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Abstract 
Log-Rate models are used in analyzing rates of individuals who are exposed to a risk of 
having a certain characteristic.  The explanatory variables could be categorical or in a 
continuous scale.  In finding a Log-Rate Model, parameters are estimated and goodness-
of-fit are studied to carefully extract the best model to fit our data.  Here we revisit three 
aspects of Log-Rate Models using the data set give at the end of the paper.  The three 
aspects are parameter estimation, goodness-of-fit of the model, and marginal effect of the 
factors. 
 
 

1. Introduction 
 
In the categorical data analysis literatures, the survival models and/or the hazard rate 
models are treated differently than standard logit models. In general, these models are 
termed as Rate Models or Log-Rate Models.  In its simplest form, a rate is defined as the 
number of individuals or observations possessing a particular characteristic divided by 
the total amount of exposure to the risk of having such a characteristic. The Rate Models 
can easily be connected to the standard Poisson Models. Then the Poisson Models are 
directly related to the Exponential Models by making conversion of rates per unit interval 
with the waiting time until the first occurrence.  Here we use a Log-Rate Model to 
determine the likelihood of premarital births in adolescent populations. 

1

Heien and Baumann: Inferences in Log-Rate Models

Published by Cornerstone: A Collection of Scholarly and Creative Works for Minnesota State University, Mankato, 2003



 
Let nttt  , ... ,, 21 be the waiting times of n individuals, and assume the distribution function 

to be )Pr()( tTtF  with probability density function ).(tf  The hazard rate is denoted 
by ),(t  and can be viewed as the instantaneous probability of an event in the 

interval  ttt , , given the event has not occurred before time t.  Formally, the hazard 
rate is defined by the following limit: 
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The probability of an event not occurring up to time t is given by the function 
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Assuming the waiting times are exponentially distributed, equation (2) may be written as  
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The hazard rate is defined by the ratio 
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and the general hazard rate model may be written as 
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where p ,...,, 10 are unknown constants as the rate is determined by several regressors.  

This exponential hazard rate model can be estimated using a Poisson regression model 
for counts.  The interested reader may see Powers and Xie (2000) pp. 154-156 for a brief 
explanation.  In a time interval of length t, the probability of d events is given by 
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Because the mean number of events in the time interval is  t , for the thi  individual, 
the expected number of events in the time interval is 
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T
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Taking the log (log stands for natural logarithm) of the Poisson means results in the log-
linear regression model 
 

,)log()log( i
T
iii t βx                                                                     (8) 

 
where ]....,,,,,1[ 321 p

T xxxxx  

 
The plan of the paper is as follows:  In sections 2 and 3 we discuss the estimation 
procedures and goodness-of-fit of the models.  Marginal effects and their inferences are 
discussed in section 4.  In section 5, we use a real life data to demonstrate the use of a 
log-rate model, and we write a brief conclusion and give future research potentials in 
section 6. 
 
 

2. Estimation of Parameters 
 
We wish to use the method of maximum likelihood to estimate the parameters of this 
model.  Generally, the estimators are obtained by maximizing the logarithm of the 
likelihood function.  The likelihood is defined as 
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where id is the number of occurrence of the event of interest in the time interval it and n is 

the sample size. The log-likelihood (log stands for natural logarithm) function is 
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The system of likelihood equations 
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are nonlinear and hence we use the standard Newton-Raphson numerical solution method 
(see Scarborough (1979), pp. 201-203) to solve them. The second derivatives, which are 
used in iteration to find maximum likelihood estimates, are given by  
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At the thk  iteration, the estimates are obtained using the equation 
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    ,ˆˆˆˆ )1(1)1()1()(   kkkk βUβIββ                                           (13) 
 

where )0(β̂ is obtained using the least squares method by regressing the y on the x’s in a 
linear regression set up as the link function is defined in (8).  The iteration is stopped 
when the consecutive iteration values are close and/or the log-likelihood values are 
maximized (see Powers and Xie (2000) pp. 61-63for details). 
 
 

3. Goodness-of-fit 
 
Log L cannot be used alone as an index of fit because it is dependent on the size of the 
sample.  Different values of log L result when competing models, models that differ in 
the number of parameters, are fit to the same data.  The number of parameters, in general, 
should be more than one, and significantly less than the number of observations.  To 
assess model fit, we need to know how one model fits relative to another.  An indicator of 
model fit which measures the extent to which the current model deviates from a more 
generalized model is given by the likelihood-ratio statistic:     
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where log cL is the log-likelihood of the current model, and log fL is the log-likelihood of 

the more generalized model.  The likelihood ratio statistic has a Chi-Square distribution 
with 12 KK  degrees of freedom, where 2K and 1K denote the number of parameters in the 
more generalized model and the current model, respectively.  A comparative study of 
different choices of general models can be seen in Simonoff (1998). 

 
 

4. Marginal Effects    
      
For the log-rate model, the marginal effects can be thought of as the relative risk 
associated with a certain variable.  The overall mean effect in (7) is 
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Then the marginal effect due to the thk  factor can be considered as 
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The estimate of k can be computed as 
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)ˆexp(xˆ βxT
kk             (17) 

 
where kx is the mean of the thk  factor values in the sample and Tx is the vector of the 

means of the factor values in the sample.  The estimate of the variance for k̂ can be 

obtained using the delta method (see Ramsey and Schafer (2002) pp. 328-329 for details) 

as follows: the first derivative of k̂ with respect to s'ˆ
i are 
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Then the approximate variance of k̂ can be written as 
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The estimate of the variance can be obtained as 
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where     1ˆ 

ljβI  is the thlj  element of the matrix    1ˆ 
βI  in (13). 

