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Abstract 

Current microarray technology is able take a single tissue sample to construct 

an Affymetrix oglionucleotide array containing (estimated) expression levels of 

thousands of different genes for that tissue. The objective is to develop a more 

systematic approach to cancer classification based on Affymetrix oglionucleotide 

microarrays. For this purpose, I studied published colon cancer microarray data. 

Colon cancer, with 655,000 deaths worldwide per year, has become the fourth most 

common form of cancer in the United States and the third leading cause of cancer - 

related death in the Western world.  

This research has been focuses in two areas: class discovery, which means 

using a variety of clustering algorithms to discover clusters among samples and genes; 

and class prediction that refers to the process of developing a multi-gene predictor of 

class label for a sample using its gene expression profile. The accuracy of a predictor 

is also assessed by using it to predict the class of already known samples. 
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Chapter 1 Introduction 

With the development of discovering the entire human gene map, the main 

emphasis of research work for life scientists has been pushed forward. Within the 

40,000 decoded genes, the functions of majority genes are unclear. The work has the 

most potential is to identify the function of each gene. Thereby, one could use these 

materials in medical science to distinguish and treat various diseases. Microarray was 

born at the right time to uncover most genetic functions in a timely fashion. Actually, 

the area of human health is the most attractive application of microarrays. 

Microarray is a new molecular biological technology which can be used to 

extract useful information from the resulting datasets with the highest efficiency and 

in a large scale. In all types of microarrays that have been developed at present, 

complementary DNA (or cDNA) microarray is the most widely used. Recently 

introduced experimental techniques based on oligonucleotide or cDNA arrays now 

allow the expression level of thousands of genes to be monitored in parallel. 

Microarray technology promises not only to dramatically speed up the experimental 

work of molecular biologists but also to make possible a whole new experimental 

approach in molecular biology (Xu et al., 2010). 
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One typically application of microarray is determining whether a person has 

a certain disease or not, such as colon cancer, by gene expression analysis. Colon 

cancer includes cancerous growths in the colon, rectum and appendix. It is very 

important for doctors to diagnose colon cancer earlier and more precisely, so patients 

can prevent or get treatment effectively and immediately, which consequently 

improves the survival rate in colon cancer. 

A true clinical dataset is analyzed using a combined microarray technique 

and some mathematical and statistical approaches. The dataset composes of 62 colon 

tissue samples which include 40 tumor colon tissue samples and 22 normal colon 

tissue samples. For each sample we have gene expression intensities for 2000 genes 

selected from 6817 genes by Alon et al. (1999) according to the highest minimum 

intensity.  

I want to cluster the 62 tissue samples into normal colon tissue and cancerous 

colon tissue two classes using gene expression values we got from microarray 

experiments, and produce a classifier which can classify unknown new colon tissue 

samples to already defined classes. Besides, I want to assess the reliability of the 

results, in other words, how good the clustering process and the classifier are. 



 

Chapter 2 Method 

2.1 Microarrays 

A microarray, also called a DNA array or gene chip, is usually a substrate 

(nylon membrane, glass or plastic) on which one deposits an arrayed series of 

thousands of microscopic spots of DNA oligonucleotides, called features, each 

containing picomoles (10
-12

 moles) of single stranded DNA (ssDNA) with various 

sequences. One will refer to the ssDNA printed on the solid substrate as a probe. 

What is deposited on the surface of the array depends on the purpose of the 

array. Some probes are short sections of a gene, while some are DNA elements that 

are used to hybridize a cDNA or cRDA. The solution containing the cDNA or cRNA 

sample is called a target. A target could be generated from a particular biological 

sample which is being examined. When used in gene expression studies, the DNA 

target used to hybridize the array is obtained by reverse transcriptase reaction from 

the mRNA extracted from a tissue sample. 

The idea is that the DNA in the solution, that contains sequences 

complementary to the sequences of the DNA deposited on the substrate, will 

hybridize to those complementary sequences.  

Usually, the target is labeled with a fluorescent dye, a radioactive element, or 

another method. So the hybridization spot on the substrate can be detected and 
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quantified easily. If the target is labeled with a dye, then illumination with an 

appropriate source of light will provide an image of the array of features. The 

intensity of each spot or the average difference between matches and mismatches can 

be related to the amount of mRNA present in the tissue. If the target is labeled with a 

radioactive substance, then the image can be obtained by using a photosensitive 

device.  

Since an array can contain tens of thousands of probes, one can label targets 

with different dyes and process a multichannel experiment at the same time. Then one 

could transform the raw microarray data, which are images, into a large number of 

expression values or gene expression matrices. 

Microarray in gene expression studies. It has been shown that microarrays 

can be used to generate accurate, precise and reliable gene expression data. 

Microarrays can also be used for purely computational purposes such as DNA 

computation. When microarrays used for computational purpose, they lose their 

biological meaning. Using the data generated by microarray to solve computationally 

intractable problems is very efficient, because of their ability of dealing with high 

dimensional spaces. 

Challenges. There are several challenges when using microarrays in gene 

expression studies. 
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Noise. In fact, noise is introduced at each step of various procedures: mRNA 

preparation, labeling, amplification, pin type, surface chemistry, humidity, target 

volume, hybridization factors (e.g. time, temperature), dust, scanning, quantification, 

etc. Due to that much noise, one may get different quantitative values after scanning 

and image processing steps, even when two experiments are conducted using exactly 

the same materials and procedures. 

The challenge becomes more serious when comparing different tissues or 

different experiments. Perhaps, one may doubt that the variations of a particular gene 

are due to the noise rather than a real difference between the different conditions 

tested. Noise effect is an unavoidable factor. The only way to reduce the noise effect 

is replication. 

This will involve experimental design. 

Experimental design. Experimental design could help one to find the reason 

which changes the output in fact by a series of tests. The tests are different with input 

variables of a process. 

Normalization. Normalization is a method that attempts to remove some of 

variations from the dataset. For example, variations as different mean intensities 

caused by different quantities of mRNA, non-linear dye effects, etc. 

Large number of genes. In a microarray experiment, one may get 

information of thousands of genes. Among these genes, part of them is not significant 
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which means they will not influence the result of our experiments. We could use some 

technique to find the most significant genes and study on them. 

Significance. One crucial question is whether there is significant difference 

between groups. Some statistic techniques can be used to answer the question. 

2.2 Data Preprocessing 

The reason for Data preprocessing. Naturally, one should not expect to 

obtain a good model from a poor dataset. In fact, it is rare that the raw dataset is good 

and sufficient. Although there is no standard method that can be used to check the 

quality of the data, some options are available. One way to check the quality is to plot 

the data and see the graphical representation. Even if the graph looks reasonable, data 

preprocessing is preferred before the actually analysis of the data.  

What is preprocessing. According to Wolfram Mathematica (2011), 

“Preprocessing is a transformation, or conditioning, of data designed to make 

modeling easier and more robust. For example, a known nonlinearity in some given 

data could be removed by an appropriate transformation, producing data that 

conforms to a linear model that is easier to work with.”  

General preprocessing techniques. 

Logarithm transformation. Let us use the ratio of corrected intensity of a 

sample gene and intensity of the reference gene as the relative intensity of each 
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sample gene. In some sense, relative intensity could reduce the systematic variance of 

fluorescent dye and scanning between genes. 

For example, let us consider two sample genes with corrected intensity 

values of 100 and 10,000 and the intensity value of the reference gene set at 1,000. If 

one considers the absolute difference between 1,000 and 100 and 10,000, one would 

think one gene is affected much more than the other, because 

                                . 

However, from the biological point of view, the change from 1,000 to 100, 

and from 1,000 to 10,000 are the same, because they both are a 10-fold change; one is 

increase and the other is decrease. If one uses a logarithm transformation, it is 

apparent that 

            

           

              

Indicating the changes is        for one gene and       for the 

other gene. The values reflect the fact that two genes change by the same magnitude, 

but in difference directions. 

Therefore, logarithm transformation provides data that are easier to interpret 

and more meaningful from the biological point of view. 
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Figure 2.2.1 shows another advantage of logarithm transformation. It makes 

the distribution symmetrical and mostly normal. 

 
Figure 2.1.1 Distribution before and after logarithm transformation 

The left figure shows the distribution of the background corrected intensity 

values. Note that the intensity range spans a very large interval. The right figure 

shows the same values after logarithm transformation. 

Finally, it is convenient if one uses base 2 logarithms when analyzing the 

change of gene expressions. 

Standardization among microarrays - Median absolute deviation. Each 

gene chip has hybridized with different sample tissue. Therefore, the first step is 

adjusting different microarrays to the same level by standardization. After the 

variables have been standardized, only the general shape of their distributions and the 

level of their interactions will influence the model. A frequently used method to 

standardize data is median absolute deviation (MAD). MAD is defined as the median 

of the absolute deviations from the data’s median. 
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For example, a univariate dataset            is {2, 2, 3, 4, 14}, and its 

median is 3. Thus, the absolute deviations from the median are {1, 1, 0, 1, 11}. They 

can be reordered as {0, 1, 1, 1, 11}. The median absolute deviation is 1. 

The advantage of using MAD is that a small number of outliers just slightly 

influence its value. Whereas, standard deviation (SD) is 

  √
 

 
∑        
 

   

 

influenced heavily by outliers, because the distances from the mean are squared, and 

on average, large deviations are weighted more heavily. 

Normalization among paralleled experiments – Quantile Normalization. It 

is easy to introduce noises into hybridize experiments, so it is easy to produce error. 

To avoid this, one usually repeats the experiment several times for one sample. Even 

if one runs the same biological sample in the same experiment twice, one may get 

slightly different results. To remove some of variations, one could use normalization 

technique. When normalizing a set of microarrays, there are several approaches which 

can be used. Quantile normalization is one of them. 

The assumption of quantile normalization is that there is an underlying 

common distribution of intensities across microarrays. The main steps are: 
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 Let each dataset of a microarray be a column, thus,   with dimension 

    will be a matrix which contains   samples’ experiment value with each of 

them having   elements (  genes). 

 Sort each column of X and name it       . 

 Project each row of        onto vector   (
 

√ 
     

 

√ 
) and 

get       
 . 

 Rearrange each column of      
  such that every gene returns back to its 

original place and name it       . 

2.3 Clustering Analysis of Microarray 

After normalizing the microarray data as above, clustering analysis follows. 

Clustering means group genes by different functions, or similar act of expressions, 

according to the gene expression data. At the present time, many clustering 

approaches have been used in gene expression analyses, such as k-means clustering, 

hierarchical clustering and self-organizing map. In general, all the approaches could 

be separated into supervised learning and unsupervised learning two categories. 

Distance Metric. If one wants to group similar genes together, one should 

define the meaning of similarity or the measure of similarity first. Such measure of 

similarity is called a distance or a metric. A distance reflects how close two points are 

to each other in an input space. The two points can be two genes measured in   

different experiments, or two experiments applied on   genes. There are many ways 
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to calculate the distance and the result of clustering depends on the exact distance 

metric used. 

Properties of Distance metric. A metric or distance function is a function 

which defines a distance between two points in an  -dimensional space    and has 

the following properties: 

 Symmetry. The distance should be symmetric, i.e.: 

              

This means that the distance from   to   should be the same as the distance 

from   to  . 

 Positivity. The distance between any two points should be a real number 

greater than or equal to zero: 

         

for any   and   . The equality is true if and only if     , i.e.         . 

 Triangle inequality. 

