞
2|Pm| exp[i(mω0t + ϕm)]

g(t) =
∞
∑

k=−∞

∣∣εu
k

∣∣ exp
[
i
(
kΩu

0 t + φk
)]

r(t) =
∞
∑

j=−∞

∣∣∣εl
j

∣∣∣ exp
[
i
(

jΩl
0t + ψj

)] (30)

Both arbitrary, yet periodic, BCs and the pressure source term are given in terms
of complex Fourier coefficients. We can always find a suitable (shifting) function that
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will satisfy the non-homogeneous BCs [19,31–35]. In this way we obtain homogeneous
BCs, but the new PDE often ends up with additional source terms. While this technique
is perfectly good and often results in solutions containing uniformly convergent series
in the entire domain, it is time consuming and problem specific. More general, elegant,
and faster solutions are obtained by the straightforward use of EEM although we may get
discontinuity at the boundaries thus invalidating uniform convergence in the entire domain.
However, mean-square convergence is automatically assured due to the completeness
of eigenfunctions. Other analytical methods, such as Laplace transform, Finite Fourier
Transform, Green’s functions, etc., could be used to solve bounded non-homogenous
problem [20,39–43].

The essence of the EEM is to tailor the inhomogeneous solution in terms of the or-
thonormal eigenfunctions ϕn(y) of the corresponding (associated) homogeneous
BVP (CHBVP):

w(y, t) =
∞
∑

n=1
Tn(t) · ϕn(y) =

∞
∑

n=1
Tn(t) · cos(kny)

q(y, t) =
∞
∑

n=1
qn(t) · ϕn(y) =

∞
∑

n=1
qn(t) · cos(kny)

w(y, 0) =
∞
∑

n=1
Tn(0) · ϕn(y) =

∞
∑

n=1
Tn(0) · cos(kny)

(31)

By utilizing the orthogonal property of the eigenfunctions and the norm, we obtain:

Tn(t) = 〈w, Yn〉 =
+1∫
−1

w(y, t) · cos(kny) dy n = 1, 2, 3 . . .

qn(t) = 〈q, Yn〉 =
+1∫
−1

q(y, t) · cos(kny) dy

Tn(0) = 〈0, Yn〉 =
+1∫
−1

w(y, 0) · cos(kny) dy = 0

(32)

Using these relationships, the decomposed oscillating PG source term is:

qn(t) = (−1)n+1 4
kn

{
∞

∑
m=−∞

|Pm| exp[i(mω0t + φm)]

}
(33)

One may think that all IC transients were taken care in the homogeneous IBVP (2nd
problem), but that is not the case. Although the ICs are explicitly zero here, the initial
information is also hidden in phasors. Therefore, we are dealing with the QSS response
caused by periodic forcing functions and few transients caused by non-zero phases. Any
transient due to sudden application of the oscillating PG will be taken care of in the solution
of this non-homogeneous IBVP. With compatibility condition satisfied [42], the resulting
Fourier series is uniformly convergent in the entire domain including boundaries.

Since the term-by-term differentiation is prohibited for the Fourier series that does not
converge uniformly, when utilizing Green’s 2nd identity [39–43], one obtains:

d Tn(t)
d t + k2

nTn(t) = (−1)n+1kn[g(t) + r(t)] + qn(t) = Qn(t) Tn(0) = 0 n = 1, 2, 3, . . . (34)
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Implementing the general solution of the inhomogeneous linear first-order ODE,
we obtain:

Tn(t) = (−1)n+1kn
∞
∑

j=−∞

{ ∣∣∣εu
j

∣∣∣ exp
[
i
(

Ωu
j t+φj

)]
(

k2
n+iΩu

j

) −
∣∣∣εu

j

∣∣∣ exp(iφj)(
k2

n+iΩu
j

) exp
(
−k2

nt
)}

+(−1)n+1kn
∞
∑

p=−∞

{
|εl

p| exp[i(Ωl
pt+ψp)]

(k2
n+iΩl

p)
− |ε

l
p| exp(iψp)
(k2

n+iΩl
p)

exp
(
−k2

nt
)}

+(−1)n+1 4
kn

∞
∑

m=−∞

{
|Pm | exp[i(ωmt+ϕm)]

(k2
n+iωm)

− |Pm | exp(iϕm)

(k2
n+iωm)

exp
(
−k2

nt
)}

(35)

The solution of the 3rd non-homogenous IBVP problem is thus:

w(y, t) =
∞
∑

n=1
(−1)n+1kn cos(kny)

