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ABSTRACT

Inverse limits began as a purely topological concept, but have since been applied

to areas such as dynamical systems and manifold theory. R.F. Williams related in-

verse limits to dynamical systems by presenting a construction and realization result

relating expanding attractors to inverse limits of branched manifolds. Wieler then

adapted these results for Smale Spaces with totally disconnected local stable sets.

Rojo used tiling space results to relate inverse limits of branched manifolds to codi-

mension zero laminations. This paper examines the results of Wieler and Rojo and

shows that they are analogous.
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Chapter 1

Introduction

Historically, inverse limits arose as a purely topological concept. The most famous

example of an inverse limit is a solenoid, which was defined in 1927 by L. Vietrois

([Vie27]). It seems a simple concept, but as Anderson and Choquet showed in 1959

([AC59]), inverse limits are extremely useful in describing complicated spaces by

producing them from simpler ones. For instance, G. W. Henderson showed that

the pseudo-arc is the inverse limit on [0,1] with a single bonding map ([KO10]). R.F.

Williams was responsible for connecting dynamical systems. In 1967, he applied them

to non wandering sets, and in 1974, he applied them to attractors ([Wil67], [Wil74]).

Inverse limits are now commonly used in the field of dynamical systems, and will be

examined further here.

In 1967, Smale defined a class of dynamical systems known as Axiom A, which is

defined in terms of the non wandering set and the periodic points ([Sma66]). Smale’s

Spectral Decomposition Theorem stated that the non-wandering set can be written

as the finite union of basic sets. In 1978, Ruelle examined the topological dynamics of

the basic sets, and in so doing defined Smale Spaces ([Rue04]). Since then, there have

been many results regarding these spaces. For a summary, see Putnam ([Put12]).

Of particular interest for us will be the work of Wieler, who generalized some of

Williams’ results for Smale spaces ([Wie12a]). These results are discussed thoroughly
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in Chapter 5.

Inverse limits have also been used for results regarding tiling spaces. In 2006,

Bellisard, Benedetti and Gambaudo proved that the continuous hull of any aperiodic

and repetitive planar tiling is an inverse limit of branched flat surfaces ([BBG06]).

In [CRS11], Cuesta, Rojo and Stadler showed that any minimal transversely Cantor

compact lamination is an inverse limit of branched manifolds. This paper also had

the useful mindset of thinking of laminations in terms of tiling spaces. In 2012, Rojo

adapted these results for codimension zero laminations, which gives us the second

focus of this paper ([LR13]).

The aim of this paper is to relate the ideas of inverse limits, Smale spaces and

laminations. Wieler and Rojo both adapted results from [Wil74]. Wieler generalized

the results for Smale spaces and Rojo looked at laminations, but they are built off

the same starting point and will be shown to be analogous.

Because they adapted Williams’ result to different topics, we will need to intro-

duce those topics before we discuss them together. Chapters 2, 3 and 4 will discuss

inverse limits, Smale spaces and laminations, respectively. Each of those will include

terminology, examples and proofs of some basic results. Chapter 5 will discuss the

theorems by Wieler and Rojo, and will compare them.



Chapter 2

Inverse Limits

We will see that inverse limits are a powerful tool for explaining the behavior of

hyperbolic dynamical systems, but first it is necessary to build up our terminology

and understanding of the concepts separately. We will begin with defining some basic

topological definitions.

2.1 Definitions

A product space can be written
∏∞

i=0Xi = {(x0, x1, · · · ) : xi ∈ Xi}, where each Xi is a

topological space. The product topology associated with the product space has a basis

of all sets of the form
∏
Ui, where Ui is open inXi for each i and Ui equalsXi for all but

finitely many values of i. Given continuous maps fi : Xi → Xi−1, the inverse limit

space on Xi is defined as X∞ = lim←−(Xi, fi) = {(x0, x1, · · · ) ∈
∏∞

i=0 |xi−1 = fi(xi)}.

The functions fi are commonly referred to as bonding maps, and the family of spaces

(Xi, fi) are sometimes referred to as a projective system. The inverse limit space is a

metrizeable subspace of the product space which inherits the topology of the product

space. This is proved in Proposition 2.3.3. Another useful function is the projection

map πβ :
∏

α∈AXα → Xβ, which maps an element of a Cartesian product space to the

βth factor space. Projection maps are both continuous and open, the latter meaning
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that open sets are mapped to open sets.

If {ai}i∈N ⊂ N is an infinite set, then a telescoping contraction of the projective

system (Xk, fk) is the projective system (Xai , gk) where gk : Xk → Xk−1 is defined as

gi = fai ◦ · · · ◦ fai−1+2 ◦ fai−1+1.

The map f : Xi → Xi−1 is flattening if for each x ∈ Xi there exists a (normal)

neighborhood U such that f(U) is a smooth disk of Xi−1. A projective system is

flattening if there is a telescopic contraction of it with each fi flattening. The inverse

limit of the telescoping system is homeomorphic to the original inverse limit since

they are cofinal to each other ([Mun84]). This idea appears in Theorem 5.2.1 which

connects inverse limit spaces to laminations.

2.2 Examples

Example 2.2.1. Perhaps the most famous example of an inverse limit is the solenoid.

To construct the solenoid, start with a solid torus, T2. Inside this torus, we wrap

another torus twice. Continuing in this manner, the solenoid is realized as the nested

intersection of the tori, which is embedded in R3. This geometric construction of the

solenoid is homeomorphic to the inverse limit lim←−(Si, fi), where each Si is the unit

circle and fi is the doubling map, which wraps Si+1 twice around Si. Even though the

solenoid is embedded in R3, it is only one-dimensional. See Figure 2.1.

R.F. Williams defined a generalized n-solenoid in the following manner ([Wil74]).

From here on, this solenoid will be referred to as a Williams solenoid, to differentiate

it from the standard solenoid.
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Figure 2.1: From [Mun84].

Definition 2.2.2. Let K be a compact branched Cr n-manifold (sometimes called

the Anderson-Putnam complex) and g : K → K a Cr immersion that satisfy the

following three axioms.

1) the non-wandering set of g is the entire space K.

2) for each x ∈ K, there is a neighborhood N of x and j ∈ Z such that gj(N) is

contained in a subset diffeomorphic to an open ball in Rn.

3) g is an expansion. That is, there exist constants A > 0 and µ > 1 such that,

for all n ∈ N and k ∈ T (K) , |Dgn(k)| ≥ Aµn|k|, where T (K) is the tangent space

of K and Dg is the derivative of g.

A Williams n-solenoid is the inverse limit lim←−(K, g).

The second axiom can be thought of as a flattening of a neighborhood of x. To

see this more clearly, we can look at a Williams 1-solenoid. For n = 1, the second

axiom requires that each point of K have a neighborhood whose image under g is an

arc ([Wil67]).

