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ABSTRACT 

 

A DYNAMIC, DISTRIBUTED HYDROLOGIC MODEL FOR THE  

BLUE EARTH RIVER WATERSHED, MINNESOTA WITH IMPLICATIONS 

REGARDING LAND USE AND WATER QUALITY 

 

Michael Merlini, M.S. Geography 

Minnesota State University, Mankato 

Mankato, Minnesota 

December 2014 

 

The Blue Earth River (BER) watershed covers approximately one million acres of 

south-central Minnesota and northern Iowa. Modern farming practices have led to the 

loss of over 90 percent of the watershed's original wetlands. Corresponding changes in 

runoff and stream flow have led to dramatically reduced water quality in the BER's main 

stem following most precipitation events. The purpose of this research is to examine the 

relationships among precipitation, infiltration, base flow, and runoff in the Blue Earth 

River watershed basin.  

This study developed a calibrated numerical hydrologic model for BER watershed 

using the distributed flow model, Vflo™. The model was developed the seven major 

runoff events for the 2008 monitoring season (March – June). The research showed the 

importance of soil depth, hydrologic conductivity, and initial saturation in simulating 

peak flow volume. Where as overland roughness and channel roughness were found to 

attenuate the timing of the peak flow volume within the channel. The calibrated model is 

able to simulate flows where flows have not been observed in the field in both temporal 
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and spatial dimensions. The model is able to accurately depict the onset of the rising limb 

event and peak discharges to within ten percent of each event. Results of this research 

provide a better understanding of the hydrologic regime, prediction of flow rate, depth, 

and flow-weight total contaminant loads, of the BER watershed. These results therefore 

provide an objective means for improving best management practices within the Blue 

Earth River watershed. 
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CHAPTER I 

INTRODUCTION 

1.1 Description of Blue Earth River (BER) Watershed 

One of the most productive agricultural areas in the world is located in the United 

States, more specifically the Western Corn Belt Ecoregion. In the Minnesota portion of 

the Western Corn Belt, over 84 percent of the available acres are cultivated row crops 

(MPCA 2005). Cultivation leads to non-point pollution of the streams and rivers in the 

Western Corn Belt. Bohn and Kershner (2002) stated that non-point source pollution now 

accounts for over half of the water quality impairments in the United States. Principal 

pollutants are total suspended sediment (TSS), nutrients, and biomass.The Minnesota 

River is one of twenty rivers in the nation seriously threatened by pollution (MRBJPB 

2002). Boone (2002) stated that the Minnesota River is the largest single source of 

pollution to the Mississippi River.  

According to the Metropolitan Council, approximately 625,000 tons per year of sediment 

is transported by the Minnesota River (Senjem et al. 2002). The Greater Blue Earth River 

Watershed Basin contributes nearly 55 percent, 343,750 tons, of the sediment load to the 

Minnesota River (MPCA 2005). The hydrologic regime of the Blue Earth River has been 

transformed tremendously by land uses changes. According to the United States Corps of 

Engineers (USACE 2006) the water moves through the watershed mainly by artificial 

drainage networks consisting of field drain tiles and excavated ditches. 
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The lower Minnesota River has been listed as being impaired since 1992 (MPCA 

2001). Efforts to clean the river have been largely unsuccessful in that the Minnesota 

River is still listed on the impaired waters list. The river’s tributaries are the principal 

contributors of nutrient and sediment loads and scientific evidence indicates that 

pollution reductions must occur in these tributaries to meet downstream total maximum 

daily load goals (MPCA 2001). 

The largest tributary to the Minnesota River is the Blue Earth River (MPCA 

2005). The Blue Earth River Watershed has an area of approximately 992,034 acres. The 

Blue Earth River’s flow is comprised of flow from the Le Sueur River and Watonwan 

River and delivers approximately 46 percent of the flow to the Minnesota River at 

Mankato. The Le Sueur’s River flow is only occasionally as much as the Blue Earth 

River and the Watonwan River’s flow is substantially less than either the Blue Earth 

River or the Le Sueur River. 

The Blue Earth River is one of the most polluted rivers in Minnesota (Steil 2005). 

The Blue Earth River’s headwaters begin in northern Iowa and flow north into southern 

Minnesota to its confluence with the Minnesota River in Mankato. Agriculture, primarily 

cultivated row crops, accounts for 92 percent of the watersheds land use.  The river 

delivers approximately 55 percent of the total suspended sediment load and 69 percent of 

the nitrate nitrogen load (MPCA 2005). Figure 1.1 displays the Blue Earth River 
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Watershed with respect to the Iowa and Minnesota state borders.

  

Figure 1.1 The Blue Earth River Watershed 
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Figure 1. 2 Blue Earth River Watershed Gaging and Sample Sites. Gaging and sample sites are 

located along the mainstem of the Blue Earth River allowing for monitoring of major tributaries to 

the Blue Earth River including the East Branch Blue Earth and Elm Creek systems. 

 

Figure 1.2 displays the sample sites along with the gaging sites along the main 

stem of the Blue Earth River. The sample sites, green squares, were sites where water 

samples were taken from the river. The gaging and sample sites, red squares, were sites 

where water samples were collected along with gage measurements of the rivers’ flow.
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1.2 Brief Overview of Hydrologic Modeling 

Bedient et al. (2008) states that one method for greater understanding of discharge 

and pollutant loading in watersheds is through hydrologic modeling. Hydrologic models 

are an intricate combination of various equations used to describe the hydrologic 

transport processes throughout a watershed. The input parameters for a hydrologic model 

are complex and numerous. Rainfall intensity, rainfall duration, watershed size, slope, 

shape, morphology, channel type, land use and land cover, soil type, and percent of 

impervious surfaces are all input parameters that affect infiltration and runoff 

characteristics of a watershed (Bedient et al. 2008). The outputs of hydrologic models, for 

example Vflo™, include predictions of flow rates and depth at any location within the 

watershed. Hydrologic models offer advantages of providing important information on 

areas of the stream or river where flow characteristics are not available and the model 

allows multiple options to be tested quickly. Model inaccuracy is a major limitation of 

numerical studies of watersheds and is largely dependent on the accuracy of the input and 

observed data used in model calibration (Bedient et al. 2008).  

 

1.3 Significance of Study 

The Blue Earth River contributes 46 percent of the flow of the Minnesota River at 

the confluence in Mankato, Minnesota. The Blue Earth River is the largest tributary of 

the Minnesota River and contributes significantly more nitrate than any other tributary to 

the Minnesota River (MPCA 2000). The large amount of nitrate present within ditches 

and streams in south-central Minnesota has been linked to land uses change (Magner et 
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al. 2003). The abundance of nitrate found in the streams and drainage ditches maybe 

contributing to the development of an oxygen depleted ‘dead zone’ located in the Gulf of 

Mexico (Magner et al. 2003). The shift from natural prairie land to intense agriculture has 

greatly increased the subsurface and surface drainage within the watershed.  

A hydrological model is a numerical model that is used to simulate stream flow 

and describe hydrologic transport processes in space and time (Bedient et al. 2008). The 

completed numerical model of the Blue Earth River watershed yields multiple benefits. 

For example, the model is able to provide hydrographs in areas where observed flow 

characteristics are not available. This tends to lead to a better understanding of the 

hydrologic and sediment transport regimes. The model relates precipitation, 

physiography, and land use to examine their inter-relationships. The model highlights 

temporal and spatial characteristics of runoff that lead to the pollution problem in the 

Blue Earth River and in other downstream rivers. This better understanding of the 

hydrologic regime will in turn help regulatory agencies create and modify strategies for 

limiting erosion, pollutant loads, and water impairment policies. 

 

1.4 Research Objectives 

The Null Hypothesis to be tested: 

1) After major precipitation events, runoff and discharge do not vary 

throughout the watershed. 

This hypothesis will be tested by answering the following objectives:  
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1) Develop and calibrate a dynamic distributed hydrologic model for the 

Blue Earth River watershed, Minnesota using Vflo™. 

2) What extent do geomorphic factors, soil properties, and hydrologic 

parameter influence runoff and discharge?  

3) How does surface water and groundwater interact with respect to when 

the Blue Earth River is in influence or effluence?  

4) What is the relationship between rainfall intensity, rainfall duration and 

runoff? 
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CHAPTER II 

LITERATURE REVIEW 

2.1 Background on Hydrological Models 

 The purpose of this section is to examine the basis of the numerical hydrologic 

models that are commonly used by hydrologists. Hydrologic models offer the advantage 

of providing simulated flows where observed flows are not available. They also provide 

the advantage of being able to test many different model parameters quickly. Hydrologic 

models also have disadvantages in the limitation of the models. They are limited by the 

amount of data available for the study area.  Also model accuracy is limited to the 

accuracy of the input data and spatial variability representation at a given cell resolution 

(Vieux et al. 2004). An excellent explanation of why hydrologic models are important is 

provided by Bedient et al. (2008): 

 

“Despite their limitations, simulation models still provide the most logical and 

scientifically advanced approach to understanding the hydrologic behavior of 

complex watershed and water resources systems.” 

 

Hydrologic models can be generally categorized into two different groups: 

Lumped parameter and distributed physics based models. Models are further divided into 

those that address single event or continuous flow simulation models (DeVries and 

Hromadka 1993).  
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Lumped parameter models, for example, the Stanford Watershed Model 

(Crawford and Linsey 1966), are the older of the two having been first developed in the 

1960’s. The advantage of lumped parameter models is they are proficient in accurately 

predicting flows with minimal input data (Cooper and Bottcher 1993). Lumped parameter 

models require considerably less time and effort to run than physics-based models 

(Fernandez et al. 2006). The disadvantage of lumped parameter models is that the models 

they provide are an inaccurate representation of input parameters that vary temporally or 

spatially across a given watershed. Carpenter and Georgakakos (2006) found that lumped 

parameter models were able to produce flows within 20 percent of observed peak flows 

for less than seven precipitation events out of twenty five total precipitation events.  

Distributed physics-based models route runoff through a drainage network that 

allows for interior locations to be monitored (Vieux et al. 2004). Examples of distributed 

physics-based models included CASC2D (Julien and Saghafian 1991), European 

Hydrological System (SHE) (Abbott et al. 1986a, b), Vflo™ (Vieux and Vieux 2002), and 

r. water.fea (Vieux and Gauer 1994). The major advantage of distributed physic-based 

models is the ability to provide flow simulations at interior locations. Another advantage 

is the ability to allow for better flow simulation at the outlet points by providing an 

accurate portrayal of watershed parameters that vary spatially across the watershed 

(Moreda et al. 2006). More importantly the distributed physics-based models provide a 

better understanding of the environment along with the building blocks for environmental 

monitoring. For example watershed water quality monitoring and sediment transportation 

(Moreda et al. 2006). Distributed physics-based models also have disadvantages. For 



 10 

 

example they are complex and you can create simulated flow hydrographs that match 

observed flow hydrographs, but with input parameters that are not necessarily correct. 

The accuracy of the model is largely dependent on the correctness of the input data and 

availability of input data (Bedient et al. 2008).  Fernandez et al. (2006) states that 

physics-based models maybe difficult to use due to the problems with calibration in large 

watersheds and the intense data requirements. 

Today there are numerous lumped and distributed hydrologic models, far too 

many to review for this paper. This section will provide a review the distributed physics 

based hydrologic model, Vflo™. Vflo™ was originally created as r. water.fea for the 

Army Corps of Engineers, Construction Engineering Research Laboratory, Champaign, 

Illinois (CERL) in 1993 (Vieux et al. 2004). A physics-based distributed (PBD) model 

uses a finite element approach to simulate watershed responses to precipitation events 

(Vieux et al. 2004). Numerical methods like the finite element or finite difference 

methods are needed in part when analytic solutions to runoff governing equations for a 

watershed are not generally obtainable (Singh and Woolhiser 2002). Vflo™ incorporates 

a methodology unique from previous finite element solution in that it utilizes a single 

chain of finite elements for solving overland flow (Vieux et al.2004). Simulation of 

spatially variable watershed surfaces is possible with this difference without having to 

break the watershed subareas (Vieux et al. 2004). The current Vflo™ is detailed in Vieux 

and Vieux 2002. The Vflo™ model uses a kinematic wave method for deriving 

hydrographs. The kinematic wave method is defined in Bedient et al. 2008: 
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“The kinematic wave process represents a nonlinear runoff response compared 

with linear unit hydrograph methods. The kinematic wave method relies on 

parameters that are generally measurable from a basin such as slope, land use, 

lengths, channel shape, roughness, and area” 

   

2.2 NEXRAD Rainfall Data 

The current Vflo™ model allows for rainfall to be entered into the model as rain 

gauge measurements, distributed radar inputs, or a user designed storm. Radar inputs 

provide a tremendous advantage over the other options in that it offers extremely high 

resolution rainfall inputs that are spatially distributed across the basin. Precipitation 

inputs have been found to have large effect on the accuracy of stream flow predictions 

developed from hydrologic models (Carpet et al. 2001; Gourley and Vieux 2005).  

Looper et al. (2009) states that physics-based distributed models such as Vflo™ benefit 

from more accurate and representative precipitation inputs. The spatially regular 

estimation of precipitation provided in radar data is thought to improve the accuracy of 

rainfall intensities and totals relative to data produced through traditional rain gauge 

networks (Goodrich et al. 1995). Bedient et al. (2000) found that a numerical model 

utilizing NEXRAD data for the Brays Bayou watershed in Houston, Texas was more 

accurate than a comparable model that used rain gauge data.  

S-band weather Surveillance Radar – 1988 Doppler, more commonly known as 

NEXRAD consists of a network of approximately 160 radar stations across the United 

States (Crum and Alberty 1993; Klazura and Imy 1993). The network is operated by 
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three federal agencies including the National Weather Service (NWS), the Federal 

Aviation Administration (FAA), in addition to the Air Force Air Weather Service and the 

Naval Oceanography Command (Fulton et al. 1998). Along with the three standard base 

products: reflectivity, Doppler velocity, and spectrum width; NEXRAD generates 

numerous other products available to forecasters (Klazura and Imy 1993). For example, 

composite reflectivity, one hour precipitation, three hour precipitation, storm total 

precipitation, and many more. The reader should refer to Klazura and Imy (1993) for a 

list of all the products with a more detailed explanation of these products and Fulton et al. 

(1998) for more detailed explanations of the algorithms used to convert reflectivity into 

rainfall estimates. 

 

2.3 Background on the Blue Earth River Watershed 

 The study area is the Blue Earth River Watershed located in the southern 

Minnesota counties of Blue Earth, Brown, Cottonwood, Faribault, Freeborn, Jackson, Le 

Sueur, Martin, Steele, Waseca, and Watonwan, and the northern Iowa counties of Emmet, 

Kossuth, and Winnebago (Fig. 2.1). The Greater Blue Earth River watershed drains an 

area of 3,486 square miles, or 2,231,040 acres, of which 831 square miles are within the 

Watonwan River subwatershed and 1,089 square miles are within the Le Sueur River 

subwatershed. The Blue Earth River watershed drains a total area of 1550 square miles, 

or 992,034 acres (MPCA 2001).  
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Figure 2.1 Greater Blue Earth River Watershed. The watershed is thusly named because of the 

significant contributions from the Watonwan and Le Sueur Rivers prior the Blue Earth River 

joining the Minnesota River in Mankato, Minnesota. 
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The Blue Earth River 

“The Blue Earth River took its name from the bluish green earth that was used by 

the Sisseton Dakota as a pigment, found in a shaley layer of the rock bluff of this stream 

about three miles from its mouth” (MRDBC 2003). The Blue Earth River is the largest 

tributary to the Minnesota River (Waters, 1977).  

 

Watershed 

The Blue Earth River watershed comprises approximately 16 percent of the 

Minnesota River watershed (MRDBC 2000). The BER watershed represents only 0.1 

percent of the Mississippi River drainage area but supplies approximate 2 percent of the 

nitrate load to the Gulf of Mexico’s hypoxia zone (Magner et al. 2004). Eighty to ninety 

percent of the land in the Blue Earth River watershed is used for agricultural purposes 

(MRDBC 2000). Most croplands in the watershed are in a two-year corn and soybean 

rotation, while the remaining 8 percent of the acreage are comprised of small grains, hay, 

wetlands, and grasslands that are enrolled in the Conservation Reserve Program (MPCA 

2005). “The majority of the croplands within the watershed are classified as highly 

productive and are considered to be among the finest agricultural lands within the United 

States.” (MPCA 2005).  

 

Climate 

 The climatic regime within the watershed is considered to be a continental 

regime. The Koppen Climate classification for the entire Blue Earth River watershed is 
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Dfa zone, having cold dry winters and warm wet summers that are associated with a 

continental climate (Mitchell and Keinholz, 1997). The annual precipitation for the 

watershed averages between 27 to 30 inches, two thirds of the annual precipitation occurs 

during the growing season (NCDC 2014). The amount of annual precipitation in the 

watershed increases from west to east (MPCA 2005). As reported by Minnesota 

Department of Natural Resources (2004) the types of precipitation events vary through 

the season with spring precipitation events typically being widespread and summer 

precipitation events being typically convective thunderstorms producing short, localized, 

but highly intense precipitation. The 30 year average monthly temperatures for the 

watershed are 16 degrees Fahrenheit in the winter and 70 degrees Fahrenheit in the 

summer (MN DNR 2004). The Blue Earth River Watershed has the greatest runoff of all 

the watersheds within the Minnesota River Basin (MPCA 2005). 

 

Geomorphology 

The retreat of the Wisconsin glaciation caused the formation of lakes in 

depressions or behind moraines that were left behind as the glaciers retreated. Notable 

was Glacial Lake Minnesota that covered what is now the northeastern and eastern part of 

the watershed (Ojagankus and Matsch, 1982). A wide variety of sedimentary particles, 

from clay to cobble make up the sediment below the surficial soils. There are other areas 

within the watershed with mixed glacial landforms but are all dominated by till. The 

landscape of the Blue Earth River Basin can be described as rolling, hilly morainal belts 

to flat gently rolling lake plains with different soil types which include well to poorly 
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drained deep silty loams, silty clay loams, and loams over dense blue-gray till (Magner et 

al. 2004).  The slope of the watershed is minimal with slopes ranging from 0 percent 

(flat) to 6 percent. 

The majority of the soil within the Blue Earth River Watershed consists of drift of 

the New Ulm phase of the late Wisconsin glaciation (Paulson et al.,1978). Glacial Lake 

Minnesota was formed towards the end of the last glaciation that covered the Blue Earth 

River Watershed (Ojagankus and Matsch, 1982). Lacustrine, deltaic, and outwash 

sediments were deposited as the glacier retreated. The Marna – Guckeen association have 

about 2 to 4 feet of silty clay and silty clay loam material (Paulson et al.,1978). This 

series of soils are poorly drained and are formed in clayey glacial lacustrine sediments 

over loamy glacial till (USDA 1980). The Waldorf – Collinwood association have 

approximately 4 to 25 feet of stratified silt loam or silty clay or clay over silt loam 

(Paulson et al.,1978). This series of soils are moderately slowly permeable and are poorly 

drained with slopes of 0 to 2 percent (USDA 1980). 

 

 Land Cover and Use 

 Pre-settlement land cover was predominately prairie and wet prairie. Of the 

777,600 acres of the watershed in Minnesota 557,376 acres were prairie (Figure 2.2) and 

147,739 acres (Figure 2.3) were wet prairie (Rassmussen 2012). The combined total 

acreage of the prairie and wet prairie for the historical land cover is 705,115 acres or 90.7 

percent of  
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Figure 2.3– Map of Wet Prairie Lands Prior to 

European Settlement Rasmussen (2012). Wet 

Prairies are indicated in purple and clipped to the 

Minnesota portion of the watershed. 

 

Figure 2.2 – Map of Prairie Lands Prior to European 

Settlement Rasmussen (2012). Prairies are indicated 

in purple and clipped to the Minnesota portion of the 

watershed. 
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the total acres available within the watershed in Minnesota. Historically the Blue Earth 

River Watershed was comprised of mainly small grains, hay, and grasslands. Pre-

settlement land cover was predominately prairie and wet prairie. 

 Today, there is a great departure from the historical land cover and land use. Of 

the 557,376 acres of historical prairie cover, 510,260 acres are now cropland. Of the 

147,738 acres of original wet prairie land cover, 138,727 acres now exist as cropland 

(Rassmussen 2012).  Thus, for the entire watershed, the utilization of the land surface has 

changed by 92 percent relative to its pre-settlement disposition. 

 

2.4 Significant Previous Research in the Blue Earth River Watershed and Surrounding 

Areas 

Substantial research results regarding the Blue Earth River watershed were 

formulated throughout the past fifty years. Steil (2005) for example, quantified 

contaminants within the discharge of the Blue Earth River and found it to be among the 

most polluted rivers in Minnesota. The source of the pollutants was identified as the 

modern farming practices that have led to the loss of over 90 percent of the watershed’s 

original wetlands. A second significant research focus on the Blue Earth River was 

conducted by the Minnesota River Board during the 1990’s.  They directed multiple 

local, state, and federal investigators to quantify watershed parameters contributing to 

runoff and water quality.  Their results also show that changes in land use and land cover 

created changes in runoff and streamflow. These changes dramatically reduced water 

quality in the Blue Earth River following most precipitation events. In one of the Board’s 



 19 

 

efforts, The Minnesota River Assessment Project (WRC 2000) found that the Minnesota 

River is impaired by excessive nutrient and sediment concentrations (MRBDC 2002). 

Subsequent streamflow monitoring indicated that the Blue Earth River delivers 

approximately 46 percent of the flow to the Minnesota River at Mankato (MPCA 2005). 

Along with the flow, the Blue Earth River delivers approximately 55 percent of the 

suspended sediment load and 69 percent of the nitrate nitrogen load (MPCA 2005).  

 Magdalene (2004) discusses the impacts of intense agriculture tile drainage 

systems on water quality and how the presence of these systems greatly enhances the 

amount of non-point source pollution that is transported directly into the stream channel. 

Her research monitored the surface-subsurface drainage discharge within the Minnesota 

River watershed basin and provided valuable information on where the non-point source 

pollution was coming from. She found that surface run-off within the watershed 

contributed 40 percent of the sediment, 45 percent of the phosphorus and 10 percent of 

the nitrogen while only accounting for 10 percent of the total runoff. The sub-surface run-

off contributed 60 percent of the sediment, 55 percent of the phosphorus and 90 percent 

of the nitrogen while accounting for 90 percent of the total runoff. Almost all of the farms 

within the watershed have some sort of drain tile and this has generally increased over 

time (WRC 2000). 

