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Creating a User Satisfaction Index from a Parsimonious Survey

BARTHEL, BRIAN PATRICK, M.S. IN MATHEMATICS, MINNESOTA STATE

UNIVERSITY, MANKATO, MINNESOTA, MAY? 2013

Abstract. In this paper we present a comprehensive method for creating a user

satisfaction index using a survey instrument. First we construct a parsimonious survey

instrument, using the PageRank Centrality, to measure attributes of user satisfaction.

Then confirmatory factor analysis is applied to extract “weights” on the questions that

are used in a linear model of computing the user satisfaction index. Throughout the

paper an analysis of an existing data set is implemented to illustrate the proposed

method. In addition the validity of the confirmatory factor model is tested using

bootstrap sampling.
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Chapter 1

Introduction and Preliminary

Questionnaires have been recognized as one of the most popular survey instruments

because they are more economical and convenient than any other instruments, and

can be administered to large numbers of people [17]. Even though it is widely used

by many organizations it is noteworthy that poorly worded questions and lengthy

questionnaires could often result in undesirable and insincere behaviors toward the

survey, thereby producing biased and meaningless answers. One of the goals of this

paper is to introduce a method using PageRank Centrality for reducing the number

of questions that are needed to take a survey with the goal of minimizing these

biases and meaningless answers. This new method allows the researcher to reduce

the number of questions prior to the implementation of the survey. Other methods,

such as exploratory factor analysis, only allow the researcher to use interdependencies

of a collected data set, and thus, only reduce the number of questions or factors after

the survey has been taken by individuals.

After creating a parsimonious survey, we determine an index of measuring user sat-

isfaction. The method of confirmatory factor analysis computes “normalized weights”

on the parsimonious survey questions that are used in a linear model of user satisfac-

tion index.

In Chapter 1 we provide background information which is used in the PageRank

1



2

Figure 1.1: Model of proposed method

Centrality score computation and confirmatory factor analysis. Chapter 2 describes

the method of creating a parsimonious survey instrument based on their PageRank

Centrality scores. Chapter 3 explains confirmatory factor analysis and how to create

the linear model for the user satisfaction index.

Chapters 2 and 3 propose a method for creating a user satisfaction index from

a reduced set of survey questions. Figure 1.1 shows a model of computing a user

satisfaction index. Items in boxes are physical objects that are collected or calculated.

Items attached to arrows are the mathematical and statistical models that calculate

the items in the boxes.
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1.1 Networks

A network is a graphical configuration consisting of dots and lines (or curves) con-

necting the dots. The dots are called vertices and the lines are called edges. If a

vertex i is connected to vertex j by an edge, then we say that vertex i is adjacent to

vertex j, or vertex j is a neighbor of vertex i. The number of neighbors of vertex i

is called the degree of vertex i. If the edge between vertices i and j has a direction,

for instance, from vertex i to vertex j, then the directed edge is called an arc from

vertex i to j. This arc is an out-going arc from vertex i and an in-coming arc into

vertex j. An edge between vertices i and j can be considered as two different arcs

with opposite directions between vertices i and j. The number of out-going arcs from

a vertex i is called its out-degree, and the number of in-coming arcs into vertex i is

called its in-degree.

The arc (or edge) dynamics among the vertices of a network can be captured in

an algebraic object, the adjacency matrix of the network.

Definition. The adjacency matrix A = [aij] of a network is defined as follows:

aij =

 1 if there is an arc from vertex j to vertex i

0 otherwise

(1.1.1)

The order of adjacency matrix A is equal to the number of vertices in the network.

Figure 1.2 shows an example of a network and the adjacency matrix of the network
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Figure 1.2: Example of a Network

is

A =



0 1 0 1

1 0 1 1

0 1 0 1

1 1 1 0


1.2 Data Matrix

In general we can store the information from a given survey instrument for i observa-

tions (or subjects), i = 1, 2, . . . , n, on j questions (also called variables or attributes),

j = 1, 2, . . . , p. Thus, the basic input can be visualized in terms of a data matrix with

entries denoted by Xij, where i refers to the ith observation and j refers to the jth

question that is answered by the ith subject. From a data matrix, we can find some

descriptive statistics related to variable vectors.

Consider the sample variance of a variable X, denoted by sX . Let xi denote the

ith individual’s mean corrected score on the variable X; that is Xi − X. Then we

have,

√
n− 1s2X =

n∑
i=1

x2i = ‖x‖2, (1.2.1)
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where x> = (x1, x2, . . . , xn). The descriptive statistics of covariance or correlation

can be shown to be related to the inner product of two variable vectors. Letting y

and z be two mean corrected variable vectors, the sample covariance of y and z is

given by

CY Z =
y>z

n− 1
(1.2.2)

The analogy to the correlation between two variables is straightforward if we stan-

dardize x and y by dividing each of their elements by the respective standard devia-

tion. Letting y∗ = y/sY and z∗ = z/sZ , the correlation between variables Y and Z,

denoted by rY Z , can be expressed as

rY Z =
y∗>z∗

n− 1
. (1.2.3)

Let X denote the n×p data matrix, where n refers to the number of observations

and p refers to the number of variables. Then the row vector of means of X is given

by

x> =
1

n
1>X, (1.2.4)

where 1 denotes a n× 1 all ones vector. The mean corrected scores can be obtained

once x has been found. Denoting by Xd the n × p matrix of mean corrected scores,

we have

Xd = X − 1x>. (1.2.5)

From the matrix of mean corrected scores, we can create a matrix of sample

covariances and correlations.



6

Definition. The sample covariance matrix C is defined by

C =
1

n− 1
X>d Xd. (1.2.6)

To obtain the correlation matrix from Xd, we define D−1/2 to be the diagonal

matrix whose entries along the main diagonal are the reciprocals of the standard

deviations of the variables in the data matrix X.

