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ABSTRACT 

Testing the fertility and allelopathic abilities of Arctotheca prostrata (Salisb.) Britten 

(Asteraceae, Arctotideae), a South African plant species that has naturalized in California 

 

By: Jordy Veit, Master of Science in Biology, Minnesota State University,  

Mankato, MN, 2014. 

 

Arctotheca prostrata is a perennial plant species native to South Africa that reproduces 

vegetatively by long runners. In South Africa it also reproduces sexually, producing fruits 

with fertile seeds. The species was brought to California to serve as a ground cover but 

fruits had not been reported. Historically, it has been said to be infertile. This study 

tested the fertility of A. prostrata in California by crossing plants from California with 

each other and with plants grown from imported South African seeds. Pollen viability 

was tested and morphological measures were made on heads, leaves, and pollen. Mean 

Californian and South African measurements were compared by nested analysis of 

variance (ANOVA). Earlier research indicated that A. prostrata is allelopathic. Lettuce 

seeds were germinated for 72 hours in extracts containing different amounts of ground 

leaves, runners, and roots of A. prostrata to test for allelopathic abilities. My study 

found that A. prostrata from California is outcrossing and fertile. It does not differ much, 

if at all, in morphology from South African individuals in the study. It is allelopathic. My 

results suggested that plants from California have a stronger allelopathic effect on 
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lettuce seedling growth than plants from South Africa. Currently, naturalized 

populations of A. prostrata in California are rare. However, if populations increase in 

number and begin to produce seeds, the species has the potential to become invasive. 
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I. INTRODUCTION 

Invasive species are a worldwide problem. Pimentel (2005) surveyed six nations, 

(United States, Australia, United Kingdom, South Africa, Brazil and India), and found that 

more than 120,000 species of plants, animals, and microbes had been introduced. It is 

estimated that 500,000 non-native species have been introduced to different 

ecosystems on Earth (Pimentel 2005), many of which have potential to become invasive.  

During the first decade of the 21st century in the United States, invasive plants 

were causing $35 billion in economic loss annually. In addition 50% of all invasive plants 

and 85% of invasive woody plants were introduced for ornamental and landscape use (Li 

et al. 2004). Campbell (1999) identified 454 invasive plants and created a list called 

“plants that hog the garden” of which 292 were still being sold in nurseries at the time 

of the study. 

Not all introduced species become invasive.  Some non-natives become 

incorporated into the biota of a region, reproducing like natives but not profoundly 

disturbing native communities (van Kleunen et al. 2011). Such species are said to be 

“naturalized.” Invasive species outcompete and replace native species; they may alter 

and decrease biodiversity (Goodwin et al. 1999). Invasive plant species’ competitive 

strategies vary but include one or more of the following: longer fruiting and flowering 

times (Lloret et al. 2005), greater seed production (Mason et al. 2008, Knight et al. 2007, 

Heywood and Brunel 2008), shorter seed germination times (Rejmanek and Richardson 

1996, Wildrlechner et al. 2004), higher rates of seedling survival (Grotkoop et al. 2010), 
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greater and/or more rapid vegetative growth (Lloret et al. 2005, Heywood and Brunel 

2008), spreading aggressively by producing clones (Larkin et al. 2012), earlier leaf 

production in the spring and later leaf retention in the fall (Knight et al. 2007), ability to 

start on bare ground (Heywood and Brunel 2008), higher tolerance for dry conditions, 

and production of allelopathic chemicals (Brooker et al. 2011).  Understanding how 

naturalized plant species outcompete natives will help us predict which introduced 

plants may become invasive. 

This research focused on Arctotheca prostrata (Salisb.) Britten (prostrate 

capeweed), which is native to South Africa. Arctotheca prostrata was introduced as a 

ground cover in California.  For many years, naturalized populations of A. prostrata only 

appeared to reproduce vegetatively by runners and were misidentified as sterile forms 

of invasive and fertile A. calendula (capeweed) (Clark 1975, Hickman 1993, McClintock 

1993, Mahoney 2006, Mahoney and McKenzie 2008 and 2012, McKenzie and Mahoney 

2010). Arctotheca calendula has naturalized in areas with Mediterranean climates 

including Spain, Australia, New Zealand, and California. Dana et al. (2012) gave the 

species a rating of “3 = dangerous (causing ecological damage or alteration) for natural 

ecosystems.” California Invasive Plant Council (Cal-IPC 2014) has given A. calendula a 

moderate invasive rating as of this writing.  

Re-examination of herbarium specimens revealed there are two distinct species, 

A. calendula and A. prostrata (Mahoney and McKenzie 2008 and 2012, McKenzie and 

Mahoney 2010). Arctotheca prostrata is fertile in South Africa (personal communication, 
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Dr. Robert McKenzie, Rhodes University, South Africa).  As of this writing both “fertile” 

and “sterile” forms of A. calendula are currently listed in the California Invasive Plant 

Inventory (Cal-IPC). However, A. prostrata is now listed as an alternative name for sterile 

A. calendula (Cal-IPC 2014). It is unclear why A. prostrata only appears to reproduce 

vegetatively in California. This research sought to determine if A. prostrata in California 

is able to produce fertile seeds or if it is sterile.  In addition other characteristics of the 

species were examined.  

 

II. OBJECTIVES/RESEARCH QUESTIONS 

 This project sought to answer the following questions: 

 1. Is Arctotheca prostrata in California sterile? 

 2. If A. prostrata in California is found to be sterile,  

A. is the pollen produced by the plants dysfunctional, and can this be 

observed by pollen staining techniques? 

B. could California’s A. prostrata populations be sterile hybrids 

developed for horticultural purposes? 

 3. Do vegetative parts of A. prostrata release allelopathic chemicals? 
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III. LITERATURE REVIEW 

Invasive species 

Early European immigrants to North America introduced a wide variety of species for 

ornamental and agricultural purposes (Inderjit et al. 2005). John Bartram, an 18th 

century botanist, first noticed negative effects of introduced plants (Inderjit et al. 2005).  

 

EFFECTS OF INVASIVE SPECIES 

  The U.S. government defines an invasive species as a non-native species “whose 

introduction does or is likely to cause economic or environmental harm or harm to 

human health” (Federal Register – Presidential Documents 1999 in Niemiera and Von 

Holle 2009). The American Nursery and Landscape Association and the Weed Science 

Society of America give a similar definition but add that invasive plants develop harmful 

“self-sustaining populations” in native plant communities and managed plant systems 

(Niemiera and Von Von Holle 2009). Invasive species are the second leading cause of the 

loss of biodiversity (Jose et al. 2013). Every year $145 million is spent to control invasive 

aquatic and wetland plants (Jose et al. 2013).  

There are an estimated 50,000 non-native plants, animals and microbes in the 

U.S. (Pimental 2005). Most non-native plants were deliberately introduced for various 

purposes including forestry, agriculture, and ornamental plant trade (Pimentel 2005). 

Ornamental plants make up more than 80% of naturalized species in the United States 

and 52% of those naturalized in Europe (Grotkoop et al. 2010). Some were accidental 

introductions (Pemberton and Liu 2009). Some of these are of great benefit, especially 
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in agriculture where as many as 99% of food crops are non-native in some areas 

(Pimentel 2005).  

 Lythrum salicaria (purple loosestrife), brought over during the 19th century as an 

ornamental, now spreads at a rate of 100,000 ha per year (Pimentel 2005). In the U.S., 

Florida has the largest number of non-native plants of which 25,000 are for ornamental 

and agriculture purposes and of these, 900 have escaped into a natural ecosystem 

(Pimentel 2005). In the Great Smokey Mountain National Park 400 of the 1500 vascular 

plants are non-native, and in California, Centaurea solstitialis (yellow star-thistle has 

taken over more than 4 million ha in the northern grasslands (Pimentel 2005). In Hawaii 

about 35% of plants are now nonindigenous (Pimentel 2005). 

 In some cases the use of invasive plants have been promoted unknowingly by 

government agencies (Li et al. 2004). Pueraria montana (kudzu) was introduced as a 

ground cover, later it was promoted by the U.S. Soil Conservation Service (SCS) to be 

used for soil erosion control (Li et a. 2004). Cytisus scoparius (Scotch broom) was used 

first as an ornamental and also later promoted by SCS for erosion control (Li et al. 2004).  

The impacts of invasive species can be put into several broad categories.  The 

first is economic. Jose et al. (2013) estimates crop production losses of $24 billion are 

due to non-native plants. As recently as 1998, 1,343 U.S. nurseries were selling invasive 

ground covers and 761 U.S. nurseries were selling invasive vines (Li et al. 2004). 

Invasive species threaten natural communities by reducing overall biodiversity, 

changing habitats used by animals, and by competing with rare or threatened native 
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plants (Goodwin et al. 1999, Jarchow and Cook 2009, Kirk et al. 2011, Larkin et al. 2012). 

Invasive species can affect the gene pools of native species, usually though 

hybridization or introgression (gene flow between species) (Lockwood et al. 2013). 

Hybrid individuals are often larger and more vigorous than their parents (heterosis or 

hybrid vigor) and may be able to outcompete native species (Kirk et al. 2011, Larkin et 

al. 2012, Lockwood et al. 2013). Genetic changes to gene pools of native populations are 

not well documented or understood and long-term effects are difficult to predict 

(Lockwood et al. 2013). 

 

WHY INVASIVE SPECIES ARE SO SUCCESSFUL 

Innate characteristics of potentially invasive plant species: Taxonomy may provide 

clues to potentially invasive species. Heywood and Brunel (2008) indicated that 63% of 

76 serious invasive species occurred in just six families: Rosaceae (Rose Family), 

Fabaceae (Pea Family), Myrtaceae (Myrtle Family), Salicaceae (Willow Family), Oleaceae 

(Olive Family), and Caprifoliaceae (Honeysuckle Family). In a larger study Heywood, 

(1989) found that invasive species occurred most often in the Apiaceae (Carrot Family), 

Asteraceae (Sunflower Family), Brassicaceae (Mustard Family), Lamiaceae (Mint Family), 

Fabaceae, and Poaceae (Grass Family). These families share complex, but highly 

successful reproductive and dispersal mechanisms (Heywood and Brunel, 2008). 

 Phenology may play a role in the ability for an introduced species to become 

invasive. Invasive species often flower earlier in some locations and later in others when 
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compared to native species (Godoy et al. 2008, Goodwin et al. 1999, and Pyšek et al. 

2003). Longer fruiting and flowering times (Lloret et al. 2005) may lead to greater seed 

production and a greater presence in the seed bank. Introduced species often leaf out 

earlier in the spring and retain their leaves later in the fall (Knight et al. 2007) when 

compared to native species. This increases the length of the growing season for 

invasives. They would have the potential to grow larger and to use more resources than 

native species with shorter growing seasons. 

 Many characteristics of invasive plants are attractive to gardeners and the 

horticulture industry including longer flowering and fruiting times (Lloret et al. 2005), 

more seed production (Mason et al. 2008, Knight et al. 2007, Heywood and Brunel 

2008), shorter seed germination times (Rejmanek and Richardson 1996, Wildrlechner et 

al. 2004), higher seedling survival rate (Grotkoop et al. 2010), greater vegetative growth 

(Lloret et al. 2005, Heywood and Brunel 2008), and the ability to germinate and survive 

in a bare ground landscape (Heywood and Brunel 2008). Many of these characteristics 

are found in early successional species that we consider “weeds.” 

The use of chemicals by invasive plant species to outcompete natives has been 

called the “novel weapon hypothesis” (Jarchow and Cook 2009, Jose et al. 2013). Some 

plant species secrete secondary compounds called allelochemicals that can inhibit the 

germination of seeds and/or growth of other neighboring species (Jarchow and Cook 

2009, Brooker et al. 2011). Allelochemicals can stunt growth or kill the roots of other 

species and may have other functions such as defense (Brooker et al. 2011, Jones et al. 
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2013). Commonly the chemicals are produced in roots (Jarchow and Cook 2009, Brooker 

et al. 2011) but may come from other parts of the plant like berries, leaves, and runners 

(Veit and Proctor 2011, Bechel and Proctor 2012, Gruber and Proctor 2012). Rhamnus 

cathartica (common buckthorn), Phalaris arundinacea (reed canary grass), and Typha 

angustifolia (narrow-leaved cattail) are Eurasian species that have become invasive in 

North America.  All three species produce allelochemicals (Knight et al. 2007, Jarchow 

and Cook 2009, Kirk et al. 2011, Veit and Proctor 2011, Larkin et al. 2012 ). 

Some species can modify their local environments by changing the soil PH and 

nutrient cycling; a decrease in soil PH releases more nutrients (Holzmueller and Jose 

2013). Typha Xglauca is the F1 hybrid of introduced T. angustifolia (narrow-leaved 

cattail) and native T. latifolia (broad-leaved cattail) (Kirk et al. 2011, Larkin et al. 2012). 

In North America, dense cattail stands are replacing diverse wetland plant communities 

and degrading habitats for animals, especially waterfowl (Jarchow and Cook 2009, Kirk 

et al. 2011). Using molecular analyses, Kirk et al. (2011) showed that T. Xglauca 

dominates cattail stands they studied in Ontario. Larkin et al. (2012) showed that live T. 

Xglauca plants do not seem to affect other plant species as much as the deep layers of 

litter they create. This litter degrades slowly and may reach a decimeter thick (Larkin et 

al. 2012).  It can interfere with seed germination of other species by reducing mean soil 

temperature, reducing temperature fluctuations, and creating a physical barrier (Larkin 

et al. 2011).  
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Naturalized species may lack predators or not be susceptible to diseases in new 

habitats (Larkin et al. 2012, Holzmueller and Jose 2013). This may improve their chances 

of survival and allow them to outcompete native species (Inderjit et al. 2005). 

