
Minnesota State University, Mankato Minnesota State University, Mankato

Cornerstone: A Collection of Scholarly Cornerstone: A Collection of Scholarly

and Creative Works for Minnesota and Creative Works for Minnesota

State University, Mankato State University, Mankato

All Graduate Theses, Dissertations, and Other
Capstone Projects

Graduate Theses, Dissertations, and Other
Capstone Projects

2011

Class Discovery and Prediction of Tumor with Microarray Data Class Discovery and Prediction of Tumor with Microarray Data

Bo Liu
Minnesota State University - Mankato

Follow this and additional works at: https://cornerstone.lib.mnsu.edu/etds

 Part of the Biology Commons, Mathematics Commons, and the Statistics and Probability Commons

Recommended Citation Recommended Citation
Liu, B. (2011). Class Discovery and Prediction of Tumor with Microarray Data [Master’s thesis, Minnesota
State University, Mankato]. Cornerstone: A Collection of Scholarly and Creative Works for Minnesota State
University, Mankato. https://cornerstone.lib.mnsu.edu/etds/180/

This Thesis is brought to you for free and open access by the Graduate Theses, Dissertations, and Other Capstone
Projects at Cornerstone: A Collection of Scholarly and Creative Works for Minnesota State University, Mankato. It
has been accepted for inclusion in All Graduate Theses, Dissertations, and Other Capstone Projects by an
authorized administrator of Cornerstone: A Collection of Scholarly and Creative Works for Minnesota State
University, Mankato.

http://cornerstone.lib.mnsu.edu/
http://cornerstone.lib.mnsu.edu/
https://cornerstone.lib.mnsu.edu/
https://cornerstone.lib.mnsu.edu/
https://cornerstone.lib.mnsu.edu/
https://cornerstone.lib.mnsu.edu/etds
https://cornerstone.lib.mnsu.edu/etds
https://cornerstone.lib.mnsu.edu/theses_dissertations-capstone
https://cornerstone.lib.mnsu.edu/theses_dissertations-capstone
https://cornerstone.lib.mnsu.edu/etds?utm_source=cornerstone.lib.mnsu.edu%2Fetds%2F180&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/41?utm_source=cornerstone.lib.mnsu.edu%2Fetds%2F180&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/174?utm_source=cornerstone.lib.mnsu.edu%2Fetds%2F180&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/208?utm_source=cornerstone.lib.mnsu.edu%2Fetds%2F180&utm_medium=PDF&utm_campaign=PDFCoverPages

Class Discovery and Prediction of Tumor with Microarray Data

By

Bo Liu

A Thesis Submitted in Partial Fulfillment of the Requirements for

Master of Science

In

Mathematics and Statistics

Minnesota State University, Mankato

Mankato, Minnesota

Apirl 2011

Class Discovery and Prediction of Tumor with Microarray Data

Bo Liu

This thesis has been examined and approved by the following members of the thesis

committee.

Dr. Namyong Lee, Advisor

Dr. Deepak Sanjel

Dr. Fei Yuan

i

Acknowledgments

It has been a great pleasure for me to study at the Minnesota State University,

Mankato in the past two years. I received so much help from the faculty, staff and my

friends here, which makes my graduation and this thesis possible.

I would like to firstly convey my deepest appreciation to my advisor and

mentor, Dr. Namyong Lee, who gave me unlimited encouragement, guidance and

support in my study and research. There is an old Chinese saying, “Once a teacher,

always a father.” Dr. Lee gives me generous tolerance and supports in my research

and my life, just like what my father did. Some succeeded, some failed, others, I don’t

know. But I am so grateful to him for providing me all those opportunities to explore.

I am most grateful to Dr. Deepak Sanjel and Dr. Fei Yuan for accepting my

request to be my thesis committee members. I extend my thanks to Dr. Mezbahur

Rahman, and Dr. Han Wu for helping me and attending my presentations during my

research here.

Another import set of people to mention are my friends I meet here. Ellen

Henkelman, Kelly Han, Kristin Brever, Ling Zhang, Mai Nguyen, Peiyu Lee, Susan

Chen, Zhe Kong all made my research and life easier and more colorful.

I could not have gotten where I am today without the unlimited love and

continuous encouragement from my grandparents, my parents, my aunt, my uncle, my

cousin and my boyfriend. I am really blessed to have them.

ii

Abstract

Current microarray technology is able take a single tissue sample to construct

an Affymetrix oglionucleotide array containing (estimated) expression levels of

thousands of different genes for that tissue. The objective is to develop a more

systematic approach to cancer classification based on Affymetrix oglionucleotide

microarrays. For this purpose, I studied published colon cancer microarray data.

Colon cancer, with 655,000 deaths worldwide per year, has become the fourth most

common form of cancer in the United States and the third leading cause of cancer -

related death in the Western world.

This research has been focuses in two areas: class discovery, which means

using a variety of clustering algorithms to discover clusters among samples and genes;

and class prediction that refers to the process of developing a multi-gene predictor of

class label for a sample using its gene expression profile. The accuracy of a predictor

is also assessed by using it to predict the class of already known samples.

Keywords: Microarray, Data Preprocessing, Clustering, Classification, R

Contents

Chapter 1 Introduction ... 1

Chapter 2 Method ... 3

2.1 Microarrays .. 3

2.2 Data Preprocessing ... 6

2.3 Clustering Analysis of Microarray ... 10

2.4 Classification .. 21

Chapter 3 Case Study on Colon Cancer Data and Discussion 31

3.1 Boxplots of Preprocessed Data ... 31

3.2 Discussion of Clustering Results .. 34

3.3 Comparison of Classification Results .. 59

Chapter 4 Conclusions .. 66

Bibliography ... 68

Appendix: R code ... 70

Chapter 1 Introduction

With the development of discovering the entire human gene map, the main

emphasis of research work for life scientists has been pushed forward. Within the

40,000 decoded genes, the functions of majority genes are unclear. The work has the

most potential is to identify the function of each gene. Thereby, one could use these

materials in medical science to distinguish and treat various diseases. Microarray was

born at the right time to uncover most genetic functions in a timely fashion. Actually,

the area of human health is the most attractive application of microarrays.

Microarray is a new molecular biological technology which can be used to

extract useful information from the resulting datasets with the highest efficiency and

in a large scale. In all types of microarrays that have been developed at present,

complementary DNA (or cDNA) microarray is the most widely used. Recently

introduced experimental techniques based on oligonucleotide or cDNA arrays now

allow the expression level of thousands of genes to be monitored in parallel.

Microarray technology promises not only to dramatically speed up the experimental

work of molecular biologists but also to make possible a whole new experimental

approach in molecular biology (Xu et al., 2010).

2

One typically application of microarray is determining whether a person has

a certain disease or not, such as colon cancer, by gene expression analysis. Colon

cancer includes cancerous growths in the colon, rectum and appendix. It is very

important for doctors to diagnose colon cancer earlier and more precisely, so patients

can prevent or get treatment effectively and immediately, which consequently

improves the survival rate in colon cancer.

A true clinical dataset is analyzed using a combined microarray technique

and some mathematical and statistical approaches. The dataset composes of 62 colon

tissue samples which include 40 tumor colon tissue samples and 22 normal colon

tissue samples. For each sample we have gene expression intensities for 2000 genes

selected from 6817 genes by Alon et al. (1999) according to the highest minimum

intensity.

I want to cluster the 62 tissue samples into normal colon tissue and cancerous

colon tissue two classes using gene expression values we got from microarray

experiments, and produce a classifier which can classify unknown new colon tissue

samples to already defined classes. Besides, I want to assess the reliability of the

results, in other words, how good the clustering process and the classifier are.

Chapter 2 Method

2.1 Microarrays

A microarray, also called a DNA array or gene chip, is usually a substrate

(nylon membrane, glass or plastic) on which one deposits an arrayed series of

thousands of microscopic spots of DNA oligonucleotides, called features, each

containing picomoles (10
-12

 moles) of single stranded DNA (ssDNA) with various

sequences. One will refer to the ssDNA printed on the solid substrate as a probe.

What is deposited on the surface of the array depends on the purpose of the

array. Some probes are short sections of a gene, while some are DNA elements that

are used to hybridize a cDNA or cRDA. The solution containing the cDNA or cRNA

sample is called a target. A target could be generated from a particular biological

sample which is being examined. When used in gene expression studies, the DNA

target used to hybridize the array is obtained by reverse transcriptase reaction from

the mRNA extracted from a tissue sample.

The idea is that the DNA in the solution, that contains sequences

complementary to the sequences of the DNA deposited on the substrate, will

hybridize to those complementary sequences.

Usually, the target is labeled with a fluorescent dye, a radioactive element, or

another method. So the hybridization spot on the substrate can be detected and

4

quantified easily. If the target is labeled with a dye, then illumination with an

appropriate source of light will provide an image of the array of features. The

intensity of each spot or the average difference between matches and mismatches can

be related to the amount of mRNA present in the tissue. If the target is labeled with a

radioactive substance, then the image can be obtained by using a photosensitive

device.

Since an array can contain tens of thousands of probes, one can label targets

with different dyes and process a multichannel experiment at the same time. Then one

could transform the raw microarray data, which are images, into a large number of

expression values or gene expression matrices.

Microarray in gene expression studies. It has been shown that microarrays

can be used to generate accurate, precise and reliable gene expression data.

Microarrays can also be used for purely computational purposes such as DNA

computation. When microarrays used for computational purpose, they lose their

biological meaning. Using the data generated by microarray to solve computationally

intractable problems is very efficient, because of their ability of dealing with high

dimensional spaces.

Challenges. There are several challenges when using microarrays in gene

expression studies.

5

Noise. In fact, noise is introduced at each step of various procedures: mRNA

preparation, labeling, amplification, pin type, surface chemistry, humidity, target

volume, hybridization factors (e.g. time, temperature), dust, scanning, quantification,

etc. Due to that much noise, one may get different quantitative values after scanning

and image processing steps, even when two experiments are conducted using exactly

the same materials and procedures.

The challenge becomes more serious when comparing different tissues or

different experiments. Perhaps, one may doubt that the variations of a particular gene

are due to the noise rather than a real difference between the different conditions

tested. Noise effect is an unavoidable factor. The only way to reduce the noise effect

is replication.

This will involve experimental design.

Experimental design. Experimental design could help one to find the reason

which changes the output in fact by a series of tests. The tests are different with input

variables of a process.

Normalization. Normalization is a method that attempts to remove some of

variations from the dataset. For example, variations as different mean intensities

caused by different quantities of mRNA, non-linear dye effects, etc.

Large number of genes. In a microarray experiment, one may get

information of thousands of genes. Among these genes, part of them is not significant

6

which means they will not influence the result of our experiments. We could use some

technique to find the most significant genes and study on them.

Significance. One crucial question is whether there is significant difference

between groups. Some statistic techniques can be used to answer the question.

2.2 Data Preprocessing

The reason for Data preprocessing. Naturally, one should not expect to

obtain a good model from a poor dataset. In fact, it is rare that the raw dataset is good

and sufficient. Although there is no standard method that can be used to check the

quality of the data, some options are available. One way to check the quality is to plot

the data and see the graphical representation. Even if the graph looks reasonable, data

preprocessing is preferred before the actually analysis of the data.

What is preprocessing. According to Wolfram Mathematica (2011),

“Preprocessing is a transformation, or conditioning, of data designed to make

modeling easier and more robust. For example, a known nonlinearity in some given

data could be removed by an appropriate transformation, producing data that

conforms to a linear model that is easier to work with.”

General preprocessing techniques.

Logarithm transformation. Let us use the ratio of corrected intensity of a

sample gene and intensity of the reference gene as the relative intensity of each

7

sample gene. In some sense, relative intensity could reduce the systematic variance of

fluorescent dye and scanning between genes.

For example, let us consider two sample genes with corrected intensity

values of 100 and 10,000 and the intensity value of the reference gene set at 1,000. If

one considers the absolute difference between 1,000 and 100 and 10,000, one would

think one gene is affected much more than the other, because

 .