Example 2.2.3. Let the space X be two circles, a and b, joined by a point v. Let

g : X → X be defined by the wrapping maps a 7→ aab and b 7→ ab.
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If k = 1, there is a neighborhood, V , of v, such that gk(V ) is homeomorphic to

an open interval, so g ‘flattens’ the space at the vertex. This flattening idea will be

examined further in Chapter 5. Additionally, the map g actually defines a tiling of R

as well, and is generated by the substitution rule on a and b.

Example 2.2.4. The next example shows that the inverse of a simple map can be a

complicated continuum.

Let Xi = [0, 1] and fi : Xi → Xi be defined by f(x) =


(
i+2
i+1

)
x 0 ≤ x ≤ i+1

i+2

−
(
i+2
i+1

)
x+ 2 i+1

i+2
≤ x ≤ 1

.

lim←−(Xi, fi) is homeomorphic to the curve S =
{(
x, sin

(
1
x

))
: 0 < x ≤ 1

}
∪(0, 0), which

is known as the Topologist’s Sine Curve, shown in Figure 2.2.
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Figure 2.2: Topologist’s Sine Curve

We will see in the next chapter that by changing the tent map slightly, the inverse

limit is far from being a Smale space.

2.3 Basic Results

There are some commonly known results that show that, if we have information

about each Xi, then we know properties of the inverse limit space. The following

are sufficient conditions for lim←−(Xi, fi) being a continuum (a Hausdorff, compact,

connected metric space).

Proposition 2.3.1. If {Xi}∞i=0 is a sequence of connected spaces, then lim←−(Xi, fi) is

connected.

Proof. Let eachXi be a connected, topological space and defineMβ = {x ∈
∏
Xi|xi−1 = fi(xi)

for all i ≤ β}. M1 = R(f1)×
∏∞

i=2Xi, M2 = R(R(f2))×R(f2)×
∏∞

i=3Xi, etc. The

continuous image of a connected set is connected, so R(f1),R(R(f2)) · · · , are con-

nected sets. Also, the product space of connected spaces is connected, so each Mβ is

connected. ∩∞β=1Mβ = lim←−(Xi, fi), so lim←−(Xi, fi) is connected.
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Lemma 2.3.2. Given a metric d : X ×X → R, d(x, y) = min {1, d(x, y)} is also a

metric.

Proof. Let X be a topological space with metric d. Define d : X × X → R by

d(x, y) = min {1, d(x, y)}. Since d is nonnegative and symmetric, so is d. If x, y ∈ X,

it is also clear that d(x, y) = 0 if and only if x = y.

To prove the triangle inequality, let x, y, z ∈ X, and look at two separate cases.

Case 1: (d(x, y) ≤ 1) In this case, d(x, y) = d(x, y). If d(x, z) and d(z, y) are both

less than d(x, y) = d(x, y) ≤ d(x, z) + d(z, y) = d(x, z) + d(z, y).

If d(x, z) and d(z, y) are both greater than 1, then d(x, z) + d(z, y) = 2 > 1 ≥

d(x, y) = d(x, y).

The last subcase would be if only one of these is greater than 1. WLOG, suppose

d(x, z) ≤ 1 and d(z, y) > 1. In this case, d(x, y) = d(x, y) ≤ 1 ≤ d(x, z) + 1 =

d(x, z) + d(z, y).

Case 2: (d(x, y) > 1) In this case, d(x, y) = 1 < d(x, y). If d(x, z) and d(z, y)

are both less than or equal to 1, then d(x, y) = 1 < d(x, y) ≤ d(x, z) + d(z, y) =

d(x, z) + d(z, y).

If d(x, z) and d(z, y) are both greater than 1, then d(x, y) = 1 < 2 = d(x, z) +

d(z, y).

Again, the last sub case would be if only one of these is greater than 1, so we

suppose, WLOG, that d(x, z) ≤ 1 and d(z, y) > 1. In this case, d(x, y) = 1 =

d(z, y) ≤ d(x, z) + d(z, y). Therefore, in any case, d(x, y) ≤ d(x, z) + d(z, y), so the

triangle inequality holds, and d is a metric.
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Proposition 2.3.3. If {Xi}∞i=1 is a sequence of metric spaces, then lim←−(Xi, fi) is a

metric space with the subspace topology inherited from the product topology.

Proof. Let {Xi}∞i=1 be a sequence of metric spaces, each with associated metric di.

Define d : X∞×X∞ → R by d(x, y) =
∑∞

i=0
di(xi,yi)

2i
, where di(xi, yi) = min {1, di(xi, yi)}.

We will show that d is a metric and that it induces the product topology on X∞.

Clearly, d is non-negative and symmetric. Let x, y ∈ X∞. If x = y, then

di(xi, yi) = 0 for all i and so d(x, y) =
∑∞

i=1
di(xi,yi)

2i
= 0. If d(x, y) = 0, then∑∞

i=1
di(xi,yi)

2i
= 0. This implies di(xi, yi) = 0 for all i, which is only true if xi = yi

for all i, and so x = y. Therefore, d(x, y) = 0 IFF x = y. To prove that the triangle

inequality holds, let x, y, z ∈ X∞.

d(x, z) + d(z, y) =
∞∑
i=1

di(xi, zi)

2i
+
∞∑
i=1

di(zi, yi)

2i

=
∞∑
i=1

di(xi, zi) + di(zi, yi)

2i

≥
∞∑
i=1

di(xi, yi)

2i
= d(x, y)

The above calculation made use of the fact that the triangle inequality holds for

di(xi, yi), since it is itself a metric. The triangle inequality holds, so d is a metric.

To show that the metric induces the product topology, we will show that a set is

open in Xi under di for all i if and only if it is open in lim←−(Xi, fi). Let B be a basic

open element in the product topology. Then, we can write B =
∏∞

j=1 Uj where Uj is

open in Xj for j = i1, i2, · · · , ik (where i1 < · · · < ik) and Uj = Xj otherwise. Let

x ∈ B. For xi1 , xi2 , · · · , xik , there exist εik such that Uik = Bεik
(xik) ⊆ Uik .
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Choose ε = min
{ εi1

2i1
, · · · , εik

2ik

}
and let y ∈ Bε(x). Since d(x, y) =

∑∞
j=1

dj(xj ,yj)

2j
<

ε and, for any j = 1, · · · , k,
dj(xij ,yij )

2j
<
∑∞

j=1

dj(xij ,yij )

2j
, we have that

dj(xij ,yij )

2j
<

ε. ε = min
{
εij
2j

}ik
j=1

, for each j = 1, · · · , k, it is true that
dj(xij ,yij )

2j
<

εij
2j

. Thus,

dj(xij , yij) < εij . For all j, yij ∈ Bεij
⊆ Uij , so y ∈ B.