Definition. The sample correlation matrix R is obtained by

R = D−1/2CD−1/2 (1.2.7)



Chapter 2

Construction of a Parsimonious Survey Instrument

PageRank Centrality, developed by Sergey Brin and Larry Page in [5] and [6], is a

method used to rank web pages based on the number of in-links to a given web page

on the World Wide Web. In this paper we apply PageRank Centrality to reducing the

number of questions in a survey instrument by utilizing the conceptual relationships

among the survey questions. This approach allows a researcher to reduce the number

of questions in the survey instrument before its implementation. In Sections 2.1, 2.2,

and 2.3 we illustrate the reasoning behind the choice of PageRank Centrality and how

to construct a Google matrix associated with the centrality. In Section 2.4 we apply

the method to an existing survey instrument.

2.1 Naive Approach

One centrality measure of a vertex in a network would be the number of in-coming

arcs of a vertex. We can consider an in-coming arc into a vertex i as one “centrality

point” for vertex i, i.e., the in-degree centrality score di of vertex i is di =
∑
j

aij,

where aij is the (i, j)-entry of the adjacency matrix A of the network. For a given

adjacency matrix A, the in-degree centrality score di is equal to the ith row sum of

A. With this approach, we treat each neighbor equivalently by giving one “centrality

7
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point” to every neighbor. However, it may not be appropriate to treat each neighbor

equivalently.

2.2 Eigenvector Centrality

In eigenvector centrality each vertex is given a score proportional to the sum of the

scores of its neighbors. First, we make an initial guess to the centrality xi of vertex

i, say xi = 1 for each i. We use this rough measure to compute a better one, x′i. We

define x′i to be the sum of the centralities of vertex i’s neighbors, i.e.,

x′i =
∑
j

aijxj, (2.2.1)

where aij is the (i, j)-entry of the adjacency matrix A of the network. We can write

the expression in matrix notation as

x(1) = Ax(0), (2.2.2)

where x(0) is the vector of initial guesses and x(1) is the vector of improved mea-

surements. Repeating this process to make better estimates, we have a vector x(t) of

centralities after t steps, given by

x(t) = Atx(0). (2.2.3)

Definition. Let A be an n × n matrix. Then the spectral radius ρ(A) of A is the
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largest modulus of an eigenvalue of A, i.e.,

ρ(A) = max{|λ| : λ is an eigenvalue of A}. (2.2.4)

If ρ(A) = 1 is an eigenvalue with a positive eigenvector v and all other eigenvalues

have moduli less than 1, then in the limit t → ∞, we get that x(t) approaches a

positive scalar multiple of v. This becomes the eigenvector centrality, first proposed

in [4]. The eigenvector centrality has one undesirable feature: If a vertex with a

high eigenvector centrality points to many others, then those others also get high

centrality. Because of this, it seems reasonable that the centrality score gained by

virtue of receiving an arc from a prestigious vertex is diluted by being shared with so

many others ([16]). In the next section we introduce the PageRank centrality which

avoids this undesirable feature.

2.3 PageRank Centrality

PageRank centrality avoids the issue raised in Section 2.2 by reducing the influence of

a high-centrality vertex with many out-going arcs. The influence is reduced by using

the following formula:

xi(t+ 1) =
∑
j

(
αaij

1

cj
+ (1− α)

1

n

)
xj(t), (2.3.1)

where α is a positive real number less than one, cj is the sum of the entries in nonzero

column j of the adjacency matrix A (the out-degree of vertex j), and if the column

is zero, then cj is set equal to one. Note that 1
cj

in (2.3.1) is the factor reducing the
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influence of a vertex j with large out degree cj. The matrix P , whose (i, j) entry

is equal to the quantity αaij
1
cj

+ (1 − α) 1
n

in (2.3.1), is called a Google matrix, and

PageRank is the trade name given by Google, which uses it as a part of their web

ranking technology ([5]). The typical value for α suggested by [5] and [6] is α = 0.85.

The next results show that the spectral radius of P is 1 and the limit as t → ∞,

x(t) approaches a positive scalar multiple of v that is a positive eigenvector of P

corresponding to the eigenvalue ρ(A) = 1.

Definition. Let A = [aij] be an m× n matrix. If aij ≥ 0 for all i, j, then A is called

a nonnegative matrix. If aij > 0 for all i, j, then A is called a positive matrix.

Definition. Let A be an n× n nonnegative matrix. If each column (resp. row) sum

of A is 1, then A is called a column (resp. row) stochastic matrix. If A is both column

and row stochastic, then A is called a doubly stochastic matrix.

To construct the Google matrix P from the (nonnegative) adjacency matrix A,

we first divide each entry in column j by its column sum cj for each nonzero column

having at least one nonzero entry in it. Then the column sum of each column of

the resulting matrix B is either one or zero. Second we turn the matrix B to be a

positive, column stochastic matrix by a scalar multiplication and matrix addition

P = αB + (1− α)

(
1

n
J

)
, (2.3.2)

where n is the number of vertices, J is an n × n matrix whose entries are all equal

to 1, and 0 < α < 1. The larger α is, the more emphasis is placed on the adjacency

matrix.

Definition. Let A be an n× n nonnegative matrix. If there exists a positive integer
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k such that Ak is a positive matrix, then A is called a primitive matrix.

Theorem 2.3.1. [10, Theorem 8.5.1] Let A be nonnegative and primitive. Then

lim
k→∞

(
1

ρ(A)
A

)k
= vu>, (2.3.3)

where Av = ρ(A)v, A>u = ρ(A)u, and u, v are positive vectors.