Land use change in the upper Midwest region is contributing to the development 

of the hypoxia zone in the Gulf of Mexico. As mentioned previously the land use within 

the Blue Earth River watershed has experienced a 92 percent land cover change from the 

historical land cover. Magner et al. (2004) states that the nitrate concentrations within the 



 20 

 

Blue Earth River are elevated because of channel incision that does not allow for the river 

to reach the flood plains and the riparian corridor, a process which would allow for nitrate 

to filter out before continuing downstream. The channel incision comes from the 

increased discharge resulting from the ‘modern tiling’ era. Subsurface drainage systems 

have a considerable effect on the hydrology and pollutant transport (Carlier et al. 2008). 

Thoma et al. (2005) studied sediment and phosphorus contributions from stream 

bank sloughing using LiDAR. His study was mainly focused on the stretch of Blue Earth 

River between Amboy, MN and the confluence of the Blue Earth River and Wantonwan 

River. They found that stream bank sloughing contributed up to 56 percent of the total 

sediment load and 20 percent of the phosphorus load to the Blue Earth River (Thoma et 

al., 2005). 

Knickpoint migration is discussed in Gran et al. (2004) as a possibility for the 

source of sediment present in the Le Sueur River. The Le Sueur River is a tributary to the 

Blue Earth River. Gran et al. (2009) found that the average knickpoint migration rate was 

3.0 meters to 3.5 meters per year and have migrated 30 – 35 river kilometers upstream 

from the confluence of the Blue Earth River. The tills and glaciolacustrine sediments at 

the surface contribute to the high knickpoint migration rates (Gran et al 2009). 

Furthermore Gran et al. (2009) discusses the significant increase in sediment load in the 

lower portion, below the knickpoint, of the Le Sueur Watershed signifying the 

importance of bluffs and ravines and their contributions of sediment.  

The Minnesota River Assessment Project (MRAP) stated that sediment is the 

major pollutant and recommended a 40 percent reduction in sediment loading (WRC 
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2000). The Diagnostic Study of the Blue Earth River Major Watershed discussed the 

monitoring program which was implemented and watershed assessment as a result of the 

MRAP which focused in the concentration and loading of sediment (WRC 2000). The 

physical characteristics of the greater Blue Earth River watershed basin and sub basin are 

detailed in Lorenz and Payne (1992).  
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CHAPTER III  

METHODOLOGY 

 This chapter discusses the methodology used to collect data and develop the 

necessary data needed to develop a hydrologic model for the Blue Earth River watershed.  

A brief introduction into the hydrologic software that was used to create the model is 

followed by a description of the data that are necessary to develop and operate the model. 

 

3.1 Introduction to the Physics-based Vflo™ Model 

Vflo™ is a distributed physics-based hydrologic model that has been applied to 

the Blue Earth River Watershed of northern Iowa and southern Minnesota. Vflo™ can 

simulate stream flows in continuous mode or can be tuned to singular events.  In either 

mode, the model utilizes spatially distributed radar or multisensor data (Vieux et al. 

2004). This distributed physics-based simulation combines NEXRAD level II radar 

rainfall data, digital elevation model data (DEM), and the comprehensive spatial 

distribution of soil type. Models that utilize distributed parameters, including Vflo™, 

allow better hydrologic analyses because they accurately portray the spatial variability of 

sensitive hydrologic factors (Reed et al., 2004). The model also offers the advantage 

because it allows hydrograph analysis at any location within the watershed without the 

need to survey channel cross-sections. 

The Vflo™ model has two basic components: Basin Overland Properties (BOP) 

files and rain rate property (RRP) files. The BOP file contains all the land surface 
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information including flow direction, infiltration parameters, and calibration factors. The 

rainfall files contain the spatially distributed rainfall rate across the watershed. There are 

three procedures that are used to develop these files; (1) create theoretical or idealized 

storms, (2) interpolate existing rain gauge data, or (3) develop new rainfall files from an 

alternate source, e.g., radar data. These files are saved in Vflo™ as *.rrp files which can 

be used at anytime (Vflo™ User Guide v4.0 2008).  

 The model takes input data in the form of American Standard Code Information 

Interchange, ASCII, which can be obtained from raster grid data within ArcGIS. The 

following files related to the land surface must be provided: Flow direction, roughness, 

slope, channel width, and channel side slope. Other necessary data are related to 

composition and texture of the surface and include - hydrologic conductivity, wetting 

front, effective porosity, soil depth, initial saturation, abstraction, and percent impervious. 

All of the files must be converted into ASCII before they are imported to Vflo™. The 

properties of each cell can be entered manually although for a large watershed, such as 

the Blue Earth River Watershed, this would be very time consuming. The data for the 

Blue Earth River Watershed were imported for the entire area, and individual cells were 

changed only as necessary. For example, all properties, e.g., channel width, soil depth, 

hydrologic conductivity, etc., of the rated channel cells (those containing actual gauging 

stations) within the model were modified per field observations.  

 All data used in the Vflo™ model must have the similar geospatial projections. 

For this work, all data were projected in ArcGIS to North American Datum (NAD) 1983 

Universal Transverse Mercator (UTM) zone 15 north.  



 24 

 

 All input files must also have the same grid cell size.  The grid cell size of 300 

meters was determined through a number of statistical tests of different cell size. The 

optimized grid cell size was chosen for accuracy, file size, and processing time. Cohen’s 

Kappa analyses were performed on soils classification, slope aspect, and land cover GIS 

layers.  Acceptable misclassification, i.e., error < 3 percent, exist in the data with 

resolution of less than or equal to 300 meters; Figure 3.1 illustrates the results of the test 

conducted on the Hydrologic Soil Group (HSG).  The x-axis represents the various 

resolutions that were tested while the y-axis expresses the percent of 

error/misclassification. After the 300-meter threshold is crossed, the percent of 

error/misclassification becomes greater than 3 percent.  
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Figure 3.1 Blue Earth River Hydrologic Soil Group Classification at Different 

Resolution Values. Analysis indicated no significant (3%) misclassification at 

resolutions less than 300 meters. 
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Applying the 300-meter cell size to the entire 4014.617 square kilometers, or 

1552 square miles, of the watershed yielded 44239 cells over the domain. A diagram of 

the distributed model over the northern most section of the Blue Earth River Watershed is 

provided in Figure 3.2 and shows the finite element scheme utilized by the distributed 

model.  

  

 

Figure 3.2: Vflo™ distributed model domain for northern most Blue Earth River watershed. The 

darken apperance of the image on the left is caused by the compression of the lines used represent 

the boundaries of the grid cells. To illistrate the high resolution grid cells in the model distributed a 

clipped portion of the model is expanded and displayed on the right. The red line respresents the 

boundary of the watershed, the blue arrows respresent in the model the main stem of the Blue Earth 

River, the green cells represent the overland cells in the model, and the black arrows represent the 

edge of the watershed.   

 

It is important to note that geospatial parameters such as elevation, soil infiltration 

parameters, and land use classifications are considered homogeneous within individual 

cells.  
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3.2 Development Shapefiles and Grids 

ArcGIS shapefiles can be used within Vflo™ in order to reference cell locations 

within the watershed. This offered the advantage of being able to correctly identify the 

rated cross section cell within the watershed at Blue Earth County Road 34 (BEC 34), 

Faribault County Road 8 (FTC 8), and Faribault County Road 12 (FTC 12). The border 

shapefile that shows the extent of the Blue Earth River Watershed was obtained from the 

Minnesota River Basin Data Center (MRBDC). Figure 3.3 shows the locations of the 

rated cross section cells (where stream discharge and channel properties were physically 

measured) within the watershed.  

Multiple Digital Elevation Models (DEM’s) were obtained from the United States 

Geological Survey (USGS) seamless website. The DEM’s where then clipped using the 

ArcMAP clip tool to the boundary shapefile. The clipped DEM grids where combined 

using the mosaic tool within ArcMAP to create a single 30-meter DEM for the entire 

watershed. The DEM was subsequently resampled using the ArcMAP resample tool to 

extract values in accord with the model’s grid cell size of 300 meters. Figure 3.4 shows 

the initial DEM’s that were downloaded and reprojected (before the DEM’s were clipped 

to the watershed border and combined together to form the DEM that was resampled). 

The blue outlines represent the three DEM tiles needed for complete elevation coverage 

of the entire watershed. 
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Figure 3.3 Blue Earth River Watershed Gaging Sites. Gaging sites are located along the mainstem of 

the Blue Earth River allowing for monitoring of contributions by the major tributaries to the Blue 

Earth River including the East Branch Blue Earth and Elm Creek systems.
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Figure 3.4 - Unclipped DEM Tiles downloaded from the USGS Seamless Data Warehouse Website. 

Figure also include watershed boundary from the MRBDC. The DEM displays the drainage of the 

basin that is toward the central axis and to the north.  
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The stream shapefile and tributaries was obtained from the MRBDC for the 

streams and tributaries located within Minnesota. The shapefile for the streams and 

tributaries located in Iowa was obtained from the Natural Resources Geographic 

Information Systems (NRGIS) library maintained by the Iowa Department of Natural 

Resources (www.igsb.uiowa.edu/nrgislibx/). These two shapefiles where merged using 

ArcMAP’s merge tool to create a single file. The results were checked for accuracy by 

visually comparing the shapefile to aerial photography. Careful editing of the position of 

the streams was performed to ensure that the images of the watershed’s aerial 

photographs and the streams in the final shapefile were matched to within the spatial 

accuracy of the model, i.e., 300 meters. .  

 Soil shapefiles were obtained from the NRCS, Soil Data Mart 

(http://soildatamart.nrcs.usda.gov), for each of the counties within the watershed. The 

shapefiles where merged using the merge tool in ArcMAP and clipped to the watershed 

boundary using the clip tool in ArcMAP to create a single shapefile of all soil types for 

the entire watershed. 

Vflo™ model allows the user to specify an unlimited number of watch points, 

designated cells where modeled discharge and river height (stage) results can be extracted 

from the model (Vieux Inc. 2007). For the purpose of this study, three watch points were 

used. The watch points shapefile was created from GPS waypoints collected in the field.  

The waypoints were collected using a sub-meter DGPS unit, MicroTrakker T100, and an 

iPAQ.  The watch points were then transferred using Microsoft ActiveSync
TM 

before 
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being added to the Vflo™ model. The locations of all the watch points are listed in Table 

3.3. 

 The flow direction grid is composed of cells that are connected together according 

to the principal drainage direction and provided the basis for solving the kinematic wave 

equations in physics based Vflo™ model. The flow direction grid file was created with 

the assistance of the ArcMAP Flow Direction tool. ArcMap input requires DEM’s that 

are obtained from the USGS seamless website, and for this study, DEM’s with resolution 

of 1 arc-second or 30 meters were used. The DEM’s were clipped to the watershed 

boundary using the ArcMAP Clip tool. The clipped DEM’s were merged using the 

ArcMAP Mosaic tool. 

 Because a coarse DEM was used to produce the flow direction grid, a process of 

stream burning was used in order to obtain the most accurate flow direction grid as 

possible. Stream burning is the process of taking the stream shapefile which contains the 

lowest elevation points and the watershed boundary shapefile which has the highest 

elevation points and fixes their locations into the DEM.  This process reduces the 

misplacement of the stream within the model resulting from the low resolution of the 

DEM (Vieux Inc.2007). Stream burning is explained in further detail in the following 

paragraph.  

 The stream burning process is provided in the Vflo™ User Guide v4.0. The 

resampled DEM was raised by 500 meters, this was an elevation higher than the highest 

elevation value on the resampled DEM, and has a file name DEM_500m. The stream 

shapefile was prepared for this process by adding a unit field with a value of ‘1’. The 
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shapefile was converted into a grid using the Feature to Raster tool in ArcMAP selecting 

unit as the field and 300 as the output cell size with a file name of str_unit. The raster 

calculator was then used to multiply the str_unit by the resampled DEM. This creates a 

new DEM where the only values that were present were where the stream grid cells 

existed with a file name str_dem. The same process is followed for the watershed 

boundary shapefile.  

The watershed boundary shapefile was prepared for this process by adding a unit 

field with a value of ‘1’. The shapefile was then converted into a grid using the Feature to 

Raster tool in ArcMAP selecting unit as the field and 300 as the out cell size with a file 

name of basin_unit. A 600 meter wall, the value must be higher than the highest value of 

the raised DEM, was then created with a file name basin_600m. The basin_600m and 

DEM_500m were merged together using the raster calculator to form one DEM with a 

file name dem_merge1. The str_dem file was then merged with the dem_merge1 file 

using the raster calculator to create the final DEM with a file name of final_dem. By 

merging the str_dem and dem_merge1 the drainage direction is forced along the stream 

cells ensuring that all the overland cells will flow towards a stream cell. The final DEM is 

shown in Figure 3.5. 

 A principal control of runoff and variable of runoff equations is topographic slope 

(US Soil Conservation Service, 1986). Vflo™ code incorporates slope as the percentage 

change in slope between adjacent grid cells along a similar aspect.  The slopes created for 

the watershed were the result of using the 30-meter DEM and the Slope tool in ArcMAP. 

Within ArcMAP, the percent of rise or percent of slope was selected for the output 
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measurement. The resulting grid was then resampled using the resample tool in ArcMAP 

to the 300-meter cell size. Once the grid was resampled, it was exported as an ASCII file 

and then loaded into Vflo™.  

 Similarly to surface slope, land cover and use are primary contributions to the 

volume and rate of runoff (US Soil Conservation Service 1986).  Land use data were 

obtained from the Multi-Resolution Land Characteristics Consortium (www.mrlc.gov). 

The National Land Cover Dataset (NLCD) 2006 was downloaded, clipped to the 

watershed boundary and then resampled to the 300-meter cell size.  

 Surface roughness, the friction produced by land surfaces that inhibits water flow, 

is a unitless parameter that is named in honor of was Robert Manning and is known as 

Manning’s n coefficient. Manning’s n is determined empirically and values for various 

types of land cover were collated by Chow (1959). Table 3.1 shows values of Manning’s 

n from Chow’s (1959) table that apply to the land uses found in the Blue Earth River 

Watershed.  

 

Table 3.1 Manning's n Values Chow (1959) 

Description Roughness (n) 

Cultivated Area – no crop 0.030 

Cultivated Area – mature row crop 0.035 

Cultivated Area – mature field crop 0.040 

Trees – dense willows, summer, straight 0.15 

Trees – heavy stand of timber, a few down trees, little 

undergrowth 

0.10 

Pasture – short grass 0.030 

Pasture – high grass 0.035 

Main Channels – clean, straight, full stage, no rifts or 

deep pools 

0.030 

Main Channels – same as above but with more stones 

and pools 

0.035 

Main Channels – clean, winding, some pools and 

shoals 

0.040 

Main Channels – sluggish reaches, weedy deep pools 0.070 
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The texture and composition of watershed soils influence both infiltration and 

runoff (Horton, 1933). The soil data for the Blue Earth River Watershed were obtained 

from the USDA Natural Resources Conservation Services (USDA-NRCS) soil data mart. 

Each county within the watershed was downloaded and the shapefiles were then merged 

using the merge tool in ArcMAP. The shapefile was clipped to the watershed boundary 

using the clip tool in ArcMAP. The Vflo™ model uses a time-based physical basis 

equation, the Green-Ampt equation for infiltration. The Green-Ampt equation provides 

the total porosity, effective porosity, wetting front suction, and hydraulic conductivity 

based on the United States Department of Agriculture (USDA) soil classification: sand, 

loamy sand, sand loamy, loam, silt loam, sand clay loam, clay loam, silty clay loam, 

sandy clay, silty clay, clay (Green and Ampt, 1911). The values needed to complete the 

Green-Ampt equation were provided by Rawls et al. 1983. 
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Table 3.2 Green-Ampt Infiltration Parameters from Soils Data, Rawls et al. 1983 

Soil Texture Class Total Porosity, in 

cubic centimeters 

per cubic 

centimeter 

Effective Porosity, 

in cubic 

centimeters per 

cubic centimeters 

Wetting Front 

capillary pressure, 

in centimeters  

Hydraulic 

conductivity, in 

centimeters per 

hour 

Sand 0.437 

(0.374 – 0.500) 

0.417  

(0.354 – 0.480) 

4.95 

(0.97 – 25.36) 

11.78 

Loamy sand 0.437 

(0.363 – 0.506) 

0.401 

(0.329 – 0.473) 

6.13 

(1.35 – 27.94) 

2.99 

Sand loamy 0.453 

(0.351 – 0.555) 

0.412 

(0.238 – 0.541) 

11.01 

(2.67 – 45.47) 

1.09 

Loam 0.463 

(0.375 – 0.551) 

0.434 

(0.334 – 0.534) 

8.89 

(1.33 – 59.38) 

0.34 

Silt Loam 0.501 

(0.420 – 0.582) 

0.486 

(0.394 – 0.578) 

16.68 

(2.92 – 95.39) 

0.65 

Sandy clay loam 0.398 

(0.322 – 0.464) 

0.330 

(0.235 – 0.425) 

21.85 

(4.42 – 108.0) 

0.15 

Clay loam 0.464 

(0.409 – 0.519) 

0.309 

(0.279 – 0.501) 

20.88 

(4.79 – 91.10) 

0.10 

Silty clay loam 0.471 

(0.418 – 0.524) 

0.432 

(0.347 – 0.517) 

27.30 

(5.67 – 131.50) 

0.10 

Sandy clay 0.430 

(0.370 – 0.490) 

0.321 

(0.207 – 0.435) 

23.90 

(4.08 – 140.2) 

0.06 

Slity clay 0.479 

(0.425 – 0.533) 

0.423 

(0.334 – 0.512) 

29.22 

(6.13 – 139.4) 

0.05 

Clay 0.475 

(0.427 – 0.523) 

0.385 

(0.269 – 0.501) 

31.63 

(6.39 – 156.5) 

0.03 

 

Vflo™ also requires initial abstraction, percent impervious, and soil depth. The initial 

abstraction is the measure of water (rain) that falls to the ground surface before runoff 

occurs.  For each grid cell, initial abstraction was calculated using the following formula: 

Equation 3.1 Initial Abstraction Equation 

 

Initial Abstraction (Ia) = 0.2*S 

 

Where: 

 S = (1000/CN) – 10 

 CN = Curve Number 
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 Impervious surfaces contribute directly to runoff.  The percent of the watershed 

that consists of impervious surfaces was downloaded from the Multi-Resolution Land 

Characteristics Consortium (www.mrlc.gov). The file was then projected into the correct 

projection, North American Datum (NAD) 1983, Universal Transverse Mercator (UTM) 

zone 15 north using the project tool in ArcMAP. As with the other Vflo
TM

 input files, the 

projected file was clipped to the watershed boundary using the clip tool in ArcMAP and  

resampled to a 300-meter resolution using the resample tool in ArcMAP, and then 

converted to an ASCII file. 

Vflo™ numerically estimating watershed runoff using gridded rainfall data 

produced by radar, rain gauge data from known gauging locations, and user-designed 

storms. For this study NEXRAD level II data was downloaded from the NOAA website 

for the seven significant precipitation events that occurred during the 2008 monitoring 

season.  The dates of those events included April 10 – 12; April 17 -19; April 21 -22; 

April 24 – 26; May 1 – 3; May 29 – 30; June 6 - 9. Each file was a 360 degree scan of the 

NEXRAD Radar service area KMSP (Chanhassen, Minnesota) that was completed every 

five minutes.   “Precipitation mode” NEXRAD results, equaling a total of 288 files per 

day, were loaded into Vflo™ for each selected event. These files were sorted by the 

precipitation events listed above then saved as rain rate property (RRP) files.  
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3.3 Stream Gauging Methods 

Total stream discharge was evaluated at three sites along the river to calibrate the 

Vflo™ model and verify modeled runoff results. The discharge points are listed below in 

Table 3.3. 

 

Table 3.3 Total Stream Discharge collection points 

 
Site Name Longitude  

UTM Coordinate 

Latitude  

UTM Coordinates 

Datum 

Faribault County Road 8 

 (FTC 8) 

409808.3387 meters 

Easting 

4836237.2623 meters 

Northing 

NAD 83, UTM 

Zone 15 North 
Faribault County Road 

12 (FTC 12) 

403815.9052 meters 

Easting 

4846969.5185 meters 

Northing 

NAD 83, UTM 

Zone 15 North 

Blue Earth County Road  

34 (BEC 34) 

411885.3524 meters 

Easting 

4880036.2006  meters 

Northing 

NAD 83, UTM 

Zone 15 North 

 

 

 To produce the most accurate record of discharge along the entire length of the 

river, continuous discharge records for the 2008 monitoring season were collected for the 

southern, central, and northern sections of the watershed. To determine continuous 

discharge, standard USGS techniques (outlined below) were employed. 

 

1. Using basic US Geological Survey recommendations (see Rantz, 1982a), stilling 

wells with continuous stream stage recorders were constructed and installed at 

monitoring sites FTC8, FTC12, and BEC34.  Each stilling well consisted of a 

vertical section of 2-inch (diameter) Schedule 80 PVC pipe that was fitted with 

inward facing eye-bolts, a locking cap, and lower fitting that allowed a 

horizontally-mounted 1-inch Schedule 80 PVC pipe to be attached.  These wells 



 37 

 

were attached to piers or abutments on the downstream sides of bridges crossing 

the BER at each monitoring site.  In order to eliminate turbulence or other false 

water level readings cause by the bridge structures, the bottom of each well was 

fitted with a horizontal, 1-inch Schedule 80 PVC pipe (a “lateral arm”) that was 

buried in the river bottom at depths between 6 in. and 2 ft. and run-out for the 

length necessary to place its end beneath a location of non-turbulent water.  

Depending on the site, these lengths varied between 6 and 25 ft.  To allow water 

to enter the well while minimizing the inflow of sediment, 2 ft. tall vertical pipes 

with ¼ in. holes were attached to the ends of each lateral arm.  These “intake 

pipes” were made of capped 1-inch Schedule 80 PVC pipe and positioned so that 

the each intake port faced  downstream.  
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2.  

Figure 3.5 Typical stilling well construction. Actual dimensions vary individual installation site. 