The distance between two points    and    should be shorter than or equal 

to the sum of the distance from   to a third points   and from   to   : 

                     

This property reflects the fact that the distance between two points should be 

measured along the shortest route (Drăghici, 2003). 
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Many different distance metrics can be defined, but they all have the three 

properties listed above. Furthermore, in clustering and classification problems, the 

result may vary differently and be affected by the distance metric one used.  

Next, I will introduce two different distances. 

Euclidean distance. In mathematics, the Euclidean distance is the “ordinary” 

distance between two points that one would measure with a ruler, and is given by the 

Pythagorean formula. The Euclidean distance between two  -dimensional vectors 

               and                 is 

        √                             √∑        
 

   

 

(Drăghici, 2003). 

This distance between   and    is the length of the line segment    ̅̅ ̅. Thus, 

in one dimension, the distance between two points on the real line is the absolute 

value of their numerical difference. Therefore, if   and    are two points on the real 

line, then the distance between them is computed as 

       √            .  

Correlation distance. The Pearson correlation distance between two 

 -dimensional vectors                and                 is  

              

where     is the Pearson correlation coefficient of the vectors   and    
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√  √  
 

∑      ̅      ̅  
   

√∑      ̅   
   √∑      ̅   

   

 

Note that since the Pearson correlation coefficient     varies only between 

   and   , the distance       will take values between   and    (Drăghici, 2003). 

The Pearson correlation coefficient     reflects the degree of linear 

relationship between two variables. A correlation of    means that there is a perfect 

positive linear relationship between variables, and a correlation of     means that 

there is a perfect negative linear relationship between variables. The Pearson 

correlation distance        focuses on whether the coordinates of the two points 

change in the same way (e.g. corresponding coordinate increase or decrease at the 

same time) (Drăghici, 2003). For instance, if                and    

             represent the measured values of   genes in two different 

experiments, the Pearson correlation distance will be low if the genes vary in a similar 

way in the two experiments. These genes would cluster together with the Pearson 

correlation distance. On the other hand, the Pearson correlation distance close to    

implies the coordinate for the vector                 is increasing (or decreasing) 

while the corresponding coordinate for the other vector                is 

decreasing (or increasing). In other words,                and 

                vary in an opposite way. Therefore, these genes would be 

grouped into remote clusters. 
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Let us consider there are three genes have been tested in 5 experiments, and 

their experiment values are expressed as                , 

                         and                , respectively. Then, one would 

group               ,                          in a same cluster, rather than 

              , using the Pearson correlation distance.    and    have a high 

correlation (                  ) whereas    and    are anti-correlated 

(                     ). However, the Euclidean distance will group    

and    in a same cluster, rather than   , because                while 

                . 

Clustering algorithms. There are several clustering approaches and 

algorithms. Any of these clustering algorithms can be used to group genes or 

experiments. The data is usually described by an  -dimensional vector, which is 

referred to as a pattern or an instance. A set of clusters including all genes or 

experiments considered form a clustering, cluster tree, or dendrogram. 

In most cases, the result of clustering is highly dependent on the distance 

metric one used. For example, for the same patterns, Euclidean distance metric may 

produce a different clustering result than the Pearson correlation distance. 

Furthermore, the same clustering algorithm applied to the same data may produce 

different results. This is caused by the initialization process, such as a random choice 

of the initial cluster centers or a random choice of patterns to be used as initial clusters. 
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As a result, one should always check whether the gene is grouped in the same cluster 

or not when the clustering algorithm is applied many times. In addition, one must note 

that in most clustering algorithms (e.g. k-means and hierarchical clustering) the 

position of the patterns within the clusters does not reflect their relationship in the 

input space (Drăghici, 2003). 

Inter-cluster distances and algorithm complexity. This section will discuss 

the main methods used to calculate the distance between clusters. 

Single linkage. Single linkage method calculates the distance between 

clusters as the distance between the closest neighbors. It measures the distance 

between each member of one cluster to each member of the other cluster and takes the 

minimum of these distances. 

Complete linkage. Complete linkage calculates the distance between the 

furthest neighbors. It takes the maximum of distance measures between each member 

of one cluster to each member of the other cluster. 

Centroid linkage. Centroid linkage defines the distance between two clusters 

as the squared Euclidean distance between their centroids or means. This method 

tends to be more robust to outliers than other methods. The centroid of a group of 

patterns is the point that has each coordinate equal to the mean of the corresponding 
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coordinates of the given patterns. For instance, the set of experiments:    

                   and            has the centroid at 

(
     

 
 
     

 
 
     

 
)          (Drăghici, 2003). 

Average linkage. Average linkage measures the average distance between 

each member of one cluster to each member of the other cluster (Korol, 2003, p.23). 

Algorithm complexity. The complexity of the algorithm depends very much 

on which linkage method to be used, as well as its speed. Single or complete linkages 

require only choosing one of the distances already calculated while more elaborated 

linkages, such as centroid, require more computations (Drăghici, 2003). However, 

simple and fast method such as single linkage tends to produce stringy clusters which 

is bad. While complex and slow method such as centroid linkage tends to produce 

better clustering which reflect more accurately of the structure of the dataset. 

K-means clustering. The k-means algorithm is one of the simplest and 

fastest clustering algorithms. In consequence, it is also one of the most widely used 

algorithms. K-means clustering groups patterns into   clusters. Sometimes   is 

unknown in advance, thus one need to pick a number for k, and then start the 

algorithm.  

The program starts by randomly choosing   points in the same input space 

as   initial centers of the clusters. These points may be just random points in the 
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input space, random points from more densely populated volumes of the input space 

or just randomly chosen patterns from the data itself (Drăghici, 2003). Once the   

initial centers have been chosen, the distance from each pattern to every center of the 

cluster would be computed in a distance metric and that pattern should be associated 

with the closest cluster center. A first approximate clustering is obtained. 

The second step starts by recalculating the new center for every cluster (the 

center is calculated as the centroid of the group of patterns). Since the centers have 

moved, one need to calculate new distance from each pattern to every updated center, 

and then associates the pattern with the closest cluster center. 

The program repeats the second step until the cluster centers are such that no 

pattern moves from one cluster to another. Since no pattern has changed membership, 

the centers will remain the same and the algorithm can terminate. 

Cluster quality assessment. The results of the k-means algorithm may 

different if one applies the algorithm again, because the initial cluster centers are 

chosen randomly. Therefore, one needs to assess the quality of the obtained clustering 

after every successive run. 

One way to assess the goodness of fit of a given clustering is to compare the 

size of the clusters ( ) versus the distance to the nearest cluster ( ). If the inter-cluster 
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distance ( ) is much greater than   , the clustering is considered as a good one. 

Therefore, the ratio of   and   can be used as an indication of the cluster quality. 

Another way is to measure the average of the distances between the members 

of a cluster and the cluster center. Smaller average distances are better than the larger 

ones because they reflect more uniformity in the results (Korol, 2003, p.25). 

The diameter of the smallest sphere including all members of a given cluster 

may also be used as an indication of the cluster quality. However, this measure is 

sensitive to cluster outliers, because the diameter of the smallest sphere including all 

members of the cluster is determined by the furthest pattern from the cluster. 

In fact, the same clustering algorithm applied to the same data may produce 

different results. So, one may interested in whether a gene would fall into the same 

cluster or not if the clustering algorithm is repeated. This question can be addressed 

by repeating the clustering several times and following the particular gene of interest. 

Those genes that are clustered together repeatedly are more likely to be genuinely 

similar. 

K-medoids clustering and PAM algorithm. Both the k-means and k-medoids 

clustering are breaking dataset up into groups and both attempt to minimize squared 

error, which is the distance between points in a cluster and the center of that cluster.  
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PAM algorithm. The objective of k-medoids clustering is to minimize a sum 

of dissimilarities. Compared to k-means clustering, which tries to minimize a sum of 

squared dissimilarities, k-medoids clustering is more resistant to noises and outliers. 

Among many algorithms for k-medoids clustering, Partitioning Around Medoids 

(PAM) is known to be the most powerful one. 

The PAM algorithm is described as follows: 

 Randomly select   patterns as the initial medoids. Medoid can be 

defined as that a pattern of a cluster, whose average dissimilarity to all the 

patterns in the cluster is minimal. 

 Associate each pattern to the closest medoid. 

 For each medoid   , swap    and each non-medoid pattern  , and 

calculate the sum of dissimilarities. 

 The one has the lowest sum of dissimilarities will be updated as new 

mediod. 

 Repeat from step 2 to 4 until there is no smaller sum of dissimilarities. 

Hierarchical clustering. Hierarchical clustering produces a tree with leaves 

and root, where leaves as individual patterns and root as the convergence point of all 

branches. The diagrams produced by the hierarchical clustering are known as 

dendrograms. 
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K-means clustering gives us a set of   clusters. In any given cluster, all the 

members are on the same level. No particular inferences can be made about the 

relationship between members of a given cluster or between clusters (Drăghici, 2003).  

However, in hierarchical clustering, different genes and/or experiments are grouped 

together to form clusters using a chosen distance metric, and then different clusters 

are also linked together to form a higher level cluster using one of the inter-cluster 

distances. Therefore, a dendrogram represents not only clusters but also the relations 

between the clusters. 

A bottom-up algorithm will be used in this research. 

The bottom-up algorithm. The bottom-up method starts from the individual 

patterns (leaves) and works upwards the root. This approach is sometimes called 

agglomerative because it links similar small clusters to form larger clusters. The 

bottom-up method is described as follows: 

 Each single pattern represents a cluster. The pattern can either be a gene 

or an experiment depending on what the algorithm is applied to.  

 Calculate a table containing the distances from each cluster to other 

clusters.  

 Merge the two most similar clusters into a single super-cluster. 

 Repeat step 2 and 3 until the entire tree is constructed. 
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For a given dataset, using a chosen distance metric, one hierarchical 

clustering algorithm should always produce the same clustering tree.  

Summary. Let us close this section by a few conclusions. First of all, for a 

given dataset, using the same distance metric, different approaches can produce 

different clustering trees. Second, one should not judge an algorithm by its speed. 

Compare to the slow algorithm, faster algorithm may reflect less information of the 

structure of a given dataset. And the key is to obtain a clustering that reflects the 

structure of the original dataset. Finally, the place of genes in a dendrogram does not 

necessarily convey useful information and can be misunderstood. Two genes 

proximity in a hierarchical clustering does not necessarily correspond to similarity. 

2.4 Classification 

In machine learning and pattern recognition, classification refers to an 

algorithmic procedure for assigning a given piece of input data into one of a given 

number of clusters. An algorithm that implements classification is known as a 

classifier. Sometimes, classifier also refers to the mathematical function, implemented 

by a classification algorithm that maps input data to a cluster. 

Generally, classification is a supervised procedure, which means the 

algorithm learns how to classify a test point into one of exist clusters based on what it 

learned from a training dataset. A training dataset is a set of labeled objects and its 

information will be used to classify the test points. When one wants to make a 
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prediction on which cluster a biological sample belongs to by its gene expression data, 

classification comes in.  

There are many possible techniques for data classification. Three 

classification methods will be introduced, which are linear discriminant analysis, 

minimum sum of squared-error and perceptron algorithm. 

Linear discriminant analysis. Linear discriminant analysis (LDA) and the 

related Fisher’s linear discriminant are methods used in statistics, pattern recognition, 

and machine learning process to find a linear combination of features which 

characterizes or separates two or more classes of objects or events. The resulting 

combination may be used as a linear classifier. 

