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Abstract 

Land Use and Land Cover (LULC) and Impervious Surface Area (ISA) are 

important parameters for many environmental studies, and serve as an essential tool for 

decision makers and stakeholders in Urban & Regional planning. Newly available high 

spatial resolution aerial ortho-imagery and LiDAR data, in combination with specialized, 

object-oriented and decision-tree classification techniques, allow for accurate mapping of 

these features. In this study, a method was developed to first classify LULC using an 

object-based classifier, and then use the resulting map as input for a decision-tree model 

to classify ISA in the Twin Cities Metropolitan Area in Minnesota.  

It was found that vegetation cover classes were the most prevalent in the study 

area, making up over half of the land area. Water was the smallest class, followed by 

urban land cover, which made up 11%. Impervious surface was determined to make up 

14% of the TCMA area.Overall classification accuracy for LULC cover was estimated to 

be 74%, and 95% for the ISA classification. 
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1. Introduction 

Accurate landscape maps, such as land use and land cover (LULC) and 

impervious surface area (ISA) maps are essential inputs for local decision makers as well 

as many researchers. While a product with high spatial resolution and great accuracy is 

desired, the available data today is often only of low to medium spatial resolution, and 

varying degrees of accuracy.  

Extracting LULC and ISA information using high-resolution remote sensing 

imagery, LIDAR-derived elevation data, and other ancillary data is difficult. This 

difficulty is in part due to the fact that the input data required to generate land cover maps 

are often available only at low or medium spatial resolution, whereas high resolution 

imagery is often priced too high to allow for its efficient use. Further, there is a lack of 

well-established techniques to process high-resolution spatial data. Many established 

datasets are also relatively old. In particular, for the study area of the Twin Cities 

Metropolitan Area (TCMA), the most recent dataset is based on 2006 Landsat imagery 

with spatial resolution of 30 meters (Yuan 2010) . While this LULC dataset for the study 

area possesses good accuracy, it is now eight years old. Urban development is fast-paced, 

hence, an updated product would be desirable to provide more recent data and enable 

change analysis. New LULC and ISA data for the study area are necessary to help 

stakeholders assess the effects of urbanization and other LULC changes. Traditional 

classification techniques may not deliver the best results possible when applied to the 

newly available, high spatial resolution imagery. In this context, I developed an analytical 
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method to extract the desired high resolution LULC and impervious surface information 

using advanced techniques such as object-oriented classification and decision tree 

modeling.  

In the past, methods developed for land features identification have been focused 

on using medium-resolution satellite images. Since high-resolution aerial imagery and 

LIDAR data have become more readily available, and computing power has increased, 

new techniques are becoming more promising. In particular, in this study, I used an 

object-based classifier to map high resolution land cover types from 1 m digital 

orthoimagery for the TCMA, Minnesota. I also developed a decision-tree model to 

extract impervious surface data from a combination of data sources. The resulting data 

and developed method provide important decision-making inputs and tool for local 

governments and other agencies and organizations in the area. 
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1.1. Study Area 

This study will focus on the Twin Cities (Minneapolis and St. Paul) Metropolitan 

Area of Minnesota. In particular, the study area consists of seven counties: Anoka, 

Carver, Dakota, Hennepin, Ramsey, Scott, and Washington counties (Figure 1.1). These 

counties have a combined area of about 2,939 square miles.  From 2000 to 2010, the 

population increased from 2.6 million to 2.8 million, which comprised approximately 

54% of the total population of Minnesota (Metropolitan Council 2000; US Census 2013).  

At the center of the TCMA are the cities of Minneapolis and St. Paul. St. Paul is the 

capital of Minnesota, which has a distinct culture from Minneapolis. There are many 

populous suburbs, as well as highly commercialized areas. The Mall of America, one of 

the largest indoor shopping centers in the United States (US) is located in Bloomington, 

south of Minneapolis. Another large shopping mall, the Southdale Center in Edina, is 

considered the oldest mall in the US. Several major corporations and Fortune 500 

companies, such as Target Corporation in Minneapolis, The Toro Company in 

Bloomington, Dairy Queen in Edina, 3M in Maplewood, and General Mills in Golden 

Valley, are headquartered in the Twin Cities.  

A large part of the early economy of the Twin Cities was influenced by the 

presence of the Mississippi River and its Saint Anthony Falls, providing hydropower to 

sawmills and later flourmills. These facilities at Saint Anthony Falls were some of the 

first to use hydropower in the US (Anfinson 1995).  The area was also a major 

transportation hub for rail and water cargo and passenger services. Grain was a common 

good to be shipped into the Twin Cities via river or rail, and consequently, flour and other 
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milling products were then exported. Timber harvested in Minnesota was also an 

important shipping good. Manufacturing followed to be a major part of the Twin Cities 

economy. Today, the economy is dominated by tertiary sector businesses, high-tech 

research and production, and financial services.  

The landscape of the study area is relatively diverse, with a large number of lakes. 

High density urban development is mostly located in the central part while vegetated land 

cover and agricultural land are found in the outer perimeter. The maps and data produced 

in this study will elaborate specific patterns of these land cover classes. The climate in the 

Twin Cities is typical of the Midwestern US with extreme cold temperatures in the winter 

and extreme heat in the summer. Precipitation peaks in the summer months. The area is 

prone to many types of natural disasters, such as tornadoes and other wind storms, flash 

flooding, extreme temperatures, and winter storms.  

The Twin Cities have been found by a variety of surveys over the last years to be 

one of the most attractive metropolitan areas in the US, and one of the best places to live. 

These ratings were in large parts due to the proximity to natural features such as lakes, 

the extensive parks and trails system, and the robust economy. 
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Figure 1.1: Study area overview map. 
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2. Literature Review 

This study is concerned with the accurate extraction of impervious surface data 

and LULC classes from high-resolution aerial imagery and other data sources. The 

following will give an overview of the existing literature that is pertinent to the various 

techniques used here. I will first discuss the importance of imperviousness and some 

techniques that have been used to identify impervious surface areas. I will further give an 

overview of the research that has been done in relation to the various components of this 

study, such as data integration, decision tree modeling, and object-based classification. 

 

2.1. Land use and land cover 

Land use and land cover data are essential inputs and tools for local and regional 

decision makers. While urban growth indicates economic growth, it is also a major 

environmental concern. Urban growth not only leads to increased impervious surfaces 

and associated problems (see section 2.2), it also significantly degrades air quality at 

local to global scales, as well as increases energy consumption, and consumes 

agricultural and forestry resources (Squires 2002). Collinge (1996) conducted a thorough 

literature review concerning effects of urban sprawl on biodiversity. He concluded that 

urban sprawl, due to its segmented growth patterns, is a major contributor to habitat 

fragmentation and therefore reduction of biodiversity. Accurate LULC data are important 

in order to help decision makers at local, regional, and global scales improve policy 
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regarding future development, wetland and habitat conservation, and climate protection 

(Anderson et al. 1976). 

 

2.2. Imperviousness 

The concept and question of imperviousness has received a lot of interest in many 

fields recently, particularly in geographical and urban studies. Impervious surface 

restricts the flow of water through the surface. It is often considered to be comprised of 

rooftops of buildings and transportation features (Schueler 1994); however, it should also 

be noted that bare, compacted soil or exposed bedrock, at extraction sites for example, 

may have impervious qualities. In the case of rain events, snow melt, or flooding, water 

cannot penetrate the ground, but would rather be carried on the surface, picking up many 

surface pollutants along the way (Chen et al. 2007). Nonetheless, with the increasing 

dependence on the automobile in the US and other developed and developing countries, 

the amounts of impervious surfaces and their inherent problems are increasing. 

Impervious surfaces accelerate the movement of runoff and pollutants collected 

over large area, which attributes to many of today’s water pollution problems. As early as 

1994, the US Environmental Protection Agency determined that non-point source 

pollution (of which impervious surface runoff pollution is an example) is the largest 

contributor and threat to the quality of water in the US (1994). Since non-point source 

pollutants are carried into surface and ground water, they impact both the natural and 

human ecosystems.  
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Impervious surface is not only a major contributor to non-point source pollution, 

but also a very good indicator of water quality. Impervious surfaces have been found to 

be a “key environmental indicator” to estimate many other factors. Arnold Jr and 

Gibbons (1996) found that knowledge of the amount of impervious surface can serve as a 

framework for solving problems of natural resource planning. This is particularly 

advantageous for local planning agencies that may not have the resources to commit 

more complex studies of particular problematic areas. Impervious surface is not only a 

general environmental indicator by itself, it is also strongly related to, and can be 

considered a proxy measure for other indicators that are much harder to measure 

(Schueler 1994). Impervious surface can be used as a measure of environmental impact 

not only locally, but also globally, as pointed out by Sutton et al. (2009), who constructed 

a global model based on satellite imagery and calibrated the model with high-resolution 

aerial imagery in an effort to show that impervious surface can be a proxy measure for 

the overall ecological footprint of societies.  Although imperviousness has strong impacts 

on the environment across different scales, it is most powerful at the local scale. As 

Schueler (1994) noted that impervious surface data are relatively easy to obtain compared 

to other environmental indicators, and the amount of impervious surface can be managed 

by local policies. 
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2.3. Determining Impervious Surface Area  

There are many approaches to estimating the amount of ISA in a study area. Field 

mapping can be used to achieve accurate results, but is often time-consuming and 

expensive. Remote sensing techniques offer a more efficient method. Traditional per-

pixel approaches classify remote sensing data by assigning land cover classes to each 

pixel in an image, often based on an algorithm that makes statistical assumptions about 

the data. To extract impervious surfaces, the image is firstly classified into categories that 

will allow the researcher to aggregate them into impervious and pervious covers in the 

next step. For example, urban, transportation, bare soil (such as gravel pits or 

construction sites), and mining/extraction classes would be considered impervious, while 

open water, cropland, and wetland classes would be considered pervious. Dougherty et al. 

(2004) compared this approach to a sub-pixel method. They found that the traditional per-

pixel method yielded slightly better results than the sub-pixel method, but the accuracy of 

both methods depended strongly on the types of classified land cover (Dougherty et al. 

2004). Lua et al. (2011) described a method that uses the traditional classification method 

in combination with a segmentation-based method and manual editing to eliminate the 

drawbacks of each individual method. 

Another technique that is relatively prevalent is the use of sub-pixel classifiers to 

estimate the percentage of impervious surface per area unit, or pixel. This method is 

based on the use of remote sensing images that have low to medium spatial resolution, 

which means that a pixel represents a fairly large area on the earth’s surface, and likely 

comprises many different types of land cover. This method was used by Civco and Hurd 
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(1997) to map the amount of impervious surface areas of Connecticut. Their approach 

involved the use of an artificial neural network, which can be calibrated with high spatial 

resolution training data, but applied to medium spatial resolution imagery to deliver more 

accurate results for larger areas. Similar methods were also used by Stocker (1998). Van 

De Voorde et al. (2009) used two different sub-pixel classification models to extract 

impervious surface percentages in a comparative study. Similar to Civco and Hurd 

(1997), they used high spatial resolution images to calibrate their model, and then applied 

the model to lower spatial resolution images of large areas. They found that the 

multilayer perceptron model, which is relatively complex to use, performed relatively 

better than the spectral mixture analysis model. Taking the sub pixel classification 

approach further, Jennings et al. (2004) developed a model to estimate impervious 

surface areas, in which various data sources such as the National Land Cover Dataset 

(NLCD) and municipal transportation layers were used to generate sub-pixel impervious 

surface maps. These maps were then classified further into conceptual classes describing 

the amount of impervious surface areas. 

A different approach was taken by Ridd (1995) with a “Vegetation – Impervious 

– Soil” (VIS) model to differentiate urban land cover classes. The model was initially 

developed for visual interpretation of aerial imagery, but was adapted by Ridd (1995) to 

be used with digital remote sensing data. The VIS model describes the composition of 

land based on the three classes it is named for, and can be used with the addition of a 

water class to determine the amount of impervious surface. 
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A modeling method that was not based strictly on remote sensing data was 

developed by Chabaeva et al. (2004). The authors created a model that can determine the 

ISA based on population parameters derived from US Census data. They built the model 

using NLCD shapefiles and created a regression model using inductive learning software. 

They calibrated the model for different localities and were able to determine the 

percentage of ISA fairly accurately, however only to the Census tract level (Chabaeva et 

al. 2004). 

After reviewing the literature regarding the extraction of impervious surface, it 

becomes clear that this topic still has many open questions in terms of which method 

delivers the most accurate results. Every method described has its own advantages. The 

method used should be chosen based on the desired results and the available data. 

 

2.4. Data integration 

Most of the previously discussed methods of impervious surface extraction mostly 

only used one specific set of data as their input, such as satellite or aerial imagery, or 

census and parcel data. Some studies, however, used more than one type of data to extract 

land cover or impervious surface information for an area. More specialized methods are 

required, however, to classify using a combination of imagery and more abstract ancillary 

data types. 

For example, Kontoes et al. (1993) described a method using SPOT imagery and 

ancillary map data that was manually digitized and edited. The authors than employed 

data derived from both the imagery and the ancillary data in a knowledge-based system 
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that allowed them to classify the data and extract agricultural crop coverage with 

relatively high accuracy. In another approach, McNairn et al. (2005)  combined several 

types of imagery to extract the desired data. They employed and compared the maximum 

likelihood and decision tree methods. They reported that a decision tree approach allows 

for the integration of additional data that is not imagery. 

Mesev (1998) described a method to extract urban land cover information by 

combining imagery with census data. However, unlike Kontoes et al. (1993), who 

employed a knowledge-based model, he was able to integrate the additional data in a 

maximum likelihood classifier (MLC).  

An approach that integrates reflectance data with surface temperature data derived 

from Landsat data was taken by Lu and Weng (2006). In this case, the researchers used 

an imagery product and a derivative of the additional infrared emission layer that is 

delivered with Landsat TM data. Researchers have also combined optical remote sensing 

with active remote sensing products such as Radar imagery to improve results of 

classifications. Rignot et al. (1997) compared classifications of a site in Brazil rainforest 

obtained from the SIR-C radar data and the optical Landsat TM, SPOT, and JERS-1 

sensors. They found that each sensor had specific strengths and weaknesses. They were 

able to combine these results to obtain an overall more accurate final map to identify 

biomass in their study area. Saatchi et al. (1997) also used radar data to map deforestation 

in the Brazilian rain forest. They used Landsat TM data to verify their results and also 

combined their results derived from both data to improve the overall accuracy of their 

classification. Optical and radar remote sensing data complement each other and 
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therefore can improve accuracy, and that radar data can be used where optical data shows 

weaknesses due to cloud cover or layered vegetation.  

 

2.5. Decision Trees 

Decision tree modeling is an artificial intelligence and machine learning 

technique, as demonstrated by Breiman (1984) and Wu and Kumar (2009). In this study, 

a combination of the object-based classification, integration of various data sources and 

types, and decision tree classifier was used.  The decision tree software is a machine 

learning program that analyzes existing data and builds a decision tree model that fits the 

data best into predetermined classes. Decision trees are used not only for image 

classification, but also for many other applications in various fields. In general, they are 

useful for analyzing case data based on specific attributes and assigning discrete output 

values to each case (Mitchell 1997). There are many medical studies that use decision 

tree models: Granzow et al. (2001) used decision trees to find relationships between types 

of tumors and genetic properties. In a different application in cancer research, Kuo et al. 

(2002) built a decision tree model that could be calibrated to find patterns of breast 

tumors in different types of ultrasound data. Silva et al. (2003) used decision tree models 

to classify large amounts of data found in Intensive Care Unit databases to help doctors 

predict the likelihood of organ failure for patients. 

Decision trees have also been used in economics studies  to help in making 

decisions for the creation of stock portfolios (Tseng (2003). Sen and Hernandez (2000) 

created a decision tree model that helped apartment buyers analyze the various data about 
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the apartments and real estate markets that is publicly available, and make better buying 

decisions based on these data. Arditi and Pulket (2005) were able to use decision tree 

models to predict the outcome of construction litigation. Another interesting example of 

decision tree models for real-world applications was presented by Copeck et al. (2002) 

with their machine learning process to summarize documents. 

