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Abstract 

 

Physical vapor transport (PVT) is a material processing method commonly used to 
produce different types of semiconductor materials. Computer modeling of PVT is 
important to understand the fundamentals of the processing method. Due to the large 
amount of computer processing power and storage needed to solve the computer models 
many of the previously solved simulations have been simplified to efficiently utilize 
computer usage. Previous PVT computer simulations of mercurous chloride (Hg2Cl2) 
have assumed constant temperature profiles on the source and crystal substrate for 
simplicity. These simulations were performed using the FIDAP computational fluid 
dynamics software package. In this research the system boundary conditions for the 
previously solved mercurous chloride models were modified using the FIDAP software 
package to more accurately represent an actual PVT system. The results were then 
compared to the previously solved simplified cases and the boundary condition effects 
were examined. Previous research found that there are ranges of Rayleigh number values 
that give different flow structure forms. It was found that the new simulations show that 
the bifurcation points for the flow fields have moved to slightly higher Rayleigh number 
values. It was also found that some of the flows that were previously found to be in 
oscillation no longer oscillate with the new boundary conditions. These results are 
important for the crystal growth and semiconductor community in improving future 
processes and product quality. 
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Introduction 
 

A commonly used method for crystal growth and other types of film deposition is 

Physical Vapor Transport (PVT). PVT is a process where a source material is heated, 

normally by an electrical current, and then sublimes from a solid into a vapor. The vapor 

is then transported through an inert gas that is backfilled into the sealed enclosure. The 

transport takes place largely by natural convection. The vaporized source material 

condenses on a cooler substrate surface. This process is depicted in Figure 1. PVT is a 

growth method that is especially important for crystalline semiconductor materials such 

as mercurous chloride that are difficult or impossible to fabricate by other deposition 

methods. 

 
Figure 1: Schematic of a vertically oriented PVT system [1] 
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Previous computational work done by Duval [2] has shown that different flowfield 

patterns are generated by varying the Rayleigh number. The Rayleigh number is a non-

dimensional number that relates the temperature difference with the inertial and 

natural convection in the system. Figure 2 shows the bifurcation diagram for different 

ranges of the Rayleigh number. This figure depicts how the flow transitions from stable 

to unstable oscillation. This work done by Duval was performed using a computational 

method to examine the flow structures. Tebbe et al. have verified in their work [1] that 

the FIDAP computational method will produce the same results. Their work took a 

number of cases that were run by Duval [2] and verified that FIDAP was able to produce 

credible results for transient flow analysis. 

 
Figure 2: Bifurcation diagram for different ranges of Raleigh number [1] 

(a) 0 < RaT < 9.0 x 103 Stable 
(b)  9.0 x 103 < RaT < 8.0 x 104 2 cells 
(c) 8.0 x 104 < RaT < 7.0 x 105 4 cells, stable oscillation 
(d) 7.0 x 105 < RaT < 4.05 x 106 6 cells, unstable oscillation 
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Method of Research 
 

The objective of this research was to extend the work done by Tebbe et al.. For this 

research we looked at running computational simulations that more accurately represent 

an actual system. In previous research the crystal was extended over the entire width of 

the enclosure. To create a system that more closely represents an actual PVT module the 

crystal size was reduced to 20% of the enclosure width (Figure 3). Four different cases 

from previous research were selected to run with the new smaller crystal size. The 

parameters for each case are displayed in Table 1. To compare the different situations the 

streamline contour plots for each will be compared. The bifurcation points and flow 

patterns will also be examined. A bifurcation point occurs when the flow transitions from 

one form to another. Time history plots for the x and y component velocities at similar 

points in the system will also be compared in order to look at the effects the boundary 

conditions have on the flowfields. 

 
Figure 3: Schematics of previous and current PVT systems 
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Table 1: Parameters for PVT cases   
 

Case RaT Ras Pr Le Pe Cν ⊗T 
 

⊗t* 
1 3.83 x 104

 0 0.871 0.411 0.876 1.71 2 0.00125 
2 1.80 x 105

 0 0.831 0.366 1.90 1.28 7.5 0.00125 
3 8.19 x 105

 0 0.758 0.5 2.96 1.06 20 0.000125 
4 1.92 x 106

 0 0.717 0.54 3.50 1.03 30 0.000125 
 

Results and Comparison 
 

The streamline contour plots for each case were examined over the length of the 

simulation. The cases were carried out using the same dimensionless time constant, t*, 

that was used in previous research [1]. In doing this the bifurcation points could be 

determined and the cases could be compared to previous research. Each of the four 

simulated cases will be looked at individually. 