LDA does not change the location of original data but only tries to optimize 

class separability by maximizing the ratio of between-class variance to the 

within-class variance in any particular dataset. Thereby, the original data will be 

transformed and a test points can be classified in the transformed space. This method 

also helps one to get better understanding of the distribution of the original data.  

Compared with the unsupervised technique of “Principal Components 

Analysis (PCA)”, which projects data in the directions of maximum variance, Fisher 

LDA projects patterns to a line such that samples from different classes are well 

separated. Fisher LDA finds a direction to project data onto it in order to minimize the 

within-class variance and maximize the between-class variance. Therefore, the 
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patterns in one class are set to be as close together as possible and each class is as far 

as possible from each other. To achieve the goal, Fisher LDA considers maximizing 

the following objective function 

     
     

     
 

where    ∑      ̅      ̅   
    is the between classes scatter matrix and 

   ∑ ∑ (      )(      )
   

   
 
    is the within classes scatter matrix, where   

is the total number of classes,    is the number of patterns is class  ,    

 

  
∑    

  
    is the mean of class  ,  ̅  

 

∑  
∑ ∑    

  
   

 
    is the overall mean of the 

patterns.  

A two-class problem will be illustrated and help to understand the 

classification method. 

Suppose we have two classes and  -dimensional samples             

where    samples come from the first class, and    samples come from the second 

class. Vector   in the objective function gives the line direction. Project    onto a 

line in the direction of vector  , then scalar      gives not only the distance of 

projection of    from the origin, but also the projection of sample    onto the line in 

direction   . Let   ̃  
 

  
∑     

  
      (

 

  
∑   

  
   )       be the mean of 

projections of class 1, and similarly,   ̃       be the mean of projections of class 2. 

And         is the projected sample of   . Then define a scatter for projected 

samples of class 1 as   ̃
 
 ∑       ̃ 

 
          

, and define a scatter for projected 



24 
 

samples of class 2 as   ̃
 
 ∑       ̃ 

 
          

. Small    ̃
 
 and   ̃

 
 imply that 

projected samples of class   are clustered around projected mean   ̃ and     ̃. As a 

result, a vector   which makes 
   ̃     ̃ 

 

  ̃
 
   ̃

  large will guarante that the classes are well 

separated. Eventaully, 
   ̃     ̃ 

 

  ̃
 
   ̃

  can be transformed and written as the objective 

function 

     
     

     
 

To maximize     , take the derivative with respect to   and set it to 0. It is 

equivalent to solve 

    
     

     
                           

     

     
   

 
⇒          

So, this is a solving generalized eigenvalue problem. If    has full rank (the 

inverse exists), problem can be converted to a standard eigenvalue problem 

  
         

Therefore,     
         , where    ∑ ∑ (      )(    

  
   

 
   

  )
 

. 

The following is a concrete example.  

Class 1 has 5 samples    

[
 
 
 
 
    
    
    
    
    ]

 
 
 
 

 and class 2 has 6 samples     

[
 
 
 
 
 
    
    
    
    
    
    ]

 
 
 
 
 

. 

Mean for each class are    [      ] and    *
  

 
   +. The within class scatter 
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matrix is    *
  
    

+ [       ]    [
 

 ⁄

 
] [  ⁄    ]  *

   ⁄      
            

+. Since    

has full rank, so the inverse of    is   
   *

               
                 

+. The optimal line 

direction is computed by     
          *

      
     

+. As long as the line has 

the right direction, its exact position does not matter. 

A complication in applying LDA is, in many cases, linear discriminant is not 

suitable. Then, LDA can be extended for use in non-linear classification via the kernel 

trick. This works as effectively mapping the original data into a higher dimensional 

non-linear space, and then, implementing linear discriminant analysis in this 

non-linear space. Thus, using linear classification technique in a non-linear space is 

equivalent to applying non-linear classification in the original space.  

Linear discriminant functions. Assume that one knows the proper forms of 

the discriminant functions, and then the value of the parameters of the classifier can 

be estimated by using the samples. Various procedures of determining discriminant 

functions has been developed, none of them requires knowing the forms of underlying 

probability distributions.  

Linear discriminant functions have a variety of pleasant analytical properties. 

They can be optimal if the underlying distributions are cooperative, such as Gaussians 

having equal covariance, as might be obtained through an intelligent choice of feature 

detectors. Even when they are not optimal, we might be willing to sacrifice some 

performance in order to gain the advantage of their simplicity. Linear discriminant 
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functions are relatively easy to compute and in the absence of information suggesting 

otherwise, linear classifiers are attractive candidates for initial, trial classifiers (Duda, 

2001). 

Linear dicriminant functions in two-category case. A discriminant function 

that is a linear combination of the components of   can be written as 

            

where   is the weight vector and    the threshold weight. 

     as a two-category classifier implements the following decision rule 

{

                                  

                                   

                                   

 

The equation        defines the decision surface that separates points 

assigned to     from points assigned to    . When      is linear, this decision 

surface is a hyperplane. It is easy to show that vector   is normal to any vector lying 

in the hyperplane. The normal vector, often simply called the "normal", to a surface is 

a vector perpendicular to it. Thus, the weight vector   is perpendicular to the 

decision surface. The hyperplane   divides the feature space into two half-spaces, 

region    for     and region    for   . It is sometimes said that any   in    is 

on the positive side of  , any   in    is on the negative side.  

The discriminant function      gives an algebraic measure of the distance 

from   to the hyperplane:   
    

‖ ‖
. In particular, the distance from origin to   is 

given by 
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‖ ‖
 

      

‖ ‖
 

  

‖ ‖
 

The origin is on the positive side, when     . The origin is on the 

negative side, when     . The hyperplane   passes through the origin, when 

    . To sum up, the orientation of the surface is determined by the normal vector 

 , and the location of the surface is determined by the threshold weight   . A 

geometric illustration of these algebraic results is given in Figure 2.2.1. 

 

Figure 2.4.1 Geometric illustration of algebraic results 

The linear decision boundary  , where              , 

separates the feature space into two half-spaces    and   . In convenient, 

              could be written as         . The reason is 

               ∑    

 

   

 ∑    

 

   

 

where     . Thus, we can let  

              
 
 ( 

 
), and                

 
 (  

 
). 
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Regard a two-category case as example, suppose we have a set of   samples 

       , some labeled    and some labeled   . One major concern is to compute 

the unknown parameters          , defining the decision hyperplane. A sample 

   is classified correctly if 

{
                           

                           

. 

To simplify the method in two-category case, replace all the samples 

labeled    by their negatives. Therefore, we could look for a vector   such that 

       for all the samples, and such a vector   is called a separating vector or a 

solution vector. 

Each sample     places a constraint,       , so the solution vector must 

be on the positive side of every hyperplane       . The equation        

defines a hyperplane through the origin of weight space having    as a normal vector. 

Therefore, the intersection of   half-spaces is the solution region. The solution 

vector should be a vector in this region.  

Thus, the problem of finding a linear discriminant function will be 

formulated as a problem of minimizing a criterion function.  

Perceptron algorithm. Now we need to adopt an appropriate criterion 

function      and an algorithmic scheme to optimize it, and also solve the linear 

inequalities       . We choose the perceptron criterion function defined as  
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     ∑      

   

 

where   is the set of training samples misclassified by  . Obviously,      is 

always positive and when it takes its minimum value, 0, a solution has been obtained.  

An iterative scheme - gradient descent method is adopted to approach the 

optimization.  

                  (    ) 

where      is a positive scale factor or learning rate that set the step size,  

  (    ) is the gradient vector (
  

   
  

  

   
). 

Hence, the preceding rule becomes 

                ∑    

   

 

The algorithm is initialized from an arbitrary weight vector     . The 

weight vector is corrected according to the preceding rule. This is repeated until all 

features are correctly classified.      can be properly chosen as      
 

 
, where   

is a constant. The proper choice of the sequence      is vital for the convergence 

speed of the algorithm. 

Minimum sum of squared-error. Rather than the perceptron algorithm 

which only focuses on misclassified training samples, minimum squared-error 

procedure involves all of the samples. Minimum squared-error tries to find vector   
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such that         and also minimizing the sum of squared-error      

‖    ‖  ∑          
  

   .  

Let              
     , for each  , so,  

     ∑       
     

    ∑   
  

   . 

To minimize     , we could take the derivative with respect to   and set it 

equals 0. 

       [∑      
    

 

   

]  ∑        
            

 

   

 

 
⇒(∑    

  
 

   

)  ∑     

 

   

 

 
⇒           

 
⇒             

In our research,      if the     sample is known as normal tissue sample 

and       if the     sample is known as tumor tissue sample.  

The advantage of minimum sum of squared-error is that the solution always 

exists. 



 

Chapter 3 Case Study on Colon Cancer Data and Discussion 

3.1 Boxplots of Preprocessed Data 

Our dataset consists of 62 colon tissue samples, for each sample we have 

gene expression intensities for 2000 genes. These 2000 were selected from 6817 by 

Alon et al. (1999) according to the highest minimum intensity. Within the samples are 

some paired data. That is, we have a normal and a cancerous tissue sample from the 

same patient. 

In our research, three different data preprocessing are performed on the 

original 2000 by 62 data. They are log-transformation, standardization, and quantile 

normalization. 

Figure 3.1.1 shows boxplot of original dataset. 

 

Figure 3.1.1 Boxplot of original data
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It is easy to tell for each sample, distribution of genes is not normal, so we 

take logarithm transformation with base 2 to provide a data which has symmetrical 

and mostly normal distribution. Interpretation of such a data is more meaningful from 

biological point of view. Figure 3.1.2 gives boxplot of log-transformed data. 

 

Figure 3.1.2 Boxplot of log-transformed data 

The second data preprocessing that we used is standardization, but we used 

median absolute deviation (MAD) instead of the standard deviation. Boxplot of 

standardized data is shown in Figure 3.1.3. 



33 
 

 

Figure 3.1.3 Boxplot of standardized data 

To see the result of standardization clearly, we set the maximum value for 

y-axis to 25, and boxplot it, but we use the value obtained from standardization to do 

the clustering experiments later. 

Quantile normalization is also used to preprocessing data. In order to obtain 

better clustering and classification results, we did quantile normalization based on 

log-transformed data. The result is given by Figure 3.1.4. 
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Figure 3.1.4 Boxplot of quantile normalized data 

Therefore, we have three preprocessed datasets, log-transformed data, 

standardized data and quantile normalized data. We applied different clustering and 

classification methods for the three preprocessed datasets, respectively, and expected 

to draw some reasonable conclusions. 

3.2 Discussion of Clustering Results 

DNA microarray is an important tool, which determines the expression of 

tens of thousands of genes from a sample. However, the data volume it produces can 

be very large and hard to interpret. Based on the similarity of their expressions, 

clustering samples can simplify the data, and discover their relationship.  

In this research, I utilized K-means, K-medoids with Euclidean and Pearson 

correlation distance, and Hierarchical clustering with Euclidean and Pearson 

correlation distance, five ways in total, to group colon tissue samples into two clusters, 

which are equivalent to tumor samples and normal samples. More specifically, we 
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chose partitioning around medoidss (PAM) algorithm for K-medoids clustering and 

bottom-up algorithm for Hierarchical clustering. We repeated five methods that 

mentioned above on to log-transformation data, quantile normalization data and 

standardization data, and compared their performance.  

Next, I will list results of clustering for three transformed data with size 2000 

by 62, size 2000 by 57, and size 2000 by 44 separately, using these five algorithms. 

