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Abstract 

 

 This thesis, “Investigation into the Usability of Micromechanical Models to 

Predict the Behavior of a Nanocomposite Polymer”, was written by Jason Handlogten as 

part of a Master of Science of Manufacturing Engineering Technology from Minnesota 

State University – Mankato in 2012. 

The purpose of this thesis was to determine the acceptability of a set of existing 

nanocomposite test specimens for tensile testing and then to determine the Young’s and 

shear modulus of these test specimens. If the test specimens were found to be acceptable, 

the accuracy of three micromechanical models was to be evaluated by comparing their 

predictions to the mechanical properties determined from testing the specimens. 

 The set of existing nanocomposite test specimens had a distinct concave shape on 

two surfaces that were believed to be intended as flat. In order to determine if they 

adhered to the Type I geometry for reinforced composites as listed in the Standard Test 

Method for Tensile Properties of Plastics a program was written using a coordinate 

measuring machine to measure the cross sectional area of the test specimens.  The 

geometry was found to meet the requirements of the standard and then the tensile testing 

procedure from the standard was followed. 

 During process verification of the testing procedure, the specimens were found to 

behave in an unexpected way for a material that was supposed to be homogeneous and 

isotropic. The test specimens were found to consistently break outside of the narrow test 

section.  



 An investigation into the behavior of the test specimens using dissection, impact 

testing, and hardness testing found that a core had formed inside the test specimens 

during fabrication and therefore the specimens were not homogeneous and isotropic. 

 Since the three micromechanical models under investigation for this thesis had the 

assumption that the material is homogeneous and isotropic it was determined that the 

three micromechanical models should not be used to predict the mechanical properties of 

the set of test specimens. 
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Chapter 1 – Introduction 

 

Micromechanical analytical models are an important tool used by engineers to 

estimate mechanical properties during preliminary design stages as well as during 

manufacturing (Park, 2007). Use of analytical models is especially important when 

dealing with composite materials. One of the primary benefits of using composite 

materials is that the specific properties of the composite can be adjusted by varying the 

geometry and concentration of the reinforcement; this allows for near custom properties 

for specific applications.  

Composite polymers generally consist of two phases. The continuous phase is 

known as the matrix. This is usually the polymer that is going to be reinforced. The 

discontinuous phase is known as the reinforcement. This is the material added to the 

polymer in an attempt to improve the properties of the composite (Agarwal, 1990). 

Various types of reinforcements can be used with polymers to enhance certain 

mechanical properties of the polymer. It is important to take into account the geometry of 

the reinforcement being used because shape, size, and distribution will alter the properties 

of the composite (Agarwal, 1990). Traditional composite polymers use fibers, short 

fibers, or platelets as reinforcements. Although the reinforcement of polymers using 

fillers is common in modern plastics, polymer nanocomposites represent an alternative 

option to traditional filled polymers (Koo, 2006).  

Recently, nano-size particles have been used to reinforce polymers; the first 

organo-clay hybrid nanocomposite was patented in 1976. The use of nano-size particles 

in composite polymers offers the potential for many improvements to material properties 
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such as changes in electrical resistance, flame retardation, as well as improvements in 

mechanical strength (Koo, 2006). Although there are potential benefits from using nano-

size particles, there are also new challenges related to designing with and fabricating 

these new composites. Although there are several analytical models that attempt to 

predict the macromechanical properties of composite polymers, few models have been 

developed that attempt to take into account the consideration of filler and void content 

(Park, 2005). 

Although the mechanical properties of a polymer can be determined by physical 

testing of the material, this requires that the specific composite has already been 

fabricated. Repeating the fabrication and testing processes is usually a time consuming 

and costly method to create a specific composite (Park, 2005). Significant time and cost 

savings can be taken advantage of if the composite material is designed concurrently with 

the application structure design. In order to properly use concurrent design of the 

nanocomposite, accurate mechanical models are necessary (Barbero, 2011). 

Due to their small size, nanoparticles exhibit a significantly large surface area-to-

volume ratio. By increasing the surface area-to-volume ratio of the reinforcement, a 

larger interfacial area is established. When the nanoparticles are well dispersed in the 

polymer, the immense interfacial area and the nanoscopic dimensions between the 

nanoparticles creates a fundamental difference between nanocomposites and traditional 

reinforced polymers; this fundamental difference implies that the properties of a 

nanocomposite cannot be predicted by simply scaling down models that are accurate for 

traditional polymers (Koo, 2006). The inability to simply scale down current models is 
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also hindered because it appears that materials tend to behave differently on the nano 

scale (Wilson, 2002). 

An important material property often used during a design process to evaluate the 

strength of a material is the modulus of elasticity, also known as the Young’s modulus. 

The Young’s modulus is a ratio of the tensile stress and the tensile strain a material 

experiences during an axial load. In order to accurately determine the modulus of 

elasticity of a material, the stress and strain during the test need to be accurately obtained. 

Since the engineering stress a material experiences is calculated as a ratio of force over 

the original cross sectional area, the value used for the cross sectional area during 

calculations has a direct influence on the calculated modulus of elasticity (Schaffer, 

1999). 

The purpose of this thesis was to determine the acceptability of a set of existing 

nanocomposite test specimens for tensile testing and then to determine the Young’s and 

shear modulus of these test specimens. If the test specimens were found to be acceptable, 

the accuracy of three micromechanical models was to be evaluated by comparing their 

predictions to the mechanical properties determined from testing the specimens. 

 Deliverables for this thesis were to include a procedure to measure the cross 

sectional area of the test specimens. Since the cross sectional area of the specimen has a 

direct relation to the calculated value for the mechanical properties, it is import that the 

cross section area be measured accurately. Due to the shrinkage of the material during the 

fabrication process, the existing set of specimens had a distinct concave shape along two 

surfaces which were believed to be intended as flat. Because of limitations in measuring 

equipment, determining the exact cross sectional area is not feasible, so a procedure was 
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to be developed to measure the cross sectional area to a degree of accuracy that would 

allow reasonable determination of the needed physical properties of the existing set of 

test specimens. This process would allow a single injection molding die to be used for a 

wide variety of materials. Even though each unique composition of materials would have 

a unique shrinkage rate, this process would allow the cross sectional area of any test 

specimen to be measured. This would prevent the need to create new or modify old 

injection molding dies each time a new material with an unknown shrinkage rate was to 

be studied. 

The second deliverable for this thesis was to be an evaluation of the geometry of 

the existing set of test specimens to determine if they adhere to the ASTM D 638 

standard; Standard Test Method for Tensile Properties of Plastics. The geometry of the 

existing test specimens were to be compared to the Type I specimen for reinforced 

composites as called out in the ASTM.  

The third deliverable for this thesis will be to define the Young’s and shear 

modulus of the nanocomposite test specimens based on the results of mechanical testing 

of the actual specimens.  

If the test specimens were found to fail the geometrical requirements listed in 

ASTM D 638, a recommendation was to be made for a reasonable use of the existing test 

specimens. Even if the geometry was not able to meet the ASTM standards, a tensile test 

was still to be conducted so that preliminary research data would be collected. 

Additionally, a recommendation was to be made as to what should be done with the die 

that was used to create the test specimens. The recommendation was to provide 

guidelines so that test specimens that conform to the required geometry could be made.  
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 The fourth deliverable for this thesis will be a determination of selected 

characteristics of the set of test specimens. The characteristics that will be examined are 

the Young’s and shear modulus. The Young’s and shear modulus of each test specimen 

would be determined, and then statistical methods would be used to describe the 

represented population as a whole.  

The fifth deliverable for this thesis will be three different predictions of the 

Young’s and shear modulus of the material by using three different micromechanical 

models. The micromechanical models that will be used are: 

1) The Eshelby model 

2) The Self-Consistent model 

3) The Mori-Tanaka model 

The sixth deliverable for this thesis is an evaluation of how accurately the three 

different models were able to predict the Young’s and shear modulus by comparing their 

predictions with the experimental results. A recommendation would be made on the 

ability of the current micromechanical models to predict the mechanical properties of the 

nanocomposite polymer. 