As human mediated disturbances and plant dispersal increase worldwide, we are 

becoming more interested in being able to predict what species are likely to become 

invasive (Goodwin et al. 1997). Goodwin et al. (1997) tested easily obtainable 

characteristics of plants: habit (annual or perennial; herbaceous or woody), stem height, 

flowering period, and native geographic range (including environmental conditions) of 

110 pairs of European species from 29 plant families.  Pairs were congeners (from the 

same genus) with one naturalized in New Brunswick, Canada, and the other not 

occurring in North America (Goodwin et al. 1997). (Note that the authors refer to all the 

naturalized species as “invasive;” they do not distinguish between aggressive non-native 

species that crowd out native species and those non-native species that have 

naturalized without doing much harm.) A regression analysis on 55 paired congeners 

used biological characters only. Results indicated that habit had no effect on the ability 

to naturalize. However, the naturalized species were both significantly taller and had 

longer flowering periods than their European congeners (Goodwin et al. 1997). When 

this model was applied to the second set of 55 pairs of congeners, it was no better able 

to predict “invasiveness” than random selection (Goodwin et al. 1997). When native 

range was added to the analysis, only range was retained in the second model. The 

second model was able to correctly predict about 71% of the 55 species, which was 
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significantly different than random selection (Goodwin et al. 1999). The results of this 

study indicate that habit may not be as important as we think and that non-native plants 

cannot naturalize unless they encounter the right environmental conditions.    

All plants respond to local environmental conditions. For instance, plants grown 

in the shade usually have larger leaves than individuals of the same species grown in 

ambient light (Raven et al. 2005, Taiz and Zeiger 2010). This kind of response is referred 

to as phenotypic “plasticity” (Raven et al. 2005, van Kleunen et al. 2011). Van Kleunen et 

al. (2011) tested whether invasive species have phenotypic plastic responses that pre-

adapt them to a wider variety of environmental conditions than non-invasive species.  

Van Kleunen et al. (2011) looked at phenotypic plastic responses to shading because 

most introduced species first establish themselves in an open, disturbed habitat. Later, 

as plants become established, shade usually increase. The authors hypothesized that 

increases in leaf length, specific leaf area, and shoot to root ratios (indicating more 

resources allocated to stems and leaves) are adaptive phenotypic plastic responses to 

shade (van Kleunen et al. 2011). If invasive species show more phenotypic plastic 

responses to shade than non-invasive species, they could be pre-adapted to a wider 

variety of environmental conditions making them more successful (van Kleunen et al. 

2011).  

Van Kleunen et al. (2011) used a common garden experiment and 14 congeneric 

pairs of herbaceous species from 10 families with treatments of ambient light and 

shade. All of the species used were native to Europe but are now naturalized in North 
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America. One of each pair is invasive and the other non-invasive (van Kleunen et al. 

2011).  

At the end of the growing season van Kleunen et al. (2011) found that, overall, 

invasive species produced more biomass than non-invasive species.  Both groups 

produced more biomass in ambient light than they did in shade but this response did 

not differ significantly between the two groups (van Kleunen et al. 2011). The authors 

found that invasive species had significantly higher shoot-root ratios, which likely 

enables them to shade out competitors. Leaf lengths and specific leaf areas of invasive 

and non-invasive species were not significantly different (van Kleunen et al. 2011).  

Results of the study indicated that high biomass production across the different light 

treatments pre-adapts species to become invasive in another location (van Kleunen et 

al. 2011). However, longer leaves and greater specific leaf area are not adaptive 

phenotypic plastic responses of invasive species. The authors suggested there may be 

other phenotypic responses to shade they did not test and/or increased biomass of 

invasive species is due to adaptive physiological plasticity (van Kleunen et al. 2011). 

 

 

Environmental and physical factors that support invasive species: All invasive species 

go through 3 establishment stages (Niemiera and Von Holle 2009). Stage 1 is slow initial 

population expansion when the species first arrives at a new location (Niemiera and Von 

Holle 2009). During Stage 2, the species experiences rapid exponential population 
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ngrowth and, finally, in Stage 3, growth levels off and the species becomes established 

in the new area (Niemiera and Von Holle 2009). Figure 1 summarizes these stages.  

 

Figure 1. Stages of establishment of an introduced plant species after Niemiera and Von Holle 
2009, p. 167-187.  

 

Holzmueller and Jose (2013) propose that empty niches are important factors in 

an invasive plant’s ability to succeed. In species-rich communities, niches are filled and 

resources are used up by native species, making it difficult for non-natives to become 

established (Holzueller and Jose 2013). When resources are not used there is an empty 

niche, which leaves a gap that is susceptible to invasion (Holzmueller and Jose 2013). 

Since most invasive species show rapid growth and reproduction, they can often 

produce dense monocultures that at times are more productive than diverse 

communities of native species (Holzmueller and Jose 2013).  



 

 

13

The rate of invasion in the past century has accelerated (Niemiera and Von Holle 

2009).  This may, in part, be due to changing dispersal methods. Human-mediated 

dispersal is faster and carries non-natives farther than natural dispersal mechanisms. 

Human-mediated dispersal tends to deposit individuals into a new area more than once 

and from multiple populations (Lockwood et al. 2013, Jose et al. 2013).  

Natural and human-mediated disturbances may facilitate invasions by giving new 

plants the chance to take root in empty niches (Vitousek et al. 1997, Jarchow and Cook 

2009, Kirk et al. 2011, Lockwood et al. 2013). Many invasive plants are early-

successional species that can establish themselves in a disturbed habitat with minimal 

shading (Goodwin et al., 1999, Brooker et al. 2011, Van Kleunen et al. 2011). As we 

expand our roads, cities, and agricultural fields, more open ground become available for 

early-successional and other invasive species (Kirk et al. 2011). 

Studies in California show that fire affects different invasive species in different 

ways (Lockwood et al. 2013, Holzmueller and Jose 2013). Arundo donax (giant reed), fire 

promotes population density. Carpobrotus edulis (highway iceplant) invasion is usually 

slow without fire but more seeds germinate and plants spread more quickly after fire; a 

last example is Bromus rubens (reed brome) which only invades slowly without fire but 

stands can thicken and dominate an area with fire (Lockwood et al. 2013). 

 Global climate change has the potential to create more disturbances at both 

local and regional levels (Dale et al. 2011). Changes in temperature and precipitation 

patterns can lead to droughts, floods, fires, even changes to cloud cover (Dale et al. 



 

 

14

2011). The occurrence, timing, frequency, duration, and intensity of disturbances will 

change, which may increase the number of invasive species that become established in 

an area (Dale et al. 2011).  

 The ranges of both native and invasive plant species are mostly determined by 

climate (Dale et al. 2011). There are many models to help us predict what climate 

change will bring but the effects are complex and vary from model to model (Dale et al. 

2011). We know that enhanced CO2 levels will benefit plants that use a C3 pathway for 

photosynthesis (Vitousek et al. 1997, Dale et al. 2011). The effect of rising CO2 levels on 

plants that use the C4 photosynthesis pathway is less predictable (Dale et al. 2011). 

While we would like to know what specific effects climate change may have on 

disturbance and invasive species, it is difficult to predict what is going to happen (Dale 

et al. 2011). 

 

Taxonomy of Arctotheca prostrata 

 Arctotheca prostrata is a member of the Asteraceae (Sunflower Family) and 

native to South Africa. Figure 2 shows its classification within the family. 

 

Family: Asteraceae (Compositae) 

 Tribe: Arctotideae 

  Subtribe: Arctotidinae 

   Genus: Arctotheca 

    Species: Arctotheca prostrata 

 

Figure 2.  Classification of Arctotheca prostrata within the Asteraceae.  
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ASTERACEAE 

Asteraceae is the most recently-evolved vascular plant family and may also be 

the largest with about 23,600 species in 1,590 to 1,620 genera (Funk et al. 2009). Most 

species in Asteraceae are herbaceous annuals and perennials; some trees, shrubs and 

vines occur in tropical areas (Simpson 2010). Members of Asteraceae are found 

worldwide, commonly in arid and semi-arid regions in lower to middle latitude (Funk et 

al. 2009). Asteraceae has relatively few economically important plants; artichoke and 

sunflower are the most important (Simpson 2010).  

An older name for the family, Compositae, refers to the head, the distinguishing 

feature of the family. The head or capitulum is a compact arrangement of many small 

flowers called “florets.” One or more heads may be arranged in secondary 

inflorescences (Simpson 2010). There are three kinds of heads, which are made up of 

three kinds of florets. Disk florets are radially symmetrical with fused corollas; they are 

almost always perfect with functional stamens (male reproductive structures) and pistil 

(female reproductive structure). Ray florets are bilaterally symmetrical with an elongate, 

strap-shaped “ray” that imitates the petal of a typical flower; they are usually imperfect, 

often with the stamens absent. Ligulate florets resemble ray florets but are perfect and 

fertile. 

Radiate heads consist of a central disk consisting of disk florets surrounded by 

one or more series of ray florets. Discoid heads consist only of disk florets; ligulate 

heads consist only of ligulate florets (Simpson 2010). Florets are mounted on a 
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receptacle, which is surrounded by an involucre made up of one or more series of bracts 

called phyllaries or involucre bracts (Funk et al. 2009). All members of the family 

produce fruits called achenes, which are dry, indehiscent, single-seeded fruits. Each 

achene functions like a seed. Herein, I will use the term “achene” when specifically 

referring to fruit production but will use “seed” when discussing germination. 

 

TRIBE ARCTOTIDEAE 

 

Tribe Arctotideae consists of 215 species in 17 genera. All but three species are 

native to southern Africa (McKenzie and Barker 2008). The only established members of 

tribe Arctotideae in North America are found in California, New Mexico, (Mahoney 

2006), and Hawaii (Starr and Starr 2011). The species were introduced for horticultural 

purposes (Mahoney and McKenzie 2008). Of species in Arctotidinae only Arctotheca 

calendula is considered invasive (Dana et al. 2012, Mahoney and McKenzie 2012, Cal-IPC 

2014).  

 

GENUS ARCTOTHECA 

 Some species in genus Arctotheca have naturalized in Australia, Spain, Portugal, 

North America, and other places with Mediterranean climates (Brickell 1997, Mahoney 

2006, Mahoney and McKenzie 2008 and 2012). Arctotheca species are annuals and 

perennials with creeping to erect stems; leaves are basal and cauline, blades are mostly 

obovate with the margins pinnatified to pinnatisect with lower leaf surfaces +/- white-

woolly pubescent and upper leaf surfaces sparsely pubescent to glabrate; heads are 
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radiate with flat receptacles, ray florets are yellow to bluish; disk florets are bisexual and 

fertile with the corollas yellow or purplish to brownish (McClintock 1993, Brickell 1997, 

Mahoney 2006, Mahoney and McKenzie 2012).  

There has been a considerable amount of taxonomic confusion about  

Arctotheca prostrata and A. calendula.  In California both species have been identified 

as A. calendula (McClintock 1993, Mahoney and McKenzie 2008).  A recent publication 

from Hawaii indicates this identification error continues to be made (Starr and Starr 

2011).  

Arctotheca prostrata is native to the Western Cape, Eastern Cape and KwaZulu-

Natal provinces of South Africa (R. McKenzie, personal communication). It is a perennial, 

rosette-forming herb with creeping stems that root at nodes to form new rosettes. Ray 

florets are yellow on both faces and disk florets are completely yellow (McKenzie and 

Mahoney 2010, Mahoney and McKenzie 2012).  Arctotheca calendula is a tap-rooted 

annual with ray florets yellow above and reddish purple below and disk florets are dark 

greenish-purple to purple-brown.  Arctotheca prostrata can be found in disturbed areas 

and roadsides in California’s north coast, south coast, central west, and western 

Transverse Ranges (Mahoney and McKenzie 2012). Reports indicate that A. prostrata is 

sterile (McClintock 1993). Mahoney (personal communication) examined nine 

herbarium specimens and did not find mature achenes on any of them. However, the 

absence of achenes could be due to the small number of specimens available, 

immaturity of the individuals, or other factors (McKenzie and Mahoney 2010).  
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Life History Characteristics of Flowering Plants 

REPRODUCTION 

 Plants can reproduce, both sexually and asexually (Raven et al. 2005). Sexual 

reproductive success depends on the uniting of sperm with eggs in reproductive 

structures (Raven et al. 2005). Flowering plants require that pollen be placed on the 

stigma of a flower (pollination) and fertilization requires the pollen to grow a tube to 

transport sperm to eggs within ovules within the ovary of a flower (Raven et al. 2005). 

Fertilization of an egg results in a zygote that develops into an embryo.  Embryos are 

enclosed within seeds (mature ovules) within fruits (mature ovaries).  Seeds are 

surrounded by protective seed coats. 

Flowering plant species may be self-compatible, outcrossing (self-incompatible), 

or both.  A self-compatible individual uses its own pollen to fertilize its eggs, either 

within the same flower or on other flowers on the same plant or on a clone (Raven et al. 

2005). In temperate regions, more than half of the flowering plant species are self-

compatible (Raven et al. 2005). Outcrossing species require pollen from genetically 

different individuals to produce seeds (Raven et al. 2005). 

There are a number of ways that pollen can be transferred from one flower to 

another. The most common vectors are bees (Raven et al. 2005). Bees will locate a 

flower by odor and orient themselves by color and texture (Raven et al. 2005). Bees are 

most often attracted by blue or yellow flowers (Raven et al. 2005).  Other vectors 

include beetles, wasps, flies, birds, bats, wind, and water.  
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Asexual reproduction produces a clone of the parent plant as only mitotic cell 

division takes place (Raven et al. 2005). One type of asexual reproduction is vegetative 

reproduction where new plants are produced from non-reproductive tissues (Raven et 

al. 2005, Simpson 2010). Runners or stolons are above-ground stems that can root at 

tips or nodes to produce new plants that are clones (Raven et al. 2005). Other 

vegetative plant parts that can produce new plants include rhizomes, roots, stems, and 

leaves. When new shoots form on roots or leaves they are referred to as adventitious 

structures (Raven et al. 2005).  

Vegetative reproduction has advantages for species that tend to have individuals 

widely-spaced or rare in their habitats (Raven et al. 2005). Pollen usually doesn’t travel 

very far (Raven et al. 2005). A gap of 300 m is usually sufficient to isolate two 

populations of the same insect-pollinated species in temperate regions (Raven et al. 

2005). A trait of asexually-producing plants is that overall genetic variability within 

populations is reduced (Simpson 2010). This is beneficial for species that are well-

adapted to their habitats. However, reduced genetic variability can increase a species’ 

susceptibility to disease or reduce its ability to adapt to changing environmental 

conditions (Raven et al. 2005). Humans use asexual reproduction frequently in 

agriculture and horticulture to produce plants with desired characteristics (Raven et al. 

