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Abstract

In this paper, the dynamics of spring-block models are studied. A brief overview

of the history of spring-block models relating to earthquakes is presented, along

with the development of friction laws. Several mathematical topics relating to

dynamical systems are also discussed. We consider two spring-block models;

one with Dieterich-Ruina rate and state dependent friction and another with a

modified Dieterich-Ruina style friction. For each system, the qualitative behavior

and numerical solutions are presented. In the first case, we find that the system

undergoes a Hopf bifurcation from a stationary solution to a periodic orbit, and

eventually transitions to chaos. In the latter case, we find that a stationary solution

exists along with the conditions for a Hopf bifurcation to occur. We develop the

mathematical framework to compute periodic and chaotic behavior for the system.

Future work will be to develop more efficient algorithms to perform the actual

computations.
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Chapter 1

Introduction

For many years earthquakes were understood soley through laboratory models and

theory. Seismology lacked a mathematical foundation upon which computations

could be made. As a result, there was no comparison for the quantitative features

of theory and the observations in nature. Burridge and Knopoff sought to construct

a mathematical description of earthquake mechanism and the correlation between

sequential earthquakes in time and space. In particular, they were interested in the

role that friction played in regard to earthquake mechanism [BK67].

Earthquakes occur on pre-existing faults. Burridge and Knopoff demonstrated

that a slider-block pulled by a spring can be used to model the behavior of an

earthquake fault. The slider block is coupled by a spring to a velocity driver, as

depicted in Figure 1.1. The block interacts with the rough surface through friction.

The frictional force holds the block in place until it is overcome by the force of the

spring. Once the frictional resistance is surpassed by the spring, slip occurs. The

slip represents an earthquake on a fault. The extension of the spring represents the

elastic strain in the rock adjacent to the fault. This behavior is classified as stick-slip

behavior [Tur97].

Burridge and Knopoff’s model analyzed the equations of motion, taking into

account the frictional interaction of the block and the surface upon which the block

1
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





Figure 1.1: Spring-Block Model

slips. Their friction term was a linear function of velocity which included the

effects of instability, seismic radiation, and viscosity [BK67]. Many studies have

been done on these spring-block models. There have been numerous attempts at

improving the models in order to produce more realistic fault behavior. It has been

shown that one of the most important factors in laboratory model improvement is

the friction constitutive laws [EL08]. The introduction of slip rate and state variable

constitutive laws for rock friction by Dieterich, Ruina, and Rice in the 1980s form a

basis for the friction laws commonly used today. By studying constitutive friction

laws, it was determined that a simple velocity-dependent friction law was not

adequate in replicating the behavior of a fault [Mar98]. Thus, the friction law

used by Burridge and Knopoff needed modification. Using the laboratory-derived

friction laws, Dieterich, Ruina, Rice, and others made improvements to the friction

laws used by Burridge and Knopoff [EL08]. While earlier friction laws limited
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modeling laboratory data and seismic behaviors, such as repeated stick-slip failure

and the seismic cycle, the incorporation of the rate and state friction laws resolved

these problems [Mar98]. By incorporating the state variable, traits characteristic

of faulting, such as stick-slip phenomena, fault healing, and memory effects were

exhibited by models. The state variable is often interpreted as the amount of

asperity contact between the model block and the surface upon which it slides.

Fault healing refers to the process by which a fault recovers its strength due to

the increase of static friction, whereas memory effects refers to the idea that the

recurrence time of previous of earthquakes plays an important role in fault rupture

[EL08], [Sch02]. For more details on model improvement and friction laws see

Marone [Mar98].

In Chapter 2 we begin with an overview of the mathematics involved in this

paper. Chapter 3 will examine the model from Erickson’s paper, a model which

was originally proposed by Raúl Madariaga [EL08]. This spring block model uses

Dieterich-Ruina style friction, which takes into account the previously mentioned

slip rate and state variable. In addition, Dieterich-Ruina style friction incorporates

a logarithmic term. As we will see, this nonlinear term poses added difficulty in

solving the problem [EL08]. Then, in Chapter 4, we will propose a modified version

of the model introduced in Chapter 3. For the modified model, we will examine

the dynamics and compare them with the dynamics of the model in Chapter 3. We

will conclude the paper by discussing future work.



Chapter 2

Preliminaries

The motion of the spring-block can be modeled by a system of ordinary nonlinear

differential equations. In order to analyze the dynamics of this system, we first

must be familiar with the mathematics involved. Commonly, systems of ordinary

differential equations (ODEs) are difficult, if not impossible, to solve analytically.

Due to this characteristic, we often analyze the problem in terms of qualitative

features. To perform a qualitative analysis of the system, we must be familiar with

certain concepts, such as nondimensionalization, fixed points and their stability,

bifurcation theory, Poincaré maps, chaos, and Lyanpunov exponents. Chapter 2

will begin with an overview of these concepts. Since the system we are working

with cannot be solved analytically, we will also need to discuss numerical meth-

ods and how they apply to the problem. Lastly, when the modified system is

introduced, we will find a need to approximate a discontinuous function. We will

introduce a mollifier, which allows us to provide a smooth approximation for our

discontinuous function.

4
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2.1 Nondimensionalization

A useful technique in analyzing a first-order system is to express the system of

equations in dimensionless form. By creating a dimensionless system, we are able

to define small as being much less than 1. In addition, nondimensionalizing the

system reduces the number of parameters [Str94]. To put a system into nondimen-

sional form, we must nondimensionalize each equation. The two-step procedure

outlined by Lin and Segel [LS74] can be generalized to a system of equations. First,

we make a list of all the parameters and variables in the system, making note of

their dimensions. Next, we examine each variable. For each variable, we must

form a combination of parameters with the same dimension as the variable. Typ-

ically, there is more than one way to form this combination of parameters. For

example, let x be a variable and let p be a combination of parameters with the

same dimension as x. Introduce the nondimensional variable, x̂, and set x̂ = x/p.

Equivalently, we could write x = px̂. We must nondimensionalize time in the same

way, whether our differential equation is autonomous or non-autonomous. Once

we have defined our dimensionless variables, it is a matter of substitution into the

system of equations. This substitution requires the chain rule [LS74]. To express

the derivatives with respect to the new time, we must implement the chain rule.

For instance,

ẋ =
dx
dt

=
dx
dt̂

dt̂
dt

(2.1)

where t̂ is the dimensionless time [Str94]. We do this for each equation and sub-

stitute the new dimensionless variables and parameters as appropriate. Once the
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substitutions are complete, it is common to carry out further calculations and form

new dimensionless parameters [LS74]. New dimensionless parameters are formed

by grouping the original parameters [Str94]. These new dimensionless parameters

are often referred to as dimensionless groups. A properly nondimensionalized

problem will yield only dimensionless groups [LS74]. In this paper, we will take

our system of nonlinear ODEs and work through the steps to nondimensional-

ize it. Using this dimensionless system, we will then be able to examine several

qualitative features of the system, such as equilibria and their stabilities, as well as

bifurcations.