Proposition 2.3.2. [3, Theorem 5.6] Let A and B be stochastic matrices of order n,

and t be a real positive number less than 1. Then tA+ (1− t)B is also stochastic.

Theorem 2.3.3. [13, Theorem 1.1] Let A be an n× n nonnegative matrix. If A is a

stochastic matrix, then ρ(A) = 1.

Corollary 2.3.4. Let A be an n × n primitive column stochastic matrix. Then, for

any n× 1 nonzero vector x,

lim
k→∞

Akx = (u>x)v, (2.3.4)

where Av = v, A>u = u, and u, v are positive vectors.

Proof. This results follows directly from Theorems 2.3.1 and 2.3.3.

By Theorem 2.3.3, the spectral radius of a Google matrix is 1, and have x(t)

approaches a positive scalar multiple of v that is a positive eigenvector of P cor-

responding to the eigenvalue 1 in the limit as t → ∞. As a result the ratings of

the importance of each survey question can be computed using the resulting positive

eigenvector. These importance ratings will be used to determine which questions to

use in a reduced survey questionnaire, as explained in upcoming sections.
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2.4 Survey Questionnaire Reduction

In this section we apply the theoretical results given in the previous sections to reduc-

ing the number of questions in a survey. Using conceptual relations on the questions

from a survey instrument, we will identify the central questions determined from the

positive eigenvector of a Google matrix. The use of the conceptual relations allows

us to find the important questions prior to the implementation of the questionnaire.

Other common forms of variable reduction, such as exploratory factor analysis (ex-

plained in Chapter 3), use interdependence among data variables of the “collected”

data. Thus, a lengthy survey needs to be implemented to create a parsimonious

instrument.

2.4.1 Data Set

A data set with a sample size of 488 is used from a user-satisfaction survey. The survey

measures students’ level of satisfaction with a college laptop initiative. In typical user-

satisfaction surveys, survey instruments are often designed from the organization’s

perspective. A 61-item survey questionnaire with 55 importance/satisfaction items

was constructed to explore five themes in the areas of: (A) training and orientation

support provided to adopters (13 questions), (B) end-user support (14 questions), (C)

technology (6 questions), (D) economic issues (6 questions), and (E) enhancement of

learning and use of laptops in classrooms (16 questions). Students were asked to

rate their expectations and experiences with the laptop initiative with regards to

“importance” and “satisfaction.” These items were Likert-type statements on a five-

point scale ranging from (1) Strongly Disagree to (5) Strongly Agree.
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2.4.2 Google Matrix

To obtain the Google matrix P for the survey questions, we first construct the con-

ceptual network of the survey questions. In this network each survey question is a

vertex and there is an edge between two questions if they satisfy at least one of the

following criteria:

1. Shared key words. For example: students, software, Help Desk, etc.

2. Similar action words. For example: training and tutoring, rapid and prompt,

etc.

3. Common themes developed in questions. For example: cost of laptop, orienta-

tion to how to use laptop, etc.

Table 2.1 indicates that there are arcs from the questions in the first (resp. the

third) column to those in the second (resp. the fourth) column.

Note that in this network if there is an arc from vertex i to vertex j, then there

is also an arc from vertex j to vertex i. Hence, the adjacency matrix of the network

is symmetric, i.e., aij = aji for all i and j. We set the question A1 to be vertex 1, A2

to be vertex 2, . . ., and E16 to be vertex 55. Then, for example, the second row of

the adjacency matrix A has nonzero entries in the columns 1, 3, 4, 7, 8, 9, 11, 12, 26,

27, and 28.
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Attribute Conceptual Relations Attribute Conceptual Relations
A1 A2,A3,A4,A7,A8,A9,A11,A12 C1 A2,A4,B5,B7,B14,C5,D3

A2
A1,A3,A4,A7,A8,A9,A11,A12, C2 B2,B3,B4,B7,B8,B11,B14
B13,B14,C1

A3 A1,A2,A4,A7,A8,A9,A11,A12 C3 A11,B6,B9,B11,C4

A4
A1,A2,A3,A7,A8,A9,A11,A12, C4 C3
B13,B14,C1

A5 A6 C5 C1,C6,E7,E15
A6 A5 C6 C5,E7,E9,E16
A7 A1,A2,A3,A4,A8 D1 D2,D4,D5
A8 A1,A2,A3,A4,A10,A11 D2 D1
A9 A1,A2,A3,A4,A10,A12,A13,B14 D3 C1,D6
A10 A8,A9,B14 D4 D1,D5
A11 A1,A2,A3,A4,A8,A13,C3 D5 D1,D4
A12 A1,A2,A3,A4,A9,A13 D6 D3,E12
A13 A9,A11,A12 E1 E11,E13
B1 B3,B5,B12 E2 E4,E8,E9,E10,E12,E16
B2 B8,B13,C2 E3 E5,E7,E10,E15
B3 B1,C2 E4 E2,E8,E9,E16
B4 B5,B6,B7,B11,B13,C2 E5 E3,E9,E10
B5 B1,B4,B7,B13,C1 E6 None
B6 B9,C3 E7 C5,C6,E3,E14,E15
B7 B4,B5,B8,B11,B13,B14,C1,C2 E8 E2,E3,E4,E9,E16
B8 B2,B4,B7,B13,B14,C2 E9 C6,E2,E4,E5,E8,E10
B9 B6,C3 E10 E2,E3,E5,E9,E16
B10 None E11 E1,E14
B11 B4,B7,C2,C3 E12 D6,E2,E13,E15
B12 B1 E13 E1,E12
B13 A2,A4,B2,B4,B7,B8,B14 E14 E7,E11,E16