(Bryce Hoppie personal communication) 

 

 

The exact elevation of each well, referenced to the position of the inward-

facing eye-bolt, was determined by surveying methods.  Exact elevations of 

boundary monuments on each bridge were obtained from the Blue Earth County 

and Faribault County public works departments.  Surveying equipment was 

borrowed from the MSU Mankato Department of Civil and Mechanical 

Engineering. 
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Within each stilling well, Solinst Levelogger Gold datalogging 

submersible pressure transducers (SPT) were used to measure and record all 

stream gages.  The SPT was hung from the eye-bolt in each well using stainless 

steel wire so that the lower tip of the SPT rested less than 2 in. above the bottom 

of the well. Each SPT was programmed to record water elevation changes to 

0.001 ft. every 5 minutes throughout the period of study.  Corrections for 

changing atmospheric pressure were performed with the aid of two Solinst 

Barologger Gold datalogging atmospheric pressure transducers mounted at the 

FTC8 and BEC34 sites, and software provided by Solinst Canada Ltd. 

 

3. Each site was physically gaged every 3-5 weeks throughout the monitoring 

season. Depending on water depth and location, current velocities were 

determined by the wading rod method or by the weighted current meter and 

sounding reel method using a bridge-board apparatus (Dingman 2002, Rantz 

1982a).  Regardless of the method, water depth and velocity were recorded at no 

fewer than 13 individual locations spanning the width of the river.  When water 

depth exceeded 1.5 ft., average vertical water velocity was determined by 

averaging values of velocity determined at 0.2 and 0.8 times the total water depth.  

In shallower water, a single water velocity was procured at a depth of 0.6 times 

the water depth. Each survey began and ended by recording time and river stage 

relative to the site’s permanent datum, i.e., the eye-bolt on each stilling well.   

 



 40 

 

Stage (relative to each site’s permanent datum) and discharge results from each 

gaging event were combined and used to develop rating curves for each site (Rantz 

1982b).  Rating curves were then adjusted to allow corrected SPT data to be used directly 

and thus produce a continuous record of discharge for each site throughout the entire 

monitoring season. 
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CHAPTER IV  

RESULTS 

 Chapter 4 discusses all the required parameters needed to complete the 

development of the model using the Vflo™ hydrologic model software which will include 

land use, Manning’s n, wetting front, initial abstraction, effective porosity, hydraulic 

conductivity, flow direction, flow accumulation, slope, soil classification, and the stream 

network. This will be followed by the hydrologic data section which will include the 

observed stage, gauging results, and results of determining the discharge at each of the 

monitoring stations, and precipitation. 

 

4.1 Overview Vflo™ Model Calibration 

Calibration of the Vflo™ model for the Blue Earth River Watershed was done by 

simulating seven precipitation events that occurred during the 2008 monitoring season. 

The calibration was matched to actual Blue Earth River hydrographs which were the 

result from stream gauging measurements at the Faribault county road 8, Faribault county 

road 12, and Blue Earth county road 34 sites during the 2008 monitoring season. 

Calibration of the Vflo™ model to the observed hydrographs at the three sites listed 

above resulted in a final, calibrated model of hydrology for the entire Blue Earth River 

Watershed.  

The model was calibrated by adjusting the weighting of the infiltration parameters 

in accordance with the weather conditions in order to attain the correct volume for the 
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simulated hydrographs. The roughness values for both overland and channel along with 

channel width were adjusted to correctly calibrate the models timing of the peak. 

 

4.2 Description of Vflo™ Model Parameters 

Vflo™ utilizes parameters that vary in both space and time to predict hydrologic 

responses to weather events. The model uses a time-based physical equation for 

infiltration along with GIS data and radar inputs that offer a scalable prediction model.  

Vflo™ hydrologic model requires 18 datasets to solve the infiltration, runoff, and channel 

flow equations. The datasets needed are listed in Table 4.0 and will be discussed in 

further detail later in this chapter. 

 

Table 4.0 Vflo™ Parameters Required for Model 

 
Vflo™ Parameters    

Slope Soil Classification Roughness (manning’s n 

values) 

Flow Direction 

 

Elevation Abstraction Wetting Front (WF) Flow Accumulation 

Stream Network Effective Porosity (EP) Hydraulic Conductivity Channel Width 

Channel Side Slope Hydrologic Soil Group 

(HSG) 

National Land Cover 

Dataset 

Initial Saturation 

Spatial Distributed 

Rainfall 

Baseflow (CFS)   

 

Using multiple USGS DEM’s that were clipped to the watershed boundary, a 

mosaic raster file of the land surface elevation was created for the entire watershed. 

These results are shown in Figure 4.1. The maximum elevation found within the 

boundary of watershed was in the western part and was 448 meter or nearly 1470 feet 

above sea level. The lowest elevation is approximately 232 meters or roughly 761 feet 
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above sea level. This elevation marks the northern most point in the watershed where the 

Blue Earth River discharges into the Minnesota River in Mankato, Minnesota. Although 

the range of elevation may look large, the watershed is relativity flat with an average 

decrease in elevation of two feet per mile traveling downstream towards the mouth of the 

river. 
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Figure 4.1 - Blue Earth River Watershed Elevations. The watershed has significant drainage towards 

the west and east towards a central axis and then northward towards the point of discharge. 
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In conjunction with ArcMap slope tool the same clipped DEM’s were used to 

generate the percent of slope across the entire watershed. These results are shown in 

Figure 4.2. Broadly speaking the Blue Earth Watershed has relatively low percent slopes. 

Over 95 percent of the watershed area has a slope of less than 3.5 percent. Outside of the 

riparian areas are very flat, the average slope of 0.64 percent. Within the incised river 

valleys and eroded gullies the percent of slope was observed up to 55 percent; however, 

these step surfaces represent less than one percent.  
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Figure 4.2 Blue Earth River Watershed Percent of Slope. Percent of slope is shown in five classes to 

illustrate the dominance of low sloping areas, with slopes from 0 to 3.4 percent. With a 300-meter 

resolution areas of significant slope, 8 to 55 percent exist almost exclusively in the main stem riparian 

corridor. 
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The stream network for the Blue Earth River Watershed encompasses ten counties 

and two states. Due to the vastness of the watershed two stream network files were 

needed, one file from each of the two states in which the Blue Earth River watershed 

resides within, Minnesota and Iowa. These two shapefiles where then merged together 

using the merge tool in ArcMAP to create one file. The resulting shapefile was then 

checked for accuracy by comparing the shapefile to aerial photography. Errors were 

found when compared to the current aerial photography.  Editing of the streams shapefile 

was then performed to match the aerial photography ensuring that the most accurate 

stream shapefile was used for the model. The shapefile was then converted to a raster grid 

using the conversion tools - feature to raster tool within ArcMAP. The grid was then 

resampled using the resample tool within ArcMAP to 300 meters.  

Figure 4.3 depicts the results of the processes listed above. The results in the 

northern portions are not the most desired results as when the grid was resampled some 

information was lost. The lost of information can be attributed to the resampled grid cell 

size which allowed for generalization of the cell value. The generalization error can be 

attributed to the river channel in the northern portion of the watershed becomes very 

incised and narrower than in the southern portion of the watershed. The stream grid was 

extensively edited in Vflo™ using the corrected stream shapefile as justification to 

resolve these errors and ensuring the correct drainage network was established. 
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Figure 4.3 Blue Earth River Stream Network. The channels shown in this figure were converted to a 

raster grid to be used in the Vflo™ model. The resulting raster grid was edited to ensure conductivity 

of channel cells. 
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The soil data for the Blue Earth River Watershed was obtained from the United 

States Department of Agriculture Natural Resources Conservation Services (USDA-

NRCS) soil data mart. Files for the each of the ten counties within the watershed were 

merged, resampled (to a 300-meter grid cell size) and examined. Figure 4.4 illustrates the 

results of this process along with the variability of soil classifications throughout the 

watershed.  

The soil classifications along with the Green-Ampt equation for infiltration will 

be used to derive the other infiltration parameters need for the Vflo™ model. The 

dominate soil type of the watershed is fine-loamy soil. This soil is found primary along 

the western (Elm Creek) and eastern (East Branch Blue Earth River) tributaries. In areas 

near area main stem fine and silty soils are more common than other types. 
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Figure 4.4 Blue Earth River Watershed Soil Classifications. The soil classification shown in seventeen 

classes to illustrate the variability in soils throughout the watershed and the dominance of fine-loamy 

evident.   
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The Vflo™ model uses a time based physical basis equation, the Green-Ampt 

equation for infiltration. The Green-Ampt equation provides the total porosity, effective 

porosity, wetting front suction, and hydraulic conductivity based on soil classification. 

The soil classification was taken from the soils shapefile described above and entered 

into a spreadsheet with query statements for each of the soil classifications and their 

corresponding infiltration values. The infiltration values were then taken from the 

spreadsheet and added to the shapefile. 

Figure 4.5 represents the initial abstraction values for the watershed that were 

derived from the Green-Ampt equation present in Rawls et al. (1983) and the previously 

described processes. The watershed has a range of 0.0 to 4.67 inches of initial abstraction 

with an average initial abstraction value of 0.57 inches. The 0.0 value of initial 

abstraction can be more than likely related to open water. The higher values of 

abstraction are present in the northern most portions of the watershed corresponding with 

the soil classifications fine-slity and very fine. 
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Figure 4.5 Blue Earth River Watershed Abstraction Values. Abstraction values are generally 

homogenous and show very little spatial variation. No significant trends are observed in these results. 
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The Vflo™ model uses a dynamic physical basis equation, the Green-Ampt 

equation for infiltration. The Green-Ampt equation provides effective porosity for all 

different types of soil classifications. Described in Vflo™ help effective porosity is the 

difference between total porosity and the soil moisture content based on soil classification 

and is independent of soil moisture at any time. Effective porosity is entered into the 

Vflo™ model as a unitless decimal fraction where a value of one is completely porosity 

and a value of zero is absolutely no porosity (Vflo™ Inc. 2007). 

The soil classification was taken from the soils shapefile described above and 

entered into a spreadsheet with query statements for each of the soil classifications and 

their corresponding infiltration values. The infiltration values were then taken from the 

spreadsheet and added to the soil shapefile as an attribute. 

Figure 4.6 represents the effective porosity values for the watershed that were 

derived from the Green-Ampt equation using values from Rawls et al. (1983). The 

watershed has an average effective porosity of 0.497, a relativity large number that 

corresponds to the clay rich content of the soils that are found throughout the watershed 

(Paulson et al., 1978). The overall range of the effective porosity was found to be 0.0 to 

0.51. The zero values match up very well with the lakes present within the watershed 

along with other open water areas. 
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Figure 4.6 Blue Earth River Watershed Effective Porosity Map. The highest values for effective 

porosity are the most common throughout the watershed. Effective porosity values for the watershed 

demonstrate very little spatial variation and no significant trends are observed in these results. 
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Land use data was obtained from the Multi-Resolution Land Characteristics 

Consortium. The National Land Cover Dataset (NLCD) 2006 was downloaded, clipped 

to the watershed boundary and then resampled to the 300 meter cell size. The overland 

roughness, Manning’s n values for each land cover type was assigned from the values 

found in Chow (1959).  

 Figure 4.7 represents the results of the Manning’s n values being added to 

the NLCD and then classifying the values to display the range of roughness values. The 

overall average roughness value for the Blue Earth River watershed was 0.039 and has a 

range of 0.012 to 0.10. The overall average of the watershed corresponds very well with 

the land cover classification mature row crop and mature field crop. The Blue Earth River 

watershed is for the most part agricultural land consisting of row crops and field crops. 

The value of 0.012, pretty smooth, corresponds well to the open water areas along with 

the impervious areas such as the roads. The maximum values of roughness, 0.10 occur in 

the riparian areas near the river channels where the land cover is mainly trees and 

undergrowth. 
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Figure 4.7 Blue Earth River Watershed Manning's n Values. The overall average roughness value for 

the Blue Earth River watershed was a Manning’s n value of 0.039 corresponding well with the 

dominate land cover throughout the watershed, row crops and pasture. 
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As mentioned before the Vflo™ model uses a time based physical basis equation, 

the Green-Ampt equation for infiltration. The Green-Ampt equation provides values for 

the wetting front parameter for all different types of soil classifications. Described in 

Vflo™ help wetting front is the wetting front suction head and is based on soil 

classification and is independent of soil moisture at any time. The wetting front is 

important in deriving the infiltration amounts of unsaturated areas. Wetting Front is 

entered into the Vflo™ model as units of centimeters or inches depending on the version 

of the Vflo™ model that is begin used, metric or US customary. For the purposes of this 

study US customary was used and the wetting front units were enter in as inches. 

The soil classification was taken from the soils shapefile described above and 

entered into a spreadsheet with query statements for each of the soil classifications and 

their corresponding infiltration values. The infiltration values were then taken from the 

spreadsheet and added to the soil shapefile as attributes. 

The wetting front suction head values for the Blue Earth River watershed are 

presented in figure 4.8. The minimum values tend to be areas of water where the wetting 

front is expected to be low, open water areas. 
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Figure 4.8 Blue Earth River Watershed Wetting Front Values. The moderate wetting front values 

throughout the watershed are expected with the dominance of fine-loamy soils within the watershed.  
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As mentioned before the Vflo™ model uses a time based physical basis equation, 

the Green-Ampt equation for infiltration. The Green-Ampt equation provides values for 

the hydraulic conductivity parameter for all different types of soil classifications. 

Described in Vflo™ help hydraulic conductivity is the saturated hydraulic conductivity in 

the Green-Ampt description. The hydraulic conductivity is used to control the infiltration 

over already saturated soils and is based on soil classification. Like the wetting front 

parameter, hydraulic conductivity is entered into the Vflo™ model as units of centimeters 

or inches depending on the version of the Vflo™ model that is begin used, metric or US 

customary. Once again the version used for the purpose of this study the US customary 

was used and the units used were inches. 

The values for the Blue Earth River watershed are presented in figure 4.9. The 

range of values is from 0.0 to 0.37 inches of hydraulic conductivity. The average value of 

the watershed is 0.16 inches. The minimum values for the watershed overlay the open 

water and lakes areas within the watershed. The majority of the watershed is within the 

range of 0.1189 to 0.3700. Table 4.1 lists the percentages and acres of each the class 

ranges for hydraulic conductivity within the Blue Earth River watershed. 

 

Table 4.1 Hydraulic Conductivity for Blue Earth River Watershed at 300 meter resolution 

Range Percentage Acres 

0 1.90506 18948.03696 

0 - 0.029 1.086689 10808.38728 

0.029 - 0.98 6.242873 62092.62816 

0.0986 - .1189 4.22 42032.6172 

0.1189 - 0.2190 46.84391 465917.106 

0.2190 - 0.3700 39.69546 394817.4884 
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Figure 4.9 Blue Earth River Watershed Hydraulic Conductivity. The highest values for hydraulic 

conductivity dominate the Blue Earth Watershed. Hydraulic Conductivity values for the watershed 

demonstrate very little spatial variation.  
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 Land cover data were obtained from the Multi-Resolution Land Characteristics 

Consortium. The National Land Cover Dataset (NLCD) 2006 was downloaded, clipped 

to the watershed boundary and then resampled to the 300 meter cell size. The land cover 

dataset was used with the hydrologic soil group to obtain the curve numbers for the entire 

watershed. The curve numbers where then used to obtain the abstraction value for each 

cell within the Vflo™ model. 

The Blue Earth River watershed has an area of 1,002,240 acres in the counties of 

Blue Earth, Brown, Cottonwood, Faribault, Freeborn, Jackson, Le Sueur, Martin, Steele, 

Waseca, and Watonwan in Minnesota and Emmet, Kossuth, and Winnebago in northern 

Iowa. Figure 4.10 displays the 2006 land cover present within the watershed. As one can 

see the over whelming majority of land cover is agricultural. Table 4.2 is the composition 

of the resampled 300 meter 2006 NLCD percentages of land cover. Boone (2000) states 

that the Blue Earth River watershed is comprised of 92 percent agricultural land. 

 

Table 4.2 2006 National Land Cover Dataset percentages 

VALUE CLASS_NAME PERCENT 

11 Open Water 1.44 

21 Developed, Open Space 5.78 

22 Developed, Low Intensity 0.80 

23 Developed, Medium Intensity 0.17 

24 Developed, High Intensity 0.07 

31 Barren Land 0.06 

41 Deciduous Forest 0.76 

43 Mixed Forest 0.16 

71 Grassland/Herbaceous 2.16 

81 Pasture/Hay 0.61 

82 Cultivated Crops 85.39 

90 Woody Wetland 1.55 

95 Emergent Herbaceous Wetland 1.05 
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Figure 4.10 Blue Earth River Watershed National Land Cover Dataset (NLCD 2006). The land cover 

dataset illustrates the homogenous land cover and show almost no spatial variation. Cultivated crops 

is the dominate land cover throughout the Blue Earth Watershed.  
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The soil data for the Blue Earth River watershed was obtained from the United 

States Department of Agriculture Natural Resources Conservation Services (USDA-

NRCS) soil data mart. Each county within the watershed was downloaded and the 

shapefiles were then merged together using the merge tool in ArcMAP. The shapefile 

was clipped to the watershed boundary using the clip tool in ArcMAP. The symbology 

was changed to represent the hydrologic soil group. The shapefile was then converted to 

a raster grid using conversion tools – to raster – feature to raster tool in ArcMAP 

selecting the hydrologic group as the field and a cell size of 300 meters. Figure 4.11 

represents the results of this process and displays the hydrologic soil groupings for the 

entire Blue Earth River watershed. 

 As mentioned previously the hydrologic soil group along with the national land 

cover dataset is used to obtain the curve numbers for the entire watershed. The curve 

number is then used to extract the initial abstraction value which is used in the infiltration 

solving process of the model. Table 4.3 lists the composition of the hydrologic soil 

groups within the watershed.  

Table 4.3 Blue Earth River Watershed Hydrologic Soil Group Composition at 300 meter resolution 

COUNT HYDGRP Percentage Soil Textures Infiltration Rate 

695  1.556272 N/A N/A 

20258 B/D 45.36253   

510 D 1.142013 

Clay loam, silty clay loam, sandy 

clay, silty clay, or clay Low 

271 A 0.606834 Sand, loamy sand, or sandy loam High 

17534 B 39.26284 Silt loam or loam Moderate 

1858 C 4.160509 Sandy clay loam Low 

704 A/D 1.576425   

2828 C/D 6.332572   
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Figure 4.11 Blue Earth River Watershed Hydrologic Soil Groups Grid. Hydrologic Soil Group B/D 

and B with slow to moderate infiltration rates dominate the watershed. The resampled 300 meter 

grid illustrates the potential of moderate to high run off rates throughout the watershed. 
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The process for obtaining the DEM for this parameter is similar to the processes 

that have been described in previously for the other needed parameters. In order to create 

the flow direction for the watershed the spatial analyst – hydrology – flow direction tool 

was used in ArcMAP. The resampled 300 meter DEM was used to create the 300 meter 

flow direction grid. The resampled flow direction grid was then converted to an ASCII 

file using the raster to ASCII tool in ArcMAP. Figure 4.12, shows the resulting grid from 

these processes.  

Analysis of the flow direction grid shows the overall flow tendencies of the 

watershed. The western portion of the watershed has an overall flow direction of east and 

the eastern portion of the watershed has an overall flow direction of west meeting in what 

can be considered the middle of the watershed. The analysis does match the overall 

drainage network of the watershed. 
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Figure 4.12 Blue Earth River Watershed Flow Direction Grid. The watershed has significant 

drainage towards the west and east towards a central axis  
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The watershed 300 meter DEM was used to create the flow direction grid in a 

process described previously. The resulting flow direction grid was used to create the 300 

meter flow accumulation for the watershed using the spatial analyst – hydrology – flow 

accumulation tool in ArcMAP. The flow accumulation grid was then converted to ASCII 

using the raster to ASCII tool in ArcMAP.  

Figure 4.13 displays the flow accumulation of the watershed. Analysis of the flow 

accumulation grid reveals that the number of cells that flow into the next cell continues to 

increase downstream until the river exits the watershed. Minor corrections were 

performed within the watershed due to the 300 meter resolution. The flow accumulation 

is the greatest at the mouth of the river and the same is found for the tributaries to the 

Blue Earth River.  
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Figure 4.13 Blue Earth River Watershed Flow Accumulation Grid. The flow accumulation trends to 

be the greatest at the confluence of the Blue Earth River and the Minnesota River. The same is found 

to be true for the tributaries to the Blue Earth River. 
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The channel width parameter was developed by using the flow accumulation grid 

in the following equation: 

Equation 4.1 Blue Earth River Watershed Channel Widths Equation 

 

 ch_width = 5.77778 *pow({ch_da_sq_km}, 0.1782)/0.3048 for feet 

ch_da_sq_km = stream flow accumulation grid * drainage area for each cell 

 

The stream flow grid was multiplied by the drainage area of each cell, 0.09 km
2
 or 

90,000 m
2 

for the Blue Earth River Watershed. The value was then entered into the 

ch_width equation. The channel width was then converted into an ASCII file using the 

raster to ASCII tool in ArcMAP. For the cells at Faribault county road 8, Faribault county 

road 12, and Blue Earth county road 34 the channel characteristics were changed due to 

the fact that these three sites were the where the monitoring stations were located at and 

therefore they had more detailed characteristics available. These values were used as 

rated channel cells at these three locations. 
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Figure 4.14 Blue Earth River Watershed Channel Widths. The channels shown in this figure were 

converted to a raster grid to be used in the Vflo™ model. The resulting raster grid was then checked 

with field observations to ensure accuracy was within acceptable error of less than 3%. 
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4.3 Hydrologic Results: Measured Stream Flwo and Observerd Precipitation 

The following results include continuous in stream stage monitoring, routine 

gauging of the Blue Earth River, and the development of discharge hydrographs for the 

BEC 34, FTC 8, and FTC 12 monitoring stations. 

 

 

 

Figure 4.15 Blue Earth River Stage – BEC 34 site. Similar to the monitoring sites upstream (FTC 8 

and FTC 12) from BEC 34, seven significant precipitation events led to two major episodes of 

elevated stage occurring in May and June, followed by a period of extremely dry conditions 

returning the river to baseflow conditions.   

 

  

 The stage for the Blue Earth River County road 34 site was collected for the entire 

2008 monitoring season from complete ice out conditions in late March to mid October. 

The stage was captured by the methods described above in the gauging methods section. 
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Analysis of the hydrograph shows that the watershed experienced extremely dry 

conditions from the end of June until the end of the monitoring season in October. 