However, from the biological point of view, the change from 1,000 to 100,

and from 1,000 to 10,000 are the same, because they both are a 10-fold change; one is

increase and the other is decrease. If one uses a logarithm transformation, it is

apparent that

Indicating the changes is for one gene and for the

other gene. The values reflect the fact that two genes change by the same magnitude,

but in difference directions.

Therefore, logarithm transformation provides data that are easier to interpret

and more meaningful from the biological point of view.

8

Figure 2.2.1 shows another advantage of logarithm transformation. It makes

the distribution symmetrical and mostly normal.

Figure 2.1.1 Distribution before and after logarithm transformation

The left figure shows the distribution of the background corrected intensity

values. Note that the intensity range spans a very large interval. The right figure

shows the same values after logarithm transformation.

Finally, it is convenient if one uses base 2 logarithms when analyzing the

change of gene expressions.

Standardization among microarrays - Median absolute deviation. Each

gene chip has hybridized with different sample tissue. Therefore, the first step is

adjusting different microarrays to the same level by standardization. After the

variables have been standardized, only the general shape of their distributions and the

level of their interactions will influence the model. A frequently used method to

standardize data is median absolute deviation (MAD). MAD is defined as the median

of the absolute deviations from the data’s median.

9

For example, a univariate dataset is {2, 2, 3, 4, 14}, and its

median is 3. Thus, the absolute deviations from the median are {1, 1, 0, 1, 11}. They

can be reordered as {0, 1, 1, 1, 11}. The median absolute deviation is 1.

The advantage of using MAD is that a small number of outliers just slightly

influence its value. Whereas, standard deviation (SD) is

 √

∑

influenced heavily by outliers, because the distances from the mean are squared, and

on average, large deviations are weighted more heavily.

Normalization among paralleled experiments – Quantile Normalization. It

is easy to introduce noises into hybridize experiments, so it is easy to produce error.

To avoid this, one usually repeats the experiment several times for one sample. Even

if one runs the same biological sample in the same experiment twice, one may get

slightly different results. To remove some of variations, one could use normalization

technique. When normalizing a set of microarrays, there are several approaches which

can be used. Quantile normalization is one of them.

The assumption of quantile normalization is that there is an underlying

common distribution of intensities across microarrays. The main steps are:

10

 Let each dataset of a microarray be a column, thus, with dimension

 will be a matrix which contains samples’ experiment value with each of

them having elements (genes).

 Sort each column of X and name it .

 Project each row of onto vector (

√

√
) and

get
 .

 Rearrange each column of
 such that every gene returns back to its

original place and name it .

2.3 Clustering Analysis of Microarray

After normalizing the microarray data as above, clustering analysis follows.

Clustering means group genes by different functions, or similar act of expressions,

according to the gene expression data. At the present time, many clustering

approaches have been used in gene expression analyses, such as k-means clustering,

hierarchical clustering and self-organizing map. In general, all the approaches could

be separated into supervised learning and unsupervised learning two categories.

Distance Metric. If one wants to group similar genes together, one should

define the meaning of similarity or the measure of similarity first. Such measure of

similarity is called a distance or a metric. A distance reflects how close two points are

to each other in an input space. The two points can be two genes measured in

different experiments, or two experiments applied on genes. There are many ways

11

to calculate the distance and the result of clustering depends on the exact distance

metric used.

Properties of Distance metric. A metric or distance function is a function

which defines a distance between two points in an -dimensional space and has

the following properties:

 Symmetry. The distance should be symmetric, i.e.:

This means that the distance from to should be the same as the distance

from to .

 Positivity. The distance between any two points should be a real number

greater than or equal to zero:

for any and . The equality is true if and only if , i.e. .

 Triangle inequality.

The distance between two points and should be shorter than or equal

to the sum of the distance from to a third points and from to :

This property reflects the fact that the distance between two points should be

measured along the shortest route (Drăghici, 2003).

12

Many different distance metrics can be defined, but they all have the three

properties listed above. Furthermore, in clustering and classification problems, the

result may vary differently and be affected by the distance metric one used.

Next, I will introduce two different distances.

Euclidean distance. In mathematics, the Euclidean distance is the “ordinary”

distance between two points that one would measure with a ruler, and is given by the

Pythagorean formula. The Euclidean distance between two -dimensional vectors

 and is

 √ √∑

(Drăghici, 2003).

This distance between and is the length of the line segment ̅̅ ̅. Thus,

in one dimension, the distance between two points on the real line is the absolute

value of their numerical difference. Therefore, if and are two points on the real

line, then the distance between them is computed as

 √ .

Correlation distance. The Pearson correlation distance between two

 -dimensional vectors and is

where is the Pearson correlation coefficient of the vectors and

13

√ √

∑ ̅ ̅

√∑ ̅
 √∑ ̅

Note that since the Pearson correlation coefficient varies only between

 and , the distance will take values between and (Drăghici, 2003).

The Pearson correlation coefficient reflects the degree of linear

relationship between two variables. A correlation of means that there is a perfect

positive linear relationship between variables, and a correlation of means that

there is a perfect negative linear relationship between variables. The Pearson

correlation distance focuses on whether the coordinates of the two points

change in the same way (e.g. corresponding coordinate increase or decrease at the

same time) (Drăghici, 2003). For instance, if and

 represent the measured values of genes in two different

experiments, the Pearson correlation distance will be low if the genes vary in a similar

way in the two experiments. These genes would cluster together with the Pearson

correlation distance. On the other hand, the Pearson correlation distance close to

implies the coordinate for the vector is increasing (or decreasing)

while the corresponding coordinate for the other vector is

decreasing (or increasing). In other words, and

 vary in an opposite way. Therefore, these genes would be

grouped into remote clusters.

14

Let us consider there are three genes have been tested in 5 experiments, and

their experiment values are expressed as ,

 and , respectively. Then, one would

group , in a same cluster, rather than

 , using the Pearson correlation distance. and have a high

correlation () whereas and are anti-correlated

(). However, the Euclidean distance will group

and in a same cluster, rather than , because while

 .

Clustering algorithms. There are several clustering approaches and

algorithms. Any of these clustering algorithms can be used to group genes or

experiments. The data is usually described by an -dimensional vector, which is

referred to as a pattern or an instance. A set of clusters including all genes or

experiments considered form a clustering, cluster tree, or dendrogram.

In most cases, the result of clustering is highly dependent on the distance

metric one used. For example, for the same patterns, Euclidean distance metric may

produce a different clustering result than the Pearson correlation distance.

Furthermore, the same clustering algorithm applied to the same data may produce

different results. This is caused by the initialization process, such as a random choice

of the initial cluster centers or a random choice of patterns to be used as initial clusters.

15

As a result, one should always check whether the gene is grouped in the same cluster

or not when the clustering algorithm is applied many times. In addition, one must note

that in most clustering algorithms (e.g. k-means and hierarchical clustering) the

position of the patterns within the clusters does not reflect their relationship in the

input space (Drăghici, 2003).

Inter-cluster distances and algorithm complexity. This section will discuss

the main methods used to calculate the distance between clusters.

Single linkage. Single linkage method calculates the distance between

clusters as the distance between the closest neighbors. It measures the distance

between each member of one cluster to each member of the other cluster and takes the

minimum of these distances.

Complete linkage. Complete linkage calculates the distance between the

furthest neighbors. It takes the maximum of distance measures between each member

of one cluster to each member of the other cluster.

Centroid linkage. Centroid linkage defines the distance between two clusters

as the squared Euclidean distance between their centroids or means. This method

tends to be more robust to outliers than other methods. The centroid of a group of

patterns is the point that has each coordinate equal to the mean of the corresponding

16

coordinates of the given patterns. For instance, the set of experiments:

 and has the centroid at

(

) (Drăghici, 2003).

Average linkage. Average linkage measures the average distance between

each member of one cluster to each member of the other cluster (Korol, 2003, p.23).

Algorithm complexity. The complexity of the algorithm depends very much

on which linkage method to be used, as well as its speed. Single or complete linkages

require only choosing one of the distances already calculated while more elaborated

linkages, such as centroid, require more computations (Drăghici, 2003). However,

simple and fast method such as single linkage tends to produce stringy clusters which

is bad. While complex and slow method such as centroid linkage tends to produce

better clustering which reflect more accurately of the structure of the dataset.

K-means clustering. The k-means algorithm is one of the simplest and

fastest clustering algorithms. In consequence, it is also one of the most widely used

algorithms. K-means clustering groups patterns into clusters. Sometimes is

unknown in advance, thus one need to pick a number for k, and then start the

algorithm.

The program starts by randomly choosing points in the same input space

as initial centers of the clusters. These points may be just random points in the

17

input space, random points from more densely populated volumes of the input space

or just randomly chosen patterns from the data itself (Drăghici, 2003). Once the

initial centers have been chosen, the distance from each pattern to every center of the

cluster would be computed in a distance metric and that pattern should be associated

with the closest cluster center. A first approximate clustering is obtained.

The second step starts by recalculating the new center for every cluster (the

center is calculated as the centroid of the group of patterns). Since the centers have

moved, one need to calculate new distance from each pattern to every updated center,

and then associates the pattern with the closest cluster center.

The program repeats the second step until the cluster centers are such that no

pattern moves from one cluster to another. Since no pattern has changed membership,

the centers will remain the same and the algorithm can terminate.

Cluster quality assessment. The results of the k-means algorithm may

different if one applies the algorithm again, because the initial cluster centers are

chosen randomly. Therefore, one needs to assess the quality of the obtained clustering

after every successive run.

One way to assess the goodness of fit of a given clustering is to compare the

size of the clusters () versus the distance to the nearest cluster (). If the inter-cluster

18

distance () is much greater than , the clustering is considered as a good one.

Therefore, the ratio of and can be used as an indication of the cluster quality.

Another way is to measure the average of the distances between the members

of a cluster and the cluster center. Smaller average distances are better than the larger

ones because they reflect more uniformity in the results (Korol, 2003, p.25).

The diameter of the smallest sphere including all members of a given cluster

may also be used as an indication of the cluster quality. However, this measure is

sensitive to cluster outliers, because the diameter of the smallest sphere including all

members of the cluster is determined by the furthest pattern from the cluster.

In fact, the same clustering algorithm applied to the same data may produce

different results. So, one may interested in whether a gene would fall into the same

cluster or not if the clustering algorithm is repeated. This question can be addressed

by repeating the clustering several times and following the particular gene of interest.

Those genes that are clustered together repeatedly are more likely to be genuinely

similar.

K-medoids clustering and PAM algorithm. Both the k-means and k-medoids

clustering are breaking dataset up into groups and both attempt to minimize squared

error, which is the distance between points in a cluster and the center of that cluster.

19

PAM algorithm. The objective of k-medoids clustering is to minimize a sum

of dissimilarities. Compared to k-means clustering, which tries to minimize a sum of

squared dissimilarities, k-medoids clustering is more resistant to noises and outliers.

Among many algorithms for k-medoids clustering, Partitioning Around Medoids

(PAM) is known to be the most powerful one.

The PAM algorithm is described as follows:

 Randomly select patterns as the initial medoids. Medoid can be

defined as that a pattern of a cluster, whose average dissimilarity to all the

patterns in the cluster is minimal.

 Associate each pattern to the closest medoid.

 For each medoid , swap and each non-medoid pattern , and

calculate the sum of dissimilarities.

 The one has the lowest sum of dissimilarities will be updated as new

mediod.

 Repeat from step 2 to 4 until there is no smaller sum of dissimilarities.

Hierarchical clustering. Hierarchical clustering produces a tree with leaves

and root, where leaves as individual patterns and root as the convergence point of all

branches. The diagrams produced by the hierarchical clustering are known as

dendrograms.

20

K-means clustering gives us a set of clusters. In any given cluster, all the

members are on the same level. No particular inferences can be made about the

relationship between members of a given cluster or between clusters (Drăghici, 2003).

However, in hierarchical clustering, different genes and/or experiments are grouped

together to form clusters using a chosen distance metric, and then different clusters

are also linked together to form a higher level cluster using one of the inter-cluster

distances. Therefore, a dendrogram represents not only clusters but also the relations

between the clusters.