2.5.1. Decision Trees in Geography 

In Geographical studies, decision trees are most often used for image 

classification, but have also found some other applications: Lang and Blaschke (2006) 

used a decision tree model to identify the best suited locations for wildlife bridges to 

protect brown bear habitat in Slovenia. Hansen et al. (1996) described decision trees as an 

alternative to traditional land cover classifiers and found that they have similar accuracy 

to Maximum Likelihood Classification, while offering more flexibility for the 

requirements of input data. Gahegan (2000) examined the particular advantages and 

disadvantages of using machine learning algorithms to analyze geographical data, as 

compared to the more traditional statistical tools used in many studies. He also suggested 

that machine learning tools are often better suited to cope with the very large datasets 

now used in Geography (Gahegan 2000, 2003). A general comparison of traditional 

classifiers, artificial neural networks (ANN), and decision tree classifiers was presented 

by Pal and Mather (2003). The researchers found that decision tree classifiers have 

advantages over the traditional classifiers since they can handle various types of data on 

different scales and units, and do not depend on statistical assumptions about the data. In 

comparison to artificial neural networks, they found that decision trees are advantageous 
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because they are easier to use, require less training and parameters to be setup, process 

large sets of data quickly, and are widely available on the internet. They also found that 

the decision tree delivered acceptable results compared to other classifiers in most cases 

(Pal and Mather 2003). In contrast, Rogan et al. (2008) and Rogan et al. (2003) found that 

ANN can achieve better accuracies for  land cover change mapping. 

Some good examples of decision tree applications for very large datasets are 

presented in the publications regarding several US nationwide land cover datasets. 

Decision tree classifiers were used in building a database of 22 land cover classes with 

remote sensing data from 2000 and 16 classes with data from 2001 for the entire United 

States (Homer et al. 2007; Homer et al. 2002). Furthering the use of these datasets, Fry et 

al. (2009) used decision tree models to map the differences between the 1992 and 2001 

National Land Cover Database products efficiently. Another nationwide product that was 

developed with decision tree models is the 2009 Cropland Data Layer (Johnson and 

Mueller 2010).  

An additional advantage of decision tree classification is that it is able to handle 

many attributes, or sets of data, and identify the most important ones. This is exemplified 

by Bricklemyer et al. (2007) to verify the association of agricultural practices with soil 

carbon sequestration. Similarly, Ban et al. (2010) used decision trees to combine 

Quickbird and Radarsat data to aid in urban land cover classification. Zhang and Wang 

(2003) also used decision tree models to classify urban land cover types from high-

resolution multispectral imagery. Another study used two types of imagery (medium 

spatial resolution Landsat and high spatial resolution aerial imagery) to estimate the 
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density of tree cover for large areas (Huang et al. 2001). Instead of utilizing two sources 

of imagery, Harris and Ventura (1995) used Landsat imagery and more abstract 

geographical data, such as parcel and census data, to classify urban land cover types. In 

contrast, Griffin et al. (2011) used decision trees to include environmental factors in a 

classification of various vegetation types in a specific ecosystem. For a study to assess 

animal habitats and agricultural land cover, Lucas et al. (2007) employed a rule-based 

decision tree to map the habitats and cover classes based on multi-temporal satellite 

imagery, various derivatives of the imagery, and data retrieved from an agricultural 

management system. A similar approach was taken by Wright and Gallant (2007) to 

increase the accuracy of wetland mapping in Yellowstone National Park.  

In addition to all of the previously mentioned advantages of decision tree 

modeling, another benefit of this technique is its ability to deal with errors very well 

(Mitchell 1997). Two major error sources in remote sensing are uncertainties already 

present in the imagery due to acquisition and processing issues, and errors introduced by 

the analyst while generating training data (Foody et al. 2002). Decision tree models are 

particularly tolerant towards both of these error types, and can even handle cases where 

some of the attributes are missing very well (Mitchell 1997). 

It is evident that decision tree classification systems can deliver accurate results 

for many different applications in geographic research, particularly when dealing with 

datasets that are either very large, contain different data scales or units, or are problematic 

for traditional or statistical models. Decision trees are found to be flexible, user-friendly, 

and efficient. 
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2.5.2. Decision Trees for Impervious Surface Extraction 

Studies that used decision trees to identify ISA only have emerged in the past ten 

to fifteen years. Smith (2000) employed a decision tree model to estimate the sub-pixel 

level ISA from Landsat imagery in the diversely urbanized area of Santa Barbara in 

Southern California. Similarly, Yang, Huang, et al. (2003) and Yang, Xian, et al. (2003) 

used decision trees to extract sub-pixel ISA from Landsat TM and ETM+ and high-

resolution aerial imagery, and to detect urban land cover changes, respectively. High 

spatial resolution aerial imagery was used by Cutter et al. (2002) to extract ISA. Goetz et 

al. (2003) used decision trees to extract not only impervious surfaces, but also tree covers 

from IKONOS imagery.  

While decision tree classifiers have been used occasionally to extract impervious 

surface from medium spatial resolution imagery by means of sub-pixel classification, 

they seem to be most efficient for use with high spatial resolution imagery. This is noted 

by Cutter et al. (2002), who found that traditional classifiers are often unable to handle 

the challenges posed by high spatial resolution imagery. The fact that this high spatial 

resolution imagery is becoming more widely available may also explain the fact that 

there has very little work been done for impervious cover extraction with decision trees 

until recently.  
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2.6. Object-based Classification 

While a decision tree approach was used in this study to classify ISA, the 

remaining LULC classification was completed using object-based classification. Object-

based classification is a relatively new concept compared to pixel-based classification. Its 

development began when per-pixel classification was found to be lacking in some 

aspects, and when computing power increased which allows for the development of more 

advanced techniques. Tobler (1970) defined the first law of Geography as: “Everything is 

related to everything else, but near things are more related than distant things.” Therefore, 

many researchers have criticized the focus on the pixel as a unit in image classifications. 

They have found that it makes more geographical sense to include not only the 

information that is present in one pixel, but also what surrounds that pixel. Considering 

this, one should not only focus on individual pixels in a study, but also should consider 

the data in their surroundings (Fisher (1997) and Cracknell (1998). Haralick et al. (1973), 

Haralick and Shapiro (1985), and Myint (2001) all suggested to integrate contextual 

information by calculating textures based on surrounding pixel values in order to 

implement this principle in remote sensing applications. In this study, the texture-band 

approach was followed for the impervious surface classification.  

Object-based classification was employed as an additional method of 

incorporating contextual information. Instead of looking at each pixel individually, this 

method attempts to find patterns in the pixel values and group pixels according to these 

patterns. This process is also referred to as image segmentation (Blaschke and Strobl 

2001). This approach has been found to be advantageous particularly when classifying 
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imagery that has very limited spectral resolution, such as grayscale imagery (Blaschke 

and Strobl 2001), and for imagery that is problematic to classify because of its high 

spatial resolution (Miller et al. 2009). While object-based classification is mostly suitable 

for extraction of certain objects (such as trees, buildings, water bodies), it can be adapted 

to be used on  the extraction of land cover classes based on multi-scale objects (Baatz and 

Schäpe 2000). In this study, object-based classification was used for the general LULC 

classification part. 

 

2.7. Feature Analyst 

Feature Analyst is the software chosen here to implement the object-based LULC 

classification. Feature Analyst is a third-party extension for ESRI ArcGIS, and is 

considered an object-based, inductive learning classification system. 

In fact, Feature Analyst is a combination of various classification algorithms. It is 

object-based because it makes use of image segmentation, and is capable of identifying 

individual objects in an image, compared to many other systems which can only perform 

so called “wall-to-wall” classifications where every object within an image has to be 

included in the classification. 

Aside from image segmentation, Feature Analyst makes use of several other 

classification models. These include: (1) decision trees, (2) variants of ANN, which are 

designed to assess information in a similar way to the human brain (Opitz and Blundell 

2008; Rumelhart et al. 1986), (3) Bayesian learning, which is similar to ANNs, but 

additionally makes use of probability assumptions about the data,  and (4) K-nearest 
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neighbor, which attempts to assign a class to a case simply based on how “close” its 

attributes are to those of known cases (Mitchell 1997). Feature Analyst automatically 

includes one or more of these approaches in its classification models, depending on 

which approach is best suited for the data to be classified (Opitz and Blundell 2008).  

In addition to selecting one or several classification approaches, Feature Analyst 

will also make use of ensembles, a concept very similar to boosting in decision trees (see 

3.3.2). Ensembles are sets of classification models, which are trained using the same data, 

and whose results are combined to produce a final result. While there are several options 

to combine the results, the most common, and the one used in Feature Analyst, is a 

weighted average of all results (Opitz 1999). Several studies have found that ensemble 

predictions become more accurate if the individual predictors disagree as much as 

possible (Breiman 1996; Freund and Schapire 1996; Opitz and Shavlik 1996a, 1996b). 

Therefore, Feature Analyst actively attempts to build several models that produce diverse 

results, thus increasing the possible accuracy of the entire ensemble  (Opitz and Blundell 

2008). This approach is claimed to be more accurate than similar techniques, such as 

decision tree boosting.  

In summary, Feature Analyst makes use of several innovative and advanced 

image classification techniques that promise improved accuracy for high spatial 

resolution imagery compared to other, pixel-based classification techniques.  
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3. Methods 

3.1. Data Acquisition and Preprocessing  

The data used in this study were obtained from the United States Geological 

Survey (USGS) Seamless Data Warehouse website (http://seamless.usgs.gov/), and the 

Minnesota Geospatial Information Office (MNGEO) Data Clearinghouse 

(http://www.mngeo.state.mn.us/). The specific datasets were 2010 high-resolution digital 

ortho-imagery, Light Detection and Ranging (LIDAR) elevation data, and road centerline 

data. 

3.1.1. Aerial Imagery 

The aerial imagery was part of the National Agriculture Inventory program 

(NAIP) funded by the U.S. Farm Services Agency (FSA), which makes these data 

available for public use at no charge. The 2010 NAIP ortho-images were flown during 

the agricultural growing season, specifically during the months of July and August. The 

images have a spatial resolution of 1 meter per pixel, and radiometric resolution of 8 bit 

pixel depth. The NAIP imagery is ortho-rectified by the data vendor to a horizontal 

accuracy of +/- 5 meter using ground control points. The vendor further mosaicked the 

individual images to produce county mosaics using a last-in-last-on-top strategy, and 

color-balanced the mosaics using the Impho Orthovista software.  

The aerial images were acquired as full county mosaics for each of the seven 

metropolitan counties. Instead of mosaicking these individual files into a new raster, the 

ArcGIS mosaic dataset functionality was used. A mosaic dataset is a dynamic mosaicking 



22 

 

 

and processing tool that allows for images to be mosaicked on the fly, rather than 

statically. The dataset itself only contains references to the individual files, and is 

therefore very disk-space efficient. In addition to applying various mosaicking functions, 

it is also possible to add other raster functions on the fly, for example NDVI, pan 

sharpening, or hillshade processing for elevation rasters. The major advantages of the 

mosaic dataset include: it is very fast to apply functions; it reduces the required storage 

space by avoiding duplication of data; and it is compatible with any ArcGIS raster tools. 

In this study, the mosaic dataset was used first to mosaic the NAIP images to achieve 

coverage of the entire study area. A clip function was applied to exclude areas outside of 

the seven county metropolitan area of interest.  

In order to provide additional classification parameters for both the LULC and the 

impervious surface classification, the near-infrared band of the NAIP imagery was also 

used to calculate texture values. Texture, when thought of as variance in specific 

localized parts of the data, has previously been seen as undesirable as it could make 

classification with per-pixel methods more difficult (Ryherd and Woodcock 1996; Gong 

and Howarth 1990; Herold et al. 2003; Zhang 1999). This study uses an object-based and 

a pixel-based decision tree classifier. Texture information is known to be valuable for use 

in object-based systems (Ryherd and Woodcock 1996), and due to the winnowing 

function of C5, it can also be used in this pixel-based approach. When texture is 

specifically used as an input for image classification, especially in segmentation-based 

processes, it can be beneficial. The texture layer was calculated as variance of a 3x3 pixel 

window (Yuan 2008). The equation used to calculate variance is as follows: 
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Unfortunately, because the functions that can be used with mosaic datasets are 

predefined, this step could not be performed directly with one function. Chaining of 

functions in a mosaic dataset allows for several functions to be applied to the data in a 

specified order. Therefore, variance was implemented by first applying a standard 

deviation function, and then squaring the result of that function in a separate function. 

These functions were applied with a 3 x 3 pixel window. 

3.1.2. Elevation Data 

In addition to aerial imagery, elevation data derived from LiDAR data were 

utilized.  The elevation data used in this study were acquired in 2011 and 2012 by private 

vendors in cooperation with the Minnesota Department of Natural Resources (MNDNR). 

These data are part of Minnesota’s statewide Elevation Mapping Project. The Twin Cities 

Metro Region dataset used here has three different point densities, depending on the area 

covered: Anoka, Carver, Hennepin, Ramsey, Scott, and Washington counties were 

sampled at 1.5 points per square meter, Dakota County at 2 points per square meter, and 

the cities of Minneapolis, St. Paul, and Maple Grove at 8 points per square meter. The 

MNDNR determined the vertical accuracy to be 5 cm, 10.8 cm, and 8.3 cm for the entire 

          
       

    

  

 

   
 

Equation 3.1: Variance calculation where     is the DN value of the pixel at i,j, and   is the number of pixels in 

the window. Adopted from (Yuan 2008). 
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metro block area, Dakota county, and Maple Grove, respectively. The data vendor 

produced a Digital Elevation Model (DEM) from these LiDAR point data based on the 

terrain-only points. Since the DEM files are provided at the same spatial resolution as the 

aerial imagery (1 m pixel size), no further processing was necessary. DEM rasters were 

mosaicked using a mosaic dataset and masked to the same extent as the aerial imagery 

using a mosaic dataset function. 

3.1.3. Road centerline data and Road Density 

As an additional dataset, the roads basemap was downloaded from the MNDNR 

Data Deli website, a statewide geospatial data portal. The purpose of the roads layer in 

this study was the production of a road density layer. The roads layer is a digitized map 

of roads, produced by the Minnesota Department of Transportation (MNDOT). Roads 

were digitized based on 7.5 minute USGS quadrangle topographic maps, and was 

updated in 2001. The horizontal accuracy of these roads is less than +/- 12 m. Roads are 

represented as centerlines, and detailed road class information is given.  

3.1.4. Additional supporting data 

In addition to the aforementioned data that were used directly in creating the 

classification maps, ancillary datasets were acquired to support the analysis and 

interpretation of the results. First, political boundary polygonal shapefiles were acquired 

for the county and municipality levels. County boundaries were retrieved from the 

MNGeo Geographic Data Clearinghouse online (http://www.mngeo.state.mn.us/). These 

boundaries were current as of June 2013. They are represented at a nominal scale of 
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1:24,000, and have a spatial accuracy of +/- 12 meters (40 feet). Similarly, boundaries of 

all municipalities were also retrieved from MNGeo. These boundaries have the same 

temporal and spatial characteristics as the county boundaries, and include cities, 

townships, and unorganized territories (CTUs). It should be noted that the township 

boundaries refer to political entities, which do not necessarily coincide with public land 

survey entities.  

In addition, the US Census Factfinder website (http://factfinder2.census.gov) was 

used to acquire population data for the area and the political entities represented in the 

previously mentioned boundary files. 

 

3.2. Land use and land cover classification 

The LULC classification was performed using Feature Analyst, an extension for 

ArcGIS that employs a proprietary, object-based, inductive learning classification 

algorithm. Before conducting the classification, the class scheme was determined. The 

extracted LULC classes include water (rivers, lakes, pools, and other open bodies of 

water), urban impervious infrastructure (roads, buildings), cropland (non-vegetated and 

vegetated fields and pasture), forested areas (deciduous, evergreen, and mixed forests), 

other vegetated areas (shrub, herbaceous plants, non-forested wetlands), and bare soil and 

rock (mining operations such as gravel pits, bedrock). An important note to be made is 

that the cropland class was classified in two steps: first, it was separated into the 

vegetated and non-vegetated parts of cropland, and then these two classes were merged to 

form one class. These steps were taken due to the bi-modal distribution of spectral values 
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within this class. While object-based classification methods should be better at coping 

with this issue than traditional pixel-based approaches, initial testing showed that this 

step increases classification accuracy for cropland class by avoiding its confusion with 

other LULC classes.  

Object-based classification in Feature Analyst makes use of the inductive learning 

approach. This means that the algorithm relies on an expert, or teacher, to identify 

examples of the desired outcome in the imagery, therefore providing a set of training data 

to the classification system. The algorithm then uses the information contained in these 

samples to build the model which is used to perform the classification. Training samples 

had to be determined manually based on a set of criteria for each class. The classifier not 

only relies on spectral information contained in each pixel, but also considers information 

derived from pixel groups. This is based on a process known as image segmentation, 

which divides the individual pixels into groups, representing objects. The segmentation is 

generally based on homogenous pixel values, edges, and shapes. After defining these 

objects, additional information from training data is used to determine which class an 

object belongs to. Spectral values, along with additional data such as the size and shape 

of the object, and its patterns, texture, and neighboring objects are used to assign class 

values. Accordingly, training samples had to represent all of these characteristics for each 

class. Training samples were created as polygons, and were drawn as close to the edge of 

each feature as possible to allow the sample to represent the shape and edge type of the 

object. For example, most buildings are relatively simple, rectangular features, while 

rivers or lakes have more complex, curved outlines which were indicated by the shape of 
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their training polygons. Care was also taken to include the full variety of each feature 

found in the study area. For example, small outbuildings, residential homes, and large 

commercial or industrial facilities were all included in the urban training set to 

appropriately represent the range of sizes and shapes of this object type within the study 

area.  