{
∞
∑

j=−∞

∣∣∣εu
j

∣∣∣ exp
[
i
(

Ωu
j t+φj

)]
(

k2
n+iΩu

j

)
}
−

∞
∑

n=1
(−1)n+1kn cos(kny)e−k2

nt

{
∞
∑

j=−∞

∣∣∣εu
j

∣∣∣ exp(iφj)(
k2

n+iΩu
j

)
}

+
∞
∑

n=1
(−1)n+1kn cos(kny)

{
∞
∑

p=−∞

|εl
p| exp[i(Ωl

pt+ψp)]
(k2

n+iΩl
p)

}
−

∞
∑

n=1
(−1)n+1kn cos(kny)e−k2

nt

{
∞
∑

p=−∞

|εl
p| exp(iψp)
(k2

n+iΩl
p)

}
+

∞
∑

n=1
(−1)n+1 cos(kny)

kn

{
∞
∑

m=−∞

4|Pm | exp[i(ωmt+ϕm)]

(k2
n+iωm)

}
−

∞
∑

n=1
(−1)n cos(kny)e−k2

nt

kn

{
∞
∑

m=−∞

4|Pm | exp(iϕm)

(k2
n+iωm)

} (36)

After tedious complex algebra reductions, one obtains:

w(y, t) = −
∞
∑

n=1
(−1)n+1 cos(kny)e−k2

nt

[
∞
∑

j=1

∣∣∣εu
j

∣∣∣Cu
j,n cos

(
φj − γu

j,n

)]

−
∞
∑

n=1
(−1)n+1 cos(kny)e−k2

nt

[
∞
∑

p=1

∣∣∣εl
p

∣∣∣Cl
p,n cos

(
ψp − γl

p,n

)]
−

∞
∑

n=1
(−1)n+1 cos(kny)e−k2

nt
[

4P0
k3

n
+

∞
∑

m=1
2|Pm|Dm,n cos(ϕm − βm,n)

]
+

∞
∑

n=1
(−1)n+1 cos(kny)

[
∞
∑

j=1

∣∣∣εu
j

∣∣∣Cu
j,n cos

(
Ωu

j t + φj − γu
j,n

)]

+
∞
∑

n=1
(−1)n+1 cos(kny)

[
∞
∑

p=1

∣∣∣εl
p

∣∣∣Cl
p,n cos

(
Ωl

pt + ψp − γl
p,n

)]
+

∞
∑

n=1
(−1)n+1 cos(kny)

[
4P0
k3

n
+

∞
∑

m=1
2|Pm|Dm,n cos(ωmt + ϕm − βm,n)

]

(37)

3.4. Global Solution for Symmetrically Driven Flows

A global solution of the symmetric IBVP is obtained by linearly superposing all
three velocity components as given by Equation (19). After grouping all terms, the final
dimensionless solution yields:
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u(y, t) =
[

Pss
(
1− y2)+ εu

ss+εl
ss

2 +
(

εu
ss−εl

ss
2

)
y
]
+

∞
∑

n=1
(−1)n+1 cos(kny)e−k2

nt
[

2ε0
i

kn
− 4Pss

k3
n
−
(

εu
ss+εl

ss
kn

)]
−

∞
∑

n=1
(−1)n+1 cos(kny)e−k2

nt

[
∞
∑

j=1

∣∣∣εu
j

∣∣∣Cu
j,n cos

(
φj − γu

j,n

)]

−
∞
∑

n=1
(−1)n+1 cos(kny)e−k2

nt

[
∞
∑

p=1

∣∣∣εl
p

∣∣∣Cl
p,n cos

(
ψp − γl

p,n

)]
−

∞
∑

n=1
(−1)n+1 cos(kny)e−k2

nt
[

4P0
k3

n
+

∞
∑

m=1
2|Pm|Dm,n cos(ϕm − βm,n)

]
+

∞
∑

n=1
(−1)n+1 cos(kny)

[
∞
∑

j=1

∣∣∣εu
j

∣∣∣Cu
j,n cos

(
Ωu

j t + φj − γu
j,n

)]

+
∞
∑

n=1
(−1)n+1 cos(kny)

[
∞
∑

p=1

∣∣∣εl
p

∣∣∣Cl
p,n cos

(
Ωl

pt + ψp − γl
p,n

)]
+

∞
∑

n=1
(−1)n+1 cos(kny)

[
4P0
k3

n
+

∞
∑

m=1
2|Pm|Dm,n cos(ωmt + ϕm − βm,n)

]

(38)

Phase and amplitudes (damping factors) of the oscillation response are:

γu
j,n = tan−1

(
Ωu

j

k2
n

)
= tan−1

[ (
αu

j

)2

k2
n

]
= tan−1 δu

j,n Cu
j,n = 2

kn

√
1+
(

δu
j,n

)2

γl
p,n = tan−1

(
Ωl

p

k2
n

)
= tan−1

[
(αl

p)
2

k2
n

]
= tan−1 δl

p,n Cl
p,n = 2

kn

√
1+(δl

p,n)
2

βm,n = tan−1
(

ωm
k2

n

)
= tan−1

(
α2

m
k2

n

)
= tan−1 δ

pr
m,n Dm,n = 4

k3
n

√
1+(δ

pr
m,n)