Now, let Bε(x) be a basic open set in lim←−(Xi, fi). Choose k ∈ N such that 1
2k
< ε

2

and εi such that
∑k

i
εi
2i
< ε

2
. Let B = U1× · · · ×Uk×Xk+1× · · · , where Ui = Bεi(xi),

which is open in the product topology. Now, let y ∈ B. It will be shown that

y ∈ Bε(x).

d(x, y) =
∞∑
i=1

di(xi, yi)

2i

=
k∑
i=1

di(xi, yi)

2i
+

∞∑
i=k+1

di(xi, yi)

2i

≤
k∑
i=1

di(xi, yi)

2i
+

∞∑
i=k+1

1

2i

=
k∑
i=1

di(xi, yi)

2i
+

1

2k

<

k∑
i=1

di(xi, yi)

2i
+
ε

2

<

k∑
i=1

εi
2i

+
ε

2

<
ε

2
+
ε

2

= ε

d(x, y) < ε, so y ∈ Bε(x). In conclusion, since open sets in lim←−(Xi, fi) are also

open in the product topology, and vice versa, lim←−(Xi, fi) has the product topology.
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In the case of compactness, we must add the condition that each Xi is Hausdorff,

as well as compact. A topological space, X, is Hausdorff if, for each x, y ∈ X, there

exist open sets U ⊃ x and V ⊃ y such that U ∩ V = ∅.

Proposition 2.3.4. If {Xi}∞i=0 is a sequence of compact, Hausdorff spaces, then

lim←−(Xi, fi) is compact.

Proof. Let x ∈
∏∞

i=1Xi \ X∞, where x = (x0, x1, · · · ). Since x is not in the inverse

limit space, there exists i ∈ N such that f(xi) 6= xi−1. Since Xi−1 is a Hausdorff space,

there exist open sets U ⊃ f(xi) and V ⊃ xi. Consider the sets f−1(U) , f−1(V ) ∈ Xi.

Since fi is continuous, f−1(U) and f−1(V ) are both open. xi ∈ f−1(U), so

xi 6∈ f−1(V ) (because f−1(V ) maps to a set that is disjoint from U , which con-

tains f(xi)). Now, consider the open set U = U × f−1(V ) ×
∏

j 6=i−1,iXi. For any

y ∈ U , f(yi) 6= yi−1, so y 6∈ X∞. U is an open neighborhood of x that lies entirely in

Xc
∞, so Xc

∞ is open and X∞ is closed.
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The product space of compact spaces is compact, so X∞ is a closed subset of a

compact space and therefore compact.

Then, if each Xi is a continuum, lim←−(Xi, fi) is a continuum.

For the next two results, we move our focus from the spaces to the bonding maps.

Proposition 2.3.5. If {Xi, fi(x)}∞i=0 is a sequence of topological spaces with associ-

ated 1-1 and onto maps, then lim←−(Xi, fi) is homeomorphic to X0.

Proof. Let each fi be 1-1 and onto and define f : X0 → X∞ by f(x0) = π−1
0 (x0).

Since each fi is onto, every x0 ∈ X0 maps to an element of X∞ and since each fi is

1-1, that element is unique. Then, f is well-defined. If, for some x, y ∈ X∞, x = y,

then x0 = y0, so f is 1-1. For any x ∈ X∞ with first coordinate x0, f(x0) = x, so f is

onto. The projection map is continuous and open, so f is bicontinuous. Then, f is a

homeomorphism from X∞ to X0.

Lemma 2.3.6. ([Mun84])

Let f : A →
∏

α∈J Xα be given by the equation f(a) = (fα(a))α∈J , where fα :

A → Xα for each α. Let
∏
Xα have the product topology. Then the function f is

continuous if and only if each function fα is continuous.

Proposition 2.3.7. Let hi : Xi → Yi be homeomorphisms, for all i, where

X∞ = lim←−(Xi, fi) and Y∞ = lim←−(Yi, gi(x)) .
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Let the following commute for all i ≥ 1

Then, h = (h1, h2, · · · ) : X∞ → Y∞ is a homeomorphism.

Proof. Let hi be homeomorphisms as described above, and h = (h1, h2, · · · ). It

will be shown that h is a homeomorphism. To prove that h is one to one, assume

h(x) = h(x̃) for some x, x̃ ∈ X∞. Then, (h1(x1), h2(x2), · · · ) = (h1(x̃1), h2(x̃2), · · · )

and hi(xi) = hi(x̃i) for all i. Since each hi is one to one, xi = x̃i and x = x̃.

Now, let y = (y1, y2, · · · ) ∈ Y∞. Each hi is onto, so for all i there exist xi such

that hi(xi) = yi. If we define x = (x1, x2, · · · ), then h(x) = y. It remains to be shown

that x ∈ X∞.

xi−1 = h−1
i−1(yi−1)

= h−1
i−1(gi(yi))

= h−1
i−1(gi(hi(xi)))

= fi(xi)

Thus, x ∈ X∞ and h is onto.

To prove that h is continuous, we can apply the previous lemma, where A = X∞
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and J = N. It has been previously shown that the product topology is equivalent

to the topology in the inverse limit space, so the lemma applies. Since each hi is

continuous, h is continuous. h−1 satisfies the same properties that were applied in

the continuity argument, so h−1 is also continuous.



Chapter 3

Smale Spaces

In [Sma66], Smale defines a class of dynamical systems known as Axiom A. Ruelle

adapted this idea in [Rue04] to come up with the definition of a Smale space, the

basic idea being that in the space there is a contracting direction and an expanding

direction, and that locally, they intersect at exactly one point.

3.1 Definitions

Let (X, d) be a compact metric space and let f : X → X be a homeomorphism of

X. A point x ∈ X is non-wandering if, for every non-empty open set, U , containing

x, there is a positive integer n such that U ∩ fn(U) is non-empty. Ω(f) is the set

of all such points, called the non-wandering set. Also, x is called a periodic point if

fn(x) = x for some positive integer n. If f : M → M is a diffeomorphism, then a

closed invariant subset Λ ⊆M is hyperbolic if the tangent bundle T (M) restricted to

Λ splits as a direct sum, T (M)|Λ = Eu ⊕ Es, invariant under the derivative Df of

f and such that Df |Eu is an expansion and Df |Es is a contraction. That is, there

exist constants A,B > 0 and µ > 1 such that for all n ∈ N, v ∈ Eu, and w ∈ Es, we

have |Dfn(v)| ≥ Aµn|v| and |Dfn(w)| ≤ Bµ−n|w|. In simpler terms, in a hyperbolic

dynamical system, the tangent space has 2 parts: where the derivative of the map

15
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contracts and where it expands. An attractor is an invariant set that attracts open

sets of points. An attractor is expanding if it has the same dimension as Eu, that is

the part with the expanding derivative.