As is common in research, unexpected results were found during tensile testing 

that prevented the research from being completed as planned. During tensile testing the 

nanocomposite polymer was found to behave in a manner that was unexpected for a 

homogeneous isotropic material. This change in behavior prevented the tensile testing 

from being completed as planned. A summary of the unexpected behavior, the changes in 
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methodology as a response to these findings, and a discussion of results as well as further 

research questions can be found in chapters 4, 5, and 6. 
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Chapter 2 – Literature Review 

 

There are several different types of nanocomposite polymers; they can be 

classified by the type of geometry of the reinforcement. Some reinforcement geometries 

include: lamellar (platelet), fibrillar (small fibers), tubular, spherical as well as others. 

Different types of reinforcements provide different types of changes to the mechanical 

properties (Utracki, 2004). 

A nanocomposite polymer consists of two main components, the polymeric 

material and a reinforcing material that has at least one dimension on the nano level 

(Koo, 2006). For ease of classification, there are three different requirements that can be 

met in order to have at least one dimension on the nano level. For fiber or tube fillers, the 

diameter must be less than 100 nm. For plate-like nanofillers, the thickness must be 

around the magnitude of 1 nm. For spherical or other equi-axed particles, the maximum 

dimension should be less than 100 nm (Ajayan, 2004).  

The concentration of the reinforcement of a composite polymer is usually 

measured by the volume or weight fraction. The concentration of reinforcement is 

generally considered the single most important parameter that influences the 

characteristics of the composite polymer (Agarwal, 1990). Even though the concentration 

is considered the most important parameter, other factors can cause changes in the 

material properties. 

Another important factor that can have an influence on the properties of a 

composite is the orientation of the reinforcement material. Since fibers have a ‘long’ 

dimension, they are not considered isotropic and will behave differently when loaded in 
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different directions. Fibers are generally used to carry load in the ‘long’ dimension; this 

creates a stronger polymer. In fibrous composites, the fiber is used to carry the load. At 

volume fractions of 0.2, the fiber is capable of carrying over 70% of the load (Mallick, 

1993). Particles are considered to be spherical, they have no ‘long’ dimension and 

determining the orientation of the particles is neither feasible nor necessary (Agarwal, 

1990).  Since there are so many factors that can influence the mechanical characteristics 

of a polymer, it is useful to have ways to predict how these factors will interact with 

eachother. 

The mechanics of fiber reinforced composites are studied at two levels, the 

micromechanical level and the macromechanical level. The micromechanical level is 

concerned with the interaction of the constituent materials; especially the interaction 

between the constituents. The micromechanical level attempts to take into account the 

fact that the matrix will experience different stresses near the boundaries of the filler. The 

micromechanical level is contrasted by the macromechanical level which assumes that 

the material is homogeneous (Mallick, 1993). 

There are several micromechanical models that can be used to predict the 

properties of an isotropic material that contains both reinforcements and voids. Of the 

several models that have been developed, three of them are of particular interest. These 

include: the Eshelby model, the Self-Consistent model, and the Mori-Tanaka model. Each 

of these models can be used to determine the Young’s modulus, E, and shear modulus, G, 

of the material (Park, 2005). 

A possible material to use as reinforcement is a hexagonal platelet shaped kaolin 

clay particle. The geometry of the platelet has the equivalent circular diameter of 400–
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6,000 nm and a thickness range of 4–600 nm. The ratio of the thickness to diameter is 

found to be 1/100-1/10. Although this geometry is clearly not symmetrical in all 

directions, there is an assumption that allows the platelet particles to be treated as 

spherical shapes. Previous research has shown that 3-D randomly oriented platelet 

particles can be treated as if they were spherical particles with an identical volume (Park, 

2005). 

Claims have been made that adding nano-sized clay particles as a reinforcement 

for a composite can offer improvements in various properties of the final composite. The 

addition of different nano-size reinforcement materials can result in improving a range of 

improvement of properties such as: flame retardation, increase in stiffness, increase in 

impact strength, and an increase in tensile strength. Information provided by the 

manufacturer of the composite material used for this thesis claims that the addition of the 

nano-size clay particles will increase mechanical strength of the final product. Since the 

method of fabrication of the test specimens for this thesis was injection molding, it is 

important to note that the manufacturer claims that the nano-size reinforcement particles 

will be well dispersed when the composite is used in extruders, mixers, and injection 

molders (Nanocor, 2006). 

Although the three previously mentioned models (Eshelby, Self-Consistent, Mori-

Tanaka) are designed to be used with spherical reinforcement particles, preliminary 

research has shown it may be possible to use these models for a composite that has 

hexagonal reinforcement particles. This can be done by using the platelet model; a model 

that is used to model randomly oriented hexagonal reinforcement particles as spheres 

(Park, 2005). 
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The platelet model begins by considering a composite in which the platelets are 

all oriented so that the ‘long’ directions of the particles are aligned with the x and y 

directions of the composite; this creates a transversely isotropic material. A stiffness 

matrix is then created to model the properties of the transversely isotropic material. The 

various components of the stiffness matrix are evaluated using properties of the resin, 

clay particles, and volume fractions of the resin, particles and voids (Park, 2007). 

After the stiffness matrix for the transversely isotropic material has been 

established, it is necessary to modify the matrix so that it can represent a composite that 

has evenly distributed and randomly oriented clay particles. In order to accomplish this, 

the unidirectional model is rotated by an angle, θ, about the x-axis. This is done by using 

the 3-D transformation matrix [Tx]; this allows the transformed stiffness matrix to be 

computed. By integrating over a random value for θ, a new effective stiffness matrix, C’, 

is obtained. The transformed stiffness matrix is then rotated by an angle, ϕ, about the y-

axis using the 3-D transformation matrix [Ty]. By integrating over a random value for ϕ, a 

new effective stiffness matrix, C’’, is obtained. It is not necessary to transform and 

integrate by the z-axis as the platelet particles are now evenly and randomly oriented 

about all three axes. The various components of the stiffness matrix can be calculated and 

used to evaluate the shear modulus as well as the extensional modulus of the composite 

material (Park, 2007). 

In his research, Dr. Park has compared a platelet filler model with a spherical 

filler model. In this research, the material used for the experimental results contained 

platelet shaped clay reinforcement. The research found that the platelet model was 

consistently more accurate when compared to the experimental results, although the 
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maximum difference between the shear moduli calculated with the two models was 3.6% 

(Park, 2007). It is not surprising that the platelet model was more accurate at predicting 

the properties of a material with platelet reinforcement. 

By including the use of the platelet model it is possible to use the three previously 

mentioned models, which require spherical reinforcement particles, to evaluate the bulk 

and shear modulus of a composite material which contains hexagonal reinforcement 

particles. Although each of the models takes a slightly different approach, they all use a 

modified version of Eshelby’s tensor for spherical inclusions to model the reinforcement 

particles as spherical. The three models use properties of the resin and the clay particles 

as well as the volume fractions of the resin, reinforcement, and voids present. Several 

values for the Young’s modulus and the shear modulus can then be calculated by using 

the three different models (Park, 2005). 

Another factor that influences the properties of a polymer is the concentration 

distribution. If the concentration distribution is not uniform, weak points may be present 

in the part (Agarwal, 1990). This is because the enhanced characteristics from the 

reinforcement will be greater in some areas while weaker in others. It is important to have 

uniform distribution of the reinforcement material. 

Another important factor that influences the properties of a composite is the size 

of the reinforcement material. Of particular interest is the concept that nano-sized 

particles can reinforce the matrix due to a better interface bondage with the matrix 

material (Park, 2007). Since the load is transferred from the matrix to the particles 

through the interface, using sub-micron particles can lead to significant improvement 

(Koo, 2006). 
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In addition to having an improved interfacial region, another advantage that nano-

level reinforcements have over traditional sized reinforcements is that the amount of area 

that is classified as the interfacial region becomes a larger portion of the composite. This 

is true as long as the reinforcing nanoparticles are well dispersed and well distributed. 

Even if the interfacial region is only the space a few nanometers between the particles 

and the polymer, due to the large number of particles in any given volume a large portion 

of the polymer becomes part of the interfacial region (Ajayan, 2004). 