2

(39)

The damping factors are positive-definite. Higher interface-motion harmonics will
generate correspondingly higher Womersley (WO) numbers, αu

n = αu
0
√

n, thus penetrating
ever shallower into the fluid mass, but significantly affecting its phase lags. The solution
consists of two traveling waves moving in the opposite directions, i.e., coming from each
wall. Different regions of fluid are experiencing varying effects of resistance and inertia.
Daidzic and Hossain [18] and Hossain and Daidzic [19] have demonstrated similar behavior
for Newtonian and some shear-thinning non-Newtonian fluids.

An arbitrary periodic function f (t) can be represented by converging the Fourier series.
At least an L2 or mean-square convergence is guaranteed for Lebesgue square-integrable
functions:

lim
N→∞

T∫
0

| f (t)− SN(t) |2dt = 0 SN(t) =
N

∑
n=1

fn(t) ∀t ∈ [0, T]

Mean-square convergence does not imply pointwise or uniform
convergence [39–43,51–54]. At the finite points of jump discontinuities of piecewise con-
tinuous functions, the Fourier series will converge to the average value of the left and the
right limits with Gibbs phenomena and characteristic “ringing” appearing [39–43,51–54].
Accordingly, the convergence cannot possibly remain uniform. Once we have chosen
oscillation waveforms, their Fourier coefficients can be directly substituted into the global
solution (Equation (38)). The question of convergence is not the academic one. The nature
of convergence strongly affects analytical solutions and computations. From the velocity
distribution in the complex form, we can easily derive volume flow rate (VFR):
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Q(t) =
+1∫
−1

u(y, t)dy =
[(

εu
ss + εl

ss

)
+ 4Pss

3

]
+

∞
∑

n=1

2 e−k2
nt

kn

[
2ε0

i
kn
− 4Pss

k3
n
−
(

εu
ss+εl

ss
kn

)]

−
∞
∑

n=1

2 e−k2
nt

kn



∞
∑

j=1

∣∣∣εu
j

∣∣∣Cu
j,n cos

(
φj − γu

j,n

)
+

∞
∑

p=1

∣∣∣εl
p

∣∣∣Cl
p,n cos

(
ψp − γl

p,n

)
+

4P0
k3

n
+

∞
∑

m=1
2|Pm|Dm,n cos(ϕm − βm,n)


+

∞
∑

n=1

2
kn



∞
∑

j=1

∣∣∣εu
j

∣∣∣Cu
j,n cos

(
Ωu

j t + φj − γu
j,n

)
+

∞
∑

p=1

∣∣∣εl
p

∣∣∣Cl
p,n cos

(
Ωl

pt + ψp − γl
p,n

)
+

4P0
k3

n
+

∞
∑

m=1
2|Pm|Dm,n cos(ωmt + ϕm − βm,n)


(40)

The velocity gradient of the axial velocity is:

∂u(y,t)
∂y =

[
−2Pss · y +

(
εu

ss−εl
ss

2

)]
−

∞
∑

n=1
(−1)n+1kne−k2

nt sin(kny)
[

2ε0
i

kn
− 4Pss

k3
n
−
(

εu
ss+εl

ss
kn

)]

+
∞
∑

n=1
(−1)nkne−k2

nt sin(kny)



∞
∑

j=1

∣∣∣εu
j

∣∣∣Cu
j,n cos

(
φj − γu

j,n

)
+

∞
∑

p=1

∣∣∣εl
p

∣∣∣Cl
p,n cos

(
ψp − γl

p,n

)
+

4P0
k3

n
+

∞
∑

m=1
2|Pm|Dm,n cos(ϕm − βm,n)



−
∞
∑

n=1
(−1)nkn sin(kny)



∞
∑

j=1

∣∣∣εu
j

∣∣∣Cu
j,n cos

(
Ωu

j t + φj − γu
j,n

)
+

∞
∑

p=1

∣∣∣εl
p

∣∣∣Cl
p,n cos

(
Ωl

pt + ψp − γl
p,n

)
+

4P0
k3

n
+

∞
∑

m=1
2|Pm|Dm,n cos(ωmt + ϕm − βm,n)



(41)

A word of caution is required. Term-by-term differentiation of a Fourier series is a
delicate matter effectively multiplying a series by a factor (n), slowing its convergence,
and is only allowed if the series and differentiated series converges uniformly [51–56].
Term-by-term integration is usually a less critical issue as a multiplication factor (1/n) is
introduced accelerating the convergence [51–56]. The classical Fourier series can always be
integrated term-by-term [51–56].