After creating the training polygon set, Feature Analyst presents several other 

settings that are used during the classification process to adjust the algorithm for the 

specific situation and improve its accuracy. First, input data are defined. Feature Analyst 

allows the use of multiple sets and types of data. Therefore, the LULC classification was 

based on the four band NAIP imagery from 2010, along with the LiDAR-derived 

elevation data and a texture layer. This is possible in Feature Analyst without previously 

stacking or otherwise altering the input layers; they are simply added to a list of inputs, 

and their type (i. e. optical, elevation, texture) is defined. Since Feature Analyst is 

capable of extracting individual features or perform complete, exhaustive and inclusive 

classifications of land cover features, there are several other options available. First, the 

“wall-to-wall” option was selected to force Feature Analyst to classify all areas of the 

imagery, rather than just extracting some features. Feature Analyst is also able to 

automatically stretch the image data, however, this options was disabled because the data 

were already stretched on-the-fly by the mosaic dataset functions. In order to make use of 

contextual information (i. e. analyze objects based on their neighboring objects), Feature 

Analyst uses a system called input representation. These representations are essentially 

local windows which let the classifier see more than one pixel at a time during 
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processing. This allows the classifier to build its model based on not only one pixel, but 

also its neighboring pixels. However, this approach increases the amount of processing 

time required to build and implement the model, and it still only takes into account a 

relatively small areas surrounding each pixel. Feature Analyst allows for more complex 

window patterns, which are known as foveal representations, as they are designed to 

mimic the way the human eye sees things (Opitz and Bain 1999). Figure 3.1 shows an 

example of these foveal representations used in Feature Analyst, the Manhattan pattern. 

Colored pixels are those that would be visible to the classifier while analyzing the center 

pixel, while uncolored pixels would be ignored. Compared to simple local windows, this 

approach allows the classifier to give more importance to pixels nearer to the pixel being 

processed, yet take into consideration information found in pixels further away as well. 

This approach should increase the amount of information available to the classifier, while 

at the same time not increasing the amount of data to be processed as much as the simple 

window approach. This approach makes the integration of contextual information in a 

classification model more efficient, and again is a testament to Tobler’s First Law of 

Geography, which states that near things are more related than distance things (Tobler 

1970). 
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3.3. Impervious surface classification 

3.3.1. Road Density 

Road density is often considered an important measure of urbanization (Schueler 

1994). Therefore, road density was computed as a raster surface to be used as one of the 

input parameters for the impervious surface decision tree modeler. Road density is 

generally defined as kilometers of road per 100 square kilometers of area, or miles of 

road per square miles of area. To make the data processing more manageable and to 

ensure that road density was considered locally rather than globally for the entire study 

area, it was calculated for an area of 1 square kilometer around each pixel. The road 

density calculation was conducted based on the road centerline layer. The density was 

calculated as meters of roads per square kilometer of area, and stored in a floating point 

raster with 1 m pixel size. The resulting data were used as input parameters for the 

decision tree model. 

 

Figure 3.1: Example of Feature Analyst foveal representation (Manhattan pattern). 

 



30 

 

 

3.3.2. Decision Tree Modeling 

Impervious surface was classified using a decision tree classifier. Specifically, the 

See5 software was used to generate the decision tree based on the C5 algorithm (Quinlan 

2013a). C5 is very similar to the C4.5 algorithm, with the addition of several features that 

have the potential to increase the classification accuracy (Quinlan 1993, 2013b).  

In general, C4.5 and C5 are expert-knowledge systems that require human inputs 

in the form of training data. The general purpose is to use the training data to identify to 

which class each case should belong, and then find an accurate model representation to 

assign a class to each case in the general population based. To achieve this, C4.5 and C5 

algorithms begin by dividing the cases based on their attributes and then identify a natural 

break-point in the attribute based on the class value. This approach produces a set of 

decision rules that can be combined to build a tree consisting of branches and leaves. 

Each branch represents a test that is performed on the data, and leads to either a further 

branch, or a leaf, where a decision is reached and a class assigned. These steps are 

performed automatically by the C5 algorithm. In addition, C5 can perform winnowing 

(decide to exclude attributes if they do not significantly contribute to the model) and 

pruning (removing branches that do not significantly contribute to the model) (Quinlan 

1993, 2013a, 2013b).  

In order to create training data for the decision tree model, a set of 300 randomly 

distributed points was created. A second set of points following the same principle was 

created to be used for accuracy assessment (Congalton 1988). Both sets were created at 

this time because C5 is able to conduct the accuracy assessment automatically after 
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generating the model based on a separate set of points. Therefore, the accuracy of the 

decision tree model could be evaluated immediately, and the algorithm configuration 

could be adjusted if necessary. For each set of points, the ArcGIS “Value to points” tool 

was used to write raster values to the attribute table for each point. The values of each 

band of the aerial imagery, the calculated texture layer, elevation raster, LULC raster, and 

road density map were included in this process. A field containing binary impervious 

surface data was added and populated by visually determining whether each point is 

located on impervious surface or not. The resulting tables were then adjusted in Microsoft 

Excel and exported for use in See5.  

In See5, the data were analyzed several times using different options to identify 

the settings that can deliver the best accuracy and efficiency. Specifically, the 

winnowing, pruning, and boosting options were evaluated. Winnowing prompts See5 to 

evaluate the impact of each attribute on the final model and decide whether it should be 

used or not. This aids in faster processing and makes the resulting decision tree smaller 

and less complex, often leading to better accuracy (Quinlan 1993; Foody et al. 2002). 

Pruning is also a method of making large decision trees smaller and less complex. When 

pruning is used, the tree is first produced normally, and then pruned. Pruning works by 

dividing the tree into several subtrees and estimating the likelihood of misclassification 

for each subtree. This estimation is then compared to the case where the subtree would 

simply be replaced by a leaf. If this change does not change the likelihood of 

misclassification by more than a certain threshold, the change is committed to the tree; 

otherwise, the subtree is left the way it is (Quinlan 1993). Pruning is useful to improve 
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trees that suffer from over fitting, a condition where the decision tree fits the training data 

almost perfectly, but is biased to these data, and therefore fails to accurately model the 

test or accuracy assessment data (Foody et al. 2002).  

Boosting is a method that is used only to increase the accuracy of decision trees, 

at the cost of making the model more complex and computationally expensive. Boosting 

works by creating more than one model to solve the same problem and using the results 

from each model to “vote” for a final result (Freund et al. 1999; Quinlan 2013b; Schapire 

1999). For example, if ten models are created to classify pixels, and six of them 

determine a pixel to be in class a, while four assign class b, the final result would be the 

majority vote, class a.  

The See5 output is a text file representing the decision tree in a pseudo-graphical 

way. This model was manually “translated” to be used in a Python script to carry out the 

actual data processing. The script makes use of the ArcGIS ArcPy module, which allows 

the use of ArcGIS tools within a Python script.  

The decision tree was implemented in the script by using a series of nested “Con” 

conditional statements from ArcGIS Spatial Analyst. The Con function evaluates a 

condition on a per-pixel basis, and can either output a constant, another raster value, or 

initiate another con statement nested within it. Some of the advantages of implementing 

this function in a Python script is that it is easily possible to save and adjust the script at 

any time, and that operations can be performed in memory rather than from the hard 

drive, therefore improving performance. The use of ArcPy also makes it possible to 

utilize ArcGIS mosaic datasets as inputs, rather than statically mosaicked raster files. 
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While it would be possible to process the decision tree model in Python without using 

ArcPy components, this would only work with fully mosaicked raster files. Therefore, by 

using mosaic datasets instead, an additional processing and data intensive step is cut from 

the workflow. After processing the decision tree based on the defined input layers, the 

result was written to disk as a 1-bit raster file. Impervious surface was classified using 

this newly developed decision tree model. Specifically, to build the model, the algorithm 

had access to the following attributes for each case (sample pixel): the four-band NAIP 

aerial imagery, the LIDAR DEM, the texture layer generated from the near infrared band 

of the aerial imagery, the road density layer, and the LULC raster map. While building 

the decision tree model, several advanced options were evaluated in terms of their ability 

to increase the classification accuracy of the model. These options are specifically 

winnowing, pruning, and boosting (see 3.3.2).  It was found that the use of winnowing 

did not make a difference in the model. See5 used the same attributes whether winnowing 

was used or not. Therefore, winnowing was not used for the final model. Further, the 

decision tree model created without pruning was already relatively small and had very 

good accuracy. Pruning the tree did not reduce its size enough to justify the loss in 

accuracy caused by the use of pruning. For the boosting options, a manageable amount of 

ten trials was evaluated. It was found that using boosting with ten models did not increase 

accuracy enough to justify the additional complexity and computational expense of the 

resulting model. In fact, while accuracy increased for the training dataset, boosting 

decreased the accuracy attained for the test dataset. Based on these evaluation results, the 

basic decision tree without advanced options was chosen as the final model. 
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The final decision tree model only includes bands one, three, and four from the aerial 

image. The decision tree consists of two branches and four leaves (see Figure 3.2). 

 

3.4. Accuracy Assessment 

An accuracy assessment was conducted on both the LULC and impervious 

surface maps independently. For each map, a set of 300 random sample points was 

created (Congalton 1988, 1991b). Reference values assumed to be “ground true” were 

assigned to these points based on visual inspection of the imagery. To determine the 

classified values for the LULC map, the ArcGIS “Value to points” tool was used to 

automatically write raster values from the LULC map to the sample point table.  For the 

impervious surface, this task was achieved by See5, which allows for the input of a 

separate set of accuracy assessment data and automatically evaluates the model against 

these data. 

 

Figure 3.2: Decision tree model. 
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Standard accuracy matrices were generated for both maps, and per-class user’s 

and producer’s accuracy, overall accuracy, and estimated Kappa accuracy were 

calculated based on the matrices (Cohen 1960; Bishop et al. 1975; Congalton 1991a; 

Congalton and Mead 1983). User’s accuracy is also referred to as error of commission, 

which describes classification errors where a pixel that belongs to one class was falsely 

assigned to a different class. In contrast, producer’s accuracy or error of omission is an 

error where a pixel that should have been assigned a certain class value, but was not 

included in that class (Campbell 2002). The Kappa statistics were estimated with an 

equation given by Cohen (1960) (see Equation 3.2). Cohen’s Kappa is also referred to as 

inter-observer agreement, and originated in Psychological studies (Cohen 1960). The 

Kappa coefficient was first proposed by Congalton and Mead (1983). estimates “the 

difference between the observed agreement between two maps […] and the agreement 

that might be attained solely by [chance]”  (Campbell 2002). 
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Equation 3.2: Cohen’s Kappa Estimation (Cohen 1960; Congalton and Mead 1983). 



36 

 

 

4. Results 

4.1. Land use and land cover classification 

4.1.1. LULC: Entire study area 

Land use and land cover distribution was first determined and analyzed for the 

entire study area without further subdividing into political entities. Table 4.1 shows the 

area of each LULC class by county as well as total values. The largest LULC class in the 

study area was other vegetation, which had a total area of 1136 sq. miles, or 38.2% of the 

entire study area. This was followed by forest (772 sq. mi, 26%), cropland (527 sq. mi, 

17.7%), urban (335 sq. mi, 11.3%), and water (170 sq. mi, 5.7%). The smallest class was 

bare soil, which only made up 34.6 sq. miles or 1.1% of the entire study area.  
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Table 4.1: LULC area by county. 

 

Sq. Mi.

% of total 

county Sq. Mi.

% of total 

county Sq. Mi.

% of total 

county Sq. Mi.

% of total 

county Sq. Mi.

% of total 

county Sq. Mi.

% of total 

county

Anoka 18.80 4.22% 157.95 35.46% 33.27 7.47% 186.55 41.88% 44.42 9.97% 4.43 0.99% 445.41

Carver 18.88 5.02% 60.28 16.04% 85.72 22.82% 190.16 50.62% 17.92 4.77% 2.72 0.72% 375.68

Dakota 21.56 3.68% 135.80 23.18% 166.80 28.47% 199.68 34.08% 55.44 9.46% 6.62 1.13% 585.90

Hennepin 47.86 7.89% 172.93 28.52% 44.42 7.33% 220.73 36.40% 111.89 18.45% 8.54 1.41% 606.37

Ramsey 14.28 8.41% 58.64 34.52% 2.58 1.52% 40.13 23.62% 53.33 31.39% 0.94 0.55% 169.90

Scott 14.31 3.89% 73.77 20.05% 120.01 32.62% 132.22 35.93% 21.47 5.84% 6.18 1.68% 367.96

Washington 33.89 8.01% 112.33 26.56% 74.52 17.62% 166.64 39.41% 30.35 7.18% 5.15 1.22% 422.89

TOTAL 169.58 771.70 527.32 1136.11 334.83 34.58 2974.11

MEAN 24.23 5.88% 110.24 26.33% 75.33 16.83% 162.30 37.42% 47.83 12.44% 4.94 1.10%
STANDARD 

DEVIATION 11.43 1.97% 43.67 6.66% 51.39 10.91% 56.09 7.59% 29.52 8.78% 2.35 0.36%

Bare Soil

County

TOTAL Sq. 

Mi.

Water Forest Cropland Other Veg Urban
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The final 1 m LULC classification map is shown in Figure 4.1. Because of the 

high spatial resolution of the classified map and the relatively large size of the study area, 

some of the more detailed analysis is lost when the map is viewed in its resampled form 

showing the entire study area. In order to better analyze the patterns of each LULC class, 

the data were aggregated into a regular, hexagonal grid (see Figure 4.2). Each hexagon 

has a side length of 1 km, giving it an area of approximately 1 sq. mile. The major roads 

shown are Interstate and Minnesota State highways, and are included for reference 

purposes. In order to identify spatial patterns of LULC classes, individual maps were 

created for each class. In addition, hot and cold spots and clustering of the features were 

evaluated using Getis-Ord G* and Moran’s I statistics, respectively. Getis-Ord G* 

generates a z-score that indicates hot spots (clustering of high values) and cold spots 

(clustering of low values). The equation is indicated in Appendix B. Getis-Ord G* 

outputs a map that further indicates areas of high or low concentration of each LULC 

type and aids in identifying patterns of spatial distribution (see Figure 4.3). As it is 

assumed that most of the LULC features are clustered in certain areas, the Moran’s I 

statistics was used to verify this assumption. The equation is given in Appendix A. 

Global Moran’s I statistics are given for each class in Figure 4.3. The Moran’s I statistics 

for all LULC classes have p-values of 0 and z-scores much larger than the critical value 

of 2.58 (for a confidence interval of 0.99). Therefore, it can be assumed that the LULC 

patterns are not randomly distributed. Further, all classes exhibit a positive Moran’s I 

index value, therefore indicating a tendency towards clustered distribution. 
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The urban LULC class exhibits a pattern of high density towards the center of the study 

area, and gradually decreasing density towards the outer edges. There are, however, 

several smaller, outlying clusters of urban cover found in the outer perimeter. These 

clusters likely show locations of smaller towns surrounding the major metropolitan area 

 

Figure 4.1: LULC map. 
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in the center of the study area. To some extent, urban cover also seems to follow the path 

of the major roads indicated in the map. Analysis of the Getis-Ord G* maps (Figure 4.3) 

confirms this distribution pattern of urban land cover. The outlying clusters of urban 

cover are not as clearly identified here, but the large hot spot in the center of the study 

area is very evident. The p-value and z-score (0 and 76.4, respectively) of the Moran’s I 

statistics indicate that the spatial distribution is not random, and the index value itself 

(0.8) points toward clustering of the features. 

Bare soil exhibits a less obvious pattern. There is relatively little bare soil found 

in the western and north-eastern part of the study area. Some small clusters are indicated 

just to the north-west, south, and south-west of the center. This distribution is more 

clearly visible in the hot spot map for bare soil. While the Moran’s I values for the bare 

soil class also show a non-random, clustered distribution, the index value itself is lower 

than that of all other classes (0.37). This indicates a less clustered distribution of this 

class, as evidenced in the maps. 

Other vegetation shows a pattern of relatively high density around the perimeter 

of the study area, and lower density towards the center of the study area. There is also an 

area of low density along the south-central edge of the study area. The distribution of this 

class is interesting when compared with the distribution of urban land cover. Relatively 

little vegetation was found in the area of the highest urban cover density. However, other 

urban areas, where there are likely more residential buildings found, still have some 

amount of other vegetation (i.e. vegetation in backyards, neighborhood parks, etc.). The 

hot spot map shows hot spots of other vegetation particularly in the western, north-
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eastern, eastern, and south-eastern parts of the study area. Cold spots are found in the 

center and south-central part, as was indicated earlier. Moran’s I values also confirm the 

clustered distribution of this class (Moran’s Index: 0.63). 

