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II. Abstract

The spectral collocation method is a numerical approximation technique that
seeks the solution of a differential equation using a finite series of infinitely
differentiable basis functions. This inherently global technique enjoys an exponential
rate of convergence and has proven to be extremely effective in computational fluid
dynamics. This paper presents a basic review of the spectral collocation method. The
derivation is driven with an example of the approximation to the solution of a 1D
Helmholtz equation. A Matlab code modeling two fluid dynamics problems is then
given. First, the classic two-dimensional Graetz problem is simulated and compared to
an analytical solution, a finite difference formulation and a published series solution. An
implementation that includes the effects of axial conduction is then compared to the
classic series solution for low Peclet number flow, as well as several published results.
Finally, two-dimensional laminar diffusion in a tube is modeled and compared to a
published analytical solution. The application of spectral collocation to these problems
is unique to this study and the results suggest that significant speedup can be achieved
in other areas. In addition, the results are in excellent agreement with published data
and the Matlab code provides an example of a simple yet effective pseudospectral

method implementation.
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1. Introduction

This manuscript describes several complex areas of engineering and applied
mathematics. The primary focus is on computational fluid dynamics and the spectral
collocation method. Spectral collocation is a numerical approximation technique that is
especially appealing in fluid modeling but one that can be difficult to develop and apply
to generic problems. Presented here is its derivation, as well as illustrations of its

strengths and weaknesses, when applied to two specific engineering problems.

The two problems offered are the extended Graetz problem and simple particle
diffusion in a tube. Although both of these have enjoyed extensive research, there is no
precedent in the literature of their approximation using spectral collocation. A simple
and efficient solution to both of these problems can be useful in several different areas

of manufacturing and engineering; particularly aerosol research.

In manufacturing, aerosol processes are used to produce optical fibers, ceramics
and certain electronics [1]. Conversely, particle deposition is undesirable when it can
cause corrosion or fouling of pipelines, heat exchangers, and power generation
equipment [2,3]. These problems have also been applied to the estimation of inhaled
particles in human airways [4]. An understanding of the temperature distribution and
deposition rates in these fields can help predict equipment failures and maintenance

schedules, as well as production yields.
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The layout of this paper begins with a background and review fluid dynamics as
well as the two benchmark problems modeled, the Graetz problem and the simple
diffusion model. Chapter 3 then presents a brief introduction to the Spectral
Collocation Method along with an example of its application. The numerical
discretization for the benchmark problems is then presented in Chapter 4 with the
results and discussion of the simulations included in Chapter 5. Finally, Chapter 6 offers
some conclusions and future applications of the spectral collocation code developed

here.
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2. Background

2.1 Computational Fluid Dynamics

Computational Fluid Dynamics (CFD) is the area of mechanics concerned with the
numerical modeling of fluid motion. Described by the Navier-Stokes (NS) equations,
fluid mechanics is one of the most difficult physical phenomena to model. Most realistic
fluids are characterized by the non-linear and coupled forms of the Navier-Stokes
equations. Even with sophisticated solution algorithms, high-performance computers,
and simplified forms of the NS equations, it can be difficult to achieve accurate

approximations [5,6].

2.1.1 Navier-Stokes Equations

Unlike the general equations of motion that relate one or more parameters to
each other, such as mass and acceleration to force, the NS equations relate gradients to
one another [7]. They can be derived by basic conservation equations, as illustrated
below. For most problems there is no analytical solution and numerical methods are

required.
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m, +dy

s

Figure 2.1 Differential Volume for conservation of Mass.

Figure 2.1 shows a differential volume for a fluid particle in two dimensions. The

equation can be verbalized as

rate of rate of rate of
increase in mass mass
Mass

In differential vector notation this reduces to Equation (2.1) [7].

op _
—+V.u=0 2.1
ot @4

Figure 2.2 shows how momentum is conserved in one dimension using a differential

volume element.
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0 dy

Tt a(fyx )7
e} dx o dx
Un*a(%c)7 Un+§(0m)7

— —-
B
3} dy
T *5(%)?

Figure 2.2 Differential Volume for Conservation of Momentum.

This can verbalized as

rate of rate of rate of external
increase = momentum >~ - < momentum > 4 force on
of momentum in out fluid

The resulting differential equation is shown in Equation (2.2) [7]. A detailed description
of the derivation of Equation (2.2) from the differential element is left to the reader to

explore further.

oo _ __ _
p(5+ U -Vuj =-Vp+uViu+f (2.2)
The Conservation of Energy and Species are also included in many descriptions of the NS
equations. Abandoning the differential volume description, the Conservation of Energy

can be described as
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N ~ ~
Rate of net ratg of kinetic net rate of heat
increase of and internal addition by
kinetic and = energy addition + < molecular ~ +
internal energy by convective transport
transport (_ (conduction)
-
rate of work rate of work
done on system done on system
by molecular + < by external >
mechanisms forces
(i.e., by stresses) \(e-g-, by gravity)/

Equation (2.3) expresses this in differential form [7].

%(%pvz +p0)=—Av- [t + p0) v)-(v-q)-
(V-pv)-(V-[z-v])+p(v-9)

(2.3)

The conservation of mass species for component A of a mixture can be presented as:

rate of rate of rate of production of
mass of ~ - mass of + mass of A by =0
Ain A out Homogeneous reaction

This is described by Equation (2.4) [7].

Pe (V-9 0)- (V1,40 24)
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2.1.2 Spectral Method

The spectral method is a numerical modeling technique for approximating the
solution of partial and ordinary differential equations. Related to the method of
weighted residuals, spectral methods employ infinitely differentiable functions as trial
functions. The result is a global method with an exponential rate of convergence for
problems with smooth solutions. Since the discovery of fast Fourier transforms the use
and practicality of spectral methods has steadily increased. This is especially true in

fluid mechanics research.

2.1.3 Spectral Method Literature Review

The idea of using spectral representations as numerical solutions to ordinary
differential equations is often accredited to the work of Lanczos in 1938 [8,9]. Although
many different variations of the method of weighted residuals and orthogonal
collocation methods were developed, it was the works of Kreiss and Oliger as well as a
separate work by Orszag in 1972 that presented the earliest applications of the spectral
collocation method. At the time it was referred to as a Fourier method and
pseudospectral method respectively [9]. The advancements of the method were made

possible at the time by the newly discovered Fast-Fourier Transform algorithm.
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The first published treatment of spectral methods was completed by Gottlieb and
Orszag in 1977 [10]. This monograph paved the way for the more advanced extensions
of the method for a larger variety of problems; including the applications to fluid
dynamics by Canuto et al. [9], [11], as well as the generic treatments of Boyd [12], Guo

[13], Fornberg [8] and Trefethen [14].

Although the spectral method has been applied to many different CFD problems,
there are still many models that have been investigated with the finite difference and

finite element methods that could be reopened to the spectral method.

2.1.4 Finite Difference Method

The finite difference method is one of the most popular numerical modeling
techniques. This popularity is due to its ease of implementation along with its ability to
model complex geometries [15]. Numerical differentiation requires an estimate to the
derivative or slope of a function by using the values at a set of discrete points along the
function. For the implementation here, a central difference scheme is offered. This is
essentially a linear interpolation about the point of interest. Equations (2.5) through
(2.7) present examples of numerical approximations for derivative terms found in the
non-dimensionalized conservation of energy equation [5-6,15-16]. These can be proven

by a Taylor series expansion; which is left to the reader to explore further.
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de _ e, j+1)-6(,j-1)

dz* 2AZ" 23
do 0+l j)-06(i-1)) (2.6)
dr® 2A 1"
d’0 0@(+1j)-20(G,j)+031-1,j)
= > (2.7)
dr” (A r*)

2.2 The Graetz Problem

The Graetz problem is concerned with the heat transfer between a flowing fluid
and a circular tube. Essentially a fluid at constant temperature is forced along the
length of a pipe until the flow becomes laminar. At that point the fluid velocity occurs
parallel to the length of the pipe and there is no momentum in the radial or
circumferential directions. At a point, z=0, the wall temperature changes. This
difference in temperature causes a net heat-flux between the fluid and the wall. The
distribution in fluid temperature along the length of the pipe is what is considered by

the Graetz problem.

For laminar tube flow the velocity profile is parabolic; described by Equation (2.8)

[7,18].
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v(r) =Vmax(l—(a ] (2.8)

Where:
V..« is the velocity along the centerline of the tube.

R is the tube radius.

Figure 2.3 is an illustration of laminar tube flow.

r >
A =\=\
\
z » Vmax
L §/
=
4
——>

Figure 2.3 Laminar Tube Flow.

The laminar assumption allows Equation (2.8) to be substituted in the Energy

equation directly. This is developed further below.
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2.2.1 Literature Review

The heat transfer of a fluid flowing in a pipe is a classic problem. With over 120
years of investigation there are numerous analytical and numerical solutions of the
problem. The original analytical solutions proposed by Graetz and Nusselt ignored the
effects of axial conduction on the temperature distribution [17]. With these solutions
the first few Eigen values of the asymptotic expansion were found along with the
corresponding coefficients. This problem and method of solution is generally referred
to as the Graetz problem and Graetz method respectively, due to the seminal work
published by German physicist Leo Graetz in 1883 [17,19]. Subsequent studies focused
on expanding the accuracy and number of eigenvalues for the expansion, solving the

problem for other geometries or further defining the entrance region.

The simplified solution has been shown to be appropriate for fluids with high
Peclet numbers. The breakdown of the solution occurs as the flow slows down and two
things occur. The first is the presence of axial conduction. The fluid down-stream wiill
affect the up-stream fluid’s temperature distribution. The second is the preheating
effects of the incoming fluid. The majority of analytical solutions for low Peclet flow,
most often referred to as the Extended Graetz problem, will break the physical domain
in two. The boundary conditions are enforced at the origin and two different

expansions are generally used to solve the overall problem.
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Graetz was able to calculate the first two eigenfunctions of the series solution to
the problem. This was later extended to three by Nusselt in 1910 [20]. In 1955 Sellars
et al. [21] was able to extend that number of eigenvalues from 3 to 10 for the classic
Graetz problem. However, it was shown that accurate solutions could be achieved
within the first 4 eigenvalues. In addition, Sellars explored the inverse problem of
finding the temperature at constant heat flux. Similarly this case was explored by Bird
et al. [7]; where an asymptotic solution was reached for long tubes. Recently Housaidas
et al. [22] built on the work of Sellars [21] by determining mathematically where the
general asymptotic solution breaks down and the Leveque solution becomes more

appropriate.

There have been many other analytic and numerical methods applied to the
Graetz problem. Jones et al. [18] considered an infinitely long tube with a circular cross-
section. One semi-infinite half is at taken at one temperature Ty and the other half is at
Temperature T;. It was assumed that the physical properties were independent of the
temperature. The solution was arrived at by first employing a two-sided Laplace
transform on the energy equation (developed below). An inverse Laplace was then
applied to obtain the general form of the solution. A series solution, or more formally a
Frobenius method, was then used to find the eigenfunctions and subsequent

eigenvalues of the general expression.

Michelsen et al. [23] used a combination orthogonal collocation and matrix

diagonalization.  In addition, an asymptotic solution was developed based on
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perturbation of the eigenfunctions for the simplified model. It was initially questioned
whether or not the classical Fourier series methods provided the most practical
numerical representation of the solution. The conclusion was that the overall solution
could be reached with much higher accuracy with fewer nodes than the asymptotic

solution. However, both methods struggle with convergence in the entrance region.

Ou et al. [24] presented a method that solved the energy equations using a
DuFort-Frankel explicit method. This is a finite difference technique that can be more
stable than traditional differencing schemes. It does however require two known
conditions at the boundaries. This solution offered comparable accuracy to the more

difficult series solutions.

Bayazitoglu et al. [25] presented a finite integral transform technique. The
resulting method was applicable to both laminar and turbulent flow inside conduits.
Convective boundary conditions, axial conduction and internal energy sources were also
included. The method presented was a combination of a numerical scheme and an
asymptotic expansion. The overall domain was divided in half and a two-sided Laplace
transform technique was used. The series solution was then achieved by expanding the
nonorthogonal eigienfunctions in terms of an auxiliary system. In this case those were
Gramm-Schmidt orthogonal functions. Laohakul et al. [26] extended this work to better
solve low Peclet number flows. The finite integral technique was extended to include

the analysis of multiple heating-cooling sections along the tube using Greens function.
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Ku et al. [27] developed two computational methods. The first a Chebyshev-finite
difference method and the second a Chebyshev-finite element method. The so called
Chebyshev-finite difference method was constructed using a Chebyshev-collocation
scheme in the radial direction with a second order finite difference approximation on
equally spaced points in the radial direction. The Chebyshev-finite element method
used a global element approach with the axial domain divided into a small number of
elements in an attempt to overcome Gibbs oscillations. Essentially Chebyshev

expansions are developed for individual sub-regions along the axial domain.