Smale defined an Axiom A system to be a compact manifold, M , together with

a diffeomorphism f : M → M whose non-wandering set is both hyperbolic and

compact, and if the set of periodic points of f is dense in Ω(f).

Now, we will define a Smale space.

Definition 3.1.1. Let (X, d) be a compact metric space and f : X → X be a home-

omorphism. The triple (X, d, f) is a Smale space if there exist constants εX > 0 and

0 < λ < 1, as well as a mapping

[·, ·] : {(x, y) ∈ X ×X|d(x, y) ≤ εX} 7→ [x, y] ∈ X

satisfying properties (S1) through (S7) below. For x ∈ X and 0 < ε ≤ εX , we

denote

Xs(x, ε) = {y | [x, y] = y, d(x, y) ≤ ε}

Xu(x, ε) = {y | [y, x] = y, d(x, y) ≤ ε}

these are called the local stable and unstable sets of x.

(S1) [·, ·] is continuous

(S2) [x, x] = x for all x ∈ X

(S3) [[x, y], z] = [x, z] whenever both sides are defined

(S4) [x, [y, z]] = [x, z] whenever both sides are defined

(S5) f([x, y]) = [f(x), f(y)] whenever both sides are defined
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(S6) d(f(y), f(z)) ≤ λd(y, z) if y, z ∈ Xs(x, εX)

(S7) d(f−1(y), f−1(z)) ≤ λd(y, z) if y, z ∈ Xu(x, εX)

Alternatively, the local stable and unstable sets can be defined below. They are

shown to be equivalent in Propositions 3.3.6 and 3.3.7.

Xs(x, ε) = {y ∈ X | d(fn(x), fn(y)) ≤ ε ∀n ≥ 0}

Xu(x, ε) = {y ∈ X | d(f−n(x), f−n(y)) ≤ ε ∀n ≥ 0}

A space is totally disconnected if its only connected subspaces are one-point sets.

Smale spaces with totally disconnected stable sets are known to be shifts of finite

type, and shifts of finite type are known to be inverse limits of one-sided shifts of

finite type. This relationship provided some of the motivation to Wieler’s work.

Putnam also provided some properties of these spaces ([Put12]).

In addition, an irreducible Smale space has the added condition that it is non-

wandering and has a forward orbit that is dense in the space.

3.2 Examples

Example 3.2.1. To see an example of a Smale space with totally disconnected local

stable sets, we can look back at the idea of Williams’ solenoid. In [Wil74], he showed

that each point of an n-solenoid has a neighborhood of the form (Cantor set) × (n-

disk). The Cantor set is totally disconnected and represents the contracting direction

(the local stable set) and the n-disk presents the expanding direction (the local unstable

set).
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Figure 3.1: One iteration of Horseshoe Map.

The previous example demonstrated that an inverse limit space could be a Smale

space. Next is an example that shows this is not always the case.

Example 3.2.2. In Example 2.2.2, the Topologist’s Sine Curve was homeomorphic

to the inverse limit space of unimodal bonding maps. The maps can be amended so

that the orbit of the critical point is dense, which means that there will be ‘hooks’

appearing densely in the resulting inverse limit space. The consequence of these hooks

is that the space is not only not hyperbolic, it is nowhere hyperbolic. See [BD99] for

the explicit construction.

Example 3.2.3. Another widely known and examined example is Smale’s Horseshoe.

It is defined on a rectangle. The domain is then squished in the vertical direction,

then stretched in the horizontal direction, and finally folded over.

The set that remains invariant under one iteration of both forward and backward

maps are the four corner regions, shown in Figure refhorse and the set that remains

invariant under two iterations of both forward and backward maps are the four corner

regions of the four corner regions, shown in Figure refcorners.

Then, the invariant set, which in dynamical systems is referred to as the attractor,
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Figure 3.2: Invariant set of one iteration in both forward and backward direction.

has the structure of the Cantor set, meaning it is uncountably infinite and has zero

measure. The complete transversal (defined in Chapter 4) is then zero-dimensional.

The horseshoe is an example of an Axiom A system. One of the main proper-

ties of an Axiom A system is that its non-wandering set has hyperbolic structure,

and is the closure of its periodic points. Smale showed that there is only hyperbolic

structure where there is recurrence, i.e., a wandering set ([Wil67]). Then, since the

non-wandering set is not the entire manifold for the Smale’s Horseshoe, it is not a

Smale space. However, we can restrict to the map to just the non-wandering set, and

then it is a Smale space.

It was mentioned before that Smale spaces with totally disconnected stable sets are

known to be shifts of finite type. This is very useful for examining the dynamics of the

horseshoe map, which is explained very well by Shub ([Shu05]). First, we will define

the horseshoe slightly differently.

The horseshoe is defined as Λ = {z : fn(z) ∈ A ∪ C ∀n ∈ Z}. Next, we define Σ

to be the set of bi-infinite sequence a = (an) consisting of 0 and 1’s and σ : Σ→ Σ by

σ(a) = (an+1). This is known as the (right) shift map, which is a homeomorphism.

The dynamics of Λ can be thought of as being coded into sequences by σ. Given a ∈ Σ,
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there is a unique z ∈ Λ such that fn(z) ∈ A whenever an = 1 and fn(z) ∈ C whenever

an = 0. The last thing of note is that all shifts of finite type are the inverse limit of

a one-sided shift of finite type.

3.3 Basic Results

The first two results in this section are stated in [Put12] by Putnam, with the details

of the proofs filled in here, and illustrate two important properties of Smale spaces.

Lemma 3.3.1. d2 : X ×X → R defined by d2((x, y), (u, v)) = max {d(x, u), d(y, v)}

is a metric.

Proof. Let d2 be defined on X → X where d is a metric on X. Clearly d is non-

negative and symmetric.

d2((x, y), (u, v)) = 0 ⇔ max {d(x, u), d(y, v)} = 0

⇔ d(x, u) = 0 and d(y, v) = 0

⇔ x = u and y = v

⇔ (x, y) = (u, v)

To prove the triangle inequality, let (a, b) ∈ X ×X. If d(x, u) ≤ d(y, v), then

d2((x, y), (u, v)) = max {(x, u), (y, v)}

= d(y, v)

≤ d(y, b) + d(b, v)

≤ max {d(x, a), d(y, b)}+ max {d(a, u), d(b, v)}

= d2((x, y), (a, b)) + d2((a, b), (u, v))
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Otherwise, d(x, u) < d(y, v), in which case

d2((x, y), (u, v)) = max {(x, u), (y, v)}

= d(y, v)

≤ d(y, b) + d(b, v)

≤ max {d(x, a), d(y, b)}+ max {d(a, u), d(b, v)}

= d2((x, y), (a, b)) + d2((a, b), (u, v))

In either case, the triangle inequality holds, so d2 is a metric.