2.2 Fixed Points and Stability

For a given system of equations of the form

ẋ1 = f1(x1, x2, ..., xn)

ẋ2 = f2(x1, x2, ..., xn)

...

ẋn = fn(x1, x2, ..., xn)

(2.2)

where each fi is a given function, we can perform qualitative analyses. The system

can be written more compactly as

ẋ = f(x) (2.3)

where x = (x1, x2, ..., xn) and f(x) = ( f1(x), f2(x), ..., fn(x)). Fixed points, x∗, of the

system satisfy f(x∗) = 0. Fixed points represent steady states or equilibria of the

system. Another prominent feature of the system is closed orbits, which represent
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periodic solutions. In other words, closed orbits occur when x(t + T) = x(t) for

all t, for some T > 0. Due to this property, closed orbits are often referred to as

periodic orbits. The stability or instability of these fixed points and periodic orbits

are of interest in analyzing the dynamics of a system. To obtain information about

stabilities, we look to linearizing the system. By linearizing the system, we are

able to use the Jacobian in our computations. Computing the eigenvalues of the

Jacobian matrix at each fixed point will determine the stability of each fixed point.

The Jacobian, J, is a matrix of first partial derivatives of each fi:

J(x) =



∂ f1

∂x1

∂ f1

∂x2
...

∂ f1

∂xn
∂ f2

∂x1

∂ f2

∂x2
...

∂ f2

∂xn
...

...
. . .

...

∂ fn

∂x1

∂ fn

∂x2
...

∂ fn

∂xn


(2.4)

Let A denote the Jacobian evaluated at a fixed point. The eigenvalues of A will

determine the stability of a fixed point. The eigenvalues of A can be found by

solving the characteristic equation det(A − λI) = 0 for λ, where λ is an eigenvalue

of A and I is the identity matrix. If all of the eigenvalues of A have a positive real

part, then the fixed point can be classified as a source, or a repeller. When all of the

eigenvalues of A have a negative real part, the fixed point is a sink, or an attractor.

If some of the eigenvalues of A have a positive real part, while the rest have a

negative real part, we classify the fixed point as a saddle. Sinks are stable, whereas

sources and saddles are unstable [Str94], [Wig03]. There are also marginal cases

to consider, and these occur when at least one eigenvalue has a real part equal to

zero. In some of these marginal cases we may encounter centers, meaning the fixed
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point is surrounded by closed orbits. However, in marginal cases the linearization

may incorrectly predict the local behavior of the system. Eigenvalues with a zero

real part often coincide with a change of stability in the system [Str94].

2.3 Bifurcations

It is possible for fixed points and periodic orbits of a system to be created, de-

stroyed, or to even change stability. Bifurcations represent qualitative changes in

the dynamics of a system. As some control parameter is varied, bifurcations show

the transitions or instabilities of a system. Bifurcations can also describe how os-

cillations can be turned on or off [Str94]. In this paper, we will be interested in

a particular type of bifurcation known as a Hopf bifurcation. A Hopf bifurcation

occurs when a periodic orbit surrounding a fixed point emerges from the fixed

point [Str94]. Figure 2.1 shows a Hopf bifurcation in a plane. From left to right,

the first image shows a stable fixed point, x∗. In the middle image, the fixed point

loses its stability and a stable periodic orbit begins to grow from the fixed point.

The final image displays the attracting periodic orbit that bifurcated from the now

unstable fixed point.

We are interested in the case where the matrix A from Section 2.2 has a pair of

purely imaginary eigenvalues with the remaining eigenvalues having nonzero real

parts. Hence, if we have a system with a pair of complex eigenvalues and all other

eigenvalues with a nonzero real part, there is a chance the system may undergo a

Hopf bifurcation [Str94], [Wig03]. When a pair of complex conjugate eigenvalues

cross the imaginary axis, the fixed point will bifurcate into a periodic orbit, thus
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Figure 2.1: Hopf Bifurcation

changing the dynamics of the system [EL08], [Str94], [Wig03].

In this paper, we will see that each system undergoes a Hopf bifurcation, mean-

ing for certain parameter values the spring-block model has a stable fixed point.

As the parameters are varied, this fixed point loses its stability and a stable peri-

odic orbit grows from the fixed point. The Hopf bifurcation will be evident in our

numerical simulations. A period doubling bifurcation also occurs [EL08], meaning

that a period n orbit loses its stability and from it, a period 2n orbit is produced.

The periodic orbit that forms as the result of a Hopf bifurcation will be a period

one orbit. We will witness the period one orbit bifurcating into a period 2 orbit,

a period 2 orbit bifurcating into a period 4 orbit, and so on [EL08]. However, the

period doubling bifurcations are not as obvious in our numerical simulations. We

will rely on Poincaré maps to determine the period of an orbit.

2.4 PoincaréMaps

Using a Poincaré map, a continuous time system may be viewed as a discrete

time system. Poincaré maps are advantageous in several ways when it comes to
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studying ordinary differential equations. Not only do Poincaré maps reduce the

dimension of the problem, but they also offer insight to the global dynamics of the

system. These maps will be particularly useful in that they allow us to deduce

the stability properties of periodic orbits [Wig03]. Recall the n-dimensional system

(2.3). Consider a periodic solution in the n-dimensional phase space. Let S be an

(n− 1)-dimensional local cross section of a periodic solution which is transverse to

the flow [GH90], [Str94]. In other words, the flow runs through S, and not parallel

to S. We are interested in the points at which the flow trajectory intersects S. The

Poincaré map, P, is a mapping from S to itself, defined by xk+1 = P(xk), where xk ∈ S

is the kth intersection, as is shown in Figure 2.2. A fixed point of P corresponds to

a period one orbit in the phase space. Period two orbits will produce two points

in P, and in general, a period p orbit will appear as p points in the Poincaré map.

Randomly distributed points will represent chaotic orbits. Typically, fixed points

of (2.3) will not appear on P [EL08], [Str94]. While Poincaré maps are useful, it

is difficult or often impossible, to find a formula for P [Str94]. Thus, we rely on

numerical methods to produce a Poincaré map.

2.5 Chaos

Although there is currently no universally accepted definition for chaos, there is a

general consensus on the three elements used in the following definition: “Chaos

is aperiodic long-term behavior in a deterministic system that exhibits sensitive

dependence on initial conditions” [Str94]. “Aperiodic long-term behavior” implies

that the system has trajectories which do not settle down to fixed points or periodic
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Figure 2.2: Poincaré Map

orbits. In other words, there are no attracting fixed points or periodic orbits in the

system. A “deterministic” system is one in which there are no random or noisy

inputs or parameters. This implies that the irregular behavior of the system is due

to its nonlinearity. “Sensitive dependence on initial conditions” means that two

trajectories that start close together may rapidly diverge from each other, making it

difficult to predict the long term behavior of a system. An attractor is an invariant

set in which all neighboring trajectories converge. Sinks and stable period orbits

are examples of attractors. There is another kind of attractor, known as a strange

attractor, or chaotic attractor. A strange attractor exhibits sensitive dependence

on initial conditions. In a strange attractor, solutions oscillate in an irregular

fashion, never exhibiting periodic behavior or settling down to fixed points, but

always remaining in a bounded region of the phase space [Str94]. As mentioned

previously, we will encounter sinks and stable periodic orbits for certain parameter

values. In addition we will encounter a strange attractor [EL08]. To verify that this

attractor is strange, we must determine if it exhibits sensitive dependence on initial
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conditions. One method for determining if a system exhibits sensitive dependence

on initial conditions is by computing the Lyapunov exponents of the system.