Case 1 
 

Case 1 showed very similar results to that of previous research. Previous research stated 

that the initial parabolic flowfield would transition into a two-cell pattern [1]. This 

research shows that the streamlines for this case slowly progressed from initial 

conditions, shown in Figure 4, to a two-cell structured flow. The two-cell flow field 

stabilized at t* = 0.0563 and remained in that form for the remaining length of the 

simulation. Figure 5 shows the streamlines at t* = 1.00 which is the last time step of the 

simulation for this case. The x and y component velocity time history plots for Case 1 are 

shown in Figures 6 and 7 respectively. Both figures show that the velocity stabilizes 

between t* values of 0.20 and 0.40 and remains there throughout the duration of the 

simulation. 
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Figure 4: Flow structure for Case 1 at t* = 0.000125 

 

 
Figure 5: Flow structure for Case 1 at t* = 1.00 
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Figure 6: Case 1 x-component velocity at a fixed point (0.333, 0.7) 

 

 
Figure 7: Case 1 y-component velocity at a fixed point (0.333, 0.7) 
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Case 2 
 
For Case 2 the previously run cases showed that the flowfield developed into an two-cell 

structure, transitioned into a four-cell structure and stabilized with a unicellular flow 

pattern. The new cases with the smaller crystal size start similarly with a two-cell 

structure but stay in that structure and stabilize. The two-cell structure is initially formed 

at t* = 0.025. The case was run out for a longer length of time to see if the other flow 

patterns previously found would develop. The case was run until t* = 2.00 and no 

transitions were found. The flow structure can be seen in Figure 8. Since the case was 

stable for such a large amount of time it is reasonable to assume that the previously seen 

transitions were not going to occur. This shows a difference between the previously run 

case and the current one. When looking at the time history plots for the x and y 

component velocities, Figures 9 and 10, both figures show the same trend. The x and y 

direction velocities stabilize and the flowfields do not oscillate over time. The point 

selected to display the x and y component velocities is the same as that in previous 

research. In doing this the current simulation could be compared to the previous results. 

Both cases show that the velocity stabilizes over time. 
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Figure 8: Flow structure for Case 2 at t* = 2.00 

 

 
Figure 9: Case 2 x-component velocity at a fixed point (0.33, 0.5) 
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Figure 10: Case 2 y-component velocity at a fixed point (0.33, 0.5) 

 

Case 3 
 
When looking at the streamline plots for Case 3 some new and interesting developments 

were found. The previous results for this case showed that the streamlines progressed as 

they did for Case 2 in previous research; however, after the four-cell structure develops 

the flowfield becomes unstable before transitioning into a unicellular structure. The new 

simulation shows the same transitions until the end when the flowfields stabilize into a 

two-cell structure instead of a one-cell structure. The flowfields for both the previous and 

current cases develop at close to the same times at the beginning. The transition from the 

four-cell structure to an unstable flow for the current simulation occurs at a slightly later 

time of t* = 0.106 than the t* = 0.066 for the previously run case. The two-cell flow 

initially forms at t* = 0.119 and then stays in a two-cell form but does not stabilize until 

t* = 0.212. Over this time period the two cells fluctuate in size and position until fully 
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stabilizing. The case was carried out to t* = 0.594 and the flowfield remained stable. The 

development of the flowfields is depicted in Figures 11 - 15. Another large difference 

between the previous and newly run cases shows up in the time history velocity plots. 

The time history plots for the previous simulations show that over time the velocity 

continues to oscillate. For the current simulation with the smaller crystal size the time 

history plot shows that the velocity is converging to a steady state value. This is 

important for the product quality as the crystal is growing. Without the oscillations the 

crystal will form more uniformly with fewer imperfections. The time history plots for the 

previous research are shown in Figures 16 and 17 where as the plots for this research are 

shown in Figures 18 and 19. 