B14
A2,A4,A9,A10,B5,B7,B8,B13, E15 C5,E3,E7,E12
C1,C2 E16 C6,E2,E4,E8,E10,E14

Table 2.1: Attribute and its Conceptual Relations
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Attri. Score Attri. Score Attri. Score Attri. Score Attri. Score
A1 0.1607 B1 0.1188 C1 0.1716 D1 0.1920 E1 0.0975
A2 0.2191 B2 0.0797 C2 0.1767 D2 0.0738 E2 0.1735
A3 0.1607 B3 0.0745 C3 0.1782 D3 0.0751 E3 0.1483
A4 0.2191 B4 0.1462 C4 0.0495 D4 0.1287 E4 0.1174
A5 0.1308 B5 0.1330 C5 0.1190 D5 0.1287 E5 0.0934
A6 0.1308 B6 0.0864 C6 0.1199 D6 0.0822 E6 0.0191
A7 0.1051 B7 0.1864 E7 0.1537
A8 0.1452 B8 0.1414 E8 0.1433
A9 0.1656 B9 0.0864 E9 0.1702
A10 0.0729 B10 0.0191 E10 0.1448
A11 0.1566 B11 0.1118 E11 0.0919
A12 0.1261 B12 0.0529 E12 0.1452
A13 0.0738 B13 0.1551 E13 0.0917

B14 0.2157 E14 0.1095
E15 0.1271
E16 0.1748

Table 2.2: PageRank Centrality Scores

2.4.3 Ratings Vector

Using the built-in function eig(·) in MATLAB, we have computed a positive eigen-

vector v = [vi] of P corresponding to eigenvalue 1, giving PageRank scores for survey

questions. Table 2.2 shows PageRank Centrality scores for 55 survey questions (at-

tributes)

From the ratings vector, a cut off value κ can be chosen to reduce the length of

the survey including only the most “central” questions. Two possible options would

be to choose κ so that a specific number of questions are chosen (say 10) or to choose

κ so that a percentage of the original questions are chosen. By using κ = 0.17 as

the cut-off score for central questions, we have identified the eleven central questions,

which are in bold. While there is no magic number for the cut-off score, we used

0.17 so that about 20% of survey questions could be included in the analysis. Table
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Section A Training and Orientation Support Provided to Adopters

A2
IT services provides sufficient training to faculty
on how to use the applications/software.

A4
IT services provide sufficient training to students
on how to use the applications/software.

Section B End User Support

B7
There is a specific hotline provided to College
of Business student users for Questions/Help. (Help Line)

B14
Support for software questions (not tutoring but how to
perform functions) as well as communication about where
to go for questions is available.

Section C Technology

C1
Users have upgrades for applications as well as references/help
for applications provided with the computer.

C2
Technical support is readily available if there are problems
with the laptop.

C3 Students are provided more access points to internet/wireless.
Section D Economic Issues

D1 The cost of the laptop initiative is adequately explained.
Section B Enhancement of Learning/Use of Laptops in Classrooms

E2
The courses that state they are going to use the laptop actually
use them.

E9
Hands on experience with the laptop is provided in class
on course related content.

E16
The classroom use of laptops be clearly connected to the
enhancement of student learning.

Table 2.3: Central Questions

2.3 gives the questions identified as the important (central) questions. In the next

chapter we use the reduced set of questions to create a user satisfaction index.



Chapter 3

Development of a User Satisfaction Index

In this chapter we develop a user satisfaction index using the reduced set of survey

questions that were found in Chapter 2. The satisfaction level is found by using

confirmatory factor analysis. Since satisfaction level is hard for a user to rate, a

confirmatory factor model is used so users can indirectly answer questions which will

lead to the satisfaction index. Most of the results on confirmatory factor analysis

given here can all be found in [8],[9], and [14], unless otherwise noted. At the end of

the chapter the reliability of the user satisfaction index is examined.

3.1 Exploratory Factor Analysis

Before introducing the confirmatory factor analysis model, a brief description of

the exploratory factor analysis model is needed. Suppose we have a matrix X =

(x1,x2, . . . ,xp), where xj, j = 1, 2, . . . , , p, is a column vector of order n. It is possi-

ble to represent each vector xj, j = 1, 2, . . . , p, as a linear combination of unobservable

factors and a “unique” error term. For the n× p matrix X, our statistical model in

17
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matrix notation is,

X = F Λ> + E

(n× p) (n× q) (q × p) (n× p)
(3.1.1)

where q ≤ p and E is the matrix of unique error for each observation. In vector

form, F = (f1, f2, . . . , fq), where fj, j = 1, 2, . . . , q, is a column vector of order n, and

E = (e1, e2, . . . , ep), where ej, j = 1, 2, . . . , p, is a column vector of order n. The

matrix Λ = [λij], where λij is the factor loading of variable xi with respect to factor

fj.

In order to solve for the unknown matrices Λ and F , some assumptions and

constraints are added to the statistical model.

i For all i 6= j, cov(fi, fj) = 0.

ii For all i, cov(fi, fi) = 1.

iii For all i, j, cov(fi, ej) = 0.

iv For all i 6= j, cov(ei, fj) = 0.

In (3.1.1), only X is given. Thus, we must solve for F , Λ, and E. Consider

1

n− 1
X>X =

1

n− 1
(ΛF> + E>) (FΛ> + E) .

Using assumptions (i), (ii), and (iii),

(ΛF> + E>) (FΛ> + E) = ΛΛ> + E>E.
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Moreover, if variables xj, j = 1, 2, . . . , p, are standardized, then 1
n−1X

>X = R,

where R is the p × p correlation matrix of variables x1, x2, . . . , xp. The goal of the

exploratory factor analysis is to find the common factors which reduce the dimension

of each observation, and to compute factor loadings which lead to classification of

variables.