Log-transformed data observation. Table 3.2.1 shows the performance of 

each algorithm on size 2000 by 62 log-transformed data. 

Table 3.1.1 Clustering results of 2000 by 62 log-transformed data 

Sample 

ID 

Known 

Label 

2000*62 Log-transformed data 

K
-M

ean
s 

K
-M

ed
o
id

s.E
 

K
-M

ed
o
id

s.C
 

H
clu

st.E
 

H
clu

st.C
 

1 1 1 1 1 1 1 

2 2 2 2 2 1 1 

3 1 1 1 2 2 1 

4 2 1 1 2 2 1 

5 1 1 1 1 2 2 

6 2 1 1 2 2 2 

7 1 1 1 1 1 1 

8 2 1 1 2 2 2 
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9 1 2 2 1 1 1 

10 2 2 1 2 1 2 

11 1 2 2 2 1 2 

12 2 2 2 2 1 1 

13 1 1 1 1 2 1 

14 2 1 1 2 2 1 

15 1 2 1 1 1 1 

16 2 1 1 1 2 1 

17 1 1 1 1 2 2 

18 2 1 1 2 2 2 

19 1 1 1 1 2 1 

20 2 1 1 2 2 2 

21 1 2 1 1 1 1 

22 2 2 2 2 1 1 

23 1 1 1 1 1 2 

24 2 1 1 2 2 2 

25 1 2 2 1 2 1 

26 1 1 1 1 1 1 

27 1 1 1 1 1 1 

28 1 2 2 1 1 1 
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29 1 2 2 1 1 1 

30 1 2 2 1 1 1 

31 1 2 2 1 1 1 

32 1 1 1 2 1 2 

33 1 1 1 1 1 2 

34 1 2 2 1 1 1 

35 1 1 1 1 1 1 

36 1 1 1 1 2 2 

37 1 2 2 2 1 1 

38 1 1 1 1 2 2 

39 2 1 1 2 1 1 

40 1 2 2 1 1 1 

41 1 1 1 1 2 1 

42 2 2 2 2 1 1 

43 2 2 2 2 1 1 

44 1 2 2 1 1 2 

45 1 2 2 2 1 1 

46 1 2 2 1 1 2 

47 1 2 2 1 1 2 

48 2 2 2 2 1 1 
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49 1 1 1 2 1 1 

50 2 2 1 2 1 1 

51 2 1 1 1 1 1 

52 1 2 2 1 1 1 

53 1 1 1 1 1 1 

54 2 2 2 2 1 1 

55 2 1 1 2 1 1 

56 1 1 1 2 1 1 

57 1 1 1 2 2 1 

58 1 1 1 1 2 1 

59 1 2 1 1 1 1 

60 2 2 2 2 1 1 

61 1 1 1 1 1 1 

62 2 2 1 2 1 1 

Samples labeled in orange indicate that it is being grouped into a wrong 

cluster. How many samples being clustered correctly by each algorithm is shown in 

Table 3.2.2. 

Table 3.2.2 Summary of clustering results of 2000 by 62 log-transformed data 

 2000*62 Log-transformed data 
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K
-M

ean
s 

K
-M

ed
o
id

s.E
 

K
-M

ed
o
id

s.C
 

H
clu

st.E
 

H
clu

st.C
 

Ratio between tumor 

and normal clusters 

33:29 39:23 34:28 43:19 45:17 

Number of correctly 

grouped sample 

33 33 52 37 35 

In the original gene expression data, there are 40 tumor tissue samples and 22 

normal tissue samples. According to the table, K-medoids method works relatively 

better for log-transformed data. Only 10 samples are grouped into wrong cluster, error 

rate is about 16.13%. 

As we know, samples labeled 45,49,51,55 and 56 are contaminated in 62 

samples, and they may affect clustering result. Thus, in the following experiments, I 

removed 5 contaminated samples, and reduced size from 2000 by 62 to 2000 by 57. 

The clustering result of 2000 by 57 log-transformed data is shown in Table 

3.2.3. 

Table 3.2.3 Clustering results of 2000 by 57 log-transformed data 

ID Label 

2000*57 Log-transformed data 

K
-M

ean
s 

K
-M

ed
o
id

s.E
 

K
-M

ed
o
id

s.C
 

H
clu

st.E
 

H
clu

st.C
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1 1 1 1 1 1 1 

2 2 2 2 1 2 1 

3 1 1 1 2 1 1 

4 2 1 1 2 1 1 

5 1 1 1 2 1 2 

6 2 1 1 2 1 2 

7 1 1 1 2 1 1 

8 2 1 1 2 1 2 

9 1 2 2 2 1 1 

10 2 2 1 2 2 2 

11 1 2 2 2 2 2 

12 2 2 2 1 2 1 

13 1 1 1 1 1 1 

14 2 1 1 2 1 1 

15 1 2 2 1 1 1 

16 2 1 1 2 1 1 

17 1 1 1 2 1 2 

18 2 1 1 2 1 2 

19 1 1 1 1 1 1 

20 2 1 1 2 1 2 
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21 1 2 2 1 1 1 

22 2 2 2 2 2 1 

23 1 1 1 2 1 2 

24 2 1 1 2 3 2 

25 1 2 2 1 1 1 

26 1 1 1 1 1 1 

27 1 1 1 1 1 1 

28 1 2 2 1 2 1 

29 1 2 2 1 2 1 

30 1 2 2 1 2 1 

31 1 2 2 1 2 1 

32 1 1 1 2 1 2 

33 1 1 1 1 1 2 

34 1 2 2 1 2 1 

35 1 1 1 1 1 1 

36 1 1 1 1 1 2 

37 1 2 2 2 2 1 

38 1 1 1 1 1 2 

39 2 1 1 1 1 1 

40 1 2 2 1 1 1 
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41 1 1 1 1 1 1 

42 2 2 2 1 2 1 

43 2 2 2 1 2 1 

44 1 2 2 1 2 2 

46 1 2 2 1 2 2 

47 1 2 2 1 2 2 

48 2 2 2 2 2 1 

50 2 2 2 1 2 1 

52 1 2 2 1 2 1 

53 1 1 2 1 1 1 

54 2 2 2 1 2 1 

57 1 1 1 1 1 1 

58 1 1 1 1 1 1 

59 1 2 2 1 1 1 

60 2 2 2 1 2 1 

61 1 1 1 1 1 1 

62 2 2 2 1 2 1 

When Hierarchical method performed to size 2000 by 57 data using 

Euclidean method, sample 24 formed a single cluster and isolated from other 56 
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samples, so we excluded sample 24 in this situation and labeled it as “3”. The 

experiment is summarized in Table 3.2.4. 

Table 3.2.4 Summary of clustering results of 2000 by 57 log-transformed data 

 

2000*57 Log-transformed data 

K
-M

ean
s 

K
-M

ed
o
id

s.E
 

K
-M

ed
o
id

s.C
 

H
clu

st.E
 

H
clu

st.C
 

Ratio between tumor 

and normal clusters 

29:28 29:28 37:20 34:22 40:17 

Number of correctly 

grouped sample 

31 29 39 37 32 

This set of experiment indicates that K-medoids method using Pearson 

correlation distance has the best result among five methods. But 13 samples are 

grouped into wrong cluster. The error rate of 22.81% is higher than that of the 

K-medoids method using Pearson correlation dissimilarity measurement for size 2000 

by 62 log-transformed data. 

In original data, 44 samples form 22 pairs. Each pair, one normal and one 

tumor samples, belongs to one person. I also did experiments using just 22 pairs. 

Table 3.2.5 gives the clustering result of size 2000 by 44 log-transformed data. 

Table 3.2.5 Clustering results of 2000 by 44 log-transformed data 

ID Label 2000*44 Log-transformed data 
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K
-M

ean
s 

K
-M

ed
o
id

s.E
 

K
-M

ed
o
id

s.C
 

H
clu

st.E
 

H
clu

st.C
 

1 1 2 1 1 1 1 

2 2 2 2 2 1 1 

3 1 1 1 1 2 1 

4 2 1 1 2 2 1 

5 1 1 1 1 2 2 

6 2 1 1 1 2 2 

7 1 1 1 1 1 1 

8 2 1 1 1 2 2 

9 1 2 2 1 1 1 

10 2 2 2 2 1 2 

11 1 2 2 1 1 2 

12 2 2 2 2 1 1 

13 1 2 1 1 2 1 

14 2 1 1 2 2 1 

15 1 2 2 1 1 1 

16 2 1 1 1 2 1 

17 1 1 1 1 2 2 
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18 2 1 1 1 2 2 

19 1 1 1 1 2 1 

20 2 1 1 1 2 2 

21 1 2 2 1 1 1 

22 2 2 2 2 1 1 

23 1 1 1 1 2 2 

24 2 1 1 1 2 2 

39 2 2 1 2 1 1 

40 1 2 2 2 1 1 

41 1 1 1 2 2 1 

42 2 2 2 2 1 1 

43 2 2 2 2 1 1 

44 1 2 2 1 1 2 

47 1 2 2 1 1 2 

48 2 2 2 2 1 1 

49 1 2 2 2 1 1 

50 2 2 2 2 1 1 

51 2 2 2 2 1 1 

52 1 2 2 1 1 1 

53 1 2 2 2 1 1 
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54 2 2 2 2 1 1 

55 2 2 2 2 1 1 

56 1 2 2 2 1 1 

59 1 2 2 2 1 1 

60 2 2 2 2 1 1 

61 1 2 2 2 1 1 

62 2 2 2 2 1 1 

The ratio between numbers of sample in the two clusters and the numbers of 

correctly grouped sample are organized in Table 3.2.6. 

Table 3.2.6 Summary of clustering results of 2000 by 44 log-transformed data 

 

2000*44 Log-transformed data 

K
-M

ean
s 

K
-M

ed
o
id

s.E
 

K
-M

ed
o
id

s.C
 

H
clu

st.E
 

H
clu

st.C
 

Ratio between tumor 

and normal clusters 

15:29 18:26 21:23 29:15 32:12 

Number of correctly 

grouped sample 

21 22 31 23 22 

The best result is again achieved by K-medoids method using Pearson 

correlation distance. 13 samples are grouped into wrong cluster, so the error rate is 

approximate to 29.55%. 
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To conclude, for log-transformed gene expression data, K-medoids method 

using Correlation distance measurement always gives a better clustering result no 

matter what size the dataset is. 

Quantile normalization data observation. I organized the clustering result 

of five methods for size 2000 by 62, size 2000 by 57, and size 2000 by 44 quantile 

normalization data in Table 3.2.7. 