Poirier et al. [28] looked exclusively at the entrance region using a finite volume
technique. The resulting analysis revealed that the solution was extremely sensitive to
the number and configuration of node points. The conclusion was that any numerical
analysis of the entrance region should be conducted by increasing the number of node
points until convergence is reached. At which point a coordinate transform can be used

to reduce the number of grid points.

Ebdian et al. [29] considered the extended Graetz problem using an analytical
solution and Fourier integral transformation. Similarly Telles et al. [30] used the
orthogonal Gram-Charlier basis functions to form an infinite expansion to the solution.

The solution was valid over the entire domain of (~,0) and does not require the usual

domain separation techniques.
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Mercado et al. [31] looked at the Graetz problem under turbulent flow. A
combination numerical model was developed. In the radial direction a fourth order
finite difference technique was used. The resulting set of equations was then integrated
in the axial direction using a fourth order Runge-Kutta method. In the laminar case this
method proved to be non-iterative and the authors concluded that this made it more

desirable and faster than conventional computational fluid dynamics packages.

2.2.2 The Simple Graetz Problem

In order to simplify the tube flow problem presented above, some assumptions
need to be made. First, the flow is irrotational, meaning the molecules that comprise
the fluid have no rotational velocity. The bulk fluid can still have non-linear motion, but
there is no spin to the individual elements [7]. Second, the viscosity of the fluid will be
neglected, meaning that there is no viscous dissipation. Third, there is no particle slip at
the boundary. Fourth, all other forms of heat generation are negligible. Fifth, there is
no temperature dependence on the fluid properties. Finally, for the classic case

considered here, conduction in the axial direction is negligible.

Additionally, it is assumed that the flow is axisymmetric (mirrored about the
tube centerline). As stated before this means the velocity only changes with respect to

the distance radially from the center.
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Equations (2.1) and (2.2) will automatically be satisfied by the given velocity
profile, which can then be substituted directly into Equation (2.3). The resulting energy

conservation equation is

2
r oT 10 oT
eV l1-| =] & -k =L rS||=0
P ma{ (Rjj&z [r ar( arﬂ (2.9)

Equation (2.9) can be further simplified by introducing non-dimensional
variables. Non-dimensionalization provides a way to compare systems of different

length scales.

Introducing the following non-dimensionalized variables [7].

. T . L . u Unax - R v
rr=—, 7' =—, u =—-o, Re = ™—, Pr=—
R R Upnax v a
o- T-T,
Tre _Trw

The Reynolds number (Re) relates the inertial forces of the fluid with the viscous
forces [32], and the Prandtl number (Pr) relates the viscous diffusivity of the fluid with

the thermal diffusivity [7].

Substituting these into Equation (2.9),

Re- Pr-(l—(r*)z)gfz _r_l*a?* (r* 2?*):0 (2.10)




27

Expanding the derivatives in Equation (2.10),

2
Re. Pr.(]__(r*)2)6® _i6_®_ 0’® =0 (2.11)

2.2.3 The Extended Graetz Problem

When the Peclet number is sufficiently low, pe <10, axially conduction will have

a significant effect on the heat transfer of the fluid. This is referred to as the extended

Graetz problem. The addition of axial conduction to Equation (2.11) will result in

e\0® 00 1 00 00
Re Pr'(l_(r ) )az* ot o ot -0 N

2.2.4 Classic Graetz Series Solution

The Graetz series solution is formed using a recurrence relation for the series
approximation of the energy equation after a separation of variables. This method has
been shown to be very accurate for all regions of the domain with the exception of the
entrance region. At the entrance the convergence of the series is very slow. In fact
there are some cases where convergence is not reached with upwards of 150 terms.

Leveque solved the problems the series solution experiences in the entrance region by
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using a method of similarity transform [6]. This alternative method is only appropriate

for the thermal entrance region and simplifications are made based on that. This is not

explored here but can be found in several references [6,20].

Originally Graetz treated the problem as a solid rod moving through a pipe; known

as slug flow. Later it was treated as Laminar or Poiseuille flow. The solution, which

takes considerably more numerical computation, is presented for reference here.

2.2.5 Series Solution Development

Beginning with Equation (2.9) and the following dimensionless variables,

r %3 T-T,
77:—' 5:—' @:
R Re Pr T,-T,

Notice that these are slightly different than the values presented above.

dimensionalization makes a separation of variables easier. This Results in

o0& mon on’

(1_( )2)@ 10 o0 _,

The solution is assumed to be of the form

© = X(£)R(7)

When substituted into Equation (2.13) the result is

This

(2.13)

(2.14)
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1 4R aZR} _p

_Q_ Ril i{_% on’?

(2.15)
From this
D, 2% =0 (2.16)
is found and has the known solution [20],
X (&)= Ae#¢ (2.17)
A'is just an arbitrary constant. The other side of the separation results in [20],
asz IR 2L (mFR=0 (2.18)

With the prescribed boundary conditions this will form a Sturm-Louville system; where

Rn(n) are the eigenfunctions and A, are the eigenvalues [20]. An explanation of this
can be found in [33]. Once the values for Rn(n) are known the general solution is

Equation (2.19). Graetz found the eigenfunctions using a series expansion of Equation

(2.18). Eventually numerical integration allowed more eigenfunctions to be found.

R (2.19)
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2.2.6 Graetz Series Solution Code

The Graetz series code was originally written by Dr. Patrick Tebbe and is included

here with permission. The solution is based on the work of [22] where Equation (2.19) is

expressed as the asymptotic formulas of 4, ,R and A, . It should be noted that A,

. . - . oR .
results from the solution of the expansion coefficient C, and is equal to ( ”J ; this
n=1

n

is explained in [20-21]. Equation (2.19) is further rearranged to solve for the bulk fluid:

%
Z )e (2.20)

n=0 nn

The main computation loop is included in Listing 2.1 below. The full code listing is

included in Appendices 7.1 and 7.2.
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for

end;

loop=1:N+1
count=count+1;
theta=0;
n=0;
% the error value must be initialized to a large value
error=1000;
% the non-dimensional axial location is calculated
phi=z(loop)/ (Rad*Pe) ;
% a loop is started for the terms in the series solution,
% 1t keeps going until error is below the limit or 10 terms
% have been added
while (error>emax)&&(n<=10)
n=n+1;
% the graetz function is used to calculated the
% eigenvalues, etc.
[lambda,R,LAMBDA] = graetz(n,S,P,Q);
% the term is added to the summation and the error
% is calculated
old=theta;
% [Housiadas eq. 2]
theta = theta + 8*R* ..
exp(-1*lambda”2*phi)/(lambda”~3*LAMBDA) ;
error=(theta-old)/theta*100;
end;
% final values are output to the arrays for later plotting
% the terms array keeps track of how many terms are used at
% each axial location
z(count)=loop;
relerror(count)=error;
terms(count)=n;
T(count)=theta;%

Listing 2.1 Computation loop for Graetz series solution
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2.3 Simple Diffusion Model

The second problem considered is the deposition of particles dispersed in a fluid
under laminar flow conditions in a cylindrical tube. When particles are exposed to a
concentration gradient those particles will diffuse by Brownian motion from high
concentrations to low concentrations. When the particles are dispersed in a fluid that is
traveling down a tube or between parallel plates, the walls of the vessel will act like a
sink to those particles. For most models the concentration at the wall is taken to be

zero and the particles will deposit there.

2.3.1 Literature Review

The modeling of aerosol deposition in a tube is a well characterized problem.
There have been several analytical solutions for the deposition efficiency. The first was
developed by Gormley and Kennedy in 1949 [34-35]. This is the benchmark solution
referred to by most of the subsequent studies. C. N. Davies presented an analytical
solution that differed from the Gormley results [36]. However, Ingham [36] later
showed that there was a mistake in that evaluation. In addition, a solution for small

values of the diffusion coefficient was developed.
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2.3.2 Analytical Solution

The analytical solution first developed by Gormley and Kennedy and slightly

reformed by Hinds [34], is

11 <0.009

P=1-55-4% 43774

4 >0.009 (2.21)
P=1-0.819-. e(*11-5/1) +0.0975- e(—70.lu)
Where p is defined as
_D-L
. Q (2.22)

2.3.3 Mathematical Formulation

For the simple problem it is assumed that there is no formulation of aerosols and
the mass transfer along the direction of flow due to diffusion can be neglected. These
are both valid as long as the Peclet number is significantly greater than 1. As before the
flow is considered laminar. Beginning with the two-dimensional species equation,

Equation (2.4),
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10 0 10 on\) 0 on
——I|rolu+V;, )n[+—|pV +V, N|=——| roD— |+ —| pPD—
R L A R e R o R
Neglecting:
Axial Diffusion: i(pD@j
0z 0z

Thermophoresisinzandr: V;, & V,,
Velocity inr: u

Will result in

on 10 on
Z]==={ D=
62[ ] r 8r[ ar) (2.24)

Using Diffusivity that is not dependent on temperature and plugging in parabolic

velocity, results in the governing equation:

2
r on 10( on
v 11| [@-pz2f X
Z'max[ (RJ:lﬁz r@r( arJ (2.25)
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3. Spectral Methods

The spectral method can be described as an approximation to the solution of a
differential equation using a finite series of smooth basis functions. Derived from the
Method of Weighted Residuals, spectral methods enjoy a so called exponential rate of
convergence (compared to the polynomial convergence rate of most other numerical
methods). They are best suited for simple domains (i.e. squares or circles) and have had
broad success in several areas including Weather, Turbulence, Seismic and Quantum

Modeling [8-9,11-13].

There are several features that set spectral methods apart from other numerical
solutions to partial differential equations (PDE). The first is the computational domain.
In Finite Element (FE) modeling, for example, the overall physical domain is broken up
into a number of subdomains (elements) and a local basis function is chosen to be non-
zero over a couple of sub-intervals within that domain. Conversely, spectral methods
chose a basis function that is global to the entire computational domain and is non-zero
except at isolated points. It is this reason that spectral methods are often referred to as

a global numerical method.

The second distinguishing feature of spectral methods is the choice of basis
functions. Spectral methods select basis functions that are high degree polynomials or
trigonometric polynomials that are infinitely differentiable. The basis functions for FE

methods are generally low-order polynomials and as stated before, local in nature.
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Because of this, FE methods are better suited for complex geometries but suffer from

lower accuracy as compared to spectral methods.

3.1 Derivation

The derivation of the spectral method can be motivated by the Method of
Weighted Residuals (MWR). There are two main components of the MWR, those are
the trial or basis functions and the weight or test functions. Suppose that there is a

linear operator L acting on a function u(x) and the result is a function f (x),
Lu(x) = f(x) (3.1)

It is assumed that the unknown u(X) can be approximated by a linear combination of

N +1 basis functions, ¢, (X),

u(x) = uy (x) = Z 2,6, (%) (3.2)

When the approximation u, (x) is substituted into Equation (3.1) the result is not exactly

the desired function f (X). Instead the result is the residual equation,

R(X,: 8y, 8,.eee ) = LUy (X) — £ (%) 3.3

For the exact solution the residual R will be zero. The general idea is to find the series

coefficients that bring the residual to a minimum.
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The residual is forced to zero in some average sense over the computational

domain. That is, where the number of weight functions,W,, is exactly equal to the

number of unknown constants,

[ROOW,dx =0 (3.4
X

The result is set of algebraic equations for the unknown constants g, .

As stated above, it is the choice of basis functions, ¢, (X), that separates spectral

methods from finite difference and finite element methods. Similarly, it is the choice of

weight functions W, that separate the different types of spectral methods.

3.1.1 Spectral/Galerkin

The first method is referred as the spectral or Galerkin spectral method. Here,
the weight functions are the same as the basis functions. They are infinitely smooth
functions which individually satisfy the boundary conditions. The differential equation is
then enforced by requiring that the integral of the residual times each test function be

zero; as explained above [12].
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3.1.2 Tau

In the Tau method the boundary conditions are not directly satisfied by the
global expansion functions. Some equations are required to ensure those boundaries

are satisfied. Now Equation (3.2) becomes Equation (3.5), [13].

Uy (X) =Ug (X)+ Y 2,4, (X) (3.5)

3.1.3 Collocation/Pseudospectral

In the collocation method the weight functions,W,, are selected from the group

of Dirac delta functions. These functions have the properties expressed in Equation

(3.6).