3.2 Confirmatory Factor Analysis

As in Section 3.1, our model in confirmatory factor analysis is

X = FΛ> + E. (3.2.1)

Let 1
n−1F

>F = Φ and E>E = Ψ. Then Φ is the correlation matrix among the common

factors and Ψ is a diagonal matrix. If the variables x1, x2, . . . , xp are standardized,

then we can write the model as,

R = ΛΦΛ> + Ψ. (3.2.2)

In confirmatory factor analysis, we test the hypothesized classification of variables

which typically amounts to setting some of the factor loadings in Λ equal to 0.

3.2.1 Parameter Estimation

To estimate parameters, we need to think about how to measure model fit. Once esti-

mation of the parameters, Λ, Φ, and Ψ are obtained, we can estimate the correlation
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matrix as

R̂ = Λ̂Φ̂Λ̂> + Ψ̂. (3.2.3)

When measuring the model fit to the sample correlation matrix R, we want the lack

of fit to be only due to the misidentification of certain constraints on certain param-

eters. Thus, the estimated values of the free parameters are required to minimize the

discrepancy between the model’s reproduced correlation matrix, R̂, and the sample

correlation matrix, R.

In this paper we use generalized least-squares to estimate the parameters. Note

that since the data is collected from a 5-point Likert scale, we cannot assume the

data follows multivariate normal distribution. Generalized least-squares estimation

is used when the underlying distribution is unknown, the sample size is fairly large

([15] suggests at least 400 observations), and when we want to do the likelihood ratio

goodness-of-fit chi square test. The objective function to be minimized is the sum of

squares of the transformed residuals:

G = 1
2

tr
[
R−1/2

(
R̂−R

)
R−1/2R−1/2

(
R̂−R

)
R−1/2

]
= 1

2
tr
[(
R̂−R

)
R−1

(
R̂−R

)
R−1

]
= 1

2
tr

[(
R̂R−1 − I

)2] (3.2.4)

Note that G is often referred to as the discrepancy function. The partial derivative
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of G with respect to an arbitrary parameter θ is

∂G
∂θ

= tr
[(
R̂R−1 − I

)
∂R̂
∂θ
R−1

]
= tr

[(
R−1R̂R−1 −R−1

)
∂R̂
∂θ

]
= tr

[
Q∂R̂

∂θ

] (3.2.5)

where Q =
(
R−1R̂R−1 −R−1

)
. Using this we obtain

∂G

∂λij
= 2 [QΛΦ]ij , (3.2.6)

∂G

∂φij
= 2 (2− [I]ij) [Λ>QΛ]ij , (3.2.7)

and

∂G

∂ψ2
ii

= [Q]ii . (3.2.8)

By setting (3.2.6), (3.2.7), and (3.2.8) equal to zero and solving for each parameter,

we get the estimates of the parameters minimizing G.

3.2.2 Fit Indices

The matrices Λ, Φ, and Ψ, which minimize (3.2.4), are the estimates from the gener-

alized least-squares method explain in Section 3.2.1. A test of goodness-of-fit of the

resulting matrix R̂ = Λ̂Φ̂Λ̂> + Ψ̂ to the sample correlation matrix R is given by the

likelihood ratio statistic

χ2 = (n− 1)G = (n− 1)
1

2
tr
[
(R̂R−1 − I)

]2
. (3.2.9)
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The statistic χ2 is approximately distributed in large samples as chi-square. The

degrees of freedom is equal to p(p+1)/2−m, which is the number of distinct observed

values in R minus the number of distinct estimated parameters.

The goodness-of-fit index (GFI) computes “error” as the sum of weighted squared

differences between the elements of the sample correlation matrix R and the elements

of the estimated correlation matrix R̂. Thus, the GFI is

GFI = 1−
tr
[(
R−1/2(R− R̂)R−1/2

)(
R−1/2(R− R̂)R−1/2

)]
tr [(R−1/2RR−1/2) (R−1/2RR−1/2)]

. (3.2.10)

Note that the matrix (R − R̂) is symmetric and produces the element-by-element

differences between R and R̂.

Lastly, the Bentler Comparative Fit Index (CFI) allows us to measure the goodness-

of-fit when comparing to the most restricted model. In the generalized least squares

model let Tk = (n − 1)Gk, where Gk is the kth model’s discrepancy function. The

most restricted model’s discrepancy function is denoted by Ti. A good model fit will

have noncentrality parameter in a χ2 distribution close to 0 and the expected value of

T will be the degrees of freedom. In [1] the noncentrality parameter is estimated as

λ̃k = Tk − dk, and λ̃i = Ti− di, where dk and di are the respective degrees of freedom

for Tk and Ti, where i denotes the most restricted model.

Our fit index is

FI = 1− λ̃k/λ̃i. (3.2.11)

The range of FI could be outside 0 to 1, so an additional constraints is implemented,

CFI = 1− λ̂k/λ̂i, (3.2.12)
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χ2 Goodness-of-Fit
This is statistical hypothesis test which rejects H0 when p-value is less than a
specified significance level (typically 0.05).

Pros Cons
It tests the null hypothesis directly on
how well common factor model fits the
data.

It is noted in [2] that in large samples
the test almost always leads to a rejec-
tion of the null hypothesized model.

GFI
This gives a measure of the goodness-of-fit on a 0 to 1 scale. According to [19],
a cut-off value of 0.90 has been recommended. However, when factor loadings
and samples sizes are small, a higher cut-off of 0.95 is suggested.

Pros Cons
The GFI gives a direct comparison of
the sample correlation matrix with the
estimated correlation matrix by pro-
ducing element-by-element differences
between R and R̂, see (3.2.10).

The GFI is not a statistical hypoth-
esis test and there is only a recom-
mended cut-off value to determine the
goodness-of-fit of the model.