3.5. Numerical Method

To verify theoretical solutions, we employ numerical experiments using in-house-
developed CFD programs. The finite-volume method (FVM) to discretize N-S
equations [57–60] and to numerically calculate the flow field was employed. FVM is
in many respects similar to the FD method, but spatial-temporal discretization is obtained
while assuring conservation of flow properties in every small finite volume. To verify
the accuracy, stability, consistency, and efficiency of numerical models, we test our CFD
against several well-known analytic solutions [18,19]. Despite known shortcomings, the
conditionally stable explicit FTCS discretization works very well for the 1D flow case. The
problem with the Crank–Nicolson (C-N) or the fully implicit methods is that we must solve
the system of linear algebraic equations at each time step. Fortunately, for 1D flow an
efficient tri-diagonal matrix solver utilizing Thomas’ (TDMA) Gauss-elimination algorithm
is used [18,19,57–60]. For 2D and 3D flows, we have to employ different methodologies.
While it is often stated that the implicit schemes are unconditionally stable that may be
useless feature when the accuracy suffers due to excessively large time steps.

The solution of the linear parabolic PDE given in Equation (5) is quite simple and can
be most rapidly obtained by marching in time while complying with given IC and BCs. An
added feature of the FVM is that it automatically satisfies conservation laws as each balance
differential equation is integrated over a small control (finite) volume. It also accounts for
all source (volumetric) and surface interactions. The numerical methodology implemented
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here was already sufficiently described earlier [18,19] and we only repeat here the most
essential parts.

The “old” values of velocity at grid points can be denoted by um
P , um

E , and, um
W , and

the updated values at the “new” time t + ∆t, can be denoted by um+1
P , um+1

E , and, um+1
W . If

we designate:

a0
P = a0

j = ρ
∆y
∆t

aE = aj+1 =
µe

(δy)e
aW = aj−1 =

µw

(δy)w
(42)

The spatial-temporal discretized equation yields:

aj um+1
j = aj+1

{
f · um+1

j+1 + (1− f ) · um
j+1

}
+ aj−1

{
f · um+1

j−1 + (1− f ) · um
j−1

}
+
{

a0
j − aj+1(1− f )− aj−1(1− f )

}
· um

j

(43)

where
aj = a0

j + f · aj+1 + f · aj−1.

Here, f stands for the time-approximation weighting factor with the range [0, 1]. The
value of f will determine whether the discretization scheme is explicit, fully implicit or C-N.
The unconditionally stable popular implicit C-N (CTCS) method ( f = 1/2) is second-order
accurate, both, in time and space:(

a0
j +

aj+1 + aj−1

2

)
· um+1

j =
aj+1

2

(
um+1

j+1 + um
j+1

)
+

aj−1

2

(
um+1

j−1 + um
j−1

)
+

(
a0

j −
aj+1 + aj−1

2

)
· um

j (44)

A simple explicit (FTCS) discretization with the time-dependent PG as a source func-
tion yields:

um+1
j = (1− 2λ)um

j + λ
(

um
j+1 + um

j−1

)
+ Pm∆ t λ =

∆ t

(∆ y)2 (45)

Appropriate IC and BCs must be applied for the numerical computations. By choosing
the proper stability parameter λ(=1/4) we can, in fact, obtain second-order accuracy in time.

3.6. Modeling of Pressure Gradients

The most comprehensive planar CPSW problem treated here is the one that includes
both the periodic non-harmonic oscillations of two boundary wall plates in concurrence
with the applied oscillatory periodic PGs. We assume that both plates move simultaneously
and in phase and thus the problem is symmetric. The oscillatory PG is superposed to a
steady-state PG when applicable. Clearly an infinite number of combinations of wall and
PG dynamics are possible.

We chose a rectified-sine (absolute-sine) function to represent PG oscillatory dynamics.
Another interesting choice of pressure oscillations would be in emulating heartbeat wave-
forms for pulsatile arterial hemodynamic applications. Digitally sampled waveforms can
be utilized by employing harmonic analysis and calculating the Fourier coefficients of an
arbitrary discrete excitation. A full-wave rectified-sine (absolute-sine) function delivering
oscillating PGs on top of the steady-state PG for a horizontal slit is illustrated in Figure 2,
and is described by:

q(t) = Pss + f (t) = Pss + Pmax ·
∣∣∣∣sin

(
2 π t

T

)∣∣∣∣ Pss ≤≥ 0 (46)
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This even real-valued function can be expressed in terms of Fourier cosine series. By
using Euler formulas [39–43,51–56] for Fourier coefficients, one obtains:

f (t) = 2 Pmax
π − 4 Pmax

π

∞
∑

n=2,4,6,...