S(x-x)= L ox=x
Y0 x# X (3.6)
The integration of (3.4) now results in:
R(x,)=0 (3.7)

The spectral collocation method employs Gauss-type quadrature formulas where
the collocation points that are chosen are roots of the basis functions, g, (X).
Therefore, Equation (3.2) is satisfied exactly at the selected points. Rather than solving

for the expansion coefficients (&, ) as in the Galerkin Spectral Method, the collocation
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method uses them as an intermediate step, specifically, in the analytic differentiation

[9].

3.2 Chebyshev Polynomials

Chebyshev polynomials are developed as special cases of ultraspherical
polynomials [33]. As far as spectral methods are concerned, the most noteworthy
aspect of Chebyshev polynomials is that their expansion is nothing more than Fourier
cosine series in disguise [12]. This is such an important consequence because it allows
the application of Spectral Methods to non-periodic domains using the same theorems
and identities as Fourier methods. The domain of convergence for the expansion

however now changes from [0,77] to [—1,1]. For the problems presented in the paper

Chebyshev expansions and collocation points are used exclusively.

The Chebyshev expansion of a function u e L? (=1,1) is [11]:

© . 2 1
u(x)=> 0T (x), G =——|ulxJT, (x)w(x)dx (3.8)
k=0 7ZCk -1

Where T, (X) is the Chebyshev polynomial defined as

T (x)=coskd, @ =arccosx (3.9)
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As stated before, Chebyshev polynomials are just cosine series after a change of

independent variable. The polynomials can now be expanded in power series to form

k& (k-1-1),

X)=52.(-1) |,k 2|),( x)™ (3.10)

This can then be described by the recursive equation

Tk+l(x): 2XT, (X)_Tk—l(x) (3.11)

The restriction that Chebyshev polynomials place on the domain can be explained
by Darboux’s principle. Stated plainly, the convergence of a spectral series of u(x)is
controlled by the singularities of u(x). Singularities are any points in the complex plain
where U(X) ceases to be analytic. In reality this can be a number of influences,
including square roots, logarithms, simple poles, step function discontinuities and

infinities or abrupt discontinuities in any of the derivatives of u(x) [12].

3.3 Chebyshev Derivative Matrix

Differentiation using spectral methods can be a confusing concept. The first thing
to take note of is the change of variables that occurs when moving from Chebyshev
polynomials to Fourier series. With that in mind, the unique aspect of Chebyshev
polynomials is that the basis functions and their derivatives can be constructed using

trigonometric functions. Also of note, differentiation as defined here, can be achieved
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in either transform space or in physical space. For this paper all differentiation is done

in physical space.

It is difficult to completely grasp the pseudospectral method without some
understanding of polynomial interpolation. Without diverging from the topics of this
paper too much, a brief background is presented. In general an unknown function

f (X) can be approximated by a polynomial of Nth degree. In general N+1 points can be

fit by a polynomial using Equation (3.12) [12].
N
Ly () =D u(x)w; (%) (3.12)
i=0

This is the Lagrange Interpolation Formula, where ,(X)represents the cardinal

functions and are polynomials of degree N that satisfy Equation (3.13) [12].
v, (x) =6, (3.13)
These are defined by

X—Xj

v0= 1

j=0,j#i X — Xj

(3.14)

The use of this concept should become clear below.

The most important tool in this paper is the Chebyshev derivative matrix. To
help explain how this is developed consider the derivative of a function U expanded in

Chebyshev polynomials, based on Equation (3.8) above.
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k=0
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(3.15)

Using the identity 2sin&dcoskd = sin(k +1)9 —Sin(k —1)9 and Equation (3.11) will give

Equation (3.16) [11].
CkUk(l) = JK(?Z +2(k + Dy,

These yield,

69 =2 3 pi,, k>0

Ck p=k+2
p+k odd

The second derivative is

U= YA,

The resulting coefficients can be calculated using Equation (3.19) [11].

OIEZ) :i i p(pz . kz) 0'52)

Cx p=k+2
p+k odd

(3.16)

(3.17)

(3.18)

(3.19)

The Gauss-Lobatto points defined by Equation (3.20) below are points along the domain

[-11] that are roots of the polynomial (1— x2)¢'N .
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7 .
— J=0,N
X-=C05ﬂ, W. = 2N 3.20
SN Lz j=1..,N-1 #20
s J: yrery -
N

Using these, the characteristic Lagrange polynomials defined in Equation (3.14) can be

expressed as:

_ Y-y (x)
wi(X) = c N(2 (X ~ ZII-) (3.21)

From this the Chebyshev first derivative interpolation matrix is defined by Equation

(3.22) [11-12,14].

Sev
C, X=X
N 1<j=i<N-1
(Dy); = 2L-x (3.22)
2N?%+1
: J=1=0
6
C2N?+1 N
6 )

This is expressed best visually and is shown below in Figure 3.1. This figure is based on

[14] pp. 53.
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Figure 3.1 Chebyshev Differentiation Matrix Schematic.
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Listing 3.1 is the Matlab/Octave code for constructing the Chebyshev derivative

matrix and the collocation points described by Equations (3.22) and (3.20) respectively.

This code is based on Cheb.m from [14].
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function [D,x] = cheb_derivative(N)
if N==0, D=0;
x=1;
return, end
% Collocation Points

X = cos(pi*(0:N)/N)";
X = repmat(x,1,N+1);
dX = X-X*;

% Derivative Matrix

D=zeros(N+1,N+1);

% Top and Bottom Rows

top = (2*(-1).~M(1:N-1))./(Q-reshape(x(2:N),1,N-1));
bottom=-top(N-1:-1:1);

% Left and Right

right = -reshape(bottom./4,(N-1),1);
left= -right(N-1:-1:1);

%top

D(1,2:N) = top;

D(N+1,2:N) = bottom;

D(2:N,1)=left;

D(2:N,N+1) =right;

% Middle

ij = repmat(JO:N],N+1,1)+repmat(reshape(JO:N],N+1,1),1,N+1);
mid = ((-1).7ij)./dX;

D(2:N,2:N) = mid(2:N,2:N);

% Diagonal

dia=(1:N+1:(N+D)*(N+1)) + (0:N);

dia = dia(2:N);

D(dia) = -(x(2:N).7(2*(1-x(2:N).~2)));
% Corners

D(1) = (2*N"2+1)/6;
D((N+1)*(N+1))=-D(1);

D(N+1) = -0.5*(-1)"N;
DC(N+L)*(N+1)-(N)) = -D(N+1);

Listing 3.1 Matlab/Octave code for producing Chebyshev collocation points and derivative matrix
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3.4 Example
An example will help illustrate the theoretical concepts presented above. A

simple one-dimensional Helmholtz problem is described as

2

((jjxg +k’y=0 (3.23)

For reference, the solution to this differential equation is

y = C, cos(kx) + C, sin(kx) (3.24)

Where C, and C, are constants based on the given boundary conditions. If k=2and

the boundary conditions are chosen as

yO=y()=1 (3.25)

The resulting constants will be C, = -2.403 and C, =0. The exact solution for the given

conditions then becomes:

y =—2.403c0s(2x) (3.26)

To begin, a polynomial approximation using the collocation method is presented.
The open source mathematical package Sage was used and the worksheet listing is
included in Appendix B. For most problems a polynomial approximation is ideal [12].

Equation (3.27) is selected for this problem.
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y, =1+ (1— XZXa0 +ax+ azxz) (3.27)
The residual for this approximation will then be:
R(X;ay,a,,8,) = Y, +4Y, (3.28)
Which will result in
R = 4((1— xz)(azx2 +ax+ a0)+1)— 2(a2x2 +ax+ ao)+ 2a, (1— xz)— 4x(2a,x+a,)  (3.29)

Once again the goal of the collocation method is to reduce the residual to zero over a
number of points that is equal to the number of unknown coefficients. Arbitrarily the

points are chosen to be X; = (—%,O,%). Substituting X; into Equation (3.29) results in:

eal=4a,—2(1a, —++2,)+2(a -2,)+3(}a, 4 +3,)+4 (3.30)
eq2 = 2a, + 4(a, +1)- 2a, (3.31)

and
eq3=—-2(a, +a,)-2a,(ta, —1a, +a,)+3ta, —L1a +a,)+4 (3.32)

Setting eql =eq2 =eq3 = 0and solving the set of simultaneous equations results in:
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0 (3.33)
8
5

These coefficients can then be substituted back into Equation (3.27). Figure (3.3) below,

illustrates that this simple approximation is surprisingly accurate. Figure (3.4) is the

error (exact-approximation) plotted over the domain.

Figure 3.2 Exact Solution (Solid) Compared to the Approximation (Dotted).
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Figure 3.3 Error, Exact-Approximation

Under the same guise as the simple polynomial approximation, the next example
employs Spectral Collocation and the Chebyshev derivative matrix. Now instead of
solving for the coefficients of the approximation equation the value of the solution at
each collocation point is found. The Matlab code implementing this is shown in Listing

3.2.
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% Create the Chebyshev differentiation Matrix
[D,x] = cheb_derivative(N);
D2 = D"2;
Y — — —
%  Compute the tensor product spectral grid.
) — e

ey gy g gy S gy gy ey Gy S Sy Sy Sy
% Create a column matrix to hold the RHS of the energy
%  equation
Y — — —
size = (N+1);
rhs = zeros(size,l);
Y — — —
%  Apply the Boundary Conditions
Y — — —
% Find the bounday points of the coordinate vectors:
b = find(abs(xX)==1);
% Impose the boundary conditions on the right side vector.
rhs(b) = (x(b)==1).*1 + (x(b)==-1).*1;
%  Apply the boundary conditions to the laplacian
% Zero the rows out
L(b,:) = zeros(length(b), length(rhs));
% put in 1 for known points
L(b,b) = eye(length(b));
reshape(rhs, (N+1),1);

Listing 3.2 Spectral Collocation code for Helmholtz example.

In Figure 3.4 it can be seen that the collocation method is a poor approximation
when only 3 points are used. However, with 11 points (Figure 3.6) the method provides
an extremely accurate approximation. In fact the accuracy does not really change when
the number of points is increased to 41 (Figure 3.8). This is an excellent example of how

accurate the collocation method can be with a relatively small number of points.
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Figure 3.5 Helmholtz approximation Error, Actual-Approximation (N=3)
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4. Numerical Methods

4.1 Spectral Discretization: The Simple Graetz Problem

54

Before discretizing the governing differential equations, the coordinates of the

solution domain must be projected onto the computational domain. Since r is already

mapped over the domain [-1,1], due to the dimensionless form, z is the only value that

needs to be remapped. Beginning with the axial coordinates, z can be mapped using

Equation (4.1).

=—==n—+—-
R T2R " 2R
Solving for 77:
2R
=—1z"-1
g L
Differentiating Equation (4.3):
on _2R
0z L

This can be used to define the derivative %Z* :

(4.1)

(4.2)

(4.3)

(4.4)
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0 _oon 2R3

o onor L op (4.5)
Substituting into Equation (2.11),
2-R-Re-Pr )00 100 6%0
2RFeP (0L 20,

L on r'ort g

Equation (4.6) can be discretized using Chebyshev differentiation matrices which will

result in:
(A®D")-(B:.xe®1)-(5% ®1 )jo}={f} (4.7)
Where:
A= diag(z'R'—LRe'Pr-(l— r*z)j (@)
Q = diag (rij (4.9)

I = eye(M Z,ﬁ) (4.10)
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4.1.1 Spectral Discretization: The Extended Graetz Problem

When the Peclet number is low, axial conduction can no longer be ignored. With

the addition of axial conduction Equation (2.11) will become

)00 %0 1 00 9%e
Re- Pr-ﬁ—(r ) )az* — 62*2 _Far* - ar*z =0 (4.11)

From Equation (4.5) the second derivative can be determined:

0> 8 on® 4R? 97

= = 4.12
82*2 8772 82*2 L2 8772 ( )
Substituting in:
2-R-Re-Pr ( (*)2\8(9 2-RY 9’0 100 8%
—-\r) == s _—=2=0 (4.13)
L on L on r-or or

As before, Equation (4.13) can be discretized using Chebyshev differentiation matrices

resulting in:
(r®5:)-(B®D;)-(5:.xa®1)-(5: @1 )o}={f} (4.19)
Where:

A= diag(Ll_R(eﬂ-(l— r*z)j (4.15)



B (%j eye(N..)

Q= diag(i*j
r
I = eye(M Z,ﬁ)

4.1.2 Simple Diffusion
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(4.16)

(4.17)

(4.18)

For the simple diffusion model the coordinate transformations must be done in

both directions. First, the values for the axial projection will be:

From Equation (4.21) the first partial derivative with respect to z can be found:

o0 _oon_ 02

oz onor onlL

Similarly, the second derivative will be:

(4.19)

(4.20)

(4.21)

(4.22)



o ont & 4
oz>  on® oz  on® L?