2.6 Lyapunov Exponents

Computing the Lyapunov exponents of a system will indicate whether or not the

system is chaotic. Lyapunov exponents represent the rate at which neighboring

trajectories separate. An n-dimensional system can have up to n distinct Lyapunov

exponents [Str94]. For a given point on an attractor, x(t), at time t, consider a

nearby point, x(t) + δ(t), where δ is a small separation vector of initial length ||δ0||.

The divergence between these two points can be expressed by ||δ(t)|| ∼ ||δ0||e`t,

where ` is the Lyapunov exponent [Str94]. A positive value of ` indicates that the

two points on the trajectory are pushing away from each other. In other words, a

positive Lyapunov exponent means that two nearby points are rapidly diverging

from each other, implying a sensitive dependence on initial conditions. Thus, if we

can find one positive Lyapunov exponent, the system will be chaotic [Str94]. The

computation of the Lyapunov exponents requires both the solution to the system

of differential equations and its linearization. Numerical methods are often used

to compute the Lyapunov exponents [Mei07].

2.7 Numerical Analysis

Nonlinear problems are difficult to solve. In most cases, nonlinear systems are

impossible to solve analytically. When a system cannot be solved analytically,

we must implement numerical methods to formulate an approximation to the
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solution. The nonlinear system used to model the dynamics of the spring-block

model is a stiff system [EL08]. Stiff systems have rapid changing solutions as

parameters are varied [Hol07]. The most popular numerical methods for stiff

problems are the backward difference formulas (BDF). Together with a modified

Newton’s method, the BDF methods are implemented to solve nonlinear systems,

y′ = f(t,y), numerically [AP98]. Using a second order BDF, y′ can be approximated

by

y′ =
3yn − 4yn−1 + yn−2

2h
(2.5)

[EL08]. We can obtain y2 from the initial condition y1 by using Euler’s method

y2 = y1 + h ∗ f(t1,y1). (2.6)

Now that we have y1 and y2, we are ready to implement the BDF scheme

3yn − 4yn−1 + yn−2 = 2hf(tn,yn) (2.7)

=⇒ 3yn − 4yn−1 + yn−2 − 2hf(tn,yn) = 0. (2.8)

We rewrite the scheme as above, setting it equal to zero. This allows us to apply

Newton’s method at each time step to solve the root problem. Let

g(yn) = 3yn − 4yn−1 + yn−2 − 2hf(tn,yn) (2.9)

=⇒ g′(yn) = 3I − 2hDf(tn,yn) (2.10)

where Df is the Jacobian of f. Applying Newton’s method to the function g(yn) for

each fixed time step n, we find the (ν + 1)th Newton iteration is given by

yν+1
n = yνn − (3I − 2hDf(tn,yνn))−1(3yνn − 4yn−1 + yn−2 − 2hf(tn,yνn)) (2.11)

[EL08]. In the work to follow, we will apply (2.11) to our system.
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2.8 Mollifiers

The BDF (2.11) requires the computation of the Jacobian. In Chapter 4, we introduce

the modified system which has a piecewise defined, discontinuous friction func-

tion. This discontinuous function poses a problem when attempting to compute

the Jacobian. In order to compute the Jacobian, we must take derivatives, which

means we need to be working with smooth, continuous functions. To make each

equation in the system differentiable, we must approximate the piecewise function

with a smooth, continuous function. We make this approximation using a mollifier.

A mollifier is a smoothing equation satisfying three properties. For details on these

properties see Hormander[Hor90]. The mollifier we choose to use is

ϕ(x) =


exp

(
−1

1−x2

)
if |x| < 1

0 if |x| ≥ 1.

Let f (x) be the function we are trying to approximate. Using a convolution of f

and ϕ, our smoothing function is defined as

Φε( f )(x) =

∫
R

ϕε(x − y) f (y)dy (2.12)

where

ϕε(x) = ε−1ϕ
(x
ε

)
(2.13)

[Fri44]. In Chapter 4, we will apply the method above to our modified system.



Chapter 3

Spring-BlockModel with Dieterich-Ruina Friction

To simulate the motion of the spring-block model in Figure 1.1, we consider the

single degree of freedom oscillator presented in the Erickson et al. paper [EL08].

Using Dieterich-Ruina rate and state dependent friction, the equations of motion

are as follows

θ̇ = −
v

Dc

(
θ + Blog

( v
v0

))
(3.1)

u̇ = v − v0 (3.2)

v̇ = −
1
M

(
ku + θ + Alog

( v
v0

))
, (3.3)

where θ, u, and v are the state variable, slip, and velocity, respectively. In this

system, the slip of the slider-block is considered relative to the driver plate. The

spring-block model represented by this system is analogous to one-dimensional

earthquake motion. M is the mass of the spring block and k is the spring constant,

which represents the elastic properties of the rock adjacent to the fault. Dc is the

critical sliding distance, which according to Dieterich, is the slip necessary to renew

asperities [Mar98]. A and B are empirical constants relating to friction stress [EL08].

15
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3.1 Nondimensionalization of the System

By defining new dimensionless variables θ̂, v̂, û, t̂ and by setting θ = Aθ̂, v = v0v̂,

u = Dcû, and t =
(Dc

v0

)
t̂, we can non-dimensionalize the system of equations

(3.1), (3.2), and (3.3) [EL08]. We will start with (3.1). We first find θ̇ in terms

of the dimensionless time, t̂, and then proceed by substituting the dimensionless

parameters into (3.1) and solving for θ̂, as follows,

θ̇ =
dθ
dt

=
dθ
dt̂

dt̂
dt

=
(Av0

Dc

) dθ̂
dt̂

(3.4)

=⇒
(Av0

Dc

) dθ̂
dt̂

=
−v0v̂
Dc

(
Aθ̂ + B log

(vov̂
v0

))
(3.5)

=⇒
dθ̂
dt̂

= −v̂
(
θ̂ +

A
B

log(v̂)
)

(3.6)

= −v̂
(
θ̂ +

(B
A

+
A
A
−

A
A

)
log(v̂)

)
(3.7)

= −v̂
(
θ̂ +

(
1 +

B − A
A

)
log(v̂)

)
(3.8)

=⇒ ˙̂θ = −v̂
(
θ̂ + (1 + ε) log(v̂)

)
(3.9)

where ε =
B − A

A
. (3.10)