 
 

 
Figure 11: Flow structure for Case 3 at t* = 0.00938 
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Figure 12: Flow structure for Case 3 at t* = 0.0219 

 

 
Figure 13: Flow structure for Case 3 at t* = 0.106 
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Figure 14: Flow structure for Case 3 at t* = 0.150 

 

 
Figure 15: Flow structure for Case 3 at t* = 0.212 
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Figure 16: Previous Case 3 x-component velocity at a fixed point (0.98, 0.4) [1] 

 

 
Figure 17: Previous Case 3 y-component velocity at a fixed point (0.98, 0.4) [1] 
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Figure 18: New Case 3 x-component velocity at a fixed point (0.98, 0.4) 

 
 

 
Figure 19: New Case 3 y-component velocity at a fixed point (0.98, 0.4) 
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Case 4 
 
Case 4 has the largest Rayleigh number value of the four cases and shows more erratic 

flow transitions than the previous three cases. The flowfield quickly develops into a 

two-cell structure at t* = 0.000313. After this field is formed two smaller circulation cells 

develop inside each of the larger cells. The flowfield then transitions into a two-cell 

structure without the smaller circulation cells as it did cases 1, 2 and 3 but quickly formed 

into a four-cell flowfield and two different variations of six-celled structures after that. 

The last six-cell structure is seen at t* = 0.00356. For a period of time until t* = 0.0216 

the flowfield is very unstable and forms a number of different flow structures having 

anywhere from two to five different convection cells. After this transition period a large 

unicellular flow structure is formed. This one-cell flowfield continues throughout the 

remaining length of the simulation. The simulation was run until t* = 0.102. During the 

latter part of the simulation, with the unicellular flowfield, there continues to be smaller 

convection cells that form in the corners of the enclosure that slightly move the much 

larger one-cell flowfield. Over time the smaller cells varied randomly in number 

anywhere from one to three different cells over the length of the simulation. Figures 20 

through 31 show the evolution of the flowfield for this case. The time history plots again 

show the x and y component velocities. The figures show that the velocities are 

stabilizing. However, they are slightly more erratic than the previous cases. 
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Figure 20: Flow structure for Case 4 at t* = 0.000313 

 
 

 
Figure 21: Flow structure for Case 4 at t* = 0.000625 
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Figure 22: Flow structure for Case 4 at t* = 0.00138 

 
 

 
Figure 23: Flow structure for Case 4 at t* = 0.0020 
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Figure 24: Flow structure for Case 4 at t* = 0.00278 

 

 
Figure 25: Flow structure for Case 4 at t* = 0.00356 
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Figure 26: Flow structure for Case 4 at t* = 0.00747 

 

 
Figure 27: Flow structure for Case 4 at t* = 0.00825 
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Figure 28: Flow structure for Case 4 at t* = 0.0185 

 

 
Figure 29: Flow structure for Case 4 at t* = 0.0216 
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Figure 30: Flow structure for Case 4 at t* = 0.0409 

 
 

 
Figure 31: Flow structure for Case 4 at t* = 0.0986 
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Figure 32: Case 4 x-component velocity at a fixed point (0.5167, 0.5) 

 

 
Figure 33: Case 4 y-component velocity at a fixed point (0.5167, 0.5) 
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Conclusions 
 

The goal of this research was to create a computer model that would more accurately 

represent an actual PVT system than what has previously been done. This was done to get 

results that more closely represent what happens in an actual PVT system. This was 

accomplished by reducing the crystal size from the entire width of the simulated system 

to 20% of the width. The simulations were run using FIDAP software in order to compare 

results to previously solved cases. For the four cases that were run with the smaller 

crystal size and compared to the previous work done by Tebbe some similarities and 

some differences were found. Case 1 showed very similar characteristics to the previous 

research. Case 2 had one large difference when comparing the results. The previous 

research showed that the final flowfield structure was unicellular. This research shows 

that the flowfield transitions into a two-cell structure and stabilizes. Case 3 shows the 

largest amount of differences. Past research shows that again the final flowfield structure 

was unicellular whereas the current simulation depicts a two-cell final structure. Another 

large difference in this case is found in the time history velocity plots. The previous 

research showed that the velocity had continued oscillations over time. The  current 

system shows that the velocity stabilizes at one value as it has done for Cases 1 and 2. 

The results of Case 4 show many similar traits to the previous research conducted. For 

this case the flowfield evolves into a unicellular structure and has some small oscillation 

over time. All together the new system looks as if it has moved the bifurcation points to 

slightly higher values. The ranges of Rayleigh numbers that were previously used to 

show these bifurcation regions may need to be adjusted to accurately represent the 

flowfield transition points. In order to find the new ranges of Rayleigh numbers more 
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research would need to be conducted to determine at what values for the Rayleigh 

number these transitions occur. This research may have an impact on the expected 

material quality and growth rates that had previously been determined. 
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