One of the important interactions in any composite is the interaction between the 

polymer and the reinforcement; this is especially complicated in nanocomposites. The 

interaction between the polymer and the reinforcement material is important because it is 

where and how the load is transferred from the weaker polymer to the stiffer 

reinforcement. With composites that are on the nano level, the polymer chain and the 

reinforcement start to become similar in size. This allows the nano fillers to change the 

type or degree of the crystallinity which can influence the modulus of elasticity of the 

material. Part of the increase in strength seen in some nanocomposite polymers may be 

from the reinforcement restricting the movement of the polymer chains (Ajayan, 2004). 

It is possible that part of the increase in the modulus of elasticity seen in some 

nanocomposite polymers may be due to the fact that adding equi-axed particles can alter 

the glass transition temperature, Tg, of the composite. This is important because the 

strength of a polymer is sensitive to the ambient temperature relative to the Tg of the 

composite. If the Tg of the polymer can be increased, the difference between the ambient 

temperature and the Tg can be increased.  Therefore it is possible to increase the modulus 

of a composite by altering the Tg of the composite (Ajayan, 2004). 
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There are two theories that address the increase in modulus found in 

nanocomposites; although they are somewhat conflicting theories. One theory is the 

‘Bonded Polymer Theory’; this is the theory that there is more interfacial region for the 

same volume amount of reinforcement. This is due to the increased surface area per 

volume ratio for particles with a smaller radius. Research has shown that the ‘Bonded 

Polymer Theory’ is unable to explain the complete increase in the modulus of elasticity 

that has been found in nanocomposites. A second theory is the ‘Double Network Theory’, 

this address the idea that the interparticle distance starts to be comparable to the radius of 

gyration of the polymer chains. This allows the chains to forum additional networks with 

the particles (Ajayan, 2004). 

One of the primary advantages that nano-sized fillers have over conventional 

sized fillers is that the smaller size results in a smaller stress concentration factor. There 

can be a considerable amount of stress at the interaction between the matrix and the 

reinforcement. Larger particles sizes may cause cracks which are larger than the critical 

crack size; this can allow the crack to propagate and cause failure. With nano-level fillers, 

the crack size is likely to be smaller than the critical crack size which will prevent the 

crack from propagating and causing failure. This is what allows nanocomposites to gain 

the strength that traditional composites have without sacrificing ductility like normal 

composites experience (Ajayan, 2004). 

An ideal composite material would only consist of the matrix material and the 

reinforcement material; however it is common for unwanted components to be present in 

composites. Fillers are often used to reduce costs without having a major effect on the 

final product. Additionally, voids are often present in composite materials. Since these 
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voids and fillers change the structure of the composite, there is a resulting change in 

material properties. It is recommended to take filler and voids into account when 

theoretically computing mechanical properties (Park, 2005). 

In order to be able to do any sort of verification of these models, it is necessary to 

compare predictions of the models to actual data gathered from experiments. In order for 

an effective verification to be made, it is necessary that the experimental data is 

accurately measured. In the context of this thesis that includes the following information: 

force experienced during loading, cross sectional area of the test specimen, initial length 

of the test specimen, and change in length of the test specimen. 

Since the test specimens have already been created prior to the start of this thesis, 

it is of particular interest to focus on the cross sectional area of the test specimen. Due to 

the fact that the existing set of test specimens have a concave shape which is visible to 

the naked eye, the cross sectional area cannot be reasonable or accurately measured using 

conventional methods such as a caliper or micrometer. 

The geometry for the test specimens was chosen to adhere to the ASTM 

requirements for tensile testing of reinforced composites. It was decided to follow the 

ASTM because the ASTM has the standard test method to determine the tensile 

properties of reinforced plastics that are in the standard dumbbell shape (ASTM, 2003). 

It is important to have an accurate measurement of the cross sectional area of the 

test specimen because the cross sectional area has a direct influence on the determined 

value of the Young’s modulus. This can be seen in the following equation. 
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While the force, original length of the test specimen and change in length of the 

test specimen can all be measured using conventional methods, the cross sectional area of 

the current test specimens cannot be measured using conventional methods. Since this 

equation shows that any error in the measurement of the cross sectional area will result 

directly in error of the determined Young’s modulus it is important that the cross 

sectional area of the test specimen is accurately obtained (Askeland, 1994). 

An example calculation for all three models was done to generate a prediction for 

the Young’s and shear modulus of a vinylester and kaolin clay nanocomposite polymer. 

Since each of the three models attempted to predict the final composite’s materials using 

differing methods, the variation in final predictions is to be expected. A summary of the 

model’s predictions can be seen in the Table 1. 
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Table 1: Young’s and Shear Modulus Results from Models 

Model Young’s Modulus Shear Modulus 

Eshelby 4.805 [GPa] 1.770 [GPa] 

Mori-Tanaka 4.736 [GPa] 1.738 [GPa] 

Self-Consistent 4.766 [GPa] 1.752 [GPa] 

Mean 4.769 [GPa] 1.754 [GPa] 

Standard Deviation of 

Population 

0.028 [GPA] 0.013 [GPa] 

Range 0.068 [GPa] 0.032 [GPa] 

 

It is important to note that all three of these models generate similar results for the 

mechanical properties. This can be seen by looking at the standard deviation of the 

population for both the Young’s and the shear modulus; with standard deviations of 0.028 

GPa and 0.013 GPa respectively. The variations in predictions by the models are 

negligible from an engineering perspective where designs often include safety factors that 

are significantly greater than the 1.5% variation seen here. It is more significant to 

compare how the predictions from models compare to the experimental results. 

In order to create a comparison between the experimental results and the 

theoretical models, all three of the theoretical models were used to predict the Young’s 

and shear modulus of a sample nanocomposite polymer. The three models used were the 

Eshelby Model, the Mori-Tanaka Model, and the Self-Consistent Model. All three of the 

models used the same input parameters of the three base components of a sample 

composite. The vinylester resin was specified as 83.0% by volume, the kaolin clay was 
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specified as 15.7% by volume and total voids were specified as the remaining 1.3% by 

volume. The Young’s modulus, shear modulus, and poisson’s ratio for both the vinylester 

resin and kaolin clay were used while the voids were given no mechanical strength 

properties. Although the material properties of the vinylester resin are different than the 

nanocomposite used in this thesis, the same process can be applied to the nanocomposite 

polymer being studied for this thesis. The information for the vinylester resin 

nanocomposite is summarized in Table 2. 

 

Table 2: Mechanical Properties of Components of a Sample Composite  

Component Percent by 

Volume 

Young’s 

Modulus 

Shear 

Modulus 

Poissons Ratio 

Vinylester 

Resin 

83.0 % 3.85 [GPa] 1.4 [GPa] 0.366 

Kaolin Clay 15.7% 20 [GPa] 7.69 [GPa] 0.300 

Total Voids 1.3% N/A N/A N/A 
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Chapter 3 – Methodology 

 

 

Before tensile testing of the specimens could begin, it was necessary to verify that 

the actual geometry of the parts are within the accepted variation allowed by the ASTM 

standard. The ASTM requires that reinforced composites shall follow the dimensions of 

their Type I specimen. This means that the dimensions for the test specimens were to be 

6.50 inches long, 0.75 inches wide at the ends but narrows down to 0.50 inches wide in 

the middle, the narrow test area. The specimen will be approximately 0.25 inches thick 

across the entire specimen (ASTM, 2003). Unfortunately the existing test specimens have 

a concave shape along the length of the test specimen.  

To some degree, these dimensions imply that the test specimen should have flat 

surfaces that fall within the tolerances of the specified dimensions. Although flatness is 

implied, there are no actual requirements that the test specimens have flat surfaces. The 

requirements are listed that the thickness of the test specimen shall be less than 0.28 

inches [+/- 0.02 inches]. As long as all points on the surface of the test part fall within the 

0.04 inch tolerance gap, as the specification is listed, it is not necessary that any two 

points have the same thickness (ASTM, 2003). 