Similarly, for (3.2) and (3.3),

u̇ =
du
dt

=
du
dt̂

dt̂
dt

= v0
dû
dt̂

(3.11)

=⇒ v0
dû
dt̂

= v0v̂ − v0

=⇒
dû
dt̂

= v̂ − 1

=⇒ ˙̂u = v̂ − 1
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v̇ =
dv
dt

=
dv
dt̂

dt̂
dt

=

(
v2

0

Dc

)
dv̂
dt̂

(3.12)

=⇒

(
v2

0

Dc

)
dv̂
dt̂

=
(
−

1
M

) [
kDcû + Aθ̂ + A log

(v0v̂
v0

)]
(3.13)

=⇒
dv̂
dt̂

=

(
−

Dc

v2
0M

) [
kDcû + Aθ̂ + A log(v̂)

]
(3.14)

=

(
−

kD2
c

v2
0M

) [
û +

( A
kDc

)
(θ̂ + log(v̂))

]
(3.15)

= −

(
k
M

) (Dc

v0

)2 [
û +

( A
kDc

)
(θ̂ + log(v̂))

]
(3.16)

=⇒ v̇ = −γ2
[
û +

(1
ξ

)
(θ̂ + log(v̂))

]
(3.17)

where γ =
Dc

v0

√
k
M

and ξ =
kDc

A
. (3.18)

For convenience we will return to the use of θ, v, u, and t. The non-dimensional

system now has the form,

θ̇ = −v(θ + (1 + ε) log(v)) (3.19)

u̇ = v − 1 (3.20)

v̇ = −γ2
[
u +

1
ξ

(
θ + log(v)

)]
, (3.21)

where ε is a measure of the sensitivity to velocity relaxation, ξ is the nondimensional

spring constant, and γ is the nondimensional frequency [EL08]. We will refer to

this system as (3.19) − (3.21).
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3.2 The Stationary Solution

To find any stationary solutions, or fixed points of the nondimensional system

(3.19) − (3.21) , we must find solutions that satisfy

θ̇ = 0

u̇ = 0

v̇ = 0.

Examining (3.20), we find

u̇ = 0 =⇒ v − 1 = 0 =⇒ v = 1. (3.22)

Setting θ̇ = 0 and substituting v = 1 into (3.19) yields

θ̇ = 0 =⇒ −1(θ + (1 + ε) log(1)) = 0 =⇒ θ = 0. (3.23)

Setting v̇ = 0 and substituting v = 1 and θ = 0 into (3.21) yields

v̇ = 0 =⇒ −γ2
[
u +

1
ξ

(0 + log(1))
]

= 0 =⇒ u = 0. (3.24)

Hence the system has one fixed point at (θ,u, v) = (0, 0, 1). This fixed point repre-

sents steady sliding which in terms of the model means the block and the driver

plate are moving at the same rate. The block is not moving relative to the driver

plate and thus the slip is zero [EL08].

3.3 Eigenvalue Analysis

By examining the Jacobian matrix at the stationary solution, we can determine any

changes in stability of the system. Particularly, the eigenvalues of this matrix will
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help determine what parameter values lead to bifurcations of the fixed point. The

Jacobian matrix for the non-dimensional system is

J =


∂θ̇
∂θ

∂θ̇
∂u

∂θ̇
∂v

∂u̇
∂θ

∂u̇
∂u

∂u̇
∂v

∂v̇
∂θ

∂v̇
∂u

∂v̇
∂v


=


−v 0 −θ − (1 + ε)(1 + log(v))

0 0 1

−
γ2

ξ
−γ2

−

(
γ2

ξ

) (1
v

)

. (3.25)

Let A be the Jacobian matrix evaluated at the fixed point (0, 0, 1). Then,

A =


−1 0 −(1 + ε)

0 0 1

−
γ2

ξ
−γ2

−
γ2

ξ


. (3.26)

To compute the eigenvalues of the system (3.19) − (3.21), we begin by finding the

characteristic equation of A, as described in Section 2.2. The characteristic equation

of A is found to be

λ3 + λ2

(
1 +

γ2

ξ

)
+ λ

(
γ2
−
γ2ε

ξ

)
+ γ2 = 0. (3.27)

We can simplify the above expression as follows,

λ3 + c2λ
2 + c1λ + c0 = 0 (3.28)

where

c2 = 1 +
γ2

ξ
(3.29)

c1 = γ2
−
γ2ε

ξ
(3.30)

c0 = γ2. (3.31)
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Now, finding the eigenvalues of A is equivalent to finding the roots of the cubic

equation (3.28). As demonstrated by Zhao and Milner [ZM08], we can use the cubic

formula from algebra to determine the types of roots of a polynomial in terms of

their discriminant. The following lemma can be found in many algebra textbooks.

Lemma 3.1 Let x3 + c2x2 + c1x + c0 be a third order polynomial and define its discriminant

as

D̄ =

(
3c1 − c2

2

9

)3

+

(
9c1c2 − 27c0 − 2c3

2

54

)2

.

If D̄ > 0, one root of the polynomial is real and two are complex conjuagtes; if D̄ = 0,

all roots are real and at least two are equal; and if D̄ < 0, all roots are real and unequal

[ZM08].

By Lemma 3.1, the discriminant of (3.28) is

D̄ =


3
(
γ2
−
γ2ε

ξ

)
−

(
1 +

γ2

ξ

)2

9


3

+


9
(
γ2
−
γ2ε

ξ

) (
1 +

γ2

ξ

)
− 27

(
γ2)
− 2

(
1 +

γ2

ξ

)3

54


2

.

(3.32)

The transition to chaos for the system is controlled by ε [EL08], so we will be

interested in varying the parameter ε. For fixed values of γ and ξ, we can view

the discriminant as a function of epsilon. This allows us to determine the value

of the discriminant for various values of ε. We find that for small values of ε,

D̄ < 0, implying the existence of one real eigenvalue and two complex conjugate

eigenvalues. Fix γ = 0.8 and ξ = 0.8 and consider ε. Plotting the discriminant

versus ε for these values we can see that when ε ≈ 3.4, D̄ = 0. See Figure 3.1.
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Figure 3.1: Discriminant Plot for (ε, ξ, γ) = (ε, 0.8, 0.8)

Hence, for ε < 3.4 the system (3.19)− (3.21) has one real eigenvalue and a pair of

complex conjugate eigenvalues. To further investigate the eigenvalues of A we can

plot the eigenvalues as a function of ε, as seen in Figures 3.2 and 3.4. From the plot

in Figure 3.2, it is clear that when A has a pair of complex conjugate eigenvalues

the other eigenvalue is negative. Since the system has a pair of complex conjugates

and a non-zero real eigenvalue, there is a possibility that the system undergoes

a Hopf bifurcation. For a Hopf bifurcation to occur, the real part of the complex

eigenvalues must cross the imaginary axis. Namely, we want the sign on the real

part of the complex values to change. Using the same parameter values, we plot

the real part of the eigenvalues in Figure 3.3. Analyzing the plot, it is clear that a

Hopf bifurcation occurs. The real eigenvalue remains negative while the complex

conjugate pair begins with a negative real part and then crosses the x-axis around

ε = 0.39, changing the real part to a positive value. For ε < 0.39, the system has
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a spiral sink near the fixed point since all of the eigenvalues have a negative real

part. When eigenvalues cross the imaginary axis, the fixed point loses its stability

and a periodic orbit surrounding the fixed point is born from the fixed point. We

run a similar analysis for the values γ = 100 and ξ = 1 and again find that the

system undergoes a Hopf bifurcation. See Figures 3.4 and 3.5. Note that in both of

these figures, a real eigenvalue exists at a value of approximately −104, but due to

scaling is not in the plot.