cos( 2 nπ
T t)

(n2−1) = 2 Pmax
π − 4 Pmax

π

∞
∑

m=1

cos(2 mω t)
(2 m−1)(2 m+1) (47)

It is easy to demonstrate, using the Weierstrass convergence M-test [40–42], that
this Fourier series converges uniformly and accordingly pointwise as well. Function in
Equation (46) is square-integrable and its Fourier series thus converges in the mean (L2

sense). This was already expected from the uniform convergence. Utilizing Parseval’s
identity in the real form yields:

1
T

T/2∫
−T/2

| f (t)|2dt =
A2

0
4

+
1
2

∞

∑
n=1

(
A2

n + B2
n

)
⇒

∞

∑
n=1

1

(4 n2 − 1)2 =
π2 − 8

16
≈ 1

8

The convergence rate is relatively fast (1/n2) since the function is continuous and the
first derivative is piecewise continuous. For a real-valued even rectified-sine waveform,
An = A−n, and Bn = 0, one obtains:

C0 =
2Pmax

π
Cn = − 2Pmax

π(4n2 − 1)
Cn = C−n |Cn| =

2Pmax

π(4n2 − 1)
ϕn = π

In phasor form, the Fourier series yields the same result given in Equation (47) earlier:

f (t) = C0 +
∞

∑
n=2,4,...

2|Cn| cos(nω t + ϕn) =
2Pmax

π
−

∞

∑
m=1

4Pmax cos(2mω t)
π(4m2 − 1)

The imaginary part of the complex Fourier coefficient is zero and the phase constant is
π. Since the infinite series of squares of Fourier coefficients is bounded by the norm of the
square-integrable function, the Riemann–Lebesgue lemma [44–47] assures us that:

lim
|n|→∞

Cn → 0 when lim
|n|→∞

An → 0 and lim
|n|→∞

Bn → 0

Using Parseval’s (or Plancherel’s) identity in the complex form delivers the same result
as with real form:

∞

∑
n=−∞

|Cn|2‖φn‖2 = ‖ f ‖2 ⇒ C2
0 +

∞

∑
n=1

{
|Cn|2 + |C−n|2

}
=

P2
max
2
⇒

∞

∑
n=1

1

(4 n2 − 1)2 =
π2 − 8

16
(48)

The first 20 harmonic terms are sufficient to approximate rectified-sine function with
high accuracy as the function is smooth everywhere except for the first derivatives being
discontinuous at the half-period points.
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3.7. Modeling of Wall Oscillations

The uniform wall movement such as in the classic planar CT flow is not easy to achieve
in practice and especially not on microscales. Net flow rate induced by non-harmonic
oscillatory motion of Newtonian and non-Newtonian fluids in a slit and in the absence
of PGs was treated numerically [18,19]. However, in the numerical analysis presented
in [18,19], the return stroke was assumed to be so fast that full slip occurred. In this work
we are analytically treating, as well as numerically, the motion of the Newtonian fluid
with no-slip enforced in the fast return stroke. A simple energy-conservation principle
tells us that it makes no difference whether the excitation is harmonic or non-harmonic.
All externally applied energies go into the fluid flow (isothermal assumption). However,
the idealized flow with no-slip BC considered here does not consider change in physical
properties with temperature and the strong non-linear behavior of non-Newtonian fluids.
Apparent slip is often being reported in microscale flows [30,31].

The excitation of both wall interfaces is assumed to be in-phase (symmetric). In general,
the period T of wall vibrations is not the same as the one for PG oscillations. The illustration
of the square-like wall oscillation waveform used here is shown in Figure 3. The return
stroke is very fast and of short duration. The area under forward and return strokes must
be equal (L f wd = Lret) to ensure no net (zero-drift) wall motion:

aT∫
0

∣∣∣u f wd(t)
∣∣∣ dt =

T∫
aT

|uret(t)| dt Uret = −U f wd

(
a

1− a

)
U =

U f wd −Uret

2
(49)
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The non-harmonic periodic asymmetric square-waveform function shown in Figure 3
can be expanded in a complex Fourier series with complex coefficients:

C0 = 0 Cn = U
inπ

(
1− e−ia2nπ

)
C−n = − U

inπ

(
1− e+ia2nπ

)
|Cn| = |C−n| = 2 U

nπ sin(anπ) φn = −anπ
(50)

Parseval’s identity delivers:

2T
∞
∑

n=1
|Cn|2 =

∞
∑

n=1

8 U2T
n2π2 sin2(anπ) = U2

f wdT a
1−a ⇒

∞
∑

n=1

sin2(anπ)
n2 = π2a

2 (1− a) (51)

which for a = 0.5 gives a well-known analytical result. Clearly this series will contain both
cosine and sine harmonics.
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By varying the time-fraction factor “a” which automatically defines the return stroke
speed and by using the motion-conservation restriction given with Equation (49), we
obtain a variety of square-like waveforms. Due to jump discontinuities in square-like
excitations, the Gibbs and “ringing” phenomena arise, and the series cannot possibly
converge uniformly and specifically not pointwise at jumps no matter how many Fourier
coefficients we employ [51–56]. Accordingly, the convergence will be quite slower. The
Fourier expansion of the above square function requires at least 100 higher-frequency
harmonics to approximate the piecewise continuous function sufficiently well.