In order to verify that the test specimens have a geometry that adheres to the 

ASTM, the actual dimensions of the test specimens needed to be accurately measured. A 

caliper was used to measure the width and the length of the test specimens. Due to the 

unexpected concave shape of the top and bottom surfaces of the specimens, the thickness 

could not be adequately measured using a caliper. Since a caliper could not be used, a 

different measurement process was applied. 
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The measurement of the thickness of the test specimens was done by creating a 

process that used a coordinate measuring machine. The coordinate measuring machine 

was used because it had a measuring tip that could fit within the shallowest section of the 

test surface, was able to consistently measure multiple test specimens, and was able to 

measure accurately within 0.01 inches as required by the ASTM. The process included a 

method to secure the test specimen during measurements, the number and location of 

measurements made, the program code that ran the coordinate measuring machine, and a 

method to record the data produced by the program.  

It was important to physically secure the test specimens during testing because 

any movement of the specimen during measuring would result in an error of the 

measurement of the dimensions. In addition to preventing an individual test specimen 

from moving, it was beneficial to secure all test specimens in the same location inside the 

coordinate measuring machine’s working surface so that a single program could be used 

for all of the test specimens. The parts were secured by a Kurt AngLock D675 vise. The 

clamp was secured to the coordinate measuring machines surface using two bolts that 

were secured directly into the working surface; this made sure that the clamp would not 

move during or in between any of the measuring cycles. Each test specimen was held in 

place while the clamp was tightened. In each case, the clamp was tightened enough to 

prevent the specimen from moving, but not enough to deform the test specimen itself.  

In order to get an accurate measurement of the surface of the test specimens, 

measurements were taken along the narrow test portion of the specimens. The narrow test 

portion of the specimens is 2.00 inches long and 0.50 inches wide. Measurements were 

taken every 0.25 inches along this testing area, which resulted in 9 ‘lines’ to be measured 
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on both the top and the bottom of the test specimen. At each of these lines, the 

coordinates were measured at the peak height on one side of the test specimen (‘ATop, n ’) 

then the coordinates at the middle of the test portion was measured (‘BTop, n’) and finally 

the peak height on the other side of the test specimen was taken (‘CTop, n’). After each set 

of three points was measured, the process was repeated 0.25 inches further down the test 

specimen (ATop, n+1, BTop, n+1, CTop, n+1). This resulted in 27 data points for each side of 

each test specimen. Since the surfaces were concave on both sides of the test specimen, 

the specimen was then “rotated” 180° along its long axis and the process was repeated on 

the other side. This resulted in 9 profiles along the narrow length of the test specimen. 

Each profile contained 6 data points, 3 on the top and 3 on the bottom side (ATop, n; BTop, 

n; CTop, n; ABottom, n; BBottom, n; CBottom, n) 

The program code written to measure the thickness of the test specimen was 

written following guidelines in the Brown & Sharpe Micro-Hite DCC’s reference manual 

(Wilcox, 2005). A summary of the procedure of the code is as follows; see Appendix A 

for the complete code. After the test specimen was secured in the clamp, the operator 

manually established the top plane of the test specimen by contacting the probe at three 

points along the surface of the test specimen. The points were taken at the same location 

for all specimens, two points at the end of the test strip on one side and one point in the 

middle of the test strip on the other side. Establishing the location of the top plane of the 

specimen defined the reference point for the Z, or vertical, coordinates (Wilcox, 2005).  

Next, the operator manually established the side of the test specimen by 

contacting the probe at two points along the side of the test strip area. The points were 

taken in the same order and at the same location for all test specimens. The left point was 
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taken towards the end of the test portion of the test specimen followed by the right point 

which was taken towards the other end of the test portion of the test specimen. This 

established the reference location and direction for the X coordinates. By using this 

procedure, it would not have been necessary to load the test specimen in the same spot in 

the clamp every time; however, the test specimens were loaded at the very edge of the 

clamp every time to avoid any unexpected confounding factors that may have occurred 

(Wilcox, 2005).  

Finally, the operator manually established the location of the clamp by contacting 

the probe at two points along the left most face of the clamp. In a similar method to the 

previous points taken along the test specimen, these points were taken in the same order 

and at the same location for all test specimens. The first point was taken along the clamps 

surface closest to the operator followed by the second point which was taken along the 

clamps surface further away from the operator. This established the reference location 

and direction for the Y coordinates (Wilcox, 2005). 

Following this procedure before measuring the surface of any test specimens 

established a consistent and custom coordinate system for each test surface. By defining a 

plane and two lines, a custom origin was selected 0.75 inches above the intersection of 

the plane and the intersection of the two lines. The variable that was controlled in this 

procedure was that the test specimen had to be loaded the ‘long’ way in the clamp. This 

was able to be done by lining up the flat sides on each end of the test specimen with the 

flat surfaces of the clamp. Since the program was able to start at the same location 

relative to the test specimen, the rest of the program was able to be executed in automatic 

mode; the operator did not need to manually control the probe. The program then 
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measured the coordinates of each of the 27 points described earlier and then the data was 

collected and stored. After the first side was done, the specimen was turned over and the 

process was repeated for the other side. 

The data from the measuring process was used to determine the actual cross 

sectional area of the test specimen. The ASTM dictated that the width and thickness of 

the cross sectional area be measure at each end of the narrow test section and that those 

two numbers would be average to give the cross sectional area used in calculations. The 

procedure of this research deviated from the recommended process by measuring the 

cross sectional area at 9 points along the narrow test area and then averaging the data. 

Before taking shrinkage into account the cross sectional area of the test specimen was 

calculated to be 0.13 square inches. Since the data from the coordinate measuring 

machine provided 2 peak heights and 1 valley height, the cross sectional area was 

calculated assuming a straight line connection between the peaks and the valley. This 

resulted in an oversized, which results in a conservative, estimate of the cross sectional 

area of the test specimen. The conservative cross sectional area was found to be 0.12 

square inches; this is a 7.7% reduction in area due to shrinkage. 

In addition to determining the cross sectional area of the test specimen, the 

collected data was able to verify that the test specimens met the requirements for 

thickness. The thickness for the specimens was found to average 0.263 inches. The range 

in variation of thickness along the length of an individual test specimen was found to 

average 0.007 inches with a maximum of 0.009 inches.  This was found to be within the 

requirements listed in the ASTM standard which state that that the thickness of the test 

specimen shall be less than 0.28 inches [+/- 0.02 inches]. 
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The mechanical testing consisted of a tensile test to determine the tensile 

properties of the nanocomposite material; ten specimens were to be tested. The tensile 

test would have been conducted according to the procedure laid out in the ASTM. The 

procedure is very comprehensive; it includes the settings to be used for the tensile test 

machine, desired ambient conditions during testing, as well as conditioning of the 

specimens for at least 40 hours prior to testing. If equipment limitations require any 

deviations from the guidelines in the ASTM, they will be documented. 

The ASTM dictates that a minimum number of 5 specimens need to be tested in 

order for the data obtained by this test method to be relevant and appropriate for use in 

engineering design. There were 25 specimens that were determined to be quality 

specimens for tensile testing that were created using the injection molding procedure 

followed by Stuart Boyd in Application of Injection Molding for the Purpose of Testing 

Nanoclay-Reinforced Composite Polypropylene. Out of these 25 specimens, 10 

contiguous samples from the fabrication process were selected to be used for tensile 

testing; this exceeded the requirements stated by the ASTM. The remaining 15 specimens 

were used during a pilot test to verify that the following test procedure was set up 

properly. 

The mechanical testing of the specimens followed the ASTM guidelines that are 

applicable for the tensile testing of a reinforced composite that has the standard dumbbell 

shape. In order to measure the strain of the test specimen, an extensometer was attached 

directly onto the specimen. The extensometer selected was a MTS 634.25E-2X Axial 

Extensometer which had an initial span of 2.00 inches. The 2.00 inch span of the 

extensometer was placed over the 2.00 inch narrow testing portion of the test specimen. 
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The speed setting for the machine was selected to follow ASTM. For Type I specimens, 

the speed of testing was 0.20 inch/minute. These settings were selected so that the test 

specimen would rupture in approximately 30 seconds to 5 minutes of testing. The clamps 

of the tensile testing machine were set as per the ASTM which says that the clamps were 

to be set at the lowest pressure that prevents slipping of the test specimen and without 

crushing the test specimen. 