Likewise, in the radial direction,

r=R¢&
r
"R
% _1
or R

o aor 01

or ococ ocR

0> _9* o0& o 1
or’  0&% or*  0&% R?

Substituting in the coordinate transforms into Equation (2.25),

2 0n ) 1 on 1 0°n
fNy q-g)-p| >N, =9
L on max( d )] (sz o0& R? ang

and rearranging results in

—_— _+__
L on R’ 0& R? 0&°

Finally, discretizing

2 an max(l—s”z)]—D( 1 on 1 aznjzo
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(4.23)

(4.24)

(4.25)

(4.26)

(4.27)

(4.28)

(4.29)

(4.30)



{[A@ 6;]—{(9-%- bY ® er +(%- b? ® erﬂ{G)}: ()
Where:

A= diag(%vmax(l— gz)J

] 1
Q=d -
Iag(éj

I =eye(M,,)

4.2 Finite Difference Method

4.2.1 The Graetz Problem: Non-dimensional
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(4.31)

(4.32)

(4.33)

(4.34)

The problem can be discretized by substituting the approximation Equations

(2.14)-(2.16) into Equation (2.11):

Repr@_ﬁﬁﬂ®@j+D—?@j—D_ji®G+LD—?G—LD
2Az r 2AT
_0(i+1 j)-20(, j)+0( -1, j) _

ary

0

(4.35)

In this numerical scheme r*can be expressed as i-Ar" —1. Substituting into Equation

(4.35) results in
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or b e 1P )€ 1 +D -0, -1
Re Prﬁl (l Ar 1)2/ Ay

1 0(i+1))-03-1j) 0@i+1j)-206j)+6G(-1]) _, (4.36)
(i-ar-1) 2AT (A r*)z -

rearranging,

x el aer 1R @G J+D)-0(, j-1)
(Ar)zRe Pr(l (l Ar 1)/ AT

e o o o B o (4.37)
—ﬂii'A—r*E)(@(Hl, -0(i-1j))-(03+1, j)-20(, j)+0(i -1, j))=0

The final result is shown in Equation (4.38). It is this difference equation that the

software will satisfy at each node point.

. _la r:f@_(l_(i.y*_l)z)-((a(i,j+1)—®(i,j—1))
o035 ) 9

+m(®(i+1, j)—0(i-1 [)+0(+1 j)+0(i-1 j)

For the problem modeled here a simple Jacobi iteration method is used. This can
be thought of as a brute force point-by-point solution to the finite-difference problem.
The discretized physical domain results in a two-dimensional array of nodal points. The
differential equation is satisfied at each node by considering the effect of the four
neighboring nodes. The method solves the difference equation at each iteration until
the system converges (i.e. a specified tolerance between a node point about successive

iterations is satisfied). The code implementing this solution can be found in Listing 4.1.



function Simulate_Tube()
% Input Variables
Re = 1; Pr = 1; R=1; L = 0.5;
% Grid Setup
N=21; M = 21;
Grid = zeros(M+1,N+1);
% Apply Boundary Conditions
Grid(1,1:N) = 0; Grid(M,1:N)
Grid(2:M,1) = 1; Grid(1:M,N)
Grid_Old = Grid;
iterations = 0;
flag = 0; ESPI = l1le-9;
del_r = 2/M; del_z = (L/R)/N;
while flag == 0
flag = 1;
% Calculate the enry Region.
for i=2:M
A = —-((del_r~"2)/del_z)* ...
((Re*Pr)/2)* ...
(A-(i-)*del_r-1)"2);
B = del_r/(2*((i-1)*del_r-1));
for j = 2:N
Grid(i,j) = 0.5*(A*(Grid_old(i,j+1)- ...
Grid _Oold(i,j-1))+ ...
B*(Grid_Old(i+1,j)- ...
Grid Old(i-1,j))+ ...
Grid_Oold(i-1,j)+ ...
Grid_old(i+1,})));
iT(((Grid(i,j)-Grid _Old(i,j))-ESP1) > 0)
flag = O;
end;
end;
end;
Grid_Old = Grid;
iterations = iterations + 1;
if iterations > 1000
flag = 1;
"Error: increments > 1000"
end;
end;

I
o

Listing 4.1 Finite Difference Code for Step change in tube flow.
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4.3 Weighted Average Temperature

In order to make a comparison with published results and other numerical

methods, some standard calculations are required.

The weighted average temperature can be calculated using Equation (4.39).

27zR

”T(r,z)rdrdﬁ
T-00 (4.39)

”rdrde
00

ZJR'T(r, z)-r-dr

T__0 (4.40)

R2

This is the average temperature at an axial location along the length of the pipe that will
weight the influence each point has on the average based on the spatial distribution of

the points.

4.4 Bulk Fluid Temperature

The bulk fluid temperature is often referred as the cup-mixing temperature. Itis
the temperature that would be obtain if the fluid passing a cross-section was collected

in a cup and mixed together. This is defined in terms of the thermal energy transport,
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which can be reached by integrating internal energy multiplied by the mass flux over the

cross sectional area. This is defined below in Equation (4.41).

E = I p uc, TdA, (4.41)
A

The mean temperature is then defined by Equation (4.42).

E, =mc,T, (4.42)
Then Equation (4.46) will result.
j p uc, TdA,
T A (4.43)
" mc

\

Using the axisymmetric conditions and the non-dimensional values, Equation (4.44) is

obtained.

1

'[T (r*,Z)\/Z (r) redr’

0, = ° (4.44)

Jl'T(r*,O)\/Z(r*) rdr’

0

Where:

vz(r*):vmax(l— r*z)

n(r’,0)=1
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Substituting and rearranging results in:

© —_ 0 (4.45)

Q, = 4IT(r*,Z r'— r*a) dr’ (4.46)

4.5 Particle Penetration Primitive Variables

The particle concentration at a given cross-section along the axis of the tube can

be found using Equation (4.47).

Tn(r, Z)p(r,Z \(r,Z )2zrdr
P=2 (4.47)
jn(r,o)p(r,o)/(r,O)ZMdr

This can be reduced to:

Zm/maxp':[ n(r,Z )[1— (Frznrdr

- (4.48)

R 2
22V N p'[ {1— [rj err
5 R
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(4.49)

(4.50)

(4.51)
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5. Results and Discussion

5.1 The Graetz Problem

The results of the classic Graetz problem are compared below with three different
solutions, the aforementioned series and finite difference solutions, as well as a set of
published values for the benchmark solution. Figures 5.1-5.3 are example plots of the
spectral approximation to the Graetz problem. Figures 5.4 and 5.5 are the bulk fluid

temperature along the length of the tube over different Peclet numbers.

Figure 5.1 Temperature Distribution; Re = 10; Pr =1; R =1 m; Length =1 m 21x21 grid.
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Figure 5.2 Temperature Distribution; Re = 5; Pr = 1; R = 1 m; Length = 1 m 21x21 grid.

Figure 5.3 Temperature Distribution; Re = 1; Pr = 1; R = 1 m; Length = 1 m 21x21 grid.
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Figure 5.4 Graetz Solution for different values of Pe, labeled to the right of the respective line.
Length = 1m; Radius = 1m, Pr = 1; 69x69 point grid.
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Figure 5.5 Graetz Solution for different values of Pe, labeled above the respective line. The
missing values are Pe = 200,300,400 and 500 respectively. Length = 1m; Radius =1m, Pr=1;
69x69 point grid.
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5.2 Comparison with Graetz Series Solution

The Graetz problem code was first validated using the Graetz series solution from
Section 2.2.3. The results are shown below for various values of Re and Pe along a
69x69 point grid. The figures are accompanied by a plot of the difference between the
two methods. The inlay of the plot is the difference in the entrance region. This is
summarized in Table 1 Below. Notice that the maximum difference between the two
methods is constant throughout the parameter space examined here. This is due to the

inaccuracy of the Graetz series solution within the entrance region as explained above.

Table 1: Summary of results of comparison to graetz series solution.

Tube Length TU'?e em em
(m) y Radius Pr Re Pe Max Diff. | Ave Diff.
(m)

0.1 0.1 0.011 0.0002

0.5 0.5 0.011 0.0002

1 1 0.011 0.00021

1 1 1 2 2 0.011 0.00021

3 3 0.011 0.00025

4 4 0.011 0.00032

5 5 0.011 0.00041
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Figure 5.6 Spectral (--) compared to Graetz (+) Re:0.1; Pr:1.0; R:1.0 m; Length: 1.0 m; Pe: 0.1;
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Figure 5.7 Re:0.1; Pr:1.0; R:1.0 m; Length: 1.0 m; Pe: 0.1;
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Figure 5.9 Re:0.5; Pr:1.0; R:1.0 m; Length: 1.0 m; Pe: 0.5;
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Figure 5.10 Spectral (--) compared to Graetz (+) Re:1.0; Pr:1.0; R:1.0 m; Length: 1.0 m; Pe: 1.0;
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Figure 5.11 Re:1.0; Pr:1.0; R:1.0 m; Length: 1.0 m; Pe: 1.0;
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Figure 5.13 Re:2.0; Pr:1.0; R:1.0 m; Length: 1.0 m; Pe: 2.0;
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Figure 5.15 3.0; Pr:1.0; R:1.0 m; Length: 1.0 m; Pe: 3.0;
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Figure 5.16 Spectral (--) compared to Graetz (+) Re:4.0; Pr:1.0; R:1.0 m; Length: 1.0 m; Pe: 4.0;
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Figure 5.17 Re:4.0; Pr:1.0; R:1.0 m; Length: 1.0 m; Pe: 4.0;
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Figure 5.18 Spectral (--) compared to Graetz (+) Re:5.0; Pr:1.0; R:1.0 m; Length: 1.0 m; Pe: 5.0;
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Figure 5.19 Re:5.0; Pr:1.0; R:1.0 m; Length: 1.0 m; Pe: 5.0;
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Figure 5.20 Spectral (--) compared to Graetz (+) Re:10.0; Pr:1.0; R:1.0 m; Length: 1.0 m; Pe: 10.0;

(Spectral)-@m(Graetz Series)

=

X 1[:'- 0.012;

0.0

0.008

—_
%]
T

0.008

0.004

—_
o
T

0.002

003 004 005 006

Z

Figure 5.21 Re:10.0; Pr:1.0; R:1.0 m; Length: 1.0 m; Pe: 10.0;
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5.3 Comparison with Gutti [38]

Figure 5.22 is a comparison with Figure 1 of [38]. This is a contrast of the series
solution with the spectral method over several dimensionless axial points (listed above
Note that a cubic spline interpolation was used on the spectral solution in

the lines).

order to calculate the values at the given dimensionless axial points.

127
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Figure 5.22 Temperature Profile at different values of z", Spectral solution(-), Series Solution (.)
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5.4 Comparison to Finite Difference

As an example of the efficiency of the Spectral Method, a comparison with the
finite difference method was completed. As mentioned before, a Jacobi solution
method was used with the finite difference discretization. This is certainly not the most
efficient method but it gives a good indication of the relative performance of the
Spectral Method, even with a small number of nodes. Figure 5.23 plots the results of a
31x31 spectral grid and a 51x51 finite difference grid. The Spectral Method took 0.65
seconds. Whereas the finite difference method took 1.31 seconds. The results match
reasonably well with the maximum average temperature difference of 0.05. Note that

here the dimensionless weighted average temperature is computed, not the bulk

temperature as before. The results of the comparison are presented in Table 2.

Table 2: Finite Difference Comparison Summary

Spectral Finite Difference
Grid Compute Grid Compute | Maximum
Size Time (s) Size Time (s) | Difference
31x31 0.65 51x51 1.31 0.05
31x31 0.65 61x61 2.62 0.05
31x31 0.65 71x71 4.63 0.02
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Figure 5.23 Weighted Average Temperature Re:1.0; Pr:1.0; R:1.0 m; Tube Length: 1.0 m;

Figure 5.24 is a similar comparison for a 31x31 spectral grid compared to a 61x61

finite difference grid.
difference method took 2.62 seconds.

difference was still 0.05.

The spectral simulation took 0.65 seconds and the finite

With the increased grid size the maximum
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Figure 5.24 Weighted Average Temperature Re:1.0; Pr:1.0; R:1.0 m; Tube Length: 1.0 m;
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After increasing the Finite Difference grid to 71x71 nodes the maximum

difference is reduced to 0.02.

However, the simulation time took 4.63 seconds

compared to the 0.65 seconds for the spectral method. This is plotted below in Figure

5.25.
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Figure 5.25 Weighted Average Temperature Re:1.0; Pr:1.0; R:1.0 m; Tube Length: 1.0 m.