Table 3.2.7 Clustering results of quantile normalized data 

ID 

L
ab

el 

Quantile data  

2000*62 

Quantile data  

2000*57 

Quantile data  

2000*44 

K
-M

ean
s 

K
-M

ed
o
id

s.E
 

K
-M

ed
o
id

s.C
 

H
clu

st.E
 

H
clu

st.C
 

K
-M

ean
s 

K
-M

ed
o
id

s.E
 

K
-M

ed
o
id

s.C
 

H
clu

st.E
 

H
clu

st.C
 

K
-M

ean
s 

K
-M

ed
o
id

s.E
 

K
-M

ed
o
id

s.C
 

H
clu

st.E
 

H
clu

st.C
 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

2 2 2 2 1 1 1 2 1 1 1 1 2 1 2 1 1 

3 1 2 1 1 1 1 2 2 2 1 1 2 1 1 1 1 

4 2 2 2 1 1 1 2 2 2 1 1 2 1 2 1 1 

5 1 1 1 1 2 2 1 2 2 2 2 1 1 1 2 2 

6 2 2 1 1 2 2 2 2 2 2 2 2 1 1 2 2 

7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

8 2 2 1 1 2 2 2 2 2 2 2 2 1 1 2 2 

9 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 
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10 2 2 2 1 2 2 2 2 2 2 2 2 1 2 2 2 

11 1 1 1 2 2 2 1 1 2 2 2 1 1 1 2 2 

12 2 2 2 1 1 1 2 1 1 1 1 2 2 2 1 1 

13 1 1 1 1 1 1 1 2 1 1 1 1 1 2 1 1 

14 2 2 2 1 1 1 2 2 2 1 1 2 1 2 1 1 

15 1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 1 

16 2 1 1 1 1 1 2 2 2 1 1 1 1 1 1 1 

17 1 1 1 2 2 2 1 1 2 2 2 1 1 1 2 2 

18 2 2 2 2 2 2 2 2 2 2 2 2 1 1 2 2 

19 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

20 2 2 1 2 2 2 2 2 2 2 2 2 1 1 2 2 

21 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

22 2 2 2 1 1 1 2 2 2 1 1 2 1 2 1 1 

23 1 1 1 2 2 2 1 2 2 2 2 1 1 1 2 2 

24 2 2 2 1 2 2 2 2 2 2 2 2 1 1 2 2 

25 1 1 1 1 2 2 1 1 1 2 2 

     

26 1 1 1 1 1 1 1 1 1 1 1 

     

27 1 1 2 1 1 1 1 1 1 1 1 

     

28 1 1 1 1 1 1 1 1 1 1 1 

     

29 1 1 1 1 1 1 1 1 1 1 1 
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30 1 1 1 1 1 1 1 1 1 1 1 

     

31 1 1 1 1 1 1 1 1 1 1 1 

     

32 1 1 1 2 2 2 1 1 2 2 2 

     

33 1 1 1 2 2 2 1 1 1 2 2 

     

34 1 1 1 1 1 1 1 1 1 1 1 

     

35 1 1 1 1 1 1 1 1 1 1 1 

     

36 1 1 1 2 2 2 1 1 1 2 2 

     

37 1 1 1 1 1 1 1 1 2 1 1 

     

38 1 1 1 2 2 2 1 1 1 2 2 

     

39 2 2 2 1 1 1 2 2 1 1 1 2 2 2 1 1 

40 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1 

41 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1 

42 2 2 2 2 1 1 2 2 1 1 1 2 2 2 1 1 

43 2 2 2 2 1 1 2 1 1 1 1 2 2 2 1 1 

44 1 1 1 2 2 2 1 1 1 2 2 1 2 1 2 2 

45 1 2 2 1 1 1 

          

46 1 1 1 2 2 2 1 1 1 2 2 

     

47 1 1 1 2 2 2 1 1 1 2 2 1 1 1 2 2 

48 2 2 2 1 1 1 2 1 2 1 1 2 2 2 1 1 

49 1 2 2 1 1 1 

     

2 2 2 1 1 
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50 2 2 2 1 1 1 2 2 1 1 1 2 2 2 1 1 

51 2 1 1 1 1 1 

     

1 1 2 1 1 

52 1 1 1 2 1 1 1 1 1 1 1 1 2 1 1 1 

53 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1 

54 2 2 2 1 1 1 2 2 1 1 1 2 2 2 1 1 

55 2 1 1 1 1 1 

     

1 2 2 1 1 

56 1 2 2 2 1 1 

     

2 2 2 1 1 

57 1 2 1 1 1 1 2 2 2 1 1 

     

58 1 1 1 1 1 1 1 1 1 1 1 

     

59 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 

60 2 2 2 1 1 1 2 1 1 1 1 2 2 2 1 1 

61 1 1 1 2 1 1 1 1 1 1 1 1 2 2 1 1 

62 2 2 2 1 1 1 2 1 1 1 1 2 2 2 1 1 

I also summarized the ratios between the two cluster sizes and the numbers 

of correctly grouped sample in Table 3.2.8. 

Table 3.2.8 Summary of clustering results of quantile normalized data 

 

Ratio between tumor 

and normal clusters 

Number of correctly 

grouped sample 

Quantile Data 

2000*62 

K-Means 38:24 54 

K-Medoids.E 42:20 52 

K-Medoids.C 45:17 31 

Hclust.E 44:18 34 

Hclust.C 44:18 34 

Quantile Data 

2000*57 

K-Means 34:23 54 

K-Medoids.E 37:20 45 
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K-Medoids.C 37:20 39 

Hclust.E 39:18 31 

Hclust.C 39:18 31 

Quantile Data 

2000*44 

K-Means 22:22 38 

K-Medoids.E 26:18 24 

K-Medoids.C 20:24 30 

Hclust.E 32:12 22 

Hclust.C 32:12 22 

Performing clustering on quantile normalized data, results of Hierarchical 

method are exactly the same no matter is Euclidean dissimilarity or Pearson 

correlation dissimilarity used. This could be proved by the following dendrograms 

Figure 3.2.1, Figure 3.2.2, and Figure 3.2.3. 
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Figure 3.2.1 Hierarchical clustering with Euclidean and correlation distance of 2000 

by 62 quantile normalized data 
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Figure 3.2.2 Hierarchical clustering with Euclidean and correlation distance of 2000 

by 57 quantile normalized data 
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Figure 3.2.3 Hierarchical clustering with Euclidean and correlation distance of 2000 

by 44 quantile normalized data 

In addition, no matter what size of quantile normalized data is, K-means 

method always obtains the best clustering among these five different algorithms. 

Their error rates are 12.90%, 5.26% and 13.64%, respectively. Especially, for size 
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experiments performed. Although, for size 2000 by 62 quantile normalized data, 8 

samples are grouped into wrong cluster, 5 of them are contaminative samples. This 

implies clustering using 2000 by 62 quantile normalized data does not affect by 

contaminative samples seriously in this case. 

Standardization using MAD data observation. I organized clustering 

results for standardization data of 3 different sizes using MAD instead of standard 

deviation in Table 3.2.9. 

Table 3.2.9 Clustering results of standardized data 

ID 

L
ab

el 

Standardization 

2000*62 

Standardization 

2000*57 

Standardization 

2000*44 

K
-M

ean
s 

K
-M

ed
o
id

s.E
 

K
-M

ed
o
id

s.C
 

H
clu

st.E
 

H
clu

st.C
 

K
-M

ean
s 

K
-M

ed
o
id

s.E
 

K
-M

ed
o
id

s.C
 

H
clu

st.E
 

H
clu

st.C
 

K
-M

ean
s 

K
-M

ed
o
id

s.E
 

K
-M

ed
o
id

s.C
 

H
clu

st.E
 

H
clu

st.C
 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

2 2 1 1 2 1 1 1 1 2 1 1 1 1 1 1 2 

3 1 1 1 2 1 1 1 1 2 1 1 1 1 1 1 1 

4 2 1 1 2 1 1 1 1 2 1 1 1 1 1 1 1 

5 1 1 1 2 1 2 1 1 2 1 2 1 1 1 1 2 

6 2 1 1 2 1 2 1 1 2 1 2 1 1 1 1 2 

7 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 

8 2 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 
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9 1 1 1 1 1 2 1 1 1 1 2 1 1 1 1 1 

10 2 1 1 2 1 2 1 1 2 1 2 1 1 1 1 2 

11 1 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 

12 2 1 1 2 1 1 1 1 2 1 1 1 1 1 1 2 

13 1 1 1 2 1 1 1 1 2 1 1 1 1 1 1 1 

14 2 1 1 2 1 1 1 1 2 1 1 1 1 1 1 1 

15 1 1 1 2 1 1 1 1 2 1 1 1 1 1 1 1 

16 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

17 1 1 1 2 1 1 1 1 2 1 1 1 1 1 1 1 

18 2 1 1 2 1 1 1 1 2 1 1 1 1 1 1 1 

19 1 1 1 2 1 2 1 1 2 1 2 1 1 1 1 1 

20 2 1 1 2 1 2 1 1 2 1 2 1 1 1 1 2 

21 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

22 2 1 1 2 1 1 1 1 2 1 1 1 1 1 1 1 

23 1 1 1 2 1 1 1 1 2 1 1 1 1 1 1 1 

24 2 1 1 2 1 1 1 1 2 1 1 1 1 1 1 1 

25 1 1 1 2 1 2 1 1 2 1 2 

     

26 1 1 1 1 1 1 1 1 1 1 1 

     

27 1 1 1 1 1 1 1 1 1 1 1 

     

28 1 1 1 1 1 2 2 1 1 1 1 
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29 1 2 1 1 2 1 2 1 1 2 1 

     

30 1 2 1 1 2 2 2 1 1 2 1 

     

31 1 2 1 1 2 1 2 1 1 2 1 

     

32 1 1 1 2 1 2 1 1 2 1 2 

     

33 1 1 1 2 1 2 1 1 2 1 2 

     

34 1 1 1 1 1 2 2 1 1 1 1 

     

35 1 1 1 1 1 2 1 1 1 1 1 

     

36 1 1 1 2 1 2 1 1 2 1 2 

     

37 1 1 1 1 2 1 1 1 1 2 1 

     

38 1 1 1 1 1 2 1 1 1 1 2 

     

39 2 1 1 2 1 1 1 1 2 1 1 1 1 2 1 1 

40 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

41 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

42 2 1 1 2 1 1 1 1 2 1 1 1 1 2 1 2 

43 2 2 2 2 2 1 2 2 2 2 1 2 2 2 2 2 

44 1 2 2 2 2 2 2 2 2 2 2 2 2 1 2 1 

45 1 2 2 2 2 1 

          

46 1 2 2 2 2 2 2 2 2 2 2 

     

47 1 2 2 2 2 2 2 2 2 2 2 2 2 1 2 1 

48 2 2 1 2 2 1 2 1 2 2 1 1 1 2 2 2 
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49 1 1 1 2 1 1 

     

1 1 2 1 2 

50 2 1 1 2 1 1 1 1 2 1 1 1 1 2 1 2 

51 2 1 1 2 1 1 

     

1 1 1 1 1 

52 1 2 2 2 2 2 2 2 2 2 2 2 2 1 2 1 

53 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

54 2 1 1 2 1 1 1 1 2 1 1 1 1 2 1 1 

55 2 1 1 2 1 1 

     

1 1 2 1 1 

56 1 1 1 2 1 1 

     

1 1 2 1 2 

57 1 1 1 2 1 1 1 1 2 1 1 

     

58 1 1 1 1 1 1 1 1 1 1 1 

     

59 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

60 2 1 1 2 1 1 1 1 2 1 1 1 1 2 1 2 

61 1 1 1 2 1 1 1 1 2 1 1 1 1 1 1 1 

62 2 1 1 2 1 1 1 1 2 1 1 1 1 2 1 2 

Ratio between sizes of the two clusters and numbers of sample is grouped 

correctly are summarized in Table 3.2.10. 