During testing of the specimen, both load and strain were measured 

simultaneously. The load was measured from the MTS 810 Material Test System tensile 

testing machine and strain was measured with the previously mentioned extensometer 

which was attached directly to the specimen. This procedure allowed all the necessary 

information required to calculate the Young’s modulus of the composite polymer 

(ASTM, 2003). 
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Chapter 4 – Findings from Tensile Testing 

 

As is a common occurrence when conducting research, unexpected results were 

found during initial tensile testing. A recurring problem was found when attempting to 

verify that the tensile testing machine was setup properly. While using excess test 

specimens to verify that the tensile testing procedure and data collection was set up 

properly, it was found that all test specimens were breaking in the same relative location 

which was outside of the narrow testing area. This was unexpected because the breaks 

were occurring where the test specimen was relatively thick when compared to the 

narrow testing area. This was unexpected for a homogeneous material because failure is 

expected to occur at the area where the stress is the highest. Since stress is a function of 

force over area and the entire test sample is receiving the same load, the section with the 

smallest cross sectional area should be the point of failure (Shackelford, 2000). All 4 

specimens broke in the wide area on the opposite side of where the gate was located 

during the fabrication process; this can be seen in Figure 1. 
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Figure 1: First Four Specimens after Tensile Test 

 

The unexpected failure mode of the composite was problematic to the 

continuation of this research. On page 6 of the ASTM, it says to “discard specimens that 

break at some flaw, or that break outside of the narrow cross-sectional test section”. The 

material was found to behave in a way that prevents the research from following the 

ASTM. Additionally, the behavior of the material acted in a way that was not compatible 

with the assumption made by the three models that the material is a homogenous 

isotropic material. Therefore, additional research into the behavior of the test specimens 

was conducted.   
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Chapter 5 – Revised Methodology and Results 

 

Since the material was not exhibiting the behavior expected for a homogeneous 

material, some test specimens were examined further using explorative methods. Another 

specimen was loaded “flipped” 180° to be loaded “upside down” when compared to 

previously test specimens. This was done to see if the consistent location of the failures 

was being caused by the tensile testing machine itself; however, it was found that 

orientation of the specimen had no effect. All specimens broke at the wide area on the 

end opposite the gate. The recurring failure outside of the narrow test section for all 5 test 

specimens can be seen in Figure 2. The extra failure on the two rightmost specimens was 

caused by further testing which is described later in this thesis. 

 

Figure 2: All Five Specimens after Tensile Test 
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As an explorative measure, two of the previously tested specimens were re-tested 

in the tensile testing machine. The test was conducted using the previously defined 

methodology with the only variation being that due to previous testing the test specimens 

were shorter. After the load was applied to these test specimens, the failure point was 

found to be at the same end that the first failure had occurred; as seen in Figure 3. 

 

Figure 3: Specimens That Were Tested Twice 

 

Since the first sign of abnormal behavior was consistently occurring at the end of 

the test specimen that was furthest away from the gate, both ends of a test specimen were 

cut off. The ends were cut perpendicular to the long axis of the test specimen. After 

examining the internal faces that were exposed, initial results showed that there appears 

to be a cone-shaped core that forms inside of the test specimen with the thickest cross 

section being located at the end furthest away from the gate. This is shown as a difference 
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in coloration and lines that seem to indicate that a boundary has formed on the inside of 

the test specimen. This can be seen in Figure 4. 

 

Figure 4: Specimen with Ends Cut Off 

 

In an effort to further investigate the unexpected behavior of the material, an 

impact test was conducted on a test specimen. The impact test was done using a Terco 

MT3016 Impact Tester. The shear value for the impact test was recorded as 2.15 joules. 

After the impact test, the test specimen broke into three distinct pieces. After looking at 

the exposed surfaces, it was seen that the core of the test specimen is visible in the narrow 

cross sectional testing area. This indicates that the material is not homogenous in the 

narrow cross sectional area as seen in Figure 5. 
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Figure 5: Specimen after Impact Test 

 

In order to examine the location along the entire long axis of the test specimens, 

another test specimen was cut into 8 segments. These cuts were made in the same 

perpendicular fashion as the cuts in the previous test specimen. It was found that the core 

exists almost along the entire length of the test specimen. The core also appears to 

gradually grow in size as it gets further away from the gate end of the test specimen. 

Since the diameter of the core section varies along the length of the test specimen, it 

indicates that the core is not present in the same magnitude throughout the entire 

specimen; this can be seen in Figure 6. 

 

Figure 6: Specimen that was cut into Slices 
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The next explorative cut was done by creating a diagonal cut that passed through 

the wide end of each side of the specimen. On the end of the test specimen that is closest 

to the gate, the cut went smoothly and no problems occurred. When the exposed surfaces 

were examined, at least 11 vertical lines could be seen spread throughout the width of the 

test specimen. This indicates that the material is not forming into a single homogenous 

part, but that layers do appear to form during fabrication. This can be seen in Figure 7. 

 

Figure 7: Specimen with end cut at Diagonal 

 

When the same diagonal cut was attempted on the side of the test specimen that is 

furthest away from the gate, the cut was going smoothly until the blade hit what appeared 

to be the core inside the specimen. The core section of the test specimen behaved as a 

material with greater strength as it resisted the cut and was rapidly pulled out of clamp 

when the teeth of the saw blade sunk into the core. Although only some of the outside 

material was removed by this cut, the remains partially exposed the core. The partially 

exposed core can be seen in Figure 8. 
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Figure 8: Partial Core Exposed After Attempting Diagonal Cut 

 

When examining the broken test specimens, it was found that there appears to be 

a core inside of the test specimens. Even though the core is made out of the same 

material, it appears to behave differently than the outer portions of the test specimens. 

In order to verify that the core is more than just an appearance issue and does 

actually have different material properties, a hardness test was conducted. A New Age 

Industries HP-DR durometer was used. The durometer used for the testing used the Type 

D scale for hardened plastics. A test specimen was cut on the opposite end of the gate 

perpendicular to its long axis; this created a flat surface that was ideal for hardness 

testing. The hardness was measured at two locations: first outside of the core and 

secondly inside of the core. The hardness of the outer material was found to be 54 while 

the core material was found to be 68. Although the hardness scale is unitless, the higher 

value recorded for the core material indicates it is a harder material (Schaffer, 1999). 
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Chapter 6 – Conclusion and Future Research 

 

 The data from the preliminary tensile testing was analyzed to show an initial 

comparison between the experimental data and the three predictions that were created by 

the models. It was found that the Young’s modulus for the test specimen was 388,000 

psi; this is the equivalent of 2.67 GPa. The Young’s modulus can be seen in Figure 9 

which is the Stress-Strain graph of one of the test specimens that was used in a tensile 

test.    

 

Figure 9: Stress Strain Curve of a Test Specimen after Tensile Test 

 

However, the value of 2.67 GPa for the Young’s modulus should not be used for 

comparison with predictions made by the three models. Since the failures during tensile 

testing occurred outside of the area where strain data was collected, necessary 

information for calculating the Young’s and shear modulus is unavailable. Without 
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having accurate strain data for the location of the failure, calculating the Yong’s and 

shear modulus would be meaningless. Without the Young’s and shear modulus of the test 

specimens, it is unnecessary to use the three models to predict the Young’s and shear 

modulus of the nanocomposite used in this thesis. 

There were two primary types of models that were to be considered for predicting 

the mechanical properties of this nanocomposite material; the spherical model and the 

platelet model. The platelet model derives its equations by considering a hypothetical 

composite where all of the reinforcement particles are platelet shaped and are all aligned 

so that the long dimensions are all along the x-axis. The hypothetical composite is then 

rotated randomly about the x and then y-axis to model a composite that has randomly 

oriented reinforcing particles (Park, 2007). This creates a model that assumes the material 

is isotropic and homogeneous. This model predicts that the test specimen would break 

where the stress is the highest; in this case, where the cross sectional area is the smallest. 

