A Systems Engineering Approach to Designing and Building a Mobile Aquaponics System

> Sue Benolken Jim McCluskey Brandy Maki

Leslie Flemming, Ph.d Elizabeth McBride, Ph.d

Systems Engineering is an interdisciplinary approach to product development.

Systems Engineering pulls the entire design together.

Aquaponics is a food production system that ecologically integrates aquaculture and hydroponics.

Project Purpose

Aquaponics Subsystems

Requirements

Level 1

\$15/month operating budget

Level 2

System shall operate of budget of \$15.00/month

Level 3

 Σ monthly operating costs shall not exceed \$15.00

- Fish food- \$1.00
- Electricity- \$9.00
- Water- \$1.00
- Water testing supplies- \$2.00
- Repair fund- \$2.00 (should this be separate from cost of components?)

Requirements Example Tracing/Allocating

	Customer Requirements	
Requirement ID	Requirement	Rationale
CR1	Operations	
CR1 1	The monthly system operating budget is \$15.00 or less	Customer's defined budget

Functional Requirements						
Requirement ID	Requirement	Rationale	Tracing	Allocated To		
FR1	Operation					
FR1.1	The system shall operate for \$15.00 a month or less	Customer defined	CR1.1			
FR1.1.1	Fish food ≤ \$1.00	calculated		Biological		
FR1.1.1	Electricity ≤ \$9.00	calculated		Electrical		
FR1.1.3	Water ≤ \$1.00	Calculated		Biological		
FR1.1.4	Water Testing Supplies ≤ \$2.00	Calculated		Biological		
FR1.1.5	Repair Fund = \$2.00	Calculated		Structural		

Integration

Subsystem Testing and Integration

Mathematical model of lighting cost of fluorescent bulbs

 $2 \ bulbs * \frac{20W}{bulb} * \frac{1kW}{1000W} * \frac{24 \ hour}{1 \ day} * \frac{30 \ days}{1 \ month} * \frac{\$0.08}{kW*hr} = \$2.30/month$

System Verification

Actual lighting cost fits within the total system requirements

Operation & System Validation

Validated by the customer

Results