A bottom-up algorithm will be used in this research.

The bottom-up algorithm. The bottom-up method starts from the individual

patterns (leaves) and works upwards the root. This approach is sometimes called

agglomerative because it links similar small clusters to form larger clusters. The

bottom-up method is described as follows:

 Each single pattern represents a cluster. The pattern can either be a gene

or an experiment depending on what the algorithm is applied to.

 Calculate a table containing the distances from each cluster to other

clusters.

 Merge the two most similar clusters into a single super-cluster.

 Repeat step 2 and 3 until the entire tree is constructed.

21

For a given dataset, using a chosen distance metric, one hierarchical

clustering algorithm should always produce the same clustering tree.

Summary. Let us close this section by a few conclusions. First of all, for a

given dataset, using the same distance metric, different approaches can produce

different clustering trees. Second, one should not judge an algorithm by its speed.

Compare to the slow algorithm, faster algorithm may reflect less information of the

structure of a given dataset. And the key is to obtain a clustering that reflects the

structure of the original dataset. Finally, the place of genes in a dendrogram does not

necessarily convey useful information and can be misunderstood. Two genes

proximity in a hierarchical clustering does not necessarily correspond to similarity.

2.4 Classification

In machine learning and pattern recognition, classification refers to an

algorithmic procedure for assigning a given piece of input data into one of a given

number of clusters. An algorithm that implements classification is known as a

classifier. Sometimes, classifier also refers to the mathematical function, implemented

by a classification algorithm that maps input data to a cluster.

Generally, classification is a supervised procedure, which means the

algorithm learns how to classify a test point into one of exist clusters based on what it

learned from a training dataset. A training dataset is a set of labeled objects and its

information will be used to classify the test points. When one wants to make a

22

prediction on which cluster a biological sample belongs to by its gene expression data,

classification comes in.

There are many possible techniques for data classification. Three

classification methods will be introduced, which are linear discriminant analysis,

minimum sum of squared-error and perceptron algorithm.

Linear discriminant analysis. Linear discriminant analysis (LDA) and the

related Fisher’s linear discriminant are methods used in statistics, pattern recognition,

and machine learning process to find a linear combination of features which

characterizes or separates two or more classes of objects or events. The resulting

combination may be used as a linear classifier.

LDA does not change the location of original data but only tries to optimize

class separability by maximizing the ratio of between-class variance to the

within-class variance in any particular dataset. Thereby, the original data will be

transformed and a test points can be classified in the transformed space. This method

also helps one to get better understanding of the distribution of the original data.

Compared with the unsupervised technique of “Principal Components

Analysis (PCA)”, which projects data in the directions of maximum variance, Fisher

LDA projects patterns to a line such that samples from different classes are well

separated. Fisher LDA finds a direction to project data onto it in order to minimize the

within-class variance and maximize the between-class variance. Therefore, the

23

patterns in one class are set to be as close together as possible and each class is as far

as possible from each other. To achieve the goal, Fisher LDA considers maximizing

the following objective function

where ∑ ̅ ̅
 is the between classes scatter matrix and

 ∑ ∑ ()()

 is the within classes scatter matrix, where

is the total number of classes, is the number of patterns is class ,

∑

 is the mean of class , ̅

∑
∑ ∑

 is the overall mean of the

patterns.

A two-class problem will be illustrated and help to understand the

classification method.

Suppose we have two classes and -dimensional samples

where samples come from the first class, and samples come from the second

class. Vector in the objective function gives the line direction. Project onto a

line in the direction of vector , then scalar gives not only the distance of

projection of from the origin, but also the projection of sample onto the line in

direction . Let ̃

∑

 (

∑

) be the mean of

projections of class 1, and similarly, ̃ be the mean of projections of class 2.

And is the projected sample of . Then define a scatter for projected

samples of class 1 as ̃

 ∑ ̃

, and define a scatter for projected

24

samples of class 2 as ̃

 ∑ ̃

. Small ̃

 and ̃

 imply that

projected samples of class are clustered around projected mean ̃ and ̃. As a

result, a vector which makes
 ̃ ̃

 ̃

 ̃

 large will guarante that the classes are well

separated. Eventaully,
 ̃ ̃

 ̃

 ̃

 can be transformed and written as the objective

function

To maximize , take the derivative with respect to and set it to 0. It is

equivalent to solve

⇒

So, this is a solving generalized eigenvalue problem. If has full rank (the

inverse exists), problem can be converted to a standard eigenvalue problem

Therefore,
 , where ∑ ∑ ()(

)

.

The following is a concrete example.

Class 1 has 5 samples

[

]

 and class 2 has 6 samples

[

]

.

Mean for each class are [] and *

 +. The within class scatter

25

matrix is *

+ [] [

 ⁄

] [⁄] *

 ⁄

+. Since

has full rank, so the inverse of is
 *

+. The optimal line

direction is computed by
 *

+. As long as the line has

the right direction, its exact position does not matter.

A complication in applying LDA is, in many cases, linear discriminant is not

suitable. Then, LDA can be extended for use in non-linear classification via the kernel

trick. This works as effectively mapping the original data into a higher dimensional

non-linear space, and then, implementing linear discriminant analysis in this

non-linear space. Thus, using linear classification technique in a non-linear space is

equivalent to applying non-linear classification in the original space.

Linear discriminant functions. Assume that one knows the proper forms of

the discriminant functions, and then the value of the parameters of the classifier can

be estimated by using the samples. Various procedures of determining discriminant

functions has been developed, none of them requires knowing the forms of underlying

probability distributions.

Linear discriminant functions have a variety of pleasant analytical properties.

They can be optimal if the underlying distributions are cooperative, such as Gaussians

having equal covariance, as might be obtained through an intelligent choice of feature

detectors. Even when they are not optimal, we might be willing to sacrifice some

performance in order to gain the advantage of their simplicity. Linear discriminant

26

functions are relatively easy to compute and in the absence of information suggesting

otherwise, linear classifiers are attractive candidates for initial, trial classifiers (Duda,

2001).

Linear dicriminant functions in two-category case. A discriminant function

that is a linear combination of the components of can be written as

where is the weight vector and the threshold weight.

 as a two-category classifier implements the following decision rule

{

The equation defines the decision surface that separates points

assigned to from points assigned to . When is linear, this decision

surface is a hyperplane. It is easy to show that vector is normal to any vector lying

in the hyperplane. The normal vector, often simply called the "normal", to a surface is

a vector perpendicular to it. Thus, the weight vector is perpendicular to the

decision surface. The hyperplane divides the feature space into two half-spaces,

region for and region for . It is sometimes said that any in is

on the positive side of , any in is on the negative side.

The discriminant function gives an algebraic measure of the distance

from to the hyperplane:

‖ ‖
. In particular, the distance from origin to is

given by

27

‖ ‖

‖ ‖

‖ ‖

The origin is on the positive side, when . The origin is on the

negative side, when . The hyperplane passes through the origin, when

 . To sum up, the orientation of the surface is determined by the normal vector

 , and the location of the surface is determined by the threshold weight . A

geometric illustration of these algebraic results is given in Figure 2.2.1.

Figure 2.4.1 Geometric illustration of algebraic results

The linear decision boundary , where ,

separates the feature space into two half-spaces and . In convenient,

 could be written as . The reason is

 ∑

 ∑

where . Thus, we can let

 (

), and

 (

).

28

Regard a two-category case as example, suppose we have a set of samples

 , some labeled and some labeled . One major concern is to compute

the unknown parameters , defining the decision hyperplane. A sample

 is classified correctly if

{

.

To simplify the method in two-category case, replace all the samples

labeled by their negatives. Therefore, we could look for a vector such that

 for all the samples, and such a vector is called a separating vector or a

solution vector.

Each sample places a constraint, , so the solution vector must

be on the positive side of every hyperplane . The equation

defines a hyperplane through the origin of weight space having as a normal vector.

Therefore, the intersection of half-spaces is the solution region. The solution

vector should be a vector in this region.

Thus, the problem of finding a linear discriminant function will be

formulated as a problem of minimizing a criterion function.

Perceptron algorithm. Now we need to adopt an appropriate criterion

function and an algorithmic scheme to optimize it, and also solve the linear

inequalities . We choose the perceptron criterion function defined as

29

 ∑

where is the set of training samples misclassified by . Obviously, is

always positive and when it takes its minimum value, 0, a solution has been obtained.

An iterative scheme - gradient descent method is adopted to approach the

optimization.

 ()

where is a positive scale factor or learning rate that set the step size,

 () is the gradient vector (

).

Hence, the preceding rule becomes

 ∑

The algorithm is initialized from an arbitrary weight vector . The

weight vector is corrected according to the preceding rule. This is repeated until all

features are correctly classified. can be properly chosen as

, where

is a constant. The proper choice of the sequence is vital for the convergence

speed of the algorithm.

Minimum sum of squared-error. Rather than the perceptron algorithm

which only focuses on misclassified training samples, minimum squared-error

procedure involves all of the samples. Minimum squared-error tries to find vector

30

such that and also minimizing the sum of squared-error

‖ ‖ ∑

 .

Let
 , for each , so,

 ∑

 ∑

 .

To minimize , we could take the derivative with respect to and set it

equals 0.

 [∑

] ∑

⇒(∑

) ∑

⇒

⇒

In our research, if the sample is known as normal tissue sample

and if the sample is known as tumor tissue sample.

The advantage of minimum sum of squared-error is that the solution always

exists.

Chapter 3 Case Study on Colon Cancer Data and Discussion

3.1 Boxplots of Preprocessed Data

Our dataset consists of 62 colon tissue samples, for each sample we have

gene expression intensities for 2000 genes. These 2000 were selected from 6817 by

Alon et al. (1999) according to the highest minimum intensity. Within the samples are

some paired data. That is, we have a normal and a cancerous tissue sample from the

same patient.

In our research, three different data preprocessing are performed on the

original 2000 by 62 data. They are log-transformation, standardization, and quantile

normalization.

Figure 3.1.1 shows boxplot of original dataset.

Figure 3.1.1 Boxplot of original data

32

It is easy to tell for each sample, distribution of genes is not normal, so we

take logarithm transformation with base 2 to provide a data which has symmetrical

and mostly normal distribution. Interpretation of such a data is more meaningful from

biological point of view. Figure 3.1.2 gives boxplot of log-transformed data.

Figure 3.1.2 Boxplot of log-transformed data

The second data preprocessing that we used is standardization, but we used

median absolute deviation (MAD) instead of the standard deviation. Boxplot of

standardized data is shown in Figure 3.1.3.

33

Figure 3.1.3 Boxplot of standardized data

To see the result of standardization clearly, we set the maximum value for

y-axis to 25, and boxplot it, but we use the value obtained from standardization to do

the clustering experiments later.

Quantile normalization is also used to preprocessing data. In order to obtain

better clustering and classification results, we did quantile normalization based on

log-transformed data. The result is given by Figure 3.1.4.

34

Figure 3.1.4 Boxplot of quantile normalized data

Therefore, we have three preprocessed datasets, log-transformed data,

standardized data and quantile normalized data. We applied different clustering and

classification methods for the three preprocessed datasets, respectively, and expected

to draw some reasonable conclusions.

3.2 Discussion of Clustering Results

DNA microarray is an important tool, which determines the expression of

tens of thousands of genes from a sample. However, the data volume it produces can

be very large and hard to interpret. Based on the similarity of their expressions,

clustering samples can simplify the data, and discover their relationship.

In this research, I utilized K-means, K-medoids with Euclidean and Pearson

correlation distance, and Hierarchical clustering with Euclidean and Pearson

correlation distance, five ways in total, to group colon tissue samples into two clusters,

which are equivalent to tumor samples and normal samples. More specifically, we

35

chose partitioning around medoidss (PAM) algorithm for K-medoids clustering and

bottom-up algorithm for Hierarchical clustering. We repeated five methods that

mentioned above on to log-transformation data, quantile normalization data and

standardization data, and compared their performance.