2 4 6 8 10

-3

-2

-1

1

2

3

Figure 3.2: Eigenvalues for (ε, ξ, γ) = (ε, 0.8, 0.8)

Figure 3.3: Real part of Eigenvalues for (ε, ξ, γ) = (ε, 0.8, 0.8)
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Figure 3.4: Eigenvalues for (ε, ξ, γ) = (ε, 1, 100)

Figure 3.5: Real part of Eigenvalues for (ε, ξ, γ) = (ε, 1, 100)
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In general, for a fixed ξ and γ, we find that the system begins with one negative

eigenvalue and a pair of complex conjugate eigenvalues with negative real part.

As ε is increased, the real part of the complex eigenvalues becomes positive and

the system undegoes a Hopf bifurcation. It appears that the larger the value of

γ, the more negative the real eigenvalue becomes. These figures agree with the

observation that Erickson et al. made; as γ is increased, the minimum eigenvalue

decays toward negative infinity [EL08]. This is important because as the eigenval-

ues become more negative, the system becomes stiffer. Erickson et al. cited realistic

values of γ in the range of 104
− 1012 [EL08].

3.4 NumericalMethods

Since the system is stiff, popular numerical methods such as Euler’s method and

explicit Runge-Kutta, are numerically unstable, requiring very small time steps

to ensure numerical stability [AP98], [EL08]. Mathematical computing software

has built in numerical solvers for systems of ordinary differential equations. Using

basic built in solvers in Mathematics and Maple yielded poor results for the system.

In MATLAB, certain solvers, such as ode23 and ode23tb, which are based off of a

trapezoidal rule and an implicit Runge-Kutta respectively, are intended for solving

stiff systems. According to MathWorks, the best accuracy and fastest simulation

speed is typically achieved with ode23tb for stiff systems [Inc12]. Applying the

ode23tb solver to the nondimensional system produced reasonable results for small

values of ε and γ. For larger values of ε and γ, MATLAB warned that the system

was encountering imaginary parts in its computations. The imaginary values
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found with the ode23tb solver indicate that the step size must be smaller. When

the velocity value approaches 0, problems can arise if the step size is not small

enough. When the step size is too large, the velocity may assume zero or negative

values, consequently producing imaginary or undefined values for log(v) and an

inaccurate solution to the problem. Thus, we must write our own scheme, one in

which we can control the step size. Erickson et al. had success using a backward

differentiation formula, and thus we choose to use a BDF as well. We implement

(2.11) from the preliminaries

yν+1
n = yνn − (3I − 2hDf(tn,yνn))−1(3yνn − 4yn−1 + yn−2 − 2hf(tn,yνn)) (3.33)

where

yνn =


θνn

uνn

vνn


(3.34)

f(tn,yνn) =


−vνn(θνn + (1 + ε) log(vνn)

vνn − 1

−γ2(uνn +
1
ξ

(θνn + log(vνn))


(3.35)

Df =


−vνn 0 −θνn − (1 + ε)(log(vνn) + 1)

0 0 1

−
γ2

ξ
−γ2

(
−
γ2

ξ

) (
1
vνn

)


(3.36)

[EL08]. See the appendix for the MATLAB code, BDF.m, for implementing this

scheme.

Although the BDF is a stable scheme, we still have to deal with the nonlinearity

of the logarithmic term. Our time step is restricted despite the stability of the
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scheme. High values of γ will restrict our step size to an even smaller value

[EL08]. Taking the time step small enough will result in the the velocity value

being positive. Like with ode23tb, our scheme will become inaccurate if the time

step is too large.

3.5 Numerical Simulations

Solving the system numerically, we find that varying the parameter values, (ε, ξ, γ),

changes the dynamics of the system. When ε is small, numerical simulations result

in either stationary solutions or orbits of period one or two. Erickson used a

Poincaré map to construct a bifurcation diagram for the system as ε is varied [EL08].

The system begins with an attracting fixed point. As the system undergoes a Hopf

bifurcation, an attracting period one orbit is produced from the fixed point. When

the period one orbit is born, the fixed point exists in the system but is no longer

stable. The attracting periodic orbit is verified by the attracting fixed point for the

Poincaré map. In the bifurcation diagram, the fixed point representing the period

one orbit bifurcates into two points, corresponding to a periodic orbit that has

”split” into a longer cycle. The period two orbit is attracting, whereas the period one

orbit is now unstable. Period-doubling bifurcations continue, eventually leading

to a region where chaos emerges [EL08]. The random distribution of points on a

Poincaré map represents chaotic behavior. Once the system is chaotic, all periodic

orbits and fixed points are unstable.

While we were not able to construct a bifurcation diagram of our own, we can

use numerical simulations to prove that the bifurcations occur. We can confirm the
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occurrence of a Hopf bifurcation for fixed ξ = 0.8 and γ = 0.8 as ε is varied from

0.2 to 1.9 by plotting the corresponding phase space for each ε. Figures 3.6 and 3.7

represent a stationary solution, whereas Figures 3.10 and 3.11, show a solution after

the Hopf bifurcation has occurred. Similarly, Figure 3.9 shows a spiral sink, and as

ε is increased, a periodic orbit is born in Figure 3.13. Without the corresponding

Poincaré map, we cannot determine the period of the orbit. However, in order for

the orbits of period two or higher in the period-doubling cascade to exist, a period

one orbit must have existed and been stable for some range of epsilon. Hence, in

each case the system has undergone a Hopf bifurcation.

Figures 3.7 and 3.9 represent a stationary solution. In both cases, all the eigen-

values have a negative real part, resulting in a spiral sink near the fixed point. The

spiral sink in the phase space indicates that trajectories are moving toward the fixed

point (0, 0, 1) as time progresses. In the corresponding time series plots of θ, u, and

v versus time we can see that each value oscillates and then eventually settles to the

fixed point. See Figures 3.6 and 3.8. As time passes, the velocity becomes constant

at v = 1. Here, the velocity of the block is the same as the velocity of the driver

plate; steady sliding. The slip of the block relative to the driver plate becomes zero,

as does the state variable (asperity contact). Physically, the block is sliding at the

same rate as the driver plate so no slip is occurs [EL08].

Periodic orbits can be observed in the phase space of Figures 3.11 and 3.13.