This assumption is incompatible with the behavior that the material exhibited during 

testing. 

 The spherical model derives its equations by using the Eshelby model and its 

variations, Mori-Tanaka and Self-Consistent models, to determine the properties of the 

nanocomposite. These models use the volume fractions of the resin, filler, and voids as 

well as the mechanical properties of the individual components to determine the strength 

of the materials as a composite material (Park, 2005). As with the platelet model, the 

spherical model works off of the assumption that the material is homogeneous and 

therefore has isotropic characteristics.  
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Since the behavior of the material during tensile testing is exhibiting 

characteristics that violate the assumptions made by the three different models, it is not 

reasonable to compare experimental results with the theoretical predictions.  

There are several future research questions that should be answered in order to 

continue the preliminary research found in this thesis. The main question that needs to be 

answered is that of why does the core form in the test specimens. There are several 

experiments and areas of research that may provide insight into the formation of this 

core, this includes: 

 Investigate cooling of specimen during injection molding process 

 Use a heated mold during injection molding process 

 Investigate dispersion of nanoparticles 

 Investigate failure surfaces using an appropriate microscope 

It would be beneficial to investigate the cooling of the specimen that occurs 

during the injection molding process. It is possible that the test specimen does not cool at 

the same rate throughout the entire specimen. If the specimens were not cooling 

uniformly during the injection molding process, it could possibly explain the formation of 

layers that were seen during exploratory testing. Investigation into using a heated mold to 

control uniform cooling of the test specimen may yield answers. 

An experiment should be conducted in which variables such as the injection 

temperature of the composite, the mold temperature, and rate of cooling are controlled 

and varied. The specimens should then be examined to determine whether or not 

fabrication variables have an influence on the formation of the core. If a core is found to 
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appear, hardness tests should be conducted on both the core and outer material. By 

documenting any possible relationship between fabrication variables and core properties 

further insight may be gained into the formation, behavior and significance of the core. 

Another way to investigate the unexpected behavior found in the test specimens 

would be to investigate if the nanoparticles are actually well dispersed throughout the test 

specimens. Although the manufacturer claims that injection molding would result in well 

dispersed particles, it is possible that orientation and displacement of the particles was 

influenced during the injection molding process. This investigation could be done using 

high-powered microscopes or other appropriate observation techniques. 

Since all the failures occurred in close proximity to the clamps of the tensile 

testing machine, future research should be done to investigate any relationship between 

the clamping forces and the location of failure. The hypothesis that the failure location is 

due to forces from the clamps of the testing machine has a low probability of being 

correct. When specimens were loaded upside down, the failure still occurred in the same 

relative location on the test specimen, regardless of which set of clamps were acting on 

the test specimen. Although the probability of this hypothesis being correct is low, it 

should be investigated in an effort to document and/or reduce confounding factors.  
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Appendix A – CMM Code and Data Collection for a Test Specimen 

ART NAME  : Tensile Test Specimen 

REV NUMBER : 1 

SER NUMBER : Test Subject 

STATS COUNT : 1 

  

STARTUP    =ALIGNMENT/START,RECALL:,LIST=YES 

            ALIGNMENT/END 

            MODE/MANUAL 

            CHECK/ 0.1,1 

            MOVESPEED/ 30 

            TOUCHSPEED/ 0.7 

            MANRETRACT/5 

            FORMAT/TEXT,OPTIONS,ID,HEADINGS, , ;MEAS,NOM,TOL,DEV,OUTTOL, ,  

            LOADPROBE/B89 

            TIP/T1A0B0, SHANKIJK=0, 0, 1, ANGLE=0 

$$ NO,Define 1 plane, 2 lines, and a point to so computer can locate the part 

PLN1 - TOP OF SPECIMEN=FEAT/PLANE,CARTESIAN,TRIANGLE 

            THEO/<8.83834,0.40699,-15.56512>,<-0.0036883,0.0022557,0.9999907> 

            ACTL/<8.8048,0.40655,-15.56352>,<0.004323,-0.0017561,0.9999891> 

            MEAS/PLANE,3 

            HIT/BASIC,NORMAL,<8.36492,0.2405,-15.56649>,<-
0.0036874,0.0022569,0.9999907>,<8.41379,0.24896,-15.56211>,USE THEO = YES 

            HIT/BASIC,NORMAL,<9.34976,0.24042,-15.56286>,<-
0.0036874,0.0022569,0.9999907>,<9.27354,0.24899,-15.56583>,USE THEO = YES 

            HIT/BASIC,NORMAL,<8.79991,0.74033,-15.56601>,<-
0.0036874,0.0022569,0.9999907>,<8.72707,0.7217,-15.56263>,USE THEO = YES 

            ENDMEAS/ 



40 
 
LIN1 - ALONG TEST AREA=FEAT/LINE,CARTESIAN,UNBOUNDED 

            THEO/<8.53018,0.23917,-15.64077>,<0.9999988,0.0015697,0> 

            ACTL/<8.46036,0.23351,-15.61784>,<0.9999825,0.0059163,0> 

            MEAS/LINE,2,WORKPLANE 

            HIT/BASIC,NORMAL,<8.53021,0.23917,-15.64078>,<0.0015697,-
0.9999988,0>,<8.46036,0.23351,-15.61819>,USE THEO = YES 

            HIT/BASIC,NORMAL,<9.40248,0.24054,-15.64079>,<0.0015697,-
0.9999988,0>,<9.24067,0.23813,-15.61749>,USE THEO = YES 

            ENDMEAS/ 

LIN2 - ALONG CLAMP, FIXED SIDE=FEAT/LINE,CARTESIAN,UNBOUNDED 

            THEO/<5.7952,0.39181,-14.21668>,<-0.0023034,0.9999973,0> 

            ACTL/<5.79502,0.74609,-14.17845>,<-0.002409,0.9999971,0> 

            MEAS/LINE,2,WORKPLANE 

            HIT/BASIC,NORMAL,<5.7952,0.39204,-
14.21665>,<0.9999973,0.0023034,0>,<5.79502,0.74609,-14.17848>,USE THEO = YES 

            HIT/BASIC,NORMAL,<5.79313,1.29243,-
14.21671>,<0.9999973,0.0023034,0>,<5.79345,1.39728,-14.17842>,USE THEO = YES 

            ENDMEAS/ 

PNT2 - INTERSECTION OF LINE 1, 2=FEAT/POINT,CARTESIAN,NO 

            THEO/<5.79557,0.23488,-14.92873>,<0.9999988,0.0015697,0> 

            ACTL/<5.7963,0.21775,-14.89814>,<0.9999825,0.0059163,0> 

            CONSTR/POINT,INT,LIN1 - ALONG TEST AREA,LIN2 - ALONG CLAMP, FIXED SIDE 

            MODE/DCC 

$$ NO,Start alignment to set up XYZ origin location 

A1         =ALIGNMENT/START,RECALL:STARTUP,LIST=YES 

            ALIGNMENT/LEVEL,ZPLUS,PLN1 - TOP OF SPECIMEN 

            ALIGNMENT/ROTATE,XPLUS,TO,LIN1 - ALONG TEST AREA,ABOUT,ZPLUS 

            ALIGNMENT/TRANS,XAXIS,PNT2 - INTERSECTION OF LINE 1, 2 
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            ALIGNMENT/TRANS,YAXIS,PNT2 - INTERSECTION OF LINE 1, 2 