2005). 
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HYBRIDS 

Hybridization among different plant species occurs naturally (Raven et al. 2005, 

Simpson 2010). It can only take place if the two individuals are genetically similar, 

usually species in the same genus (congeners) (Simpson 2010). Hybrid offspring may be 

sterile or partially- to fully-fertile (Simpson 2010). Sterile hybrids can persist or create 

new “individuals” (clones) if they are able to do so via vegetative asexual reproduction 

(Raven et al. 2005). Introgression, which is when hybrid individuals backcross to one or 

both of the parents, is also common in nature. This can promote gene flow between two 

populations of different species (Raven et al. 2005, Simpson 2010).  

 Many hybrid individuals in the first filial (F1) generation are bigger and produce 

more, larger fruits and flowers than their parents (Jones et al. 2013). This is referred to 

as heterosis or hybrid-vigor (Raven et al. 2005, Jones et al. 2013). Humans have taken 

advantage of this phenomenon by creating inbred lines of economically important 

plants and crossing them to produce F1 hybrids (Jones et al. 2013). Creating and crossing 

inbred lines was first developed in the early 20th century in Zea mays (corn or maize). F1 

hybrids were 25% taller and produced larger cobs than their parents (Raven et al. 2005, 

Jones et al. 2013). In the U.S. 95% of corn is of hybrid origin (Jones et al. 2013). However 

a downside of this practice is that it is necessary to recreate the hybrid seeds every 

season (Jones et al. 2013) 

 Invasive Typha Xglauca is the F1 hybrid of introduced T. angustifolia (narrow-

leaved cattail) and native T. latifolia (broad-leaved cattail) (Kirk et al. 2011, Larkin et al. 
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2012).  A molecular study found up to 70% of the cattails in stands tested in Ontario 

were T. Xglauca (Kirk et al. 2011). Historic observations suggested T. Xglauca was sterile 

but recent evidence indicates it is at least partially fertile and can backcross with its 

parents (Kirk et al. 2011). Heterosis may play a role in the hybrid’s ability to dominate 

stands; clumps of T. Xglauca are larger, on average, than those of its parents (Kirk et al. 

2011). 

 Plant species may spontaneously double their sets of chromosomes producing 

polyploids (Raven et al. 2005, Brooker et al. 2011).  Sterile or partially-sterile diploid 

(having two sets of chromosomes) hybrids can double their chromosomes to produce 

tetraploids (having four sets of chromosomes), which restores fertility (Raven et al. 

2005). Kowal (1975) found that the pollen grains of tetraploid individuals are larger than 

those of diploid individuals in Packera (Asteraceae). Comparing pollen diameters may 

provide evidence that an individual in question is a polyploid. 

 

POLLINATION 

Pollination in flowering plants is the transfer of pollen that produces sperm from one 

flower to another.  Successful pollination results in sperm fusing with eggs to create 

zygotes that will develop into embryos within seeds.  

 

Pollination failure: There are several steps that must take place for successful 

pollination in flowering plants. First pollen must be released, then transported, and 
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finally, deposited on a stigma of a flower (Raven et al. 2005, Wilcock and Neiland 2002). 

Most plants, at least at times, experience varying rates of pollination failure (Wilcock 

and Neiland 2002). Wilcock and Neiland (2002) identified general factors that may cause 

pollen failure, including pre-dispersal failure, dispersal failure, and post-dispersal failure. 

Pre-dispersal failure may be due to loss of pollen to pollen feeders, losses to the 

environment, a lack of resources including water and nutrients, or because pollen is not 

removed from anthers (Wilcock and Neiland 2002).  

 Dispersal failure under natural conditions is typically due to pollinator limitation 

(Wilcock and Neiland 2002), which may be due to pollinator losses because of 

environmental factors. For example, if a flower is wind-pollinated, failure may be due to 

low pollen density and/or unfavorable weather conditions (Wilcock and Neiland 2002). 

A positive correlation between success and the floral display size has been found among 

a variety of plant species (Willson and Price 1977, Campbell 1989). Wilcock and Neiland 

(2002) note that reductions in petal size will frequently reduce pollinator visitation. 

Anderson (1991) studied pollination success in Achillea ptarmica (Asteraceae), a 

perennial herb found in damp grassland. The radiate heads are typically visited by 

syrphid flies. Anderson (1991) studied 40 patches of A. ptarmica that were chosen at 

random. Rays were removed from heads in some patches during the experiment 

(Anderson 1991). Anderson calculated the visitor rate on three consecutive days finding 

that the average visitation rate declined by 51% following the removal of the rays. 

Anderson (1991) also observed a slow increase in visitation rate with increased 
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inflorescence size. Thus the larger the inflorescence the more pollen it should receive 

(Anderson 1991). Removal of rays only slightly reduced seed set (Anderson 1991).  

There are four categories of post-dispersal failure: (1) pollen reaching a stigma is 

not or no longer viable; (2) low pollen densities, (3) poor pollen quality, and (4) the 

presence of too much self or heterospecific pollen on the stigma (Wilcock and Neiland 

2002). Pollen may be inviable due to chromosomal imbalance or environmental 

influences or because it is immature or unable to produce a pollen tube (Wilcock and 

Neiland 2002). Pollen may become inviable when it takes too long to reach a stigma 

(Wilcock and Neiland 2002). Poor pollen quality is commonly due to damaging 

environmental influences during its development (Wilcock and Neiland 2002).  

  

Pollen viability: Stone et al. (1995) and Firmage (2001) stress the importance of 

assessing the viability of pollen that will be used in hand-pollination studies. Stone et al. 

(1995) indicated that in papers they reviewed, pollen viability was not always noted.  

 There are several ways to test pollen viability. Pollen may be stained using 

acetocarmine, aniline blue, lactophenol cotton blue, propione carmine, Tetrazolium 

Chlorine (TTC), Iodine-Potassium-Iodide (IKI), safranin, and fluorescein diacetate 

(Ockendon and Gates 1976, Bolat and Pirlak 1999). Germination tests incubate pollen 

grains in sucrose solutions, either in droplets (“hanging drop method”) or in a solid 

medium (Ockendon and Gates 1976). Results of these tests are variable (Ockendon and 

Gates 1976, Bolat and Pirlak 1999). Stain tests are faster and much less complicated to 
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perform than germination tests. However, germination tests are thought to give the 

most accurate results (Bolat and Pirlak 1999).  

Acetocarmine or lactophenol cotton blue staining allows for clear distinctions 

between pollen grains with cytoplasm and those without a cytoplasm, which are sterile 

(Ockendon and Gates 1976). Stucky et al. (2012) studied pollination in an endangered 

perennial in the Asteraceae using the lactophenol cotton blue staining method. Pollen 

that is round, plump, and stained dark blue is positively correlated with pollen viability 

(Kearns and Inuoye, 1993). Stucky et al. (2012) collected anthers from 4 disk flowers 

from randomly selected heads (they used eight heads from each of six populations), and 

prepared slides with macerated anthers and stain. They viewed slides at 100x and 

sorted the pollen into two groups: (1) not shriveled and stained dark blue and (2) 

shriveled and/or not stained or only stained light blue. More than 93% of the pollen, 

over all six populations, stained dark blue and was considered viable (Stucky et al. 2012). 

This method has been widely used to assess pollen viability in cultivated and wild 

Helianthus (sunflower) species and in some interspecific hybrids (Atlagić et al. 2012). 

Atlagić et al. (2012) recommend increasing staining time to several hours because 

sunflower pollen is thick-walled with a spiky external coat.  

Agbagwa et al. (2007) used lactophenol cotton blue to stain pollen of three 

different varieties of Cucurbita moschata (Cucurbitaceae) from Nigeria. Agbagwa et al. 

(2007) found that time of day was an important factor in pollen viability. Pollen 

harvested in the morning was 96% viable but was reduced to 78%-62% by early 
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afternoon to only 8% by the next day. Pollen was dipped into a solution of lactophenol 

cotton blue in a glass Petri dish and allowed to sit and soak for 5 minutes when it was 

mounted on slides (Agbagwa et al. 2007). 

The fluorochromatic reaction (FCR) method of Heslop-Harrison and Heslop-

Harrison (1970) is a widely-accepted pollen viability technique (Pinilos and Cuevas, 

2007). Several sources show correlations between FCR results and in-vitro germination 

of pollen grains of many different species (Ockendon and Gates 1976, Shivanna and 

Heslop-Harrison 1981, Heslop-Harrison et al. 1984.) 

FCR tests the integrity of the plasmalemma and the activity of nonspecific 

esterases in the cytoplasm in living pollen grains. (Pinilos and Cuevas, 2007). Fatty acid 

esters in fluorescein easily enter the cell where they are hydrolyzed by esters to release 

fluorescein, which is fluorescent. This process will work only if the cell is intact so 

fluorescein only accumulates in living cells (Pinilos and Cuevas, 2007). Sunflower pollen 

contains a sugar (calose-beta-1, 3-glucon) that gives a fluorescent reaction and 

facilitates fluorescent microscopy methods (Atlagić et al. 2012). 

The FCR procedure is a more expensive and exacting method that requires 

special equipment. Substrate concentrations must be consistent if comparisons are to 

be made (Pinilos and Cuevas, 2007). Fluorescein slowly abandons pollen grains making it 

difficult to estimate the results as its concentration decreases in cells and increases in 

the medium. This limits the evaluation time of the procedure to only 15 minutes (Pinilos 

and Cuevas 2007, Dafni et. Al (2005). However, FCR tests have an advantage over in-
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vitro germination tests because they are faster and easier to conduct. 

In-vitro pollen germination is the most common way of testing pollen viability 

(Shivanna and Johri 1985). This process is based on the assumption that if pollen will 

germinate and produce a pollen tube in vitro it will do the same under natural 

conditions (Pinilos and Cuevas 2007). Accurate results require that the germination 

medium, temperature, and humidity levels must be optimal for each species (Pinilos and 

Cuevas 2007).  

Bolat and Pirlak (1997) compared three stain tests (TTC, IKI, and safranin) to 

actual germination rates of pollen grains in sucrose solutions (using hanging drop and 

solid medium techniques) for fruit trees.  They found only IKI stain test results differed 

significantly from TTC and saffranin tests. In all comparisons, stain tests predicted higher 

pollen viability than was observed in the germination tests but found that the results 

were correlated (Bolat and Pirlak 1999). Although Bolat and Pirlak (1999) indicated that 

similar studies have concluded that these stains are not reliable, consistent, or 

correlated with germination results, they felt staining pollen provided  a faster, easier 

alternative to germination methods. 

Ockendon and Gates (1976) used onion pollen to compare lactophenol cotton 

blue stain, FCR, and two germination methods: hanging drop and solid medium. The 

authors found the hanging drop method underestimated pollen germination because 

cells often burst during the procedure. FCR and solid medium germination techniques 

gave similar results. Cotton blue stain appeared to overestimate pollen viability 
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(Ockendon and Gates 1976). Ockendon and Gates (1976) indicated that the two halves 

of an anther can produce pollen of different viabilities and that different techniques 

present different technical problems. Although pollen germination techniques are 

thought to be the best test of pollen fertility, the authors point out that not all pollen 

that germinates is fertile (Ockendon and Gates 1976).  

Staining with lactophenol cotton blue is a fast, inexpensive and commonly-used 

method to test the viability of pollen. Although it does assess loss of viability over time 

(Heslop-Harrison et al. 1984, Knox 1984) and tends to overestimate viability (Ockendon 

and Gates 1976, Bolat and Pirlak 1999), it will indicate if an individual has the potential 

to fertilize an egg (Atlagić et al. 2012). 

 

Hand-pollination: Hand-pollination is used in studies that compare the performance of 

pollen donors, test inbreeding effects and incompatibility systems, and investigate 

sexual selection in plants (Stone et al. 1995). Hand pollination may be used to 

supplement natural pollination in crops in a case where resources are limited (Stone et 

al. 1995). Hand-pollination is the most common method for producing pure seeds 

(Ashworth 2002) or to increase fruit and seed production (Bierzychudek 1981, Willmer 

2011). 

 Hand-pollination techniques transfer pollen from an anther to a receptive stigma 

and can be used in both wind and insect pollinated flowering plants (Ashworth 2002). 

Flowers that serve as females must be isolated before and after pollination to prevent 
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contamination by unwanted pollen. The bagging technique is common though other 

methods, such as spatial separation, may be used (Ashworth 2002). In the bagging 

method polyester cloth or other lightweight fabric or paper is used to cover the flowers, 

or in the case of members of the Asteraceae, the entire head, to prevent insects or wind 

from transferring unwanted pollen (Kowal 1975, Ashworth 2002). Clear plastic bags or 

glossy envelopes should never be used as these might damage the flower by 

overheating it (Ashworth 2002).  

There are three outcomes for tests that assess natural pollination success:  1) an 

increase in reproductive success, 2) a decrease in success, or 3) no change in success. In 

a review of 99 cases of hand-pollination, Young and Young (1992) found 42.4% had an 

increase in female reproductive success, 40.4% had no effect, and 17.2% were found to 

have a reduction in reproductive success. Bierzychudek (1981) compared hand-

pollinated and naturally-pollinated individuals in a natural population of Arisaema 

triphyllum (Jack-in-the-pulpit). Results showed that hand-pollinated individuals 

produced an average of 43.2 mature seeds compared to only 1 mature seed in naturally-

pollinated individuals (Bierzychudek 1981). Martínez-Pallé and Aronne (2000) found 

similar results in the percent of fruit set in Ruscus aculeatus (butcher’s broom), a 

Mediterranean shrub. Only 3% of flowers set fruit when plants were open-pollinated 

while nearly 80% of flowers set fruit when hand pollinated (Martínez-Pallé and Aronne 

2000). 
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Young and Young (1992) list factors that could account for reduced fruit or seed 

set in hand-pollination efforts. These include (1) pollen density on a stigma is so great 

that pollen tubes interfere with each other, (2) stigmas may be damaged by pollen 

thieves, pollinators, or during the hand-pollination process, (3) low genetic diversity of 

pollen because only one donor is used, (4) the bagging process may reduce seed set, (5) 

hand pollination is performed before or after the stigma is receptive, (6) pollen may be 

inviable or too little pollen is applied (Young and Young 1992). Pollen age is also a factor. 