The orbits are of at least period one. The corresponding time series plots describe

the relationship between the state variable, slip, and velocity at any given time.

As the velocity reaches it maximum, the slip increases. Then, as the velocity ap-

proaches zero, the slip decreases. Physically, the block is approaching its maximum
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displacement ahead of the block when the velocity is at its maximum. Just after

the velocity reaches its minimum, the block reaches its maximum displacement

behind the block. As the velocity increases, the state variable decreases. In terms

of the spring-block model, the faster the block is moving, the less asperity contact

the block has with the surface. It follows that the slower the block is moving,

the greater the asperity contact between the block and the surface. This is repre-

sented in the time series by when the velocity approaches zero, the state variable

increases. This relationship is easily recognized in the time series and the phase

space for (θ,u, v) = (2, 1.2, 1), as shown in Figures 3.14 and 3.15

Numerically, we were able to simulate an attractor. See Figure 3.16. According

to Erickson et al., choosing ε = 12 should produce a strange attractor. Erickson

et al. used the Fourier power spectrum to prove the attractor was chaotic [EL08].

Here we propose the use of Lyapunov exponents, as described in Section 2.6.

However, the Lyapunov exponent requires the solution to (3.19) − (3.21) as well

as its linearization. Recall to solve the system we implemented the BDF scheme,

which required the Jacobian to be calculated at each step. The extremely small

step size necessary in the numerical simulation required us to iterate the code

many times, on the order of 105
− 107. The computational cost of computing the

Lyapunov exponents is expensive in this case. While we have not been able to

implement a code to calculate the Lyapunov exponents, it is something we will

consider in future studies. We can see that the aperiodic nature of Figure 3.17

suggests that the attractor is strange.
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Figure 3.6: Time Series for (ε, ξ, γ) = (0.2, 0.8, 0.8)

Figure 3.7: Phase Space for (ε, ξ, γ) = (0.2, 0.8, 0.8)
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Figure 3.8: Time Series for (ε, ξ, γ) = (0.3, 1, 100)

Figure 3.9: Phase Space for (ε, ξ, γ) = (0.3, 1, 100)



31

Figure 3.10: Time Series for (ε, ξ, γ) = (1.9, 0.8, 0.8)

Figure 3.11: Phase Space for (ε, ξ, γ) = (1.9, 0.8, 0.8)
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Figure 3.12: Time Series for (ε, ξ, γ) = (1, 1, 100)
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Figure 3.13: Phase Space for (ε, ξ, γ) = (1, 1, 100)
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Figure 3.14: Time Series for (ε, ξ, γ) = (2, 1.2, 1)
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3.6 Incorporation of a Viscous Term

According to Wang [Wan07], viscosity is another important factor in earthquake

rupture. Directly implementing a viscous term into a dynamical system is difficult,

so Wang represented the viscosity in terms of a damping coefficient. The damping

coefficient is proportional to the viscosity. We also consider a damped version of

this system. Assuming the damping was due to viscosity, we introduce a damping

coefficient in (3.1) − (3.3), given by,

θ̇ = −
v

Dc

(
θ + Blog

( v
v0

))
(3.37)

u̇ = v − v0 (3.38)

v̇ = −
1
M

(
ku + θ + Alog

( v
v0

)
+ cv

)
, (3.39)

where c is the viscous damping coefficient. We nondimensionalize the system

(3.37)− (3.39) using the same substitutions as for the original system. Returning to

the use of θ, u, v, and t puts the system in the form,

θ̇ = −v(θ + (1 + ε) log(v)) (3.40)

u̇ = v − 1 (3.41)

v̇ = −γ2
[
u +

1
ξ

(
θ + log(v)

)
+ ηv

]
, (3.42)

where η =
cv0

kl
is the dimensionless viscous damping coefficient. The fixed point

of this system is (θ,u, v) = (0, η, 1). We find that the systems (3.19) − (3.21) and

(3.40) − (3.42) are the same in a qualitative sense. The systems have different

fixed points, but the local behavior around each fixed point is the same. For the

same reason that gravity doesn’t effect the qualitative behavior of a hanging spring



36

in comparison to a spring in horizontal motion, the viscous term preserves the

dynamic behavior of the system. In both cases, as ε is increased, a Hopf bifurcation

occurs, followed by a series of period-doubling bifurcations into chaos.



Chapter 4

Modified System

In this chapter we consider a modified version of the system presented by Erick-

son et al. We propose a modification to the logarithmic term in (3.1) and (3.3).

Earthquakes occur in regions of the earth that are almost universally permeated

with fluids [Sch02]. Incorporating terms that account for wetness in faults, such

as frictional melting, pore pressure, and viscosity, is difficult [Wan07]. We assume

that the logarithmic terms remain the same as in the system in Chapter 3 up to a

critical value of velocity, vc. Once the slider-block reaches this critical velocity, each

logarithmic term instantaneously dies out, assuming a value of zero. Physically,

this is intended to represent some effects of a fluid within the fault. In terms of our

spring-block model, the slider-block is sliding on some fluid. When vc is reached,

the fluid acts as a lubricant in the system, and hence the frictional force vanishes.

Another interpretation for the vanishing of the logarithmic term may be the fault

medium. For the majority of types of rocks, the friction law is independent of

lithology. This is known as Byerlee’s law. Several minerals, such as clays, serpen-

tine, and talc, have a lower friction than most other rocks and minerals [Sch02].

These rocks would impact the friction in the system. Thus, encountering an area

in a fault where a mineral such as talc is present may account for the sudden drop

in velocity. Taking into consideration the friction drop at the critical velocity, the
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modified system becomes

θ̇ = −
v

Dc

(
θ + Bg (v/v0)

)
(4.1)

u̇ = v − v0 (4.2)

v̇ = −
1
M

(
ku + θ + Ag(v/v0)

)
, (4.3)

where

g(v/v0) =


log(v/v0) if (v/v0) < vc

0 if (v/v0) ≥ vc.

4.1 Qualitative Analysis

We nondimensionalize this system just as we did for the previous systems; setting

θ = Aθ̂, v = v0v̂, u = Dcû, and t =
(Dc

v0

)
t̂. Returning to the use of θ,u, v and t puts

the system into the following nondimensional form,

θ̇ = −v(θ + (1 + ε)g(v)) (4.4)

u̇ = v − 1 (4.5)

v̇ = −γ2[u +
1
ξ

(θ + g(v))], (4.6)

where

g(v) =


log(v) if v < vc

0 if v ≥ vc.

In our system, we assume that vc = 2. By setting (θ̇, u̇, v̇) = (0, 0, 0), we can determine

any stationary solutions of the system. We find that the system has only one fixed

point, (0, 0, 1), which is also the fixed point for the system (3.19) − (3.21). We

want to compare the qualitative features of the modified system with the original
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system. For qualitative behavior of the system, we analyze the Jacobian matrix.

Since the velocity at the stationary solution is less than the critical velocity, vc = 2,

the modified system assumes the logarithmic term for g(v) near the fixed point.