The next result shows that the local stable and unstable sets intersect at exactly

one point.

Proposition 3.3.2. For ε sufficiently small enough, d(x, y) ≤ ε implies

Xs(x, εX) ∩Xu(y, εX) = {[x, y]}

Proof. Let (X, d, f) be a Smale space as defined above. We will show there exists

0 < ε ≤ εX such that d(x, y) < ε implies both that [x, y] ∈ Xs(x, εX)∩Xu(y, εX) and

that z ∈ Xs(x, εX) ∩Xu(y, εX) implies z = [x, y].

First note that [, ] is uniformly continuous because it is continuous on a compact

set, X × X. This means there is a δ > 0 such that d2((x, x), (x, y)) < δ implies

d([x, x], [x, y]) < εX . Therefore, we choose ε = min {δ, εX}, and let d(x, y) ≤ ε. Then

since [x, x] = x, we have that ε > d(x, y) = d2((x, x), (x, y)) implies d([x, x], [x, y]) ≤

εX , and so d(x, [x, y]) ≤ εX . Also, by (S4), [x, [x, y]] = [x, y], so [x, y] ∈ Xs(x, εX).
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Xu(y, εX) = {x | [x, y] = x, d(x, y) ≤ εX}. By (S3) and (S2), [[x, y], x] = [x, x] =

x, and we have already shown that d([x, y], x) ≤ εX , so [x, y] ∈ Xu(y, εX) and [x, y] ∈

Xs(x, εX) ∩Xu(y, εX).

Now it remains to be shown that if z ∈ Xs(x, εX) ∩ Xu(y, εX), then z = [x, y].

z ∈ Xs(x, εX) implies [x, z] = z. z ∈ Xu(y, εX) implies [z, y] = z. Therefore,

z = [z, z] = [[x, z], [z, y]] = [x, [z, y]] = [x, y] and so Xs(x, εX) ∩Xu(y, εX) = {[x, y]}.

Proposition 3.3.3. There exists 0 ≤ ε′X ≤ εX
2

such that for any 0 < ε ≤ ε′X ,

Xu(x, ε)×Xs(x, ε) is homeomorphic to its image, which is a neighborhood of x.

Proof. Let (X, d, f) be a Smale Space and let x ∈ X. We will show that the bracket

map, restricted to the domain Xu(x, ε)×Xs(x, ε), where ε < εX
2

, is a homeomorphism

from the domain to a neighborhood of x. If y ∈ Xu(x, ε) and z ∈ Xs(x, ε), then

d(x, y) ≤ ε and d(x, z) ≤ ε, so by the triangle inequality, d(y, z) ≤ d(x, y) + d(x, z) <

εX . This means (y, z) is in the domain of the bracket map, as defined in Defn 3.1.1,

so the restricted map is well-defined.

[, ] is uniformly continuous, so we can find 0 < δ ≤ εX such that if x, y ∈ X and

d(x, y) ≤ δ, we have d(x, [x, y]) ≤ εX
2

and d(x, [y, x]) ≤ εX
2

. Also, we can choose

0 < ε′x ≤ εX
2

such that, for all y, z ∈ Bε′X
(x), d(x, [y, z]) ≤ δ. Note that ε′X ≤ εX

ensures d(y, z) ≤ εX , which means [y, z] is defined.

Now, define h(y) = ([y, x], [x, y]) on the range of [, ].Our choice of ε′X means that,

for any ε ≤ ε′X , (y, z) ∈ Xu(x, ε) ×Xs(x, ε) guarantees d(x, [y, z]) ≤ δ. Any element

of the range can be expressed as [z1, z2] for some (z1, z2) ∈ Xu(x, ε)×Xs(x, ε),
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h([z1, z2]) = ([z1, z2], x], [x, [z1, z2]]) = ([z1, x], [x, z2]) = (z1, z2)

and so ([, ] ◦ h)([z1, z2]) = (z1, z2), and so h is the inverse of [, ]. h is clearly

continuous, so Xu(x, ε)×Xs(x, ε) is homeomorphic to its image.

The next two results are from Ruelle ([Rue04]), with details of the proof filled in.

They show there are equivalent definitions of the local stable and unstable sets, which

make more sense intuitively.

Proposition 3.3.4. For ε > 0 and x ∈ X, Xs(x, ε) = {y ∈ X | d(fn(x), fn(y)) ≤ ε ∀n ≥ 0}.

Proof. Let ε > 0 and x ∈ X. Suppose y ∈ Xs(x, ε), given by Definition 3.1.1. By an

inductive version of (S6), d(fn(x), fn(y)) ≤ λnd(x, y) < λnε < ε, for all n ≥ 0. The

other direction requires a little more work.

Since [,] is uniformly continuous, we can choose 0 < δ < ε such that d(x, y) <

δ implies d(x, [y, x]) < ε. Suppose d(fn(x), fn(y)) < δ for all n ≥ 0. Then,

d(fn(x), [fn(y), fn(x)]) < ε, which is equivalent to d(fn(x), fn[y, x]) < ε, by (S5).

[fn[y, x], fn(x)] = [[fn(y), fn(x)], fn(x)] = [fn(y), fn(x)] = fn[y, x]

This means that fn[y, x] ∈ Xu(fn(x), ε). By an inductive version of (S7), d([y, x], x) ≤

λnd(fn[y, x], fn(x)) ≤ λnε. Since this is true for all n ≥ 0, d(x, [x, y]) = 0. Using this

fact,

[x, y] = [x, [x, y]] = [[y, x], [x, y]] = y

Thus, y ∈ Xs(x, δ) ⊂ Xs(x, ε), and the two definitions are equivalent.
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Proposition 3.3.5. For ε > 0, and x ∈ X, Xu(x, ε) = {y ∈ X | d(f−n(x), f−n(y)) ≤ ε ∀n ≥ 0}

Proof. Let ε > 0 and let x ∈ X. Suppose y ∈ Xu(x, ε), given by definition 3.1.1.

By an inductive version of (S7), d(f−n(y), f−n(x)) ≤ λnd(x, y) < λnε < ε, for all

n ≥ 0. To show containment in the other direction, choose 0 < δ < ε such that

d(x, y) < δ implies d(x, [x, y]) < ε and suppose d(f−n(x), f−n(y)) < δ, for all n ≥ 0.