Table 3.2.10 Summary of clustering results of standardized data 

 

Ratio between tumor 

and normal clusters 

Number of correctly 

grouped sample 

Standardization 

2000*62 

K-Means 51:11 33 

K-Medoids.E 55:7 35 

K-Medoids.C 21:41 39 

Hclust.E 50:12 32 

Hclust.C 40:22 26 
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Standardization 

2000*57 

K-Means 45:12 29 

K-Medoids.E 51:6 33 

K-Medoids.C 21:36 37 

Hclust.E 46:11 30 

Hclust.C 41:16 27 

Standardization 

2000*44 

K-Means 39:5 19 

K-Medoids.E 39:5 19 

K-Medoids.C 33:11 29 

Hclust.E 38:6 20 

Hclust.C 29:15 29 

This set of experiments of standardization data using MAD gave a worse 

clustering result than those of log-transformed data and quantile normalized data. But 

comparatively, K-mediods method using Correlation dissimilarity always gets a better 

clustering result than the other 4 algorithms. The error rates are about 37.10%, 

35.09%, and 34.09%, respectively.  

In conclusion, for logarithm transformed data and standardized data which 

using MAD, K-medoids method using Pearson correlation as dissimilarity 

measurement gives relative better clustering results among all 5 clustering algorithms. 

Furthermore, the best clustering result is obtained when performing K-means 

algorithm on quantile normalization data. Particularly, after I removed 5 

contaminative samples, this algorithm successfully clusters 54 samples out of 57 

samples, an accuracy rate of 94.74%. 

3.3 Comparison of Classification Results 

When one patient was suspected of having cancer, the doctor always tests 

blood or tissue samples that are extracted from the patient in order to determine 
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whether the patient has cancer or not. I also want to predict the result using 

mathematical methods. In this research, two different classification algorithms are 

adopted. They are linear discriminant analysis, and minimum sum of squared-error. 

In this research, I separate the 62 samples into training and testing two sets. 

Training set is used to train the predictor, and testing set is used to examine how good 

the predictor is. 

At the very beginning, I used 40 samples in the training set, and 22 samples 

in the testing set. I performed the two classification methods on the three transformed 

datasets, and summarized forecasting results in Table 3.3.1as following. 

Table 3.3.1 Classification results of training set 42 vs. testing set 20 

ID 

L
ab

el 

Linear discriminant 

analysis 

Minimum SSE 

lo
g
arith

m
 

Q
u
an

tile 

stan
d

ard
ize 

lo
g
arith

m
 

q
u
an

tile 

stan
d

ard
ize 

41 1 1 1 1 1 1 1 

42 2 2 2 2 2 2 2 

43 2 2 2 2 2 2 2 

44 1 1 1 1 1 1 1 

45 1 2 2 2 2 2 2 

46 1 1 1 1 1 1 1 
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47 1 1 1 1 1 1 1 

48 2 2 2 2 2 2 2 

49 1 2 2 2 2 2 2 

50 2 2 2 2 2 2 2 

51 2 1 1 1 1 1 1 

52 1 1 1 1 1 1 1 

53 1 1 1 1 1 1 1 

54 2 2 2 2 2 2 2 

55 2 1 1 1 1 1 1 

56 1 2 2 2 2 2 2 

57 1 1 1 1 1 1 1 

58 1 1 1 1 1 1 1 

59 1 1 1 1 1 1 1 

60 2 2 2 2 2 2 2 

61 1 1 1 1 1 1 1 

62 2 2 2 2 2 2 2 

5 out of the 20 samples were predicted incorrectly in each experiment for 

linear discriminant analysis and minimum sum of squared-error method. Notice that, 

those 5 samples, which grouped by mistake, are all contaminative samples. Therefore, 
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from this point of view, both linear discriminant analysis and minimum sum of 

squared-error methods predicted the classes accurately.  

However, in this way, I can neither see which method is better, not which 

transformation of the data kept more information of original data. Thus, I reduced the 

size of training set down to 20 samples, and increased the size of testing samples to 42. 

Table 3.3.2 sums up the classification results for each experiment. 

Table 3.3.2 Classification results of training set 20 vs. testing set 42 

ID 
L

ab
el 

Linear discriminant 

analysis 

Minimum SSE 
L

o
g
arith

m
 

Q
u
an

tile 

stan
d
ard

ize 

lo
g
arith

m
 

q
u
an

tile 

stan
d
ard

ize 

21 1 1 1 1 1 1 1 

22 2 2 2 2 2 2 2 

23 1 1 1 1 1 1 1 

24 2 2 2 1 2 2 2 

25 1 1 1 1 1 1 1 

26 1 1 1 1 1 1 1 

27 1 1 1 1 1 1 2 

28 1 1 1 1 1 1 1 

29 1 1 1 1 1 1 1 
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30 1 1 1 1 1 1 2 

31 1 1 1 1 1 1 1 

32 1 1 1 1 1 1 1 

33 1 1 1 1 1 1 1 

34 1 1 1 1 1 1 1 

35 1 1 1 1 1 1 1 

36 1 1 1 1 1 1 1 

37 1 1 1 1 1 1 1 

38 1 1 1 1 1 1 1 

39 2 2 2 2 2 2 2 

40 1 1 1 1 1 1 1 

41 1 1 1 1 1 1 1 

42 2 2 2 1 2 2 2 

43 2 2 2 2 2 2 2 

44 1 1 1 1 1 1 1 

45 1 2 2 2 2 2 2 

46 1 1 1 1 1 1 1 

47 1 1 1 1 1 1 1 

48 2 2 2 2 2 2 2 

49 1 2 2 2 2 2 2 
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50 2 2 2 2 2 2 2 

51 2 1 1 1 1 1 1 

52 1 1 1 1 1 1 1 

53 1 2 1 1 1 1 1 

54 2 2 2 2 2 2 2 

55 2 1 1 1 1 1 1 

56 1 2 2 2 2 2 2 

57 1 2 2 1 1 1 1 

58 1 1 1 1 1 1 1 

59 1 1 1 1 1 1 1 

60 2 2 2 2 2 2 2 

61 1 1 1 1 1 1 1 

62 2 2 2 2 2 2 2 

Predictors trained by reduced training set show different classification 

outputs. Let’s summary how many samples are classified incorrectly in this set of 

experiments in Table 3.3.3. 

Table 3.3.3 Summary of classification results of training set 20 vs. testing set 42 

Linear discriminant 

analysis 

Logarithm transformation 7 

Quantile normalization 6 

standardization 7 

Minimum sum of 

squared-error 

Logarithm transformation 5 

Quantile normalization 5 

standardization 7 
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After such a contrast, minimum sum of squared-error algorithm obtains 

better or the same classification results than the linear discriminant analysis. 

Moreover, by contrast, quantile normalization is a better transformation method. 

Although, quantile normalized data and log-transformed data give exactly the same 

prediction by using minimum sum of squared-error, quantile normalized data provide 

a better forecast when linear discriminant analysis is applied.



 

Chapter 4 Conclusions 

In this research, some conclusions and laws could be drawn from the 

experimental results. 

1. In general, among three data preprocessing methods, quantile 

normalization method gives the better clustering result than the other two methods, 

regardless of which clustering algorithm has been applied on which size of data.  

2. For quantile normalized data, K-means algorithm always obtains the best 

clustering result no matter the size of transformed data. In addition, the best clustering 

result that I have gotten in all experiments is from K-means algorithm on size 2000 by 

57 quantile normalized data with a 94.74% accuracy. 

3. For log-transformed data and standardized data, K-mediod algorithm 

based on Pearson correlation distance metric has the best clustering performance 

among the 5 clustering algorithms. Compared to standardization method, 

log-transformation is a relatively better data preprocessing method. 

4. When I separated 62 samples into 40 training samples and 22 testing 

samples, both of linear discriminant analysis and minimum sum of squared-error 

algorithm provide consistent and good results. The predictor trained by these two 

method correctly classified all testing samples except the 5 contaminative ones. 
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5. In order to compare the methods, 20 samples was left in training set, and 

testing set was expanded to 42 samples. Obviously, minimum sum of squared-error 

algorithm is superior to linear discriminant analysis. The result also confirmed that 

quantile normalization is a better data preprocessing method for colon cancer data 

analysis. 

As the tumor microarray data have so many features but usually come with 

limited number of samples and noise, it has all kind of challenges in analyzing the 

data.
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Appendix: R code 

Program One: Logarithm transformation and clustering analysis. 

rm(list=ls(all=TRUE)) # clear all previous data 

library(cluster) 

library(MASS) 

# read in the data 

colon.dat<-read.table("C:/Users/bo.liu/Desktop/R/I2000.txt",header=FALSE,sep=' ') 

colon.dat<-data.matrix(colon.dat,main='Boxplot of Original Data') 

boxplot(colon.dat) 

# 1.pre-processing:log-transformation data 

logcolon.dat<-log2(colon.dat) 

logcolon.dat<-data.matrix(logcolon.dat) 

boxplot(logcolon.dat,main='Boxplot of Log-transformed Data') 

# 2.1.kmeans clustering(2000 by 62) 

tlog<-t(logcolon.dat) 

set.seed(17) 

km.log<-kmeans(tlog,2) 

km.log
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# 2.2.kmediod clustering-Partitioning Around Medoids(2000 by 62) 

pam.log.e<-pam(tlog,2,diss=F,metric="euclidean") 

summary(pam.log.e)  

log.corr<-cor(logcolon.dat,method = "pearson") 

dist.log.c<-matrix(nrow=62,ncol=62) 

 for(i in 1:62){ 

 dist.log.c[i,]<-c(1:62) 

 for(j in 1:62){ 

 dist.log.c[i,j]<-1-log.corr[i,j]}} 

dist.log.c<-as.dist(dist.log.c,diag=F,) 

pam.log.corr<-pam(dist.log.c,2,diss=F,cluster.only=F,do.swap=F,keep.diss=F,keep.da

ta=F) 

summary (pam.log.corr)  

# 2.3.Hierarchical Cluster Analysis - Euclidean (2000 by 62) 

dist.log.e<-dist(tlog,method="euclidean") 

hclust.log.e<-hclust(dist.log.e,method='complete') 

plot(hclust.log.e,labels=NULL) 

##   Hierarchical Cluster Analysis - Correlation (logcolon.dat) 

hclust.log.corr<-hclust(dist.log.c,method='complete') 

plot(hclust.log.corr,labels=NULL) 
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# 3.reduce the matrix to 2000*57 (delete contaminate ones) 

log57.dat<-logcolon.dat[,-c(45,49,51,55,56)] 

# 4.1.kmeans clustering(2000 by 57) 

tlog57<-t(log57.dat) 

set.seed(23) 

km.log57<-kmeans(tlog57,2) 

km.log57 

# 4.2.kmediod clustering-Partitioning Around Medoids(2000 by 57) 

pam.log57.e<-pam(tlog57,2,diss=F,metric="euclidean") 

summary(pam.log57.e)      

log57.corr<-cor(log57.dat,method = "pearson") 

dist.log57.c<-matrix(nrow=57,ncol=57) 

 for(i in 1:57){ 

 dist.log57.c[i,]<-c(1:57) 

 for(j in 1:57){ 

 dist.log57.c[i,j]<-1-log57.corr[i,j]}} 

dist.log57.c<-as.dist(dist.log57.c,diag=F,) 

pam.log57.corr<-pam(dist.log57.c,2,diss=F,cluster.only=F,do.swap=F,keep.diss=F,ke

ep.data=F) 

summary (pam.log57.corr)  
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# 4.3.Hierarchical Cluster Analysis - Euclidean (2000 by 57) 

dist.log57.e<-dist(tlog57,method="euclidean") 

hclust.log57.e<-hclust(dist.log57.e,method='complete') 

plot(hclust.log57.e,labels=NULL) 