The spatial distribution of cropland is essentially opposite to that of other 

vegetation. While both have low density in the central, urbanized part of the study area, 

cropland is concentrated along the southern edge of the study area, where there was 

relatively little other vegetation found. There are additional clusters of cropland in the 

western and south-eastern corners of the study area. Small densities of cropland are found 

all along the outer perimeter of the study area, with the exception of the north-eastern 

part, where there is a high concentration of other vegetation. Moran’s I statistics indicate 

a highly clustered distribution of cropland (Moran’s Index: 0.79).  

The distribution of forest cover is interesting because a lot of forest is found 

within urbanized areas. While there is a relatively low concentration of forest in the most 

urbanized area in the center of the study area, the suburban areas surrounding this central 

location are identified as forest hot spots. Additionally, the northern part of the study area 

also has high concentrations of forest cover. Cold spots are mostly found along the 

western and southern perimeter of the study area, where there are high densities of 

cropland. Forest is also identified as clustered by the Moran’s I test. 

The distribution of the water class also follows a clustered pattern. The location of 

rivers and large lakes can be identified in the hexagonal map. A notable feature is Lake 

Minnetonka, in the western part of the study area. This very large lake has some of the 

highest concentrations of water in the study area. Compared to other LULC classes, water 
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appears to have lower concentrations in most locations throughout the study area. 

Moran’s I indicates that water is clustered (Moran’s Index: 0.5).  

In general, it was found that urban land cover is mostly concentrated in the central 

part of the study area. Water was found in some very dense pockets throughout the study 

area. The periphery of the study area was made up mostly by vegetated land covers 

(forest, cropland, other vegetation), which are clustered in specific parts of the periphery 

and are somewhat exclusive of each other. 
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Figure 4.2: LULC distribution over study area (in square miles). 

 

 



44 

 

 

 

 

Figure 4.3: LULC hot and cold spots and Moran's I statistics. 
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4.1.2. LULC: by county 

In addition to observing the distribution of LULC classes over the entire study 

area, similar comparisons were made for each county. The total area and percentage of 

each LULC class within each of the seven counties are shown in Table 4.1. As a 

supplement, Figure 4.4 represents the percentage values as a map. 

The county with the highest percentage of urban land cover was Ramsey County 

(53 sq. mi, 31.4% of county), and the county with the largest overall area of urban cover 

was Hennepin County (112 sq. mi, 18.5%). In comparison, the smallest percentage of 

urban cover was found in Carver County (18 sq. mi, 4.8%); this is also the county with 

the smallest overall urban cover area. The average area of urban cover among all counties 

was 47.8 sq. miles, with a standard deviation of 29.5 sq. miles.  

Bare soil had a slightly different distribution: the highest percentage was found in 

Scott County (1.68%, 6.18 sq. mi), while the highest total area was found in Hennepin 

County (8.54 sq. mi, 1.41%). The lowest percentage and lowest overall area was in 

Ramsey County (0.94 sq. mi, 0.55 sq. mi). The mean area of bare soil in all counties was 

4.94 sq. miles, and the standard deviation was 2.35 sq. miles.  

Other vegetation was most prevalent in Carver County by percentage (50.6%, 190 

sq. mi) and Hennepin County by total area (220.7 sq. mi, 36.4%). The smallest amount of 

other vegetation in overall and by percentage was found in Ramsey County (40.1 sq. mi, 

23.6%), which is also the smallest county. The mean area of other vegetation among all 

counties was 162.3 sq. miles, with a standard deviation of 56 sq. miles. 
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The most cropland cover was identified in Dakota County (166.8 sq. mi, 28.35%), 

and the highest percentage of cropland was in Scott County (32.6%, 120 sq. mi). Ramsey 

County again had the smallest total area and percentage, with only 2.58 sq. miles and 

1.5% of total area. On average, the cropland cover area was 75 sq. miles (Standard 

deviation: 51.4 sq. mi). 

Forest was the second-most prevalent class in the study area. The county with the 

largest total area of forest was Hennepin County (173 sq. mi, 25.5%), while the highest 

percentage of forest was in Anoka County (35.5%, 158 sq. mi), closely followed by 

Ramsey County (34.5%, 58.36 sq. mi). Ramsey was also the county with the smallest 

total forest area, while Carver County had the smallest percentage of forest cover (16%, 

60.3 sq. mi). The average area of forest among all counties was 110 sq. miles, with a 

standard deviation of 43.7 sq. miles. 

Hennepin was the county with the largest overall area of water cover (47.9 sq. mi, 

7.9%), while the highest percentage was found in Ramsey County (8.4%, 14.3 sq. mi). 

Ramsey County also had the smallest total area of water, closely followed by Scott 

County (14.31 sq. mi, 3.9%). The smallest percentage of water cover was in Dakota 

County (3.68%, 21.6 sq. mi). The mean area of water among the seven counties was 24.2 

sq. miles, with a standard deviation of 11.4 sq. miles. 
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Figure 4.4: LULC cover by county. Map annotation shows area of indicated LULC class for each 

county. 
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4.1.3. LULC: by city and township 

In addition to extracting impervious surface area for each county, the same 

procedure was conducted for each city and township within the TCMA. There are a total 

of 179 cities and townships in the seven county TCMA, many of which are rural 

townships with small population and large land area, or independent municipalities 

located within urbanized area, typically with small land area but dense population. The 

smallest entity is the City of Landfall (less than 0.1 sq. mi), and the largest entity the City 

of Minneapolis (58 sq. mi). The overall mean area of the 179 political entities analyzed 

here was 17 sq. miles with a standard deviation of 14.7 sq. miles. Complete data for all 

municipalities observed in the study area are found in Appendix C. 

The spatial patterns of LULC class distribution are very similar to those by county 

(see Figure 4.4 Figure 4.5), but more detailed due to the smaller size of the cities and 

townships compared to counties. Urban land cover is mostly concentrated in the central 

part of the study area, with some outlying pockets in the perimeter. Interestingly, when 

sorted by percentage of urban cover, the highest numbers are found in some of the 

smallest entities. For example, Hilltop and Osseo are both less than 1 sq. mile in total 

size, but have 55.8% and 49.5% urban cover, respectively. In fact, Hilltop is the only 

municipality with more than 50% urban land cover. In comparison, both Minneapolis and 

St. Paul have a total size of about 55 sq. miles, and urban cover of 40.6% and 41.7%, 

respectively. These two cities have the largest overall area of urban cover of all the 

municipalities in the study area (23.66 sq. mi and 23.36 sq. mi). This is followed by 

Eagan (10.18 sq. mi, 30.4%), Bloomington (9 sq. mi, 23.5%), and Plymouth (8.44 sq. mi, 
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23.8%, which are some of the most urbanized and commercial suburbs in the study area. 

The lower percentages of urban land cover are found in small municipalities, such as 

Douglas, with 0.5% (0.17 sq. mi), Miesville (0.02 sq. mi urban, 1.1%; 1.74 sq. mi total) 

and New Trier (0.003 sq. mi urban, 1.5%; 0.18 sq. mi total area. New Trier is also the 

municipality with the smallest overall amount of impervious surface, followed by 

Miesville. However, some other municipalities that have very small overall areas of 

urban cover have relatively high percentages. Examples of this are Willernie (0.03 sq. mi, 

22.9%) and Landfall (0.04 sq. mi, 44.7%). This appears to be mostly due to their location 

within the study area. Less urbanized municipalities are generally found on the perimeter 

of the area, while there are some very small, still independent municipalities in the center 

of the study area. The mean area of bare soil among all municipalities was 1.87 sq. miles, 

with a standard deviation of 3 sq. miles. The average percentage was 16.1%, with a 

standard deviation of 12.6%. 

Bare soil was most prevalent by percentage in smaller municipalities, such as 

Rockford (7.5%, 0.02 sq. mi bare soil; 0.25 sq. mi total) or Grey Cloud (4.65%, 0.14 sq. 

mi bare soil; 3.07 sq. mi total), which could be attributed to extraction activities or a 

higher amount of unpaved roads found in these areas. Savage was a larger municipality 

with relatively high percentage of bare soil (4.25%, 0.7 sq. mi bare soil; 16.42 sq. mi 

total), which is more likely caused by construction activities at the time of the image 

capture. When sorted by total area, bare soil was most prevalent in Maple Grove (1.32 sq. 

mi, 3.76%), followed by neighboring Shakopee (0.82 sq. mi total, 2.8%). The smallest 

total area of bare soil was in Landfall (0.00012 sq. mi, 0.08%), followed by Willernie 
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(0.00013 sq. mi, 0.13%), and Gem Lake (0.05 sq. mi, 1.1%). Most of the entities with 

small areas of bare soil have a very small total size (less than 1 sq. mi). The mean area of 

bare soil among the municipalities was much smaller than that for urban cover at only 

0.19 sq. miles (standard deviation: 0.21). The average percentage of bare soil was 1.31%, 

with a standard deviation of 1%. 

Other vegetation was the overall most prevalent class. This is likely due to large 

areas of conservation lands in the TCMA perimeter, along with many extensive parks in 

the central part of the study area. Among the municipalities, Hollywood had the highest 

percentage of other vegetation (63.2%, 22.57 sq. mi). There were a total of 24 

municipalities that had more than 50% of other vegetation cover. The lowest percentage 

of other vegetation was found in Landfall, which is relatively highly urbanized due to its 

central location (7.3%, 0.01 sq. mi). Landfall also had the lowest total area of other 

vegetation. Hilltop (0.03 sq. mi, 21.3%) and Willernie (0.02 sq. mi, 16%) follow in this 

ranking. Columbus was the municipality with the largest area of other vegetation cover 

(27 sq. mi, 56.8%), followed by East Bethel (23 sq. mi, 48.2%). On average, 

municipalities had 6.35 sq. miles of other vegetation, with the same standard deviation. 

The mean percentage was 35.1%, with a standard deviation of 11.8%. 

For the cropland class, the largest amount was found in Eureka Township both by 

percentage and total area (19.3sq. mi, 54%). Ranked by percentage, this was followed by 

Douglas Township (53.3%, 18.1 sq. mi), while Belle Plaine Township was second if 

ranked by total area (19 sq. mi, 43.3%). Douglas Township was ranked third by total 

area. Marshan Township was fourth both by percentage and total area (52.3%, 18 sq. mi). 
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These townships and cities are all located in the agriculturally dominated southern part of 

the TCMA. The smallest amount of cropland is in the small urban mobile home 

community of Landfall which had the lowest total area (0.0004 sq. mi, 0.46%), while it 

was third to last by percentage. The lowest percentage was found in Gem Lake (0.41%, 

0.0045 sq. mi). The municipalities with the lowest percentage of cropland tend to have 

small overall areas as well. The mean area of cropland was 2.95 sq. miles (standard 

deviation: 4.46 sq. mi), while the mean percentage was 13.45% (standard deviation: 

14.54%). 

Forest cover by total area was highest in some of the largest and most urbanized 

entities in the study area. Saint Paul had the largest area (17.9 sq. mi, 32%; 56 sq. mi 

total), followed by Minneapolis (17.5 sq. mi, 30%; 58.3 sq. mi total) and Bloomington 

(16.5 sq. mi, 42.9%; 38.3 sq. mi total). Therefore, some of the most densely urbanized 

communities also have large amounts of forest cover. Of the highest ranked entities by 

percentage, the majority had a small total area (less than 5 sq. miles): Birchwood Village 

was ranked first (0.25 sq. mi, 72.3%; 0.35 sq. mi total), followed by Willernie (0.08 sq. 

mi, 56%; 0.13 sq. mi total). The largest of the top ten cities and townships ranked by 

percentage of forest was Edina (7.42 sq. mi, 46.4%; 16 sq. mi total area). In contrast, the 

municipalities with the lowest percentage of forest cover were relatively diverse in terms 

of total size: The lowest percentage was found in Coates (5.5%, 0.08 sq. mi; 1.38 sq. mi 

total size), followed by Miesville (7.12%, 0.12 sq. mi; 1.74 sq. mi total). When ranked by 

area of forest cover rather than percentage, the lowest ranked entities also generally had 

small overall sizes (less than 1 sq. mi). The smallest total area of forest was found in 
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Landfall (0.02 sq. mi, 26.1%; 0.08 sq. mi total), followed by Hilltop (0.02 sq. mi, 17.4%; 

0.13 sq. mi total). Among all cities and townships, the mean area of forest cover was 4.3 

sq. miles, with the same standard deviation. The mean percentage of forest cover was 

27.4%, with a standard deviation of 11.3%. 

The largest total area of water was found in Orono (8.8 sq. mi, 34.6%), which was 

ranked fourth by percentage, followed by Shorewood (7.4 sq. mi, 57%), which was also 

second when ranked by percentage. These municipalities are all located around the 

largest lake in the area, Lake Minnetonka. Lakeland Shores was ranked first by 

percentage of water (0.41 sq. mi, 57.7%). In terms of lowest amount of water, the lowest 

ranked municipalities were Maple Plain and Hamburg, both with no water found at all. 

The smallest percentage of water for municipalities that had water present was Marine on 

Saint Croix (0.05%, 0.002 sq. mi). Ranked by total area of water, Rockford had the 

smallest area (0.001 sq. mi, 0.4%), followed by Loretto (0.001 sq. mi, 0.4%). The mean 

area of water in the cities and townships was 0.94 sq. miles, with a standard deviation of 

1.3 sq. miles, and 6.63%, with a standard deviation of 8.64%. 
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Figure 4.5: LULC cover by city or township. 
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4.2. Impervious surface classification 

4.2.1. Impervious surface: Entire study area 

The total impervious area found in the TCMA was 422 square miles (1,093 square 

kilometers), of the total area of 2,939 square miles (7,612 square kilometers). Therefore, 

approximately 14% of the area of the seven county TCMA is made up of impervious 

surface (Figure 4.6). The impervious surface area generally follows a pattern of highest 

density in the center of the study area, and decrease towards the perimeter of the study 

area. It further appears that impervious surface is concentrated along major transportation 

corridors. ISA also appears to closely follow the distribution of urban land cover, which it 

is mainly comprised of. The map in Figure 4.7 shows the amount of impervious surface 

based on a regular hexagonal grid. Each hexagon has a side length of 1 km, giving it an 

area of approximately 1 sq. mile. The hexagonal grid was used to show spatial patterns of 

impervious surface density based on a regular pattern, rather than political or other 

arbitrary entities. The major roads shown are Interstate and Minnesota State highways. In 

order to quantitatively confirm that the spatial distribution of impervious surface in the 

study area follows a pattern of clustering, spatial autocorrelation was calculated for these 

hexagons using the Global Moran’s I index (Equation used: see Appendix A; Complete 

results: see Figure 4.11). Moran’s I gives an indication of whether there is a spatial 

pattern found in the data, and whether the data are clustered, dispersed, or randomly 

arranged. The resulting Moran’s I index for these hexagons was 0.65, which indicates a 

tendency towards clustered spatial distribution of the analyzed features. The z-score of 62 

and a p-value of 0 indicate that the Moran’s I results are statistically significant at a 
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confidence interval of 99%. In order to confirm the assumption that the clustering of 

impervious surface is stronger in the central area of the study area, around the Twin 

Cities of Minneapolis and St. Paul, a hot spot map was also generated using the Getis-

Ord G* statistic (see Appendix B for equation). The resulting map (see Figure 4.11) 

confirms that there is a clustering of high impervious surface values towards the center of 

the study area and adjacent to major transportation corridors. Additionally, there are 

several cold spots towards the perimeter of the study area.  
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Figure 4.6: Impervious surface area map. 
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4.2.2. Impervious surface: by county 

Impervious surface area was also evaluated based on political entities. The total 

ISA (422 sq. miles) in the TCMA study area is divided among the seven counties as 

follows: 32 sq. mi (8% of TCMA total) are found in Carver County, 41 sq. mi (10%) in 

Figure 4.7: Impervious surface density (1 sq. mile hexagon area). 
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Ramsey County, 48 sq. mi (13%) in Scott County, 49 sq. mi (12%) in Washington 

County, 53 sq. mi (13%) in Anoka County, 57 sq. mi (20%) in Dakota County, and 116 

sq. mi (28%) in Hennepin County (see Figure 4.9). Therefore, in terms of the total area of 

impervious surface within each county, Hennepin County leads with more than twice the 

area of the second-ranked Dakota County, while Carver County has the smallest amount 

of impervious surface. This ranking coincides with the total area of each county, except 

for Carver County, which is larger than both Ramsey and Scott counties (see Figure 4.8). 

Complete results are given in Table 4.2.  