 

 

Figure 4.16 Blue Earth River Stage – FTC 8 site. Seven significant precipitation events led to two 

major episodes of elevated stage occurring in May and June, followed by a period of drought 

returning the river to baseflow conditions.   

  

 

 The stage for the Faribault County road 8 site, which is the southern most site was 

collected for the entire 2008 monitoring season. Analysis of the hydrograph shows a high 

level of sensitivity to precipitation events which occurred within the watershed during 

this time in part because the location is still downstream of the East Branch of the Blue 

Earth River and all the of Iowan branches of the river. This site showed responses to 

eastern and southern rainfalls. The location has extreme high and low flow stages and 

usually showed responses first to most rainstorms because of its location, being 
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downstream of a fairly large area of the watershed, and the general path of storms in 

southern Minnesota. 

 

 

Figure 4.17 Blue Earth River Stage - FTC 12 site. Similar to FTC 8, seven significant precipitation 

events led to two major episodes of elevated stage occurring in May and June, followed by a period of 

drought returning the river to baseflow conditions.   

 

 

The stage for the Faribault County road 12 site located downstream of the FTC 8 

site, Elm Creek confluence which also includes Dutch Creek and Center Creek as well 

was collected for the entire 2008 monitoring season. Western and southwestern 

precipitation events will be seen preferentially in its stage recordings and will cause the 

rising limbs first at this location. The stage was captured by the methods described above 

in the gauging methods section. Analysis of the hydrograph shows more sensitivity to 
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precipitation events at this site. This sensitivity maybe attributed to the Faribault County 

road 12 site location which is located downstream of Elm Creek and the East Branch of 

the Blue Earth River confluence. This location accounts for approximately 2/3 of the 

watershed drainage area. 

Tables 4.4, 4.5, and 4.6 represent the date and time, name of persons performing 

the data collection, channel width, beginning and ending stage of the river, and the 

measured discharge of the river. This data was then used to calculate to the rating curve 

for each of the three locations where the stilling wells were installed.  

 

Table 4.4 Blue Earth River Rating Blue Earth County Road 34 

 
Date 

Time 

Names of persons 

performing rating 

Channel Width Beginning and 

ending stage of 

water for each 

rating 

Measured 

discharge of the 

river 

08/20/2007 

12:15 pm start 

Mike Merlini 

Bryce Hoppie 

136.4 ft 5.95 feet – start 

n/a – finish 

239 cfs 

08/31/2007 

2:00 pm start 

4:30 pm finish 

Mike Merlini, 

Kathryn Brosch  

Bryce Hoppie 

161 ft 6.97 feet – start  

n/a – finish  

826.20 cfs 

10/03/2007 

4:48 pm start 

6:43 pm finish 

Mike Merlini 

Kathryn Brosch 

171 ft 10.08 ft – start  

10.14 – finish 

2663.13 cfs 

06/17/2008 Mike Merlini 171 ft n/a 2640.99 cfs 

08/19/2008 

10:12 am start 

11:00 am finish 

Scott 

Hommerding, 

Ryan Beuc 

132 ft 4.675 ft –start 95 cfs 

11/01/2008 

9:00 am start 

Mike Merlini 57 ft 875.39 on level 

logger 

16.43 cfs 

05/03/2009 Bryce Hoppie 158 ft n/a – start  

6.93 ft – finish  

766.61 cfs 

06/09/2009 

10:30 am start 

11:15 am finish 

Scott 

Hommerding, 

Ryan Beuc 

156 ft 5.50 ft – start  

5.50 ft – finish  

265.34 cfs 

06/23/2009 

2:00 pm start 

4:30 pm finish 

Scott 

Hommerding, 

Jonathan Stoltman 

160 ft 6.99 ft – start  953.85 cfs 
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Table 4.5 Blue Earth River Rating Faribault County Road 8 

 
Date 

Time 

Names of persons 

performing rating 

Channel Width Beginning and 

ending stage of 

water for each 

rating 

Measured 

discharge of the 

river 

08/24/2007 

10:15 am start 

12:30 pm finish 

Mike Merlini, 

Bryce Hoppie 

154’ 6” ft 1042.72’ msl – 

start 

n/a – finish 

1979.72 cfs 

09/07/2007 

5:00 pm start 

5:45 pm finish 

Mike Merlini,  

Bryce Hoppie 

114 ft 1036.85’ msl – 

start  

n/a – finish  

462.61 cfs 

10/05/2007 

7:45 am start 

9:45 am finish 

Mike Merlini, 

Bryce Hoppie 

172’ 10” ft  1046.6’ msl– start  

n/a – finish 

3133.72 cfs 

05/31/2008 

4:45 pm start 

7:15 pm finish 

Mike Merlini 

Bryce Hoppie 

169 ft n/a 2870.32 cfs 

08/05/2008 

12:30 pm start 

02:00 pm finish 

Scott 

Hommerding, 

Bryce Hoppie 

80 ft 1036.2’ msl–start 

n/a – finish 

95.46 cfs 

10/22/2008 

10:22 am start 

11:50 am finish 

Mike Merlini, 

Bryce Hoppie 

64 ft n/a 19.38 cfs 

05/03/2009 

9:15 am start 

10:35 am finish 

Bryce Hoppie 129 ft 1038.2’ msl – start  

n/a – finish  

512.40 cfs 

06/09/2009 

12.05 pm start 

01:30 pm finish 

Scott 

Hommerding, 

Jonathan Stoltman 

136 ft 1040.12’ msl –start 

n/a – finish  

1149.24 cfs 
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Table 4.6 Blue Earth River Rating Faribault County Road 12 

 
Date 

Time 

Names of persons 

performing rating 

Channel Width Beginning and 

ending stage of 

water for each 

rating 

Measured 

discharge of the 

river 

09/30/2007 

04:06 pm start 

05:45 pm finish 

Mike Merlini, 

Bryce Hoppie 

151 ft 26’9” – finish 

 

 

849.15 cfs 

10/05/2007 

10:15 am start 

11:30 am finish 

Mike Merlini,  

Bryce Hoppie 

164 ft 22’ 5.5” – start  

n/a – finish  

3484.54 cfs 

04/04/2008 

2:40 pm start 

4:00 pm finish 

Mike Merlini, 

Bryce Hoppie 

151 ft 26’ 5”– start  

n/a – finish 

894.58 cfs 

08/05/2008 

1:40 pm start 

2:55 pm finish 

Mike Merlini 

Bryce Hoppie 

115.9 ft 28’ 8” – start  

n/a – finish 

149.21 cfs 

05/03/2009 

11:35 am start 

12:33 pm finish 

Bryce Hoppie 150.5 ft 27.75’ – start 

n/a – finish  

767.44 cfs 

06/10/2009 

11:45 am start 

01:00 pm finish 

Scott 

Hommerding, 

Jonathan Stoltman 

151 ft 25’ 5” – start  

n/a – finish  

1099.36 cfs 

06/22/2009 

11:30 am start 

12:30 pm finish 

Scott 

Hommerding, 

Jonathan Stoltman 

151 ft 26’ – start  

n/a – finish  

882.80 cfs 
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Figure 4.18 Blue Earth River Rating Curve for Blue Earth County Road 34 (BEC34). A two-part fit 

was needed at this particular site in order to match the results. R-squared values of the single 

regresion are above .99 for discharge values greater than 878.25 cfs. R-squared values of the single 

regresion are above .98 for discharge values less than 878.25 cfs demonstrating a extremely strong fit.  

 

The rating curve is for the Blue Earth River County road 34 site, the northern 

most gauging site on the Blue Earth River. The fits among the existing stage and 

discharge data are excellent with r-squared values of the single value regression used to 

fit the stage and discharge results are above 0.99. Differences between the highest rated 

stage, 2663 cfs and the highest recorded stage, 5455.1 cfs therefore estimates for high 

flows are subject to errors associated with extrapolating trends. A two-part fit was needed 

at this particular site in order to match the results corresponding to the low and high 

flows.  
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Figure 4.19 Blue Earth River Rating Curve Faribault County Road 8 (FTC8). R-squared values of 

the single regresion are above .99. A mix of the 3
rd

 and 4
th

 order polynomial equations were used to 

fit the data. 

 

 

The rating curve is for the Faibault County road 8 site, the southern most gauging 

site just downstream of the confluence of the East Branch of the Blue Earth River. The 

fits among the existing stage and discharge data are again excellent with r-squared values 

of the single value regression used to fit the stage and discharge results are 0.99705. 

Differences between the highest rated stage, 3133 cfs and the highest recorded stage, 

3711.7 cfs therefore estimates for high flows are subject to errors associated with 

extrapolating trends. A mix of the 3
rd

 and 4
th

 order polynomial equations were used to fit 

the data.  
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Figure 4.20 Blue Earth River Rating Curve Faribault County Road 12 (FTC12). Single value 

regression r-squared value of above .98 demonstrates a very strong fit. Although there is a potential 

of error estimating high flows due to the slope of the fit at the high flow is very steep. 

 

The rating curve is for the Faibault County road 12 site, the gauging site just 

downstream from the Elm Creek confluence on the Blue Earth River. The r-squared 

values of the single value regression used to fit the stage and discharge results are 

0.98868. Differences between the highest rated stage, 3484.54 cfs and the highest 

recorded stage, 5115.4 cfs therefore estimates for high flows are subject to errors 

associated with extrapolating trends. The slope of the fit at the high flow is very steep, the 

potential errors associated with estimating high flows could be significant.  
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Figure 4.21 Blue Earth River Discharge at Blue Earth County Road 34. Utilizing the two part rating 

curve along with stage levels to calculate the discharge levels at BEC 34 demonstrate a strong fit. The 

river returns to baseflow conditions, 300 cfs, from approximately the third week of July. 

  

 The discharge and stage record for the BEC 34 site match very well. The rivers’ 

flows are essentially baseflows after the third week of July until the end of the monitoring 

season. The baseflow at BEC 34 from the third week of July onward is approximately 

300 cfs. 
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Figure 4.22 Blue Earth River Discharge at Faribault County Road 8.  The rating curve and stage 

levels were used to calculate discharge levels. The resulting hydrograph demonstrates a very strong 

fit between discharge and stage. The rivers’ flow at this site can consider to be baseflow, 270 cfs, after 

the third week of July. 

  

 The discharge hydrograph for FTC 8 matches its stage hydrograph very well. The 

rivers’ flow at this station can also be considered baseflows after the third week of July 

until the end of monitoring season. The baseflow at FTC 8 after the third week of July is 

approximately 270 cfs. 
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Figure 4.23 Blue Earth River Discharge at Faribault County Road 12. Similar to FTC 8 the rating 

curve and stage levels were used to calculate discharge levels. The resulting hydrograph 

demonstrates a very strong fit between discharge and stage. The rivers’ flow at this site can consider 

to be baseflow, 160 cfs, after the third week of July. 

 

 

 Similar to FTC 8 and BEC 34 the discharge and stage hydrographs match very 

well. The high and low flows at FTC 12 are likely emphasized by the steep relationship 

between stage and discharge. The rivers’ flow at this station also can be considered 

baseflows after the third week of July until the end of monitoring season. The baseflow at 

FTC 12 after the third week of July is approximately 160 cfs. 

Table 4.7 lists each of the precipitation events modeled and the number of 

NEXRAD level II file used to create each one of the *.rrp files. 
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Table 4.7 Number of NEXRAD Level II Files per Storm Event 

 

Rainfall Dates Number of NEXRAD Files  

April 10 – 12 652 

April 17 -19 556 

April 21 -22 368 

April 24 – 26 621 

May 1 – 3 580 

May 29 – 30 352 

June 6 – 9 721 

 

 

 

Figure 4.24 Distributed Rainfall for April 10 – 12 Storm. The heaviest precipitation occurred in 

northern and northeastern portion of the watershed with total accumulations ranging from 1.4 

inches to 2.95 inches. Moderate precipitation occurred throughout the remainder of the watershed 

with total accumulations ranging from .494 inches to 1.4 inches. The headwaters experience the least 

amount of precipitation with accumulation totals of .124 inches to .493 inches. 
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The visualization of the NEXRAD level II data distribution of the rainfall for the 

precipitation event occurring on April 10 – 12, 2008 is displayed in Figure 4.24. The 

northern and northeastern portion of the watershed received the heaviest rainfall. The 

majority of the watershed experienced a moderate rainfall. The headwaters of the Blue 

Earth River experienced minimal rainfall. 

 

Figure 4.25 Distributed Rainfall Data April 17 – 19. Moderate precipitation occurred throughout the 

entire watershed with the northeastern portion of the watershed receiving the heaviest precipitation 

with total accumulations ranging from .689 inches to 1.48 inches. The western portion received the 

least amount of precipitation with total accumulations ranging from .023 inches to .22 inches. 

 

The visualization of the NEXRAD level II data distribution of the rainfall for the 

precipitation event occurring on April 17 – 19, 2008 is displayed in Figure 4.25. The 

northeastern portion of the watershed received the heaviest rainfall. The majority of the 
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watershed experienced moderate rainfall totals. The western portion of the watershed 

experienced minimal rainfall. 

 

 

Figure 4.26 Distributed Rainfall Data April 21 - 22 Storm. Little to no precipitation was recorded for 

most of the watershed with the exception of the northeast portion receiving light or moderate 

precipitation with total accumulations ranging from .04 inches to .198 inches. 

 

The visualization of the NEXRAD level II data distribution of the rainfall for the 

precipitation event occurring on April 21 – 22, 2008 is displayed in Figure 4.26. The 

northeastern portion of the watershed received the heaviest and majority of the rainfall. 

The majority of the watershed experienced little or no rainfall. The northern portion of 

the watershed experienced minimal rainfall. 
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Figure 4.27 Distributed Rainfall Data for April 24 - 27 Storm. Moderate to heavy precipitation 

encompassed the entire watershed with the heaviest precipitation occurring in the western portion of 

the watershed with total accumulations ranging from 1.411 inches to 2.895 inches. 

 

 

 The visualization of the NEXRAD level II data distribution of the rainfall for the 

precipitation event occurring on April 24 – 27, 2008 is displayed in Figure 4.27. The 

western portion of the watershed, mainly over the Elm Creek sub watershed received the 

heaviest rainfall. The majority of the watershed experienced moderate to heavy rainfall. 

The northern portion a long with the headwaters of the watershed experienced the least 

amount of rainfall. 
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Figure 4.28 Distributed Rainfall Data for May 1 - 3 Storm. Central and northwestern portions of the 

watershed received moderate to heavy precipitation with total accumulations ranging from 1.36 

inches to 2.041 inches. The southern portion and northern portion received moderate precipitation 

with total accumulations ranging from .453 inches to 1.35 inches. 

 

 The visualization of the NEXRAD level II data distribution of the rainfall for the 

precipitation event occurring on May 1 – 3, 2008 is displayed in Figure 4.28. The 

northwestern and central portions of the watershed, received the heaviest rainfall. The 

southern and northern most portion of the watershed experienced a moderate amount of 

rainfall. The southeastern portion of the watershed experienced the least amount of 

rainfall during this precipitation event. 
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Figure 4.29 Distributed Rainfall Data for May 29 - 30 Storm. Moderate to heavy precipitation 

occurred throughout the watershed with the heaviest precipitation occurring in the upper northern 

portion of the watershed near the confluence of the Blue Earth River and Minnesota River with total 

accumulations ranging from 1.785 inches to 2.975 inches. The majority of the watershed experienced 

total accumulations ranging from .446 inches to 1.784 inches. 

 

The visualization of the NEXRAD level II data distribution of the rainfall for the 

precipitation event occurring on May 29 – 30, 2008 is displayed in Figure 4.29. The 

upper northern portion of the watershed received the heaviest rainfall. The majority of the 

watershed experienced a moderate amount of rainfall with the exception of the central 

portion of the watershed. The central portion experienced the least amount of rainfall. 
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Figure 4.30 Distributed Rainfall for June 6 – 9 Storm. Moderate precipitation occurred for the 

majority of the watershed with total accumulations ranging from 1.595 inches to 2.553 inches. The 

eastern and southern portions receiving more precipitation than the western portion had total 

accumulations ranging from 2.553 inches to 3.829 inches. 

 

 

The rainfall distribution for the June 6 – 9 is displayed in Figure 4.30. The pattern 

of the heaviest rainfall follows the general distribution with the eastern portion of the 

watershed receiving more rain than the western portion of the watershed. The southern 

and eastern portions of the watershed contributed the most to the observed and simulated 

flows for this precipitation event. 
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CHAPTER V  

DISCUSSION 

One of the twelve major watersheds of the Minnesota River, the Blue Earth River 

watershed is located in south central Minnesota and north central Iowa. The drainage area 

of the Blue Earth River watershed is approximately 1,550 square miles. The Blue Earth 

River watershed occupies a central portion of Minnesota’s prairie pothole region where 

the land use is largely agricultural. Surface sediments consist of clay-rich soils and glacial 

lake deposits that promote depression storage and slow infiltration rates. The Blue Earth 

River flows north by northeast and has seven major tributaries: the Middle Branch of the 

Blue Earth River, the East Branch of the Blue Earth River, the West Branch of the Blue 

Earth River, Elm Creek, Wantonwan River, Le Sueur River, and Center Creek. As 

mention previously the Blue Earth River watershed is one of the twelve major watersheds 

of the Minnesota River basin; Magdalene (2004) suggests that artificial drainage systems 

such as drainage tile and drainage ditches also contribute significantly to the Blue Earth 

River flow and expedite the movement of water along with pollutants throughout the 

watershed.   

 

5.1 Watershed Characteristics and Relationships to Infiltration and Runoff  

The overall slope is displayed in Figure 4.1 and has been resampled to the 300 

meter resolution that was needed for the model. The Blue Earth River watershed has an 

average of 0.64 percent of slope with a minimum value of 0.0010 percent of slope and a 
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maximum value of 10.167 percent of slope. The slope values are with the acceptable 

range for the model as they are in pretty close agreement with the slope presented in 

Lorenz and Payne (1992). Fairly flat slopes of the Blue Earth River watershed impacts 

runoff by allowing pooling of rainfall thus delaying runoff along with allowing for a 

greater amount evaporation to occur.  This also tends to lead to erosion being widespread 

through the watershed. There is a fairly large degree of generalization though due to the 

fact that the best available resolution of the entire watershed was 30 meters which was 

resample to 300 meters selecting the bilinear option. Defined in the ArcGIS 10 help, the 

bilinear resampling method performs a bilinear interpolation to determine the new value 

of the cell based upon a weighted distance average of the four nearest input cell centers. 

This method is ideal for continuous data such as elevation data but it will cause some 

smoothing of the data. This is an undesirable result when performing hydrologic analysis 

and was taken into consideration when evaluating the grid. 

 The best elevation data of the entire watershed available was 30 meter resolution 

and then resampled to 300 meter resolution, the result is shown in Figure 4.2. The 

resampled watershed dataset has a maximum value of 448 meters above sea level and a 

minimum of 232 meters above sea level. 

 The stream network shapefile accuracy is paramount to the model being able to 

predict the flows accurately. For this reason aerial photos were used to correct and to 

verify the existence of the stream network. The photos used were National Agriculture 

Imagery Program (NAIP) 2006. The drainage network was determined by comparing and 

adjusting the existing shapefile data. Figure 4.3 represents the results of the modified 
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drainage network. The northern portion of the drainage network became disconnected 

when the resampling process took place. This is a direct result of the coarse 300 meter 

resolution and the bilinear resampling method used. In order to correct these errors the 

aerial imagery was then used again in Vflo™ to ensure an accurate drainage network was 

in place. 

 The soil composition of the Blue Earth River watershed is displayed in Figure 4.4. 

Analysis of the soil composition shows that over 84 percent of the watershed is classified 

as fine to fine-loamy particle size which has the potential for high run off. This value 

corresponds very well to the hydraulic conductivity and the hydrologic soil group 

description of soil groups B/D and B. The cells classified as water make up about 1.7 

percent of the composition of the watershed which falls within the acceptable error of less 

than 3 percent misclassification. Table 5.1 details the acreage and percentage of each soil 

classification. 
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Table 5.1 Soil Particle Classification for Blue Earth River Watershed 

 

TAXPARTSIZ Acres Percentages 

fine-loamy 708616.7 70.72650951 

Water 16990.97 1.695855797 

Fine 144934.7 14.46582753 

coarse-loamy 20393.61 2.035470898 

Loamy 14900.45 1.487203382 

not used 1934.835 0.193114469 

Sandy 10519.28 1.049921194 

fine-silty 66384.86 6.625824024 

Sandy-skeletal 355.8317 0.035515305 

fine-loamy over sandy or sandy-skeletal 1356.609 0.135402099 

fine-loamy over sandy or sandy-ske 1312.13 0.130962686 

coarse-silty 3847.431 0.384009232 

very-fine 578.2266 0.05771237 

coarse-silty 889.5794 0.088788262 

coarse-loamy 8562.201 0.854587018 

Sandy or sandy-skeletal 22.23948 0.002219707 

Sandy over loamy 311.3528 0.031075892 

  

The initial abstraction parameter for the Blue Earth River watershed is displayed 

in Figure 4.5. The initial abstraction of the watershed was calculated using the following 

equation: 

 

   Initial Abstraction (Ia) = 0.2*S  

    

Where: 

    S = (1000/CN) – 10 

    CN = Curve Number     (3.1) 

 

Analysis of the initial abstraction for the watershed further justifies the potential of high 

run off after a precipitation event. Over 88 percent of the watershed only requires 0.238 

to 0.8058 inches of precipitation before run off occurs. Of that percentage, 50.59 percent 

only needs 0.238 to 0.5494 inches of precipitation before run off occurs. This range of 
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abstraction values is found throughout the entire watershed but it tends to be more 

prevalent in the areas where the soil particles are fine and the hydrologic soil group is 

either classified as C or C/D. These soil groups have slow to very slow infiltration rates 

which also increase the potential for high run off. The initial abstraction for the watershed 

changes through the season with values being lower in the spring especially when the 

ground is still partially frozen and higher in the summer when crops are mature and 

interception is high. Table 5.2 details the ranges and percentages of each range within the 

watershed. 

 

Table 5.2 Initial Abstraction for the Blue Earth River Watershed 

 

Range Count Percentage Acres 

0.0 - 0.238 2072 4.633 46080.21 

0.238 - 0.5494 22626 50.59 503190.6 

0.5494 - 0.8058 17125 38.29 380851.2 

0.8058 - 1.3185 2584 5.778 57466.83 

1.3185 - 4.6700 314 0.702 6983.198 

 

 

The effective porosity for the Blue Earth watershed is displayed in Figure 4.6. 