5.5 Extended Graetz Problem

When the Peclet number is low (Pe <10) axial conduction becomes a significant
heat transport mechanism. To illustrate that, a comparison between the Spectral
Method with axial conduction and the Graetz series solution is presented for low Peclet

values. Notice as the Peclet number increases and convection dominates, the two

methods begin to agree.
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Figure 5.26 Spectral (-) compared to Graetz (+)Re:0.1; Pr:1.0; R:1.0 m; Tube Length: 10.0 m; Pe: 0.1; 67x67
spectral grid.
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Figure 5.27 Difference between Spectral and Graetz methods, note that the entrance region is in the inlay.
Re:0.1; Pr:1.0; R:1.0 m; Tube Length: 10.0 m; Pe: 0.1;
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Figure 5.28 Spectral (-) compared to Graetz (+)Re:0.5; Pr:1.0; R:1.0 m; Tube Length: 10.0 m; Pe: 0.5; 67x67

spectral grid.
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Figure 5.29 Difference between Spectral and Graetz methods, note that the entrance region is in the inlay.

Re:0.5; Pr:1.0; R:1.0 m; Tube Length: 10.0 m; Pe: 0.5;
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Figure 5.30 Spectral (-) compared to Graetz (+)Re:1.0; Pr:1.0; R:1.0 m; Tube Length: 10.0 m; Pe: 1.0; 67x67
spectral grid.
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Figure 5.31 Difference between Spectral and Graetz methods, note that the entrance region is in the inlay.
Re:1.0; Pr:1.0; R:1.0 m; Tube Length: 10.0 m; Pe: 1.0;
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Figure 5.32 Spectral (-) compared to Graetz (+)Re:2.0; Pr:1.0; R:1.0 m; Tube Length: 10.0 m; Pe: 2.0; 67x67
spectral grid.
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Figure 5.33 Difference between Spectral and Graetz methods, note that the entrance region is in the inlay.
Re:2.0; Pr:1.0; R:1.0 m; Tube Length: 10.0 m; Pe: 2.0;
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Figure 5.34 Spectral (-) compared to Graetz (+)Re:3.0; Pr:1.0; R:1.0 m; Tube Length: 10.0 m; Pe: 3.0; 67x67
spectral grid.
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Figure 5.35 Difference between Spectral and Graetz methods, note that the entrance region is in the inlay.
Re:3.0; Pr:1.0; R:1.0 m; Tube Length: 10.0 m; Pe: 3.0;
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Figure 5.36 Spectral (-) compared to Graetz (+)Re:4.0; Pr:1.0; R:1.0 m; Tube Length: 10.0 m; Pe: 4.0; 67x67
spectral grid.
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Figure 5.37 Difference between Spectral and Graetz methods, note that the entrance region is in the inlay.
Re:4.0; Pr:1.0; R:1.0 m; Tube Length: 10.0 m; Pe: 4.0;
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Figure 5.38 Spectral (-) compared to Graetz (+)Re:5.0; Pr:1.0; R:1.0 m; Tube Length: 10.0 m; Pe: 5.0; 67x67
spectral grid.
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Figure 5.39 Difference between Spectral and Graetz methods, note that the entrance region is in the inlay.
Re:5.0; Pr:1.0; R:1.0 m; Tube Length: 10.0 m; Pe: 5.0;
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Figure 5.40 Spectral (-) compared to Graetz (+) Re:10.0; Pr:1.0; R:1.0 m; Tube Length: 10.0 m; Pe: 10.0;

67x67 spectral grid.

0.06
% 005
g
N 004
Q
©
5 0.03
gE
X 0.02
©
@ 0.01
o
2
E

=

-0.01

0.07;

0.06} x//\

/

Figure 5.41 Difference between Spectral and Graetz methods, note that the entrance region is in the inlay.

Re:10.0; Pr:1.0; R:1.0 m; Tube Length: 10.0 m; Pe: 10.0;
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5.5.1 Comparison with Bayazitoglu et. al. [25]

Bayazitoglu et. al. [25] presented a simple finite integral transform technique for
the solution of the extended Graetz problem over the dimensionless axial position&. A
comparison with Table 1 of that paper is given here in Figure 5.42 and Table 3. Notice
that the Peclet number chosen in [25] is significantly greater than 10. The solution using
spectral collocation without axial conduction is included to illustrate how close the
values are to each other. The Matlab code listing for this can be found in Appendix A.

Section: 7.8.

0.8

04+

021

% 0.2 04 06 08 1

g

Figure 5.42: Extended Graetz Solution (-) compared to [25] (O), R=1m, L=50m, Re = 25, Pr=2,
Pe =50, 41x41 spectral grid interpolated onto a 201x201 grid.



Table 3: Comparison with [25] for Pe = 50.
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Spectral Collocation

Spectral Collocation

[25] Lowest Order

with Axial without Axial ) Singh's [39]
Conduction Conduction Solution
S Om Bm Om Om
0.005 0.907 0.8914 0.896 0.910
0.025 0.725 0.7161 0.718 0.730
0.050 0.585 0.5787 0.580 0.590
0.100 0.400 0.3953 0.396 0.400
0.250 0.134 0.1316 0.132 0.134

5.5.2 Simulations with temperature boundary at the Centerline

To illustrate how axial conduction will affect the temperature distribution

upstream of the step change, simulations were completed so the step change in

temperature occurred at the axial center. The Matlab code can be found in Appendix A:

Section 7.9.
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Figure 5.43: Spectral Collocation solution for Graetz Problem with Axial conduction over different Peclet
numbers (Pe = 0.1, 2, 4, 6 in the direction of the arrow respectively). Note that the step change in
temperature occurs at the centerline. Re=1; Pr=1; R=1m; L=10m; Computed on a 41x41 spectral grid
and interpolated onto a 201x201 grid.

To demonstrate the accuracy for this particular set of boundary conditions a
comparison with Table | of [27] was completed; this is presented in Table 4 below. The
method used by Ku et. al. [27] was described as a Chebyshev-Finite-element method.
Note that these are bulk fluid temperature values along the centerline of the tube

where the step change in temperature occurs.



Table 4: Comparison with [27]

Pe 5 10
Spectral Spectral
rr CFE [27] Collocation CFE[27]  Collocation
0.975 0.5197 0.5183 0.5330 0.5292
0.904 0.5740 0.5698 0.6189 0.6106
0.794 0.6493 0.6459 0.7319 0.7250
0.654 0.7269 0.7267 0.8351 0.8339
0.500 0.7913 0.7932 0.9071 0.9090
0.345 0.8349 0.8377 0.9469 0.9497
0.206 0.8591 0.8621 0.9654 0.9680
0.000 0.8645 0.8748 0.9668 0.9763

5.6 Simple Diffusion
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The spectral solution for the simple diffusion case was validated against the

analytical solution presented in Section 2.3.2. Figure 5.44 is a plot of the penetration

along the dimensionless value .

Figure 5.45 is the difference between the two

methods. As can be seen the Spectral Method is in excellent agreement with the

analytical solution. The Penetration was calculated using Equation (4.51).
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Figure 5.45 Difference between Spectral Method and Hinds solution.
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6. Conclusions

When applied to two classic fluid dynamics problems the spectral collocation
method proved to be in excellent agreement with previously published results. The
constraints that spectral collocation puts on the computational domain were not an
issue here, but its use in more complex geometries would be a limiting factor as a

general computational fluid dynamics tool.

There are several aspects of the problems modeled here that could be extended.
The first would be to model the Graetz problem for both the constant heat flux case and
non-linear boundary conditions. The second is in the evaluation of the microtube
Graetz problem. Finally, deposition by thermophoresis is an ideal candidate for

modeling with the spectral collocation method.

There are also several areas of the spectral method and its application that could be
extended. For instance, it was shown here that when coupled with cubic-spline
interpolation the spectral collocation method could be extremely efficient in terms of
execution time and memory usage. An investigation into the accuracy of such
combinations of methods would be useful in elucidating a simple and generic spectral
collocation solver. An investigation into the affects of both the grid size and the types of

collocation points when applied to CFD problems would also be useful.

Another logical extension of this is the combination of spectral methods and finite-

element methods. The topic was avoided in this paper but the so called spectral-
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element methods are incredibly powerful. They can achieve high accuracy in complex
geometrical domains by combining the exponential rate of convergence of the spectral
method with flexibility of the finite-element method. A superficial review of this
method suggests that it could be useful in developing three-dimensional simulations of
thermophoresis and could lead to three-dimensional models of physical vapor

transport.

This paper presented an introduction to the spectral collocation method and yet
still only managed to break the surface of this complicated and fascinating topic.
Spectral collocation and spectral methods as a whole continue to grow and expand in
both applied mathematics and engineering. The application and use of these methods
as generalized tools is also growing. As seen here, spectral methods are useful and

perhaps even necessary tools in computational fluid dynamics research.
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7. Appendix A: Matlab Code Listings

7.1 Graetz Problem: Non-Dimensional Spectral Solution

%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%

Section: 2D Non-Dimensionalized Temperature Profile using
Spectral Collocation.

This computes the temperature distribution profile of fluid flow in
a circular pipe. This uses the spectral collocation or
psuedospectral method to approximate the temperature of steady
state flow based on the Navier Stokes conservation of energy
equation. The solution is based on coordinate transformations to
the domain [1,-1].

function [u,Dr,Dr2,r,Dz,Dz2,z] = spec_tube temp_nonD(Re,Pr,R, ...
Len,N,M,ramp, ...

debug, graph)
Re: Reynolds Number
Pr: Prandtl Number
R: Radius of the Tube (m)
Len: Length of the Tube (m)

: Number of Points in the axial direction (Must be odd)
: Number of Points in the radial direction (Must be odd)
debug: 1if set to 1 debug information is printed.
graph: 1if set to 1 the solution will be plotted out.

function [u,uu,Dr,Dr2,r,Dz,z,zz r,L] = spec_tube_temp_nonD(
Re,Pr,R, ...
Len,N,M, ...
graph)

function [u,Dr,Dr2,r,Dz,z,L] = spec_tube_temp_nonD( Re,Pr,R, ...

%
%
%

Len,N,M, ...
graph)

IT the user has not input parameters use defaults.
if nargin < 7

% Radial Direction
% Axial Direction

Create the Chebyshev differentiation Matrices
* Note that in the accompanying literature r and z are
Xi and Eta respectively.
cheb_derivative(N); % Radial Direction
cheb_derivative(M); % Axial Direction

[Dr,r]
[Dz,z]
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%  Compute the second order Chebyshev differentiation matrix directly
Dr2 = Drn2;
Dz2 = Dz"2;

%  Compute Energy Equation coefficients and resulting diagonal
matrices
) ——
% Calculate the first coefficient of the energy equation as a column
%  matrix.

a = ((2*R*Re*Pr)/Len).*(1 - (r.-"2));

A = diag(a);
% B = eye(N+1);
% Create identity matrix.

1 = eye(M+1);
% Compute Omega.

0 = diag(1./r);
) ——
%  Compute the tensor product spectral grid.
) ——— -

O —— -
% Create a column matrix to hold the RHS of the energy equation
) = e e ———————————————————————e
size = ((N+1)*(M+1));
rhs = zeros(size,1);
% Create two matrices containing the coordinate points inside the
% solution plane.
[rr,zz] = meshgrid(r,z);
% Create one column vector that consists of the two coordinate
vectors
%  stacked on top of each other.
rr = rr(2);
zz = zz(Z2);

%  Apply the Boundary Conditions
O —— -
% Find the bounday points of the coordinate vectors:
b = find(zz==-1 | abs(rr)==1);
% Impose the boundary conditions on the right side vector.
rhs(b) = (zz(b)==-1).*1 + (rr(b)==1).*0 + (rr(b)==-1).%*0;
%  Correct the entry boundary conditions at the top and bottom
% corners.
rhs(1) = 0;
rhs(size - M) = 0;
%  Apply the boundary conditions to the laplacian
L(b,:) = zeros(length(b),length(rhs)); % Zero the rows out
L(b,b) = eye(length(b)); % put in 1 for known
points
) ——— -
%  Solve the Matrix equation
O —— -
reshape(rhs, (M+1), (N+1));
u = L\rhs;
reshape(u, (M+1), (N+1));



%
%

%
%

Plot the
if(graph
uu =
[rr,
rr=R
zz=(
zz=R
zz r

figu

subp

subp
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results.

reshape(u, (M+1), (N+1));

zz] = meshgrid(r,z);

*rr; % Transform Xi back to [R,-R]
Len/(2*R))*(1+z2); % Transform Nu back to [z*,0]
*zz;

=(Len/(2*R))*(1+2); % Transform Nu back to [z*,0]
re( ...