Stone et al. (1995) indicate that the average half-life of six species in Asteraceae is just 

2.45 hours and any slight change in conditions can alter this. Hand-pollination methods 

assume that pollen is of good quality but a review of 283 articles concerning hand 

pollination indicated 70% of authors did not mention pollen freshness or age (Stone et 

al. 1995).  

 

Seed Dormancy 

 Each flowering plant seed contains an embryo and endosperm, a nutrition and 

hormone source for the embryo (Raven et al. 2005).  Seeds are surrounded by a 

protective seed coat (Hopkins and Hüner 2009).  Fruits containing seeds are adapted for 

dispersal by a variety of agents including animals, wind, and water (Raven et al. 2005).  

Many seeds germinate when water, oxygen, and appropriate temperatures are present 

(Jones et al. 2013). The seeds of wild plants are subjected to highly variable 

environmental conditions especially the timing and amount of rainfall (Chrispeels and 
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Sadava 2003). Seeds of some species have developed a variety of mechanisms to cope 

with unpredictable conditions including seed dormancy to delay germination (Chrispeels 

and Sadava 2003; Taiz and Zeiger 2010). Seeds may remain dormant for variable periods 

allowing wild plants to build up a seed bank in the soil (Chrispeels and Sadava 2003; Taiz 

and Zeiger 2010). Seeds germinate when conditions are optimal (Chrispeels and Sadava 

2003).  

 Seeds are usually dessiccated when they are shed (Taiz and Zeiger 2010). 

Germination starts with imbibition (uptake of water) by the dry seed followed by 

embryo expansion. Germination is complete when the embryo breaks through the seed 

coat (Finch-Savage and Leubner-Metzger 2006, Taiz and Zeiger 2010).  

Some viable seeds do not germinate even under favorable conditions (Jones et 

al. 2013). These dormant seeds require additional stimuli to germinate (Finch-Savage 

and Leubner-Metzger 2006, Jones et al 2013). There are two types of seed dormancy: 

primary and secondary (Jones et al. 2013). Primary dormancy occurs when the seeds are 

dormant at the time they are shed (Taiz and Zeiger 2010, Jones et al. 2013). Secondary 

dormancy is initiated by environmental conditions after seeds have been shed (Jones et 

al. 2013). Secondary dormancy can be induced by extreme temperatures and/or the 

presence or absence of light (Finch-Savage and Leubner-Metzger 2006, Jones et al. 

2013). The function of secondary dormancy is to delay germination until environmental 

conditions favor growth (Jones et al. 2013). 
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 Dormancy is controlled by either the seed coat or from within the embryo 

(Jones et al. 2013, Finch-Savage and Leubner-Metzger 2006). The seed coat can be very 

complex and has several functions including suppressing germination by restricting 

imbibition and oxygen and limiting the expansion of the embryo (Hopkins and Hüner 

2009). Dormant seeds of some species under this control can endure hundreds of years 

and still germinate (Raven et al. 2005). Seed coat dormancy is common in annuals that 

must avoid germination during the dry season (Raven et al. 2005). Seed coat dormancy 

can be found in a wide variety of species including Arabidopsis, barley, lettuce, rice and 

oats (Jones et al. 2013). 

 Seed coat dormancy is controlled by four mechanisms (Taiz and Zeiger 2010). 

The seed coat can (1) prevent imbibition, (2) act as a mechanical constraint to the 

embryo, preventing it from breaking out, (3). interfere with the exchange of gasses, 

especially oxygen, and (4) block germination-inhibiting compounds, such as abscisic acid 

(ABA), from leaching out of the seed (Taiz and Zeiger 2010).  

 Embryo dormancy occurs when the embryo does not grow even when the seed 

coat has been removed (Jones et al. 2013). Embryo growth can sometimes be 

stimulated by cutting off the embryo’s cotyledon(s) (first leaf or pair of leaves), which 

may contain inhibiting compounds, such as ABA (Taiz and Zeigler 2010).  Seed dormancy 

in onions is controlled by its embryo (Jones et al. 2013).  

Seed dormancy can be broken in a number of ways. Environmental cues such as 

temperature may stimulate germination in some species (Finch-Savage and Leubner-
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Metzger 2006, Jones et al. 2013).  Both alternating temperatures (with fluctuations as 

little as 5-10°C) and/or low temperatures are known to break seed dormancy, but most 

seeds will not germinate until consistent temperatures are present (Hopkins and Hüner 

2009). Some species’ seeds need to be stratified, which is going through a period of cool 

moist conditions (Jones et al. 2013, Hopkins and Hüner 2009). Seed stratification is often 

required by species in temperate regions (Jones et al. 2013). Light can also be in 

important trigger; species require a specific wavelength to break dormancy (Jones et al. 

2013). Sometimes the seed coat must be abraded or removed by sand, microbes, or the 

passing of the seed through an animal gut (Hopkins and Hüner 2009). In Asteraceae, 

Solanaceae (Tomato Family), and Rubiaceae (Coffee Family) endosperm rupture is 

required before an embryo can emerge (Kucera et al. 2005). 

Plant hormones like abscisic acid (ABA) and gibberellins (GA) play a role in seed 

dormancy (Jones et al. 2013, Taiz and Zeiger 2010). Plant hormones are thought to play 

more active roles in embryo-mediated dormancies than in seed coat-mediated 

dormancies (Taiz and Zeiger 2010). However, the seed coat can block hormones from 

leaching out of a seed (Taiz and Zeiger 2010). ABA is a positive regulator for dormancy 

induction, which means it can delay germination (Kucera et al. 2005). When ABA is 

deficient, primary dormancy is absent in most cases (Kucera et al. 2005). GA stimulates 

growth (Taiz and Zeiger 2010). Increasing levels of GA can counteract the effects of ABA 

(Kucera et al. 2005). Another compound that can promote seed germination is ethylene 

(Kucera et al. 2005). Ethylene can promote germination of non-dormant seeds and in 
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some species like Arachis (peanut) and Helianthus (sunflower) ethylene can release the 

seed from dormancy (Kucera et al. 2013). However in most species ethylene alone 

cannot induce germination (Kucera et al. 2005).  

A study by Schultz et al. (2002) studied seed dormancy in a Mediterranean 

climate, which is characterized by having a prolonged dry period and a moderately cool, 

rainy winter.  This climate occurs around the Mediterranean Sea and along the west 

coasts of continents at about 45 degrees north and south latitude, including parts of 

California, Chile, Africa, and Australia (Raven et al. 2005). Most seeds adapted to this 

climate are dispersed at the end of the rainy season and must remain dormant until the 

next rainy season (Bell 1999, Schultz et al. 2002). The length of dormancy may coincide 

with the length of the unfavorable season (Schultz et al. 2002). Rare summer or early fall 

rainfall can stimulate germination (Ellery and Chapman 2000). However the effects of 

unseasonable rain are short-lived creating unsustainable conditions for seedling 

development. Such events are called “false breaks of season” (Ellery and Chapman 

2000). False breaks can cause large numbers of seeds to germinate. When dry 

conditions return, seedlings die, leaving an inadequate seed bank for later favorable 

conditions (Ellery and Chapman 2000). 

Schultz et al. (2002) studied four annual Asteraceae species in southwestern 

Australia finding that seeds of all four were strongly dormant at maturity and that 

dormancy was alleviated very slowly. As the number of days of the trials increased so 

did the number of seeds that germinated with the average length of the dormancy 
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coinciding with the length of the unfavorable period (Schultz et al. 2002). Schultz et al. 

(2002) also concluded that there is little carryover of seeds from the first season to the 

next season, so not much of a seed bank is established. 

 Ellery and Chapman (2000) studied seed dormancy in Arctotheca calendula 

(capeweed), a very close relative of A. prostrata. Both species are adapted to 

Mediterranean climates. Initially it was though that capeweed dominated other species 

in pastures because its seedlings were able to tolerate early season drought. More 

recently, studies have shown this may not be the most important factor (Ellery and 

Chapman 2000). Ellery and Chapman (2000) propose that capeweed’s success is due to 

deep seed dormancy mechanisms that protect its seeds from germinating during false 

breaks.  

 Ellery and Chapman (2000) performed three experiments that assessed seasonal 

effects and physiological effects of embryo and seed coat dormancy on germinability 

(percent of viable seeds) of capeweed seeds. Seeds were stored at constant 

temperature in the lab or placed outdoors on the soil surface where they were exposed 

to natural conditions, including seasonal temperature fluctuations (Ellery and Chapman 

2000).  Treatments to test embryo dormancy included leaching the seeds and cotyledon 

removal by bisection; both treatments would remove compounds that might inhibit 

embryo growth.  Treatments to test seed coat dormancy included leaving seed coats 

intact, removing them entirely, and rupturing them (Ellery and Chapman 2000). 

 Results indicated that at constant room temperature germinability of intact 



 

 

35

seeds did not differ significantly from 0 at any time over the 10 month testing period 

(Ellery and Chapman 2000).  Intact seeds on the soil surface in natural conditions 

showed primary seed dormancy lasted about six weeks. From February to September 

germinability on the soil surface increased to a maximum of about 14% in May.  The 

time period corresponds to late fall, winter, and early spring in the southern 

hemisphere.  Germinability of embryos without seed coats increased linearly to about 

60% under constant room temperature. Under natural conditions, embryos without 

seed coats germinated immediately, rising to a maximum germinability of 70% in March. 

Both treatments showed a dip in germinability that corresponded to minimum 

temperatures falling below 25 degrees C in midwinter (Ellery and Chapman 2000). 

 Tests for embryo dormancy showed intact seeds did not germinate following 24 

hours of leaching or imbibition in Petri dishes. Seeds with coats that were bisected, a 

process that removes cotyledons from embryos, showed about 10% germinability.  

When seed coats were removed for all three classes, control embryos showed 21.4% 

germinability, leached embryo germinability increased to 73%, while bisected embryos 

showed 83% germinability, indicating that compounds in seeds and/or cotyledons 

inhibit germination (Ellery and Chapman 2000).  

 Ellery and Chapman’s (2000) tests for seed coat dormancy showed that after 12 

months only 1.3% of intact seeds germinated. Removing seed coats increased 

germinability to 77% (Ellery and Chapman 2000). Although seed coat dormancy is a 

factor, it is unclear exactly how it functions.  Capeweed seed coats did not appear to 
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prevent embryos from growing nor did they prevent imbibition or gas exchange (Ellery 

and Chapman 2000).  It is possible that seed coats contain a germination inhibitor but 

this was not tested (Ellery and Chapman 2000). 

 Ellery and Chapman’s (2000) study found primary and secondary forms of seed 

dormancy in capeweed. Seed coat and embryo dormancy combine to create a very high 

level of dormancy; only 14% of viable seeds germinated under natural conditions in the 

first year after they were produced (Ellery and Chapman 2000). Embryo dormancy 

shows a seasonal cycle, which is typical of annual species. This type of dormancy can 

benefit the population by restricting germination to a season when a seedling is most 

likely to survive (Ellery and Chapman 2000). The deep embryo dormancy that Ellery and 

Chapman (2000) observed would prevent seed germination during false breaks in early 

spring but would not be effective during false breaks later in the season.  However, seed 

coat dormancy might protect seeds from late season germination. This high level of 

seed coat dormancy can provide an additional benefit of ensuring the seeds maintain a 

dormant state for germination in future years (Ellery and Chapman 2000).   

 Studies indicate that capeweed seed dormancy may be broken by a variety of 

stimuli including reduction of germination inhibitors over time by leaching or decreased 

production in cotyledons, high temperatures, large fluctuations in minimum and 

maximum daily temperatures, and the presence of light (Ellery and Chapman 2000). 

Rupture of the seed coat was not an important mechanism for breaking dormancy 

(Ellery and Chapman 2000). 
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IV.  METHODS 

 

Data and Statistical tests 

 Data measured for this study are nested at the following levels from most-

inclusive to least-inclusive.  

 

LEVEL 1.  POPULATION (designated by two capital letters) 

 There are four populations from California and one from South Africa; F1 progeny 

generated by crosses may also be considered at the population level.  Table 1 gives 

names and abbreviations for populations: 

 
Table 1. Origins, population names and abbreviations for Arctotheca  
prostrata plants used in this study. 
 

Origin Population Name Abbreviation 

California Gualala Bluff GB 

California Rodeo Valley RV 

California Tiburon TI 

California Tennessee Valley TV 

South Africa South Africa SF 

Crosses First filial progeny CX 

 
 
 

LEVEL 2.  CHUNKS (California) or INDIVIDUALS (South Africa and F1 progeny) (designated 

by numbers).   

 “Chunks” of plants were dug from populations in California at some distance 

from each other. Each chunk was made up of rosettes, either attached to each other by 

runners or not. Attached rosettes were noted when they were potted up. All plants 
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from South Africa and F1 progeny were genetically unique individuals because each was 

generated by a seed. 

 

LEVEL 3.  ROSETTES – California only (designated by capital letters) 

 Within each chunk from California I designated another level, the rosette.  These 

were both connected and unconnected plants within chunks.  It is not possible to 

confirm whether unconnected rosettes were genetically unique from other rosettes in 

the same chunk.  Individuals from South Africa and F1 progeny do not have any plants at 

this level. 

 

LEVEL 4.  CLONES (designated by lower-case letters set off by hyphens.)   

 These are plants that were created by rooting rosettes on runners either from 

rosettes (CA) or individuals (SF or CX).  Note: for consistency all plants received a 

designator at this level whether they were cloned or not. 

 

LEVEL 5. REPLICATES (numbers set off by hyphens at the ends of labels) 

 If more than one measurement was made on a plant, I refer to them as 

replicates.  

 

 All distributions of measurements were analyzed by Shapiro-Wilk tests for 

normality. Normally-distributed data were tested by one-way analysis of variance 
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(ANOVA). Data that failed Shapiro-Wilk tests were analyzed by Kruskal-Wallis one-way 

analysis of variance on ranks (SigmaPlot for Windows).   