Next, I will list results of clustering for three transformed data with size 2000

by 62, size 2000 by 57, and size 2000 by 44 separately, using these five algorithms.

Log-transformed data observation. Table 3.2.1 shows the performance of

each algorithm on size 2000 by 62 log-transformed data.

Table 3.1.1 Clustering results of 2000 by 62 log-transformed data

Sample

ID

Known

Label

2000*62 Log-transformed data

K
-M

ean
s

K
-M

ed
o
id

s.E

K
-M

ed
o
id

s.C

H
clu

st.E

H
clu

st.C

1 1 1 1 1 1 1

2 2 2 2 2 1 1

3 1 1 1 2 2 1

4 2 1 1 2 2 1

5 1 1 1 1 2 2

6 2 1 1 2 2 2

7 1 1 1 1 1 1

8 2 1 1 2 2 2

36

9 1 2 2 1 1 1

10 2 2 1 2 1 2

11 1 2 2 2 1 2

12 2 2 2 2 1 1

13 1 1 1 1 2 1

14 2 1 1 2 2 1

15 1 2 1 1 1 1

16 2 1 1 1 2 1

17 1 1 1 1 2 2

18 2 1 1 2 2 2

19 1 1 1 1 2 1

20 2 1 1 2 2 2

21 1 2 1 1 1 1

22 2 2 2 2 1 1

23 1 1 1 1 1 2

24 2 1 1 2 2 2

25 1 2 2 1 2 1

26 1 1 1 1 1 1

27 1 1 1 1 1 1

28 1 2 2 1 1 1

37

29 1 2 2 1 1 1

30 1 2 2 1 1 1

31 1 2 2 1 1 1

32 1 1 1 2 1 2

33 1 1 1 1 1 2

34 1 2 2 1 1 1

35 1 1 1 1 1 1

36 1 1 1 1 2 2

37 1 2 2 2 1 1

38 1 1 1 1 2 2

39 2 1 1 2 1 1

40 1 2 2 1 1 1

41 1 1 1 1 2 1

42 2 2 2 2 1 1

43 2 2 2 2 1 1

44 1 2 2 1 1 2

45 1 2 2 2 1 1

46 1 2 2 1 1 2

47 1 2 2 1 1 2

48 2 2 2 2 1 1

38

49 1 1 1 2 1 1

50 2 2 1 2 1 1

51 2 1 1 1 1 1

52 1 2 2 1 1 1

53 1 1 1 1 1 1

54 2 2 2 2 1 1

55 2 1 1 2 1 1

56 1 1 1 2 1 1

57 1 1 1 2 2 1

58 1 1 1 1 2 1

59 1 2 1 1 1 1

60 2 2 2 2 1 1

61 1 1 1 1 1 1

62 2 2 1 2 1 1

Samples labeled in orange indicate that it is being grouped into a wrong

cluster. How many samples being clustered correctly by each algorithm is shown in

Table 3.2.2.

Table 3.2.2 Summary of clustering results of 2000 by 62 log-transformed data

 2000*62 Log-transformed data

39

K
-M

ean
s

K
-M

ed
o
id

s.E

K
-M

ed
o
id

s.C

H
clu

st.E

H
clu

st.C

Ratio between tumor

and normal clusters

33:29 39:23 34:28 43:19 45:17

Number of correctly

grouped sample

33 33 52 37 35

In the original gene expression data, there are 40 tumor tissue samples and 22

normal tissue samples. According to the table, K-medoids method works relatively

better for log-transformed data. Only 10 samples are grouped into wrong cluster, error

rate is about 16.13%.

As we know, samples labeled 45,49,51,55 and 56 are contaminated in 62

samples, and they may affect clustering result. Thus, in the following experiments, I

removed 5 contaminated samples, and reduced size from 2000 by 62 to 2000 by 57.

The clustering result of 2000 by 57 log-transformed data is shown in Table

3.2.3.

Table 3.2.3 Clustering results of 2000 by 57 log-transformed data

ID Label

2000*57 Log-transformed data

K
-M

ean
s

K
-M

ed
o
id

s.E

K
-M

ed
o
id

s.C

H
clu

st.E

H
clu

st.C

40

1 1 1 1 1 1 1

2 2 2 2 1 2 1

3 1 1 1 2 1 1

4 2 1 1 2 1 1

5 1 1 1 2 1 2

6 2 1 1 2 1 2

7 1 1 1 2 1 1

8 2 1 1 2 1 2

9 1 2 2 2 1 1

10 2 2 1 2 2 2

11 1 2 2 2 2 2

12 2 2 2 1 2 1

13 1 1 1 1 1 1

14 2 1 1 2 1 1

15 1 2 2 1 1 1

16 2 1 1 2 1 1

17 1 1 1 2 1 2

18 2 1 1 2 1 2

19 1 1 1 1 1 1

20 2 1 1 2 1 2

41

21 1 2 2 1 1 1

22 2 2 2 2 2 1

23 1 1 1 2 1 2

24 2 1 1 2 3 2

25 1 2 2 1 1 1

26 1 1 1 1 1 1

27 1 1 1 1 1 1

28 1 2 2 1 2 1

29 1 2 2 1 2 1

30 1 2 2 1 2 1

31 1 2 2 1 2 1

32 1 1 1 2 1 2

33 1 1 1 1 1 2

34 1 2 2 1 2 1

35 1 1 1 1 1 1

36 1 1 1 1 1 2

37 1 2 2 2 2 1

38 1 1 1 1 1 2

39 2 1 1 1 1 1

40 1 2 2 1 1 1

42

41 1 1 1 1 1 1

42 2 2 2 1 2 1

43 2 2 2 1 2 1

44 1 2 2 1 2 2

46 1 2 2 1 2 2

47 1 2 2 1 2 2

48 2 2 2 2 2 1

50 2 2 2 1 2 1

52 1 2 2 1 2 1

53 1 1 2 1 1 1

54 2 2 2 1 2 1

57 1 1 1 1 1 1

58 1 1 1 1 1 1

59 1 2 2 1 1 1

60 2 2 2 1 2 1

61 1 1 1 1 1 1

62 2 2 2 1 2 1

When Hierarchical method performed to size 2000 by 57 data using

Euclidean method, sample 24 formed a single cluster and isolated from other 56

43

samples, so we excluded sample 24 in this situation and labeled it as “3”. The

experiment is summarized in Table 3.2.4.

Table 3.2.4 Summary of clustering results of 2000 by 57 log-transformed data

2000*57 Log-transformed data

K
-M

ean
s

K
-M

ed
o
id

s.E

K
-M

ed
o
id

s.C

H
clu

st.E

H
clu

st.C

Ratio between tumor

and normal clusters

29:28 29:28 37:20 34:22 40:17

Number of correctly

grouped sample

31 29 39 37 32

This set of experiment indicates that K-medoids method using Pearson

correlation distance has the best result among five methods. But 13 samples are

grouped into wrong cluster. The error rate of 22.81% is higher than that of the

K-medoids method using Pearson correlation dissimilarity measurement for size 2000

by 62 log-transformed data.

In original data, 44 samples form 22 pairs. Each pair, one normal and one

tumor samples, belongs to one person. I also did experiments using just 22 pairs.

Table 3.2.5 gives the clustering result of size 2000 by 44 log-transformed data.

Table 3.2.5 Clustering results of 2000 by 44 log-transformed data

ID Label 2000*44 Log-transformed data

44

K
-M

ean
s

K
-M

ed
o
id

s.E

K
-M

ed
o
id

s.C

H
clu

st.E

H
clu

st.C

1 1 2 1 1 1 1

2 2 2 2 2 1 1

3 1 1 1 1 2 1

4 2 1 1 2 2 1

5 1 1 1 1 2 2

6 2 1 1 1 2 2

7 1 1 1 1 1 1

8 2 1 1 1 2 2

9 1 2 2 1 1 1

10 2 2 2 2 1 2

11 1 2 2 1 1 2

12 2 2 2 2 1 1

13 1 2 1 1 2 1

14 2 1 1 2 2 1

15 1 2 2 1 1 1

16 2 1 1 1 2 1

17 1 1 1 1 2 2

45

18 2 1 1 1 2 2

19 1 1 1 1 2 1

20 2 1 1 1 2 2

21 1 2 2 1 1 1

22 2 2 2 2 1 1

23 1 1 1 1 2 2

24 2 1 1 1 2 2

39 2 2 1 2 1 1

40 1 2 2 2 1 1

41 1 1 1 2 2 1

42 2 2 2 2 1 1

43 2 2 2 2 1 1

44 1 2 2 1 1 2

47 1 2 2 1 1 2

48 2 2 2 2 1 1

49 1 2 2 2 1 1

50 2 2 2 2 1 1

51 2 2 2 2 1 1

52 1 2 2 1 1 1

53 1 2 2 2 1 1

46

54 2 2 2 2 1 1

55 2 2 2 2 1 1

56 1 2 2 2 1 1

59 1 2 2 2 1 1

60 2 2 2 2 1 1

61 1 2 2 2 1 1

62 2 2 2 2 1 1

The ratio between numbers of sample in the two clusters and the numbers of

correctly grouped sample are organized in Table 3.2.6.

Table 3.2.6 Summary of clustering results of 2000 by 44 log-transformed data

2000*44 Log-transformed data

K
-M

ean
s

K
-M

ed
o
id

s.E

K
-M

ed
o
id

s.C

H
clu

st.E

H
clu

st.C

Ratio between tumor

and normal clusters

15:29 18:26 21:23 29:15 32:12

Number of correctly

grouped sample

21 22 31 23 22

The best result is again achieved by K-medoids method using Pearson

correlation distance. 13 samples are grouped into wrong cluster, so the error rate is

approximate to 29.55%.

47

To conclude, for log-transformed gene expression data, K-medoids method

using Correlation distance measurement always gives a better clustering result no

matter what size the dataset is.

Quantile normalization data observation. I organized the clustering result

of five methods for size 2000 by 62, size 2000 by 57, and size 2000 by 44 quantile

normalization data in Table 3.2.7.

Table 3.2.7 Clustering results of quantile normalized data

ID

L
ab

el

Quantile data

2000*62

Quantile data

2000*57

Quantile data

2000*44

K
-M

ean
s

K
-M

ed
o
id

s.E

K
-M

ed
o
id

s.C

H
clu

st.E

H
clu

st.C

K
-M

ean
s

K
-M

ed
o
id

s.E

K
-M

ed
o
id

s.C

H
clu

st.E

H
clu

st.C

K
-M

ean
s

K
-M

ed
o
id

s.E

K
-M

ed
o
id

s.C

H
clu

st.E

H
clu

st.C

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 2 2 2 1 1 1 2 1 1 1 1 2 1 2 1 1