 
Figure 4.8: Total area and impervious percentage for each county. 
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County 
Pervious 
Sq Mile 

Impervious 
Sq Mile 

Total 
Sq Mile 

Pervious 
Percent 

Impervious 
Percent 

Impervious 
% of total 

Anoka 386.90 53.09 439.98 88% 12% 13% 

Carver 343.98 31.72 375.70 92% 8% 8% 

Dakota 499.14 83.63 582.77 86% 14% 20% 

Hennepin 487.59 116.02 603.61 81% 19% 28% 

Ramsey 120.15 40.90 161.05 75% 25% 10% 

Scott 320.23 47.59 367.83 87% 13% 11% 

Washington 359.31 48.74 408.05 88% 12% 12% 

Total: 2517.30 421.69 2938.99 n/a 100% 

Mean: 359.61 60.24 419.86 85% 15% 14% 
Standard 
Deviation: 116.94 27.23 137.58 5% 5% 6% 

 

Table 4.2: Impervious surface by county. 

Figure 4.9: Percentage of total TCMA impervious surface by county. 
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When comparing the percentage of ISA within each county, this ranking is 

slightly different. Carver County is still at the bottom of the ranking (8% of its total area 

is impervious). This is followed by Washington and Anoka counties (both 12%), Scott 

County (13%), Dakota County (14%), Hennepin County (19%), and Ramsey County with 

the highest percentage (25%). These numbers are illustrated in Figure 4.8. Therefore, 

Hennepin County has the largest absolute impervious surface area, and is also the largest 

county by total area. In comparison, Ramsey County has a larger percentage of 

impervious surface area than Hennepin County, but it is the smallest county by total area.  

Hennepin and Ramsey are the counties where the two major municipalities of the TCMA, 

Minneapolis and St. Paul (the Twin Cities), are located. Figure 4.10 gives an overview of 

the location of each county, and the amount of impervious surface found within it. 
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Figure 4.10: Impervious surface by county (percentage and total area). 



62 

 

 

 

 

4.2.3. Impervious surface: by city or township 

Similar to the LULC section, ISA was also analyzed at a city and township level. 

The complete results are listed in Appendix E. In general, most political entities that are 

relatively small in size also had relatively small impervious surface areas. Some of the 

very small cities, however, had relatively large areas of impervious surface. For example, 

 

Figure 4.11: Hotspot map of impervious surface hexagons. 
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Hilltop had a total area of 0.13 sq. mi, of which 0.06 sq. mi were impervious (50%). In 

2010, Hilltop had a population of 744 (US Census 2013). Another small city is Osseo, 

which has a total area of 0.72 sq. miles, of which 48% were impervious surface. Osseo’s 

2010 population was 2,430 (US Census 2013). This is not typical however, as the 

majority of these small cities have small areas of impervious surface, and low population 

numbers. In general, most of the small cities (less than 1 to 2 sq. mi) also have a small 

percentage of impervious surface area (less than the mean of 18%).  

The map in Figure 4.12 indicates the percentage of impervious surface area for 

each city and township within the seven county TCMA. It is evident that municipalities 

in the center of the study area, close to the Twin Cities of Minneapolis and St. Paul, 

generally have greater percentage of impervious surface compared to those municipalities 

on the outer perimeter of the study area. This pattern can also be observed in Figure 4.7. 

An additional interesting pattern is that many small municipalities in the outer, more rural 

perimeter of the study area also have relatively high impervious surface ratios. This could 

be an indication that these municipalities act as small, regional centers for the 

surrounding, less densely populated area.   
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Figure 4.12: Percentage of impervious surface by city or township. 
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4.3. Accuracy Assessment 

4.3.1. Land Use and Land Cover Accuracy 

Accuracy of the LULC map was estimated based on a set of 300 randomly 

distributed sample points. Each point was assigned a reference value. These reference 

class values were cross-tabulated with the classified value at the point location, and 

recorded in a standard accuracy matrix (see Table 4.3). The overall classification 

accuracy for the LULC map was 74%. Kappa accuracy was estimated to be 66%. The 

highest user’s accuracy (error of commission) was achieved for the water class (100%), 

and the lowest for the other vegetation class (63%). Water also had the highest producer’s 

accuracy (error of omission; 89%), whereas cropland had the lowest producer’s accuracy 

at 57%. 

The greatest amount of confusion appears to be between relatively similar classes, 

such as cropland and other vegetation, and forest and other vegetation. Urban and water 

were classified with the highest accuracy, likely because both of these classes are very 

unique in terms of their spectral attributes and shape and texture factors. In comparison, 

cropland and other vegetation have relatively low classification accuracy. This is likely 

due to the fact that these classes are very similar both spectrally, but also in their shape 

and texture.  
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4.3.2. Impervious Surface Accuracy 

The accuracy of the impervious surface classification was based on the reference 

matrix generated by See5 when the decision tree model was built. An independent set of 

300 random points was provided to See5 for accuracy assessment purposes (test cases). 

Based on the matrix, overall, per class user’s and producer’s accuracy and the Kappa 

coefficient were calculated. The overall classification accuracy was 95%. User’s and 

producer’s accuracy for the pervious class were both above 95%, while they were only 

90% and 76% respectively for impervious surface. The Kappa coefficient was estimated 

to be 79%. The complete accuracy matrix is shown in Table 4.4. 
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Reference Data 

  Water Forest Cropland 
Other 
Veg. Urban 

Bare 
Soil 

Grand 
Total 

User's 
(Commission) 

Water 16           16 100% 

Forest 1 56 4 11 2   74 76% 

Cropland   1 40 8 2   51 78% 

Other veg.   15 26 72 1 1 115 63% 

Urban 1 1   2 33   37 89% 

Bare Soil         2 5 7 71% 

Grand 
Total 18 73 70 93 40 6 300   

Producer's 
(Omission) 89% 77% 57% 77% 83% 83% 

 
  

        
  

Overall 
Accuracy 74% 

      
  

Kappa 
Accuracy 66%               

 

Table 4.3: Accuracy matrix for LULC map. 
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In general, these values can be considered very good. The impervious surface 

model appears to have a slight tendency to over-estimate the amount of impervious 

surface. However, this seems to have a relatively low impact on the overall accuracy. The 

relatively high omission error for impervious surface is likely due to the timing of the 

image acquisition for this study: NAIP images are meant for agricultural crop inventories 

and are therefore flown during the peak growing season. It is common for tree canopies 

to cover parts of ISA features such as roads and buildings. The high spatial resolution of 

the data used here could enhance the impact of this. 
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Reference Data 

  Pervious Impervious Total User's (Commission) 

Pervious 250 11 261 95.79% 

Impervious 4 35 39 89.74% 

Total 254 46 300   

Producer's (Omission) 98.43% 76.09% 
 

  

  
   

  

Overall Accuracy: 95.00% 
  

  

Kappa: 79.46%       
 

Table 4.4: Accuracy matrix for impervious surface classification. 
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5. Discussion 

5.1. LULC and ISA Classification 

5.1.1. LULC and ISA Distribution and Patterns 

Minneapolis and St. Paul, the “Twin Cities”, are the core cities of the seven 

county metropolitan area. Therefore, these two cities comprise the high-density urban 

core of the study area. Centrally located, their suburbs are spread around these core cities 

relatively evenly. Notable suburbs are those to the south of the core of the study area, 

particularly Bloomington, which is considered a third major city to some extent, rather 

than a suburb of the Twin Cities. In general, the suburbs surrounding Bloomington are 

also some of the most densely urbanized areas in the TCMA.  

Settlement in the Twin cities first began in this area, at Fort Snelling, which is 

located between Bloomington and St. Paul. Major corporate and retail as well as 

transportation infrastructures, such as the international airport, are located in this part of 

the study area. This pattern is reflected in both the ISA classification and the urban cover 

found in the LULC classification. The pattern of impervious surface is similar to the 

distribution of urban and bare soil land cover. Urban surface is the main constituent of 

ISA, with compacted soil and other components making up much smaller portions. 

Therefore, the close relationship between ISA and urban cover is to be expected. When 

adding the 12.4% urban cover and 1.1% bare soil found in the study area, the resulting 

percentage of 13.5% comes very close to the 14% of ISA identified. This close agreement 

of the two classifiers is an indicator of the quality of the ISA classification. Figure 5.1 

shows the population density based on 2010 Census data at the block level for the entire 
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study area. This map is a clear reflection of the patterns of urban LULC and ISA seen in 

previous maps. High population densities, like urban land cover and ISA, are 

concentrated in the center of the study area, along a corridor of major highways to the 

northwest of the core Twin Cities, and in the suburbs to the south. This pattern agrees 

with findings by Baerwald (1978), who predicted a shift from  Central Business District 

(CBD) oriented cities to Suburban Freeway Corridor (SFC) oriented cities. His study 

used the southern suburbs of the TCMA as a model for this concept, which is confirmed 

by both the urban and ISA patterns found here. The perimeter, particularly the 

agriculturally dominated southern and western parts of the study area, is much less 

densely populated.  
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The TCMA has an extensive system of public parks and trails, especially 

surrounding the numerous lakes. This partially explains why some of the most urbanized 

cities in the study area also have large areas of forest: many of these parks are located 

centrally and are dominated by woody vegetation. Temperate deciduous forests comprise 

much of the native vegetation type in most of the study area. However, during periods of 

 

Figure 5.1: Population Density in TCMA in 2010. 
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intense urbanization and agricultural development, much of this native vegetation was 

lost. Many of the current parks, however, were established early, and were therefore able 

to preserve a somewhat natural state.  

Large parts of the other vegetation class are likely green spaces in public and 

private places, such as yards and lawns, sports fields and public parks, but also natural 

lands such as grassland, wetlands, and conservation lands. The two major conservation 

programs in Minnesota are the Conservation Reserve Program (CRP), which puts 

agricultural land out of production and plants native vegetation, and Reinvest in 

Minnesota Reserve Program (RIM), which works similarly to CRP, but focuses on 

riparian lands and wetlands. 

 

 

 

Figure 5.2: Conservation lands by county (UMN 2013). 
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Overall, the county with the greatest acreage of conservation lands is Carver 

County, followed by Scott County. This ranking coincides with the percentage of other 

vegetation land in the LULC classification. The majority of CRP and RIM lands should 

be captured by the other vegetation class, while a small part of the RIM land may also 

contain forest.  

The dominance of agricultural land use in the southern and western parts of the 

study area generally falls in line with a pattern observed on a state-wide scale: 

Agriculture is one of the major land uses to the south and west of the Twin Cities in 

Minnesota. These areas are actually some of the most productive growing regions in the 

US. Throughout the northeast of the state, land use shifts towards forestry, beginning at 

the Twin Cities. The beginnings of this pattern can be observed in the LULC distribution 

found here, which shows that a large part of the land in the north-central part of the study 

area is covered by forest. The TCMA lies at the southern extent of Minnesota’s vast 

expanse of aspen. 

Even though this is not evident when comparing this classification with previous 

studies, as discussed in more detail in 5.2, the TCMA has been growing relatively 

steadily in terms of population and urban infrastructure. This trend can be observed, for 

example, in population figures derived from Census datasets. However, the study area 

has large amounts of other LULC cover types. Much more water is found in the TCMA 

than many other urban areas due to the large number of lakes, resulting from the last 

glacsine episode. Further, the TCMA has many nature parks, even close to the urban core 

of the metropolitan area. Agriculture is also very strong in Minnesota in general, and also 
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in parts of the TCMA. These are things local decision makers have to consider when 

moving forward with urban planning initiatives. The TCMA has historically been less 

fond of automobile transportation than other metro areas. This is in part due to the fact 

that many residents are able to live close to work and activities they pursue outside of 

work. Urban planning in the TCMA moves towards supporting more public transit again 

to support this notion. A light rail line is already in place, with many others being 

planned. The historic St. Paul Union Depot has recently been remodeled and will be used 

for TCMA transit and long distance rail travel in the future. However, as was evident in 

the LULC and ISA maps, much of the urban development in the area currently clusters 

around major automotive transportation routes. While the TCMA is the economic and 

population center of Minnesota, planners and decision makers have to keep in mind that 

agriculture is considered the backbone of Minnesota’s economy. Even in the highly 

urbanized TCMA, agriculture still plays a somewhat important role and should not be 

neglected.  

5.1.2. LULC and ISA Methodology 

As is shown in the accuracy assessment performed for both classification parts of 

this study (Chapter 4.3), the ISA extraction methodology delivers better results than the 

LULC method. This is likely due to several factors. Both techniques used similar input 

data, and samples were collected by the same technique. However, the ISA classification 

only included two classes, while the LULC classification extracted six classes. Often, 

more classes in a classification model results in more chances for confusion between 

classes and therefore a higher degree of misclassification. In addition, while Feature 
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Analyst appears to make use of advanced techniques, much of its processing happens 

behind the scenes, and cannot be influences by the analyst. In comparison, the methods 

See5 uses to reach its resulting model is published in the literature and well described, 

and the resulting model can be read and interpreted by humans very easily. Feature 

Analyst gives no insight into its classification algorithm. This can lead to situations where 

the software possibly chooses a model that is not necessarily suitable for the data being 

evaluated. Another issue could be that specific training samples cause issues, which 

would go unnoticed in Feature Analyst, but could be noticed when using See5. Therefore, 

some confusion could likely be avoided by using See5 because its process is more 

transparent and the analyst has more influence over the software. Therefore, it is easier to 

fix errors in the classification. Finally, it is also possible that the relatively higher 

complexity of Feature Analyst models could introduce additional error compared to See5. 

5.2. Previous LULC Classification Study 

The most recent previous LULC classification in the TCMA was conducted with 

2006 Landsat imagery with 30 meter spatial resolution by Yuan (2009). The resulting 

map can be found in Figure 5.3. The 2006 study used a slightly different classification 

scheme, which was adopted to match the one used here as closely as possible, and 

summarized, by county in Appendix D. In general, the distribution of LULC classes 

across the study area is similar in both studies. However, there are some differences in 

the area statistics. Urban cover was estimated higher in the 2006 map, which could be 

due to several reasons. It is possible that the use of lower spatial resolution Landsat TM 

imagery slightly overestimated urban land cover. The TCMA has a high amount of urban 
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and suburban land cover, which includes many features that are smaller than the 30 meter 

Landsat TM pixels. Therefore, in this situation, the mixed-pixel problem exhibited in all 

remote sensing data likely has a higher impact in Landsat images than in the 1 meter 

aerial images. Further, due to differences in the classification scheme, it is possible that 

some features that were not considered urban in this study were included in Yuan’s urban 

class. This could apply to suburban areas, where there is a mixture of urban features and 

vegetated areas. It is also possible that some areas that were included in bare soil here 

could be considered urban in Yuan’s 2006 study.  
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There was also some discrepancy in the vegetation classes. For example, this 

study estimated the forest cover at about twice as large as the 2006 study, while cropland 

was estimated at less than half the area shown in Yuan’s 2006 classification. This study 

further estimated the amount of other vegetation that is much higher than Yuan. These 

discrepancies could be due to the mixed pixel problem discussed earlier. Many large, 

 

Figure 5.3: 2006 LULC Classification Map (Yuan 2009). 
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contiguous areas of vegetation, like forest and cropland, are better captured by the lower 

spatial resolution Landsat TM imagery. The additional spectral information in the 

Landsat imagery further enhances the classification of these vegetation types. At the 

same time, however, some vegetation in suburban areas, where there is a mixture of 

LULC classes of relatively small patch sizes, may be underestimated in the 2006 

classification.  

Water was the only class that was nearly identical in both classifications. This is 

likely due to the very unique spectral signature of water compared to all other LULC 

classes in the study area, and the large number of relatively large bodies of water.  

Due to the assumed discrepancies caused by differences in classification methods, 

it is not possible to assess the changes in LULC that have occurred in the study area 

between 2006 and 2010. While the TCMA is growing relatively fast and LULC changes 

can happen relatively quickly, this time period is still relatively short. It may be 

appropriate to conduct another study similar to this one in the near future using available 

aerial imagery to be able to assess and model LULC change in the TCMA. 

In general, Landsat TM imagery has advantages and disadvantages compared to 

the aerial imagery used in this study. Both types of imagery are available free of charge, 

however, that is not always the case with aerial imagery. Landsat imagery is typically 

acquired with much higher temporal frequency than aerial imagery. Due to its lower 

spatial resolution, it has smaller file sizes for any given study area, but also gives less 

spatial detail. At the same time, Landsat TM imagery has a higher spectral resolution, as 

it includes several infrared bands, rather than just one as was the case for the aerial 
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images used here. These characteristics make Landsat images suitable for studies that 

involve change detection or multi-temporal classifications, studies of regional or larger 

areas of interest, or study areas that are not very diverse in terms of the distribution of 

LULC classes. In the case of the TCMA LULC classifications presented here, it appears 

that both the aerial imagery used in this study and the Landsat TM imagery used in 

Yuan’s 2006 classification, have advantages and disadvantages. When the main focus of 

a study is a relatively small area, or urban and suburban areas, the use of aerial imagery 

may be the better choice, while Landsat TM could be more suitable when the main 

interest lies in the classification of vegetative LULC. Additionally, this comparison also 

shows that it could be beneficial to conduct classification with both types of imagery, and 

merge their results, in order to achieve a better overall classification. 