 All measurements were analyzed from least-inclusive (lowest) to most inclusive 

(highest) nested levels to determine whether variability among means at any level were 

significantly different. It is not advisable to combine and analyze data that differ 

significantly at lower levels because these differences may be hidden by upper-level 

analyses (Kowal 1975). Measurements that were not significantly different within lower 

levels were pooled and analyzed at the next level up. 

 

 

Live Plant Collection in California 

  Dr. Alison Mahoney and two volunteers, Mary Sue Ittner and Fraser Muirhead 

collected living plants of Arctotheca prostrata from four populations in California. 

Volunteer collectors were given specific directions on how to identify, harvest, label, 

and package plants for shipment.  

 It was my goal to have five to six well-rooted chunks (putative “individuals”) of 

Arctotheca prostrata growing “a good distance” from each other from each population. 

Any rosettes attached along a runner were labeled as clones of the same rosette.  

 Collectors were requested to carefully wash the soil off plant roots, wrap them in 

wet paper towels, seal into plastic bags with each plant chunk in a different bag. Using a 

sharpie marker, collectors labeled the outside of the bag with a number or letter to 
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identify each chunk. A note inside each bag also identified each specimen. Bags were 

stored in a cooler or refrigerator until ready for shipping.  

 Collectors were asked to provide the following information: 1) date plants were 

collected, 2) detailed directions from an intersection that appears on a map to the 

collection site, 3) description of habitat, and 4) other ephemeral characters such as ray 

and disk color, insects present, scents, etc. Plants were shipped overnight to ensure the 

least amount of stress. No permit was required to ship this species within the U.S. 

 Once plants were received on campus, they were potted as soon as possible. 

Labels were assigned based on the system described above. Each plant was put in a 

labeled 4.25-inch clay pot in sterilized soil containing 1 part perlite, 1 part black soil, 1.5 

parts peat moss, 1 part sand. Clay pots were put into large plastic trays (22 inch by 11 

inch by 2.5 inch) with two to three inches of water in them and allowed to sit in water to 

assure proper moisture for a couple days and kept out of direct sunlight. After a few 

days, plants were put in a greenhouse and watered as needed. During summer months 

(mid-May through August) the plants were kept outside on a deck in New Ulm, MN. 

Plants received direct sunlight about 60% of the day from morning into early afternoon. 

During this time plants were only watered as needed and pots were allowed to drain 

freely. Plants were kept in a greenhouse during late fall, winter and early spring in trays 

that did not allow free drainage.  A list of all the plants and their roles in this study is 

given in Appendix I, Table A-2. 
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Seed Germination 

 Dr. Robert McKenzie (Rhodes University, South Africa) collected seeds from 

Arctotheca prostrata in Grahamstown, South Africa and shipped them to MSU under a 

U.S. Department of Agriculture permit to import small lots of seeds, no. p37-11-00316.  

 After unsuccessful attempts to germinate South African seeds in a soil and sand 

mix, I attempted to germinate them in Petri dishes. A new plastic 2-inch diameter Petri 

dish was lined with a standard household paper towel cut to fit inside the dish. Seeds 

were then added (one to six seeds per dish) and DISTILLED water was added until the 

paper towel and seeds were wet. The dish was then put in a south/southeast-facing 

window where it received sunlight and warmth with an average temperature of 68°F. 

DISTILLED water was added as needed to keep the seeds moist. When a seed 

germinated it was kept in the dish until it was large enough to be transplanted into a 

small plastic starter pot (two inch diameter). After about two weeks it was transplanted 

into a 4.25 inch clay pot. Dates that seeds were started, germinated, and moved from 

pot to pot were recorded.   

 

Testing Pollen Viability 

 Lactophenol cotton blue is a fast, inexpensive test for pollen viability. For these 

reasons, I tested the viability of pollen of Arctotheca prostrata after the method of 

Agbagwa et al. (2007). Pollen from a mature head of A. prostrata was collected by 

holding the head over a clean glass slide (3 by 1 inch) and tapping the head. One to two 
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drops of lactophenol cotton blue was added and allowed to sit for 30 minutes. A cover 

slip was then added and pollen was observed under a compound microscope at 100x. 

The cover slide was sealed with clear nail polish to preserve the slide for a short time.  

 I counted all pollen grains within one randomly-chosen field of view at 100x. 

Pollen grains were considered “viable” if they stained dark blue, looked plump, round, 

and uniform in size. Grains were considered “inviable” if they did not stain or were 

clearly smaller and misshaped. I measured and recorded the diameter of 25 pollen 

grains in micrometers on each slide using the inter-ocular measuring device.  

Measurements are given in Appendix II, Table A-2. 

 

Crossing Experiments (Hand Pollination) 

 To test the fertility of Arctotheca prostrata, multiple crosses were attempted 

using the method of Kowal (1975). During the first season crosses, were attempted 

between clones, rosettes from different chunks within the same California populations, 

between rosettes from different California populations, between different South African 

Individuals, and between Californian rosettes and South African Individuals. After the 

germination of F1 seeds, individuals that survived and flowered were also back-crossed 

to Californians and South Africans and crossed with each other. The availability of heads 

in anthesis (disc florets open and releasing pollen or with stigmas exposed) dictated 

what crosses were attempted. Plants produce more than one head and I numbered 

them in order of their appearance. 
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 Heads were bagged using lens paper (Distributed by VWR Scientific products # 

52846-001) when heads were near opening or immediately after opening before 

anthesis after the method of Kowal (1975). Lens paper was cut to size to cover the head 

(about 4 inches by 3 inches), labeled with a head number, and tied shut with very thin 

light-weight wire just under the involucre (Figure 3). Bags were opened periodically and 

inspected with a hand lens to look for signs of anthesis (the presence of pollen and/or 

extended stigmas). Heads that had not reached anthesis were rebagged. If the cross 

proceeded the two heads were touched to each other to transfer pollen, the head 

would be carefully moved several times and touched to give multiple chances for the 

transfer of pollen. Both heads were carefully rebagged after the cross and kept bagged 

to prevent contamination from other pollen. Plant and head numbers were recorded 

with the date of the cross, along with any other observations. Bagged heads were left 

on the plants until they matured when they were removed and dissected to look for 

mature achenes.  

 To serve as controls some heads were bagged but never crossed. This tested for 

self-compatibility. During the summer when plants were outdoors, some heads were 

left open to allow for natural pollination by bees and other insects. 

 

Allelopathic Abilities Testing 

Table 2 lists the plants used and what parts (leaves, roots, or runners) were 

harvested to test for allelopathic effects of Arctotheca prostrata. 
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Figure 3. Arctotheca prostrata heads were bagged using lens paper and very fine wire.   

 

Table 2.  Plants used in experiments to test for allelopathic effects on lettuce seedlings. Parts 
harvested from plants: L = leaves, Rt = roots, and Run = runners. 

 

Gualala Bluff 
(GB) 

Rodeo Valley 
(RV) Tiburon (TI) Tennessee 

Valley (TV) 
South Africa 

(SF) 

4E-a L 5A-f  L 1A-c L 3A-b L 1-d L 

4E-a Rt 5A-g  L 1A-c Rt 3A-c L 5-a L 

  
5A-f  Rt 1A-a Run 3A-b Rt 1-d Rt 

    5A-g  Rt     3A-c Rt 5-a Rt 

 

After plants were removed from pots the soil was carefully removed from the 

roots by hand to insure as little damage as possible to the roots. The plants were also 

washed with a minimum amount of water to remove any remaining soil. Figure 3 shows 

what plants looked like after being cleaned. Each plant was then placed in a labeled 

plastic Ziploc bag and stored in a refrigerator until further processing took place.  
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Figure 4. A single plant after removal from its pot and minimal rinsing.  
 

Next each plant was separated into three parts, 1) runners, 2) leaves, cut just 

above the crown, and 3) roots, cut just below the crown. The fresh material was ground 

in a ball grinder for 5 minutes and then kept in a new, labeled glass bottle. Samples 

were kept in the refrigerator for two weeks until further processing took place. The 

ground material was weighed to produce aliquots of approximately 0.5, 1, 2, and 4 

grams and placed in centrifuge tubes. Several replicates at each weight were created for 

each plant part. Some fresh material from each sample was saved to calculate percent 

water for all the samples. Ten mL of HPLC-grade water was put in each measured 

sample, vortexed for 5 minutes, and then centrifuged at 2500 RPM for 10 minutes.  

Filter paper was put into clean, heat-sterilized (550°C, 1 hour) glass Petri dishes. 

Each Petri dish was labeled on the bottom with the plant’s name and sample parts and 
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weight. Ten lettuce seeds were placed in each labeled Petri dish (Burpee, Black lettuce 

seed packaged for 2013) and liquid from each centrifuged sample was pipetted off and 

placed in the appropriate dishes. Controls were created by placing ten lettuce seeds in a 

Petri dish with filter paper and HPLC-grade water. The dishes were incubated at 26°C 

with 10 hours light and 14 hours of dark. Dishes were rotated vertically on the shelves 

every day, with samples from the bottom moved to the top and samples on shelves 

rotated to the shelves below. The number of seeds germinated was recorded after 24 

hours to assess germination rates. After 72 hours the experiment was terminated 

(Figure 4). Lettuce seedlings were removed from dishes and their roots measured.  

To calculate percent water, the remaining fresh (wet) material from each sample 

was divided into as many as four aliquots for replication.  The number of replicates 

depended on the amount of material left over in each sample. Fresh material was put in 

pre-weighed Petri dishes, weighed and heated in a 103-105°C oven for 24 hours. 

Samples were placed in a desiccator and reweighed after cooling. Data are provided in 

the Appendix, Table A-16.  Percent water was calculated and used to convert the wet 

weights into dry weights using the following steps: 

1. Percent water = (wet weight - dry weight) / wet weight x 100 

2. Percent dry material = (100 - percent water) 

3. Dry weight = wet weight x percent dry material  (number determined in #2) 
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Figure 5. Lettuce seedings and ungerminated seeds in a Petri dish after 72 hours.  

 

 

Morphological Measurements 

 Measurements are given in the Appendix, Tables A-4, A-5, and A-6. Plants were 

measured when the first head on an individual opened. Measurements to the head 

included disk width measured across center of the disk (Figure 5).  Ray length was 

measured by removing a ray floret, flattening it on a ruler, and measuring it from the 

base to the tip (Figure 6). Up to the first four heads on a plant were measured. 
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Figure 6. Disk width was measured on up to four heads on each plant across the center of the 
disk in cm when the head was fully open. 
 

 

Figure 7. Ray length was measured on up to four heads on each plant. Rays were flattened on a 
ruler and measured from base to tip in cm.  
 

 

Two leaf measurements (leaf length and leaf width) were made on the three 

largest leaves at the time the first head was measured. The length of each leaf was 

measured from the center of the rosette to the tip of the leaf.  Leaf width was measured 

at the widest part (Figure 8).  
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Figure 8. Leaf length and width were measured in cm on three leaves on each plant at the time 
head measurements were made. 
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V.  RESULTS 

 

Seed Germination 

Seed germination time varied among and within populations from a minimum of 5 days 

to a maximum of 296 days. Seeds received from South Africa took an average of 86.3 

days to germinate (n = 6, SD 49.0). Seeds generated from my artificial crosses on South 

African plants took an average of 97.3 days (n = 10, SD 70.9); seeds generated on 

Californian plants took an average of 194.4 days (n = 4, SD 100.2). Table 3 summarizes 

results for the germination trials.  

 

Pollen Viability 

Pollen viability was tested by staining pollen with lactophenol cotton blue. Pollen 

grains were considered “viable” if they were uniform in size, round, and stained dark 

blue. Pollen grains that were either unstained or small and shriveled were considered 

“inviable.” The total number of grains counted per slide ranged from 75 to 412. Data are 

given in the Appendix, Table A-3. Counts on seven clones from three populations 

indicated plants from California had, an average pollen grain viability of 94.4% (2200 

pollen grains counted; SD 3.6). Five counts on two South African plants had an average 

viability of 96.5% (1270 pollen grains counted; SD 1.9). Table 4 gives results of ANOVAs 

comparing pollen viability among populations within California and pollen viabilities of 

Californian and South African plants. 

  



 

 

51

Table 3. Origin of seeds (achenes), number of seeds in each trial, number of seeds that 
germinated, days to germination, number of days ungerminated seeds were kept moist 
in their plates before the attempt was terminated, and offspring produced. 

Origin/Female 
(H = head no.) Male Number of 

seeds/trial 
Days to 

germination 
Length of trial 

(days) Offspring 

South Africa  2 0 455  
South Africa  1 92 - SF 1-a 
South Africa  1 140 - SF 2-a 
South Africa  1 0 435  
South Africa  1 92 - SF 3-a 
South Africa  1 0 489  
South Africa  1 21 - SF 4-a 
South Africa  1 21 - SF 5-a 
TV 1A-a  H:2 Open 7 0 195  
TV 1A-a  H:2 Open 1 83 - CX 6 
TV 1A-a  H:2 Open 1 95 -  
TV 1A-a  H: 2 Open 4 0 315  
TV 1A-a  H: 2 Open 1 296 - CX 14 
SF 2-a  H:1 GB 1A-a 4 0 245  
SF 2-a  H:1 GB 1A-a 1 170 - CX 9 
SF 2-a  H:1 GB 1A-a 1 170 - CX 10 
SF 2-a  H:1 GB 1A-a 3 0 195  
SF 2-a  H:1 GB 1A-a 1 195 - CX 11 
SF 1-a  H:4 Open 4 0 325  
SF 1-a  H:4 Open 5 0 392  
SF 1-a  H:4 Open 10 0 210  
SF 1-a  H:4 Open 1 0 209  
SF 1-a  H:4 Open 3 0 324  
SF 1-a  H:4 Open 6 0 195  
SF 1-a  H:4 Open 1 5 - CX 1 
SF 1-a  H:4 Open 1 7 - CX 2 
SF 1-a  H:4 Open 1 153 - CX 3 
SF 1-a  H:4 Open 1 41 - CX 4 
SF 1-a  H:4 Open 1 54 - CX 5 
SF 1-a  H:4 Open 1 81 - CX 7 
SF 1-a  H:4 Open 1 97 - CX 8 
GB 5A-e H:1 GB 5A-b 5 0 330  
GB 5A-e H:1 GB 5A-b 3 0 209  
GB 4A-f  H:1 TI 1A-e 3 0 209  
GB 4A-f  H:1 TI 1A-e 2 0 293  
GB 4A-f  H:1 TI 1A-e 1 221 - CX12 
GB 4A-f  H:1 TI 1A-e 1 277 - CX 13 
GB 1A-a  H:2 SF 2-a 6 0 259  
GB 1A-a  H:2 SF 2-a 5 0 209  
GB 1A-a  H:1 RV 4A-a 5 0 307  
GB 1A-a  H:1 RV 4A-a 9 0 209   
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Table 4. Summary of results of one-way ANOVAs on percent pollen 
viability for Arctotheca prostrata. N-values given in respective order.  
Significance level of p<0.05. 