3 1 2 1 1 1 1 2 2 2 1 1 2 1 1 1 1

4 2 2 2 1 1 1 2 2 2 1 1 2 1 2 1 1

5 1 1 1 1 2 2 1 2 2 2 2 1 1 1 2 2

6 2 2 1 1 2 2 2 2 2 2 2 2 1 1 2 2

7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

8 2 2 1 1 2 2 2 2 2 2 2 2 1 1 2 2

9 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1

48

10 2 2 2 1 2 2 2 2 2 2 2 2 1 2 2 2

11 1 1 1 2 2 2 1 1 2 2 2 1 1 1 2 2

12 2 2 2 1 1 1 2 1 1 1 1 2 2 2 1 1

13 1 1 1 1 1 1 1 2 1 1 1 1 1 2 1 1

14 2 2 2 1 1 1 2 2 2 1 1 2 1 2 1 1

15 1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 1

16 2 1 1 1 1 1 2 2 2 1 1 1 1 1 1 1

17 1 1 1 2 2 2 1 1 2 2 2 1 1 1 2 2

18 2 2 2 2 2 2 2 2 2 2 2 2 1 1 2 2

19 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

20 2 2 1 2 2 2 2 2 2 2 2 2 1 1 2 2

21 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

22 2 2 2 1 1 1 2 2 2 1 1 2 1 2 1 1

23 1 1 1 2 2 2 1 2 2 2 2 1 1 1 2 2

24 2 2 2 1 2 2 2 2 2 2 2 2 1 1 2 2

25 1 1 1 1 2 2 1 1 1 2 2

26 1 1 1 1 1 1 1 1 1 1 1

27 1 1 2 1 1 1 1 1 1 1 1

28 1 1 1 1 1 1 1 1 1 1 1

29 1 1 1 1 1 1 1 1 1 1 1

49

30 1 1 1 1 1 1 1 1 1 1 1

31 1 1 1 1 1 1 1 1 1 1 1

32 1 1 1 2 2 2 1 1 2 2 2

33 1 1 1 2 2 2 1 1 1 2 2

34 1 1 1 1 1 1 1 1 1 1 1

35 1 1 1 1 1 1 1 1 1 1 1

36 1 1 1 2 2 2 1 1 1 2 2

37 1 1 1 1 1 1 1 1 2 1 1

38 1 1 1 2 2 2 1 1 1 2 2

39 2 2 2 1 1 1 2 2 1 1 1 2 2 2 1 1

40 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1

41 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1

42 2 2 2 2 1 1 2 2 1 1 1 2 2 2 1 1

43 2 2 2 2 1 1 2 1 1 1 1 2 2 2 1 1

44 1 1 1 2 2 2 1 1 1 2 2 1 2 1 2 2

45 1 2 2 1 1 1

46 1 1 1 2 2 2 1 1 1 2 2

47 1 1 1 2 2 2 1 1 1 2 2 1 1 1 2 2

48 2 2 2 1 1 1 2 1 2 1 1 2 2 2 1 1

49 1 2 2 1 1 1

2 2 2 1 1

50

50 2 2 2 1 1 1 2 2 1 1 1 2 2 2 1 1

51 2 1 1 1 1 1

1 1 2 1 1

52 1 1 1 2 1 1 1 1 1 1 1 1 2 1 1 1

53 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1

54 2 2 2 1 1 1 2 2 1 1 1 2 2 2 1 1

55 2 1 1 1 1 1

1 2 2 1 1

56 1 2 2 2 1 1

2 2 2 1 1

57 1 2 1 1 1 1 2 2 2 1 1

58 1 1 1 1 1 1 1 1 1 1 1

59 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1

60 2 2 2 1 1 1 2 1 1 1 1 2 2 2 1 1

61 1 1 1 2 1 1 1 1 1 1 1 1 2 2 1 1

62 2 2 2 1 1 1 2 1 1 1 1 2 2 2 1 1

I also summarized the ratios between the two cluster sizes and the numbers

of correctly grouped sample in Table 3.2.8.

Table 3.2.8 Summary of clustering results of quantile normalized data

Ratio between tumor

and normal clusters

Number of correctly

grouped sample

Quantile Data

2000*62

K-Means 38:24 54

K-Medoids.E 42:20 52

K-Medoids.C 45:17 31

Hclust.E 44:18 34

Hclust.C 44:18 34

Quantile Data

2000*57

K-Means 34:23 54

K-Medoids.E 37:20 45

51

K-Medoids.C 37:20 39

Hclust.E 39:18 31

Hclust.C 39:18 31

Quantile Data

2000*44

K-Means 22:22 38

K-Medoids.E 26:18 24

K-Medoids.C 20:24 30

Hclust.E 32:12 22

Hclust.C 32:12 22

Performing clustering on quantile normalized data, results of Hierarchical

method are exactly the same no matter is Euclidean dissimilarity or Pearson

correlation dissimilarity used. This could be proved by the following dendrograms

Figure 3.2.1, Figure 3.2.2, and Figure 3.2.3.

52

Figure 3.2.1 Hierarchical clustering with Euclidean and correlation distance of 2000

by 62 quantile normalized data

8
5

1
0

6
2

0
1

7
1

8
2

4 2
3

3
6

3
8

2
5

4
7

4
4

4
6 1

1
3

2
3

3
5

1
4

0
5

2
5

3
5

9
4

1
5

8 3
5

2
8

3
4
5

5
6

1
4

9
6

0 4
3

4
5

4
8 4

2
5

6
6

2
5

0
3

9
5

4
3

5
7

9
1

9
3

7
3

1
3

0
2

9
2

6
2

7
1

6
1

5
1

3
1

4
7

1
2

1
2

2
2

4
1

2

2
0

4
0

6
0

Hierarchical clustering use Eulidean distance

hclust (*, "complete")

dist.quan.e

H
e

ig
h

t

8
5

1
0

6
2

0
1

7
1

8
2

4 2
3

3
6

3
8
2

5
4

7
4

4
4

6 1
1

3
2

3
3

5
1

4
0

5
2

5
3

5
9

4
1

5
8 3
5

2
8

3
4 5

5
6

1
4

9
6

0 4
3

4
5

4
8 4
2

5
6

6
2
5

0
3

9
5

4
3

5
7

9
1

9
3

7
3

1
3

0
2

9
2

6
2

7
1

6
1

5
1

3
1

4
7

1
2

1 2
2

2
4

1
2

0
.0

0
.2

0
.4

0
.6

Hierarchical clustering use Correlation distance

hclust (*, "complete")

dist.quan.c

H
e

ig
h

t

53

Figure 3.2.2 Hierarchical clustering with Euclidean and correlation distance of 2000

by 57 quantile normalized data

8
5

1
0

6
2

0
1

7
1

8
2

4 2
3

3
6

3
8

2
5

4
6

4
4

4
5 1

1
3

2
3

3 9
1

9
4

1
5

3 3
5

2
8

3
4

5
6

4
0

4
9

5
0

5
4

3
5

2
4

3
4

7
5

5
4

2
5

7 4
8

3
9

5
1

3
7

3
1

3
0

2
9

2
6

2
7

1
6

1
5

1
3

1
4

7
1

2
1

2
2

2
4

1
2

2
0

4
0

6
0

Hierarchical clustering use Eulidean distance

hclust (*, "complete")

dist.quan57.e

H
e

ig
h

t

8
5

1
0

6
2

0
1

7
1

8
2

4 2
3

3
6

3
8 2

5
4

6
4

4
4

5 1
1

3
2

3
3 9

1
9

4
1

5
3 3
5

2
8

3
4

5
6

4
0

4
9

5
0

5
4

3
5

2
4

3
4

7
5

5
4

2
5

7 4
8

3
9

5
1

3
7

3
1

3
0

2
9

2
6

2
7

1
6

1
5

1
3

1
4
7

1
2

1 2
2

2
4

1
2

0
.0

0
.2

0
.4

0
.6

Hierarchical clustering use Correlation distance

hclust (*, "complete")

dist.quan57.c

H
e

ig
h

t

54

Figure 3.2.3 Hierarchical clustering with Euclidean and correlation distance of 2000

by 44 quantile normalized data

In addition, no matter what size of quantile normalized data is, K-means

method always obtains the best clustering among these five different algorithms.

Their error rates are 12.90%, 5.26% and 13.64%, respectively. Especially, for size

2000 by 57 quantile normalized data, which removed 5 contaminative samples, only 3

samples are grouped into wrong cluster. It is also the best clustering result in all the

1
1

3
0

3
1 1
7

2
3

1
8

2
4

8
5

1
0

6
2

0 3
3

4
2 2

9
3

2
2

8
4

0
4

4
3

4
2

5
3

8 3
9

4
3

3
5

2
7

3
7 3

6
2

6
4

1 9
1

9
3

1
6

1
5

1
3

1
4

7
1

2
1

2
2

2
4

1
2

2
0

4
0

6
0

Hierarchical clustering use Euclidean distance

hclust (*, "complete")

quan44.e.dist

H
e

ig
h

t

1
1

3
0

3
1 1
7

2
3

1
8

2
4

8
5

1
0

6
2

0 3
3

4
2 2

9
3

2
2

8
4

0
4

4
3

4
2

5
3

8 3
9

4
3

3
5

2
7

3
7 3

6
2

6
4

1 9
1

9
3

1
6

1
5

1
3

1
4

7
1

2
1 2

2
2

4
1

2

0
.0

0
.2

0
.4

Hierarchical clustering use Correlation distance

hclust (*, "complete")

quan44.cor.dist

H
e

ig
h

t

55

experiments performed. Although, for size 2000 by 62 quantile normalized data, 8

samples are grouped into wrong cluster, 5 of them are contaminative samples. This

implies clustering using 2000 by 62 quantile normalized data does not affect by

contaminative samples seriously in this case.

Standardization using MAD data observation. I organized clustering

results for standardization data of 3 different sizes using MAD instead of standard

deviation in Table 3.2.9.

Table 3.2.9 Clustering results of standardized data

ID

L
ab

el

Standardization

2000*62

Standardization

2000*57

Standardization

2000*44

K
-M

ean
s

K
-M

ed
o
id

s.E

K
-M

ed
o
id

s.C

H
clu

st.E

H
clu

st.C

K
-M

ean
s

K
-M

ed
o
id

s.E

K
-M

ed
o
id

s.C

H
clu

st.E

H
clu

st.C

K
-M

ean
s

K
-M

ed
o
id

s.E

K
-M

ed
o
id

s.C

H
clu

st.E

H
clu

st.C

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 2 1 1 2 1 1 1 1 2 1 1 1 1 1 1 2

3 1 1 1 2 1 1 1 1 2 1 1 1 1 1 1 1

4 2 1 1 2 1 1 1 1 2 1 1 1 1 1 1 1

5 1 1 1 2 1 2 1 1 2 1 2 1 1 1 1 2

6 2 1 1 2 1 2 1 1 2 1 2 1 1 1 1 2

7 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1

8 2 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1

56

9 1 1 1 1 1 2 1 1 1 1 2 1 1 1 1 1

10 2 1 1 2 1 2 1 1 2 1 2 1 1 1 1 2

11 1 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2

12 2 1 1 2 1 1 1 1 2 1 1 1 1 1 1 2

13 1 1 1 2 1 1 1 1 2 1 1 1 1 1 1 1

14 2 1 1 2 1 1 1 1 2 1 1 1 1 1 1 1

15 1 1 1 2 1 1 1 1 2 1 1 1 1 1 1 1

16 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

17 1 1 1 2 1 1 1 1 2 1 1 1 1 1 1 1

18 2 1 1 2 1 1 1 1 2 1 1 1 1 1 1 1

19 1 1 1 2 1 2 1 1 2 1 2 1 1 1 1 1

20 2 1 1 2 1 2 1 1 2 1 2 1 1 1 1 2

21 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

22 2 1 1 2 1 1 1 1 2 1 1 1 1 1 1 1

23 1 1 1 2 1 1 1 1 2 1 1 1 1 1 1 1

24 2 1 1 2 1 1 1 1 2 1 1 1 1 1 1 1

25 1 1 1 2 1 2 1 1 2 1 2

26 1 1 1 1 1 1 1 1 1 1 1

27 1 1 1 1 1 1 1 1 1 1 1

28 1 1 1 1 1 2 2 1 1 1 1

57

29 1 2 1 1 2 1 2 1 1 2 1

30 1 2 1 1 2 2 2 1 1 2 1

31 1 2 1 1 2 1 2 1 1 2 1

32 1 1 1 2 1 2 1 1 2 1 2

33 1 1 1 2 1 2 1 1 2 1 2

34 1 1 1 1 1 2 2 1 1 1 1

35 1 1 1 1 1 2 1 1 1 1 1

36 1 1 1 2 1 2 1 1 2 1 2

37 1 1 1 1 2 1 1 1 1 2 1

38 1 1 1 1 1 2 1 1 1 1 2

39 2 1 1 2 1 1 1 1 2 1 1 1 1 2 1 1

40 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

41 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

42 2 1 1 2 1 1 1 1 2 1 1 1 1 2 1 2

43 2 2 2 2 2 1 2 2 2 2 1 2 2 2 2 2

44 1 2 2 2 2 2 2 2 2 2 2 2 2 1 2 1

45 1 2 2 2 2 1

46 1 2 2 2 2 2 2 2 2 2 2

47 1 2 2 2 2 2 2 2 2 2 2 2 2 1 2 1

48 2 2 1 2 2 1 2 1 2 2 1 1 1 2 2 2

58

49 1 1 1 2 1 1

1 1 2 1 2

50 2 1 1 2 1 1 1 1 2 1 1 1 1 2 1 2

51 2 1 1 2 1 1

1 1 1 1 1

52 1 2 2 2 2 2 2 2 2 2 2 2 2 1 2 1

53 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

54 2 1 1 2 1 1 1 1 2 1 1 1 1 2 1 1

55 2 1 1 2 1 1

1 1 2 1 1

56 1 1 1 2 1 1

1 1 2 1 2

57 1 1 1 2 1 1 1 1 2 1 1

58 1 1 1 1 1 1 1 1 1 1 1

59 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

60 2 1 1 2 1 1 1 1 2 1 1 1 1 2 1 2

61 1 1 1 2 1 1 1 1 2 1 1 1 1 1 1 1

62 2 1 1 2 1 1 1 1 2 1 1 1 1 2 1 2

Ratio between sizes of the two clusters and numbers of sample is grouped

correctly are summarized in Table 3.2.10.