This puts the system into the form of (3.19) − (3.21) near the fixed point. Hence,

local to the fixed point, we should see the same dynamic behavior as in Chapter

3. We expect the system to undergo a Hopf bifurcation into a series of period-

doubling bifurcations leading to chaos. To confirm this conjecture, we must again

run numerical simulations.

4.2 Numerical Analysis

We encounter problems trying to compute the Jacobian directly due to the discon-

tinuity of g at vc. The function g must be differentiable in order for the Jacobian

to exist for all values in the system. Since g is a discontinuous function, we must

approximate it with a smooth function. We will approximate g using a mollifier.

The mollifier is given by:

Φε( f )(v) =

∫ vc

0
ϕε(v − y) log(y)dy (4.7)

where

ϕε(v − y) =


ε−1exp

(
−1

1−( v−y
ε )2

)
if

∣∣∣∣∣v − y
ε

∣∣∣∣∣ < 1

0 if
∣∣∣∣∣v − y
ε

∣∣∣∣∣ ≥ 1.
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To solve (4.7) we must use numerical integration. Let f̃ (v) = Φδ( f )(v). We can

rewrite our system as

θ̇ = −v(θ + (1 + ε) f̃ (v)) (4.8)

u̇ = v − 1 (4.9)

v̇ = −γ2[u +
1
ξ

(θ + f̃ (v))]. (4.10)

Computing the Jacobian of system (4.8), (4.9), (4.10) produces

J =


−v 0 −θ − (1 + ε)(v f̃ ′(v) + f̃ (v))

0 0 1

−
γ2

ξ
−γ2

−

(
γ2

ξ

)
f̃ ′(v)


. (4.11)

The derivative of the mollifier is given by

f̃ ′(v) =

∫ vc

0
ϕ′ε(v − y) log(y)dy (4.12)

where

ϕ′ε(v − y) =


−2ε−3exp

(
−1

1−( v−y
ε )2

) (
v−y

(1−( v−y
ε )2)2

)
if

∣∣∣∣∣v − y
ε

∣∣∣∣∣ < 1

0 if
∣∣∣∣∣v − y
ε

∣∣∣∣∣ ≥ 1
.

Due to the numerical integration in both the f̃ and f̃ ′ terms, analyzing the Jacobian

becomes very difficult. Notice that both the mollifier and its derivative must be

numerically integrated, since neither can be integrated analytically. We choose a

quadrature method to approximate (4.7) and (4.12). See the appendix for more

details on the quadrature.

Unlike in Chapter 3 where we could analytically compute eigenvalues for var-

ious parameters, here we must rely on numerical approximations. Instead of

approximating the eigenvalues, we move right to numerical simulations of the
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system. The modified system inherts the stiffness from the original system. Due

to the stiffness, we implement the BDF scheme using the system (4.8) − (4.10) and

the Jacobian (4.11). Although this code is very similar to the one implemented in

the Chapter 3 simulations, it is much more computationally expensive. We must

incorporate the approximation of g(v) and its derivative at each iteration. To run

this code efficiently, it was necessary to decrease the step size from previous simu-

lations. The computational time for each trial significantly increased from Chapter

3 simulations. See the appendix for the code BDFm.m.

Running the simulations, we are able to produce a spiral sink, as seen in Figure

4.1. This confirms that we have a pair of complex conjugate eigenvalues with a

negative part and a negative real eigenvalue. Knowing this, there is a chance a Hopf

bifurcation occurs as ε is increased. There was some difficulty in producing plots as

ε increased. Increasing ε required a reduced step size, and consequently a higher

number of iterations in the coding. We were able to produce plots that looked

nearly periodic. See Figure 4.2. The trajectory in the plots is not long enough

to determine with certainty that the phase space is indeed periodic. Producing

a strange attractor will be something that requires more time as well. With an

improved code, we are hoping to be able to produce the periodic and chaotic plots

to confirm our conjecture about the behavior of the modified system.
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Chapter 5

Conclusion

In this paper, we analyzed the behavior of two different spring block models. In

Chapter 3, we used both qualitative analyses and numerical analyses to determine

the behavior of the system. We found that the system undergoes a Hopf bifurcation

and then through a series of period doubling bifurcations, which leads to chaos

in the system [EL08]. In terms of the model, the chaotic region explains why

predicting long term behavior for the spring-block system, or for an earthquake,

is not possible. We applied similar techniques to the modified system in Chapter

4, but encountered some difficulty with numerics. We hope to be able to replicate

the techniques applied to the system in Chapter 3 to the system in Chapter 4 with

future research.

5.1 FutureWork

In order to determine if the modified system undergoes a Hopf bifurcation and

a period-doubling cascade into chaos, more research must be done. We need to

improve our numerical simulations. To improve our numerical simulations, we

may want to consider optimizing our code. With a more efficient algorithm, we will

be able to simulate phenomena for a wider variety of parameters. We also want to
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explore creating a computer program for Poincaré maps and Lyapunov exponents.

As we have seen in Erickson [EL08], the computations for Poincaré maps can be

executed for the system in Chapter 3. Once we have a Poincaré map, we will be

able to create a bifurcation diagram and see exactly where the bifurcations occur as

ε is varied. With these tools, we would be able to determine if our modified system

becomes chaotic.

Additionally, there is interest in studying systems similar to the one presented

by Erickson [EL08]. There are many different physical properties to incorporate into

such a model. In one case, we incorporated a viscous term, and in another modified

the friction term. In the future we may want to investigate how properties such

as frictional melting or pore pressure effect the system, or consider a spring-block

model representing a system of two or three dimensions.



Chapter 6

Appendix

MATLAB code for solving the system

%Program: BDF.m

%Title: Backward Differentiation Formula

%Description: BDF solves the diff eqn y’=f(t,y) as described in Chapter 3

%Inputs:

%force: function

%gradforce: Jacobian

%epsilon: parameter

%gamma: parameter

%xi: parameter

%theta(1),u(1),v(1): initial conditions

%Outputs:

%time series plot

%phase space

%==========================================================================

clear;clc

global epsilon gamma xi %parameters
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epsilon=2;

gamma=1;

xi=1.2;

h=0.001; %step size

TOL=1E-12;

theta(1)=1; %initial conditions

u(1)=1;

v(1)=2;

M = 100000;

y = zeros(M, 3);

% y(1,:) stands for initial data y(0)

y(1,:) = [theta(1),u(1),v(1)];

f = force(y(1,:));

Df = gradforce(y(1,:));

;

% y(2,:) apprxomiate y(h)

y(2,:) = y(1,:) + h*f;

for i = 3:M

i

y2n = y(i-1,:);
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y1 = y(i-1,:);

y0 = y(i-2,:);

for n = 1:100

f = force(y2n);

Df = gradforce(y2n);