 
 

5. Application 
 
We consider data analyzed by Powers and Xie (2000). The data studied was occurrence-
exposure data on premarital births to young women participating in the National 
Longitudinal Survey of Youth from 1979 to 1988.  It provided retrospective information 
on the dates and occurrence of first birth and first marriage, and was categorized using 
three age intervals, race, and family structure  
 
Information on those experiencing premarital births was recorded and is displayed in 
Table 1.  In Table 1, “E” represents the number of person-months from age 14 to age at 
premarital birth, and “D” represents the cell-specific number of events. 
 
The approach taken here is that which is presented in Simonoff (1998).  Different log-rate 
models are compared to find the best model.  A saturated model and its nested models are 
defined.  We then use the deviations between the maximized log-likelihood from each 
model to perform a series of Chi-square tests so as to ascertain which model fits best as 
described in the Section 3. 
 
The models used were: 
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Using SPSS, MATLAB, and Mathematica to perform the iterations necessary for the 
maximum likelihood method, the following results were obtained: 
 
Model Fitted Model Maximum 

Log-
Likelihood 

Iterations
Needed 
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-4179.19 4 

(25) 
43 0.8713930.5034357251.5)Eln()ln( xxii   -4486.82 3 

 
Using these results, we tested the competing models using the likelihood-ratio statistic as 
described in section 3 in order to determine goodness-of-fit.  To perform the tests, we 
started by testing the saturated model (21) against the main factors model (22), and then 
tested the main factors model against its nested counterparts.  The results of the Chi-
square tests, performed with  = 0.05, are as follows: 
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Test 2G  d.f. Critical 
Value 

Conclusion 

(22) vs. (21) -2[(-4165.94)-(-4164.86)] = 2.16 6 12.59 Adequate fit for (20) 

(23) vs. (22) -2[(-4234.20)-(-4165.94)] = 136.52 1 3.84 Adequate fit for (20) 
(24) vs. (22) -2[(-4179.19)-(-4165.94)] = 26.5 1 3.84 Adequate fit for (20) 
(25) vs. (22) -2[(-4486.82)-(-4165.94)] = 641.76 2 5.99 Adequate fit for (20) 

 
The main factors model (22) compared to the saturated model (with all the interactions) 
(21) had adequate fit.  Model (22) had adequate fit compared to all the other models. 
Thus, we decided to qualify the main factors model (22) as the adequate model for this 
data. 
 
The marginal effects are computed as described in the Section 4.  The marginal effect for 

the first factor, age interval 16-18, is calculated as .858.3)ˆexp(ˆ
11    This means, the 

target population of age group 16-18 has a 3.858 times higher rate of premarital births 
than the other age groups.  A similar interpretation can be made for the marginal effect 

for the second factor, age interval 18-20, which is )ˆexp(ˆ
22   .390.11  The marginal 

effect for the third factor, non-intact family structure, is ,752.1)ˆexp(ˆ
33    which 

means that non-intact families have a 1.752 times higher rate of premarital births than 
intact families and the marginal effect for the fourth factor, non-white, is 

,472.2)ˆexp(ˆ
44   which means that non-white families have a 2.472 times higher rate 

of premarital births than white families. 
 
The variances of the marginal effects are computed using the delta method mentioned in 
section 4.  The computed variance-covariance matrix for the estimates of the parameters 
is, 
 

     .

0.0070      0.0007-   0.0001    0.0001     0.0050-

0.0007-    0.0052     0.0002    0.0001     0.0025-

0.0001     0.0002     0.0109    0.0078     0.0080-

0.0001     0.0001     0.0078    0.0107     0.0080-

0.0050-   0.0025-   0.0080-   0.0080-   0.0132  

ˆˆV
1


























 I  

 
The partial derivatives of the marginal effects are computed as 
 

Marginal 
Effect 

k ˆ  

16-18 
18-20 

Non-Intact 
Non-White

3.858
11.390
1.752
2.472
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Then, using (20), the variances are computed as ,0413.0)ˆV( 1  ,1241.0)ˆV( 2    

,0091.0)ˆV( 3  and .0173.0)ˆV( 4   These estimates of variances would be used in 

testing and in finding confidence intervals for the corresponding marginal effects to see 
the significance of the marginal effect estimates. 
 
 

6. Conclusion 
 
In conclusion, we see that the older age group has a higher rate of premarital births. Non-
white have 2.472 times higher incidence of premarital births.  Non-intact families have a 
1.752 higher birth rate than intact families.   
 
Such procedures can be applied to any risk exposure data in which are categorical and/or 
quantitative in nature, such as studies of rare diseases in different cross-sections of the 
society.  For too many iterations in the parameter estimation procedure, estimates might 
have higher variations and the log-likelihood function is not maximized. 
 

 
Table 1 

 Intact Non-intact 
 White   Non-white White Non-white 
Age D E D E D E D E 

14-16 17 13220 33 13838 10 7332 68 12827 
16-18 39 10266 104 9823 42 5417 160 8516 
18-20 43 3552 112 3331 42 1599 128 2594 
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