##   Hierarchical Cluster Analysis - Correlation (logcolon.dat) 

hclust.log57.corr<-hclust(dist.log57.c,method='complete') 

plot(hclust.log57.corr,labels=NULL) 

# 5.reduce the matrix to 57*44 (22 pairs) 

log44.dat<-logcolon.dat[,-c(25:38,45,46,57,58)] 

boxplot(log44.dat) 

# 6.1.kmeans clustering (2000*44) 

tlog44<-t(log44.dat) 

set.seed(104) 

kmeans.log44<-kmeans(tlog44,2,iter.max=5) 

kmeans.log44 

# 6.2.kmediod clustering-Partitioning Around Medoids(2000*44) 

pam.log44.e<-pam(tlog44,2,diss=F,metric="euclidean") 

summary(pam.log44.e)      

log44.cor<-cor(log44.dat,method = "pearson") 

log44.cor.dist<-matrix(nrow=44,ncol=44) 
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 for(i in 1:44){ 

 log44.cor.dist[i,]<-c(1:44) 

 for(j in 1:44){ 

 log44.cor.dist[i,j]<- 1-log44.cor[i,j]}} 

log44.cor.dist<-as.dist(log44.cor.dist,diag=F,)  

pam.log44.cor<-pam(log44.cor.dist,2,diss=F,cluster.only=F,do.swap=F,keep.diss=F,k

eep.data=F) 

summary (pam.log44.cor)      

# 6.3.Hierarchical Cluster Analysis - Euclidean (2000*44) 

log44.e.dist<-dist(tlog44,method="euclidean") 

hclust.log44.e<-hclust(log44.e.dist,method='complete') 

plot(hclust.log44.e,labels=NULL) 

##   Hierarchical Cluster Analysis - Correlation (2000*44) 

hclust.log44.cor<-hclust(log44.cor.dist,method='complete') 

plot(hclust.log44.cor,labels=NULL) 

Program Two: Quantile normalization and clustering analysis. 

rm(list=ls(all=TRUE)) # clear all previous data 

library(cluster) 

library(MASS) 

# read in the data 
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colon.dat<-read.table("C:/Users/bo.liu/Desktop/R/I2000.txt",header=FALSE,sep=' ') 

colon.dat<-data.matrix(colon.dat) 

boxplot(colon.dat,main='Boxplot of Original Data') 

# 1.pre-processing:Quantile normalization data 

library(affy) 

library(preprocessCore) 

logcolon.dat<-log2(colon.dat) 

quantile.dat<-normalize.quantiles(logcolon.dat,copy=TRUE) 

boxplot(quantile.dat,main='Boxplot of Quantile Normalized Data') 

# 2.1.kmeans clustering(2000 by 62) 

tquan<-t(quantile.dat) 

set.seed(18) 

km.quan<-kmeans(tquan,2,iter.max=10) 

km.quan 

# 2.2.kmediod clustering-Partitioning Around Medoids(2000 by 62) 

pam.quan.e<-pam(tquan,2,diss=F,metric="euclidean") 

summary(pam.quan.e)      

quan.corr<-cor(quantile.dat,method = "pearson") 

dist.quan.c<-matrix(nrow=62,ncol=62) 

 for(i in 1:62){ 
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 dist.quan.c[i,]<-c(1:62) 

 for(j in 1:62){ 

 dist.quan.c[i,j]<-1-quan.corr[i,j]}} 

dist.quan.c<-as.dist(dist.quan.c,diag=F,) 

pam.quan.corr<-pam(dist.quan.c,2,diss=F,cluster.only=F,do.swap=F,keep.diss=F,kee

p.data=F) 

summary (pam.quan.corr)  

# 2.3.Hierarchical Cluster Analysis - Euclidean (2000 by 62) 

dist.quan.e<-dist(tquan,method="euclidean") 

hclust.quan.e<-hclust(dist.quan.e,method='complete') 

plot(hclust.quan.e,labels=NULL,main='Hierarchical clustering use Eulidean distance') 

##   Hierarchical Cluster Analysis - Correlation (2000 by 62) 

hclust.quan.corr<-hclust(dist.quan.c,method='complete') 

plot(hclust.quan.corr,labels=NULL,main='Hierarchical clustering use Correlation 

distance') 

# 3.reduce the matrix to 2000*57 (delete contaminate ones) 

quan57.dat<-quantile.dat[,-c(45,49,51,55,56)] 

# 4.1.kmeans clustering(2000 by 57) 

tquan57<-t(quan57.dat) 

set.seed(8) 
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km.quan57<-kmeans(tquan57,2) 

km.quan57 

# 4.2.kmediod clustering-Partitioning Around Medoids(2000 by 57) 

pam.quan57.e<-pam(tquan57,2,diss=F,metric="euclidean") 

summary(pam.quan57.e)      

quan57.corr<-cor(quan57.dat,method = "pearson") 

dist.quan57.c<-matrix(nrow=57,ncol=57) 

 for(i in 1:57){ 

 dist.quan57.c[i,]<-c(1:57) 

 for(j in 1:57){ 

 dist.quan57.c[i,j]<-1-quan57.corr[i,j]}} 

dist.quan57.c<-as.dist(dist.quan57.c,diag=F,) 

pam.quan57.corr<-pam(dist.quan57.c,2,diss=F,cluster.only=F,do.swap=F,keep.diss=F

,keep.data=F) 

summary (pam.quan57.corr)  

# 4.3.Hierarchical Cluster Analysis - Euclidean (2000 by 57) 

dist.quan57.e<-dist(tquan57,method="euclidean") 

hclust.quan57.e<-hclust(dist.quan57.e,method='complete') 

plot(hclust.quan57.e,labels=NULL,main='Hierarchical clustering use Eulidean 

distance') 
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##   Hierarchical Cluster Analysis - Correlation (2000 by 57) 

hclust.quan57.corr<-hclust(dist.quan57.c,method='complete') 

plot(hclust.quan57.corr,labels=NULL,main='Hierarchical clustering use Correlation 

distance') 

# 5.reduce the matrix to 57*44 (22 pairs) 

quan44.dat<-quantile.dat[,-c(25:38,45,46,57,58)] 

boxplot(quan44.dat) 

# 6.1.kmeans clustering (2000*44) 

tquan44<-t(quan44.dat) 

set.seed(10) 

kmeans.quan44<-kmeans(tquan44,2,iter.max=5) 

kmeans.quan44 

# 6.2.kmediod clustering-Partitioning Around Medoids(2000*44) 

pam.quan44.e<-pam(tquan44,2,diss=F,metric="euclidean") 

summary(pam.quan44.e)      

quan44.cor<-cor(quan44.dat,method = "pearson") 

quan44.cor.dist<-matrix(nrow=44,ncol=44) 

 for(i in 1:44){ 

 quan44.cor.dist[i,]<-c(1:44) 

 for(j in 1:44){ 
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 quan44.cor.dist[i,j]<- 1-quan44.cor[i,j]}} 

quan44.cor.dist<-as.dist(quan44.cor.dist,diag=F,)  

pam.quan44.cor<-pam(quan44.cor.dist,2,diss=F,cluster.only=F,do.swap=F,keep.diss=

F,keep.data=F) 

summary (pam.quan44.cor)      

# 6.3.Hierarchical Cluster Analysis - Euclidean (2000*44) 

quan44.e.dist<-dist(tquan44,method="euclidean") 

hclust.quan44.e<-hclust(quan44.e.dist,method='complete') 

plot(hclust.quan44.e,labels=NULL,main='Hierarchical clustering use Euclidean 

distance') 

##   Hierarchical Cluster Analysis - Correlation (2000*44) 

hclust.quan44.cor<-hclust(quan44.cor.dist,method='complete') 

plot(hclust.quan44.cor,labels=NULL,main='Hierarchical clustering use Correlation 

distance') 

Program Three: Standardization data preprocessing and clustering analysis. 

rm(list=ls(all=TRUE)) # clear all previous data 

library(cluster) 

library(MASS) 

# read in the data 

colon.dat<-read.table("C:/Users/bo.liu/Desktop/R/I2000.txt",header=FALSE,sep=' ') 
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colon.dat<-data.matrix(colon.dat,main='Boxplot of Original Data') 

boxplot(colon.dat) 

# 1.pre-processing:MAD data 

mad.dat<-c(1:2000) 

 for (i in 1:2000){ 

 mad.dat[i]<-mad(colon.dat[i,], constant=1)} 

mean.dat<-c(1:2000) 

 for(i in 1:2000){ 

 mean.dat[i]<-mean(colon.dat[i,])} 

stand.dat<-matrix(nrow=2000,ncol=62) 

 for(i in 1:2000){ 

 stand.dat[i,]<-c(1:62) 

 for (j in 1:62){ 

 stand.dat[i,j]<-(colon.dat[i,j]-mean.dat[i])/mad.dat[i]}} 

stand.dat<-data.matrix(stand.dat) 

range(stand.dat)  

which(stand.dat>25) 

#stand.dat[stand.dat>25]<-25 

boxplot(stand.dat,horizontal=F,main='Boxplot of Standardized Data') 

# 2.1.kmeans clustering(2000 by 62) 
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tstand<-t(stand.dat) 

set.seed(18) 

km.stand<-kmeans(tstand,2,iter.max=10) 

km.stand 

# 2.2.kmediod clustering-Partitioning Around Medoids(2000 by 62) 

pam.stand.e<-pam(tstand,2,diss=F,metric="euclidean") 

summary(pam.stand.e)      

stand.corr<-cor(stand.dat,method = "pearson") 

dist.stand.c<-matrix(nrow=62,ncol=62) 

 for(i in 1:62){ 

 dist.stand.c[i,]<-c(1:62) 

 for(j in 1:62){ 

 dist.stand.c[i,j]<-1-stand.corr[i,j]}} 

dist.stand.c<-as.dist(dist.stand.c,diag=F,) 

pam.stand.corr<-pam(dist.stand.c,2,diss=F,cluster.only=F,do.swap=F,keep.diss=F,kee

p.data=F) 

summary (pam.stand.corr)  

# 2.3.Hierarchical Cluster Analysis - Euclidean (2000 by 62) 

dist.stand.e<-dist(tstand,method="euclidean") 

hclust.stand.e<-hclust(dist.stand.e,method='complete') 
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plot(hclust.stand.e,labels=NULL) 

##   Hierarchical Cluster Analysis - Correlation (2000 by 62) 

hclust.stand.corr<-hclust(dist.stand.c,method='complete') 

plot(hclust.stand.corr,labels=NULL) 

# 3.reduce the matrix to 2000*57 (delete contaminate ones) 

stand57.dat<-stand.dat[,-c(45,49,51,55,56)] 

# 4.1.kmeans clustering(2000 by 57) 

tstand57<-t(stand57.dat) 

set.seed(22) 

km.stand57<-kmeans(tstand57,2) 

km.stand57 

# 4.2.kmediod clustering-Partitioning Around Medoids(2000 by 57) 

pam.stand57.e<-pam(tstand57,2,diss=F,metric="euclidean") 

summary(pam.stand57.e)      

stand57.corr<-cor(stand57.dat,method = "pearson") 

dist.stand57.c<-matrix(nrow=57,ncol=57) 

 for(i in 1:57){ 

 dist.stand57.c[i,]<-c(1:57) 

 for(j in 1:57){ 

 dist.stand57.c[i,j]<-1-stand57.corr[i,j]}} 
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dist.stand57.c<-as.dist(dist.stand57.c,diag=F,) 

pam.stand57.corr<-pam(dist.stand57.c,2,diss=F,cluster.only=F,do.swap=F,keep.diss=