            ALIGNMENT/TRANS,ZAXIS,PNT2 - INTERSECTION OF LINE 1, 2 

            ALIGNMENT/END 

$$ NO,Define the clear plane, 2.75 inches above z plane/top of part 

$$ NO,Move probe to starting position 

            CLEARP/ZPLUS,2.75,ZPLUS,0,OFF 

$$ NO,Move probe to a starting position 

            MOVE/POINT,NORMAL,<2.25,0,-0.25> 

$$ NO, *************Start Collecting Line 0 Data*************************  

PNT2 - LINE 0,A=FEAT/POINT,CARTESIAN 

            THEO/<2.24868,0.00079,-0.64767>,<0,0,1> 

            ACTL/<2.24848,0.00097,-0.65265>,<0,0,1> 

            MEAS/POINT,1 

            HIT/BASIC,NORMAL,<2.24868,0.00079,-0.64767>,<0,0,1>,<2.24848,0.00097,-
0.65265>,USE THEO = YES 

            ENDMEAS/ 

            MOVE/POINT,NORMAL,<2.25,0.25,-0.25> 

PNT3 - LINE 0,B=FEAT/POINT,CARTESIAN 

            THEO/<2.24859,0.25087,-0.67303>,<0,0,1> 

            ACTL/<2.24851,0.25074,-0.68323>,<0,0,1> 

            MEAS/POINT,1 

            HIT/BASIC,NORMAL,<2.24859,0.25087,-0.67303>,<0,0,1>,<2.24851,0.25074,-
0.68323>,USE THEO = YES 

            ENDMEAS/ 

            MOVE/POINT,NORMAL,<2.25,0.5,-0.25> 

PNT4 - LINE 0,C=FEAT/POINT,CARTESIAN 

            THEO/<2.24867,0.50082,-0.6469>,<0,0,1> 



42 
 
            ACTL/<2.24865,0.50069,-0.65399>,<0,0,1> 

            MEAS/POINT,1 

            HIT/BASIC,NORMAL,<2.24867,0.50082,-0.6469>,<0,0,1>,<2.24865,0.50069,-0.65399>,USE 
THEO = YES 

            ENDMEAS/ 

$$ NO,*******************Stop Collecting Line 0*************************** 

$$ NO,*******************Start Collecting Line 1*************************** 

            MOVE/POINT,NORMAL,<2.5,0,-0.25> 

PNT26 LINE 1,A=FEAT/POINT,CARTESIAN 

            THEO/<2.49875,0.00086,-0.64743>,<0,0,1> 

            ACTL/<2.49838,0.00103,-0.65193>,<0,0,1> 

            MEAS/POINT,1 

            HIT/BASIC,NORMAL,<2.49875,0.00086,-0.64743>,<0,0,1>,<2.49838,0.00103,-
0.65193>,USE THEO = YES 

            ENDMEAS/ 

            MOVE/POINT,NORMAL,<2.5,0.25,-0.25> 

PNT27 LINE 1,B=FEAT/POINT,CARTESIAN 

            THEO/<2.49856,0.25047,-0.67673>,<0,0,1> 

            ACTL/<2.49824,0.25036,-0.68394>,<0,0,1> 

            MEAS/POINT,1 

            HIT/BASIC,NORMAL,<2.49856,0.25047,-0.67673>,<0,0,1>,<2.49824,0.25036,-
0.68394>,USE THEO = YES 

            ENDMEAS/ 

            MOVE/POINT,NORMAL,<2.5,0.5,-0.25> 

PNT28 LINE 1,C=FEAT/POINT,CARTESIAN 

            THEO/<2.49868,0.50082,-0.6472>,<0,0,1> 

            ACTL/<2.49841,0.50066,-0.65448>,<0,0,1> 

            MEAS/POINT,1 
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            HIT/BASIC,NORMAL,<2.49868,0.50082,-0.6472>,<0,0,1>,<2.49841,0.50066,-0.65448>,USE 
THEO = YES 

            ENDMEAS/ 

$$ NO,*******************Stop Collecting Line 1*************************** 

$$ NO,*******************Start Collecting Line 2*************************** 

            MOVE/POINT,NORMAL,<2.75,0,-0.25> 

PNT5 LINE 2,A=FEAT/POINT,CARTESIAN 

            THEO/<2.74867,0.00078,-0.64756>,<0,0,1> 

            ACTL/<2.74842,0.00094,-0.65229>,<0,0,1> 

            MEAS/POINT,1 

            HIT/BASIC,NORMAL,<2.74867,0.00078,-0.64756>,<0,0,1>,<2.74842,0.00094,-
0.65229>,USE THEO = YES 

            ENDMEAS/ 

            MOVE/POINT,NORMAL,<2.75,0.25,-0.25> 

PNT6 LINE 2,B=FEAT/POINT,CARTESIAN 

            THEO/<2.74861,0.25078,-0.67761>,<0,0,1> 

            ACTL/<2.74843,0.25066,-0.68413>,<0,0,1> 

            MEAS/POINT,1 

            HIT/BASIC,NORMAL,<2.74861,0.25078,-0.67761>,<0,0,1>,<2.74843,0.25066,-
0.68413>,USE THEO = YES 

            ENDMEAS/ 

            MOVE/POINT,NORMAL,<2.75,0.5,-0.25> 

PNT7 LINE 2,C=FEAT/POINT,CARTESIAN 

            THEO/<2.7487,0.50082,-0.64712>,<0,0,1> 

            ACTL/<2.74856,0.50065,-0.65493>,<0,0,1> 

            MEAS/POINT,1 

            HIT/BASIC,NORMAL,<2.7487,0.50082,-0.64712>,<0,0,1>,<2.74856,0.50065,-0.65493>,USE 
THEO = YES 
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            ENDMEAS/ 

$$ NO,*******************Stop Collecting Line 2*************************** 

$$ NO,*******************Start Collecting Line 3*************************** 

            MOVE/POINT,NORMAL,<3,0,-0.25> 

PNT8 LINE 3,A=FEAT/POINT,CARTESIAN 

            THEO/<2.9986,0.00094,-0.64741>,<0,0,1> 

            ACTL/<2.99823,0.00107,-0.65266>,<0,0,1> 

            MEAS/POINT,1 

            HIT/BASIC,NORMAL,<2.9986,0.00094,-0.64741>,<0,0,1>,<2.99823,0.00107,-0.65266>,USE 
THEO = YES 

            ENDMEAS/ 

            MOVE/POINT,NORMAL,<3,0.25,-0.25> 

PNT9 LINE 3,B=FEAT/POINT,CARTESIAN 

            THEO/<2.99863,0.25064,-0.67844>,<0,0,1> 

            ACTL/<2.99832,0.25051,-0.68336>,<0,0,1> 

            MEAS/POINT,1 

            HIT/BASIC,NORMAL,<2.99863,0.25064,-0.67844>,<0,0,1>,<2.99832,0.25051,-
0.68336>,USE THEO = YES 

            ENDMEAS/ 

            MOVE/POINT,NORMAL,<3,0.5,-0.25> 

PNT10 LINE 3,C=FEAT/POINT,CARTESIAN 

            THEO/<2.99868,0.50082,-0.64707>,<0,0,1> 

            ACTL/<2.99841,0.50066,-0.65472>,<0,0,1> 

            MEAS/POINT,1 

            HIT/BASIC,NORMAL,<2.99868,0.50082,-0.64707>,<0,0,1>,<2.99841,0.50066,-
0.65472>,USE THEO = YES 

            ENDMEAS/ 

$$ NO,*******************Stop Collecting Line 3*************************** 
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$$ NO,*******************Start Collecting Line 4*************************** 