Then, d(f−n(x), [f−n(x), f−n(y)]) < ε, which is equivalent to d(f−n(x), f−n[x, y]) < ε,

by an inductive version of (S5). [f−n(x), f−n[x, y]] = [f−n(x), f−n(y)] = f−n[x, y], so

f−n[x, y] ∈ Xs(f−n(x), ε). By an inductive version of (S6), d(x, [x, y]) ≤ λnd(f−n(x), f−n[x, y]) ≤

λnε. This holds for all n ≥ 0, so [x, y] = x. This implies [y, x] = [y, [x, y]] = y, so

y ∈ Xu(x, δ) ⊂ Xu(x, ε), and the two definitions are equivalent.



Chapter 4

Laminations

Now, we move from dynamical systems to the area of manifolds. The idea is to

decompose a manifold into ‘parallel’ submanifolds of smaller dimension. This will

require a plethora of new definitions.

4.1 Definitions

Let M be an n-manifold and a locally compact Polish space, that is a separable,

metrizeable space. If x ∈M , then Cx(M) is the set of all C∞ curves α : (−ε, ε)→M ,

where ε > 0 and α(0) = x. We will define an equivalence relation on Cx(M) such

that α ∼ β if, for any local chart (U, φ), x ∈ U , we have (d(φ◦α)
dt

(t)|t=0 = (d(φ◦β)
dt

)|t=0.

Then the quotient Cx(M)/ ∼ is called the tangent space to M at x, denoted Tx(M).

In the Euclidean space Fn, a rectangular neighborhood is an open subset B =

J1 × · · · × Jn where each Ji is an open interval in the ith coordinate. A pair (U, φ)

is a foliated chart of codimension q if U is an open set and φ is a diffeomorphism

that maps U to Bτ × Bt, where Bτ is a rectangular neighborhood in Fq and Bt is

a rectangular neighborhood in Fn−q. The open sets are called flow boxes. A plaque

of the foliated chart is defined as Py = φ−1(Bτ × {y}), where y ∈ Bt, and a local

transversal if defined as φ−1
i ({x} × Bt). An atlas of dimension q is a collection of

25
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Figure 4.1: Foliation of a 3-dimensional manifold. From [CC00].

local charts that cover M with the property that, if (U, φ), (U ′, φ′) ∈ A, where U,U ′

are not disjoint, then φ′ ◦ φ−1 : φ(U ∩ U ′)→ φ′(U ∩ U ′) is a Cr diffeomorphism. The

map φ′ ◦ φ−1 can be thought of as a change of coordinates. Figure reffoliation shows

a a foliation of a 3-dimensional manifold.

If r ≥ 1, and M,N are manifolds, then a Cr map f : M → N is an immersion if,

for every x ∈M , Df(x) : TxM → TyN , y = f(x), is injective. Let F = {Lλ}λ∈L be a

decomposition of M into connected, immersed sub manifolds of dimension k = n− q.

Also, let {Uα, φα}α∈A be an atlas of foliated charts of codimension q with the added

assumption that, for each α ∈ A and λ ∈ L, Lλ ∩ Uα is a union of plaques. Then,

F is a foliation of M of codimension q and dimension k. Each Lλ is a leaf of the

foliation and (M,F) is called a foliated manifold.

A lamination of class Cr is a base space M endowed with an equivalence class L

of foliated atlas, where two foliated atlases of class Cr are equivalent if their union is

a foliated atlas. The leaves L of a lamination are the smallest path connected sets
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such that if L meets a plaque P , the P ⊂ L. The complete transversal is a transversal

meeting all leaves, and the codimension of the lamination L is the dimension of the

complete transversal associated to any atlas. Conceptually what this means is that a

lamination is like a foliation, but it is only over a subset of the manifold, as if there

were gaps between the lamination. In certain situations, it is possible to close these

gaps and make the lamination into a foliation.

A topological space is zero-dimensional at a point p, if, for all ε > 0, there exists

a clopen set that is a subset of the open ball Bε(p) and contains p. Rojo’s results

are for codimension zero laminations, which means the complete transversal has zero

dimension. Also of note is the relationship between totally disconnected and zero

dimensional, which is shown in Section 4.3.

4.2 Examples

In section 5.2, we will see that under the right conditions, a lamination can found by

constructing a quotient space. This following is an example of this.

Example 4.2.1. Let C = {0, 1}Z and σ((xi))k = xk+1 be a shift map for C. R × C

has a horizontal foliation, where the leaves are given by R× {x} for x ∈ C. Now let

the action of Z on R × C be defined by (λ, x) + l = (λ − l, σl(x)). The foliation on

R× C is invariant under the action of Z, so it induces a lamination of class C∞ on

the quotient space (R× C)/Z.



28

4.3 Basic Results

In a compact, or locally compact metric space, totally disconnected and zero dimen-

sional are equivalent. A zero dimensional metric space is easily shown to be totally

disconnected. Proving a compact, (or locally compact) totally disconnected set is

zero dimensional will require more effort.

Proposition 4.3.1. Let M be a metric space. If M is zero dimensional, then it is

totally disconnected.

Proof. Suppose M is zero dimensional and it is not totally disconnected, that is

there exists a connected set E ⊂ M that contains two distinct points, p and q. Let

0 < ε < d(p, q). Since M is zero dimensional, there exists a clopen set C that is a

subset of Bε(p) and contains p. Note that C ∩ E is clopen. In a connected space,

the only clopen sets are the empty set and the entire space. But C ∩ E contains p

but does not contain q, so it is neither. This implies C ∩ E, and therefore E is not

connected.

Proposition 4.3.2. If M is compact and totally disconnected, then it is zero dimen-

sional.

Proof. First, define Cn =
{
B 1

n
(x) : x ∈M

}
be a collection of open balls. Since M

is compact, there exists a finite subset of Cn that covers M . For any such subset S,

let Dn(S) denote the minimum number of balls needed to cover the space. Notice

Dn(S) ≤ Dn(M).

Let p ∈ M . We will now define (Cn) to be a recursive sequence of sets satisfying

the following properties:
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(a) Cn is clopen in M and p ∈ Cn.

(b) Cn ⊂ Cn−1 if n > 0

(c) For n > 0, Dn(Cn) is the minimum value of Dn(S) as S varies over sets which

satisfy

S ⊂ Cn−1, S is clopen, and p ∈ S (?)

Let C0 = M , and assume Cn−1 has been defined, for some n > 0. Then, Cn−1 is

clopen in M and so S = Cn−1 satisfies (?). There is at least one set that satisfies (?),

so we can choose Cn to be one that minimizes Dn(S).

Now define C = ∩n≥0Cn. Clearly, p ∈ C, and in fact we will show C = {p}.