Level: Among CA Populations 

Entities: GB, RV, TI 
Values of X: pooled means* and unreplicated 

n: 3, 2, 1 
p-value: 0.506 

   

   Level: Between CA and South Africa 

Entities: CA Populations SF 1 
Values of X: pooled means* replicates 

n: 6 5 
p-value: 0.183 

   * Mean values for replicates for any single plant were calculated and 
pooled with unreplicated values to prevent weighting problems. Raw 
data are given in the Appendix, Table A-3. 

 

Crossing Experiments 

An important component of this study was performing artificial crosses to 

determine if Arctotheca prostrata plants from California are fertile. Artificial crosses 

were made as heads in anthesis were available simultaneously. If only one head was 

available it was either bagged as a control (self-cross) or left unbagged (open).  Out of 

104 total attempts, 25 heads produced mature achenes/seeds (Table 5).  Of 36 open 

pollination attempts, nine produced achenes.  The average ratio of mature achenes to 

potential achenes in artificial crosses was similar to that of openly-pollinated heads 

(Table 6).  

 Achenes from intentional crosses or openly-pollinated heads were germinated 

resulting in 14 F1 individuals designated CX 1 through CX 14. Some of these individuals 
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were backcrossed to Californian and South African plants. Table 5 lists successfully 

crossed individuals, number of mature achenes, partially- or undeveloped achenes, total 

number of potential achenes (number of disk florets), and the ratios of mature to 

potential achenes for all successful artificial crosses and openly pollinated heads, and F1 

offspring generated. A summary of successful crosses is given in Table 6. Complete 

crossing data are given in the Appendix, Table A-7. 

 In all but one of 24 attempts, uncrossed bagged heads (self-crosses) or crosses 

between known clones or assumed clones of the same individual failed to produce any 

achenes. The exception was a cross between Gualala Bluff (GB) clones 5A-b and 5A-e, 

which resulted in 12 achenes out of a potential 50. (See discussion.) Six attempts were 

made to cross rosettes from different chunks within the Rodeo Valley (RV) California 

population. All failed to produce achenes.  No other within-California population/among 

chunk crosses were attempted because heads in anthesis were not simultaneously 

available.   

 Four attempts were made to cross different South African individuals. A pair of 

reciprocal crosses produced viable achenes. Nineteen attempts were made to cross 

rosettes from different California populations. Two crosses with Gualala Bluff heads 

serving as females were successful. Four attempts were made to cross South Africans 

serving as females with Californians. Two crosses were successful.  Five attempts were 

made to cross Californians serving as females with South Africans. Three crosses were 

successful.  Five crosses between F1-generation individuals were attempted. Four were  
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successful.  Two crosses between South African individuals and F1-generation individuals 

were attempted. One was successful. 

The average ratio of the numbers of mature achenes to potential achenes (total 

number of disk florets) in a head was the same (0.29) for both plants from California (n = 

13; SD 0.15) and from South Africa (n = 17; SD 0.279). The maximum ratio among 

Californians was 0.54 versus 0.93 for the South Africans. 

 

Allelopathic Abilities 

 Table 7 lists the plants used to test allelopathic abilities of Arctotheca prostrata. 

A complete list of plants, their fresh (wet) and dry weights, and information concerning 

germination times for lettuce seeds are summarized in the Appendix, Table A-8. Raw 

data are given in the Appendix, Tables A-12 through A-15. Measurements made on fresh 

(wet) and dried samples for calculations of percent water and percent dry weight are 

given in the Appendix, Table A-16. 

 My results indicate that aqueous solutions of ground up leaves, runners, and 

roots of Arctotheca prostrata had an overall negative effect on the growth of lettuce  

seedling roots. Figure 9 compares six lettuce seedlings germinated in two extracts 

containing 2.0 g and 3.98 g fresh ground roots of A. prostrata plant TV 3-c.  In general 

the higher the concentration of ground material, the greater its effect on limiting 

growth of the lettuce seedlings’ roots. Ground root and leaf material with the same dry  
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Figure 9. Lettuce seedlings after 72 hours in extracts containing 2 g (left) and 3.98 g (right) fresh 
ground roots of Arctotheca prostrata. 
 

weight from Californians appeared to have a greater effect on lettuce seedling root 

lengths than material from South Africans (Figures 10 and 11). Runners appeared to 

have a greater effect on limiting growth than roots and leaves (Figure 12).  

 One-way analysis of variance (ANOVA) tests indicated that there was high 

variability among some replicates and clones. Summaries of results of ANOVAs are  

given in the Appendix, Tables A-9, A-10, A-11. It was difficult to measure root lengths of 

less than 5 mm accurately. Statistical analyses were run with complete data sets and 

with values of less than 5 mm omitted.  There were two changes in statistical 

significance among tests run with and without low values (Tables A-9 and A-11).   

 Figures 10 and 11 show mean lettuce seedling root lengths when grown in 

aqueous solutions of various concentrations derived from leaves and roots of 

Arctotheca prostrata plants. Low values were removed from data in these figures. 



 

 

 

 

Figure 10. Mean length of lettuce seedling roots (mm) arranged by dry weight (g) of leaf material 
from Arctotheca prostrata in 10 mL of HPLC
controls, gray = TI, purple = SF, 
have been combined here. Dry weights of leaf material are shown on th
A * above a bar indicates replicates within samples were sign
without stars indicate no significant difference
was available. Seedling root m
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Mean length of lettuce seedling roots (mm) arranged by dry weight (g) of leaf material 
. Colors code for populations: yellow = 

blue = TV, green = RV, and red = GB. Replicates within samples 
axis with the plant name. 

ficantly different (p<0.05).  Bars 
among replicates within samples or only one sample 
less than 5 mm have been omitted. 
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Figure 12. Mean lettuce seedling root length
leaf, and runner extracts from the Tiburon (TI) population of 
bar = controls, brown bars = roots, green bars = leaves and red bars = runners. 

 

 

Morphological measurements

 Tables 8 and 9 summarize results from one

length, respectively.  Analysis of variance found significant differences among repli

at the lowest levels for leaf width and leaf l

on leaf measurements. Raw data sets 

lengths are given in the Appendix, 

 

Mean lettuce seedling root lengths measured after 72 hours growth 
leaf, and runner extracts from the Tiburon (TI) population of Arctotheca prostrata

rown bars = roots, green bars = leaves and red bars = runners. 

Morphological measurements 

summarize results from one-way ANOVAs of disk width and ray 

.  Analysis of variance found significant differences among repli

the lowest levels for leaf width and leaf length.  No further ANOVAs were carried out 

Raw data sets for disk widths, ray lengths, leaf widths, and leaf 

the Appendix, Tables A-5 and A-6. 
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growth in root, 
Arctotheca prostrata. Yellow 

rown bars = roots, green bars = leaves and red bars = runners.  

way ANOVAs of disk width and ray 

.  Analysis of variance found significant differences among replicates 

No further ANOVAs were carried out 

leaf widths, and leaf 
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Table 8. Summary of results of one-way ANOVAs on disk width measurements on 
Arctotheca prostrata. N values given in respective order.  Significance level of p<0.05. 

Level: Within Rosette (among Clones) 

Rosette GB 5A RV 5A TI 1A 
Clones  b, d, e, f e, f, g a, e 
n: 2, 1, 1, 2 2, 3, 5 2, 2 
p-value: 0.80 0.40 0.33 

    

    Level: Within Population (among Chunks) 
Population GB RV TV 
Chunk 1, 2, 4, 5 2, 3, 4, 5 1, 3 
n: 3, 3, 2, 7 2, 3, 5, 8 2, 2 
p-value: 0.41 0.40 0.33 

    

    Level: Within Individual 
(among Clones) 

Within Population 
(among Individuals) 

Among Populations 

Entity: SF 1 SF   
Comparison:  a, b, c 1, 2, 3 GB, RV, SF*, TI, TV 
n: 5, 3, 4 10, 3, 2 11, 14,10, 4, 4 
p-value: 0.88 0.004 <0.001** 

    * Individual SF 2 was removed from this analysis because mean disk width 
measurements were significantly different from disks of SF 1 and SF 3.  

** Pairwise comparisons indicate mean disk widths of Individuals SF 1 and 3 differ 
significantly from mean disk widths of all CA populations.  Mean disk widths within CA 
populations do not differ significantly from each other. 
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Table 9. Summary of results of one-way ANOVAs on ray length measurements of 
Arctotheca prostrata. N-values given in respective order.  Significance level of p<0.05. 

Level: Within Rosette (among Clones) 

Entity: GB 5A RV 5A TI 1A 
Comparison:  b, d, e, f e, f, g a, e 
n: 3, 2, 2, 3 2, 3, 5 2, 2 
p-value: 0.47 0.13 0.33 

    

    Level: Within Population (among Chunks) 

Entity: GB RV TV 
Comparison:  1, 2, 4, 5 2, 3, 4, 5 1, 3 
n: 3, 3, 2, 7 2, 3, 5, 8 2, 2 
p-value: 0.38 0.56 1.00 

    

    Level: Within Individual 
(among Clones) 

Within Population 
(among Individuals) 

Among Populations 

Entity: SF 1 SF   
Comparison:  a, b, c 1, 2, 3 GB*, RV, SF*, TI, TV 
n: 5, 3, 4 10, 3, 2 12, 15, 13, 5, 5 
p-value: 0.09 0.39 <0.001 

* Pairwise comparisons indicate mean ray length of the SF population differ significantly 
from mean ray lengths of all CA populations except GB.  Mean ray lengths within CA 
populations do not differ significantly from each other. 

 

 

The average diameter of pollen grains from California plants was 18.8 

micrometers (n = 150; SD 1.45). South African pollen had an average diameter of 20.4 

micrometers (n = 150; SD 1.65).  Table 10 gives results for analysis of variance at various 

levels for pollen grain diameter. 
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Table 10. Summary of results of one-way ANOVAs on pollen diameter measurements 
on Arctotheca prostrata. N values given in respective order.  Significance level of 
p<0.05. 

Level: Within Clones/Individuals (between Heads) 
 Clone: GB 1A-a SF 1-a 
 Heads: 1 and 2 2, 3,** 6, 7, 8 
 n: 24 in each* 25 in each 
 p-value: 0.490 <0.001 
 

    

    Level: Within Populations (Between Chunks) 
 Population: GB RV 
 Chunks: 1 and 4 4 and 5 
 n: 48, 25 25 each 
 p-value: 0.175 0.05 
 

    

    Level: Within Population 
(among Individuals) 

Within California 
(among Populations) 

Between CA and SF 

Entity: South Africans Californians  
Comparison:  1,** 2 GB, TI, RV CA (pooled) and SF 
n: 100, 25 73, 25, 50 148, 125 
p-value: <0.001 0.149 <0.001 

    * One value > 2 standard deviations from the mean removed from each data set.  

** Pairwise comparisons indicated mean pollen diameter from head #3 was 
significantly different from mean pollen diameters from other heads, which did not 
differ from each other. Data from Head #3 were removed from all upper-level tests. 
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VI.  DISCUSSION 

Seed Germination 

 A one-way ANOVA indicated there was no significant difference in the number of 

days it took for seeds from California, South Africa, or F1 individuals to germinate. The 

number of days varied among trials from 5 days to 296 days. This variability suggests 

seeds require some kind of signal, chemical reaction, or physical reaction to break out of 

dormancy.  

 Ellery and Chapman’s (2000) study of seed dormancy in capeweed (Arctotheca 

calendula) indicated that species has complex seed dormancy mechanisms that adapt it 

to a Mediterranean climate with a prolonged dry season and unseasonable rains (“false 

breaks of season”). Arctotheca calendula is a very close relative of A. prostrata. Both 

species are adapted to the same environmental conditions.  Strong seed dormancy 

mechanisms in A. prostrata would allow its seeds to germinate when conditions are 

favorable and to allow a large seed bank to build up.  

 

Pollen Viability 

More than 90% of the pollen produced by Arctotheca prostrata plants from 

California and South Africa appeared to be viable using the lactophenol cotton blue 

staining method. There was no significant difference between Californian and South 

African viable pollen percentages. Pollen inviability does not appear to be a problem for 

Arctotheca prostrata in California. 
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Crossing Experiments 

 Various combinations of Arctotheca prostrata plants were artificially crossed to 

test the fertility of plants from California. Only one of the self-crosses (a cross between 

two clones, GB 5A-b and GB 5A-e on July 18, 2012) was successful, which is not expected 

for outcrossing species (Table 6). Between July 16 and July 20, plants RV 4A-a, RV 5A-g, 

TV 3A-a, and SF 1-a had heads close to anthesis. During the summer, the plants were 

kept outside where pollinators had access to them.  It is possible that contamination 

occurred prior to GB 5A-b’s head being bagged and the cross with GB 5A-e’s made. 

 Attempts to cross plants from different California populations (putative distinct 

individuals) succeeded (Tables 5 and 6) supporting my hypothesis that plants in 

California are fertile. Two plants from Gualala Bluff were crossed successfully with a 

plant from Rodeo Valley and a plant from Tiburon.  Two open-pollinations occurred on 

two heads from a plant from Tennessee Valley. The heads were at anthesis on 

approximately June 2 and August 17 of 2012, so could not have fertilized each other. 