            MOVE/POINT,NORMAL,<3.25,0,-0.25> 

PNT11 LINE 4,A=FEAT/POINT,CARTESIAN 

            THEO/<3.24865,0.00081,-0.64744>,<0,0,1> 

            ACTL/<3.24824,0.00096,-0.65323>,<0,0,1> 

            MEAS/POINT,1 

            HIT/BASIC,NORMAL,<3.24865,0.00081,-0.64744>,<0,0,1>,<3.24824,0.00096,-
0.65323>,USE THEO = YES 

            ENDMEAS/ 

            MOVE/POINT,NORMAL,<3.25,0.25,-0.25> 

PNT12 LINE 4,B=FEAT/POINT,CARTESIAN 

            THEO/<3.2486,0.25084,-0.67824>,<0,0,1> 

            ACTL/<3.24824,0.2507,-0.68315>,<0,0,1> 

            MEAS/POINT,1 

            HIT/BASIC,NORMAL,<3.2486,0.25084,-0.67824>,<0,0,1>,<3.24824,0.2507,-0.68315>,USE 
THEO = YES 

            ENDMEAS/ 

            MOVE/POINT,NORMAL,<3.25,0.5,-0.25> 

PNT13 LINE 4,C=FEAT/POINT,CARTESIAN 

            THEO/<3.24868,0.5008,-0.64635>,<0,0,1> 

            ACTL/<3.24834,0.50065,-0.6547>,<0,0,1> 

            MEAS/POINT,1 

            HIT/BASIC,NORMAL,<3.24868,0.5008,-0.64635>,<0,0,1>,<3.24834,0.50065,-0.6547>,USE 
THEO = YES 

            ENDMEAS/ 

$$ NO,*******************Stop Collecting Line 4*************************** 

$$ NO,*******************Start Collecting Line 5*************************** 

            MOVE/POINT,NORMAL,<3.5,0,-0.25> 



46 
 
PNT14 LINE 5,A=FEAT/POINT,CARTESIAN 

            THEO/<3.49867,0.00079,-0.64714>,<0,0,1> 

            ACTL/<3.4982,0.00099,-0.65276>,<0,0,1> 

            MEAS/POINT,1 

            HIT/BASIC,NORMAL,<3.49867,0.00079,-0.64714>,<0,0,1>,<3.4982,0.00099,-0.65276>,USE 
THEO = YES 

            ENDMEAS/ 

            MOVE/POINT,NORMAL,<3.5,0.25,-0.25> 

PNT15 LINE 5,B=FEAT/POINT,CARTESIAN 

            THEO/<3.49861,0.25081,-0.67764>,<0,0,1> 

            ACTL/<3.49825,0.25065,-0.68283>,<0,0,1> 

            MEAS/POINT,1 

            HIT/BASIC,NORMAL,<3.49861,0.25081,-0.67764>,<0,0,1>,<3.49825,0.25065,-
0.68283>,USE THEO = YES 

            ENDMEAS/ 

            MOVE/POINT,NORMAL,<3.5,0.5,-0.25> 

PNT16 LINE 5,C=FEAT/POINT,CARTESIAN 

            THEO/<3.4987,0.50081,-0.64672>,<0,0,1> 

            ACTL/<3.4984,0.50066,-0.65413>,<0,0,1> 

            MEAS/POINT,1 

            HIT/BASIC,NORMAL,<3.4987,0.50081,-0.64672>,<0,0,1>,<3.4984,0.50066,-0.65413>,USE 
THEO = YES 

            ENDMEAS/ 

$$ NO,*******************Stop Collecting Line 5*************************** 

$$ NO,*******************Start Collecting Line 6*************************** 

            MOVE/POINT,NORMAL,<3.75,0,-0.25> 

PNT17 LINE 6,A=FEAT/POINT,CARTESIAN 

            THEO/<3.74871,0.00081,-0.64734>,<0,0,1> 
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            ACTL/<3.74838,0.00101,-0.65298>,<0,0,1> 

            MEAS/POINT,1 

            HIT/BASIC,NORMAL,<3.74871,0.00081,-0.64734>,<0,0,1>,<3.74838,0.00101,-
0.65298>,USE THEO = YES 

            ENDMEAS/ 

            MOVE/POINT,NORMAL,<3.75,0.25,-0.25> 

PNT18 LINE 6,B=FEAT/POINT,CARTESIAN 

            THEO/<3.74868,0.2504,-0.67837>,<0,0,1> 

            ACTL/<3.7484,0.25024,-0.68304>,<0,0,1> 

            MEAS/POINT,1 

            HIT/BASIC,NORMAL,<3.74868,0.2504,-0.67837>,<0,0,1>,<3.7484,0.25024,-0.68304>,USE 
THEO = YES 

            ENDMEAS/ 

            MOVE/POINT,NORMAL,<3.75,0.5,-0.25> 

PNT19 LINE 6,C=FEAT/POINT,CARTESIAN 

            THEO/<3.74873,0.50081,-0.64642>,<0,0,1> 

            ACTL/<3.74848,0.50065,-0.65505>,<0,0,1> 

            MEAS/POINT,1 

            HIT/BASIC,NORMAL,<3.74873,0.50081,-0.64642>,<0,0,1>,<3.74848,0.50065,-
0.65505>,USE THEO = YES 

            ENDMEAS/ 

$$ NO,*******************Stop Collecting Line 6*************************** 

$$ NO,*******************Start Collecting Line 7*************************** 

            MOVE/POINT,NORMAL,<4,0,-0.25> 

PNT20 LINE 7,A=FEAT/POINT,CARTESIAN 

            THEO/<3.99868,0.0008,-0.64648>,<0,0,1> 

            ACTL/<3.9983,0.00096,-0.6529>,<0,0,1> 

            MEAS/POINT,1 
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            HIT/BASIC,NORMAL,<3.99868,0.0008,-0.64648>,<0,0,1>,<3.9983,0.00096,-0.6529>,USE 
THEO = YES 

            ENDMEAS/ 

            MOVE/POINT,NORMAL,<4,0.25,-0.25> 

PNT21 LINE 7,B=FEAT/POINT,CARTESIAN 

            THEO/<3.99858,0.25083,-0.67774>,<0,0,1> 

            ACTL/<3.99831,0.25069,-0.68222>,<0,0,1> 

            MEAS/POINT,1 

            HIT/BASIC,NORMAL,<3.99858,0.25083,-0.67774>,<0,0,1>,<3.99831,0.25069,-
0.68222>,USE THEO = YES 

            ENDMEAS/ 

            MOVE/POINT,NORMAL,<4,0.5,-0.25> 

PNT22 LINE 7,C=FEAT/POINT,CARTESIAN 

            THEO/<3.99868,0.50079,-0.6463>,<0,0,1> 

            ACTL/<3.99846,0.50064,-0.65472>,<0,0,1> 

            MEAS/POINT,1 

            HIT/BASIC,NORMAL,<3.99868,0.50079,-0.6463>,<0,0,1>,<3.99846,0.50064,-0.65472>,USE 
THEO = YES 

            ENDMEAS/ 

$$ NO,*******************Stop Collecting Line 7*************************** 

$$ NO,*******************Start Collecting Line 8*************************** 

            MOVE/POINT,NORMAL,<4.25,0,-0.25> 

PNT23 LINE 8,A=FEAT/POINT,CARTESIAN 

            THEO/<4.24869,0.00077,-0.64633>,<0,0,1> 

            ACTL/<4.24823,0.00093,-0.65283>,<0,0,1> 

            MEAS/POINT,1 

            HIT/BASIC,NORMAL,<4.24869,0.00077,-0.64633>,<0,0,1>,<4.24823,0.00093,-
0.65283>,USE THEO = YES 
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            ENDMEAS/ 

            MOVE/POINT,NORMAL,<4.25,0.25,-0.25> 

PNT24 LINE 8,B=FEAT/POINT,CARTESIAN 

            THEO/<4.24859,0.25085,-0.67524>,<0,0,1> 

            ACTL/<4.24822,0.25076,-0.68066>,<0,0,1> 

            MEAS/POINT,1 

            HIT/BASIC,NORMAL,<4.24859,0.25085,-0.67524>,<0,0,1>,<4.24822,0.25076,-
0.68066>,USE THEO = YES 

            ENDMEAS/ 

            MOVE/POINT,NORMAL,<4.25,0.5,-0.25> 

PNT25 LINE 8,C=FEAT/POINT,CARTESIAN 

            THEO/<4.24869,0.50081,-0.6457>,<0,0,1> 

            ACTL/<4.24834,0.50063,-0.65395>,<0,0,1> 

            MEAS/POINT,1 

            HIT/BASIC,NORMAL,<4.24869,0.50081,-0.6457>,<0,0,1>,<4.24834,0.50063,-0.65395>,USE 
THEO = YES 

            ENDMEAS/ 

$$ NO,*******************Stop Collecting Line 8*************************** 

$$ NO,*******************Start Collecting Line 9*************************** 

            MOVE/POINT,NORMAL,<4.5,0,-0.25> 

CS1        =REPORT/CUSTOM, FILENAME= custom report name, AUTOPRINT=NO, Section=-1 

            PARAM/= 

            ENDCUSTOM/ 
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Appendix B – Young’s and Shear Modulus Predictions by Models 
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