Table 3.2.10 Summary of clustering results of standardized data

Ratio between tumor

and normal clusters

Number of correctly

grouped sample

Standardization

2000*62

K-Means 51:11 33

K-Medoids.E 55:7 35

K-Medoids.C 21:41 39

Hclust.E 50:12 32

Hclust.C 40:22 26

59

Standardization

2000*57

K-Means 45:12 29

K-Medoids.E 51:6 33

K-Medoids.C 21:36 37

Hclust.E 46:11 30

Hclust.C 41:16 27

Standardization

2000*44

K-Means 39:5 19

K-Medoids.E 39:5 19

K-Medoids.C 33:11 29

Hclust.E 38:6 20

Hclust.C 29:15 29

This set of experiments of standardization data using MAD gave a worse

clustering result than those of log-transformed data and quantile normalized data. But

comparatively, K-mediods method using Correlation dissimilarity always gets a better

clustering result than the other 4 algorithms. The error rates are about 37.10%,

35.09%, and 34.09%, respectively.

In conclusion, for logarithm transformed data and standardized data which

using MAD, K-medoids method using Pearson correlation as dissimilarity

measurement gives relative better clustering results among all 5 clustering algorithms.

Furthermore, the best clustering result is obtained when performing K-means

algorithm on quantile normalization data. Particularly, after I removed 5

contaminative samples, this algorithm successfully clusters 54 samples out of 57

samples, an accuracy rate of 94.74%.

3.3 Comparison of Classification Results

When one patient was suspected of having cancer, the doctor always tests

blood or tissue samples that are extracted from the patient in order to determine

60

whether the patient has cancer or not. I also want to predict the result using

mathematical methods. In this research, two different classification algorithms are

adopted. They are linear discriminant analysis, and minimum sum of squared-error.

In this research, I separate the 62 samples into training and testing two sets.

Training set is used to train the predictor, and testing set is used to examine how good

the predictor is.

At the very beginning, I used 40 samples in the training set, and 22 samples

in the testing set. I performed the two classification methods on the three transformed

datasets, and summarized forecasting results in Table 3.3.1as following.

Table 3.3.1 Classification results of training set 42 vs. testing set 20

ID

L
ab

el

Linear discriminant

analysis

Minimum SSE

lo
g
arith

m

Q
u
an

tile

stan
d

ard
ize

lo
g
arith

m

q
u
an

tile

stan
d

ard
ize

41 1 1 1 1 1 1 1

42 2 2 2 2 2 2 2

43 2 2 2 2 2 2 2

44 1 1 1 1 1 1 1

45 1 2 2 2 2 2 2

46 1 1 1 1 1 1 1

61

47 1 1 1 1 1 1 1

48 2 2 2 2 2 2 2

49 1 2 2 2 2 2 2

50 2 2 2 2 2 2 2

51 2 1 1 1 1 1 1

52 1 1 1 1 1 1 1

53 1 1 1 1 1 1 1

54 2 2 2 2 2 2 2

55 2 1 1 1 1 1 1

56 1 2 2 2 2 2 2

57 1 1 1 1 1 1 1

58 1 1 1 1 1 1 1

59 1 1 1 1 1 1 1

60 2 2 2 2 2 2 2

61 1 1 1 1 1 1 1

62 2 2 2 2 2 2 2

5 out of the 20 samples were predicted incorrectly in each experiment for

linear discriminant analysis and minimum sum of squared-error method. Notice that,

those 5 samples, which grouped by mistake, are all contaminative samples. Therefore,

62

from this point of view, both linear discriminant analysis and minimum sum of

squared-error methods predicted the classes accurately.

However, in this way, I can neither see which method is better, not which

transformation of the data kept more information of original data. Thus, I reduced the

size of training set down to 20 samples, and increased the size of testing samples to 42.

Table 3.3.2 sums up the classification results for each experiment.

Table 3.3.2 Classification results of training set 20 vs. testing set 42

ID
L

ab
el

Linear discriminant

analysis

Minimum SSE
L

o
g
arith

m

Q
u
an

tile

stan
d
ard

ize

lo
g
arith

m

q
u
an

tile

stan
d
ard

ize

21 1 1 1 1 1 1 1

22 2 2 2 2 2 2 2

23 1 1 1 1 1 1 1

24 2 2 2 1 2 2 2

25 1 1 1 1 1 1 1

26 1 1 1 1 1 1 1

27 1 1 1 1 1 1 2

28 1 1 1 1 1 1 1

29 1 1 1 1 1 1 1

63

30 1 1 1 1 1 1 2

31 1 1 1 1 1 1 1

32 1 1 1 1 1 1 1

33 1 1 1 1 1 1 1

34 1 1 1 1 1 1 1

35 1 1 1 1 1 1 1

36 1 1 1 1 1 1 1

37 1 1 1 1 1 1 1

38 1 1 1 1 1 1 1

39 2 2 2 2 2 2 2

40 1 1 1 1 1 1 1

41 1 1 1 1 1 1 1

42 2 2 2 1 2 2 2

43 2 2 2 2 2 2 2

44 1 1 1 1 1 1 1

45 1 2 2 2 2 2 2

46 1 1 1 1 1 1 1

47 1 1 1 1 1 1 1

48 2 2 2 2 2 2 2

49 1 2 2 2 2 2 2

64

50 2 2 2 2 2 2 2

51 2 1 1 1 1 1 1

52 1 1 1 1 1 1 1

53 1 2 1 1 1 1 1

54 2 2 2 2 2 2 2

55 2 1 1 1 1 1 1

56 1 2 2 2 2 2 2

57 1 2 2 1 1 1 1

58 1 1 1 1 1 1 1

59 1 1 1 1 1 1 1

60 2 2 2 2 2 2 2

61 1 1 1 1 1 1 1

62 2 2 2 2 2 2 2

Predictors trained by reduced training set show different classification

outputs. Let’s summary how many samples are classified incorrectly in this set of

experiments in Table 3.3.3.

Table 3.3.3 Summary of classification results of training set 20 vs. testing set 42

Linear discriminant

analysis

Logarithm transformation 7

Quantile normalization 6

standardization 7

Minimum sum of

squared-error

Logarithm transformation 5

Quantile normalization 5

standardization 7

65

After such a contrast, minimum sum of squared-error algorithm obtains

better or the same classification results than the linear discriminant analysis.

Moreover, by contrast, quantile normalization is a better transformation method.

Although, quantile normalized data and log-transformed data give exactly the same

prediction by using minimum sum of squared-error, quantile normalized data provide

a better forecast when linear discriminant analysis is applied.

Chapter 4 Conclusions

In this research, some conclusions and laws could be drawn from the

experimental results.

1. In general, among three data preprocessing methods, quantile

normalization method gives the better clustering result than the other two methods,

regardless of which clustering algorithm has been applied on which size of data.

2. For quantile normalized data, K-means algorithm always obtains the best

clustering result no matter the size of transformed data. In addition, the best clustering

result that I have gotten in all experiments is from K-means algorithm on size 2000 by

57 quantile normalized data with a 94.74% accuracy.

3. For log-transformed data and standardized data, K-mediod algorithm

based on Pearson correlation distance metric has the best clustering performance

among the 5 clustering algorithms. Compared to standardization method,

log-transformation is a relatively better data preprocessing method.

4. When I separated 62 samples into 40 training samples and 22 testing

samples, both of linear discriminant analysis and minimum sum of squared-error

algorithm provide consistent and good results. The predictor trained by these two

method correctly classified all testing samples except the 5 contaminative ones.

67

5. In order to compare the methods, 20 samples was left in training set, and

testing set was expanded to 42 samples. Obviously, minimum sum of squared-error

algorithm is superior to linear discriminant analysis. The result also confirmed that

quantile normalization is a better data preprocessing method for colon cancer data

analysis.

As the tumor microarray data have so many features but usually come with

limited number of samples and noise, it has all kind of challenges in analyzing the

data.

Bibliography

 [A.U.] Alon, U., Barkai, N., Notterman, D. A., Gish, K., Ybarra, S., Mack, D., &

Levine, A. J. (1999). Data pertaining to the article ‘Broad patterns of gene

expression revealed by clustering of tumor and normal colon tissues probed

by oligonucleotide arrays’. Retrieved from

http://genomics-pubs.princeton.edu/oncology/affydata/index.html

[D.O.] Duda, R. O., Hart, P. E., & Stork, D. G. (2001) Pattern classification. New

York, NY: John Wiley & Sons, Inc.

[D.S.] Drăghici, S. (2003). Data analysis tools for DNA microarrays. New York, NY:

Chapman & Hall/CRC.

[K.B.] Korol, A. B. (2003). Microarray cluster analysis and applications. Retrieved

from http://www.science.co.il/enuka/Essays/Microarray-Review.pdf

[S.] Scholarpedia. (2009). K-nearest_neighbor. Retrieved from

http://www.scholarpedia.org/article/K-nearest_neighbor

[W.M.] Wolfram Mathematica. (2011). Neural Networks Documentation: 2.2 Data

Preprocessing. Retrieved from

http://reference.wolfram.com/applications/neuralnetworks/NeuralNetworkT

heory/2.2.0.html

http://genomics-pubs.princeton.edu/oncology/affydata/index.html
http://www.science.co.il/enuka/Essays/Microarray-Review.pdf
http://www.scholarpedia.org/article/K-nearest_neighbor
http://reference.wolfram.com/applications/neuralnetworks/NeuralNetworkTheory/2.2.0.html
http://reference.wolfram.com/applications/neuralnetworks/NeuralNetworkTheory/2.2.0.html

69

[X.X.] Xu, W. X., You, C. X., Xu, J. W., & Chen, Y. R. (2010). Biochip Platforms for

DNA Diagnostics [PowerPoint slides]. Retrieved from

http://www.slidefinder.net/B/Biochip_Platforms_DNA_Diagnostics_%E8%

A8%B1%E6%96%87%E9%A6%A8/10935617

http://www.slidefinder.net/B/Biochip_Platforms_DNA_Diagnostics_%E8%A8%B1%E6%96%87%E9%A6%A8/10935617
http://www.slidefinder.net/B/Biochip_Platforms_DNA_Diagnostics_%E8%A8%B1%E6%96%87%E9%A6%A8/10935617

Appendix: R code

Program One: Logarithm transformation and clustering analysis.

rm(list=ls(all=TRUE)) # clear all previous data

library(cluster)

library(MASS)

read in the data

colon.dat<-read.table("C:/Users/bo.liu/Desktop/R/I2000.txt",header=FALSE,sep=' ')

colon.dat<-data.matrix(colon.dat,main='Boxplot of Original Data')

boxplot(colon.dat)

1.pre-processing:log-transformation data

logcolon.dat<-log2(colon.dat)

logcolon.dat<-data.matrix(logcolon.dat)

boxplot(logcolon.dat,main='Boxplot of Log-transformed Data')