Effective porosity is entered in the Vflo™ model as a unitless fraction ranging from 0 

meaning absolutely no porosity to 1 meaning complete porosity. Effective porosity is the 

difference between the total porosity and the soil moisture content (Vflo™ Help 2010). 

The watershed has a minimum value of 0.0 and a maximum value of 0.5099 with an 

average value of 0.497. Table 5.3 details the composition of the watersheds effective 

porosity values.   
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Table 5.3 Blue Earth River Watershed Effective Porosity Values 

 

Effective Porosity Count Percentage Acres 

0 953 2.135765671 21194.23 

0.0 - 0.43599 928 2.07973824 20638.24 

0.43599 - 0.5099 42740 95.78449609 950515.5 

 

The roughness values also known as the Manning’s n values were assigned by 

land cover and hydrologic soil groups, Figure 4.7 displays the results of the roughness 

classification. The range of the values of roughness was 0.012 to 0.10. The minimum 

value of 0.012 mainly corresponds with open water and impervious surfaces. The 

maximum roughness value of 0.10 occurs in the riparian areas where the presence of 

trees and downed trees are prevalent. The average roughness for the entire watershed is 

0.035 which relates well to the Manning’s n roughness value for mature row crops. As 

mentioned before the dominate land use within the watershed is agricultural. Table 5.4 

details the percentages of each roughness value for the watershed. 

 

Table 5.4 Manning’s n Roughness values for Blue Earth River Watershed 

 

Roughness Count Acres Percentage 

0.1 380 8451.00392 0.851998834 

0.059 692 15389.72293 1.551534719 

0.055 729 16212.58384 1.6344925 

0.045 5 111.19742 0.011210511 

0.03999 950 21127.5098 2.129997085 

0.035 38101 847346.5799 85.42633573 

0.015 3648 81129.63763 8.179188807 

0.012 96 2134.990464 0.215241811 
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Low intensity, medium intensity, high intensity, and open water make up a mere 

8.394 percent of the watersheds’ acreage. Mature row crops and pasture comprise to 

make up 868,474 acres or 87.58 percent of the area in the watershed. The riparian area is 

relatively small in acreage totaling 8451 acres or 0.85 percent of the watershed. 

Figure 4.8 represents the wetting front values in inches for the Blue Earth River 

watershed. The wetting front parameter in the Vflo™ model is the wetting front suction 

head of the Green-Ampt infiltration (Vflo™ Help 2010). The wetting front for the 

watershed has a minimum value of 0.0 inches to a maximum value of 12.39 inches with 

an average value of 10.29 inches. The average value for the wetting front coincides with 

the fine-loamy particle size of the soil which comprises over 70 percent of the watersheds 

soils.  The minimum value of 0.0 inches occurs in areas of open water and impervious 

surfaces and accounts for 2.05 percent of the total watershed acreage in this grid.  

Hydraulic conductivity within the Blue Earth River watershed, Figure 4.9, is the 

saturated hydraulic conductivity, Ks in the Green-Ampt infiltration routine. Hydraulic 

conductivity can be simply explained as how water moves through the soil. The hydraulic 

conductivity for the watershed has a range of 0.0 to 0.37 inches per hour with an average 

value of 0.16 inches per hour. The range of hydraulic conductivity of 0.1198 to 0.2190 

has a percentage of approximately 46 percent which corresponds to the hydrologic soil 

group B/D. The range of 0.2190 to 0.3700 has a percentage of approximately 39 percent 

which corresponds very well with the hydrologic soil group B. The hydrologic soil 

groups and their infiltration characteristics will be discussed later in this section. 
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The land cover classification for the Blue Earth River watershed, Figure 4.10, can 

almost be considered homogeneous. The prevailing land cover classification is cultivated 

crops with a percentage of 85.39 percent and if combined with grassland and pasture/hay 

classification the percentage increases to 88.16 percent. Boone (2000) states the Blue 

Earth River watershed is comprised of 92 percent agricultural. The land cover 

classification used then falls within the acceptable error. According to the Blue Earth 

River major watershed diagnostic report (2000), lakes and wetlands account for 

approximately 2 percent of the total acreage of the watershed. The 2006 land cover 

classification has a little larger percentage of 1.44 percent, which is classifying any areas 

of open water including sloughs, the rivers, creeks, and tributaries to the Blue Earth 

River.      

The soil classification for the Blue Earth River watershed, Figure 4.11, when 

resampled does trend towards what soil types are present within the watershed with 

minimal error. Surface sediments of the Blue Earth River watershed consist of clay-rich 

soils and glacial lake deposits that promote depression storage and slow infiltration rates. 

An analysis of the soils hydrologic soil group for the Blue Earth River watershed 45.4  

percent of the watershed was classified as B/D which is defined by the Natural Resources 

Conservation Service (NRCS) as soils with moderate infiltration rate when thoroughly 

wet with moderately fine texture to coarse texture for drained soils, group B, and soils 

having very slow infiltration rates with high run off potential when thoroughly wet 

consisting of clays that have a high shrink-swell potential for undrained area, group D. 

The next largest classification percentage was hydrologic soil group B consisting 39.3 
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percent of the soils within the Blue Earth River watershed. As defined previously, these 

soils have a moderate infiltration rate. The majority of the soils, over 84 percent of the 

Blue Earth River watershed soil fall into the category of having moderate to very slow 

infiltration rates with the potential of high run off.   

This section of the discussion discusses the infiltration characteristics in relation 

to geomorphic factors, soil properties, hydrologic parameters and how they influence the 

watershed’s runoff and discharge. The Blue Earth River watershed has soils properties 

that have moderate to very slow infiltration rates with the potential of high run off. The 

slope is of the Blue Earth River watershed has fairly flat slopes and impacts runoff by 

allowing pooling of rainfall thus delaying runoff along with allowing for a greater 

amount evaporation to occur. These factors coupled together cannot describe the 

magnitude or rapid onset of the hydrographic crest. The increase runoff from croplands 

and the increased connectivity of channel systems makes the watershed unnatural and 

requires the hydrologic model to be calibrated to adjust for these changes within the 

watershed. 

 

5.2 Summary of Modeled Precipitation Events 

 Vieux and Bedient (1998) concluded that the WSR-88D or more commonly 

known as NEXRAD data can accurately estimate rainfall at the catchment scale. The 

NEXRAD level II data for the precipitation event occurring on April 10 – April 12, 2008, 

displayed in Figure 4.24, shows the distribution of rainfall and the accumulation totals for 

the precipitation event. The northern and northeastern portion of the watershed received 



 99 

 

the heaviest rainfall with total accumulations ranging from 1.4 inches to 2.95 inches of 

rain. The majority of the watershed experienced a range of 0.494 inches to 1.4 inches. 

The headwaters of the Blue Earth River experienced minimal rainfall with a range of 

0.124 inches to 0.493 inches. 

The NEXRAD level II data for the precipitation event occurring on April 17 – 

April 19, 2008, displayed in Figure 4.25, shows the distribution of rainfall and the 

accumulation totals for the precipitation event. The northeastern portion of the watershed 

received the heaviest rainfall with total accumulations ranging from 0.689 inches to 1.48 

inches of rain. The majority of the watershed experienced a range of 0.23 inches to 0.688 

inches. The western portion of the watershed experienced minimal rainfall with a range 

of 0.023 inches to 0.22 inches of rainfall. 

The NEXRAD level II data for the precipitation event occurring on April 21 and 

April 22, 2008, displayed in Figure 4.26, shows the distribution of rainfall and the 

accumulation totals for the precipitation event. The northeastern portion of the watershed 

received the heaviest and majority of the rainfall with total accumulations ranging from 

0.04 inches to 0.198 inches of rain. The majority of the watershed experienced little or no 

rainfall. The northern portion of the watershed experienced minimal rainfall with a range 

of 0.004 inches to 0.02 inches of rainfall. 

The NEXRAD level II data for the precipitation event occurring on April 24 - 

April 27, 2008, displayed in Figure 4.27, shows the distribution of rainfall and the 

accumulation totals for the precipitation event. The western portion of the watershed, 

mainly over the Elm Creek sub watershed received the heaviest rainfall. The majority of 
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the watershed experienced moderate to heavy rainfall. The northern portion along with 

the headwaters of the watershed experienced the least amount of rainfall. 

The NEXRAD level II data for the precipitation event occurring on May 1 – May 

3, 2008, displayed in Figure 4.28, shows the distribution of rainfall and the accumulation 

totals for the precipitation event. The northwestern and central portions of the watershed, 

received the heaviest rainfall with total accumulations ranging from 1.36 inches to 2.041 

inches of rain. The southern and northern most portion of the watershed experienced a 

range of 0.453 inches to 1.35 inches. The southeastern portion of the watershed 

experienced minimal rainfall with a range of 0.113 inches to 0.452 inches of rainfall. 

The NEXRAD level II data for the precipitation event occurring on May 29 and 

May 30, 2008, displayed in Figure 4.29, shows the distribution of rainfall and the 

accumulation totals for the precipitation event. The upper northern portion of the 

watershed received the heaviest rainfall with total accumulations ranging from 1.785 

inches to 2.975 inches of rain. The majority of the watershed experienced a range of 

0.595 inches to 1.784 inches with the exception of the central portion of the watershed. 

The central portion experienced minimal rainfall with a range of 0.446 inches to 0.594 

inches of rainfall. 

The NEXRAD level II data for the precipitation event occurring on June 6 – June 

9, 2008, displayed in Figure 4.30, shows the distribution of rainfall and the accumulation 

totals for the precipitation event. The pattern of the heaviest rainfall follows the general 

distribution with the eastern and southern portions of the watershed receiving more rain 

than the western portion of the watershed. The total accumulation of the western portion 
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of the watershed ranged from 1.595 inches to 2.553 inches with the exception of one 

heavy pocket of rain occurring in the elm creek sub watershed which had a range of 

5.105 inches to 6.382 inches. The total accumulation of rainfall in the eastern and 

southern portions ranged from 2.553 inches to 3.829 inches within this area. The southern 

and eastern portions of the watershed contributed the most to the observed and simulated 

flows for this precipitation event. 

 

5.3 Simulated Results of 2008 Significant Precipitation Events 

 The model has been calibrated for each of the selected precipitation events in the 

2008 monitoring season. The calibration was performed by matching observed flows 

during the same time period at the three collection sites: FTC 12, FTC 8, and BEC34. To 

correctly calibrate the model for the watershed base flows were assigned depending on 

the time of the year and the observed flow. The early precipitation events, April 10 to 

April 12, April 17 to April 19, April 21 to April 22 and April 24 to April 27 roughness 

was decreased throughout the watershed due to the fact that the majority of the land was 

barren and still was going through a freeze - thaw nightly cycle. Along with the 

adjustment to the roughness value, soil depth was adjusted in part for the same reason as 

listed above. The nightly freeze - thaw cycle limited the depth to which infiltration was 

able to occur thus affecting the total run off during the precipitation events for the 

watershed. The next precipitation event occurring May 1 to May 3 the roughness was 

increased throughout the watershed because of the emergence of the row crops. Along 

with the roughness calibration, the soil depth was calibrated to allow for full infiltration 
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and the initial saturation was calibrated to represent what would be the typical soil 

saturation at this time of the year. The abstraction value was also calibrated to a higher 

value due to planted row crops depleting the soil moisture requiring more rainfall to 

occur before runoff will occur. The base flow was an interesting point for this calibration. 

The FTC 12 site, just downstream of Elm Creek confluence, had a smaller base flow than 

the FTC 8 site, the southern most site. This shows the recharge of the underlying aquifer 

between these two locations. The next set of precipitation events occurring May 29 to 

May 30 and June 6 to June 9 proved to be the most challenging calibrations. The 

roughness was again increased. Justification for this increase is that the row crops were in 

full canopy by this time. Abstraction was slightly increased because of the row crops in 

full canopy and their demand for water which depleted the antecedent moisture. Initial 

saturation was also decreased during this time for the same reason. The base flow again at 

the FTC 12 site was smaller than the base flow at the FTC 8 site still meaning that the 

underlying aquifer was being recharged. What proved to be most challenging about this 

calibration for these precipitation events was the fact that the whole watershed was in the 

same saturation state. More variability of the calibration factors was needed to match 

observed flows for these two precipitaion events.  
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Table 5.5 Blue Earth River Watershed Model Baseflows Values 

 

Precipitation Event 

Dates 

Blue Earth County 

Road 34 

Faribault County 

Road 12 

Faribault County 

Road 8 

April 10 – 12  0.0055 cfs/ft 4.1 x E-4 cfs/ft 1.8 x E-4 cfs/ft 

April 17 – 19  0.0055 cfs/ft 2.0 x E-4 cfs/ft 8.0 x E-4 cfs/ft 

April 21 – 22  0.0055 cfs/ft 2.3 x E-4 cfs/ft 0.0010 cfs/ft 

April 24 – 26 0.0055 cfs/ft 3.0 x E-4 cfs/ft 0.0010 cfs/ft 

May 1 – 3  0.0071 cfs/ft 9.0 x E-4 cfs/ft 0.0013 cfs/ft 

May 29 – 30  0.01 cfs/ft 2.0 x E-4 cfs/ft 0.0013 cfs/ft 

June 6 – 9  0.01 cfs/ft 2.0 x E-4 cfs/ft 0.0013 cfs/ft 

 

 

Figure 5.1 BEC 34 Simulated Flows vs. Observed Flows – 2008. An extremely strong match between 

the simulated flow and observed flow provided justification to the model being correctly calibrated. 

Overestimation errors fall within acceptable error of less than 3% error. 

 

 

 The 2008 hydrograph for BEC 34, northern most site downstream of the 

confluence of the Watonwan River but upstream of the Rapidan Dam, site is displayed in 

Figure 5.1. Analysis of the simulated flow shows an extremely strong match to the 
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observed flows. The calibration of the model at this site was the most complex due to its 

location within the drainage network. The April 24
th

 through April 26
th

 simulated results 

match the timing of the peak flow but overestimate the peak flow volume although the 

overestimation is within the 3 percent margin of error. The May 1
st
 through May 3

rd
 

simulated flows peak a little earlier than the observed flow peak but the volume matches 

along with the slope of the rising and falling limbs. The June 1
st
 through June 3

rd
 

simulated results show a double peak resulting in lower flows than what was observed. 

The double peak is more than likely due to the spatial variability of the infiltration 

parameters that would not allow for uniform weighting of the parameters. The rising 

limbs for all the model precipitation events match the slopes of the observed flows along 

with the simulated volumes being within less than 3 percent of the observed flows.  
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Figure 5.2 FTC 12 Simulated Flows vs. Observed Flows – 2008. An extremely strong match between 

the simulated flow and observed flow. Overestimations of discharge during the precipitation event 

April 24
th

 through April 26
th

 and June 6
th

 through June 9
th

 fall within the acceptable error range of 

less than 3% error.  

 

The 2008 hydrograph for FTC 12 site is displayed in Figure 5.2. Analysis of the 

simulated flow shows an extremely strong match to the observed flows. The April 24th 

through April 26th simulated results match the timing of the peak flow but overestimate 

the peak flow volume although the overestimation is within the 3 percent margin of error. 

The May 1st through May 3rd simulated flows peak a little earlier than the observed flow 

peak but the volume matches along with the slope of the rising and falling limbs. The 

rising limbs for all the model precipitation events match the slopes of the observed flows 

along with the simulated volumes being within less than 3 percent of the observed flows.  



 106 

 

 

Figure 5.3 FTC 8 Simulated Flows vs. Observed Flows – 2008. Simulated flows show an extremely 

strong match to the observed flows. Overestimation errors fall within the acceptable error of less 

than 3% error.  The match demonstrates that the calibrated model is capable of predicting flows 

where flow predictions have never been done in the past.  

 

 

 The 2008 hydrograph for FTC 8 site is displayed in Figure 5.3. Analysis of the 

simulated flow shows an extremely strong match to the observed flows. This strong 

match demonstrates that the calibrated physics-based distributed model is more than 

capable of being capable predict the flow of the Blue Earth River where flow predictions 

have never been able to in the past. The rising limbs for all the model precipitation events 

match the slopes of the observed flows along with the simulated volumes being within 

less than 3 percent of the observed flows.  
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5.4 Implications of Model BER Watershed Hydrology 

 The Blue Earth River watershed hydrology is comprised of complex parameters 

that control the runoff and infiltration. The overland cell roughness parameter is 

important in attenuating the peak discharge whereas the channel roughness parameter 

modifies the timing of the peak discharge within the channel. The model provides 

interesting findings in that the water takes approximately three days to travel from the 

southern most collection site, FTC 8 to the northern most collection site, BEC 34. This 

time frame does not seem to change no matter where the precipitation falls within the 

watershed. 

 The shape and timing of the simulated hydrograph was affected by the weighting 

of the roughness values for both overland cells and channel cells. Increasing the 

roughness of channel cells attenuated the peak timing while increasing overland 

roughness delayed the arrival timing of water into the channel. This calibration of the 

simulated hydrologic model is indicative of an unnaturally drained system, a system that 

has been altered. The land surface utilization of the Blue Earth River watershed has 

experience a 92 percent change relative to the watershed’s pre-settlement disposition. 

Boone (2000) states that the Blue Earth River watershed is comprised of 92 percent 

agricultural land. The change from pre-settlement prairie land and wetland to 

predominately agricultural land and the agricultural drainage systems associated with the 

draining and modification of those pre-settlement prairie land and wetland has impacted 

the hydrologic regime with resulting environmental impacts.   
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 The altered hydrologic regime of the Blue Earth River watershed has increasing 

flow accumulation with decreasing drainage area (Figure 4.13). Further analysis of the 

hydrologic model of the Blue Earth River watershed suggests that the increased sediment 

yield is a result of increase stream flow and velocity. An increase in stream flow and 

velocity has other implications causing an increase in bluff and bank failures along the 

river leading to an increase in the Blue Earth River’s suspended load. An increased 

suspended load within the Blue Earth River has more implications that are discussed in 

Rassmussen (2012). The results of this research indicated that the increased suspended 

load along with the increased flow and velocity of the Blue Earth River as altered the trap 

efficiency of the Rapidan Dam and reservoir. 

 Schottler (2010) found that non-field sediment loads were the greatest in the 

large, and steeply incised watersheds of the Blue Earth River and Le Sueur River. Field 

erosion was found to contribute less than 25 percent of the sediment in the Blue Earth 

River and Le Sueur River meaning that more than 75 percent of the sediment can be 

attributed to bluff and blank failures within these deeply incised watersheds. As 

mentioned above, the Blue Earth River watershed has increasing flow accumulation with 

decreasing drainage area (Figure 4.13) and an increased sediment yield is a result of 

increase stream flow and velocity. The simulated hydrologic model demonstrates the 

low-permeability soils of the Blue Earth River watershed covered with row crops are 

forcing more water into the riparian with greater force causing a greater increase in 

stream bank and bluff failure. The calibration of the model further enforces these results 
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with having to increase channel roughness in order to get the simulated flows hydrograph 

to fit the hydrograph of the observed flows. 
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CHAPTER VI 

SUMMARY AND RECOMMENDATIONS 

 

A physics-based distributed model, Vflo™, was used to simulate flows of the Blue 

Earth River where previously flows were never observed. The outcome of this thesis 

research is the development of a calibrated numerical hydrologic model for the Blue 

Earth River watershed that is based on existing geographic information system (GIS) 

layers and collected data for seven NEXRAD level II precipitation events for the 2008 

monitoring season. The validation of the calibrated numerical model was derived by 

matching observed flows of the Blue Earth River collected from installed stilling wells at 

strategic locations.  

Along with a hydrologic model for the Blue Earth River watershed a better 

understanding of the hydrologic regime within the watershed is achieved. Land surface 

utilization of the Blue Earth watershed has experienced a ninety-two percent change 

relative to the pre-settlement deposition. The land use changes within the Blue Earth 

River watershed explain the runoff total volume however the land cover, soil properties, 

precipitation characteristics cannot explain the peak discharge magnitude or the rapid 

onset of the hydrograph crest. The increased runoff rates from croplands and increased 

connectivity of channel systems within the watershed make the watershed “unnatural”. 

This better understanding of the hydrologic regime will allow for better best management 

practices (BMP’s) to be implemented.  
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The Green – Ampt infiltration method was used to solve for infiltration for the 

spatially distributed parameters of hydrologic conductivity, wetting front, effective 

porosity, soil depth, initial saturation, abstraction, and percent impervious. Initial 

saturation has a direct effect on the simulated volume. Saturation was assumed for the 

simulated precipitation events during the 2008 season and was based on analysis of 

previous precipitation events and duration of the events. It should be noted that this 

parameter proved to be accurate for these seven precipitation events modeled and may 

not be accurate for other events and seasons.  

 Hydrologic conductivity may control the infiltration process over already 

saturated soils (Vieux 2004) and was weighted for each precipitation event. Soil depth 

was assigned the depth specified in the soil survey for all the grid cells although it should 

be noted that the model showed no sensitivity over ten inches of soil depth. Another 

parameter affecting the volume is the wetting front, with increases in the weighting 

resulting in decreases in runoff and simulated flow. 
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Appendix A 

NEXRAD Level II Rainfall files used to generate *.rrp files for Vflo™ model. 