 

5.3. Data Visualization 

Due to the high spatial resolution of the data used here, resulting maps are 

somewhat cluttered and hard to interpret. This makes them less usable. In order to present 

a map that is easier to interpret, results were aggregated into hexagonal grid maps as 

shown in Chapter 4.1.1. Additionally, an interactive web mapping application was 

developed to present the results to users. This mapping application was based on ArcGIS 

Server Flex API, with the data being served by ArcGIS Server. The application can be 

used in web browser that supports Adobe Flash.  

The web mapping application allows user to view the data at various scales, 

dependent on their area of interest. It is also possible to extract area statistics for specific 
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areas defined by the user. Therefore, rather than using units of area like counties and 

cities and townships, as was done in this study to illustrate the results, users would be 

able to use the results of this analysis for their own area of interest. This mapping 

application was developed as a prototype to demonstrate the possibilities involved with 

interactive web maps. While the prototype allows users to explore and analyze the data 

generated here, it was not yet made public. This was due to constraints in the setup of 

Minnesota State University’s ArcGIS Server system. 
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6. Conclusions 

6.1. Summary of methods and results 

Two sets of data were produced in this study: a general LULC map and an 

impervious surface map. These maps were summarized to reflect LULC and impervious 

surface statistics for the entire study area, and for each county and municipality within 

the study area. A combination of aerial imagery, LiDAR-derived elevation data, road 

centerline data, and other post-processing products were used to generate these maps. 

LULC maps were produced using Feature Analyst, an object-based classification tool. 

The impervious surface maps were produced with a decision tree model generated with 

the See5 software. Finally, an accuracy assessment was conducted for both maps using 

300 simple random points for each map. Reference values obtained by manual 

assignment were tabulated in an accuracy matrix.  

The LULC map indicated that, across the entire study area, the most prevalent 

LULC class was other vegetation, making up about 38.2% or 1136.1 sq. miles. This was 

followed by forest, which comprised 26% (771.7 sq. miles) of the entire area. The third-

largest class was cropland, with 527.3 sq. miles or 17.7%, urban was ranked fourth with 

11.3% or 334.8 sq. miles, and water ranked fifth at 170 sq. miles or 5.7%. The smallest 

class was bare soil, with 34.6 sq. miles or 1.16%. The spatial distribution of these classes 

indicates that the most urbanized area is the central part of the study area, while there are 

also some small urban areas in the perimeter of the study area. Forest was found to be 

most dense in the south-western and northern parts of the study area, and surrounding the 
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central urbanized area. Vegetated LULC classes (forest, cropland, other vegetation) were 

mostly found in the perimeter of the study area. Further, other vegetation was 

concentrated in the western and eastern parts, while forest was mostly found in the north 

and south-west, and cropland was mostly identified along the southern edge of the study 

area. Water and bare soil were generally clustered together in smaller areas all throughout 

the study area. 

It was found that about 14% of the entire study area, or about 421.7 sq. miles, are 

impervious surface. The spatial distribution of impervious surface generally follows the 

expected pattern of higher concentration in the most urbanized, central part of the study 

area, with some small, outlying pockets, and lower concentrations of impervious surface 

in the perimeter of the study area. When considering that impervious surface is mostly 

made up of urban land cover and some bare soil, the impervious surface numbers confirm 

the amount of urban and bare soil found in the LULC maps.  

The overall accuracy of the LULC map was 74%, with the best per-class accuracy 

found in water and urban, while cropland and other vegetation were classified the least 

accurate. Impervious surface was classified with 95% overall accuracy. 
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6.2. Limitations of this study and implications for future studies 

Any study that relies on remotely sensed data has inherent limitations regarding 

the accuracy of the final product. This is dependent on the characteristics and quality of 

the data used. In this study, two separate sets of data were produced. The LULC map had 

lower overall accuracy compared to the impervious surface map. This may be in part due 

to the higher number of classes, and likelihood of confusion between similar classes, and 

in part due to the methodology used. In the future, it may be worthwhile to assess how 

well the decision tree technique would be able to classify the general LULC classes. 

When this study was conducted, the decision on which classifier to use for which part of 

the study was based largely on literature describing experiences with the classifiers and 

review of descriptions of the individual products. This review led to the conclusion that 

Feature Analyst would be a good choice for classification of LULC features. Further, 

decision trees tend to get very complex when they are used with many classes, which is 

why the binary ISA map was conducted with this classifier. Additionally, the aerial 

imagery used for this study is part of the National Agriculture Inventory Program, and 

although provided free of charge, the images for this program are always recorded during 

the agricultural growing season. It is likely that the use of “leaf off” imagery would have 

benefited this study because it could increase the accuracy of specifically urban and 

impervious surface classification. 

A further limitation of this study was that neither the training data nor the 

accuracy samples could be collected in the field. While the highest possible diligence was 
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used in correctly identifying these samples, there is still some amount of uncertainty 

introduced.  

In terms of change analysis of LULC, while there are some similarities between 

the classification scheme used here for LULC and that used in previous studies conducted 

by other researchers, some classes are defined differently, making a direct change 

analysis of LULC difficult. In this case, using class definitions more similar to previous 

studies would have likely resulted in lower classification accuracy due to the technique 

used. Further, the general differences in technique used and particularly spatial resolution 

of the imagery used would have led to major differences in the results and increased the 

difficulty of LULC change analysis. The spatial resolution of the data produced in this 

study is higher than that found for any previous studies in the TCMA. In fact, imagery at 

this resolution covering large study areas has only recently become available. This type 

of data presents an advantage when estimating the amoung of ISA, but it appears difficult 

to utilize the LULC data from this study for change analysis with previous studies, or 

even to produce similar datasets for earlier years. It should be noted that, even though 

using high spatial resolution data for LULC and ISA studies for past years is not possible 

because of lacking data, future studies should be able to make use of similar imagery and 

then be able to compare their results to those obtained here. 

Finally, even though computational resources and speed are ever increasing, 

handling the large amounts of data needed for this study was a challenging task. 

Particularly the use of multiple input datasets of high spatial resolution required much 

preprocessing. The actual LULC classification process in Feature Analyst took up to one 
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week per attempt. Further, the visualization of these high resolution datasets in easy-to-

read maps is challenging. Maps displaying the full dataset for the entire study area are 

difficult to read and interpret. An attempt was made to improve visualization by using the 

hexagonal aggregation of results as shown in Chapter 4.1.1. Further, the presentation of 

the data in an interactive web map allows for better visualization of the data depending 

on the user’s needs. However, these methods are not as clear cut as it would be to use the 

unaltered resulting map from the analysis.  
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Appendices 

Appendix A. Global Moran’s I Equation 

 

 

Adopted from ESRI (2013b).  
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Appendix B. Getis-Ord G* Equation 

 

 

Adopted from ESRI (2013a).
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Appendix C. LULC by city or township 

City or Township 

Water Forest Cropland Other Vegetation Urban Bare Soil 

TOTAL 
Sq. Mi. 

Sq. 
Mi. 

% of 
total 
mun. 

Sq. 
Mi. 

% of 
total 
mun. 

Sq. 
Mi. 

% of 
total 
mun. Sq. Mi. 

% of 
total 
mun. 

Sq. 
Mi. 

% of 
total 
mun. 

Sq. 
Mi. 

% of 
total 
mun. 

Afton 1.24 4.71% 4.89 18.60% 5.63 21.40% 12.99 49.38% 1.33 5.06% 0.22 0.85% 26.31 

Andover 0.65 1.86% 14.51 41.65% 3.34 9.59% 12.63 36.26% 3.29 9.44% 0.42 1.21% 34.83 

Anoka 0.40 5.67% 2.30 32.40% 0.56 7.85% 1.93 27.17% 1.68 23.62% 0.23 3.29% 7.11 

Apple Valley 0.79 4.51% 6.18 35.13% 0.92 5.21% 4.24 24.10% 5.03 28.55% 0.44 2.50% 17.60 

Arden Hills 0.92 9.53% 2.63 27.21% 0.31 3.25% 3.72 38.50% 1.98 20.50% 0.10 1.01% 9.66 

Bayport 0.16 8.66% 0.21 11.70% 0.38 20.98% 0.71 39.19% 0.29 15.82% 0.07 3.65% 1.81 

Baytown 1.03 11.26% 1.67 18.35% 1.45 15.92% 4.55 49.82% 0.32 3.48% 0.11 1.18% 9.12 

Belle Plaine 0.62 1.42% 3.91 8.92% 18.96 43.26% 17.97 41.00% 1.93 4.40% 0.44 1.00% 43.83 

Benton 0.63 1.86% 3.78 11.12% 10.16 29.92% 18.37 54.11% 0.79 2.34% 0.22 0.65% 33.95 

Bethel 0.04 4.23% 0.39 37.78% 0.05 5.26% 0.46 43.90% 0.07 7.06% 0.02 1.77% 1.04 

Birchwood Village 0.00 1.27% 0.25 72.26% 0.00 0.89% 0.04 12.90% 0.04 12.21% 0.00 0.48% 0.35 

Blaine 1.09 3.20% 12.13 35.65% 1.16 3.42% 12.12 35.64% 7.28 21.41% 0.23 0.68% 34.02 

Blakely 0.67 2.51% 4.34 16.16% 5.93 22.08% 15.15 56.38% 0.33 1.22% 0.44 1.65% 26.87 

Bloomington 1.63 4.25% 16.45 42.91% 2.12 5.52% 8.69 22.66% 9.02 23.51% 0.44 1.14% 38.34 

Brooklyn Center 0.39 4.70% 2.66 31.75% 0.43 5.13% 2.17 25.87% 2.50 29.87% 0.22 2.68% 8.38 

Brooklyn Park 0.71 2.66% 7.82 29.39% 3.12 11.73% 7.71 28.96% 6.49 24.39% 0.76 2.86% 26.61 

Burnsville 2.14 7.97% 10.54 39.18% 1.45 5.38% 5.64 20.98% 6.35 23.63% 0.77 2.85% 26.89 

Camden 0.44 1.29% 5.68 16.53% 10.83 31.51% 16.54 48.14% 0.73 2.12% 0.14 0.41% 34.36 

Carver 0.44 10.11% 0.90 20.82% 0.53 12.35% 2.09 48.25% 0.34 7.86% 0.03 0.62% 4.32 

Castle Rock 0.41 1.15% 7.36 20.84% 8.64 24.46% 18.08 51.18% 0.53 1.50% 0.31 0.88% 35.33 

Cedar Lake 1.37 3.78% 7.95 21.97% 15.69 43.32% 9.95 27.49% 0.75 2.06% 0.50 1.38% 36.21 

Centerville 0.32 13.01% 0.79 32.52% 0.08 3.19% 0.74 30.51% 0.50 20.53% 0.01 0.25% 2.43 

Champlin 0.59 6.78% 3.52 40.16% 0.74 8.49% 2.11 24.08% 1.64 18.75% 0.15 1.75% 8.75 

Chanhassen 2.37 10.33% 4.96 21.66% 0.93 4.06% 10.75 46.91% 3.64 15.90% 0.26 1.13% 22.91 
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Chaska 0.81 4.59% 3.64 20.63% 1.86 10.52% 8.53 48.29% 2.57 14.56% 0.25 1.41% 17.66 

Circle Pines 0.17 8.76% 0.76 39.19% 0.02 1.20% 0.59 30.33% 0.39 19.97% 0.01 0.55% 1.94 

Coates 0.00 0.10% 0.08 5.50% 0.54 39.00% 0.59 42.83% 0.17 12.04% 0.01 0.54% 1.38 

Cologne 0.16 8.86% 0.18 9.79% 0.72 40.15% 0.52 28.85% 0.19 10.88% 0.03 1.46% 1.79 

Columbia Heights 0.12 3.34% 1.39 39.89% 0.10 2.91% 0.65 18.61% 1.20 34.23% 0.04 1.03% 3.50 

Columbus 1.77 3.72% 14.28 30.00% 1.52 3.19% 27.05 56.80% 2.83 5.95% 0.17 0.35% 47.62 

Coon Rapids 0.99 4.25% 8.93 38.37% 1.09 4.66% 6.41 27.52% 5.43 23.32% 0.44 1.88% 23.29 

Corcoran 0.20 0.56% 5.90 16.36% 6.73 18.67% 21.81 60.50% 1.02 2.82% 0.39 1.08% 36.05 

Cottage Grove 4.12 10.99% 10.08 26.88% 6.24 16.64% 12.34 32.93% 4.12 11.00% 0.59 1.57% 37.49 

Credit River 0.56 2.36% 6.35 26.61% 7.76 32.53% 8.09 33.89% 0.77 3.22% 0.33 1.40% 23.86 

Crystal 0.12 2.08% 2.10 35.84% 0.44 7.52% 1.66 28.31% 1.41 24.10% 0.13 2.15% 5.85 

Dahlgren 0.56 1.58% 4.99 14.03% 11.99 33.67% 16.08 45.18% 1.64 4.62% 0.33 0.93% 35.60 

Dayton 1.65 6.56% 6.15 24.43% 6.20 24.62% 10.03 39.87% 0.83 3.29% 0.31 1.24% 25.16 

Deephaven 0.03 1.17% 0.98 41.36% 0.02 0.67% 0.93 39.07% 0.41 17.10% 0.01 0.63% 2.37 

Dellwood 0.11 3.72% 1.10 38.88% 0.02 0.78% 1.20 42.44% 0.39 13.66% 0.01 0.52% 2.82 

Denmark 1.96 6.48% 3.80 12.59% 7.61 25.19% 15.91 52.66% 0.59 1.97% 0.33 1.10% 30.21 

Douglas 0.11 0.31% 6.40 18.81% 18.12 53.25% 8.72 25.63% 0.17 0.50% 0.51 1.50% 34.02 

Eagan 1.47 4.39% 11.94 35.68% 0.69 2.07% 8.92 26.65% 10.18 30.43% 0.26 0.78% 33.47 

East Bethel 2.35 4.92% 16.27 34.13% 3.00 6.30% 22.97 48.18% 2.71 5.68% 0.38 0.79% 47.68 

Eden Prairie 2.71 7.70% 11.50 32.71% 1.45 4.13% 11.45 32.56% 7.55 21.48% 0.50 1.42% 35.16 

Edina 0.48 2.98% 7.42 46.43% 0.81 5.08% 3.33 20.87% 3.70 23.13% 0.24 1.51% 15.98 

Elko New Market 0.08 2.52% 0.47 14.25% 1.31 39.97% 0.94 28.83% 0.41 12.45% 0.06 1.98% 3.27 

Empire 0.69 2.20% 4.64 14.71% 8.04 25.50% 16.64 52.78% 1.13 3.58% 0.39 1.23% 31.52 

Eureka 0.45 1.25% 5.44 15.26% 19.25 54.01% 9.52 26.72% 0.61 1.71% 0.37 1.04% 35.63 

Excelsior 0.04 6.09% 0.08 12.30% 0.01 1.72% 0.23 34.67% 0.30 44.23% 0.01 0.99% 0.68 

Falcon Heights 0.02 1.10% 0.68 30.38% 0.18 8.11% 0.61 27.49% 0.71 31.89% 0.02 1.02% 2.24 

Farmington 0.85 5.74% 1.95 13.13% 4.90 33.02% 5.38 36.23% 1.67 11.24% 0.09 0.64% 14.85 

Forest Lake 4.62 13.02% 10.70 30.11% 1.90 5.34% 15.09 42.48% 2.93 8.26% 0.28 0.79% 35.52 

Fort Snelling 0.14 2.03% 0.90 13.49% 0.12 1.86% 2.28 34.04% 3.19 47.64% 0.06 0.94% 6.69 

Fridley 0.76 7.05% 3.65 33.82% 0.59 5.50% 2.14 19.77% 3.37 31.22% 0.29 2.64% 10.81 

Gem Lake 0.04 3.36% 0.55 49.80% 0.00 0.41% 0.35 32.29% 0.15 14.09% 0.00 0.05% 1.10 

Golden Valley 0.37 3.48% 4.21 39.93% 0.53 5.02% 2.67 25.36% 2.57 24.36% 0.19 1.85% 10.55 
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Grant 0.83 3.12% 9.38 35.45% 3.49 13.20% 11.87 44.87% 0.64 2.42% 0.25 0.95% 26.46 

Greenfield 0.73 3.40% 4.77 22.27% 2.86 13.34% 11.89 55.55% 0.84 3.91% 0.33 1.53% 21.41 