2.1.kmeans clustering(2000 by 62)

tlog<-t(logcolon.dat)

set.seed(17)

km.log<-kmeans(tlog,2)

km.log

71

2.2.kmediod clustering-Partitioning Around Medoids(2000 by 62)

pam.log.e<-pam(tlog,2,diss=F,metric="euclidean")

summary(pam.log.e)

log.corr<-cor(logcolon.dat,method = "pearson")

dist.log.c<-matrix(nrow=62,ncol=62)

 for(i in 1:62){

 dist.log.c[i,]<-c(1:62)

 for(j in 1:62){

 dist.log.c[i,j]<-1-log.corr[i,j]}}

dist.log.c<-as.dist(dist.log.c,diag=F,)

pam.log.corr<-pam(dist.log.c,2,diss=F,cluster.only=F,do.swap=F,keep.diss=F,keep.da

ta=F)

summary (pam.log.corr)

2.3.Hierarchical Cluster Analysis - Euclidean (2000 by 62)

dist.log.e<-dist(tlog,method="euclidean")

hclust.log.e<-hclust(dist.log.e,method='complete')

plot(hclust.log.e,labels=NULL)

Hierarchical Cluster Analysis - Correlation (logcolon.dat)

hclust.log.corr<-hclust(dist.log.c,method='complete')

plot(hclust.log.corr,labels=NULL)

72

3.reduce the matrix to 2000*57 (delete contaminate ones)

log57.dat<-logcolon.dat[,-c(45,49,51,55,56)]

4.1.kmeans clustering(2000 by 57)

tlog57<-t(log57.dat)

set.seed(23)

km.log57<-kmeans(tlog57,2)

km.log57

4.2.kmediod clustering-Partitioning Around Medoids(2000 by 57)

pam.log57.e<-pam(tlog57,2,diss=F,metric="euclidean")

summary(pam.log57.e)

log57.corr<-cor(log57.dat,method = "pearson")

dist.log57.c<-matrix(nrow=57,ncol=57)

 for(i in 1:57){

 dist.log57.c[i,]<-c(1:57)

 for(j in 1:57){

 dist.log57.c[i,j]<-1-log57.corr[i,j]}}

dist.log57.c<-as.dist(dist.log57.c,diag=F,)

pam.log57.corr<-pam(dist.log57.c,2,diss=F,cluster.only=F,do.swap=F,keep.diss=F,ke

ep.data=F)

summary (pam.log57.corr)

73

4.3.Hierarchical Cluster Analysis - Euclidean (2000 by 57)

dist.log57.e<-dist(tlog57,method="euclidean")

hclust.log57.e<-hclust(dist.log57.e,method='complete')

plot(hclust.log57.e,labels=NULL)

Hierarchical Cluster Analysis - Correlation (logcolon.dat)

hclust.log57.corr<-hclust(dist.log57.c,method='complete')

plot(hclust.log57.corr,labels=NULL)

5.reduce the matrix to 57*44 (22 pairs)

log44.dat<-logcolon.dat[,-c(25:38,45,46,57,58)]

boxplot(log44.dat)

6.1.kmeans clustering (2000*44)

tlog44<-t(log44.dat)

set.seed(104)

kmeans.log44<-kmeans(tlog44,2,iter.max=5)

kmeans.log44

6.2.kmediod clustering-Partitioning Around Medoids(2000*44)

pam.log44.e<-pam(tlog44,2,diss=F,metric="euclidean")

summary(pam.log44.e)

log44.cor<-cor(log44.dat,method = "pearson")

log44.cor.dist<-matrix(nrow=44,ncol=44)

74

 for(i in 1:44){

 log44.cor.dist[i,]<-c(1:44)

 for(j in 1:44){

 log44.cor.dist[i,j]<- 1-log44.cor[i,j]}}

log44.cor.dist<-as.dist(log44.cor.dist,diag=F,)

pam.log44.cor<-pam(log44.cor.dist,2,diss=F,cluster.only=F,do.swap=F,keep.diss=F,k

eep.data=F)

summary (pam.log44.cor)

6.3.Hierarchical Cluster Analysis - Euclidean (2000*44)

log44.e.dist<-dist(tlog44,method="euclidean")

hclust.log44.e<-hclust(log44.e.dist,method='complete')

plot(hclust.log44.e,labels=NULL)

Hierarchical Cluster Analysis - Correlation (2000*44)

hclust.log44.cor<-hclust(log44.cor.dist,method='complete')

plot(hclust.log44.cor,labels=NULL)

Program Two: Quantile normalization and clustering analysis.

rm(list=ls(all=TRUE)) # clear all previous data

library(cluster)

library(MASS)

read in the data

75

colon.dat<-read.table("C:/Users/bo.liu/Desktop/R/I2000.txt",header=FALSE,sep=' ')

colon.dat<-data.matrix(colon.dat)

boxplot(colon.dat,main='Boxplot of Original Data')

1.pre-processing:Quantile normalization data

library(affy)

library(preprocessCore)

logcolon.dat<-log2(colon.dat)

quantile.dat<-normalize.quantiles(logcolon.dat,copy=TRUE)

boxplot(quantile.dat,main='Boxplot of Quantile Normalized Data')

2.1.kmeans clustering(2000 by 62)

tquan<-t(quantile.dat)

set.seed(18)

km.quan<-kmeans(tquan,2,iter.max=10)

km.quan

2.2.kmediod clustering-Partitioning Around Medoids(2000 by 62)

pam.quan.e<-pam(tquan,2,diss=F,metric="euclidean")

summary(pam.quan.e)

quan.corr<-cor(quantile.dat,method = "pearson")

dist.quan.c<-matrix(nrow=62,ncol=62)

 for(i in 1:62){

76

 dist.quan.c[i,]<-c(1:62)

 for(j in 1:62){

 dist.quan.c[i,j]<-1-quan.corr[i,j]}}

dist.quan.c<-as.dist(dist.quan.c,diag=F,)

pam.quan.corr<-pam(dist.quan.c,2,diss=F,cluster.only=F,do.swap=F,keep.diss=F,kee

p.data=F)

summary (pam.quan.corr)

2.3.Hierarchical Cluster Analysis - Euclidean (2000 by 62)

dist.quan.e<-dist(tquan,method="euclidean")

hclust.quan.e<-hclust(dist.quan.e,method='complete')

plot(hclust.quan.e,labels=NULL,main='Hierarchical clustering use Eulidean distance')

Hierarchical Cluster Analysis - Correlation (2000 by 62)

hclust.quan.corr<-hclust(dist.quan.c,method='complete')

plot(hclust.quan.corr,labels=NULL,main='Hierarchical clustering use Correlation

distance')

3.reduce the matrix to 2000*57 (delete contaminate ones)

quan57.dat<-quantile.dat[,-c(45,49,51,55,56)]

4.1.kmeans clustering(2000 by 57)

tquan57<-t(quan57.dat)

set.seed(8)

77

km.quan57<-kmeans(tquan57,2)

km.quan57

4.2.kmediod clustering-Partitioning Around Medoids(2000 by 57)

pam.quan57.e<-pam(tquan57,2,diss=F,metric="euclidean")

summary(pam.quan57.e)

quan57.corr<-cor(quan57.dat,method = "pearson")

dist.quan57.c<-matrix(nrow=57,ncol=57)

 for(i in 1:57){

 dist.quan57.c[i,]<-c(1:57)

 for(j in 1:57){

 dist.quan57.c[i,j]<-1-quan57.corr[i,j]}}

dist.quan57.c<-as.dist(dist.quan57.c,diag=F,)

pam.quan57.corr<-pam(dist.quan57.c,2,diss=F,cluster.only=F,do.swap=F,keep.diss=F

,keep.data=F)

summary (pam.quan57.corr)

4.3.Hierarchical Cluster Analysis - Euclidean (2000 by 57)

dist.quan57.e<-dist(tquan57,method="euclidean")

hclust.quan57.e<-hclust(dist.quan57.e,method='complete')

plot(hclust.quan57.e,labels=NULL,main='Hierarchical clustering use Eulidean

distance')

78

Hierarchical Cluster Analysis - Correlation (2000 by 57)

hclust.quan57.corr<-hclust(dist.quan57.c,method='complete')

plot(hclust.quan57.corr,labels=NULL,main='Hierarchical clustering use Correlation

distance')

5.reduce the matrix to 57*44 (22 pairs)

quan44.dat<-quantile.dat[,-c(25:38,45,46,57,58)]

boxplot(quan44.dat)

6.1.kmeans clustering (2000*44)

tquan44<-t(quan44.dat)

set.seed(10)

kmeans.quan44<-kmeans(tquan44,2,iter.max=5)

kmeans.quan44

6.2.kmediod clustering-Partitioning Around Medoids(2000*44)

pam.quan44.e<-pam(tquan44,2,diss=F,metric="euclidean")

summary(pam.quan44.e)

quan44.cor<-cor(quan44.dat,method = "pearson")

quan44.cor.dist<-matrix(nrow=44,ncol=44)

 for(i in 1:44){

 quan44.cor.dist[i,]<-c(1:44)

 for(j in 1:44){

79

 quan44.cor.dist[i,j]<- 1-quan44.cor[i,j]}}

quan44.cor.dist<-as.dist(quan44.cor.dist,diag=F,)

pam.quan44.cor<-pam(quan44.cor.dist,2,diss=F,cluster.only=F,do.swap=F,keep.diss=

F,keep.data=F)

summary (pam.quan44.cor)

6.3.Hierarchical Cluster Analysis - Euclidean (2000*44)

quan44.e.dist<-dist(tquan44,method="euclidean")

hclust.quan44.e<-hclust(quan44.e.dist,method='complete')

plot(hclust.quan44.e,labels=NULL,main='Hierarchical clustering use Euclidean

distance')

Hierarchical Cluster Analysis - Correlation (2000*44)

hclust.quan44.cor<-hclust(quan44.cor.dist,method='complete')

plot(hclust.quan44.cor,labels=NULL,main='Hierarchical clustering use Correlation

distance')

Program Three: Standardization data preprocessing and clustering analysis.

rm(list=ls(all=TRUE)) # clear all previous data

library(cluster)

library(MASS)

read in the data

colon.dat<-read.table("C:/Users/bo.liu/Desktop/R/I2000.txt",header=FALSE,sep=' ')

80

colon.dat<-data.matrix(colon.dat,main='Boxplot of Original Data')

boxplot(colon.dat)

1.pre-processing:MAD data

mad.dat<-c(1:2000)

 for (i in 1:2000){

 mad.dat[i]<-mad(colon.dat[i,], constant=1)}

mean.dat<-c(1:2000)

 for(i in 1:2000){

 mean.dat[i]<-mean(colon.dat[i,])}

stand.dat<-matrix(nrow=2000,ncol=62)

 for(i in 1:2000){

 stand.dat[i,]<-c(1:62)

 for (j in 1:62){

 stand.dat[i,j]<-(colon.dat[i,j]-mean.dat[i])/mad.dat[i]}}

stand.dat<-data.matrix(stand.dat)

range(stand.dat)

which(stand.dat>25)

#stand.dat[stand.dat>25]<-25

boxplot(stand.dat,horizontal=F,main='Boxplot of Standardized Data')

2.1.kmeans clustering(2000 by 62)

81

tstand<-t(stand.dat)

set.seed(18)

km.stand<-kmeans(tstand,2,iter.max=10)

km.stand

2.2.kmediod clustering-Partitioning Around Medoids(2000 by 62)

pam.stand.e<-pam(tstand,2,diss=F,metric="euclidean")

summary(pam.stand.e)

stand.corr<-cor(stand.dat,method = "pearson")

dist.stand.c<-matrix(nrow=62,ncol=62)

 for(i in 1:62){

 dist.stand.c[i,]<-c(1:62)

 for(j in 1:62){

 dist.stand.c[i,j]<-1-stand.corr[i,j]}}

dist.stand.c<-as.dist(dist.stand.c,diag=F,)

pam.stand.corr<-pam(dist.stand.c,2,diss=F,cluster.only=F,do.swap=F,keep.diss=F,kee

p.data=F)

summary (pam.stand.corr)