KMPX20080409_000044.gz KMPX20080421_180630.gz KMPX20080502_221313.gz 

KMPX20080409_000620.gz KMPX20080421_181215.gz KMPX20080502_221728.gz 

KMPX20080409_001157.gz KMPX20080421_181758.gz KMPX20080502_222142.gz 

KMPX20080409_001734.gz KMPX20080421_182342.gz KMPX20080502_222557.gz 

KMPX20080409_002310.gz KMPX20080421_182926.gz KMPX20080502_223012.gz 

KMPX20080409_002848.gz KMPX20080421_183510.gz KMPX20080502_223428.gz 

KMPX20080409_003425.gz KMPX20080421_184053.gz KMPX20080502_223844.gz 

KMPX20080409_004059.gz KMPX20080421_184637.gz KMPX20080502_224258.gz 

KMPX20080409_004635.gz KMPX20080421_185221.gz KMPX20080502_224713.gz 

KMPX20080409_005212.gz KMPX20080421_185805.gz KMPX20080502_225128.gz 

KMPX20080409_005750.gz KMPX20080421_190349.gz KMPX20080502_225543.gz 

KMPX20080409_010329.gz KMPX20080421_190933.gz KMPX20080502_225958.gz 

KMPX20080410_000755.gz KMPX20080421_191516.gz KMPX20080502_230416.gz 

KMPX20080410_001734.gz KMPX20080421_192100.gz KMPX20080502_230831.gz 

KMPX20080410_002714.gz KMPX20080421_192644.gz KMPX20080502_231245.gz 

KMPX20080410_003653.gz KMPX20080421_193227.gz KMPX20080502_231700.gz 

KMPX20080410_004632.gz KMPX20080421_193811.gz KMPX20080502_232115.gz 

KMPX20080410_005703.gz KMPX20080421_194355.gz KMPX20080502_232530.gz 

KMPX20080410_010642.gz KMPX20080421_194939.gz KMPX20080502_232945.gz 

KMPX20080410_011621.gz KMPX20080421_195522.gz KMPX20080502_233400.gz 

KMPX20080410_012600.gz KMPX20080421_200106.gz KMPX20080502_233815.gz 

KMPX20080410_013539.gz KMPX20080421_200650.gz KMPX20080502_234231.gz 

KMPX20080410_014518.gz KMPX20080421_201233.gz KMPX20080502_234646.gz 

KMPX20080410_015458.gz KMPX20080421_201817.gz KMPX20080502_235101.gz 

KMPX20080410_020437.gz KMPX20080421_202401.gz KMPX20080502_235515.gz 

KMPX20080410_021417.gz KMPX20080421_202944.gz KMPX20080502_235930.gz 

KMPX20080410_022357.gz KMPX20080421_203528.gz KMPX20080503_000345.gz 

KMPX20080410_023336.gz KMPX20080421_204112.gz KMPX20080503_000801.gz 

KMPX20080410_024315.gz KMPX20080421_204655.gz KMPX20080503_001216.gz 

KMPX20080410_025254.gz KMPX20080421_205238.gz KMPX20080503_001631.gz 

KMPX20080410_030233.gz KMPX20080421_205821.gz KMPX20080503_002046.gz 

KMPX20080410_031212.gz KMPX20080421_210405.gz KMPX20080503_002502.gz 

KMPX20080410_032151.gz KMPX20080421_210949.gz KMPX20080503_002916.gz 

KMPX20080410_033130.gz KMPX20080421_211532.gz KMPX20080503_003332.gz 

KMPX20080410_034109.gz KMPX20080421_212115.gz KMPX20080503_003746.gz 

KMPX20080410_035048.gz KMPX20080421_212659.gz KMPX20080503_004202.gz 

KMPX20080410_040028.gz KMPX20080421_213114.gz KMPX20080503_004616.gz 

KMPX20080410_041008.gz KMPX20080421_213531.gz KMPX20080503_005031.gz 

KMPX20080410_041947.gz KMPX20080421_213945.gz KMPX20080503_005446.gz 

KMPX20080410_042926.gz KMPX20080421_214400.gz KMPX20080503_005901.gz 

KMPX20080410_043905.gz KMPX20080421_214815.gz KMPX20080503_010316.gz 

KMPX20080410_044844.gz KMPX20080421_215233.gz KMPX20080503_010731.gz 

KMPX20080410_045824.gz KMPX20080421_215647.gz KMPX20080503_011146.gz 

KMPX20080410_050803.gz KMPX20080421_220102.gz KMPX20080503_011601.gz 
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KMPX20080410_051742.gz KMPX20080421_220517.gz KMPX20080503_012016.gz 

KMPX20080410_052721.gz KMPX20080421_220931.gz KMPX20080503_012431.gz 

KMPX20080410_053700.gz KMPX20080421_221347.gz KMPX20080503_012846.gz 

KMPX20080410_054639.gz KMPX20080421_221802.gz KMPX20080503_013301.gz 

KMPX20080410_055618.gz KMPX20080421_222216.gz KMPX20080503_013717.gz 

KMPX20080410_060557.gz KMPX20080421_222630.gz KMPX20080503_014132.gz 

KMPX20080410_061536.gz KMPX20080421_223044.gz KMPX20080503_014547.gz 

KMPX20080410_062515.gz KMPX20080421_223458.gz KMPX20080503_015003.gz 

KMPX20080410_063455.gz KMPX20080421_223914.gz KMPX20080503_015417.gz 

KMPX20080410_064434.gz KMPX20080421_224330.gz KMPX20080503_015832.gz 

KMPX20080410_065413.gz KMPX20080421_224744.gz KMPX20080503_020247.gz 

KMPX20080410_070352.gz KMPX20080421_225159.gz KMPX20080503_020701.gz 

KMPX20080410_071331.gz KMPX20080421_225614.gz KMPX20080503_021118.gz 

KMPX20080410_072310.gz KMPX20080421_230028.gz KMPX20080503_021533.gz 

KMPX20080410_073250.gz KMPX20080421_230442.gz KMPX20080503_021948.gz 

KMPX20080410_074229.gz KMPX20080421_230857.gz KMPX20080503_022403.gz 

KMPX20080410_075208.gz KMPX20080421_231313.gz KMPX20080503_022817.gz 

KMPX20080410_080148.gz KMPX20080421_231824.gz KMPX20080503_023232.gz 

KMPX20080410_081127.gz KMPX20080421_232238.gz KMPX20080503_023647.gz 

KMPX20080410_082106.gz KMPX20080421_232652.gz KMPX20080503_024102.gz 

KMPX20080410_083045.gz KMPX20080421_233106.gz KMPX20080503_024517.gz 

KMPX20080410_084024.gz KMPX20080421_233522.gz KMPX20080503_024934.gz 

KMPX20080410_085004.gz KMPX20080421_233935.gz KMPX20080503_025349.gz 

KMPX20080410_090035.gz KMPX20080421_234350.gz KMPX20080503_025803.gz 

KMPX20080410_091014.gz KMPX20080421_234804.gz KMPX20080503_030219.gz 

KMPX20080410_091953.gz KMPX20080421_235218.gz KMPX20080503_030633.gz 

KMPX20080410_092933.gz KMPX20080421_235634.gz KMPX20080503_031048.gz 

KMPX20080410_093911.gz KMPX20080422_000048.gz KMPX20080503_031503.gz 

KMPX20080410_094850.gz KMPX20080422_000503.gz KMPX20080503_032014.gz 

KMPX20080410_095829.gz KMPX20080422_000916.gz KMPX20080503_032429.gz 

KMPX20080410_100808.gz KMPX20080422_001330.gz KMPX20080503_032846.gz 

KMPX20080410_101747.gz KMPX20080422_001744.gz KMPX20080503_033301.gz 

KMPX20080410_102726.gz KMPX20080422_002158.gz KMPX20080503_033717.gz 

KMPX20080410_103705.gz KMPX20080422_002613.gz KMPX20080503_034132.gz 

KMPX20080410_104644.gz KMPX20080422_003026.gz KMPX20080503_034547.gz 

KMPX20080410_105623.gz KMPX20080422_003441.gz KMPX20080503_035002.gz 

KMPX20080410_110603.gz KMPX20080422_003855.gz KMPX20080503_035419.gz 

KMPX20080410_111541.gz KMPX20080422_004310.gz KMPX20080503_035833.gz 

KMPX20080410_112127.gz KMPX20080422_004725.gz KMPX20080503_040249.gz 

KMPX20080410_112713.gz KMPX20080422_005141.gz KMPX20080503_040703.gz 

KMPX20080410_113258.gz KMPX20080422_005558.gz KMPX20080503_041119.gz 

KMPX20080410_113846.gz KMPX20080422_010012.gz KMPX20080503_041704.gz 

KMPX20080410_114431.gz KMPX20080422_010427.gz KMPX20080503_042248.gz 

KMPX20080410_115017.gz KMPX20080422_010840.gz KMPX20080503_042832.gz 

KMPX20080410_115604.gz KMPX20080422_011255.gz KMPX20080503_043417.gz 

KMPX20080410_120151.gz KMPX20080422_011711.gz KMPX20080503_044001.gz 

KMPX20080410_120737.gz KMPX20080422_012125.gz KMPX20080503_044547.gz 

KMPX20080410_121324.gz KMPX20080422_012539.gz KMPX20080503_045130.gz 
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KMPX20080410_121909.gz KMPX20080422_012953.gz KMPX20080503_045717.gz 

KMPX20080410_122454.gz KMPX20080422_013407.gz KMPX20080503_050301.gz 

KMPX20080410_123042.gz KMPX20080422_013821.gz KMPX20080503_050845.gz 

KMPX20080410_123627.gz KMPX20080422_014235.gz KMPX20080503_051430.gz 

KMPX20080410_124214.gz KMPX20080422_014649.gz KMPX20080503_052013.gz 

KMPX20080410_124759.gz KMPX20080422_015105.gz KMPX20080503_052559.gz 

KMPX20080410_125345.gz KMPX20080422_015519.gz KMPX20080503_053144.gz 

KMPX20080410_125931.gz KMPX20080422_015934.gz KMPX20080503_053729.gz 

KMPX20080410_130516.gz KMPX20080422_020348.gz KMPX20080503_054313.gz 

KMPX20080410_131102.gz KMPX20080422_020802.gz KMPX20080503_054859.gz 

KMPX20080410_131647.gz KMPX20080422_021216.gz KMPX20080503_055444.gz 

KMPX20080410_132232.gz KMPX20080422_021632.gz KMPX20080503_060029.gz 

KMPX20080410_132819.gz KMPX20080422_022047.gz KMPX20080503_060614.gz 

KMPX20080410_133405.gz KMPX20080422_022503.gz KMPX20080503_061158.gz 

KMPX20080410_133949.gz KMPX20080422_022919.gz KMPX20080503_061743.gz 

KMPX20080410_134536.gz KMPX20080422_023335.gz KMPX20080503_062330.gz 

KMPX20080410_135121.gz KMPX20080422_023749.gz KMPX20080503_062915.gz 

KMPX20080410_135706.gz KMPX20080422_024203.gz KMPX20080503_063459.gz 

KMPX20080410_140251.gz KMPX20080422_024618.gz KMPX20080503_064045.gz 

KMPX20080410_140838.gz KMPX20080422_025031.gz KMPX20080503_064629.gz 

KMPX20080410_141423.gz KMPX20080422_025446.gz KMPX20080503_065215.gz 

KMPX20080410_142007.gz KMPX20080422_025900.gz KMPX20080503_065800.gz 

KMPX20080410_142552.gz KMPX20080422_030314.gz KMPX20080503_070347.gz 

KMPX20080410_143137.gz KMPX20080422_030730.gz KMPX20080503_070932.gz 

KMPX20080410_143724.gz KMPX20080422_031144.gz KMPX20080503_071517.gz 

KMPX20080410_144309.gz KMPX20080422_031558.gz KMPX20080503_072101.gz 

KMPX20080410_144854.gz KMPX20080422_032012.gz KMPX20080503_072648.gz 

KMPX20080410_145439.gz KMPX20080422_032429.gz KMPX20080503_073233.gz 

KMPX20080410_150023.gz KMPX20080422_032845.gz KMPX20080503_073818.gz 

KMPX20080410_150608.gz KMPX20080422_033259.gz KMPX20080503_074405.gz 

KMPX20080410_151153.gz KMPX20080422_033714.gz KMPX20080503_074949.gz 

KMPX20080410_151738.gz KMPX20080422_034128.gz KMPX20080503_075535.gz 

KMPX20080410_152323.gz KMPX20080422_034544.gz KMPX20080503_080119.gz 

KMPX20080410_152907.gz KMPX20080422_034958.gz KMPX20080503_080704.gz 

KMPX20080410_153452.gz KMPX20080422_035413.gz KMPX20080503_081251.gz 

KMPX20080410_154036.gz KMPX20080422_035827.gz KMPX20080503_081838.gz 

KMPX20080410_154624.gz KMPX20080422_040245.gz KMPX20080503_082423.gz 

KMPX20080410_155209.gz KMPX20080422_040659.gz KMPX20080503_083008.gz 

KMPX20080410_155754.gz KMPX20080422_041113.gz KMPX20080503_083554.gz 

KMPX20080410_160339.gz KMPX20080422_041528.gz KMPX20080503_084139.gz 

KMPX20080410_160923.gz KMPX20080422_041944.gz KMPX20080503_084724.gz 

KMPX20080410_161510.gz KMPX20080422_042359.gz KMPX20080503_085309.gz 

KMPX20080410_162057.gz KMPX20080422_042817.gz KMPX20080503_085854.gz 

KMPX20080410_162642.gz KMPX20080422_043231.gz KMPX20080503_090439.gz 

KMPX20080410_163226.gz KMPX20080422_043645.gz KMPX20080503_091024.gz 

KMPX20080410_163811.gz KMPX20080422_044101.gz KMPX20080503_091609.gz 

KMPX20080410_164358.gz KMPX20080422_044515.gz KMPX20080503_092156.gz 

KMPX20080410_164943.gz KMPX20080422_044931.gz KMPX20080503_092741.gz 
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KMPX20080410_165528.gz KMPX20080422_045345.gz KMPX20080503_093327.gz 

KMPX20080410_170214.gz KMPX20080422_045802.gz KMPX20080503_093913.gz 

KMPX20080410_170801.gz KMPX20080422_050219.gz KMPX20080503_094458.gz 

KMPX20080410_171346.gz KMPX20080422_050633.gz KMPX20080503_095045.gz 

KMPX20080410_171930.gz KMPX20080422_051047.gz KMPX20080503_095629.gz 

KMPX20080410_172518.gz KMPX20080422_051502.gz KMPX20080503_100216.gz 

KMPX20080410_173102.gz KMPX20080422_051917.gz KMPX20080503_100803.gz 

KMPX20080410_173647.gz KMPX20080422_052331.gz KMPX20080503_101348.gz 

KMPX20080410_174232.gz KMPX20080422_052747.gz KMPX20080503_101933.gz 

KMPX20080410_174817.gz KMPX20080422_053203.gz KMPX20080503_102518.gz 

KMPX20080410_175402.gz KMPX20080422_053618.gz KMPX20080503_103102.gz 

KMPX20080410_175947.gz KMPX20080422_054034.gz KMPX20080503_103648.gz 

KMPX20080410_180532.gz KMPX20080422_054449.gz KMPX20080503_104232.gz 

KMPX20080410_181119.gz KMPX20080422_054903.gz KMPX20080503_104816.gz 

KMPX20080410_181705.gz KMPX20080422_055318.gz KMPX20080503_105404.gz 

KMPX20080410_182251.gz KMPX20080422_055732.gz KMPX20080503_105949.gz 

KMPX20080410_182835.gz KMPX20080422_060147.gz KMPX20080503_110534.gz 

KMPX20080410_183420.gz KMPX20080422_060601.gz KMPX20080503_111118.gz 

KMPX20080410_184005.gz KMPX20080422_061018.gz KMPX20080503_111705.gz 

KMPX20080410_184550.gz KMPX20080422_061432.gz KMPX20080503_112347.gz 

KMPX20080410_185137.gz KMPX20080422_061848.gz KMPX20080503_112934.gz 

KMPX20080410_185721.gz KMPX20080422_062302.gz KMPX20080503_113519.gz 

KMPX20080410_190306.gz KMPX20080422_062716.gz KMPX20080503_114106.gz 

KMPX20080410_190851.gz KMPX20080422_063131.gz KMPX20080503_114654.gz 

KMPX20080410_191435.gz KMPX20080422_063545.gz KMPX20080503_115241.gz 

KMPX20080410_192020.gz KMPX20080422_064000.gz KMPX20080503_115826.gz 

KMPX20080410_192605.gz KMPX20080422_064415.gz KMPX20080503_120411.gz 

KMPX20080410_193150.gz KMPX20080422_064829.gz KMPX20080503_120956.gz 

KMPX20080410_193734.gz KMPX20080422_065244.gz KMPX20080503_121541.gz 

KMPX20080410_194319.gz KMPX20080422_065658.gz KMPX20080503_122126.gz 

KMPX20080410_194904.gz KMPX20080422_070113.gz KMPX20080503_122711.gz 

KMPX20080410_195451.gz KMPX20080422_070528.gz KMPX20080503_123258.gz 

KMPX20080410_200036.gz KMPX20080422_070942.gz KMPX20080503_123844.gz 

KMPX20080410_200621.gz KMPX20080422_071357.gz KMPX20080503_124428.gz 

KMPX20080410_201206.gz KMPX20080422_071906.gz KMPX20080503_125013.gz 

KMPX20080410_201751.gz KMPX20080422_072323.gz KMPX20080503_125558.gz 

KMPX20080410_202336.gz KMPX20080422_072738.gz KMPX20080503_130143.gz 

KMPX20080410_202921.gz KMPX20080422_073152.gz KMPX20080503_130728.gz 

KMPX20080410_203506.gz KMPX20080422_073608.gz KMPX20080503_131313.gz 

KMPX20080410_204050.gz KMPX20080422_074022.gz KMPX20080503_131900.gz 

KMPX20080410_204635.gz KMPX20080422_074437.gz KMPX20080503_132447.gz 

KMPX20080410_205220.gz KMPX20080422_074851.gz KMPX20080503_133032.gz 

KMPX20080410_205807.gz KMPX20080422_075306.gz KMPX20080503_133617.gz 

KMPX20080410_210351.gz KMPX20080422_075721.gz KMPX20080503_134201.gz 

KMPX20080410_210936.gz KMPX20080422_080135.gz KMPX20080503_134746.gz 

KMPX20080410_211521.gz KMPX20080422_080549.gz KMPX20080503_135331.gz 

KMPX20080410_212105.gz KMPX20080422_081004.gz KMPX20080503_135916.gz 

KMPX20080410_212652.gz KMPX20080422_081420.gz KMPX20080503_140503.gz 



 122 

 
KMPX20080410_213236.gz KMPX20080422_081835.gz KMPX20080503_141048.gz 

KMPX20080410_213822.gz KMPX20080422_082252.gz KMPX20080503_141634.gz 

KMPX20080410_214407.gz KMPX20080422_082708.gz KMPX20080503_142219.gz 

KMPX20080410_214952.gz KMPX20080422_083123.gz KMPX20080503_142806.gz 

KMPX20080410_215538.gz KMPX20080422_083539.gz KMPX20080503_143352.gz 

KMPX20080410_220124.gz KMPX20080422_083954.gz KMPX20080503_143940.gz 

KMPX20080410_220708.gz KMPX20080422_084409.gz KMPX20080503_144524.gz 

KMPX20080410_221253.gz KMPX20080422_084823.gz KMPX20080503_145111.gz 

KMPX20080410_221838.gz KMPX20080422_085238.gz KMPX20080503_145656.gz 

KMPX20080410_222425.gz KMPX20080422_085654.gz KMPX20080503_150243.gz 

KMPX20080410_223010.gz KMPX20080422_090109.gz KMPX20080503_150830.gz 

KMPX20080410_223556.gz KMPX20080422_090523.gz KMPX20080503_151417.gz 

KMPX20080410_224141.gz KMPX20080422_090938.gz KMPX20080503_152001.gz 

KMPX20080410_224726.gz KMPX20080422_091355.gz KMPX20080503_152546.gz 

KMPX20080410_225311.gz KMPX20080422_091809.gz KMPX20080503_153131.gz 

KMPX20080410_225855.gz KMPX20080422_092223.gz KMPX20080503_153716.gz 

KMPX20080410_230440.gz KMPX20080422_092638.gz KMPX20080503_154303.gz 

KMPX20080410_231025.gz KMPX20080422_093053.gz KMPX20080503_154848.gz 

KMPX20080410_231610.gz KMPX20080422_093508.gz KMPX20080503_155435.gz 

KMPX20080410_232154.gz KMPX20080422_093922.gz KMPX20080503_160020.gz 

KMPX20080410_232739.gz KMPX20080422_094337.gz KMPX20080503_160604.gz 

KMPX20080410_233324.gz KMPX20080422_094751.gz KMPX20080503_161149.gz 

KMPX20080410_233909.gz KMPX20080422_095206.gz KMPX20080503_161734.gz 

KMPX20080410_234454.gz KMPX20080422_095621.gz KMPX20080503_162319.gz 

KMPX20080410_235039.gz KMPX20080422_100035.gz KMPX20080503_162904.gz 

KMPX20080410_235624.gz KMPX20080422_100452.gz KMPX20080503_163449.gz 

KMPX20080411_000209.gz KMPX20080422_100907.gz KMPX20080503_164034.gz 

KMPX20080411_000753.gz KMPX20080422_101321.gz KMPX20080503_164618.gz 

KMPX20080411_001340.gz KMPX20080422_101736.gz KMPX20080503_165205.gz 

KMPX20080411_001925.gz KMPX20080422_102152.gz KMPX20080503_165750.gz 

KMPX20080411_002512.gz KMPX20080422_102607.gz KMPX20080503_170337.gz 

KMPX20080411_003056.gz KMPX20080422_103022.gz KMPX20080503_170922.gz 

KMPX20080411_003644.gz KMPX20080422_103436.gz KMPX20080503_171507.gz 

KMPX20080411_004228.gz KMPX20080422_103851.gz KMPX20080503_172052.gz 

KMPX20080411_004814.gz KMPX20080422_104305.gz KMPX20080503_172637.gz 

KMPX20080411_005358.gz KMPX20080422_104720.gz KMPX20080503_173222.gz 

KMPX20080411_005945.gz KMPX20080422_105134.gz KMPX20080503_173807.gz 

KMPX20080411_010626.gz KMPX20080422_105549.gz KMPX20080503_174352.gz 

KMPX20080411_011211.gz KMPX20080422_110005.gz KMPX20080503_174937.gz 

KMPX20080411_011756.gz KMPX20080422_110422.gz KMPX20080503_175524.gz 

KMPX20080411_012342.gz KMPX20080422_110837.gz KMPX20080503_180109.gz 

KMPX20080411_012928.gz KMPX20080422_111251.gz KMPX20080529_214301.gz 

KMPX20080411_013515.gz KMPX20080422_111706.gz KMPX20080529_214715.gz 

KMPX20080411_014059.gz KMPX20080422_112121.gz KMPX20080529_215130.gz 

KMPX20080411_014646.gz KMPX20080422_112535.gz KMPX20080529_215544.gz 

KMPX20080411_015231.gz KMPX20080422_112951.gz KMPX20080529_215959.gz 

KMPX20080411_015816.gz KMPX20080422_113405.gz KMPX20080529_220413.gz 

KMPX20080411_020401.gz KMPX20080422_113820.gz KMPX20080529_220827.gz 
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KMPX20080411_020945.gz KMPX20080422_114235.gz KMPX20080529_221242.gz 