Greenvale 0.09 0.30% 5.64 19.79% 13.62 47.74% 8.22 28.83% 0.58 2.05% 0.37 1.30% 28.52 

Greenwood 0.01 1.65% 0.13 37.14% 0.00 0.55% 0.12 34.83% 0.09 25.17% 0.00 0.67% 0.35 

Grey Cloud Island 0.76 24.62% 1.30 42.32% 0.14 4.51% 0.58 19.02% 0.15 4.87% 0.14 4.65% 3.07 

Ham Lake 1.47 4.10% 14.88 41.52% 1.33 3.71% 14.52 40.51% 3.44 9.59% 0.20 0.57% 35.84 

Hamburg 0.00 0.00% 0.07 35.27% 0.03 14.55% 0.06 27.55% 0.04 18.72% 0.01 3.91% 0.20 

Hampton 0.18 0.51% 7.03 19.69% 16.07 45.04% 11.58 32.45% 0.47 1.33% 0.35 0.99% 35.69 

Hancock 0.05 0.27% 1.55 8.74% 7.29 41.05% 8.51 47.93% 0.19 1.08% 0.16 0.93% 17.75 

Hanover 0.02 0.86% 0.82 38.72% 0.13 5.94% 0.98 46.57% 0.13 6.38% 0.03 1.54% 2.11 

Hastings 0.92 8.19% 2.20 19.54% 1.49 13.24% 4.52 40.21% 2.01 17.86% 0.11 0.95% 11.25 

Helena 1.24 3.65% 6.79 19.94% 16.24 47.68% 8.70 25.56% 0.79 2.33% 0.28 0.83% 34.05 

Hilltop 0.00 1.83% 0.02 17.40% 0.00 2.35% 0.03 21.28% 0.07 55.83% 0.00 1.30% 0.13 

Hollywood 0.13 0.37% 4.73 13.25% 7.57 21.20% 22.57 63.18% 0.59 1.65% 0.13 0.36% 35.72 

Hopkins 0.03 0.82% 1.47 35.87% 0.18 4.43% 0.92 22.39% 1.47 35.95% 0.02 0.54% 4.10 

Hugo 1.97 5.48% 10.95 30.43% 3.41 9.48% 17.33 48.16% 2.07 5.76% 0.25 0.69% 35.98 

Independence 1.79 5.17% 8.39 24.28% 3.01 8.72% 19.85 57.46% 1.25 3.62% 0.26 0.75% 34.55 

Inver Grove Heights 1.45 4.82% 13.11 43.55% 0.67 2.22% 8.93 29.65% 5.70 18.94% 0.25 0.82% 30.12 

Jackson 0.19 3.03% 1.03 16.32% 1.04 16.36% 3.49 55.04% 0.48 7.53% 0.11 1.72% 6.34 

Jordan 0.14 4.33% 0.57 17.77% 0.75 23.29% 0.92 28.81% 0.77 24.02% 0.06 1.79% 3.20 

Lake Elmo 1.64 6.75% 6.98 28.78% 4.01 16.56% 10.24 42.26% 0.99 4.08% 0.38 1.57% 24.24 

Lake Saint Croix Beach 0.43 44.17% 0.11 11.45% 0.05 4.68% 0.21 21.28% 0.16 16.12% 0.02 2.31% 0.98 

Lakeland 0.89 30.27% 0.74 25.08% 0.32 10.89% 0.65 22.02% 0.25 8.46% 0.10 3.27% 2.94 

Lakeland Shores 0.41 57.65% 0.09 12.37% 0.04 5.91% 0.11 15.70% 0.05 7.39% 0.01 0.99% 0.72 

Laketown 2.67 9.56% 4.99 17.89% 3.71 13.31% 15.48 55.46% 0.87 3.11% 0.19 0.68% 27.91 

Lakeville 1.90 5.03% 9.97 26.34% 8.93 23.58% 10.48 27.68% 5.93 15.66% 0.64 1.70% 37.86 

Landfall 0.02 21.25% 0.02 26.13% 0.00 0.46% 0.01 7.27% 0.04 44.74% 0.00 0.15% 0.08 

Lauderdale 0.01 1.82% 0.14 33.94% 0.01 2.60% 0.10 22.60% 0.16 36.97% 0.01 2.07% 0.42 

Lexington 0.00 0.71% 0.28 40.97% 0.01 1.35% 0.19 27.52% 0.20 28.97% 0.00 0.48% 0.69 

Lilydale 0.20 23.51% 0.28 32.84% 0.00 0.56% 0.21 24.74% 0.15 18.27% 0.00 0.09% 0.84 

Lino Lakes 3.77 11.36% 9.35 28.17% 1.20 3.63% 14.73 44.40% 3.96 11.94% 0.16 0.50% 33.18 

Linwood 1.85 5.13% 14.26 39.51% 0.97 2.70% 17.16 47.56% 1.71 4.74% 0.13 0.36% 36.09 
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Little Canada 0.45 9.96% 1.26 28.03% 0.06 1.29% 1.12 24.80% 1.59 35.29% 0.03 0.62% 4.50 

Long Lake 0.09 9.38% 0.12 12.62% 0.02 1.83% 0.35 37.34% 0.35 37.20% 0.02 1.63% 0.94 

Loretto 0.00 0.40% 0.06 24.35% 0.01 2.71% 0.09 35.89% 0.09 32.89% 0.01 3.75% 0.26 

Louisville 1.18 8.10% 2.67 18.37% 3.16 21.76% 6.48 44.64% 0.57 3.92% 0.46 3.20% 14.52 

Mahtomedi 1.96 34.46% 1.78 31.35% 0.07 1.15% 0.80 14.12% 1.03 18.16% 0.04 0.76% 5.69 

Maple Grove 2.33 6.66% 10.02 28.62% 2.78 7.94% 11.16 31.86% 7.41 21.15% 1.32 3.76% 35.02 

Maple Plain 0.00 0.00% 0.36 33.64% 0.03 2.43% 0.38 35.89% 0.27 25.04% 0.03 3.00% 1.07 

Maplewood 0.60 3.31% 7.71 42.91% 0.30 1.66% 4.32 24.07% 4.94 27.51% 0.10 0.54% 17.97 

Marine on Saint Croix 0.00 0.05% 0.78 20.35% 2.01 52.56% 0.94 24.50% 0.07 1.91% 0.02 0.63% 3.82 

Marshan 0.11 0.33% 6.01 17.49% 17.96 52.27% 9.58 27.89% 0.44 1.28% 0.26 0.75% 34.37 

May 2.78 7.28% 8.81 23.10% 9.95 26.07% 15.75 41.26% 0.46 1.20% 0.42 1.09% 38.16 

Mayer 0.02 1.07% 0.27 18.62% 0.03 2.18% 0.86 60.10% 0.24 16.42% 0.02 1.61% 1.43 

Medicine Lake 0.00 1.87% 0.08 47.22% 0.01 3.37% 0.06 34.86% 0.02 12.17% 0.00 0.50% 0.18 

Medina 1.44 5.30% 7.53 27.75% 2.54 9.37% 13.95 51.42% 1.47 5.43% 0.20 0.73% 27.13 

Mendota 0.01 5.43% 0.10 45.73% 0.00 1.14% 0.06 25.03% 0.05 22.35% 0.00 0.32% 0.22 

Mendota Heights 0.49 4.82% 3.70 36.55% 0.17 1.67% 3.35 33.03% 2.38 23.45% 0.05 0.49% 10.13 

Miesville 0.02 1.09% 0.12 7.12% 0.73 42.11% 0.83 47.41% 0.02 1.16% 0.02 1.11% 1.74 

Minneapolis 3.90 6.70% 17.47 29.98% 1.50 2.58% 11.00 18.88% 23.66 40.61% 0.73 1.26% 58.27 

Minnetonka 1.95 6.70% 12.46 42.87% 0.60 2.06% 8.13 27.97% 5.62 19.31% 0.32 1.09% 29.08 

Minnetonka Beach 0.01 2.53% 0.11 22.94% 0.01 1.51% 0.24 50.71% 0.10 21.14% 0.01 1.18% 0.47 

Minnetrista 5.34 16.72% 6.75 21.12% 1.78 5.58% 15.97 49.99% 1.94 6.06% 0.17 0.53% 31.95 

Mound 0.68 18.97% 0.91 25.45% 0.03 0.77% 0.95 26.56% 0.97 27.06% 0.04 1.18% 3.59 

Mounds View 0.09 2.30% 1.98 48.39% 0.11 2.68% 0.89 21.86% 1.00 24.49% 0.01 0.28% 4.08 

New Brighton 0.58 8.19% 2.75 39.09% 0.21 2.98% 1.45 20.58% 2.02 28.68% 0.03 0.49% 7.03 

New Germany 0.04 4.00% 0.18 17.39% 0.18 17.33% 0.55 54.78% 0.06 5.60% 0.01 0.90% 1.01 

New Hope 0.06 1.22% 1.59 31.07% 0.16 3.18% 1.50 29.36% 1.71 33.48% 0.09 1.68% 5.12 

New Market 0.42 1.28% 6.87 21.09% 15.76 48.35% 8.17 25.07% 0.78 2.40% 0.59 1.80% 32.59 

New Prague 0.04 1.67% 0.21 9.56% 0.70 31.46% 0.61 27.17% 0.62 27.77% 0.05 2.38% 2.24 

New Trier 0.00 1.66% 0.04 20.35% 0.07 36.17% 0.07 38.46% 0.00 1.51% 0.00 1.86% 0.18 

Newport 0.25 6.36% 1.88 48.64% 0.07 1.84% 0.75 19.49% 0.86 22.24% 0.06 1.44% 3.86 

Nininger 3.82 22.37% 3.41 19.93% 3.98 23.26% 5.36 31.35% 0.40 2.36% 0.12 0.73% 17.10 

North Oaks 1.26 14.59% 3.66 42.49% 0.05 0.56% 2.56 29.71% 1.07 12.43% 0.02 0.22% 8.61 
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North Saint Paul 0.16 5.25% 1.24 40.94% 0.04 1.33% 0.53 17.50% 1.03 34.12% 0.03 0.85% 3.03 

Northfield 0.03 1.72% 0.27 18.38% 0.76 51.62% 0.29 19.85% 0.12 7.89% 0.01 0.54% 1.48 

Norwood Young 
America 0.00 0.20% 0.52 22.92% 0.12 5.15% 1.17 51.26% 0.41 18.11% 0.05 2.37% 2.28 

Nowthen 1.09 3.09% 11.05 31.43% 6.43 18.31% 15.33 43.61% 0.77 2.19% 0.48 1.38% 35.15 

Oak Grove 1.16 3.30% 12.25 34.80% 4.79 13.60% 15.27 43.37% 1.33 3.77% 0.41 1.16% 35.20 

Oak Park Heights 0.60 18.28% 0.30 9.19% 0.56 17.09% 1.18 35.74% 0.52 15.63% 0.13 4.07% 3.30 

Oakdale 0.36 3.15% 4.32 38.21% 0.33 2.95% 3.18 28.12% 3.04 26.87% 0.08 0.70% 11.30 

Orono 8.77 34.64% 3.42 13.49% 0.29 1.13% 10.56 41.70% 2.13 8.40% 0.16 0.63% 25.32 

Osseo 0.00 0.27% 0.17 23.72% 0.02 2.48% 0.15 21.24% 0.36 49.52% 0.02 2.77% 0.72 

Pine Springs 0.12 12.74% 0.42 46.04% 0.01 1.33% 0.27 29.01% 0.10 10.36% 0.00 0.52% 0.92 

Plymouth 2.60 7.34% 11.14 31.41% 1.45 4.09% 11.22 31.63% 8.44 23.79% 0.61 1.73% 35.47 

Prior Lake 2.64 14.36% 5.33 28.96% 2.03 11.04% 5.50 29.87% 2.52 13.70% 0.38 2.07% 18.40 

Ramsey 0.61 2.06% 10.23 34.38% 3.39 11.40% 12.27 41.23% 2.74 9.20% 0.52 1.74% 29.75 

Randolph 1.19 10.40% 1.18 10.29% 4.58 39.99% 4.04 35.26% 0.32 2.82% 0.14 1.24% 11.46 

Ravenna 1.47 6.77% 5.23 23.98% 7.35 33.69% 7.40 33.96% 0.21 0.97% 0.14 0.63% 21.80 

Richfield 0.17 2.34% 2.32 32.58% 0.20 2.78% 1.78 25.04% 2.56 36.00% 0.09 1.28% 7.12 

Robbinsdale 0.20 6.62% 1.05 35.04% 0.16 5.46% 0.72 23.98% 0.78 26.17% 0.08 2.73% 2.98 

Rockford 0.00 0.39% 0.06 22.43% 0.01 2.85% 0.10 37.80% 0.07 29.03% 0.02 7.51% 0.25 

Rogers 0.57 2.16% 4.50 17.19% 3.12 11.90% 14.95 57.12% 2.78 10.63% 0.26 1.01% 26.18 

Rosemount 1.43 4.06% 8.38 23.79% 5.14 14.59% 15.05 42.73% 4.77 13.55% 0.45 1.29% 35.22 

Roseville 0.61 4.37% 5.08 36.64% 0.20 1.45% 2.99 21.62% 4.89 35.27% 0.09 0.65% 13.85 

Saint Anthony 0.13 5.67% 0.92 39.31% 0.05 1.96% 0.52 22.06% 0.72 30.59% 0.01 0.40% 2.34 

Saint Bonifacius 0.00 0.18% 0.27 25.88% 0.01 1.11% 0.45 43.11% 0.29 28.29% 0.01 1.42% 1.04 

Saint Francis 0.22 0.96% 9.53 40.82% 3.52 15.06% 8.97 38.42% 0.84 3.61% 0.27 1.14% 23.36 

Saint Lawrence 0.65 4.50% 2.53 17.37% 5.70 39.22% 5.01 34.47% 0.42 2.86% 0.23 1.57% 14.54 

Saint Louis Park 0.29 2.64% 3.81 35.22% 0.61 5.64% 2.73 25.20% 3.25 30.01% 0.14 1.28% 10.83 

Saint Marys Point 0.01 3.67% 0.11 28.35% 0.02 5.66% 0.16 39.90% 0.08 19.56% 0.01 2.85% 0.39 

Saint Paul 3.52 6.28% 17.92 31.99% 0.69 1.24% 10.26 18.31% 23.36 41.68% 0.28 0.50% 56.03 

Saint Paul Park 0.32 8.85% 1.30 36.36% 0.18 4.96% 0.89 24.99% 0.81 22.60% 0.08 2.25% 3.57 

San Francisco 1.33 5.51% 5.40 22.42% 7.73 32.06% 8.86 36.77% 0.49 2.02% 0.29 1.21% 24.09 

Sand Creek 1.02 3.14% 6.41 19.75% 9.53 29.37% 14.28 44.00% 0.91 2.82% 0.30 0.92% 32.46 
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Savage 0.56 3.39% 5.72 34.83% 1.72 10.49% 5.06 30.85% 2.66 16.20% 0.70 4.25% 16.42 

Scandia 2.97 7.46% 10.17 25.52% 15.23 38.23% 10.19 25.56% 0.76 1.92% 0.52 1.31% 39.85 

Sciota 0.19 1.29% 1.68 11.29% 4.46 30.02% 8.18 55.06% 0.22 1.51% 0.12 0.83% 14.86 

Shakopee 1.16 3.95% 6.94 23.61% 4.12 14.01% 10.33 35.13% 6.02 20.49% 0.82 2.80% 29.39 

Shoreview 1.42 11.24% 4.52 35.70% 0.15 1.17% 3.53 27.93% 2.97 23.48% 0.06 0.49% 12.65 

Shorewood 7.38 56.94% 1.53 11.77% 0.07 0.55% 2.75 21.21% 1.18 9.09% 0.06 0.45% 12.96 

South Saint Paul 0.38 6.22% 1.87 30.63% 0.08 1.39% 1.25 20.45% 2.47 40.51% 0.05 0.79% 6.09 

Spring Lake 1.73 5.85% 5.62 19.01% 9.60 32.46% 11.48 38.83% 0.72 2.44% 0.42 1.41% 29.56 

Spring Lake Park 0.07 3.59% 0.71 33.91% 0.10 4.59% 0.49 23.58% 0.69 33.34% 0.02 0.99% 2.08 

Spring Park 0.05 12.76% 0.06 15.45% 0.00 1.20% 0.11 27.30% 0.18 42.61% 0.00 0.68% 0.41 

Stillwater 2.08 8.49% 5.57 22.74% 3.71 15.16% 11.29 46.14% 1.46 5.97% 0.37 1.50% 24.48 

Sunfish Lake 0.10 5.75% 0.89 52.56% 0.01 0.48% 0.50 29.42% 0.20 11.59% 0.00 0.20% 1.69 