F,keep.data=F) 

summary (pam.stand57.corr)  

# 4.3.Hierarchical Cluster Analysis - Euclidean (2000 by 57) 

dist.stand57.e<-dist(tstand57,method="euclidean") 

hclust.stand57.e<-hclust(dist.stand57.e,method='complete') 

plot(hclust.stand57.e,labels=NULL) 

##   Hierarchical Cluster Analysis - Correlation (2000 by 57) 

hclust.stand57.corr<-hclust(dist.stand57.c,method='complete') 

plot(hclust.stand57.corr,labels=NULL) 

# 5.reduce the matrix to 57*44 (22 pairs) 

stand44.dat<-stand.dat[,-c(25:38,45,46,57,58)] 

boxplot(stand44.dat) 

# 6.1.kmeans clustering (2000*44) 

tstand44<-t(stand44.dat) 

set.seed(10) 

kmeans.stand44<-kmeans(tstand44,2,iter.max=5) 

kmeans.stand44  

# 6.2.kmediod clustering-Partitioning Around Medoids(2000*44) 
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pam.stand44.e<-pam(tstand44,2,diss=F,metric="euclidean") 

summary(pam.stand44.e)      

stand44.cor<-cor(stand44.dat,method = "pearson") 

stand44.cor.dist<-matrix(nrow=44,ncol=44) 

 for(i in 1:44){ 

 stand44.cor.dist[i,]<-c(1:44) 

 for(j in 1:44){ 

 stand44.cor.dist[i,j]<- 1-stand44.cor[i,j]}} 

stand44.cor.dist<-as.dist(stand44.cor.dist,diag=F,)  

pam.stand44.cor<-pam(stand44.cor.dist,2,diss=F,cluster.only=F,do.swap=F,keep.diss

=F,keep.data=F) 

summary (pam.stand44.cor)      

# 6.3.Hierarchical Cluster Analysis - Euclidean (2000*44) 

stand44.e.dist<-dist(tstand44,method="euclidean") 

hclust.stand44.e<-hclust(stand44.e.dist,method='complete') 

plot(hclust.stand44.e,labels=NULL) 

##   Hierarchical Cluster Analysis - Correlation (2000*44) 

hclust.stand44.cor<-hclust(stand44.cor.dist,method='complete') 

plot(hclust.stand44.cor,labels=NULL) 

Program four: Classification using 40 training samples vs. 22 testing samples 
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rm(list=ls(all=TRUE)) # clear all previous data 

library(MASS) 

library(affy) 

library(preprocessCore) 

# read in the data 

colon.dat<-read.table("C:/Users/bo.liu/Desktop/R/I2000.txt",header=FALSE,sep= ' ') 

# convert from a list to a matrix format 

colon.dat<-data.matrix(colon.dat) 

# 1. Classification - Using log-transformed data.(Use 40 samples as training set and 

22 as testing.) 

# 1.1.Log-transformed Data 

logcolon.dat<-log2(colon.dat) 

logcolon.dat<-data.matrix(logcolon.dat) 

# 1.2.Linear discriminant analysis using log-transformed data 

T <- c(1,3,5,7,9,11,13,15,17,19,21,23,25:38,40,41,44:47,49,52,53,56:59,61) 

N <- c(2,4,6,8,10,12,14,16,18,20,22,24,39,42,43,48,50,51,54,55,60,62) 

V2001 <- array(0,62); V2001[N] <- 2; V2001[T] <- 1 

augmentlog.dat<-rbind(logcolon.dat,V2001) 

tauglog<-t(augmentlog.dat) 

tauglog<-data.frame(tauglog) 
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training<-tauglog[1:40,] 

testing<-tauglog[41:62,] 

log.lda<- lda(V2001 ~ .,data=training) 

log.lda  

predict(log.lda, testing)$class 

# 1.3.Minimum Sum of Error-Squared using log-transformed data 

group <- array(0,62); group[N] <- 1; group[T] <- -1 

b<- data.matrix(group) 

y0<-array(rep(1,62),dim=c(62,1)) 

tlog<-t(logcolon.dat) 

ylog<-cbind(y0,tlog) 

I<-ginv(t(ylog[1:40,])%*%ylog[1:40,]) 

alog<- I%*%t(ylog[1:40,])%*%b[1:40,] 

alog 

testing<- ylog[41:62,] 

testing%*%alog 

# 2. Classification - Using Quantile Normalized Data 

# 2.1.Quantile Normalization     

quan.dat<-normalize.quantiles(logcolon.dat,copy=TRUE) 

# 2.2.Linear discriminant analysis using quantile normalized data 
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augmentquan.dat<-rbind(quan.dat,V2001) 

taugquan<-t(augmentquan.dat) 

taugquan<-data.frame(taugquan) 

training<-taugquan[1:40,] 

testing<-taugquan[41:62,] 

quan.lda<- lda(V2001 ~ .,data=training) 

quan.lda  

predict(quan.lda, testing)$class 

# 2.3.Minimum Sum of Error-Squared using quantile normalized data  

tquan<-t(quan.dat) 

yquan<-cbind(y0,tquan) 

I<-ginv(t(yquan[1:40,])%*%yquan[1:40,]) 

aquan<- I%*%t(yquan[1:40,])%*%b[1:40,] 

aquan 

testing<- yquan[41:62,] 

testing%*%aquan 

# 3. Classification - Using Standardized Data 

# 3.1.Standardization (with MAD) 

mad.dat<-c(1:2000) 

 for (i in 1:2000){ 
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 mad.dat[i]<-mad(colon.dat[i,], constant=1)} 

mean.dat<-c(1:2000) 

 for(i in 1:2000){ 

 mean.dat[i]<-mean(colon.dat[i,])} 

stand.dat<-matrix(nrow=2000,ncol=62) 

 for(i in 1:2000){ 

 stand.dat[i,]<-c(1:62) 

 for (j in 1:62){ 

 stand.dat[i,j]<-(colon.dat[i,j]-mean.dat[i])/mad.dat[i]}} 

stand.dat<-data.matrix(stand.dat) 

# 3.2.Linear discriminant analysis using standardizated data 

augmentstand.dat<-rbind(stand.dat,V2001) 

taugstand<-t(augmentstand.dat) 

taugstand<-data.frame(taugstand) 

training<-taugstand[1:40,] 

testing<-taugstand[41:62,] 

stand.lda<- lda(V2001 ~ .,data=training) 

stand.lda  

predict(stand.lda, testing)$class 

# 3.3.Minimum Sum of Error-Squared using standardizated data  
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tstand<-t(stand.dat) 

ystand<-cbind(y0,tstand) 

I<-ginv(t(ystand[1:40,])%*%ystand[1:40,]) 

astand<- I%*%t(ystand[1:40,])%*%b[1:40,] 

astand 

testing<- ystand[41:62,] 

testing%*%astand 

Program five: Classification using 20 training samples vs. 42 testing samples 

rm(list=ls(all=TRUE)) # clear all previous data 

library(MASS) 

library(affy) 

library(preprocessCore) 

# read in the data 

colon.dat<-read.table("C:/Users/bo.liu/Desktop/R/I2000.txt",header=FALSE,sep= ' ') 

# convert from a list to a matrix format 

colon.dat<-data.matrix(colon.dat) 

# 1. Classification - Using log-transformed data.(Use 30 samples as training set and 

32 as testing.) 

# 1.1.Log-transformed Data 

logcolon.dat<-log2(colon.dat) 
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logcolon.dat<-data.matrix(logcolon.dat) 

# 1.2.Linear discriminant analysis using log-transformed data 

T <- c(1,3,5,7,9,11,13,15,17,19,21,23,25:38,40,41,44:47,49,52,53,56:59,61) 

N <- c(2,4,6,8,10,12,14,16,18,20,22,24,39,42,43,48,50,51,54,55,60,62) 

V2001 <- array(0,62); V2001[N] <- 2; V2001[T] <- 1 

augmentlog.dat<-rbind(logcolon.dat,V2001) 

tauglog<-t(augmentlog.dat) 

tauglog<-data.frame(tauglog) 

training<-tauglog[1:20,] 

testing<-tauglog[21:62,] 

log.lda<- lda(V2001 ~ .,data=training) 

log.lda  

predict(log.lda, testing)$class 

# 1.3.Minimum Sum of Error-Squared using log-transformed data 

group <- array(0,62); group[N] <- 1; group[T] <- -1 

b<- data.matrix(group) 

y0<-array(rep(1,62),dim=c(62,1)) 

tlog<-t(logcolon.dat) 

ylog<-cbind(y0,tlog) 

I<-ginv(t(ylog[1:20,])%*%ylog[1:20,]) 
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alog<- I%*%t(ylog[1:20,])%*%b[1:20,] 

alog 

testing<- ylog[21:62,] 

testing%*%alog 

# 2. Classification - Using Quantile Normalized Data 

# 2.1.Quantile Normalization     

quan.dat<-normalize.quantiles(logcolon.dat,copy=TRUE) 

# 2.2.Linear discriminant analysis using quantile normalized data 

augmentquan.dat<-rbind(quan.dat,V2001) 

taugquan<-t(augmentquan.dat) 

taugquan<-data.frame(taugquan) 

training<-taugquan[1:20,] 

testing<-taugquan[21:62,] 

quan.lda<- lda(V2001 ~ .,data=training) 

quan.lda  

predict(quan.lda, testing)$class 

# 2.3.Minimum Sum of Error-Squared using quantile normalized data  

tquan<-t(quan.dat) 

yquan<-cbind(y0,tquan) 

I<-ginv(t(yquan[1:20,])%*%yquan[1:20,]) 
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aquan<- I%*%t(yquan[1:20,])%*%b[1:20,] 

aquan 

testing<- yquan[21:62,] 

testing%*%aquan 

# 3. Classification - Using Standardized Data 

# 3.1.Standardization (with MAD) 

mad.dat<-c(1:2000) 

 for (i in 1:2000){ 

 mad.dat[i]<-mad(colon.dat[i,], constant=1)} 

mean.dat<-c(1:2000) 

 for(i in 1:2000){ 

 mean.dat[i]<-mean(colon.dat[i,])} 

stand.dat<-matrix(nrow=2000,ncol=62) 

 for(i in 1:2000){ 

 stand.dat[i,]<-c(1:62) 

 for (j in 1:62){ 

 stand.dat[i,j]<-(colon.dat[i,j]-mean.dat[i])/mad.dat[i]}} 

stand.dat<-data.matrix(stand.dat) 

# 3.2.Linear discriminant analysis using standardizated data 

augmentstand.dat<-rbind(stand.dat,V2001) 
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taugstand<-t(augmentstand.dat) 

taugstand<-data.frame(taugstand) 

training<-taugstand[1:20,] 

testing<-taugstand[21:62,] 

stand.lda<- lda(V2001 ~ .,data=training) 

stand.lda  

predict(stand.lda, testing)$class 

# 3.3.Minimum Sum of Error-Squared using standardizated data  

tstand<-t(stand.dat) 

ystand<-cbind(y0,tstand) 

I<-ginv(t(ystand[1:20,])%*%ystand[1:20,]) 

astand<- I%*%t(ystand[1:20,])%*%b[1:20,] 

astand 

testing<- ystand[21:62,] 

testing%*%astand 
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