KMPX20080411_021532.gz KMPX20080422_114650.gz KMPX20080529_221657.gz 

KMPX20080411_022117.gz KMPX20080422_115105.gz KMPX20080529_222111.gz 

KMPX20080411_022701.gz KMPX20080422_115520.gz KMPX20080529_222526.gz 

KMPX20080411_023246.gz KMPX20080422_115934.gz KMPX20080529_222941.gz 

KMPX20080411_023830.gz KMPX20080422_120349.gz KMPX20080529_223356.gz 

KMPX20080411_024417.gz KMPX20080422_120804.gz KMPX20080529_223810.gz 

KMPX20080411_025002.gz KMPX20080422_121218.gz KMPX20080529_224225.gz 

KMPX20080411_025547.gz KMPX20080422_121633.gz KMPX20080529_224639.gz 

KMPX20080411_030131.gz KMPX20080422_122048.gz KMPX20080529_225053.gz 

KMPX20080411_030716.gz KMPX20080422_122502.gz KMPX20080529_225508.gz 

KMPX20080411_031301.gz KMPX20080422_122917.gz KMPX20080529_225922.gz 

KMPX20080411_031845.gz KMPX20080422_123332.gz KMPX20080529_230337.gz 

KMPX20080411_032432.gz KMPX20080422_123747.gz KMPX20080529_230752.gz 

KMPX20080411_033016.gz KMPX20080422_124201.gz KMPX20080529_231206.gz 

KMPX20080411_033603.gz KMPX20080422_124616.gz KMPX20080529_231621.gz 

KMPX20080411_034148.gz KMPX20080422_125031.gz KMPX20080529_232036.gz 

KMPX20080411_034733.gz KMPX20080422_125446.gz KMPX20080529_232450.gz 

KMPX20080411_035318.gz KMPX20080422_125900.gz KMPX20080529_232904.gz 

KMPX20080411_035902.gz KMPX20080422_130315.gz KMPX20080529_233320.gz 

KMPX20080411_040448.gz KMPX20080422_130730.gz KMPX20080529_233735.gz 

KMPX20080411_041033.gz KMPX20080422_131144.gz KMPX20080529_234152.gz 

KMPX20080411_041617.gz KMPX20080422_131559.gz KMPX20080529_234607.gz 

KMPX20080411_042202.gz KMPX20080422_132014.gz KMPX20080529_235023.gz 

KMPX20080411_042747.gz KMPX20080422_132429.gz KMPX20080529_235437.gz 

KMPX20080411_043334.gz KMPX20080422_132844.gz KMPX20080529_235853.gz 

KMPX20080411_043918.gz KMPX20080422_133259.gz KMPX20080530_000308.gz 

KMPX20080411_044502.gz KMPX20080422_133715.gz KMPX20080530_000723.gz 

KMPX20080411_045047.gz KMPX20080422_134130.gz KMPX20080530_001138.gz 

KMPX20080411_045625.gz KMPX20080422_134544.gz KMPX20080530_001553.gz 

KMPX20080411_050203.gz KMPX20080422_134959.gz KMPX20080530_002008.gz 

KMPX20080411_050742.gz KMPX20080422_135414.gz KMPX20080530_002423.gz 

KMPX20080411_051320.gz KMPX20080422_135828.gz KMPX20080530_002838.gz 

KMPX20080411_051857.gz KMPX20080422_140244.gz KMPX20080530_003253.gz 

KMPX20080411_052436.gz KMPX20080422_140658.gz KMPX20080530_003707.gz 

KMPX20080411_053013.gz KMPX20080422_141114.gz KMPX20080530_004122.gz 

KMPX20080411_053551.gz KMPX20080422_141528.gz KMPX20080530_004536.gz 

KMPX20080411_054127.gz KMPX20080422_141944.gz KMPX20080530_004951.gz 

KMPX20080411_054704.gz KMPX20080422_142529.gz KMPX20080530_005405.gz 

KMPX20080411_055241.gz KMPX20080422_143115.gz KMPX20080530_005821.gz 

KMPX20080411_055818.gz KMPX20080422_143658.gz KMPX20080530_010235.gz 

KMPX20080411_060355.gz KMPX20080422_144242.gz KMPX20080530_010650.gz 

KMPX20080411_060932.gz KMPX20080422_144826.gz KMPX20080530_011105.gz 

KMPX20080411_061509.gz KMPX20080422_145410.gz KMPX20080530_011519.gz 

KMPX20080411_062046.gz KMPX20080422_145954.gz KMPX20080530_011934.gz 

KMPX20080411_062625.gz KMPX20080422_150540.gz KMPX20080530_012348.gz 

KMPX20080411_063204.gz KMPX20080422_151124.gz KMPX20080530_012803.gz 

KMPX20080411_063743.gz KMPX20080422_151708.gz KMPX20080530_013217.gz 
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KMPX20080411_064319.gz KMPX20080422_152349.gz KMPX20080530_013631.gz 

KMPX20080411_064856.gz KMPX20080422_152934.gz KMPX20080530_014145.gz 

KMPX20080411_065433.gz KMPX20080422_153518.gz KMPX20080530_014559.gz 

KMPX20080411_070009.gz KMPX20080422_154102.gz KMPX20080530_015014.gz 

KMPX20080411_070548.gz KMPX20080422_154645.gz KMPX20080530_015428.gz 

KMPX20080411_071125.gz KMPX20080422_155624.gz KMPX20080530_015843.gz 

KMPX20080411_071701.gz KMPX20080422_160601.gz KMPX20080530_020258.gz 

KMPX20080411_072238.gz KMPX20080422_161538.gz KMPX20080530_020713.gz 

KMPX20080411_072814.gz KMPX20080422_162516.gz KMPX20080530_021128.gz 

KMPX20080411_073353.gz KMPX20080422_163454.gz KMPX20080530_021542.gz 

KMPX20080411_073930.gz KMPX20080422_164432.gz KMPX20080530_021957.gz 

KMPX20080411_074509.gz KMPX20080422_165409.gz KMPX20080530_022414.gz 

KMPX20080411_075045.gz KMPX20080422_170347.gz KMPX20080530_022830.gz 

KMPX20080411_075621.gz KMPX20080422_171326.gz KMPX20080530_023245.gz 

KMPX20080411_080158.gz KMPX20080422_172304.gz KMPX20080530_023659.gz 

KMPX20080411_080734.gz KMPX20080422_173242.gz KMPX20080530_024114.gz 

KMPX20080411_081311.gz KMPX20080422_174220.gz KMPX20080530_024528.gz 

KMPX20080411_081847.gz KMPX20080422_175159.gz KMPX20080530_024943.gz 

KMPX20080411_082424.gz KMPX20080422_180138.gz KMPX20080530_025358.gz 

KMPX20080411_083000.gz KMPX20080424_035230.gz KMPX20080530_025812.gz 

KMPX20080411_083537.gz KMPX20080424_040207.gz KMPX20080530_030227.gz 

KMPX20080411_084115.gz KMPX20080424_041144.gz KMPX20080530_030641.gz 

KMPX20080411_084652.gz KMPX20080424_042121.gz KMPX20080530_031055.gz 

KMPX20080411_085229.gz KMPX20080424_043059.gz KMPX20080530_031511.gz 

KMPX20080411_085805.gz KMPX20080424_044036.gz KMPX20080530_031925.gz 

KMPX20080411_090342.gz KMPX20080424_045012.gz KMPX20080530_032340.gz 

KMPX20080411_091015.gz KMPX20080424_045949.gz KMPX20080530_032756.gz 

KMPX20080411_091552.gz KMPX20080424_050926.gz KMPX20080530_033211.gz 

KMPX20080411_092131.gz KMPX20080424_051903.gz KMPX20080530_033626.gz 

KMPX20080411_092707.gz KMPX20080424_052841.gz KMPX20080530_034043.gz 

KMPX20080411_093244.gz KMPX20080424_053819.gz KMPX20080530_034458.gz 

KMPX20080411_093820.gz KMPX20080424_054756.gz KMPX20080530_034912.gz 

KMPX20080411_094357.gz KMPX20080424_055733.gz KMPX20080530_035327.gz 

KMPX20080411_094933.gz KMPX20080424_060710.gz KMPX20080530_035741.gz 

KMPX20080411_095510.gz KMPX20080424_061647.gz KMPX20080530_040155.gz 

KMPX20080411_100045.gz KMPX20080424_062624.gz KMPX20080530_040610.gz 

KMPX20080411_100622.gz KMPX20080424_063600.gz KMPX20080530_041024.gz 

KMPX20080411_101158.gz KMPX20080424_064537.gz KMPX20080530_041439.gz 

KMPX20080411_101736.gz KMPX20080424_065121.gz KMPX20080530_041853.gz 

KMPX20080411_102313.gz KMPX20080424_065708.gz KMPX20080530_042308.gz 

KMPX20080411_102850.gz KMPX20080424_070254.gz KMPX20080530_042723.gz 

KMPX20080411_103428.gz KMPX20080424_070840.gz KMPX20080530_043139.gz 

KMPX20080411_104006.gz KMPX20080424_071427.gz KMPX20080530_043554.gz 

KMPX20080411_104543.gz KMPX20080424_072011.gz KMPX20080530_044009.gz 

KMPX20080411_105121.gz KMPX20080424_072557.gz KMPX20080530_044425.gz 

KMPX20080411_105658.gz KMPX20080424_073141.gz KMPX20080530_044839.gz 

KMPX20080411_110235.gz KMPX20080424_073726.gz KMPX20080530_045254.gz 

KMPX20080411_110811.gz KMPX20080424_074310.gz KMPX20080530_045708.gz 
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KMPX20080411_111348.gz KMPX20080424_074854.gz KMPX20080530_050123.gz 

KMPX20080411_111926.gz KMPX20080424_075440.gz KMPX20080530_050538.gz 

KMPX20080411_112503.gz KMPX20080424_080026.gz KMPX20080530_050952.gz 

KMPX20080411_113039.gz KMPX20080424_080610.gz KMPX20080530_051407.gz 

KMPX20080411_113616.gz KMPX20080424_081154.gz KMPX20080530_051823.gz 

KMPX20080411_114155.gz KMPX20080424_081738.gz KMPX20080530_052237.gz 

KMPX20080411_114731.gz KMPX20080424_082324.gz KMPX20080530_052652.gz 

KMPX20080411_115307.gz KMPX20080424_082908.gz KMPX20080530_053106.gz 

KMPX20080411_115844.gz KMPX20080424_083452.gz KMPX20080530_053520.gz 

KMPX20080411_120420.gz KMPX20080424_084036.gz KMPX20080530_053935.gz 

KMPX20080411_120959.gz KMPX20080424_084622.gz KMPX20080530_054350.gz 

KMPX20080411_121535.gz KMPX20080424_085205.gz KMPX20080530_054806.gz 

KMPX20080411_122112.gz KMPX20080424_085749.gz KMPX20080530_055220.gz 

KMPX20080411_122649.gz KMPX20080424_090333.gz KMPX20080530_055635.gz 

KMPX20080411_123227.gz KMPX20080424_090917.gz KMPX20080530_060051.gz 

KMPX20080411_123804.gz KMPX20080424_091502.gz KMPX20080530_060506.gz 

KMPX20080411_124340.gz KMPX20080424_092045.gz KMPX20080530_060921.gz 

KMPX20080411_124919.gz KMPX20080424_092629.gz KMPX20080530_061335.gz 

KMPX20080411_125455.gz KMPX20080424_093213.gz KMPX20080530_061750.gz 

KMPX20080411_130032.gz KMPX20080424_093759.gz KMPX20080530_062204.gz 

KMPX20080411_130608.gz KMPX20080424_094344.gz KMPX20080530_062619.gz 

KMPX20080411_131145.gz KMPX20080424_094928.gz KMPX20080530_063033.gz 

KMPX20080411_131721.gz KMPX20080424_095511.gz KMPX20080530_063448.gz 

KMPX20080411_132259.gz KMPX20080424_100058.gz KMPX20080530_063902.gz 

KMPX20080411_132836.gz KMPX20080424_100643.gz KMPX20080530_064318.gz 

KMPX20080411_133412.gz KMPX20080424_101227.gz KMPX20080530_064733.gz 

KMPX20080411_133949.gz KMPX20080424_101910.gz KMPX20080530_065147.gz 

KMPX20080411_134525.gz KMPX20080424_102457.gz KMPX20080530_065602.gz 

KMPX20080411_135101.gz KMPX20080424_103042.gz KMPX20080530_070018.gz 

KMPX20080411_135638.gz KMPX20080424_103626.gz KMPX20080530_070433.gz 

KMPX20080411_140215.gz KMPX20080424_104211.gz KMPX20080530_070847.gz 

KMPX20080411_140751.gz KMPX20080424_104755.gz KMPX20080530_071301.gz 

KMPX20080411_141328.gz KMPX20080424_105339.gz KMPX20080530_071717.gz 

KMPX20080411_141904.gz KMPX20080424_105923.gz KMPX20080530_072132.gz 

KMPX20080411_142441.gz KMPX20080424_110506.gz KMPX20080530_072547.gz 

KMPX20080411_143017.gz KMPX20080424_111051.gz KMPX20080530_073001.gz 

KMPX20080411_143553.gz KMPX20080424_111634.gz KMPX20080530_073416.gz 

KMPX20080411_144132.gz KMPX20080424_112218.gz KMPX20080530_073831.gz 

KMPX20080411_144708.gz KMPX20080424_112804.gz KMPX20080530_074245.gz 

KMPX20080411_145245.gz KMPX20080424_113348.gz KMPX20080530_074700.gz 

KMPX20080411_145824.gz KMPX20080424_113932.gz KMPX20080530_075115.gz 

KMPX20080411_150400.gz KMPX20080424_114515.gz KMPX20080530_075529.gz 

KMPX20080411_150937.gz KMPX20080424_115011.gz KMPX20080530_075944.gz 

KMPX20080411_151513.gz KMPX20080424_115426.gz KMPX20080530_080359.gz 

KMPX20080411_152050.gz KMPX20080424_115843.gz KMPX20080530_080813.gz 

KMPX20080411_152629.gz KMPX20080424_120300.gz KMPX20080530_081228.gz 

KMPX20080411_153205.gz KMPX20080424_120715.gz KMPX20080530_081643.gz 

KMPX20080411_153744.gz KMPX20080424_121130.gz KMPX20080530_082058.gz 
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KMPX20080411_154320.gz KMPX20080424_121545.gz KMPX20080530_082512.gz 

KMPX20080411_154859.gz KMPX20080424_122000.gz KMPX20080530_082927.gz 

KMPX20080411_155436.gz KMPX20080424_122415.gz KMPX20080530_083342.gz 

KMPX20080411_160012.gz KMPX20080424_122831.gz KMPX20080530_083756.gz 

KMPX20080411_160548.gz KMPX20080424_123245.gz KMPX20080530_084211.gz 

KMPX20080411_161125.gz KMPX20080424_123700.gz KMPX20080530_084626.gz 

KMPX20080411_161701.gz KMPX20080424_124114.gz KMPX20080530_085040.gz 

KMPX20080411_162238.gz KMPX20080424_124528.gz KMPX20080530_085455.gz 

KMPX20080411_162814.gz KMPX20080424_124944.gz KMPX20080530_085909.gz 

KMPX20080411_163351.gz KMPX20080424_125358.gz KMPX20080530_090324.gz 

KMPX20080411_163927.gz KMPX20080424_125815.gz KMPX20080530_090738.gz 

KMPX20080411_164506.gz KMPX20080424_130230.gz KMPX20080530_091153.gz 

KMPX20080411_165045.gz KMPX20080424_130644.gz KMPX20080530_091608.gz 

KMPX20080411_165621.gz KMPX20080424_131059.gz KMPX20080530_092022.gz 

KMPX20080411_170158.gz KMPX20080424_131513.gz KMPX20080530_092437.gz 

KMPX20080411_170734.gz KMPX20080424_131929.gz KMPX20080530_092852.gz 

KMPX20080411_171406.gz KMPX20080424_132344.gz KMPX20080530_093308.gz 

KMPX20080411_171942.gz KMPX20080424_132759.gz KMPX20080530_093723.gz 

KMPX20080411_172521.gz KMPX20080424_133214.gz KMPX20080530_094237.gz 

KMPX20080411_173100.gz KMPX20080424_133628.gz KMPX20080530_094651.gz 

KMPX20080411_173638.gz KMPX20080424_134042.gz KMPX20080530_095106.gz 

KMPX20080411_174214.gz KMPX20080424_134457.gz KMPX20080530_095520.gz 

KMPX20080411_174751.gz KMPX20080424_134911.gz KMPX20080530_095935.gz 

KMPX20080411_175327.gz KMPX20080424_135325.gz KMPX20080530_100349.gz 

KMPX20080411_175904.gz KMPX20080424_135739.gz KMPX20080530_100804.gz 

KMPX20080411_180443.gz KMPX20080424_140155.gz KMPX20080530_101219.gz 

KMPX20080411_181021.gz KMPX20080424_140610.gz KMPX20080530_101633.gz 

KMPX20080411_181557.gz KMPX20080424_141025.gz KMPX20080530_102048.gz 

KMPX20080411_182134.gz KMPX20080424_141439.gz KMPX20080530_102503.gz 

KMPX20080411_182711.gz KMPX20080424_141853.gz KMPX20080530_102917.gz 

KMPX20080411_183247.gz KMPX20080424_142307.gz KMPX20080530_103332.gz 

KMPX20080411_183825.gz KMPX20080424_142724.gz KMPX20080530_103746.gz 

KMPX20080411_184403.gz KMPX20080424_143140.gz KMPX20080530_104201.gz 

KMPX20080411_184940.gz KMPX20080424_143555.gz KMPX20080530_104616.gz 

KMPX20080411_185518.gz KMPX20080424_144010.gz KMPX20080530_105030.gz 

KMPX20080411_190057.gz KMPX20080424_144425.gz KMPX20080530_105444.gz 

KMPX20080411_190635.gz KMPX20080424_144839.gz KMPX20080530_105859.gz 

KMPX20080411_191214.gz KMPX20080424_145255.gz KMPX20080530_110314.gz 

KMPX20080411_191750.gz KMPX20080424_145711.gz KMPX20080530_110729.gz 

KMPX20080411_192327.gz KMPX20080424_150126.gz KMPX20080530_111143.gz 

KMPX20080411_192903.gz KMPX20080424_150540.gz KMPX20080530_111557.gz 

KMPX20080411_193440.gz KMPX20080424_150955.gz KMPX20080530_112012.gz 

KMPX20080411_194017.gz KMPX20080424_151409.gz KMPX20080530_112427.gz 

KMPX20080411_194553.gz KMPX20080424_151823.gz KMPX20080530_112841.gz 

KMPX20080411_195131.gz KMPX20080424_152238.gz KMPX20080530_113256.gz 

KMPX20080411_195709.gz KMPX20080424_152654.gz KMPX20080530_113710.gz 

KMPX20080411_200246.gz KMPX20080424_153108.gz KMPX20080530_114125.gz 

KMPX20080411_200830.gz KMPX20080424_153523.gz KMPX20080530_114540.gz 
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KMPX20080411_201415.gz KMPX20080424_153937.gz KMPX20080530_114954.gz 

KMPX20080411_201959.gz KMPX20080424_154351.gz KMPX20080530_115409.gz 

KMPX20080411_202543.gz KMPX20080424_154805.gz KMPX20080530_115824.gz 

KMPX20080411_203125.gz KMPX20080424_155220.gz KMPX20080530_120238.gz 

KMPX20080411_203710.gz KMPX20080424_155636.gz KMPX20080530_120653.gz 

KMPX20080411_204254.gz KMPX20080424_160051.gz KMPX20080530_121108.gz 

KMPX20080411_204839.gz KMPX20080424_160505.gz KMPX20080530_121522.gz 

KMPX20080411_205423.gz KMPX20080424_160920.gz KMPX20080530_121937.gz 

KMPX20080411_210009.gz KMPX20080424_161334.gz KMPX20080530_122351.gz 

KMPX20080411_210555.gz KMPX20080424_161748.gz KMPX20080530_122806.gz 

KMPX20080411_211141.gz KMPX20080424_162203.gz KMPX20080530_123220.gz 

KMPX20080411_211725.gz KMPX20080424_162617.gz KMPX20080530_123635.gz 

KMPX20080411_212309.gz KMPX20080424_163032.gz KMPX20080530_124050.gz 

KMPX20080411_212854.gz KMPX20080424_163446.gz KMPX20080530_124504.gz 

KMPX20080411_213439.gz KMPX20080424_163901.gz KMPX20080530_124919.gz 

KMPX20080411_214023.gz KMPX20080424_164315.gz KMPX20080530_125334.gz 

KMPX20080411_214608.gz KMPX20080424_164729.gz KMPX20080530_125748.gz 

KMPX20080411_215152.gz KMPX20080424_165146.gz KMPX20080530_130203.gz 

KMPX20080411_215736.gz KMPX20080424_165600.gz KMPX20080530_130748.gz 

KMPX20080411_220324.gz KMPX20080424_170016.gz KMPX20080530_131332.gz 

KMPX20080411_220907.gz KMPX20080424_170432.gz KMPX20080530_131915.gz 

KMPX20080411_221453.gz KMPX20080424_170846.gz KMPX20080530_132500.gz 

KMPX20080411_222037.gz KMPX20080424_171301.gz KMPX20080530_133045.gz 

KMPX20080411_222622.gz KMPX20080424_171715.gz KMPX20080530_133629.gz 

KMPX20080411_223207.gz KMPX20080424_172129.gz KMPX20080530_134212.gz 

KMPX20080411_223751.gz KMPX20080424_172544.gz KMPX20080530_134759.gz 

KMPX20080411_224336.gz KMPX20080424_172958.gz KMPX20080530_135344.gz 

KMPX20080411_224921.gz KMPX20080424_173412.gz KMPX20080530_135928.gz 

KMPX20080411_225505.gz KMPX20080424_173826.gz KMPX20080530_140511.gz 

KMPX20080411_230053.gz KMPX20080424_174241.gz KMPX20080530_141055.gz 

KMPX20080411_230637.gz KMPX20080424_174655.gz KMPX20080530_141641.gz 

KMPX20080411_231222.gz KMPX20080424_175109.gz KMPX20080530_142225.gz 

KMPX20080411_231807.gz KMPX20080424_175524.gz KMPX20080530_142808.gz 

KMPX20080411_232352.gz KMPX20080424_175939.gz KMPX20080530_143353.gz 

KMPX20080411_232937.gz KMPX20080424_180353.gz KMPX20080530_143939.gz 

KMPX20080411_233521.gz KMPX20080424_180808.gz KMPX20080530_144523.gz 

KMPX20080411_234106.gz KMPX20080424_181222.gz KMPX20080530_145107.gz 

KMPX20080411_234653.gz KMPX20080424_181636.gz KMPX20080530_145651.gz 

KMPX20080411_235238.gz KMPX20080424_182147.gz KMPX20080530_150235.gz 

KMPX20080411_235823.gz KMPX20080424_182603.gz KMPX20080530_150820.gz 

KMPX20080412_000408.gz KMPX20080424_183018.gz KMPX20080530_151406.gz 

KMPX20080412_000952.gz KMPX20080424_183432.gz KMPX20080530_151952.gz 

KMPX20080412_001537.gz KMPX20080424_183849.gz KMPX20080530_152538.gz 

KMPX20080412_002122.gz KMPX20080424_184304.gz KMPX20080530_153124.gz 

KMPX20080412_002707.gz KMPX20080424_184718.gz KMPX20080530_153708.gz 

KMPX20080412_003253.gz KMPX20080424_185132.gz KMPX20080530_154255.gz 

KMPX20080412_003838.gz KMPX20080424_185547.gz KMPX20080530_154839.gz 

KMPX20080412_004423.gz KMPX20080424_190003.gz KMPX20080530_155423.gz 
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KMPX20080412_005008.gz KMPX20080424_190417.gz KMPX20080530_160007.gz 