4. Results and Discussion

An infinite number of particular solutions can be obtained from the general velocity
distribution given by Equation (38). The flow rate and the shear rate can be calculated
exactly for the known wall and PG excitations using Equations (40) and (41).

4.1. Unsteady Dynamics and Model Verification

Unsteady laminar flow analytical and numerical computations were coded and com-
piled in Fortran 95 (standard ISO/IEC 1539-1:1997) high-performance optimizing compiler
(Lahey Computer SystemsTM) for rapid calculations. Additionally, slower interactive ex-
ecution utilizing MATLABTM 7.14 (R2012a, The MathWorksTM) interpreter was used for
computations, testing and plotting of results.

The numerical (FVM-CFD) and analytical results for sinusoidal oscillatory shear-
driven Couette–Stokes (CS) flow with an arbitrary phase ψ and unit amplitude in the
absence of static and dynamic PGs and for α = 3.126 (Ω = 10) and, α = 10 (Ω = 100), are
shown in Figure 4. In addition to testing the accuracy of the analytical and the numerical
model, many useful conclusions can be made regarding the transient behavior and the effect
of the WO number on the penetration depth (zone/radius of influence). The analytical
solution and the numerical computations agree within 8+ significant digits throughout the
entire spatial-temporal domain.

Lower WO number wall oscillations penetrate deeper into the fluid. For WO numbers
less than one, there is essentially no transient behavior, and the flow is basically quasi-
steady at all times and faithfully responding to moving boundary with zero phase lag.
Transient behavior is best observed in the velocity profiles at T/16 and 17T/16, for both,
low and high WO numbers. For higher WO numbers, the transient effects are also apparent
in the 2nd and 3rd period. For WO = 10 flow, the lower 3

4 of fluid domain is basically
unaffected by the upper-wall oscillations. In the case of lower WO = 3.26, only the lower
1
4 of fluid depth is unaffected by the upper boundary. The analytical result utilizing the
shifting function for dimensionless velocity of harmonically oscillating (upper plate) flow
in the absence of PGs yields:

u(y, t; αΩ, ψ) =
y+1

2 sin
(
α2

Ωt + ψ
)
+ 2

∞
∑

n=1
(−1)n sin

[
kn

(
y+1

2

)]
1
kn

δn√
1+δ2

n
cos
(
α2

Ωt + ψ− ϕn
)

+2
∞
∑

n=1
(−1)n sin

[
kn

(
y+1

2

)]
1
kn

e−k2
nt
[

sin ψ− δn√
1+δ2

n
cos(ψ− ϕn)

]
δn = Ω

k2
n
=

α2
Ω

k2
n

ϕn = tan−1 δn kn = nπ − 1 ≤ y ≤ +1

(52)

In subsequent computations, analytical and computational efforts were only compared
in VFR results. This is to avoid busy graphs. The agreement between the theory and
the numerical experiment is always perfect. We have successfully performed transient
analysis of all basic flows, such as CT, PO, WO, and ST flows which due to the lack of
space cannot be shown here. However, more complex combined flows will reveal all the
unsteady dynamics.
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Figure 4. Upper plate sinusoidal oscillatory Couette-Stokes flow for α = 3.126 (upper) and α = 10
(lower) graph for the first (LHS) and 2nd and 3rd periods (RHS) are shown. (Analytic—dashed lines;
CFD—markers/symbols).

The CP flow transient is shown in Figure 5. This flow incorporates shear and pressure
driving. We already know from the analytical CP flow solution that it will result in stalled
or zero steady-state VFR. Interestingly, the shear effect overcomes pressure-driven forces
initially. One of the reasons is the smaller inertia of a liquid layer in the wall vicinity. The
shear rate approaches the steady-state value of