Bentler’s CFI
This gives a measure of the goodness-of-fit on a 0 to 1 scale. According to [11],
a cut-off value of 0.90 is recommended.

Pros Cons
Bentler’s CFI is flexible to allow the re-
searcher to use any discrepancy func-
tion to compute a goodness-of-fit index.

Similar to the GFI, Bentler’s CFI is not
a statistical hypothesis test and there
is only a recommended cut-off value
to determine the goodness-of-fit of the
model.

Table 3.1: Fit Indices

where λ̂i = max(λ̃i, λ̃k, 0) and λ̂i = max(λ̃k, 0). If the kth model is the true model,

then the expected value of Tk equals its degrees of freedom dk. Therefore, as Tk − dk

approaches 0, the model is estimating the expected correlation matrix R better, and

CFI will approach 1.

Table 3.1 summarizes the different fit indices.
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3.2.3 Factor Score Coefficients

In this section we determine factor scores, which will be used in the linear model

of computing the user satisfaction index. We use the following linear expression to

approximate F and to compute B:

F̂ = X B

(n× q) (n× p) (p× q)
(3.2.13)

where F̂ is the matrix of estimates of factor scores of variables and B is the factor

score coefficient matrix.

Theorem 3.2.1. [8, Section 3.7] Let R be the p × p sample correlation matrix of

full rank, Λ be the p× q factor loading matrix, and Z be the n× p standardized data

matrix. Then,

F̂ = Z B,

(n× q) (n× p) (p× q)
(3.2.14)

where

B = R−1Λ. (3.2.15)

Proof. Let Z be the n× p matrix of standardized scores, then

F̂ = Z B

(n× q) (n× p) (p× q)
(3.2.16)

where B is the matrix having q columns of p standardized regression coefficients.
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Premultiplying the above equation by Z> and dividing through by n gives us

1
n−1Z

>F̂ = 1
n
Z>ZB

= RB

Now, 1/(n − 1)Z>F̂ yields a (p × q) matrix whose elements are the correlations

between the variables and the factors. Thus, the factor score coefficients are obtained

by solving the equation

Λ = R B

(p× q) (p× p) (p× q)

Therefore, B = R−1Λ. From (3.2.16),

F̂ = Z R−1 Λ

(n× q) (n× p) (p× p) (p× q)

3.3 Estimating the User Satisfaction Index Weights

In this section our goal is to create a linear model of measuring user’s satisfaction

level. Confirmatory factor analysis has been used in many settings to create a user’s

satisfaction level. Here we apply it to the reduced set of survey questions that were

determined in Chapter 2. Also the estimated coefficients are normalized, which as we

will see, allows us to keep the same 1 to 5 scale as those for the questions from the



26

survey. Finally, a model validity is discussed.

3.3.1 Factor Score Coefficients

To extract the factor score coefficients, we use Proc CALIS on SAS version 9.3. In

the model we use the 11 central questions that were determined from the PageRank

centrality scores and one common factor. Thus, there are 11(11 + 1)/2 = 66 distinct

elements in the correlation matrix that need to be estimated from the fitted model.

Since we hypothesize all of the eleven questions are relevant to the one common

factor (user satisfaction), all of the eleven factor loadings will be estimated without

any constraints. The estimated factor covariance matrix Φ̂ will be a scalar giving the

estimated covariance of the lone factor. And the error variances ψ̂2
ii, i = 1, 2, . . . , 11

will also be estimated without any constraints. Therefore, we have a total of 11 + 1 +

11 = 23 free parameters to estimate 66 distinct elements in the correlation matrix.

Since the survey has responses on a 5-point Likert scale, the variables in the model

are not normally distributed. Therefore, the generalized least squares estimation

method is used to estimate each of the 23 free parameters in the confirmatory factor

analysis model. The discrepancy function G, which is minimized to create the “best”

fit of the estimated parameters, has a value of 0.2184002099. From Section 3.2.2,

we test the goodness-of-fit with a chi-square statistic by multiplying the discrepancy

function by n − 1, where n is the number of observations in the original data set.

Thus,

χ2 = (n− 1)G = (488− 1)0.2184002099 = 106.3609,

where the degrees of freedom equals the number of distinct elements in the correlation
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matrix minus the number of parameters estimated without any constraints, which is

66 − 23 = 43. The p-value for the chi-square test is < 0.0001, but as mentioned

in Table 3.1, large samples almost always lead to a rejection of the null hypothesis.

Therefore, the two goodness-of-fit indexes explained in Table 3.1 are analyzed to

determine the goodness-of-fit of the model. The GFI has an estimate of 0.9603 and

the Bentler’s CFI has an estimate of 0.7120. As stated in Table 3.1, for the GFI to be

considered a good fit, the conservative cut-off value is 0.95, which the model exceeds.

For Bentler’s CFI, the general cut-off value is 0.90, which the model does not meet.

3.3.2 User Satisfaction Index Weights

Our goal of using the confirmatory factor analysis is to create weights for each of the

questions in order to determine a user satisfaction index. Thus, we are interested

in the factor score coefficients giving the coefficients of each of the original variables

in the linear model of computing the user satisfaction index. Table 3.2 shows the

computer factor score coefficients.

In order to compute the user satisfaction index in a linear model, we multiply

the original variables by the respective factor score coefficients. However, the sum

of the factor score coefficients can be greater than 1. Thus, we may not be able to

preserve the 5-point Likert scale. To fix this, each coefficient is divided by the sum of

all of the factor score coefficients to create a “normalized” coefficient. That is, if bi

is the coefficient estimate for the i-th variable, the normalized coefficient b̃i = bi∑
i bi

.
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Variable Estimate
A2 0.0928
A4 0.1082
B7 0.1136
B14 0.1710
C1 0.1454
C2 0.1497
C3 0.1182
D1 0.1132
E2 0.1433
E9 0.2005
E16 0.1502

Table 3.2: Factor Score Coefficients

Therefore, the sum of b̃i, i = 1, 2, . . . , 11 is

11∑
i=1

b̃i =
11∑
i=1

bi∑
j bj

=
1∑
j bj

11∑
i=1

bi = 1.