"Name*®, "Tube Flow",
"NumberTitle", "off",
"BackingStore®, "off");

lot(2,2,1), surfc(rr,zz,uu),

xlabel ("Radial Distance (m)*"),

ylabel ("Axial Distance (m)"), zlabel("Temp*"),
title("Temperature Distribution®);

1ot(2,2,2), contourf(rr,zz,uu),

xlabel ("Radial Distance (m)"),

ylabel ("Axial Distance (m)"),
title("Temperature Distribution®), colorbar;

Plot the Temperature profile at various flow lengths to compare
with Gutti & Loyalka. X*=0,0.1,0.2,0.3,0.4,0.5
[diff,x1] = min(abs(zz_r - 0.0));

[diff,x2] = min(abs(zz_r - 0.1));

[diff,x3] = min(abs(zz_r - 0.2));

[diff,x4] = min(abs(zz_r - 0.3));

[diff,x5] = min(abs(zz_r - 0.4));

[diff,x6] = min(abs(zz_r - 0.5));

N2 = (N+1)/2;

r_temp = r(N2:N+1);

r_temp(1) = O;

r_temp = r_temp*-1;
subplot(2,2,3),plot(r_temp,uu(x1,N2:N+1),"-k");
hold on;
subplot(2,2,3),plot(r_temp,uu(x2,N2:N+1),"--b");
subplot(2,2,3),plot(r_temp,uu(x3,N2:N+1),"-.r");
subplot(2,2,3),plot(r_temp,uu(x4,N2:N+1),"-+c");
subplot(2,2,3),plot(r_temp,uu(x5,N2:N+1), " --*m*");

subp

10t(2,2,3),plot(r_temp,uu(x6,N2:N+1),"-.0g"),
xlabel (*Dimensionalized Radias”),
ylabel ("Dimensionalized Temp."),
title("Temperature Profile at Various Flow Lengths®);
h = legend(sprintf("%.2f",zz r(x1)),
sprintf("%.2f" ,zz_ r(x2)),
sprintf("%.2f" ,zz_r(x3)),
sprintf("%.2f",zz_r(x4)),
sprintf("%.2f",zz_r(x5)),
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sprintf("%.2F" ,zz_r(x6)));
legend(h, “boxoff");

hold off;

str = sprintf("Reynolds: %.1f",Re);

str = strvcat(str, sprintf("Prandtl %.1F",Pr));

str = strvcat(str, sprintf("Tube Radius: %.3F m",R));

str = strvcat(str, sprintf("Tube Length: %.1f m",Len));

str = strvcat(str, sprintf("Collocation Points (Radial): %d~,
N));

str = strvcat(str, sprintf("Collocation Points (Axial): %d",
M));

uicontrol ("style”, "text", ...

"units”,"normalized”, "position”,[0.55 0.05, 0.4, 0.4], ....
"HorizontalAlignment®,["left"], "string”,str);
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7.2 Graetz Problem: Non-Dimensional Spectral Solution

%

%  Section: 2D Non-Dimensionalized Temperature Profile using

% Spectral Collocation.

%

%  This computes the temperature distribution profile of fluid flow in
% a circular pipe. This uses the spectral collocation or

% psuedospectral method to approximate the temperature of steady

% state flow based on the Navier Stokes conservation of energy

% equation. The solution is based on coordinate transformations to
%  the domain [1,-1].

%

%  function [u,Dr,Dr2,r,Dz,Dz2,z] = spec_tube temp nonD wAC(Re,Pr,R,

% Len,N,M,ramp,
% debug,graph)
%

% Re: Reynolds Number

% Pr: Prandtl Number

% R: Radius of the Tube (m)

% Len: Length of the Tube (m)

% : Number of Points in the axial direction (Must be odd)

% : Number of Points in the radial direction (Must be odd)

% debug: 1if set to 1 debug information is printed.

% graph: 1if set to 1 the solution will be plotted out.

%

% function [u,uu,Dr,Dr2,r,Dz,z,zz r,L] = spec_tube_temp_nonD(

% Re,Pr,R, ...
% Len,N,M, ...
% graph)
%
function [u,Dr,Dr2,r,Dz,z,L] = spec_tube temp_nonD_wAC( Re,Pr,R, ...
Len,N,M, ...
graph)
Y — — — —
% IT the user has not input parameters use defaults.
if nargin < 7
Re = 1;
Pr = 1;
R =1;
Len = 1;
N = 21; % Radial Direction
M= 21; % Axial Direction
graph = 1;
end;
e
% Create the Chebyshev differentiation Matrices
% * Note that in the accompanying literature r and z are
% Xi and Eta respectively.
[Dr,r] = cheb_derivative(N); % Radial Direction
[Dz,z] = cheb_derivative(M); % Axial Direction

%  Compute the second order Chebyshev differentiation matrix directly
Dr2 = Dr~n2;
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Dz2 = Dz"2;

%  Compute Energy Equation coefficients and resulting diagonal
matrices

%  Calculate the first coefficient of the energy equation as a column
% matrix.
a = ((2*R*Re*Pr)/Len).*(1 - (r-~2));
A = diag(a);
% B = eye(N+1);
% Create identity matrix.
I = eye(M+1);
% Compute Omega.
0 = diag(1./r);
O — — — —
%  Compute the tensor product spectral grid.
e
L = kron2(A,Dz) - kron2(eye(N+1),((4*R"2)/Len"2).*Dz2) - ...
kron2(0*Dr,1) - kron2(Dr2,1);
O — — — —
% Create a column matrix to hold the RHS of the energy equation
e — — —
size = ((N+1)*(M+1));
rhs = zeros(size,l);
% Create two matrices containing the coordinate points inside the
%  solution plane.
[rr,zz] = meshgrid(r,z);
% Create one column vector that consists of the two coordinate
vectors
%  stacked on top of each other.
rr = rr(2);
zz = zz(2);

%  Apply the Boundary Conditions
Y — — — —
% Find the bounday points of the coordinate vectors:

b = find(abs(zz)==1 | abs(rr)==1);
% Impose the boundary conditions on the right side vector.

rhs(b) = (zz(b)==-1).*1 + (rr(b)==1).*0 + ...

(rr(b)==-1).*0 + (zz(b)==1).*0;

%  Correct the entry boundary conditions at the top and bottom
% corners.

rhs(1) = 0;

rhs(size - M) = 0;
%  Apply the boundary conditions to the laplacian

L(b,:) = zeros(length(b),length(rhs)); % Zero the rows out

L(b,b) = eye(length(b)); % put in 1 for known points
Y — — e —————————————————————————————
% Solve the Matrix equation
Y — — — — -

reshape(rhs, (M+1),(N+1));

u = L\rhs;

reshape(u, (M+1), (N+1));
O — — — —
% Plot the results.



if(graph == 1)

uu = reshape(u, (M+1),(N+1))
[rr,zz] = meshgrid(r,z);

rr=R*rr; % Transform Xi back to [R,-R]

zz=(Len/(2*R))*(1+z2); % Transform Nu back to [z*,0]

zz=R*zz;

zz_r=(Len/(2*R))*(1+2); % Transform Nu back to [z*,0]
figure( ...

"Name*®, "Tube Flow", ...
"NumberTitle”, "off",
"BackingStore®, "off");

mesh(rr,zz,uu),
xlabel (*Radial Distance (m)*),
ylabel ("Axial Distance (m)"), zlabel("Temp*"),
view(60,40), colormap(le-2*[1 1 1]);
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7.3 Graetz Problem: Housaidas Series Solution
Adapted from code provided by Dr. Patrick Tebbe (Included with permission).

%

t this program solves the Graetz problem, it outputs the average

% Fluid temperature calculated axially down a tube

%

% this version uses a set error limit and determines the necessary
% number of terms to use in the series, for each axial location

%

% by Patrick A. Tebbe

%

==

function [T] = graetz_tube nonD(Rad, Len, z, Pe, emax, N, graph)

% IFf the user hasn"t input any variables
if nargin < 6

Rad = 0.1;
Len = 0.0001;
Pe = 10;
emax = 0.001;
N = 100;
z = [O:Len/N:Len];
graph = 1;
end;

% the series coefficients [Housiadas 10]

S=[0.159152288 0.0114856354 -0.224731440 -0.033772601];

P=[0.7116134100 0.0721675797 0.0577777781 -0.0026040798 ...
-0.0977347533 -0.0153141806] ;

Q=[0.7026286927 -0.0721675799 -0.0577777778 0.2122030514 ...
0.0078122394 0.1060741183 0.0306283612];

% the count variable indexes the arrays.
count = 0O;
for loop=1:N+1
count=count+1;
theta=0;
n=0;
% the error value must be initialized to a large value
error=1000;
% the non-dimensional axial location is calculated
phi=z(loop)/(Rad*Pe) ;
% a loop is started for the terms iIn the series solution,
% it keeps going until error is below the limit or 10 terms
% have been added
while (error>emax)&&(n<=10)
n=n+1;
% the graetz function is used to calculated the
% eigenvalues, etc.
[lambda,R,LAMBDA] = graetz(n,S,P,Q);
% the term is added to the summation and the error
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% is calculated
old=theta;
% [Housiadas eq. 2]
theta = theta + 8*R*exp(-1*lambda”2*phi)/(lambda”~3*LAMBDA) ;
error=(theta-old)/theta*100;
end;
% Final values are output to the arrays for later plotting
% the terms array keeps track of how many terms are used at
% each axial location
z(count)=loop;
relerror(count)=error;
terms(count)=n;
T(count)=theta;%
end;

if graph ==

plot(z,T);

% the figure command opens a second window
figure;

plot(z,terms);

end;

%
%  function to determine the eigenvalues and associated
% constants for the Graetz problem series solution
% by Patrick A. Tebbe
%
%
% the term number and general constants are input to the function
%
function [lambda,R,LAMBDA] = graetz (n,S,P,Q)
% [Housiadas egs. 6 & 7]
omega=4*n-(4/3);
lambda=omega+S(1)*omega™(-4/3)+S(2)* ...
omega™(-8/3)+S(3)* ...
omega™(-10/3)+S(4)* ...
omega™(-11/3);
% [Housaidas eq. 8]
R=(-1)"n*P(1)*lambda™(1/3)*(1+P(2)*omega™(-4/3)+ ...
P(3)*omega™(-2)+ ...
P(4)*omegan™(-8/3)+ ...
P(5)*omega™(-10/3)+ ...
P(6)*omegan™(-11/3));
% [Housaidas eq. 9]
LAMBDA=(-1)"n*Q(1)*lambda~(-1/3)*(1+ ...
Q(2)*omegan(-4/3)+ ...
Q(3)*omegan(-2)+ ...
Q(4)*omegan(-7/3)+ ...
Q(5)*omegan(-8/3)+ ...
Q(6)*omegan(-10/3)+ ...
Q("H)*lambdan(-11/3));
end
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7.4 Spectral Method compared to Graetz Series

function Spec_Graetz_Compare_nonD(Re,Pr,R, ...
Len,N,M, ...
X, Y, himit, ...
emax,num_pts,graph)

% IT the user has not input parameters use defaults.
if nargin < 9
Re 1;
Pr 1;
R =1;
Len = 1;
N = 69; % Radial Direction
M = 69; % Axial Direction
emax=0.0001;
num_pts=69;
graph = 0;
end;
plot _difference = 1;
plot_single compare = 1;
combine_plots = 1; % This will negate the first two.
plot _flag = 0O;

Pe = [.1,.5,1,2,3,4,5,10,10,50,100,200,300,400,500,1000];
count = 8;
Re=Pe./Pr;

= 1:count

for 1
T avg = zeros(M+1,1);

[T _spec,Dr,Dr2,rad,Dz,z,L] = spec_tube temp nonD(Re(i),Pr,R, ...
Len,N,M, ...
graph);

T _spec = reshape(T_spec, (M+1),(N+1));

for j = 1:M+1

T _avg(@) = bulk_Ffluid_temp_michelsen(T_spec(j,:),rad,N); %
end;
[rr,zz] = meshgrid(rad,z);
z=(Len/(2*R))*(1+2); % Transform Nu back to [z*,0]
z=R*z;

[T _graetz] = graetz_tube nonD(R, Len, z, Pe(i), ...
emax, num_pts, graph);
T _graetz = reshape(T_graetz,num_pts+1,1);



if(combine_plots == 1)

sprintf("Comparison Re:%.1F; Pr:%.1f; R:%.1F m;
Tube Length: %.1F m; Pe: %.1F;",
Re(i),Pr,R,Len,Pe(i));

if(plot flag == 0 )

figure(*Name®, "Combined Results-®,
"NumberTitle", "off", .
"BackingStore®, "off");

plot flag = 1;

end;