2.3.Hierarchical Cluster Analysis - Euclidean (2000 by 62)

dist.stand.e<-dist(tstand,method="euclidean")

hclust.stand.e<-hclust(dist.stand.e,method='complete')

82

plot(hclust.stand.e,labels=NULL)

Hierarchical Cluster Analysis - Correlation (2000 by 62)

hclust.stand.corr<-hclust(dist.stand.c,method='complete')

plot(hclust.stand.corr,labels=NULL)

3.reduce the matrix to 2000*57 (delete contaminate ones)

stand57.dat<-stand.dat[,-c(45,49,51,55,56)]

4.1.kmeans clustering(2000 by 57)

tstand57<-t(stand57.dat)

set.seed(22)

km.stand57<-kmeans(tstand57,2)

km.stand57

4.2.kmediod clustering-Partitioning Around Medoids(2000 by 57)

pam.stand57.e<-pam(tstand57,2,diss=F,metric="euclidean")

summary(pam.stand57.e)

stand57.corr<-cor(stand57.dat,method = "pearson")

dist.stand57.c<-matrix(nrow=57,ncol=57)

 for(i in 1:57){

 dist.stand57.c[i,]<-c(1:57)

 for(j in 1:57){

 dist.stand57.c[i,j]<-1-stand57.corr[i,j]}}

83

dist.stand57.c<-as.dist(dist.stand57.c,diag=F,)

pam.stand57.corr<-pam(dist.stand57.c,2,diss=F,cluster.only=F,do.swap=F,keep.diss=

F,keep.data=F)

summary (pam.stand57.corr)

4.3.Hierarchical Cluster Analysis - Euclidean (2000 by 57)

dist.stand57.e<-dist(tstand57,method="euclidean")

hclust.stand57.e<-hclust(dist.stand57.e,method='complete')

plot(hclust.stand57.e,labels=NULL)

Hierarchical Cluster Analysis - Correlation (2000 by 57)

hclust.stand57.corr<-hclust(dist.stand57.c,method='complete')

plot(hclust.stand57.corr,labels=NULL)

5.reduce the matrix to 57*44 (22 pairs)

stand44.dat<-stand.dat[,-c(25:38,45,46,57,58)]

boxplot(stand44.dat)

6.1.kmeans clustering (2000*44)

tstand44<-t(stand44.dat)

set.seed(10)

kmeans.stand44<-kmeans(tstand44,2,iter.max=5)

kmeans.stand44

6.2.kmediod clustering-Partitioning Around Medoids(2000*44)

84

pam.stand44.e<-pam(tstand44,2,diss=F,metric="euclidean")

summary(pam.stand44.e)

stand44.cor<-cor(stand44.dat,method = "pearson")

stand44.cor.dist<-matrix(nrow=44,ncol=44)

 for(i in 1:44){

 stand44.cor.dist[i,]<-c(1:44)

 for(j in 1:44){

 stand44.cor.dist[i,j]<- 1-stand44.cor[i,j]}}

stand44.cor.dist<-as.dist(stand44.cor.dist,diag=F,)

pam.stand44.cor<-pam(stand44.cor.dist,2,diss=F,cluster.only=F,do.swap=F,keep.diss

=F,keep.data=F)

summary (pam.stand44.cor)

6.3.Hierarchical Cluster Analysis - Euclidean (2000*44)

stand44.e.dist<-dist(tstand44,method="euclidean")

hclust.stand44.e<-hclust(stand44.e.dist,method='complete')

plot(hclust.stand44.e,labels=NULL)

Hierarchical Cluster Analysis - Correlation (2000*44)

hclust.stand44.cor<-hclust(stand44.cor.dist,method='complete')

plot(hclust.stand44.cor,labels=NULL)

Program four: Classification using 40 training samples vs. 22 testing samples

85

rm(list=ls(all=TRUE)) # clear all previous data

library(MASS)

library(affy)

library(preprocessCore)

read in the data

colon.dat<-read.table("C:/Users/bo.liu/Desktop/R/I2000.txt",header=FALSE,sep= ' ')

convert from a list to a matrix format

colon.dat<-data.matrix(colon.dat)

1. Classification - Using log-transformed data.(Use 40 samples as training set and

22 as testing.)

1.1.Log-transformed Data

logcolon.dat<-log2(colon.dat)

logcolon.dat<-data.matrix(logcolon.dat)

1.2.Linear discriminant analysis using log-transformed data

T <- c(1,3,5,7,9,11,13,15,17,19,21,23,25:38,40,41,44:47,49,52,53,56:59,61)

N <- c(2,4,6,8,10,12,14,16,18,20,22,24,39,42,43,48,50,51,54,55,60,62)

V2001 <- array(0,62); V2001[N] <- 2; V2001[T] <- 1

augmentlog.dat<-rbind(logcolon.dat,V2001)

tauglog<-t(augmentlog.dat)

tauglog<-data.frame(tauglog)

86

training<-tauglog[1:40,]

testing<-tauglog[41:62,]

log.lda<- lda(V2001 ~ .,data=training)

log.lda

predict(log.lda, testing)$class

1.3.Minimum Sum of Error-Squared using log-transformed data

group <- array(0,62); group[N] <- 1; group[T] <- -1

b<- data.matrix(group)

y0<-array(rep(1,62),dim=c(62,1))

tlog<-t(logcolon.dat)

ylog<-cbind(y0,tlog)

I<-ginv(t(ylog[1:40,])%*%ylog[1:40,])

alog<- I%*%t(ylog[1:40,])%*%b[1:40,]

alog

testing<- ylog[41:62,]

testing%*%alog

2. Classification - Using Quantile Normalized Data

2.1.Quantile Normalization

quan.dat<-normalize.quantiles(logcolon.dat,copy=TRUE)

2.2.Linear discriminant analysis using quantile normalized data

87

augmentquan.dat<-rbind(quan.dat,V2001)

taugquan<-t(augmentquan.dat)

taugquan<-data.frame(taugquan)

training<-taugquan[1:40,]

testing<-taugquan[41:62,]

quan.lda<- lda(V2001 ~ .,data=training)

quan.lda

predict(quan.lda, testing)$class

2.3.Minimum Sum of Error-Squared using quantile normalized data

tquan<-t(quan.dat)

yquan<-cbind(y0,tquan)

I<-ginv(t(yquan[1:40,])%*%yquan[1:40,])

aquan<- I%*%t(yquan[1:40,])%*%b[1:40,]

aquan

testing<- yquan[41:62,]

testing%*%aquan

3. Classification - Using Standardized Data

3.1.Standardization (with MAD)

mad.dat<-c(1:2000)

 for (i in 1:2000){

88

 mad.dat[i]<-mad(colon.dat[i,], constant=1)}

mean.dat<-c(1:2000)

 for(i in 1:2000){

 mean.dat[i]<-mean(colon.dat[i,])}

stand.dat<-matrix(nrow=2000,ncol=62)

 for(i in 1:2000){

 stand.dat[i,]<-c(1:62)

 for (j in 1:62){

 stand.dat[i,j]<-(colon.dat[i,j]-mean.dat[i])/mad.dat[i]}}

stand.dat<-data.matrix(stand.dat)

3.2.Linear discriminant analysis using standardizated data

augmentstand.dat<-rbind(stand.dat,V2001)

taugstand<-t(augmentstand.dat)

taugstand<-data.frame(taugstand)

training<-taugstand[1:40,]

testing<-taugstand[41:62,]

stand.lda<- lda(V2001 ~ .,data=training)

stand.lda

predict(stand.lda, testing)$class

3.3.Minimum Sum of Error-Squared using standardizated data

89

tstand<-t(stand.dat)

ystand<-cbind(y0,tstand)

I<-ginv(t(ystand[1:40,])%*%ystand[1:40,])

astand<- I%*%t(ystand[1:40,])%*%b[1:40,]

astand

testing<- ystand[41:62,]

testing%*%astand

Program five: Classification using 20 training samples vs. 42 testing samples

rm(list=ls(all=TRUE)) # clear all previous data

library(MASS)

library(affy)

library(preprocessCore)

read in the data

colon.dat<-read.table("C:/Users/bo.liu/Desktop/R/I2000.txt",header=FALSE,sep= ' ')

convert from a list to a matrix format

colon.dat<-data.matrix(colon.dat)

1. Classification - Using log-transformed data.(Use 30 samples as training set and

32 as testing.)

1.1.Log-transformed Data

logcolon.dat<-log2(colon.dat)

90

logcolon.dat<-data.matrix(logcolon.dat)

1.2.Linear discriminant analysis using log-transformed data

T <- c(1,3,5,7,9,11,13,15,17,19,21,23,25:38,40,41,44:47,49,52,53,56:59,61)

N <- c(2,4,6,8,10,12,14,16,18,20,22,24,39,42,43,48,50,51,54,55,60,62)

V2001 <- array(0,62); V2001[N] <- 2; V2001[T] <- 1

augmentlog.dat<-rbind(logcolon.dat,V2001)

tauglog<-t(augmentlog.dat)

tauglog<-data.frame(tauglog)

training<-tauglog[1:20,]

testing<-tauglog[21:62,]

log.lda<- lda(V2001 ~ .,data=training)

log.lda

predict(log.lda, testing)$class

1.3.Minimum Sum of Error-Squared using log-transformed data

group <- array(0,62); group[N] <- 1; group[T] <- -1

b<- data.matrix(group)

y0<-array(rep(1,62),dim=c(62,1))

tlog<-t(logcolon.dat)

ylog<-cbind(y0,tlog)

I<-ginv(t(ylog[1:20,])%*%ylog[1:20,])

91

alog<- I%*%t(ylog[1:20,])%*%b[1:20,]

alog

testing<- ylog[21:62,]

testing%*%alog

2. Classification - Using Quantile Normalized Data

2.1.Quantile Normalization

quan.dat<-normalize.quantiles(logcolon.dat,copy=TRUE)

2.2.Linear discriminant analysis using quantile normalized data

augmentquan.dat<-rbind(quan.dat,V2001)

taugquan<-t(augmentquan.dat)

taugquan<-data.frame(taugquan)

training<-taugquan[1:20,]

testing<-taugquan[21:62,]

quan.lda<- lda(V2001 ~ .,data=training)

quan.lda

predict(quan.lda, testing)$class

2.3.Minimum Sum of Error-Squared using quantile normalized data

tquan<-t(quan.dat)

yquan<-cbind(y0,tquan)

I<-ginv(t(yquan[1:20,])%*%yquan[1:20,])

92

aquan<- I%*%t(yquan[1:20,])%*%b[1:20,]

aquan

testing<- yquan[21:62,]

testing%*%aquan

3. Classification - Using Standardized Data

3.1.Standardization (with MAD)

mad.dat<-c(1:2000)

 for (i in 1:2000){

 mad.dat[i]<-mad(colon.dat[i,], constant=1)}

mean.dat<-c(1:2000)

 for(i in 1:2000){

 mean.dat[i]<-mean(colon.dat[i,])}

stand.dat<-matrix(nrow=2000,ncol=62)

 for(i in 1:2000){

 stand.dat[i,]<-c(1:62)

 for (j in 1:62){

 stand.dat[i,j]<-(colon.dat[i,j]-mean.dat[i])/mad.dat[i]}}

stand.dat<-data.matrix(stand.dat)

3.2.Linear discriminant analysis using standardizated data

augmentstand.dat<-rbind(stand.dat,V2001)

93

taugstand<-t(augmentstand.dat)

taugstand<-data.frame(taugstand)

training<-taugstand[1:20,]

testing<-taugstand[21:62,]

stand.lda<- lda(V2001 ~ .,data=training)

stand.lda

predict(stand.lda, testing)$class

3.3.Minimum Sum of Error-Squared using standardizated data

tstand<-t(stand.dat)

ystand<-cbind(y0,tstand)

I<-ginv(t(ystand[1:20,])%*%ystand[1:20,])

astand<- I%*%t(ystand[1:20,])%*%b[1:20,]

astand

testing<- ystand[21:62,]

testing%*%astand

	Class Discovery and Prediction of Tumor with Microarray Data
	Recommended Citation

	tmp.1404843400.pdf.Bpbyi