In addition now the minimum user satisfaction index (USI) is

min(USI) = b̃1 min(A2) + b̃2 min(A4) + · · ·+ b̃11 min(E16)

= b̃1(1) + b̃2(1) + · · ·+ b̃11(1)

= [b̃1 + b̃2 + · · ·+ b̃11]1 = [1]1 = 1.

Similarly, the maximum USI is

max(USI) = [b̃1 + b̃2 + · · ·+ b̃11]5 = [1]5 = 5.

Thus, the range of the user satisfaction index is 1 to 5, which is the same as the

5-point Likert scale that is used for each of the questions in the original survey. Now,
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Variable Estimate
A2 0.0616336
A4 0.0718385
B7 0.0754046
B14 0.1135262
C1 0.0965524
C2 0.0994004
C3 0.0784860
D1 0.0751891
E2 0.0951467
E9 0.1331055
E16 0.0997170

Table 3.3: Normalized Factor Score Coefficients

we can find the normalized coefficients as shown in Table 3.3 from the raw coefficient

estimates in Table 3.2.

3.3.3 Model Validity

Reliability measures on the factor score coefficients and the mean of the user satis-

faction index are computed using bootstrap samples of the original data set. In total,

200 bootstrap samples were created by choosing observations from the original data

set uniformly with replacement. The bootstrap samples have the same sample size of

the original data set (n = 488). For more information on bootstrapping in SAS, we

refer the reader to [7] and [18].

From the 200 bootstrap samples, the mean factor score coefficients are calculated

along with their respective standard deviations. Our goal is to find that the standard

deviations are small. Small standard deviations mean that each of the bootstrap

samples is computing consistent and reliable estimates for the factor score coeffi-

cients. Table 3.4 gives the mean and standard deviation for each of the 11 factor
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Variable Mean St. Dev.
A2 0.0609792 0.0090541
A4 0.0701261 0.0098972
B7 0.0748612 0.0111653
B14 0.1134438 0.0144944
C1 0.0969780 0.0138632
C2 0.0998320 0.0149125
C3 0.0782831 0.0091778
D1 0.0756945 0.0093117
E2 0.0954992 0.0120736
E9 0.1334282 0.0161958
E16 0.1008747 0.0136950

Table 3.4: Bootstrap Mean and Standard Deviations

score coefficients. The maximum standard deviation for the factor score regression

coefficients is 0.0161958. Thus, the coefficients are giving a reliable estimate for the

actual population coefficients.

Next, we analyze the mean of the average user satisfaction index for each of the

200 bootstrap samples. Here, we compute the average user satisfaction index (USI)

for each of the 200 bootstrap samples. Then we take the mean of all the average

USI’s and create a 95% confidence interval to show that the estimate is reliable, and

that it is unlikely to find a statistically significantly different average USI simply by

choosing a different sample. A 100 × (1 − α)% confidence interval for a mean with

bootstrap samples standard deviation is computed using the following formula.

xbootstrap ∓ z1−α/2sbootstrap, (3.3.1)

where xbootstrap is the mean of the bootstrap samples, z1−α/2 is the critical value

from the standard normal table, and sboostrap is the standard deviation of the mean
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of the bootstrap samples. The mean of the average USI’s is 3.2437113 and the stan-

dard deviation is 0.0305946. So, the 95% confidence interval is

3.2437113∓ 1.96(0.0305946.) = (3.183745884, 3.303676716),

which in the entire confidence interval corresponds to an answer of “neutral” on

the 5-point Likert scale developed for the survey. Therefore, the constructed user

satisfaction index is consistently measuring a sample’s average satisfaction level.



Chapter 4

Conclusions and Discussions

In this paper we have introduced a method for constructing a parsimonious survey

and then computing an index to rate a user’s satisfaction from the parsimonious sur-

vey. The length of surveys has been reduced by using the PageRank Centrality on

a “network” of survey questions. We created the network by determining concep-

tual relationships observed among the survey questions. Using PageRank Centrality,

the “central” or “important” questions were determined, and only 20 percent of the

questions are used on further analysis.

Once the smaller set of questions is determined, a confirmatory factor analysis is

run on a sample to create the user satisfaction index. The factor score coefficients are

extracted from the confirmatory factor model where there is only one hypothesized

factor. In this case we call that factor “user satisfaction.” In order to keep the

index on the same 5-point Likert scale as the original survey, the coefficients are

normalized. Thus we can rate an individual’s satisfaction on the same scale of 1

(“strongly disagree”) to 5 (“strongly agree”). It is also shown at the end of Chapter 3

that the estimates of the coefficients and also average user satisfaction are consistent

and reliable using bootstrap samples of the original data set.

In the following we discuss some concerns related to the proposed method. First,

if the original survey has a very large number of questions, determining conceptual

32
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relationships among the questions could be prohibitively time consuming unless better

ways of utilizing network criteria are employed. Second, the centrality scores may

vary depending on the choice of conceptual relations chosen by the researcher. We

have outlined guidelines on how to determine conceptual relations, but, ultimately,

the choice of the conceptual relations are subjective. Third, the cut-off score can be

adjusted so that the length of and the representation of the survey could vary. In

this study we chose a cut off score of 0.17, mainly so that there were roughly 20 % of

the original survey questions remaining in the reduced survey. This cut-off score is

determined by the researcher, and it may be found that better cut-off scores can be

used. Lastly, the number of common factors used here is subjective as well. Another

researcher may find that user’s satisfaction could be estimated using more than one

factor, such as user friendliness and issues related to cost.