Achenes from one of these heads produced two F1 offspring, although one died (Table 

6). Plants from Gualala Bluff and Rodeo Valley were successfully crossed with two 

individuals from South Africa. 

 Six attempts to cross rosettes from different chunks within the Rodeo Valley, 

California population were made.  No achenes developed from these crosses. This 

suggests that at least some of the “populations” in California consist of rosettes cloned 

from the same individual. If the species is outcrossing, as my results suggest, achenes 
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would not be expected to develop despite pollen moving from rosette to rosette. It 

would have been better if other among-chunk/within population crosses had been 

tested.  However the crosses were determined by the availability of heads in anthesis at 

any given time. 

 On average, about 29% of the florets in a head produced viable achenes in 

successful crosses/open pollinations of Californian, South African, and F1 generation 

individuals (Table 6). There was no significant difference between the number of 

achenes produced by South Africans and Californians. However, many crossing attempts 

failed. Not enough is known about the expected rate of pollination success and achene 

maturation for this species to say whether this is normal. Poor timing may have 

contributed to a lower-than-expected fertility rate. If pollen was immature or stigmas 

unreceptive, crossing attempts would have failed. Over the three seasons these 

experiments were carried out, I used a hand lens to look for receptive stigmas.  I also 

crossed heads in various stages to help rule out problems with timing.  

  Arctotheca prostrata plants from California were found to be fertile under the 

conditions of this study. Controlled, hand-pollinated individuals and uncontrolled open 

pollinations produced fertile achenes. This species has been considered “sterile” in 

California. However, Mary Sue Ittner, one of the collectors for this study, noted what 

she thought were seedlings in the Gualala Bluff population. Naturalized populations are 

not common. Relatively few herbarium specimens have been made, suggesting the 

species has not been well studied. The species has been confused with the annual A. 
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calendula, which produces achenes abundantly. As a perennial, A. prostrata may rely 

less on seed production and more on its ability to spread aggressively by runners. My 

results suggest that Arctotheca prostrata is outcrossing, although a single putative 

crossing between two clones did produce achenes. It is possible that many, if not most, 

“populations” from California represents single clones. If a distance of 300 m is sufficient 

to isolate two populations of insect pollinated species (Raven et al. 2005), California’s 

widely-spaced “populations” may almost never receive pollen from genetically distinct 

individuals.  

 

Allelopathic Abilities 

Lettuce seedling root lengths varied from about 3 mm to 44 mm.  Often, the 

roots less than 5 mm long appeared stunted and compressed. They were difficult to 

measure accurately. While previous experiments did not show extracts of Arctotheca 

prostrata had an effect on lettuce seed germination rates (Gruber and Proctor 2012, 

Bechel and Proctor 2012) my records indicate that not all lettuce seeds had germinated 

within 24 hours (Appendix, Table A-7). It seems likely that seedlings with shorter roots 

germinated later than those with longer roots. However, it was not possible to 

determine whether this was so from these data.  

Because of the difficulty of getting accurate short root measurements, one-way 

ANOVAs were run with and without lettuce seedling root lengths of less than 5 mm 

(Appendix, Tables A-9, A-10, and A-11). Running the data two ways resulted in two 
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different results. When all values were included the effects of 1 g fresh leaf material 

from the two South African individuals, SF 1 and SF 5, were significantly different but 

were not different when values less than 5 mm were omitted (Appendix, Table A-9). 

When all values were included the effects of 4 g fresh root material among three 

replicates of RV 5A-g were not significantly different but when values less than 5 mm 

were omitted, they were different (Appendix, Table A-11). In each case, there were 

many values less than 5 mm. 

Observations on germination after 24 hours indicated some of the Petri dishes 

appeared to be drier than others.  Some replicates were lost when dishes became too 

dry and the seedlings died (Appendix, Table A-8). Some potential causes for this can be 

ruled out. All of the samples were run at the same time.  The same HPLC-grade water 

from the same container was used for all samples and controls, and the water was 

measured carefully. All samples were incubated at the same time together in the 

incubator and were rotated vertically on the shelves every day.  However, they were not 

rotated horizontally. If one side of the incubator was slightly warmer than the other, 

dishes on that side may have dried faster. 

 

Within sample/among replicate analyses: I did not expected to observe significantly 

different mean lettuce seedling root lengths at this level. As expected, mean root 

lengths of lettuce seedlings grown in leaf extracts from GB 4E-a (1 g wet weight) and in 

root extracts from RV 5A-f and RV 5A-g (4 g wet weight, all values included) and SF 5-a, 
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TV 3A-b, and TV 3A-c (2 g wet weight), and in runner extracts from TI 1A-a (1 and 2 g 

wet weight) were not significantly different. However, mean lettuce seedling root 

lengths from RV 5A-f and RV 5A-g in root extracts (1 and 2 grams of fresh weight) were 

significantly different at the among-replicate level. These differences may be due to 

several factors: 

First, while all the seeds came from the same lot, there may be natural variation 

in the germination rates of seeds and the growth of the seedlings. Not all the seeds 

germinated within the first 24 hours. It is possible that seedling root length was 

inversely correlated with the time it took for roots to break out of the seed coat. A 

second possibility is that the Petri dishes did not maintain the same moisture level 

during the germination period. Limited water may have affected seed coat imbibition, 

germination rates, and root growth. All of the Petri dishes were washed and sterilized at 

550 degrees Celsius for 1 hours and this process may have warped the glass causing 

some lids to fit tighter than others. Moisture may have been lost from dishes with poor-

fitting lids.  

 

Within rosettes (and chunks or individuals)/among clones: Variability of mean lettuce 

seedling root lengths among samples that tested differences among clones (within 

rosettes/chunks or individuals) was analyzed next. Again I expected that there would be 

no significant differences within rosettes/chunks from California or within individuals 

from South Africa. However, when comparing the effect of leaves from two clones, RV 
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5A-f with RV 5A-g, at 1 gram of wet root material there was a significant difference, with 

a p-value <0.001.  The effect of roots from clones TV 3A-b and TV 3A-c were significantly 

different with a p-value <0.005. Again, this could be explained by variation in the lettuce 

seeds, or some samples being drier than others.  

The age of the harvested Arctotheca prostrata plants varied and could be 

expected to have different effects on the lettuce seedlings. The ages of the original 

California plants are unknown. GB 4E-a and TI 1A-a represent original plants from 

California sent in March of 2011.  The South African individuals were at least a year 

younger than the Californians and were germinated from seeds between April 2012 and 

September 2012 so their ages varied as much as 5 months. However, age can be ruled 

out as a factor in differences between the effects of clones RV 5A-g and RV 5A-f and 

clones TV 3A-b and TV 3A-c. In each case the clones were rooted at the same time, each 

pair from the same runners. 

An important problem with comparing the effects of clones were the differences 

in dry weights of plant material for each set of clones at any particular wet weight class.  

While dry weights among replicates did not differ significantly, dry weights of leaf 

material for clones RV 5A-f and RV 5A-g at the 1 gram wet weight class were 0.12 and 

0.19, respectively (Table A-8). (All values for root lengths for RV 5A-f were less than 5 

mm so the data are not included in Figure 10.) Dry weights of root material for clones 

RV 5A-f and RV 5A-g at 4 gram wet weight class were 0.59 and 0.79, respectively (Table 

A-10, Figure 11). In this comparison, higher dry weight of root material did have a 
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greater effect on lettuce seedling root length. More difficult to explain are the effects of 

the very similar dry weights of root material from clones TV 3-b (0.33 g dry weight) and 

TV 3-c (0.32 g dry weight) at the 2 gram wet weight class. The mean length of lettuce 

seedling roots was 12.8 mm (SD = 2) when grown in an extract from TV 3-b but was 26.4 

mm (SD = 2) when grown in an extract from TV3-c (Figure 11). As mentioned before, 

there was no age difference in the clones. 

Measurements of lettuce seedling root lengths with means that differed 

significantly between clones were not combined for analysis at higher levels. 

 

Within-population/among-individual analysis: Mean root lengths of lettuce seedlings 

grown in approximately 1g of fresh ground leaf material from individuals SF 1-d and SF 

5-a were significantly different when all measurements were included (p = .005) but not 

significantly different when values of less than 5 mm were omitted (p = 0.6). Dry weights 

for the two samples, respectively were 0.15 and 0.12 grams, which are similar and 

probably comparable. Mean root lengths of lettuce seedlings grown in approximately 2 

grams of fresh ground root material from SF 1-d and SF 5-a were not significantly 

different (Appendix, Table A-11). 

 

Among Populations: Differences in the dry weights of leaf, runner, and root material in 

extracts and the high variability in mean lettuce seedling root lengths in among-

replicates and among-clones tests prevented me from testing among-population effects.  
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Finding significant differences at lower levels of analysis, differences in dry 

weights of leaves, runners, and roots in samples of the same class, and different effects 

from the same dry weights in extracts, make it difficult to draw firm conclusions about 

the magnitude of the allopathic ability of Arctotheca prostrata. We can, however 

observe trends. Figures 8 and 9 show that the mean length of lettuce seedling roots 

generally decreases as the concentration of leaf and root material from A. prostrata 

increases. Populations of A. prostrata from California appear to have a greater allopathic 

effect than do those from South Africa. There is also limited evidence that extracts from 

leaves had the least effect, roots had a moderate effect, and runners had the most 

effect (Figure 12). However, only the Tiburon population was tested for all three parts 

due to the lack of runners from other populations at the time of harvesting. 

 

Morphological Measurements 

 I considered the possibility that populations of Arcotheca prostrata in California 

were sterile horticultural hybrids or tetraploids.  Measuring pollen grain diameters 

indicated that Californian pollen was, on average, slightly smaller than South African 

pollen. If A. prostrata in California was tetraploid, I would expect it to produce larger 

pollen. Even at the lowest levels, pollen grain diameters were not consistent.  Potential 

variability in measurements could have occurred when the cover slide was placed on 

top of the stained pollen, which may have squashed it a bit.  

 Based on the results of one-way ANOVAs, disk widths and ray lengths 
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differentiated Arctotheca prostrata from South Africa and California.  Mean disk widths 

were not significantly different at lower levels of analysis (among replicates, clones, and 

for the most part, individuals or chunks) but were different when Californian and South 

African plants were compared (Table 5). Ray length showed the same pattern with the 

exception that South African rays did not differ from Gualala Bluff rays. While the longer 

rays of Californian heads may be a sign that humans have chosen the showiest 

individuals for cultivation and plants with longer rays were brought to California, there is 

no evidence that these characters are due to heterosis or tetraploidy.  The South African 

plants in this study came from seeds collected from a single population. This small 

sample does not allow me to draw any strong conclusions about the variability of disk 

width and ray lengths. 

 Leaf width and leaf length varied too much at lower levels of analysis to be 

combined in upper level analyses. Variability among replicates and clones could be due 

to several different factors. First this could be due to normal variation on leaf growth 

within individual rosettes. The varied leaf measurements may also be due to 

environmental conditions such as amount of nutrients available for growth and the 

amount of sunlight present. When plants receive less light, they may grow larger leaves 

to receive more sunlight for photosynthesis. These plants were kept within a relatively 

small area in the same location, but they were not rotated systematically. If a particular 

individual plant was short on nutrients this may have caused the plant to divert these 

nutrients to other parts of the plant or other function instead of leaf growth.  
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Summary/conclusion 

 This study supports my primary hypothesis that Arctotheca prostrata found in 

California is fertile and able to produce achenes/seeds that germinate to produce 

offspring. Currently, each isolated “population” of A. prostrata in California may consist 

of one individual that has spread vegetatively. If these populations become more 

numerous and occur closer together, pollen from one individual may begin to reach 

other individuals and fertile seeds may begin to be produced. This may be occurring 

now. Seed production will enable A. prostrata to spread more easily to new locations 

and to start more genetically-unique populations. California has the perfect climate for 

this species and if it begins to spread by seed it could begin to cause more ecological 

and economic harm.  

 My second hypothesis, that pollen from Arctotheca prostrata growing in 

California has lower pollen viability than pollen from South African plants, was not 

supported.  Staining pollen with lacophenol cotton blue provided no evidence that 

pollen from California plants have reduced viability.  

 There is also no evidence that plants in California are sterile hybrid cultivars 

showing heterosis. While ray lengths of California plants were significantly longer than 

those of South African plants, without more measurements from South Africans, no 

conclusions can be drawn. There is also no evidence that Californians are tetraploids. 

Pollen grain diameters from South African plants are too similar in diameter to those of 

Californians to suggest differences in ploidy number.  
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 My third hypothesis that Arctotheca prostrata may form dense clones due to 

allopathic abilities was supported. My preliminary results show that extracts of leaves, 

roots, and runners from A. prostrata plants reduced the growth of lettuce seedling roots 

and could have this effect on other species. If A. prostrata begins to spread by seeds in 

California, its allelopathic abilities may enable it to form very large clones very quickly. 

 To improve future experiments designed to assess allelopathic abilities, factors 

that made high variability at the replicate level must be minimized so that meaningful 

statistical analyses can be carried out. 
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Table A-2. Names and origins of plants used in this study. An 'x' in columns labeled 
Cross, Allelo, Morph, and Pollen indicate this plant was used in crossing and allelopathic 
ability experiments, morphology measurements, and pollen viability assays and 
measurements. 

Plant Origin Cross Allelo Morph Pollen 
CX 10 SF 2-a  H:1 x GB 1A-a     
CX 11 SF 2-a  H:1 x GB 1A-a     
CX 12 GB 4A-f  H:1 x TI 1A-e     
CX 13 GB 4A-f  H:1 x TI 1A-e     
CX 14 TV 1A-a H:2 / open     
CX 9 SF 2-a H:1 x GB 1A-a      
CX 1 SF 1-a H:4 / open x    
CX 2 SF 1-a H:4 / open x    
CX 3 SF 1-a H:4 / open     
CX 4 SF 1-a H:4 / open x    
CX 5 SF 1-a H:4 / open x    
CX 6 TV 1A-a H:2 / open x    
CX 7 SF 1-a H:4 / open x    
CX 8 SF 1-a H:4 / open x    
GB 1A-a Original x  x x 
GB 1A-b Attached to original     
GB 1A-c Attached to original     
GB 2A-a Original x  x  
GB 2A-b Attached to original     
GB 2A-c Attached to original     
GB 3A-a Original     
GB 3A-b Attached to original     
GB 3C-a Original, not attached to 3A and 3B x    
GB 3C-d GB 3C     
GB 3C-e GB 3C     
GB 4A-a Original    x 
GB 4A-b Attached to original     
GB 4A-c Attached to original     
GB 4D-a Original     
GB 4E-a Original  x   
GB 4A-f GB 4B x  x  
GB 4A-g GB 4B     
GB 5A-a Original     
GB 5A-b Attached to original  x   x   
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Table A-2. continued. Names and origins of plants used in this study. An 'x' in columns 
labeled Cross, Allelo, Morph, and Pollen indicate this plant was used in crossing and 
allelopathic ability experiments, morphology measurements, and pollen viability assays 
and measurements.  