H1 = plot(z,T_avg);
xlabel ("Axial Position"),
ylabel ("\Theta_m");
hold on;
set(H1, "LineStyle","-");
set(H1, "LineWidth",2);
set(H1, "color”®,"k");
else
if(plot_single_compare == 1)
str = sprintf("Comparison Re:%.1Ff; Pr:%.1F;
R:%.1F m; Tube Length: %.1F m;
Pe: %.1F;",Re(1),Pr,R,Len,Pe(i));

figure(“Name®,str,
"NumberTitle®, "off",
"BackingStore®, "off");
H1 = plot(z,T_avg);
hold on;
H2 = plot(z,T_graetz);
xlabel (*Axial Position®),
ylabel ("\Theta_m");
set(H1, "LineStyle","-");
set(H1, "LineWidth*,2);
set(H1, "color”®,"k");
set(H2, "LineStyle","+");
set(H2,"LineWidth*,2);
set(H2, "color”, "k");
hold off;
end

if(plot _difference == 1)

figure( ...
"Name® ,sprintf("Diff ent.: Re:%.1F; Pr:%.1F;

R:%.1F m; Tube Length: %.1F m;

Pe: %.1F;" ,Re(i),

Pr,R,Len,Pe(1)),
"NumberTitle","off", ...
"BackingStore®, "off");
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hold on;

plot(z(num_pts+1:-1:num_pts-9),
(T_avg(num_pts+1:-1:num_pts-9)-
T _graetz(num_pts+1l:-1:num_pts-9)),
k)

hold off;

figure( ...
"Name® ,sprintf("Difference.: Re:%.1Ff; Pr:%.1Ff; R:%.1F
m; Tube Length: %.1F m;
Pe: %.1F;" ,Re(i),
Pr,R,Len,Pe(1)),
“*NumberTitle", "off", -
"BackingStore”, "off");

hold on;
plot(z(num_pts-9:-1:1),
(T_avg(num_pts-9:-1:1)-T graetz(num_pts-9:-1:1)),
"k*);
xlabel ("Axial Position"),
ylabel (*\Theta_m(Spectral)-\Theta_m(Graetz
Series)”);
hold off;

max_diff = max(abs(T_avg-T _graetz))
mean_diff = mean(T_avg-T_graetz)

sprintf("Re:%.1F; Pr:%.1Ff; R:%.1F m;
Tube Length: %.1F m; Pe: %.1F; max= %.5F,
mean= %.5F" ,Re(i),Pr,R,Len,Pe(i),
max_diff,mean_diffF)
end; % if( plot_difference...

end; % if(Combine Plots...
T avg = 0;
T graetz = 0;

end;

hold off;



7.5 Graetz Problem: Non-Dimensional Finite Difference

function Simulate_Tube(path)
% Input Variables
Re = 1; Prr=1; R=1; L = 0.5;
% Grid Setup
N=21; M = 21;
Grid = zeros(M+1,N+1);
% Apply Boundary Conditions
Grid(1,1:N) = 0; Grid(M,1:N)
Grid(2:M,1) = 1; Grid(1:M,N)
Grid _Old = Grid;
iterations = 0O;
flag = 0; ESPI = 1e-9;
del_r = 2/M; del_z = (L/R)/N;
while flag ==
flag = 1;
% Calculate the entry Region.
for i=2:M
A = -((del_r"2)/del_2z)* ...
((Re*Pr)/2)* ...
(A-((i-)*del_r-1)"2);
B = del_r/7*((i-1)*del_r-1));
for j = 2:N
Grid(i,j) = 0.5*(A*(Grid_Old(i,j+1)- ...

Grid old(i,j-1))+ ...

B*(Grid_old(i+1,j)- ...

Grid_old(i-1,j))+ ---

Grid old(i-1,j)+ ...
Grid Old(i+1,j));
if(((Grid(i,j)-Grid Old(i,j))-ESP1) > 0)
flag = O;
end;
end;
end;
Grid_Old = Grid;
iterations = iterations + 1;
if iterations > 1000
flag = 1;
"Error: increments > 1000*
end;
end;
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7.6 Weighted Temperature Calculation

%

%  This computes the weighted average of the radial
%  temperature at an axial location along a tube.

%

%  function [avg] = Weighted Average(T,R)

%

% T: Temperature column matrix
% r_p: Radial points

% : Number of radial points

% R: Radius

%
function [avg] = Weighted Average(T,r_p,N,R)
N2 = (N+1)/2;
% reshape the temperature array
T = T(N2+1:-1:1);
% reshape the radial coordinates to go from O to R
r_p=R.*r_p;
rp=r_p(N2+1:-1:1);
r p(1) = 0.0;
r_p = reshape(r_p,1,N2+1);
% Calculate the integral on the numerator
num = trapz(r_p,T.*r_p);
avg = (2*num)/R"2;
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7.7 Bulk Fluid Temperature Calculation

%
%
%
%
%
%
%
%
%
%
%
%
%

This computes the bulk fluid temperature at an axial
location along a tube. The problem is assumed to be
non-dimensional

Follows Michelsen (1974)

function [avg] = bulk Ffluid_temp(T,r_p,N)

T: Temperature column matrix
r_p: Radial points
N: Number of radial points

function [avg] = bulk Ffluid _temp_michelsen(T,r_p,N)

N2 = (N+1)/2;

% reshape the temperature array

T = T(N2+1:-1:1);

% reshape the radial coordinates to go from O to 1
rp=r_p(N2+1:-1:1);

r_p(1) = 0.0;

r_p = reshape(r_p,1,N2+1);

% Calculate the integral on the numerator

num = trapz(r_p,T.*r_p.*(1-r_p."2));

avg 4*(num) ;



7.8 Spectral Method: Comparison with [25]

% This it to compare to:

%  SHORTER COMMUNICATION:

% ON THE SOLUTION OF GRAETZ TYPE PROBLEMS
% WITH AXIAL CONDUCTION

% Y. Bayazitoglu and M. N. Ozisik 1984.

%
function Bayazitoglu_Compare()

if nargin < 9

Re = 25;
Pr = 2;
Rad = 1;
Len = 50;
N = 41; % Radial Direction
M = 41; % Axial Direction
graph = 0;
end;

PLOT_TEMP = 1;
PLOT_NUSSELT = O;

[T _spec,Dr,Dr2,rad,Dz,z,L] =
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spec_tube_temp_nonD(Re,Pr,Rad, ...
Len,N,M,

graph);

% Uncomment to compare with the Extended Graetz Solution

% [T_spec,Dr,Dr2,rad,Dz,z,L] =
%
%

T _spec = reshape(T_spec, (M+1),(N+1));
[xx,yy] = meshgrid(z,rad);
[xxx,yyy] = meshgrid(-1:.01:1,-1:.01:1);
uuu = interp2(xx,yy,T_spec,xXXX,yyy, "cubic™);

iF(PLOT_TEMP == 1)

spec_tube_temp_nonD_wAC(Re,Pr,Rad, ...

Len,N,M, ...
graph);

% Reshape so we can calculate the builk fluid temp.

xxx = reshape(xxx(1,:),size(xxx,1),1);

for j = 1:size(uuu,l)
T avg(g) =

bulk_fluid_temp_michelsen(uuu(j, :) ,xxx,size(uuu,1));

end;
end;

i F(PLOT_NUSSELT == 1)



for j = 1:size(uuu,l)
Nu(j) =
end;
end;

z=(Len/(2*Rad))*(1+yyy); % Transform Nu back to [z*,0]
z = z./(Rad*Re*Pr);

%contour(uuu);

%size(uuu);

r = [0.005,0.025,0.05,0.1,0.25];
graetz_temp = [0.896,0.718,0.580,0.396,0.132];

z(:,1)
z = reshape(z(:,1),size(z,1),1)

[diff,x(1)] = min(abs(z - 0.005));
[diff,x(2)] = min(abs(z - 0.025));
[diffF,x(3)] = min(abs(z - 0.05));
[diff,x(4)] = min(abs(z - 0.1));
[diff,x(5)] = min(abs(z - 0.25));
if(PLOT_TEMP == 1)
T avg(x)
figure( ...
"Name*®, "Graetz Problem”,
"NumberTitle", "off",
"BackingStore®, "off");
hold on

plot(r,graetz_temp, "ok");
plot(z,T_avg,"-k"),

xlabel (*\xi"),

ylabel ("\Theta_m"),

hold off;
end;

i F(PLOT_NUSSELT == 1)

Nu(x)
figure( ...
"Name*®, "Nusselt®, ..
"NumberTitle®, "off",
"BackingStore®, "off");
hold on
plot(z(1:100),Nu(1:100),*--k*),
xlabel ("\xi"),
ylabel (*Nu*®),

hold off;
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spectral_local_nusselt(uuu(j,:),xxx,size(uuu,1)); %



119

end;
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7.9 Spectral Method: Extended Graetz Solution with step change at

%
%
%
%
%
%
%
%
%
%
%
%
b
%
%
%
%
%
%
%
%
%
%
%
%
%

=S

the centerline

Section:2D Non-Dimensionalized Temperature Profile using Spectral
Collocation.

This computes the temperature distribution profile of fluid flow in
a circular pipe subjected to a step change iIn temperature right
after the axial centerline. This uses the spectral collocation or
psuedospectral method to approximate the temperature of steady
state flow based on the Navier Stokes conservation of energy
equation. The solution is based on coordinate transformations to
the domain [1,-1].

function [u,Dr,Dr2,r,Dz,Dz2,z] = spec_tube temp _nonD wAC(Re,Pr,R, ...

Len,N,M,ramp, ...

debug,graph)
Re: Reynolds Number
Pr: Prandtl Number
: Radius of the Tube (m)
Len: Length of the Tube (m)

: Number of Points in the axial direction (Must be odd)
: Number of Points in the radial direction (Must be odd)
debug: 1if set to 1 debug information is printed.
graph: 1if set to 1 the solution will be plotted out.

function [u,Dr,Dr2,r,Dz,z,L] = spec_tube_ temp_nonD_wAC_centerline(

%
%
%

%

Re,Pr,R, ...
Len,N,M, ...
graph)

IT the user has not input parameters use defaults.
if nargin < 7

Re = 1;
Pr = 1;
R=1;
Len = 10;
N = 41; % Radial Direction
M = 41; % Axial Direction
graph = 1;
end;

Create the Chebyshev differentiation Matrices
* Note that in the accompanying literature r and z are
Xi and Eta respectively.
[Dr,r] cheb_derivative(N); % Radial Direction
[Dz,z] cheb_derivative(M); % Axial Direction
Compute the second order Chebyshev differentiation matrix directly
Dr2 = Dr"2;
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Dz2 = Dz"2;

%  Compute Energy Equation coefficients and resulting diagonal
matrices

%  Calculate the first coefficient of the energy equation as a column
% matrix.
a = ((2*R*Re*Pr)/Len).*(1 - (r-~2));
A = diag(a);
% B = eye(N+1);
% Create identity matrix.
I = eye(M+1);
% Compute Omega.
0 = diag(1./r);
O — — — —
%  Compute the tensor product spectral grid.
e — — — -

Y — — — —
% Create a column matrix to hold the RHS of the energy equation
Y — — — —
size = ((N+1)*(M+1));
rhs = zeros(size,l);
% Create two matrices containing the coordinate points inside the
%  solution plane.
[rr,zz] = meshgrid(r,z);
% Create one column vector that consists of the two coordinate
vectors
% stacked on top of each other.
rr = rr(2);
zz zz(:);

%  Apply the Boundary Conditions
Y — — — —
% Find the bounday points of the coordinate vectors:
b = find(abs(zz)==1 | abs(rr)==1);
% Impose the boundary conditions on the right side vector.
rhs(b) = (zz(b)==-1).*1 + ...
(rr(b)==1 & zz(b) > 0).*0 + (rr(b)==1 & zz(b) < 0).*1 +

(rr(b)==-1 & zz(b) > 0).*0 + (rr(b)==-1 & zz(b) <

0).*1;
%  Correct the entry boundary conditions at the top and bottom
% corners.

rhs(1) = 0;

rhs(size - M) = 0;

rhs(size) = 1;

rhs(M+1) = 1;
%  Apply the boundary conditions to the laplacian

L(b,:) = zeros(length(b),length(rhs)); % Zero the rows out
L(b,b) = eye(length(b)); % put in 1 for known
points
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reshape(rhs, (M+1), (N+1));

u =

L\rhs;

if(graph == 1)

uu = reshape(u, (M+1), (N+1));
[rr,zz] = meshgrid(r,z);

rr=R*rr; % Transform Xi back to [R,-R]
%zz=(1/(2*R))*(1+zz); % Transform Nu to [z*,0]

zz = zz*(Len/2);

zz_r=(Len/(2*R))*(1+z); % Transform Nu back to [z,0]
figure( ...