Again, we emphasize to the reader to use this proposed method with caution. The

proposed method gives a systematic approach to compute a user satisfaction index.

However, several steps in the proposed method are subjective.



Chapter 5

Appendix

In the appendix, the MATLAB and SAS codes are given for readers who are interested

in using the methods presented in this paper.

5.1 MATLAB code for computing centrality scores

%Input the determined adjacency matrix A before running the code.

n=length(A);

% A=A’;

C=sum(A);

for i=1:n

if C(i)~=0

A(:,i)=A(:,i)/C(i);

end

end

%Choose alpha value here for creation Google matrix

alpha=0.85;

J=ones(n,n);

J=J/n;

34
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P=alpha*A+(1-alpha)*J;

%Outputs two matrices of the eigenvectors (V)

%and a diagonal matrix (D) of eigenvalues

[V D]=eig(P);

no=[1:n]’;

%Creates a list of the PageRank Centrality scores

%and the vertex number of each score.

[no V(:,1) D(:,1)]

5.2 SAS code for PROC CALIS

/*

Importing an external data.

A data set can be imported from other types of statistical

software package.

Write the correct path of the file.

The follow is a path for an SPSS data set file.

"C:\Users\barthb\Documents\Thesis\Laptop Initiative\Laptopnomissing.sav"

*/

proc import datafile="path"

out=Laptop dbms = sav replace;

run;

/*
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Runs CALIS procedure and saves factor score

coefficients in data set called myStats.

*/

ods listing close;

ods output FACTORScoresRegCoef=myStats;

proc calis data=Laptop

corr

outstat=r1factcor

method=gls;

factor

ra ---> as2 as4 bs7 bs14 cs1-cs3 ds1 es2 es9 es16;

fitindex noindextype on(only)=[chisq df probchi gfi agfi bentlercfi];

run;

5.3 SAS code for bootstrap sampling

/*

Importing an external data.

A data set can be imported from other types of statistical

software package.

Write the correct path of the file.

The follow is a path for an SPSS data set file.

"C:\Users\barthb\Documents\Thesis\Laptop Initiative\Laptopnomissing.sav"

*/
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proc import datafile="path"

out=Laptop dbms = sav replace;

run;

/*

Macro program for creating the bootstrap data set of coefficients

and average USI

*/

%macro bootstrap (input=,reps=,matrix= );

/*

Creates bootstrap data sets. Input= specifies the data set to be analyzed.

&reps determines the number of bootstrap samples.

*/

%do i = 1 %to &reps ;

data gen;

do i=1 to nobs;

rec = ceil(nobs * ranuni(0));

set &input nobs=nobs point=rec;

output;

end;

stop;

/*

Runs CALIS procedure and saves factor score coefficients in

data set called myStats.



38

*/

ods listing close;

ods output Calis.GLS.FACTORScoresRegCoef=myStats;

proc calis data=gen

&matrix

outstat=r1factcor

method=gls;

factor

ra ---> as2 as4 bs7 bs14 cs1-cs3 ds1 es2 es9 es16;

fitindex noindextype on(only)=[chisq df probchi gfi agfi bentlercfi];

run;

proc transpose data=myStats out=coefs;

run;

/*

Normalizes the coefficient scores so USI can be computed.

*/

data normalcoefs;

set coefs;

total=col1+col2+col3+col4+col5+col6+col7+col8+col9+col10+col11;

ncas2=col1/total;

ncas4=col2/total;

ncbs7=col3/total;
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ncbs14=col4/total;

nccs1=col5/total;

nccs2=col6/total;

nccs3=col7/total;

ncds1=col8/total;

nces2=col9/total;

nces9=col10/total;

nces16=col11/total;

run;

/*

Saves normalized coefficients for each observation.

Computes USI for each observation

*/

data usi;

set normalcoefs gen;

drop f1 col1-col11 total;

ncas2a+ncas2;

ncas4a+ncas4;

ncbs7a+ncbs7;

ncbs14a+ncbs14;

nccs1a+nccs1;

nccs2a+nccs2;

nccs3a+nccs3;
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ncds1a+ncds1;

nces2a+nces2;

nces9a+nces9;

nces16a+nces16;

usi=ncas2a*as2+ncas4a*as4+ncbs7a*bs7+ncbs14a*bs14+nccs1a*cs1+

nccs2a*cs2+nccs3a*cs3+ncds1a*ds1+nces2a*es2+

nces9a*es9+nces16a*es16;

run;

/*

Computes mean and standard deviation for USI.

*/

proc means data=usi;

var ncas2 ncas4 ncbs7 ncbs14 nccs1 nccs2

nccs3 ncds1 nces2 nces9 nces16 usi;

output out=outx;

run;

proc transpose data=outx out=outy;

run;

/*

Saves the ith bootstrap data set factor score coefficients.

*/
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%if &I = 1 %then %do;

data outall;

set outy;

%end;

%else %do;

proc append base=outall data=outy;

%end;

%end; /* i=1 to &REPS loop */

%end;

%mend;

/*

Calls bootstrap macro program. Input: Data set, Reps: Number of

bootstrap samples, Matrix: Specifies which matrix to analyze

(corr=correlation, covariance=covariance)

*/

%bootstrap(input=Laptop, reps=200, matrix=corr)

data final;

set outall;

group=_name_;

if _name_ = ’_TYPE_’ then delete;

if _name_ = ’_FREQ_’ then delete;
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run;

proc sort data=final;

by group;

run;

/*

Computes mean and standard deviation of all the

normalized coefficients and average USI.

*/

proc means data=final;

by group;

var col4;

run;
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