.
γ(−1) = −3,

.
γ(1) = 3 rapidly. Since the

flow is asymmetric, we cannot use cosine eigenfunctions alone. Using the EEM, which
converges everywhere except at the moving boundary (non-compatible BCs), we obtain:

u(y, t; αΩ, ψ) = −2
∞
∑

n=1
(−1)n sin

[
kn

(
y+1

2

)]
sin(α2

Ωt+ψ−ϕn)
kn
√

1+δ2
n

+2
∞
∑

n=1
(−1)n sin

[
kn

(
y+1

2

)]
sin(ψ−ϕn)

kn
√

1+δ2
n

e−k2
nt

(53)
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Surprisingly, as it may seem, both series give the same result except at the boundary
and the EEM does not converge uniformly. However, it is more general. The unsteady
pressure-driven PW flow transient is shown in Figure 6. The pumping action comes from
the PG DC-component (0.05) resulting in pulsatile and positive net flow. Flow reversals
are similar to pulsatile flow in arterial vessels caused by reciprocating heart pumping.
Oscillating shear stresses are essential information in hemodynamic analysis. The classical
solution of this problem in terms of elementary functions is given in [4,5,13–15], but
the solution derived here using Fourier series expansion is perhaps more elegant and
more general.
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Figure 6. Starting transient for the pulsatile PW rigid-slit flow.

Next, test results treat full transient and QSS solution involving symmetric (ST2)
harmonic wall excitations with uniform (CT) components as well as harmonic (WO) PG
superimposed onto the steady-state (PO) PG. The analytic solution originates directly from
the general solution for the simple wall sinusoidal oscillations. The CPW flow transient
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is shown in Figure 7. The agreement with CFD is complete. The Womersley component
communicates oscillatory fluid behavior.
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Oscillatory PSW flow is shown in Figure 8. The interaction of the wall and the PG
oscillations results in periodic yet non-harmonic flow. The last verification and testing
result is reserved for the most complicated harmonic flow so far, i.e., CPSW flow transient
and is shown in Figure 9. Again, no net flow exists as we just added simple harmonic
(sinusoidal with phase) ST and WO components to steady CP flow. However, the transient
and the QSS flow do not look trivial.
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Numerical and analytical computations run under different clocks. While we can
choose any future time with the analytical solution, the stability- and accuracy-limited
numerical solution has to drudgingly march toward it. Since numerical and analytical
computations work under different “clocks”, it was sometimes difficult to synchronize dis-
crete times resulting in small discrepancies. However, we already demonstrated excellent
agreement between the numerical experiments and theoretical computations involving
generalized Fourier series. Many tens of hours were spent investigating various transient
and quasi-steady-state oscillatory flows caused by diverse wall and PG dynamics. An arti-
cle ten-fold in size would be required to show all relevant tests and comparisons between
the analytical and numerical results. It suffices to say that all tests and computations were
successful and revealed rich and interesting flow patterns even for such linear flows of
Newtonian fluid.

4.2. Results for Unsteady Flows with Nonharmonic Wall Oscillation

In the final set of analytical-only results, we present planar non-harmonic shear driving
of Newtonian fluids in the presence of steady and dynamic PGs. Rectified-sine function
was used to model PGs (Equation (47)), while the non-harmonic wall oscillations were
modeled using square-waveform given by Equation (50). Various alternative harmonic
and non-harmonic waveforms could be used, which is left only to our imagination. The
Fourier series approach works very well, sometimes even with the most bizarre of functions.
Numerical solutions always fully agreed with the analytical results.

A result for symmetric square-waveform shear-driven flow in the absence of any PGs
and period of 2π is shown in Figure 10. The fluid responds to wall-dynamics switching
logic between forward and return stroke with inertia and resistance. Integral volume,
obtained by analytic integration of Equation (40), shows no net fluid flow other than for
small initial transient. Non-harmonic shear-driven planar flow with no PGs is shown in
Figure 11. No net flow is obtained with non-harmonic driving except for small initial
transient. Finally, the non-harmonic shear-driven flow is being exposed to adverse steady-
state PG and proverse rectified-sine dynamic PG with finite Womersley number (WO = 3)
is shown in Figure 12. The DC-component of proverse pulsatile PG is able to overcome the
adverse negative PO pressure component resulting in positive and somewhat interesting
oscillating flow patterns. All numerical experiments were in perfect agreement with the
analytical model.
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Even though Stokes’ penetration layer decreased significantly for the high WO flows,
non-harmonic excitation did not result in net flow rates. However, this is chiefly because
of the assumed flow idealizations. No energy equation was solved, and the fluid is linear.
Since all the external energies applied in the forward and the return strokes go completely
into fluid motion, we could not have expected differently. However, high shear rates in the
rapid wall return strokes will result in quadratically higher local dissipation and heating of
the liquid, which in turn will lower its viscosity, provided that the heat is being conducted
away before the forward strokes. Non-Newtonian fluids (such as blood) are especially well
suited for non-harmonic shear driving as their dynamic viscosity changes significantly
with the shear rate (increasing or decreasing). Special surface roughness (micro-geometry)
and/or coatings may be used to increase shear stress in the forward stroke while decreasing
it in the reverse stroke. Last, but not least, rapid return stroke may result in partial or full
(molecular and/or apparent) wall slip. Work is in progress to solve similar problem in rigid
cylindrical geometry by utilizing Newtonian and various non-Newtonian fluids with or
without slip which will be reported in subsequent publications.