A = 3*eye(3)-2*h*Df;

b = 3*y2n-4*y1+y0-2*h*f;

ynew = y2n-(inv(A)*b’)’;

if norm(ynew-y2n) < TOL

break

else

y2n = ynew;

end

end

y(i,:) = ynew;

n

end

T=h*M;

t = 0:h:(T-h);

plot(t,y(:,1),’b’,t,y(:,2), ’r--’,t,y(:,3), ’g’) %plot time series

xlabel(’Time’)

ylabel(’Velocity, Slip, State ’)
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title(’Solution for epsilon=2, xi=1.2, gamma=1’)

legend(’State’,’Slip’,’Velocity’)

plot3(y(M/2:M,1),y(M/2:M,2),y(M/2:M,3)) %plot phase space

xlabel(’State’)

ylabel(’Slip’)

zlabel(’Velocity’)

title(’Solution for epsilon=2, xi=1.2, gamma=1’)

%=========================================================================

%Program: force.m

%=========================================================================

function f = force(y)

% y =[theta, u, v]

global epsilon gamma xi

f(1) = -y(3)*(y(1)+(1+epsilon)*log(y(3)));

f(2) = y(3)-1;

f(3) = -gamma*gamma*(y(2)+(1/xi)*(y(1)+log(y(3))));
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%==========================================================================

%Program: gradforce.m

%==========================================================================

function Df = gradforce(y)

global epsilon gamma xi

Df = zeros(3, 3);

%theta=y(1)

%u=y(2)

%v=y(3)

Df(1,1) = -y(3);

Df(1,2) = 0;

Df(1,3) = -y(1) - (1+epsilon)*(log(y(3))+1);

Df(2,1) = 0;

Df(2,2) = 0;

Df(2,3) = 1;

Df(3,1) = -gamma*gamma/xi;

Df(3,2) = -gamma*gamma;

Df(3,3) = (-gamma*gamma/xi)*(1/y(3));

%========================================================================

%========================================================================
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MATLAB code for solving the modified system

%Program: BDFm.m

%Title: Modified Backward Differentiation Formula

%Description: BDF solves the diff eqn y’=f(t,y) as described in Chapter 4

%Inputs:

%forcem: function

%gradforcem: Jacobian

%mollifier: approximation to the piecewise function

%mollifierprime: derivative of the mollifier

%smooth: function used in mollifier

%smoothprime: derivative of smooth

%epsilon: parameter

%gamma: parameter

%xi: parameter

%theta(1),u(1),v(1): initial conditions

%Outputs:

%time series plot

%phase space

%BDFm solves the diff eqn y’=f(t,y)

clear;clc

global epsilon gamma xi %parameters

epsilon=1.9;
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gamma=.8;

xi=.8;

h=0.000001;

TOL=1E-12;

theta(1)=.1; %initial conditions

u(1)=.1;

v(1)=.9;

M = 10000000;

y = zeros(M, 3);

% y(1,:) stands for initial data y(0)

y(1,:) = [theta(1),u(1),v(1)];

fm = forcem(y(1,:));

Dfm = gradforcem(y(1,:));

m=mollifier(y(3));

mp = mollifierprime(y(3));

;

% y(2,:) apprxomiate y(h)

y(2,:) = y(1,:) + h*fm;
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for i = 3:M

i

y2n = y(i-1,:);

y1 = y(i-1,:);

y0 = y(i-2,:);

for n = 1:100

fm = forcem(y2n);

Dfm = gradforcem(y2n);

A = 3*eye(3)-2*h*Dfm;

b = 3*y2n-4*y1+y0-2*h*fm;

ynew = y2n-(inv(A)*b’)’;

if norm(ynew-y2n) < TOL

break

else

y2n = ynew;

end

end

y(i,:) = ynew;

n;

end

T=h*M;

t = 0:h:(T-h);
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plot(t,y(:,1),’b’,t,y(:,2), ’r--’,t,y(:,3), ’g’)

xlabel(’Time’)

ylabel(’Velocity, Slip, State ’)

title(’Solution for epsilon=0.2, xi=0.8, gamma=0.8’)

legend(’State’,’Slip’,’Velocity’)

plot3(y(M/2:M,1),y(M/2:M,2),y(M/2:M,3)) %plot later trajectory

xlabel(’State’)

ylabel(’Slip’)

zlabel(’Velocity’)

title(’Solution for epsilon=0.2, xi=0.8, gamma=0.8’)

%========================================================================

%Program: forcem.m

%========================================================================

function fm = forcem(y)

% y =[theta, u, v]

global epsilon gamma xi

fm(1) = -y(3)*(y(1)+(1+epsilon)*mollifier(y(3)));

fm(2) = y(3)-1;

fm(3) = -gamma*gamma*(y(2)+(1/xi)*(y(1)+mollifier(y(3))));



54

%========================================================================

%Program: gradforcem.m

%========================================================================

function Dfm = gradforcem(y)

global epsilon gamma xi

Df = zeros(3, 3);

%theta=y(1)

%u=y(2)

%v=y(3)

Dfm(1,1) = -y(3);

Dfm(1,2) = 0;

Dfm(1,3) = -y(1) - (1+epsilon)*(y(3)*mollifierprime(y(3))+mollifier(y(3)));

Dfm(2,1) = 0;

Dfm(2,2) = 0;

Dfm(2,3) = 1;

Dfm(3,1) = -gamma*gamma/xi;

Dfm(3,2) = -gamma*gamma;

Dfm(3,3) = (-gamma*gamma/xi)*(mollifierprime(y(3)));
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%========================================================================

%Program: mollifier.m

%========================================================================

function m = mollifier(x)

epsi=0.3;

tol = [1e-3 1e-5];

if x < -epsi;

m = 0

elseif x < epsi;

m = quadl(’smooth’,0,x+epsi,tol,[],x);

elseif x < 2-epsi;

m = quadl(’smooth’,x-epsi,x+epsi,tol,[],x);

elseif x < 2+epsi;

m = quadl(’smooth’,x-epsi,2,tol,[],x);

else

m = 0;

end

%========================================================================

%Program: mollifierprime.m

%========================================================================

function mp = mollifierprime(x)
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epsi=0.3;

tol = [1e-3 1e-5];

if x < -epsi;

mp = 0;

elseif x < epsi;

mp = quadl(’smoothprime’,0,x+epsi,tol,[],x);

elseif x < 2-epsi;

mp = quadl(’smoothprime’,x-epsi,x+epsi,tol,[],x);

elseif x < 2+epsi;

mp = quadl(’smoothprime’,x-epsi,2,tol,[],x);

else

mp = 0;

end

%========================================================================

%Program: smooth.m

%========================================================================

function phi = smooth(y,x)

epsi=0.3;

phi = epsiˆ(-1)*exp(-1./(1-((x-y)./epsi).ˆ2)).*log(y);
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%========================================================================

%Program: smoothprime.m

%========================================================================

function phiprime = smoothprime(y,x)

epsi=0.3;

phiprime = epsiˆ(-2)*-exp(-1./(1-((x-y)./epsi).ˆ2)).*(-2*((x-y)./epsi))...

./(1-((x-y)./epsi).ˆ2).ˆ2.*log(y);

%========================================================================
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