Plant Origin Cross Allelo Morph Pollen 
GB 5A-c voucher     
GB 5A-d GB 5B   x x 
GB 5A-e GB 5B x  x  
GB 5A-f GB 5B x  x  
GB 5A-g GB 5A     
RV 1A-a  Original x    
RV 1A-b RV 1     
RV 1A-c RV 1     
RV 2A Original     
RV 2B-a Original x  x  
RV 2C Original     
RV 3A-a Original     
RV 3A-b RV 3 x  x  
RV 3A-c RV 3     
RV 4A-a Original; herbarium specimen x   x 
RV 4B-a Original     
RV 4B-c RV 4B     
RV 4B-d RV 4B     
RV 5A-a Original x  x  
RV 5A-b RV 5A     
RV 5A-c RV 5A x    
RV 5A-d RV 5A x   x 
RV 5A-e RV 5A x  x  
RV 5A-f RV 5A x x   
RV 5A-g RV 5A x x   
RV 5A-h RV 5A     
RV 5A-j RV 5A     
SF 1-a Seed x   x 
SF 1-b SF 1 x    
SF 1-c SF 1 x    
SF 1-d SF 1  x   
SF 1-ce SF 1C; clone of a clone x    
SF 1-cf SF 1C; clone of a clone         
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Table A-2 continued. Names and origins of plants used in this study. An 'x' in columns 
labeled Cross, Allelo, Morph, and Pollen indicate this plant was used in crossing and 
allelopathic ability experiments, morphology measurements, and pollen viability assays 
and measurements.  

Plant Origin Cross Allelo Morph Pollen 
SF 2-a Seed x   x 
SF 3-a Seed x    
SF 4-a Seed x    
SF 4-b SF 4A x    
SF 4-c SF 4A x    
SF 5-a Seed  x   
TI 1A-a Original x x x  
TI 1A-b Ti 1A     
TI 1A-c Ti 1A  x  x 
TI 1A-d Ti 1A x   x 
TI 1A-e Ti 1A x  x x 
TI 1A-bf TI 1B; clone of a clone     
TI 1A-bg TI 1B; clone of a clone     
TV 1A-a TV 1A x  x  
TV 1A-b TV 1A     
TV 1A-c TV 1A x    
TV 1A-d TV 1A     
TV 1A-e TV 1A x    
TV 1A-f TV 1A     
TV 3A-a Original x  x  
TV 3A-b TV 3  x   
TV 3A-c TV 3  x   
TV 3A-d TV 3     
TV 3A-e TV 3     
TV 3A-ef TV 3E; clone of a clone         
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Table A-3. Viable and inviable pollen grain counts for Arctotheca prostrata, with 
total grains counted, percent viable and percent inviable calculated. Head No. 
indicates heads (acting as replicates) on the same plant. 

Plant Head No. Viable Inviable Total % Viable % Inviable 

GB 1A-a 1 366 13 379 96.57 3.43 

GB 1A-a 2 72 3 75 96.00 4.00 

GB 4A-a 1 158 9 167 94.61 5.39 

GB 5A-d 2 73 10 83 87.95 12.05 

RV 4A-a 1 124 18 142 87.32 12.68 

RV 4A-a 2 114 9 123 92.68 7.32 

RV 4A-a 3 180 4 184 97.83 2.17 

RV 5A-d 1 270 9 279 96.77 3.23 

SF 1-a 2 217 14 231 93.94 6.06 

SF 1-a 3 136 6 142 95.77 4.23 

SF 1-a 7 328 13 341 96.19 3.81 

SF 1-a 8 407 5 412 98.79 1.21 

SF 2-a 1 141 3 144 97.92 2.08 

TI 1A-c 1 296 11 307 96.42 3.58 

TI 1A-d 2 198 10 208 95.19 4.81 

TI 1A-e 1 252 8 260 96.92 3.08 
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Table A-6. Leaf width and leaf length measurements and means in mm for selected 
Arctotheca prostrata plants. 

  Leaf Width Leaf Length 

 
Measurements Measurements 

Plant 1 2 2 mean 1 2 3 Mean 
CX 10 4.8 4.9 4.4 4.7 20.6 21.3 20.2 20.70 
CX 11 4.4 4.8 5.2 4.8 15.9 15.9 19.1 17.0 
GB 1A-a 1.5 1.5 1.6 1.5 4.3 6.1 3.7 4.7 
GB 2A-a 1.5 1.8 1.6 1.6 4.8 5.7 5.1 5.2 
GB 4A-f 2.6 2.4 2.8 2.6 5.6 7.1 7.2 6.6 
GB 5A-b 3.0 2.3 1.8 2.4 8.9 7.9 7.9 8.2 
GB 5A-d 3.1 3.4 2.8 3.1 8.5 8.7 8.1 8.4 
GB 5A-e 2.7 2.4 2.6 2.6 6.1 6.8 6.4 6.4 
GB 5A-f 2.7 2.7 2.0 2.5 7.1 6.0 4.0 5.7 
RV 2B-a 2.9 2.7 2.0 2.5 8.5 7.2 5.1 6.9 
RV 3A-b 2.2 2.7 2.3 2.4 7.7 7.5 5.7 7.0 
RV 4A-a 3.1 2.7 3.2 3.0 9.7 9.2 10.6 9.8 
RV 5A-e 2.7 2.9 2.2 2.6 6.5 7.7 6.2 6.8 
RV 5A-f 2.9 2.2 1.7 2.3 7.2 5.7 4.3 5.7 
RV 5A-g 2.6 1.3 1.9 1.9 6.3 5.1 5.2 5.5 
SF 1-a 4.6 4.5 4.3 4.5 14.8 14.5 14.7 14.7 
SF 2-a 2.4 2.2 2.3 2.3 7.8 6.6 8.3 7.6 
SF 1-b 2.9 2.7 2.7 2.8 14.7 13.7 13.9 14.1 
SF 1-c 2.6 2.8 3.4 2.9 8.1 8.4 9.4 8.6 
SF 3-a 3.6 3.0 3.3 3.3 12.7 12.1 11.1 12.0 
TI 1A-a 1.5 1.7 1.9 1.7 7.1 5.2 5.8 6.0 
TI 1A-e 3.2 2.7 2.6 2.8 7.8 7.6 6.2 7.2 
TV 3A-a 2.6 2.5 2.6 2.6 8.5 8.4 7.3 8.1 
TV 1A-a 3.2 3.3 3.1 3.2 10.7 9.9 12.1 10.9 
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Table A-8. Parts of Arctotheca prostrata plants used in allelopathy experiments. Part 
(L= leaf, Rt = root, Run = runner), Class = approximate fresh weight (g), Wet wt = 
actual weight (g) of fresh material, mean % water for samples (see Table A-16), dry 
weight (g) of sample, and numbers of germinated lettuce seeds at 24 hours and 72 
hours. The last column gives the number of seedling roots that were less than 5 mm 
long at the end of the experiment.  

Part Plant Class 
(g) 

Wet wt 
(g) 

Mean 
% 

water 

Dry wt 
(g) 

24 
hrs 

72 
hrs 

Values 
<5 

L RV 5A-f 0.5 0.45 82.3 0.08 7 8 1 
L SF 5-a-1 0.5 0.5 85.7 0.07 7 8 0 
L TI 1A-a 0.5 0.51 87.3 0.06 11 10 0 
L TV 3A-c 0.5 0.55 80.4 0.11 6 11 3 
L GB 4E-a-1 1 0.99 87.9 0.12 0 10 5 
L GB 4E-a-2 1 0.94 87.9 0.11 0 8 5 
L RV 5A-f-1 1 1.05 82.3 0.19 2 8 8 
L RV 5A-f-2 1 1.05 82.3 0.19 3 8 8 
L RV 5A-g-1 1 0.99 87.6 0.12 5 9 2 
L RV 5A-g-2 1 0.97 87.6 0.12 7 10 1 
L SF 1-d 1 1.02 87.8 0.12 2 9 6 
L SF 5-a-1 1 1.06 85.7 0.15 3 10 1 
L SF 5-a-2 1 1.07 85.7 0.15 2 9 0 
L SF 5-a-3 1 1.04 85.7 0.15 1 8 0 
L TI 1A-c 1 1.01 87.3 0.13 7 9 2 
L TV 3A-b 1 0.85 92.0 0.07 9 9 0 
L TV 3A-c 1 1.09 80.4 0.21 2 6 3 
L SF 5-a-1 2 2.05 85.7 0.29 0 6 4 
L SF 5-a-2 2 1.98 85.7 0.28 0 6 6 
L TV 3A-c 2 1.86 87.3 0.24 ? 6 3 
Rt TV 3A-b 0.5 0.51 84.4 0.08 10 10 0 
Rt GB 4E-a 1 1.05 81.4 0.20 7 10 1 
Rt RV 5A-f-1 1 0.99 85.3 0.15 9 10 0 
Rt RV 5A-f-2 1 0.99 85.3 0.15 10 10 0 
Rt RV 5A-f-3 1 0.99 85.3 0.15 9 10 0 
Rt SF 1-d-2 1 1.06 91.7 0.09 8 8 0 
Rt TI 1A-a-1 1 0.99 74.1 0.26 8 10 0 
Rt TI 1A-a-2 1 1.01 74.1 0.26 10 10 0 
Rt GB 4E-a 2 2.07 81.4 0.38 3 7 2 
Rt RV 5A-f-1 2 2.00 85.3 0.29 5 10 0 
Rt RV 5A-f-2 2 1.96 85.3 0.29 7 8 0 
Rt RV 5A-f-3 2 2.04 85.3 0.30 7 9 0 
Rt RV 5A-g-1 2 2.00 80.4 0.39 9 10 0 
Rt RV 5A-g-2 2 2.05 80.4 0.40 8 8 0 
Rt RV 5A-g-3 2 2.00 80.4 0.39 8 8 0 
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Table A-8 continued. Parts of Arctotheca prostrata plants used in allelopathy 
experiments. Part (L= leaf, Rt = root, Run = runner), Class = approximate fresh 
weight (g), Wet wt = actual weight (g) of fresh material, mean % water for samples 
(see Table A-16), dry weight (g) of sample, and numbers of germinated lettuce 
seeds at 24 hours and 72 hours. The last column gives the number of seedling 
roots that were less than 5 mm long at the end of the experiment.  

Part Plant Class 
(g) 

Wet wt 
(g) 

Mean 
% 

water 

Dry wt 
(g) 

24 
hrs 

72 
hrs 

Values 
<5 

Rt SF 1-d-1 2 2.05 91.7 0.17 8 8 0 
Rt SF 5-a-1 2 2.04 83.4 0.34 8 9 0 
Rt SF 5-a-2 2 2.03 83.4 0.34 8 8 0 
Rt SF 5-a-3 2 2.05 83.4 0.34 7 8 0 
Rt TI 1A-c 2 1.95 74.1 0.51 8 10 0 
Rt TV 3A-b-1 2 2.08 84.4 0.33 4 7 0 
Rt TV 3A-b-2 2 2.05 84.4 0.32 6 8 1 
Rt TV 3A-c-1 2 2.00 84.0 0.32 8 8 0 
Rt TV 3A-c-2 2 2.04 84.0 0.33 4 9 0 
Rt GB 4E-a 4 3.99 81.4 0.74 2 7 7 
Rt RV 5A-f-1 4 3.99 85.3 0.59 6 9 0 
Rt RV 5A-f-2 4 4.03 85.3 0.59 6 8 0 
Rt RV 5A-g-1 4 4.00 80.4 0.78 8 9 4 
Rt RV 5A-g-2 4 4.02 80.4 0.79 6 10 6 
Rt RV 5A-g-3 4 4.05 80.4 0.79 9 10 3 
Rt SF 5-a 4 3.99 83.4 0.66 6 9 0 
Rt TV 3A-b 4 3.95 84.4 0.62 1 6 2 
Rt TV 3A-c 4 3.98 84.0 0.64 5 10 5 

Run TI 1A-a-1 1 1.02 76.5 0.24 8 9 0 
Run TI 1A-a-2 1 1.08 76.5 0.25 6 10 4 
Run TI 1A-a-1 2 2.06 76.5 0.48 2 8 8 
Run TI 1A-a-2 2 1.97 76.5 0.46 3 10 6 
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Table A-13. Measurements on 72-hour-old lettuce seedling roots growing 
in aqueous solutions containing various amounts of ground runner 
material from Arctotheca prostrata plants. Class indicates approximate 
fresh (wet) weights, Plant names indicate Population, Chunk or 
Individual, Clone, and Replicate number. Means and sample standard 
deviations were calculated by Excel; Wet Wt. gives the exact weight of 
fresh runner material; dry weights (Dry Wt.) were calculated using mean 
percent water content of runners (see Table A-16). 

Population Tiburon    
Class 1 g 1 g 2 g 2 g 
Plant TI 1A-a-1 TI 1A-a-2 TI 1A-a-1 TI 1A-a-2 

 12 9 4 6 

 9 8 4 5 

 9 8 3 5 

 8 6 3 5 

 8 6 3 4 

 7 5 3 4 

 6 5 3 3 

 6 5 3 3 

 5 4 2 2 

  
4 

 
2 

Mean 7.8 6.0 3.1 3.9 
St Dev-s 2.1 1.8 0.6 1.4 

     
Wet Wt. (g) 1.02 1.08 2.06 1.97 
Dry Wt. (g) 0.24 0.25 0.48 0.46 
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