Works by Rajagopal et al. [61] and Fetecau and Narahari [62] recently came to our
attention. They address IBVP problems somewhat related and similar to ours. Rajagopal
et al. [61] investigate unsteady flow with pressure-dependent viscosity and the effect of
gravity. The hydromagnetic flow of incompressible viscous fluids between horizontal
infinite parallel plates embedded in a porous medium has been analytically studied by
Fetecau and Narahari [62]. In particular, the Couette and Stokes problem was considered
for known magnetic parameters of fluid and porous medium.

Our future studies will include cylindrical and other geometries with and without
boundary slip and various other generalized Newtonian fluid models. Some of these
problems will be nonlinear for which some special solution techniques will be applied.
Numerically, such problems can be solved with ease, but do not provide general solutions.

5. Conclusions

A unified theory of diffusion-controlled laminar slit flow where the driving force
was provided by both variable pressure gradients and wall motion was developed. The
eigenfunction expansion method was used to solve the global non-homogeneous linear
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initial and boundary value problem analytically. Simultaneously, a finite-volume method
was used for numerical experiment. The classical results for the steady-state, transient
and quasi-steady-state flows were recovered both analytically and numerically with high
accuracy and fidelity. Both adverse and proverse pressure gradients were used for fluid
pressure driving. Harmonically and non-harmonically oscillating infinite rigid impene-
trable flat plates were used for fluid shear driving. We used rectified-sine excitations for
pressure gradients in combination with the square-waveform non-harmonic zero-drift wall
motion. The effect of wall- and pressure-gradient Womersley numbers on flow dynamics
has been studied. No net flow rates could be achieved by non-harmonic oscillations for
Newtonian fluid, but that is mostly because several physical effects were neglected, and
the energy equation was not coupled in. Ongoing analytical, experimental, and numerical
studies will attempt to answer some important questions regarding various microscale flow
geometries, partial or full apparent boundary slip condition, change in physical parameters
due to local viscous dissipation and heat transfer, shear pumping of non-Newtonian fluids,
flow stability, interactions and zone-of-influence from multiple moving surfaces and others.
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Nomenclature

Symbols
a Square-waveform time weight parameter, [-]
b Acceleration of the wall boundary, [m/s2]
cp Specific heat capacity at constant pressure, [J/ kg K]
f Natural frequency of oscillation, [Hz]
g Average terrestrial acceleration at sea level, [m/s2]
h Height, [m]
k Thermal conductivity, [W/m K]
p Normal stress—pressure, [Pa]
T Period of oscillations, [s]
T Temperature, [K]
t Time, [s]
U Velocity (maximum wall velocity), [m/s]
u,v,w Velocity in axial (longitudinal) direction, [m/s]
Greek Symbols
α Womersley number, [-]
β Coefficient of thermal expansion, [K−1]
δ Thickness, Stokes’ (diffusion) penetration layer, [m]
δij Kronecker delta (=1 for i = j, otherwise = 0 for i 6= j), [-]
.
γ Shear rate, [s−1]
Φ Dissipation function, [kg m−1·s−3 or W/m3]
µ Dynamic viscosity, [Pa s]
ρ Density, [kg/m3]
τ Shear stress, [Pa]
ω Vorticity, [rad/s]
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Abbreviations
BC Boundary condition
BVP Boundary value problem
CFD Computational fluid dynamics
C-N Crank–Nicolson implicit scheme
CP Couette–Poiseuille laminar flow
CPSW Couette–Poiseuille–Stokes–Womersley laminar flow
CT Couette (planar) flow
CS Couette–Stokes flow
CTCS Central Time Central Space
EEM Eigenfunction expansion (method)
FD Finite difference
FTCS Forward Time Central Space
FVM Finite-volume method
IC Initial condition
IBVP Initial boundary value problem
MD Molecular dynamics
MMC Metropolis Monte Carlo
N-S Navier–Stokes hydrodynamic equation
ODE Ordinary differential equation
PDE Partial differential equation
PO Poiseuille (planar) flow
PW Poiseuille–Womersley flow
QSS Quasi-steady-state
SOV Separation of variables
ST Stokes’ flow
ST1 Stokes’ flow (1st problem)
ST2 Stokes’ flow (2nd problem)
TDMA Thomas’ tridiagonal matrix algorithm
WO Womersley laminar flow (also Womersley number)
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