Tonka Bay 0.01 1.06% 0.11 11.09% 0.02 2.17% 0.54 55.69% 0.28 29.07% 0.01 0.92% 0.97 

Vadnais Heights 0.92 11.19% 2.61 31.67% 0.07 0.87% 2.31 28.08% 2.28 27.65% 0.04 0.54% 8.24 

Vermillion 0.22 0.62% 5.72 16.26% 14.73 41.85% 13.48 38.30% 0.78 2.21% 0.27 0.76% 35.21 

Victoria 1.62 15.38% 2.75 26.18% 0.19 1.85% 4.82 45.86% 1.00 9.50% 0.13 1.24% 10.52 

Waconia 5.29 14.98% 4.85 13.73% 5.90 16.71% 17.00 48.11% 2.11 5.96% 0.18 0.51% 35.33 

Waterford 0.51 3.44% 2.85 19.34% 3.38 22.94% 7.44 50.51% 0.45 3.06% 0.10 0.71% 14.73 

Watertown 1.85 5.20% 6.62 18.58% 5.28 14.82% 20.40 57.28% 1.32 3.70% 0.15 0.42% 35.61 

Wayzata 0.07 2.35% 0.83 26.50% 0.05 1.57% 1.25 39.87% 0.87 27.89% 0.06 1.81% 3.14 

West Lakeland 0.38 2.99% 3.52 27.81% 2.06 16.31% 5.89 46.51% 0.52 4.14% 0.28 2.24% 12.66 

West Saint Paul 0.04 0.73% 1.75 34.92% 0.06 1.20% 1.20 24.02% 1.94 38.69% 0.02 0.45% 5.01 

White Bear 3.01 27.66% 2.61 24.03% 0.10 0.89% 3.11 28.61% 1.97 18.11% 0.07 0.69% 10.87 

White Bear Lake 0.53 6.05% 3.11 35.57% 0.08 0.95% 2.07 23.73% 2.91 33.27% 0.04 0.43% 8.74 

Willernie 0.00 1.51% 0.08 59.02% 0.00 0.44% 0.02 16.00% 0.03 22.93% 0.00 0.10% 0.13 

Woodbury 1.29 3.63% 10.84 30.40% 5.58 15.65% 11.39 31.95% 6.20 17.40% 0.34 0.97% 35.65 

Woodland 0.03 4.66% 0.14 22.36% 0.02 3.85% 0.34 55.02% 0.08 13.06% 0.01 1.05% 0.61 

Young America 0.48 1.45% 4.21 12.61% 10.66 31.97% 17.01 50.99% 0.85 2.55% 0.14 0.43% 33.36 

TOTAL 168.87   771.56   527.25   1135.97   334.79   34.56   2973.00 

MEAN 0.94 6.63% 4.31 27.41% 2.95 13.45% 6.35 35.09% 1.87 16.10% 0.19 1.31% 16.61 

STANDARD 
DEVIATION 1.30 8.64% 4.26 11.31% 4.46 14.54% 6.35 11.83% 3.02 12.63% 0.21 1.00% 14.73 



106 

 

 

Appendix D. LULC area by county, 2006 
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Appendix E. Impervious surface by city or township. 

City or Township 
Pervious 
Sq mile 

Impervious 
Sq mile 

Total 
Sq mile 

Pervious 
Percent 

Impervious 
Percent 

Impervious 
% of total 

Afton 23.08 3.23 26.31 88% 12% 0.37% 

Andover 30.21 4.62 34.83 87% 13% 0.54% 

Anoka 5.12 2.00 7.11 72% 28% 0.23% 

Apple Valley 12.58 5.02 17.60 71% 29% 0.58% 

Arden Hills 7.76 1.90 9.66 80% 20% 0.22% 

Bayport 1.39 0.42 1.81 77% 23% 0.05% 

Baytown 8.14 0.99 9.13 89% 11% 0.11% 

Belle Plaine 38.02 5.84 43.86 87% 13% 0.68% 

Benton 31.32 2.63 33.95 92% 8% 0.30% 

Bethel 0.94 0.10 1.04 90% 10% 0.01% 

Birchwood Village 0.32 0.02 0.35 93% 7% 0.00% 

Blaine 27.07 6.95 34.03 80% 20% 0.81% 

Blakely 24.86 2.09 26.95 92% 8% 0.24% 

Bloomington 29.38 8.96 38.34 77% 23% 1.04% 

Brooklyn Center 5.68 2.70 8.38 68% 32% 0.31% 

Brooklyn Park 18.94 7.68 26.62 71% 29% 0.89% 

Burnsville 20.13 6.76 26.89 75% 25% 0.78% 

Camden 32.94 1.46 34.40 96% 4% 0.17% 

Carver 3.87 0.45 4.32 89% 11% 0.05% 

Castle Rock 33.63 1.70 35.33 95% 5% 0.20% 

Cedar Lake 32.65 3.57 36.22 90% 10% 0.41% 

Centerville 2.03 0.40 2.43 84% 16% 0.05% 

Champlin 6.84 1.91 8.75 78% 22% 0.22% 

Chanhassen 18.97 3.94 22.91 83% 17% 0.46% 

Chaska 14.49 3.17 17.66 82% 18% 0.37% 

Circle Pines 1.64 0.30 1.94 85% 15% 0.03% 

Coates 1.17 0.21 1.38 85% 15% 0.02% 

Cologne 1.46 0.33 1.79 81% 19% 0.04% 

Columbia Heights 2.47 1.03 3.50 71% 29% 0.12% 

Columbus 44.42 3.20 47.62 93% 7% 0.37% 

Coon Rapids 17.48 5.81 23.29 75% 25% 0.67% 

Corcoran 33.05 3.00 36.05 92% 8% 0.35% 

Cottage Grove 31.58 5.91 37.49 84% 16% 0.69% 
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Credit River 21.73 2.13 23.86 91% 9% 0.25% 

Crystal 4.26 1.59 5.85 73% 27% 0.18% 

Dahlgren 30.31 5.28 35.60 85% 15% 0.61% 

Dayton 23.18 1.99 25.17 92% 8% 0.23% 

Deephaven 2.04 0.33 2.37 86% 14% 0.04% 

Dellwood 2.60 0.23 2.82 92% 8% 0.03% 

Denmark 26.94 3.27 30.21 89% 11% 0.38% 

Douglas 29.81 4.21 34.02 88% 12% 0.49% 

Eagan 24.84 8.63 33.47 74% 26% 1.00% 

East Bethel 43.36 4.32 47.68 91% 9% 0.50% 

Eden Prairie 27.22 7.95 35.17 77% 23% 0.92% 

Edina 12.05 3.93 15.98 75% 25% 0.46% 

Elko New Market 2.55 0.72 3.27 78% 22% 0.08% 

Empire 28.21 3.31 31.52 90% 10% 0.38% 

Eureka 31.42 4.22 35.63 88% 12% 0.49% 

Excelsior 0.45 0.23 0.68 66% 34% 0.03% 

Falcon Heights 1.53 0.70 2.23 69% 31% 0.08% 

Farmington 11.84 3.01 14.85 80% 20% 0.35% 

Forest Lake 32.70 2.82 35.52 92% 8% 0.33% 

Fort Snelling 3.63 3.06 6.69 54% 46% 0.35% 

Fridley 7.20 3.60 10.81 67% 33% 0.42% 

Gem Lake 0.98 0.12 1.10 89% 11% 0.01% 

Golden Valley 7.78 2.77 10.55 74% 26% 0.32% 

Grant 24.83 1.63 26.46 94% 6% 0.19% 

Greenfield 19.60 1.90 21.50 91% 9% 0.22% 

Greenvale 25.73 2.81 28.54 90% 10% 0.33% 

Greenwood 0.28 0.07 0.35 79% 21% 0.01% 

Grey Cloud Island 2.78 0.29 3.07 91% 9% 0.03% 

Ham Lake 32.31 3.53 35.84 90% 10% 0.41% 

Hamburg 0.15 0.05 0.20 76% 24% 0.01% 

Hampton 32.56 3.13 35.69 91% 9% 0.36% 

Hancock 16.62 1.23 17.85 93% 7% 0.14% 

Hanover 1.92 0.20 2.12 90% 10% 0.02% 

Hastings 8.48 2.78 11.25 75% 25% 0.32% 

Helena 30.66 3.39 34.05 90% 10% 0.39% 

Hilltop 0.06 0.06 0.13 50% 50% 0.01% 

Hollywood 34.03 1.74 35.77 95% 5% 0.20% 

Hopkins 2.64 1.46 4.10 64% 36% 0.17% 

Hugo 33.28 2.70 35.98 93% 7% 0.31% 
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Independence 32.54 2.04 34.58 94% 6% 0.24% 
Inver Grove 
Heights 25.24 4.88 30.12 84% 16% 0.57% 

Jackson 5.53 0.81 6.34 87% 13% 0.09% 

Jordan 2.31 0.90 3.20 72% 28% 0.10% 

Lake Elmo 21.67 2.57 24.24 89% 11% 0.30% 
Lake Saint Croix 
Beach 0.86 0.11 0.98 88% 12% 0.01% 

Lakeland 2.57 0.36 2.94 88% 12% 0.04% 

Lakeland Shores 0.63 0.08 0.72 89% 11% 0.01% 

Laketown 25.97 1.94 27.91 93% 7% 0.22% 

Lakeville 30.19 7.67 37.86 80% 20% 0.89% 

Landfall 0.06 0.02 0.08 72% 28% 0.00% 

Lauderdale 0.28 0.14 0.42 67% 33% 0.02% 

Lexington 0.53 0.15 0.69 78% 22% 0.02% 

Lilydale 0.76 0.08 0.84 90% 10% 0.01% 

Lino Lakes 29.73 3.45 33.18 90% 10% 0.40% 

Linwood 34.02 2.09 36.11 94% 6% 0.24% 

Little Canada 3.28 1.22 4.50 73% 27% 0.14% 

Long Lake 0.64 0.30 0.94 68% 32% 0.03% 

Loretto 0.17 0.09 0.26 67% 33% 0.01% 

Louisville 12.48 2.04 14.52 86% 14% 0.24% 

Mahtomedi 4.98 0.71 5.69 87% 13% 0.08% 

Maple Grove 26.02 8.99 35.02 74% 26% 1.04% 

Maple Plain 0.80 0.26 1.07 75% 25% 0.03% 

Maplewood 14.03 3.94 17.97 78% 22% 0.46% 
Marine on Saint 
Croix 3.55 0.26 3.82 93% 7% 0.03% 

Marshan 29.19 5.18 34.37 85% 15% 0.60% 

May 35.23 3.05 38.28 92% 8% 0.35% 

Mayer 1.22 0.22 1.43 85% 15% 0.03% 

Medicine Lake 0.15 0.02 0.18 87% 13% 0.00% 

Medina 25.01 2.12 27.13 92% 8% 0.25% 

Mendota 0.19 0.03 0.22 84% 16% 0.00% 

Mendota Heights 8.23 1.90 10.13 81% 19% 0.22% 

Miesville 1.55 0.19 1.74 89% 11% 0.02% 

Minneapolis 38.29 19.98 58.27 66% 34% 2.32% 

Minnetonka 23.65 5.43 29.08 81% 19% 0.63% 
Minnetonka 
Beach 0.39 0.08 0.47 82% 18% 0.01% 
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Minnetrista 29.61 2.34 31.95 93% 7% 0.27% 

Mound 2.79 0.80 3.59 78% 22% 0.09% 

Mounds View 3.18 0.91 4.08 78% 22% 0.11% 

New Brighton 5.24 1.78 7.03 75% 25% 0.21% 

New Germany 0.93 0.08 1.01 92% 8% 0.01% 

New Hope 3.44 1.68 5.12 67% 33% 0.20% 

New Market 28.42 4.18 32.60 87% 13% 0.49% 

New Prague 1.50 0.74 2.24 67% 33% 0.09% 

New Trier 0.16 0.02 0.18 90% 10% 0.00% 

Newport 3.09 0.77 3.86 80% 20% 0.09% 

Nininger 15.77 1.33 17.10 92% 8% 0.15% 

North Oaks 7.93 0.69 8.61 92% 8% 0.08% 

North Saint Paul 2.25 0.77 3.03 74% 26% 0.09% 

Northfield 1.16 0.32 1.48 78% 22% 0.04% 
Norwood Young 
America 1.86 0.42 2.28 82% 18% 0.05% 

Nowthen 32.51 2.67 35.18 92% 8% 0.31% 

Oak Grove 31.71 3.49 35.20 90% 10% 0.40% 

Oak Park Heights 2.38 0.95 3.32 72% 28% 0.11% 

Oakdale 8.80 2.50 11.30 78% 22% 0.29% 

Orono 23.41 1.91 25.32 92% 8% 0.22% 

Osseo 0.37 0.35 0.72 52% 48% 0.04% 

Pine Springs 0.84 0.08 0.92 92% 8% 0.01% 

Plymouth 26.78 8.69 35.47 75% 25% 1.01% 

Prior Lake 15.19 3.21 18.40 83% 17% 0.37% 

Ramsey 25.10 4.66 29.76 84% 16% 0.54% 

Randolph 10.02 1.47 11.50 87% 13% 0.17% 

Ravenna 20.51 1.31 21.83 94% 6% 0.15% 

Richfield 4.80 2.32 7.12 67% 33% 0.27% 

Robbinsdale 2.13 0.85 2.98 71% 29% 0.10% 

Rockford 0.21 0.09 0.29 71% 29% 0.01% 

Rogers 22.75 3.50 26.25 87% 13% 0.41% 

Rosemount 29.41 5.82 35.22 83% 17% 0.67% 

Roseville 9.82 4.04 13.85 71% 29% 0.47% 

Saint Anthony 1.74 0.60 2.34 74% 26% 0.07% 

Saint Bonifacius 0.79 0.25 1.04 76% 24% 0.03% 

Saint Francis 21.42 1.95 23.38 92% 8% 0.23% 

Saint Lawrence 12.75 1.79 14.54 88% 12% 0.21% 

Saint Louis Park 7.48 3.35 10.83 69% 31% 0.39% 
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Saint Marys Point 0.34 0.05 0.39 88% 12% 0.01% 

Saint Paul 38.39 17.64 56.03 69% 31% 2.05% 

Saint Paul Park 2.90 0.68 3.57 81% 19% 0.08% 

San Francisco 21.72 2.38 24.10 90% 10% 0.28% 

Sand Creek 29.15 3.31 32.46 90% 10% 0.38% 

Savage 12.91 3.51 16.42 79% 21% 0.41% 

Scandia 35.68 4.18 39.86 90% 10% 0.48% 

Sciota 14.27 0.59 14.86 96% 4% 0.07% 

Shakopee 21.69 7.71 29.40 74% 26% 0.89% 

Shoreview 10.36 2.30 12.65 82% 18% 0.27% 

Shorewood 11.97 1.00 12.96 92% 8% 0.12% 

South Saint Paul 4.12 1.97 6.09 68% 32% 0.23% 

Spring Lake 26.99 2.57 29.56 91% 9% 0.30% 

Spring Lake Park 1.42 0.66 2.08 68% 32% 0.08% 

Spring Park 0.25 0.16 0.41 61% 39% 0.02% 

Stillwater 21.61 3.31 24.93 87% 13% 0.38% 

Sunfish Lake 1.54 0.15 1.69 91% 9% 0.02% 

Tonka Bay 0.75 0.22 0.97 78% 22% 0.03% 

Vadnais Heights 6.65 1.59 8.24 81% 19% 0.18% 

Vermillion 31.70 3.51 35.21 90% 10% 0.41% 

Victoria 9.41 1.11 10.52 89% 11% 0.13% 

Waconia 32.53 2.80 35.33 92% 8% 0.32% 

Waterford 13.43 1.30 14.73 91% 9% 0.15% 

Watertown 33.43 2.20 35.63 94% 6% 0.25% 

Wayzata 2.36 0.78 3.14 75% 25% 0.09% 

West Lakeland 11.05 1.60 12.66 87% 13% 0.19% 

West Saint Paul 3.54 1.48 5.01 71% 29% 0.17% 

White Bear 9.54 1.33 10.87 88% 12% 0.15% 

White Bear Lake 6.69 2.06 8.74 76% 24% 0.24% 

Willernie 0.12 0.02 0.13 88% 12% 0.00% 

Woodbury 28.27 7.38 35.65 79% 21% 0.86% 

Woodland 0.53 0.08 0.61 87% 13% 0.01% 

Young America 31.66 1.72 33.38 95% 5% 0.20% 

Sum: 2543.39 431.01 2974.40 n/a 100% 

Mean: 14.21 2.41 16.62 82% 18% 0.56% 
Standard 
Deviation: 12.84 2.73 14.74 9% 9% 0.63% 
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