"Name", "Tube Flow",
"NumberTitle", "off",
"BackingStore®, "off");

mesh(rr,zz,uu),
xlabel ("Radial Position (m)*),
ylabel ("Axial Position (m)"), zlabel("\Theta m"),
view(60,40), colormap(le-2*[1 1 1]);
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7.10 Simple Non-Dimensional Diffusion Spectral Method

%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%

This computes the particle number concentration of fluid flow in
a circular pipe. This assumes a constant particle diffusion
coefficient D and does not account for thermophoresis. The
convection-diffusion equation is solved using the spectral
collocation or psuedospectral method.

function spec_tube diff _no VvVt const _D(D,Vmax,R,Len,N,M,debug,graph)

D: Particle Diffusion Coefficient (m"2/s)
Vmax: Maximum Velocity along the tube axis (m/s)
: Radius of the Tube (m)
Len: Length of the Tube (m)
N: Number of Points in the radial direction (Must be odd)

: Number of Points in the axial direction (Must be odd)
debug: 1if set to 1 debug information is printed.
graph: 1if set to 1 the solution will be plotted out.

function [u,uu,r,z] = spec_tube diff no Vt const D(D,Vmax,R, ...

%
%
%

%

%
%
%
%

Len,N,M, ...
debug,graph)

IT the user has not input parameters use defaults.
if nargin < 8
D = 6.23e-9;
Vmax = 1;
R = .001;
Len = 10;
N = 41; % Radial Direction
M= 21; % Axial Direction
debug 1;
graph 1;
end;

Boundary_in = 1;
Boundary_Side =

Create the Chebyshev differentiation Matrices
* Note that in the accompanying literature r and z are
Xi and Eta respectively.
[Dr,r] = cheb_derivative(N); % Radial Direction
[Dz,z] = cheb_derivative(M); % Axial Direction

Compute the second order Chebyshev differentiation matrix directly
Dr2 = Dr"2;

Calculate the First coefficient of the energy equation as a column
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% matrix.
%a = ((2/Len)*Vmax)*(1 - (R™"2)*(r.-"2));
a (2/7Len)*Vmax)*(1 - (r-~2));
A = diag(a(1:N+1));

% Create identity matrix.
1 = eye(M+1);

% Compute Omega.
0 = (/(R™2)) -*diag(1./r);
U
%  Compute the tensor product spectral grid.
0

% ___________________________________________________________________
% Create a column matrix to hold the RHS of the energy equation
) ——
size = ((N+1)*(M+1));
rhs = zeros(size,l);
% Create two matrices containing the coordinate points inside the
%  solution plane.
[rr,zz] = meshgrid(r,z);
% Create one column vector that consists of the two coordinate
%  vectors stacked on top of each other.
rr = rr(2);
zz = zz(2);
0
%  Apply the Boundary Conditions
% ___________________________________________________________________

% Find the bounday points of the coordinate vectors:
b = find(zz==-1 | abs(rr)==1);
% Impose the boundary conditions on the right side vector.
rhs(b) = (zz(b)==-1)_.*Boundary_in + _._.
(rr(b)==1) .*Boundary_Side + ...
(rr(b)==-1) .*Boundary_Side;
% Correct the entry boundary conditions at the top and bottom
% corners.
rhs(1) = Boundary_Side;
rhs(size - M) = Boundary_Side;
%  Apply the boundary conditions to the laplacian

L(b,:) = zeros(length(b), length(rhs)); % Zero the rows out
L(b,b) = eye(length(b)); % put in 1 for known
points

0
% Solve the Matrix equation
% ___________________________________________________________________

uu = reshape(u, (M+1),(N+1));
if(graph == 1)
[rr,zz] = meshgrid(r,z);



%

%
%
%
%
%

%
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Transform Xi back to [R,-R] domain
rr=R*rr;
Transform the Axial Direction coordinates from (Eta) [1,-1] to
z [0, length]
transpose into column matrix
z";
create a matrix of the same size
ones(1, M+1);
for j = 2: M+1
a(l.j) = (z(1,1) + z(1.5)) 7/ 2;

a(1,1) = 0;
a = Len*a;

Z =

a =

end;

zz
for

ones(M+1, N+1);

= 1: N+1

for j = 1: M+1

end;

zz(g,1) = a(l,j));

figure( ...
“"Name*®, "Tube Flow", ...
"NumberTitle®,"off", ...
"BackingStore®, "off");

subplot(2,2,1), surfc(rr,zz,uu),
xlabel (*Radial Distance (m)*),
ylabel ("Axial Distance (m)*"),
zlabel ("Particle Concentration®),
title("Particle Concentration®);

subplot(2,2,2), contourf(rr,zz,uu),
xlabel ("Radial Distance (m)"),
ylabel ("Axial Distance (m)"),
title("Particle Concentration®),
colorbar;

str
str
str
str
str

str

sprintf("Particle Diffusion Coefficient: %.9f",D);

strvcat(str, sprintf("Maximum Velocity: %.1F m/s",Vmax));

strvcat(str, sprintf("Tube Radius: %.3F m",R));

strvcat(str, sprintf("Tube Length: %.1Ff m",Len));

strvcat(str, sprintf("Collocation Points (Radial): %d-,..
N));

strvcat(str, sprintf("Collocation Points (Axial): %d", ..

M));

uicontrol ("style”, "text", ...

"units”,"normalized”, "position”,[0.55 0.05, 0.4, 0.4],

"HorizontalAlignment™,["left"], "string”,str);
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7.11 Hinds

%
%
%
%
%
%
%

This computes the deposition of particles in a cylindrical tube
for laminar flow. A penetration value is returned representing
n_out/n_in

function [p] = hinds_Penetration(mu)

function [P] = Hinds_Penetration_mu(mu)

if mu < 0.009
P 1 - 5.50 * munN(2/3) + 3.77*mu;
else
P
end

0.819*exp(-11.5*mu) + 0.0975*exp(-70.1*mu);
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7.12 Spectral Method and Hinds Comparison Code:

function Spec Diff _Test(D,R,Len,num_pts,M,N,graph)

if nargin < 7
D = 6.23e-9;
R =05;
Len = 10;
num_pts = 30;
N = 41; % Radial Direction
M = 41; % Axial Direction
graph = 0;
end;

mu = logspace(-4,0,num_pts);
Q = (D*Len)./mu;
Vmax = (Q-*2)./(pi*R"2);

mu = 0;
debug = 1;
method = 2;

for i=1:num pts
[u,uu,r,z] =
spec_tube_diff_no_Vt_const D(D,Vmax(i),R,Len, ..
N,M,debug,graph);
[P1(i)] = spec_tube penetration(uu,r,N,M,Vmax(i),R,1,method);
end;

for i=1:num_pts
[P2(i), mu(i)] = Hinds_Penetration(D,Vmax(i),R,Len,debug);
end;

figure( ...
“Name*®, "Diffusion”,
"NumberTitle", "off", .
"BackingStore", "off");
H1 = semilogx(mu,Pl);
hold on
H2 = semilogx(mu,P2);
xlabel("mu*),
ylabel ("Penetration®);
set(H1, "LineStyle","--");
set(H1, "LineWidth",2);
set(H1,"color®,"k");
set(H2, "LineStyle","+");
set(H2, "LineWidth*,2);
set(H2,"color”®,"k");
h = legend("Spectral Method®", "Hinds Method");
legend(h, “boxoff");
hold off

figure( ...
"Name* , "Difference”,
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"NumberTitle®, "off",
"BackingStore®, "off");

semilogx(mu, abs(P1-P2), "k"), xlabel("*mu®),
ylabel ("Difference®);
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7.13Penetration Calculation

%
%
%
%
%
%
%
%
%
%
%
%
%
%
%

This takes in the particle distribution for flow Iin a tube and the
interpolation points in the radial direction. It then calculates
the penetration P (n_out/n_in) of the particle distribution.

function P = spec_tube_penetration(u,r,N,M)

n: Particle Distribution (2D solution)
r: Radial interpolation points
N: Number of Points in the radial direction (Must be odd)
M: Number of Points in the axial direction (Must be odd)
Vmax: Maximum Velocity along the tube axis (m/s)

: Radius of the Tube (m)
rho: Density Distribution (2D solution)

function P = spec_tube_penetration(n,r,N,M,Vmax,R,rho,method)

num = 0O; % numerator

N2 = (N+1)/2;

% Get the denominator

den = R"N2/4;

% reshape the radial coordinates to go from O to R
r=R.*rj;

r = r(N2+1:-1:1);

r(1) = 0.0;

r = reshape(r,1,N2+1);
% calculate the points along the function to be integrated.
for 1 = 1:N2+1
func(i) = n(1,i+(N2-1)) * (r(i) - r(i)"3/(R"2));
end; %for i
num = trapz(r,func);
P = num/den;
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7.14Kronecker Product

% [Z] = kron2(X,Y)

%

% KRON2 - Kronecker Tensor Product

%

%  KRON2(X,Y) takes the kronecker tensor product of X and Y. For
% dense matrices over ~30 elements this has much better performace
%  over MATLAB"s KRON.

%

% 5/07

% -— C. Thibeault, Minnesota State University, Mankato.

%

function [Z] = kron2(X,Y)

% Calculate the Dimensions
[X_row, X col] = size(X);
[Y_row, Y_col] size(Y);

% preallocate the solution Matrix.
Z = zeros(X_row * Y_row, X col * Y _col);

for 1 = 1:X _row
for j = 1:X col
row_start = (i*Y_row)-(Y_row -1);
row_end = i*Y_row;
col_start =j*Y_col-(Y_col-1);
col_end = j*Y_col;
Z(row_start:row_end, col_start:col_end) = X(i,j)-*Y;
end % j
end % i
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7.15Chebyshev Derivative Matrix and Collocation Points

function [D,x] = cheb_derivative(N)
if N==0, D=0;
x=1;
return, end
% Collocation Points
X = cos(pi*(0:NY/N)";
X = repmat(x,1,N+1);
dX = X-X";
% Derivative Matrix
D=zeros(N+1,N+1);
% Top and Bottom Rows
top = (2*(-1)-M(1:N-1))./(A-reshape(x(2:N),1,N-1));
bottom=-top(N-1:-1:1);
% Left and Right
right = -reshape(bottom./4,(N-1),1);
left= -right(N-1:-1:1);
%top
D(1,2:N) = top;
D(N+1,2:N) = bottom;
D(2:N,D=left;
D(2:N,N+1) =right;
% Middle
ij = repmat(JO:N],N+1,1)+repmat(reshape(JO:N],N+1,1),1,N+1);
mid = ((-1)-~ij)-/dX;
D(2:N,2:N) = mid(2:N,2:N);
% Diagonal
dia=(1:N+1:(N+1)*(N+1)) + (0:N);
dia = dia(2:N);
D{dia) = -(x(2:N)./7(2*(1-x(2:N)-~2)));
% Corners
D(1) = (2*N"2+1)/6;
D((N+1)*(N+1))=-D(1);
D(N+1) = -0.5*(-1)"N;
DC(N+1)*(N+1)-(N)) = -D(N+1);



8. Appendix B: Polynomial expansion of Helmholtz
Equation (Sage Worksheet)
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var(x a0 a1 a2 u')

(x, a0, a1, a2, u)

u2=1+(1-x*2)*(@0+a1*x+a2*x"2)

Resid=diff(u2,x,2)+(4)"u2

eg1=Resid(x=-0.5)

eq2=Resid(x=0)

eg3=Resid(x=0.5)

solve([eq1,eq2,eq3],a0,a1,a2)

[[a0 == -18/5, al == 0, a2 == 8/5]]

a_0=-18/5

a_1=0

a_2=8/5

from numpy import arange
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E1=[1+(1-x*2)*(a_0+a_1*x+a_2*x"2) for x in arange(-1,1.1,0.1)]

p1=list_plot(zip(arange(-1,1.1,0.1),[1+(1-x*2)*(a_0+a_1*x+a_2*x"2) for
x in arange(-1,1.1,0.1)]), rgbcolor=(0,0,0))

p2=plot(-2.4030*cos(2*z),-1,1,rgbcolor="black")

(p1+p2)

E=[(-2.4030*cos(2*x))-(1+(1-x*2)*(a_0+a_1*x+a_2*x"2)) for x in
arange(-1,1.01,0.01)]

P3=list_plot(zip(arange(-1,1.01,0.01),E), plotjoined=True, rgbcolor=
(0,0,0))
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