To do this, suppose C contains more than one point. C is compact, since each Cn

is closed, and p ∈ C so we can write C = A ∪ B, where A and B are closed, non-

empty, disjoint sets, and label the sets so that p ∈ A. A and B are compact, since

they are closed in C. If we let α = inf {d(a, b) : a ∈ A, b ∈ B}, then we can define

U = ∪
{
Bα

4
(a) : a ∈ A

}
and V = ∪

{
Bα

4
(b) : b ∈ B

}
. U ∪V is open and contains C.

Since (Cn) is a compact, nested sequence, we can find N such that n ≥ N implies

Cn ⊂ U ∩ V . Choose n ≥ N such that 1
n
< α

4
. Then, any 1

n
ball that intersects V

does not intersect U .

Using our notation, Dn(Cn) is the minimum number of balls of radius 1
n

needed to

cover Cn, so Dn(Cn∩U) ≤ Dn(Cn). Cn∩V is non-empty, so any cover of Cn includes a

ball that intersects Cn∩V , and that ball must be disjoint from U . U ⊃ Cn∩U , so that

ball is not in a minimal cover of Cn ∩ U , and so Dn(Cn ∩ U) < Dn(Cn). Cn is clopen

and U is open, so Cn ∩U is open. Also, M \V is closed, so Cn ∩U = Cn ∩ (M \V ) is
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closed. Therefore S is clopen. Additionally, p ∈ Cn∩A, so p ∈ Cn∩U . Then, Cn∩U

satisfies (?), which is a contradiction because of how we chose Cn, and so C = {p}.

Finally, to show M is zero dimensional at p, notice C ⊂ Bε(p) for any ε > 0. (Cn)

is a nested, compact sequence, so there exists N such that CN ⊂ Bε(p), which means

p ∈ Bε(p). CN is also clopen, by definition, so M is zero dimensional at p. p ∈ M

was chosen arbitrarily, so M is zero dimensional.

This result can be strengthened by only needing M to be locally compact, which

means that for every p ∈ M there is an ε > 0 such that Bε(p) is compact. Local

compactness is a stronger statement than compactness.

Proposition 4.3.3. If M is locally compact and totally disconnected, then it is zero

dimensional at every point p ∈M .

Proof. Let ε > 0 and p ∈ M . For any 0 < γ < ε, Bγ(p) is a closet subset of

Bε(p), which is a compact metric space, so Bγ(p) is compact. It is compact and

totally disconnected, so by the previous proposition, there is a subset S ⊂ Bγ(p) that

contains p that is clopen in Bγ(p). A is closed in bγ(p) which is closed in M , so S

is closed in M . Both Bγ(p) and A are open in Bγ(p), so A = Bγ(p) ∩ A is open in

Bγ(p). Then, since Bγ(p) is open in M , so is A. Thus, A is clopen in M , and M is

zero dimensional at p. p ∈M was chosen arbitrarily, so M is zero dimensional.



Chapter 5

Connections

So far, we have discussed three different, but related topics: inverse limits, Smale

spaces and laminations. We will now relate these topics further by looking at results

by Wieler and Rojo, the former relating to Smale spaces and the latter relating to

laminations and both relating to inverse limit spaces. Both built on the work of R.F.

Williams ([Wil74]). We will look at each of the results separately, with some examples

and then discuss how they are related.

5.1 Inverse Limits and Smale Spaces

Williams took previous results characterizing attractors with hyperbolic structure and

added the condition that the attractors be expanding. With this condition he was

able to provide complete proofs of results relating any expanding hyperbolic attractor

to an inverse limit space. He associated an expanding attractor, which is a topological

idea, with the concept of a bonding map being expanding, which is a dynamical idea.

Wieler’s goal was to generalize these result for Smale spaces. First, we will state

the theorems noting that Ŷ = lim←−(Y, g), ĝ is the associated mapping and d̂ is the

associated metric, both simply the restrictions of g and d to Ŷ . Also, this version of

the theorems comes from [Wie12b] , which differs slightly from [Wie12a].

31
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Let (Y, d) be a compact metric space, and let g : Y → Y be continuous and

surjective. We will say that (Y, d, g) satisfies Axiom 1 and 2 if there exist constants

β > 0, K ≥ 1, and 0 < γ < 1 such that

Axiom 1: if d(x, y) ≤ β then

d(gK(x), gK(y)) ≤ γKd(g2K(x), g2K(y)),

and

Axiom 2: for all x ∈ Y and 0 < ε ≤ β,

gK(B(gK(x), ε)) ⊆ g2K(B(x, γε)).

Theorem A. If (Y, d, g) satisfies Axioms 1 and 2 then (Ŷ , d̂, ĝ) is a Smale space

with totally disconnected local stable sets. Moreover, (Ŷ , d̂, ĝ) is an irreducible Smale

space if and only if (Y, d, g) is non-wandering and has a dense forward orbit.

Theorem B. Let (X, d, f) be an irreducible Smale space with totally disconnected

local stable sets. Then (X, d, f) is topologically conjugate to an inverse limit space

(Ŷ , δ̂, α̂) such that (Y, δ, α) satisfies Axiom 1 and 2.

Note that two function, f and g are topologically conjugate if there exists a

homeomorphism h such that h ◦ f = g ◦ h. The first axiom is a weakened version

of the condition that g be locally expanding and the second axiom is a weakened

version of a condition that g be locally open. Smale spaces have a contracting and

an expanding direction, so if the inverse limit is a Smale space, we need to guarantee

those directions. The inverse limit has a natural contracting direction, and this

axiom guarantees the expanding direction. These two directions ensure the hyperbolic
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structure of the Smale space. This axiom also implies g is finite-to-one. What follows

are two counterexamples that show the necessity of both Axioms in the theorem.

Example 5.1.1. Example 3.2.2 was not a Smale space because of a lack of hyperbolic

structure. It fails Axiom 1 because it is not expanding near the critical point.

Next is an example that fails Axiom 2 and is not a Smale space.

Example 5.1.2. In [Wie12b], Wieler suggests the following counterexample for Ax-

iom 2. Let Σ+
{0,1} and Σ+

{0,2} be the full one-sided shifts on {0, 1} and {0, 2} respectively,

and use the metric d(x,y) = 2−min{n|xn 6=yn}. Then, let Y = Σ+
{0,1} ∪ Σ+

{0,2} and let g

be the left shift map.

Now, let β > 0, K ≥ 1, N ≥ 2K and 0 < γ < 1 and choose x,y ∈ Y defined by

xn =

 1 if n = N +K

0 if n ≥ N +K

and yn =

 2 if n = N

0 if n 6= N

Then, d(gk(x),y) = 2−N , so y ∈ B(gk(x), 2−N). If z ∈ B(x, γ2−N), then

(g2K(z)N−2K = zN = xN = 0. However, (g2K(y)N−2K = yN = 2, so gK(B(gk(x), 2−N) 6⊆

g2K(B(x, γ2−N)) and Axiom 2 fails.

The inverse limit of the previous space is conjugate to (Σ{0,1} ∪ Σ{0,2}, S) where

the shifts are now full shifts and S is again the left shift map. To see this is not a

Smale space, let x ∈ Σ{0,1} and y ∈ Σ{0,2} be arbitrarily close (that is N is arbitrarily

large). Using the alternate definitions of the local stable and unstable sets, we see that

Xs(x, ε) ⊂ Σ+
{0,1} and Xu(y, ε) ⊂ Σ+

{0,2}. The intersection of these two sets is empty,

which means the inverse limit is not a Smale space.
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These two examples show the importance of the space satisfying Axioms 1 and 2

it to be a Smale space.

Theorem A is a construction theorem. It constructs a certain type of Smale space

if we only have information about (Y, d, g). Both axioms are needed in the proof that

(Ŷ , d̂, ĝ) is a Smale space, and Axiom 1 implies g is finite-to-one, which is needed to

prove that the local stable sets are totally disconnected. Theorem B is a realization

theorem. It says there is a topologically conjugate inverse limit space, but does not

construct it. The conditions of the two theorems also imply there is some connection

between the system (Y, d, g) being locally open and expanding and the local stable

sets of the Smale space being totally disconnected. As mentioned before, Smale

spaces with totally disconnected stable sets are known to be inverse limits, so it is

not surprising that (Ŷ , d̂, ĝ) is a Smale space under certain conditions.

(Y, d, g) is irreducible if it is non-wandering and has a dense forward orbit. So, if

it satisfies Axioms 1 and 2, then (Y, d, g) being irreducible is equivalent to (Ŷ , d̂, ĝ)

being irreducible. Thus Theorem A really says that if we begin with (Y, d, g) that

satisfies Axioms 1 and 2 as well as being irreducible, then the inverse limit is an

irreducible Smale space with totally disconnected local stable sets.

Theorem B starts with an irreducible Smale space with totally disconnected local

stable sets. The irreducible condition guarantees there is a Markov partition and the

condition on the local stable sets guarantees additional properties of that partition.

Both are vital to Wieler’s proof. However, although the Smale space must be non-

wandering, it is not actually necessary that the space have a dense forward orbit for

the theorem to hold.

In the proof of Theorem B, Wieler started with an irreducible space and placed a
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Markov partition on it.

This is a partition of irreducible rectangles that either border each other or pass

completely through each other, as shown in the figure above. She then created a

quotient space using an equivalence relation, which collapses the rectangles to a sin-

gle point. In the case of the next figure, orbits might be double-counted, but the

effect of that problem can be controlled, because the map is finite-to-one. Under the

equivalence relation, this situation results in a branched manifold.

The inverse limit of the quotient space is topologically conjugate to the original

space and also satisfies Axioms 1 and 2. What is interesting about this construction is

that the quotient space is a branched manifold. Williams used a very similar construc-

tion to explain them, by placing an equivalence relation on a compact neighborhood

in a foliated manifold.
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5.2 Inverse Limits and Laminations

Rojo looked at Williams’ result that an inverse limit of a branched manifold is home-

omorphic to an expanding attractor of a diffeomorphism of a manifold ([LR13]). In

[CRS11], Rojo, along with Cuesta and Stadler, obtained results by thinking of lamina-

tions as tiling spaces. He then adapted those results to codimension zero laminations

and used tiling space results to prove his new results. As with Wieler, Rojo states a

construction theorem and a realization theorem. Here, there is a stronger restriction

on the initial space in the projective system. Before, the space was only required to

be a compact metric space.

Theorem 5.2.1. Fix a projective system (Bk, fk) where Bk are branched n-manifolds

and fk cellular maps, both of class Cr. The inverse limit B∞ of the system is a

codimension zero lamination of dimension n and class Cr if and only if the systems

is flattening.

Theorem 5.2.2. Any codimension zero lamination (M,L) is homeomorphic to an

inverse limit lim←−(Sk, fk) of branched manifolds Sk and cellular maps fk : Sk → Sk−1.

Theorem 5.2.1 can be called a construction theorem because it constructs a certain

type of lamination if we only have information about the projective system. Theorem

5.2.2 can be thought of as a realization theorem because it says there is a lamination

homeomorphic to the projective system, but does not construct it.

The first theorem is very intuitive. Even though the initial spaces are branched

manifolds, a lamination cannot have a branch point, so in order for the inverse limit

to be a lamination, the branch point must be ironed out. Branch points must be
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mapped to branch points and the ‘flaps’ near the branch must eventually be mapped

to each other.

In the proof of theorem 5.2.2, branched manifolds are constructed in a remarkably

similar fashion to the proof of Theorem B. In Wieler’s proof, there existed a Markov

partition on the space because it was irreducible. Here, there exists a simplicial box

decomposition for the lamination because it has codimension zero. If needed, there

are ways to modify the map at this step to become cellular. The transversals of the

boxes are collapsed using an equivalence relation, just as before, and the result is a

branched manifold. A sequence of branched manifolds is constructed inductively and

the inverse limit of this projective system is homeomorphic to the lamination.

5.3 Connecting both results

Propositions 4.3.1 and 4.3.2 show that the totally disconnected and zero dimensional

are just about equivalent. This relationship clues us in to how the stable and unstable

sets of the Smale space relate to the lamination. In the lamination, there are two

distinct directions: along a transversal and along a leaf. The transversal in the

lamination is the stable set of the Smale space. Notice that this is the direction, in

the proofs of both Theorem B and Theorem 5.2.2, in which the space was collapsed

obtain a branched manifold. This is the contracting direction. Then it is clear that

the codimension of the lamination is equal to the dimension of the stable set of the

Smale space.. Additionally, the leaf in the lamination is the same direction as the

unstable set, which is the ”expanding” direction.

The flattening condition can also be explained in terms of both laminations and
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Smale spaces. Theorem 5.2.1 insists that the projective system be flattening, in order

for the inverse limit to be a codimension zero lamination. This strongly relates to

Proposition 3.3.5. that says Xu(x, ε)×Xs(x, ε) is homeomorphic to a neighborhood

of x. So the branch point must be flattened so that its neighborhood is homeomorphic

to a Euclidean one.

The figure below summarizes the relationship between laminations, inverse limits

and Smale spaces.

From left to right, any codimension zero lamination is homeomorphic to an in-

verse limit of a projective system with branched manifolds and cellular maps. If the

projective system is locally open and expanding, then the inverse limit is a Smale

space with totally disconnected local stable sets.

From right to left, a Smale space with totally disconnected local stable sets is

topologically conjugate to an inverse limit if it is irreducible, and the projective system

will satisfy Axiom 1 and 2. If the projective system is flattening, then the inverse

limit is a codimension zero lamination.
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