KMPX20080412_005553.gz KMPX20080424_190831.gz KMPX20080530_160554.gz 

KMPX20080412_010138.gz KMPX20080424_191245.gz KMPX20080530_161140.gz 

KMPX20080412_010723.gz KMPX20080424_191700.gz KMPX20080530_161726.gz 

KMPX20080412_011308.gz KMPX20080424_192114.gz KMPX20080530_162310.gz 

KMPX20080412_011948.gz KMPX20080424_192529.gz KMPX20080530_162854.gz 

KMPX20080412_012533.gz KMPX20080424_192943.gz KMPX20080530_163439.gz 

KMPX20080412_013118.gz KMPX20080424_193358.gz KMPX20080530_164023.gz 

KMPX20080412_013705.gz KMPX20080424_193812.gz KMPX20080530_164609.gz 

KMPX20080412_014250.gz KMPX20080424_194227.gz KMPX20080530_165154.gz 

KMPX20080412_014834.gz KMPX20080424_194641.gz KMPX20080530_165738.gz 

KMPX20080412_015419.gz KMPX20080424_195056.gz KMPX20080530_170325.gz 

KMPX20080412_020004.gz KMPX20080424_195510.gz KMPX20080530_170911.gz 

KMPX20080412_020549.gz KMPX20080424_195925.gz KMPX20080530_171455.gz 

KMPX20080412_021134.gz KMPX20080424_200339.gz KMPX20080530_172041.gz 

KMPX20080412_021719.gz KMPX20080424_200754.gz KMPX20080530_172626.gz 

KMPX20080412_022304.gz KMPX20080424_201208.gz KMPX20080530_173212.gz 

KMPX20080412_022851.gz KMPX20080424_201622.gz KMPX20080530_173756.gz 

KMPX20080412_023438.gz KMPX20080424_202037.gz KMPX20080530_174435.gz 

KMPX20080412_024023.gz KMPX20080424_202451.gz KMPX20080530_175021.gz 

KMPX20080412_024608.gz KMPX20080424_202906.gz KMPX20080530_175605.gz 

KMPX20080412_025153.gz KMPX20080424_203322.gz KMPX20080530_180152.gz 

KMPX20080412_025739.gz KMPX20080424_203736.gz KMPX20080530_180738.gz 

KMPX20080412_030324.gz KMPX20080424_204151.gz KMPX20080530_181324.gz 

KMPX20080412_030909.gz KMPX20080424_204605.gz KMPX20080530_181742.gz 

KMPX20080412_031454.gz KMPX20080424_205019.gz KMPX20080530_182157.gz 

KMPX20080412_032039.gz KMPX20080424_205434.gz KMPX20080530_182612.gz 

KMPX20080412_032624.gz KMPX20080424_205848.gz KMPX20080530_183027.gz 

KMPX20080412_033210.gz KMPX20080424_210303.gz KMPX20080530_183444.gz 

KMPX20080412_033756.gz KMPX20080424_210717.gz KMPX20080530_183859.gz 

KMPX20080412_034341.gz KMPX20080424_211133.gz KMPX20080530_184314.gz 

KMPX20080412_034926.gz KMPX20080424_211548.gz KMPX20080530_184729.gz 

KMPX20080412_035513.gz KMPX20080424_212002.gz KMPX20080530_185144.gz 

KMPX20080412_040059.gz KMPX20080424_212416.gz KMPX20080530_185559.gz 

KMPX20080412_040646.gz KMPX20080424_212831.gz KMPX20080530_190014.gz 

KMPX20080412_041233.gz KMPX20080424_213245.gz KMPX20080530_190429.gz 

KMPX20080412_041818.gz KMPX20080424_213703.gz KMPX20080530_190844.gz 

KMPX20080412_042403.gz KMPX20080424_214117.gz KMPX20080530_191258.gz 

KMPX20080412_042948.gz KMPX20080424_214534.gz KMPX20080530_191713.gz 

KMPX20080412_043534.gz KMPX20080424_214948.gz KMPX20080530_192127.gz 

KMPX20080412_044120.gz KMPX20080424_215403.gz KMPX20080530_192544.gz 

KMPX20080412_044705.gz KMPX20080424_215817.gz KMPX20080530_192959.gz 

KMPX20080412_045250.gz KMPX20080424_220231.gz KMPX20080530_193413.gz 

KMPX20080412_045835.gz KMPX20080424_220646.gz KMPX20080530_193828.gz 

KMPX20080412_050421.gz KMPX20080424_221059.gz KMPX20080530_194244.gz 

KMPX20080412_051005.gz KMPX20080424_221516.gz KMPX20080530_194700.gz 

KMPX20080412_051550.gz KMPX20080424_221932.gz KMPX20080530_195117.gz 

KMPX20080412_052137.gz KMPX20080424_222347.gz KMPX20080530_195533.gz 



 129 

 
KMPX20080412_052722.gz KMPX20080424_222801.gz KMPX20080530_195948.gz 

KMPX20080412_053307.gz KMPX20080424_223215.gz KMPX20080530_200402.gz 

KMPX20080412_053852.gz KMPX20080424_223632.gz KMPX20080530_200816.gz 

KMPX20080412_054437.gz KMPX20080424_224048.gz KMPX20080530_201231.gz 

KMPX20080412_055021.gz KMPX20080424_224503.gz KMPX20080530_201645.gz 

KMPX20080412_055607.gz KMPX20080424_224917.gz KMPX20080530_202100.gz 

KMPX20080412_060151.gz KMPX20080424_225331.gz KMPX20080530_202515.gz 

KMPX20080412_060736.gz KMPX20080424_225746.gz KMPX20080530_202929.gz 

KMPX20080412_061321.gz KMPX20080424_230200.gz KMPX20080530_203345.gz 

KMPX20080412_061906.gz KMPX20080424_230615.gz KMPX20080530_203759.gz 

KMPX20080412_062451.gz KMPX20080424_231029.gz KMPX20080530_204216.gz 

KMPX20080412_063036.gz KMPX20080424_231443.gz KMPX20080530_204632.gz 

KMPX20080412_063621.gz KMPX20080424_231857.gz KMPX20080530_205047.gz 

KMPX20080412_064206.gz KMPX20080424_232311.gz KMPX20080530_205501.gz 

KMPX20080412_064751.gz KMPX20080424_232726.gz KMPX20080530_205915.gz 

KMPX20080412_065336.gz KMPX20080424_233141.gz KMPX20080530_210332.gz 

KMPX20080412_065921.gz KMPX20080424_233555.gz KMPX20080530_210746.gz 

KMPX20080412_070507.gz KMPX20080424_234009.gz KMPX20080530_211202.gz 

KMPX20080412_071051.gz KMPX20080424_234424.gz KMPX20080530_211618.gz 

KMPX20080412_071637.gz KMPX20080424_234839.gz KMPX20080530_212032.gz 

KMPX20080412_072221.gz KMPX20080424_235253.gz KMPX20080530_212447.gz 

KMPX20080412_072806.gz KMPX20080424_235708.gz KMPX20080530_212859.gz 

KMPX20080412_073351.gz KMPX20080425_000122.gz KMPX20080530_213317.gz 

KMPX20080412_073936.gz KMPX20080425_000536.gz KMPX20080530_213732.gz 

KMPX20080412_074521.gz KMPX20080425_000952.gz KMPX20080530_214146.gz 

KMPX20080412_075107.gz KMPX20080425_001406.gz KMPX20080530_214600.gz 

KMPX20080412_075651.gz KMPX20080425_001822.gz KMPX20080530_215014.gz 

KMPX20080412_080237.gz KMPX20080425_002239.gz KMPX20080530_215428.gz 

KMPX20080412_080822.gz KMPX20080425_002654.gz KMPX20080530_215842.gz 

KMPX20080412_081406.gz KMPX20080425_003108.gz KMPX20080530_220256.gz 

KMPX20080412_081951.gz KMPX20080425_003522.gz KMPX20080530_220711.gz 

KMPX20080412_082538.gz KMPX20080425_003937.gz KMPX20080530_221125.gz 

KMPX20080412_083123.gz KMPX20080425_004351.gz KMPX20080530_221539.gz 

KMPX20080412_083708.gz KMPX20080425_004807.gz KMPX20080530_221956.gz 

KMPX20080412_084253.gz KMPX20080425_005221.gz KMPX20080530_222410.gz 

KMPX20080412_084838.gz KMPX20080425_005636.gz KMPX20080530_222826.gz 

KMPX20080412_085423.gz KMPX20080425_010051.gz KMPX20080530_223240.gz 

KMPX20080412_090008.gz KMPX20080425_010505.gz KMPX20080530_223654.gz 

KMPX20080412_090609.gz KMPX20080425_010921.gz KMPX20080530_224108.gz 

KMPX20080412_091605.gz KMPX20080425_011335.gz KMPX20080530_224524.gz 

KMPX20080412_092250.gz KMPX20080425_011751.gz KMPX20080530_224938.gz 

KMPX20080412_092835.gz KMPX20080425_012205.gz KMPX20080530_225352.gz 

KMPX20080412_093421.gz KMPX20080425_012620.gz KMPX20080530_225806.gz 

KMPX20080412_094005.gz KMPX20080425_013034.gz KMPX20080530_230220.gz 

KMPX20080412_094551.gz KMPX20080425_013449.gz KMPX20080530_230634.gz 

KMPX20080412_095138.gz KMPX20080425_013903.gz KMPX20080530_231048.gz 

KMPX20080412_095722.gz KMPX20080425_014317.gz KMPX20080530_231502.gz 

KMPX20080412_100308.gz KMPX20080425_014732.gz KMPX20080530_231916.gz 
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KMPX20080412_100855.gz KMPX20080425_015146.gz KMPX20080530_232332.gz 

KMPX20080412_101440.gz KMPX20080425_015601.gz KMPX20080530_232746.gz 

KMPX20080412_102024.gz KMPX20080425_020015.gz KMPX20080530_233203.gz 

KMPX20080412_102609.gz KMPX20080425_020432.gz KMPX20080530_233617.gz 

KMPX20080412_103154.gz KMPX20080425_020846.gz KMPX20080530_234031.gz 

KMPX20080412_103739.gz KMPX20080425_021301.gz KMPX20080530_234445.gz 

KMPX20080412_104324.gz KMPX20080425_021715.gz KMPX20080530_234859.gz 

KMPX20080412_104909.gz KMPX20080425_022227.gz KMPX20080530_235314.gz 

KMPX20080412_105453.gz KMPX20080425_022643.gz KMPX20080530_235728.gz 

KMPX20080412_110039.gz KMPX20080425_023057.gz KMPX20080607_000329.gz 

KMPX20080412_110624.gz KMPX20080425_023514.gz KMPX20080607_000804.gz 

KMPX20080412_111209.gz KMPX20080425_023928.gz KMPX20080607_001239.gz 

KMPX20080412_111754.gz KMPX20080425_024346.gz KMPX20080607_001715.gz 

KMPX20080412_112339.gz KMPX20080425_024800.gz KMPX20080607_002150.gz 

KMPX20080412_112926.gz KMPX20080425_025215.gz KMPX20080607_002626.gz 

KMPX20080412_113511.gz KMPX20080425_025629.gz KMPX20080607_003102.gz 

KMPX20080412_114056.gz KMPX20080425_030043.gz KMPX20080607_003538.gz 

KMPX20080412_114641.gz KMPX20080425_030458.gz KMPX20080607_004015.gz 

KMPX20080412_115226.gz KMPX20080425_030912.gz KMPX20080607_004450.gz 

KMPX20080412_115813.gz KMPX20080425_031327.gz KMPX20080607_004925.gz 

KMPX20080412_120358.gz KMPX20080425_031741.gz KMPX20080607_005901.gz 

KMPX20080412_120943.gz KMPX20080425_032156.gz KMPX20080607_010928.gz 

KMPX20080412_121528.gz KMPX20080425_032610.gz KMPX20080607_011902.gz 

KMPX20080412_122113.gz KMPX20080425_033025.gz KMPX20080607_012837.gz 

KMPX20080412_122658.gz KMPX20080425_033439.gz KMPX20080607_013811.gz 

KMPX20080412_123243.gz KMPX20080425_033853.gz KMPX20080607_014746.gz 

KMPX20080412_123827.gz KMPX20080425_034308.gz KMPX20080607_015721.gz 

KMPX20080412_124413.gz KMPX20080425_034722.gz KMPX20080607_020657.gz 

KMPX20080412_124957.gz KMPX20080425_035137.gz KMPX20080607_021633.gz 

KMPX20080412_125542.gz KMPX20080425_035551.gz KMPX20080607_022609.gz 

KMPX20080412_130126.gz KMPX20080425_040006.gz KMPX20080607_023545.gz 

KMPX20080412_130712.gz KMPX20080425_040420.gz KMPX20080607_024522.gz 

KMPX20080412_131258.gz KMPX20080425_040835.gz KMPX20080607_025458.gz 

KMPX20080412_131845.gz KMPX20080425_041249.gz KMPX20080607_030435.gz 

KMPX20080412_132430.gz KMPX20080425_041703.gz KMPX20080607_031411.gz 

KMPX20080412_133017.gz KMPX20080425_042117.gz KMPX20080607_032348.gz 

KMPX20080412_133602.gz KMPX20080425_042532.gz KMPX20080607_033323.gz 

KMPX20080412_134149.gz KMPX20080425_042947.gz KMPX20080607_034300.gz 

KMPX20080412_134734.gz KMPX20080425_043401.gz KMPX20080607_035236.gz 

KMPX20080412_135318.gz KMPX20080425_043815.gz KMPX20080607_040213.gz 

KMPX20080412_135904.gz KMPX20080425_044229.gz KMPX20080607_041149.gz 

KMPX20080412_140451.gz KMPX20080425_044644.gz KMPX20080607_041734.gz 

KMPX20080412_141036.gz KMPX20080425_045058.gz KMPX20080607_042317.gz 

KMPX20080412_141620.gz KMPX20080425_045514.gz KMPX20080607_050329.gz 

KMPX20080412_142205.gz KMPX20080425_045928.gz KMPX20080607_050913.gz 

KMPX20080412_142751.gz KMPX20080425_050342.gz KMPX20080607_051500.gz 

KMPX20080412_143336.gz KMPX20080425_050757.gz KMPX20080607_052046.gz 

KMPX20080412_143923.gz KMPX20080425_051211.gz KMPX20080607_052630.gz 
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KMPX20080412_144508.gz KMPX20080425_051627.gz KMPX20080607_053213.gz 

KMPX20080412_145053.gz KMPX20080425_052042.gz KMPX20080607_053757.gz 

KMPX20080412_145638.gz KMPX20080425_052457.gz KMPX20080607_054342.gz 

KMPX20080412_150223.gz KMPX20080425_052911.gz KMPX20080607_054924.gz 

KMPX20080412_150808.gz KMPX20080425_053326.gz KMPX20080607_055510.gz 

KMPX20080412_151353.gz KMPX20080425_053740.gz KMPX20080607_060057.gz 

KMPX20080412_151938.gz KMPX20080425_054157.gz KMPX20080607_060641.gz 

KMPX20080412_152522.gz KMPX20080425_054611.gz KMPX20080607_061225.gz 

KMPX20080412_153107.gz KMPX20080425_055028.gz KMPX20080607_061809.gz 

KMPX20080412_153652.gz KMPX20080425_055443.gz KMPX20080607_062355.gz 

KMPX20080412_154237.gz KMPX20080425_055857.gz KMPX20080607_062941.gz 

KMPX20080412_154822.gz KMPX20080425_060312.gz KMPX20080607_063525.gz 

KMPX20080412_155406.gz KMPX20080425_060726.gz KMPX20080607_064109.gz 

KMPX20080412_155951.gz KMPX20080425_061140.gz KMPX20080607_064653.gz 

KMPX20080412_160536.gz KMPX20080425_061555.gz KMPX20080607_065239.gz 

KMPX20080412_161121.gz KMPX20080425_062009.gz KMPX20080607_065822.gz 

KMPX20080412_161706.gz KMPX20080425_062424.gz KMPX20080607_070406.gz 

KMPX20080412_162251.gz KMPX20080425_062838.gz KMPX20080607_070952.gz 

KMPX20080412_162835.gz KMPX20080425_063253.gz KMPX20080607_071536.gz 

KMPX20080412_163420.gz KMPX20080425_063707.gz KMPX20080607_072120.gz 

KMPX20080412_164005.gz KMPX20080425_064122.gz KMPX20080607_072705.gz 

KMPX20080412_164552.gz KMPX20080425_064537.gz KMPX20080607_073248.gz 

KMPX20080412_165136.gz KMPX20080425_064951.gz KMPX20080607_073832.gz 

KMPX20080412_165722.gz KMPX20080425_065405.gz KMPX20080607_074418.gz 

KMPX20080412_170306.gz KMPX20080425_065820.gz KMPX20080607_075002.gz 

KMPX20080412_170853.gz KMPX20080425_070235.gz KMPX20080607_075548.gz 

KMPX20080412_171438.gz KMPX20080425_070650.gz KMPX20080607_080042.gz 

KMPX20080412_172023.gz KMPX20080425_071104.gz KMPX20080607_080537.gz 

KMPX20080412_172703.gz KMPX20080425_071518.gz KMPX20080607_081034.gz 

KMPX20080412_173249.gz KMPX20080425_071933.gz KMPX20080607_081529.gz 

KMPX20080412_173835.gz KMPX20080425_072347.gz KMPX20080607_082026.gz 

KMPX20080412_174422.gz KMPX20080425_072802.gz KMPX20080607_082520.gz 

KMPX20080417_120011.gz KMPX20080425_073216.gz KMPX20080607_083014.gz 

KMPX20080417_120950.gz KMPX20080425_073631.gz KMPX20080607_083510.gz 

KMPX20080417_121928.gz KMPX20080425_074046.gz KMPX20080607_084004.gz 

KMPX20080417_122907.gz KMPX20080425_074500.gz KMPX20080607_084501.gz 

KMPX20080417_123846.gz KMPX20080425_074914.gz KMPX20080607_084954.gz 

KMPX20080417_124825.gz KMPX20080425_075329.gz KMPX20080607_085449.gz 

KMPX20080417_125804.gz KMPX20080425_075744.gz KMPX20080607_085943.gz 

KMPX20080417_130743.gz KMPX20080425_080158.gz KMPX20080607_090440.gz 

KMPX20080417_131721.gz KMPX20080425_080613.gz KMPX20080607_091030.gz 

KMPX20080417_132700.gz KMPX20080425_081029.gz KMPX20080607_091526.gz 

KMPX20080417_133639.gz KMPX20080425_081444.gz KMPX20080607_092020.gz 

KMPX20080417_134617.gz KMPX20080425_081858.gz KMPX20080607_092514.gz 

KMPX20080417_135556.gz KMPX20080425_082313.gz KMPX20080607_093010.gz 

KMPX20080417_140535.gz KMPX20080425_082728.gz KMPX20080607_093505.gz 

KMPX20080417_143712.gz KMPX20080425_083142.gz KMPX20080607_093959.gz 

KMPX20080417_144650.gz KMPX20080425_083556.gz KMPX20080607_094453.gz 
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KMPX20080417_145629.gz KMPX20080425_084013.gz KMPX20080607_094947.gz 

KMPX20080417_150607.gz KMPX20080425_084427.gz KMPX20080607_095443.gz 

KMPX20080417_151547.gz KMPX20080425_084842.gz KMPX20080607_095942.gz 

KMPX20080417_152525.gz KMPX20080425_085257.gz KMPX20080607_100435.gz 

KMPX20080417_153505.gz KMPX20080425_085712.gz KMPX20080607_100929.gz 

KMPX20080417_154444.gz KMPX20080425_090126.gz KMPX20080607_101423.gz 

KMPX20080417_155422.gz KMPX20080425_090540.gz KMPX20080607_101918.gz 

KMPX20080417_160401.gz KMPX20080425_090955.gz KMPX20080607_102413.gz 

KMPX20080417_161340.gz KMPX20080425_091409.gz KMPX20080607_102908.gz 

KMPX20080417_162319.gz KMPX20080425_091824.gz KMPX20080607_103403.gz 

KMPX20080417_163258.gz KMPX20080425_092239.gz KMPX20080607_103858.gz 

KMPX20080417_164237.gz KMPX20080425_092653.gz KMPX20080607_104352.gz 

KMPX20080417_165215.gz KMPX20080425_093108.gz KMPX20080607_104847.gz 

KMPX20080417_170153.gz KMPX20080425_093522.gz KMPX20080607_105341.gz 

KMPX20080417_171132.gz KMPX20080425_093937.gz KMPX20080607_105836.gz 

KMPX20080417_172111.gz KMPX20080425_094351.gz KMPX20080607_110332.gz 

KMPX20080417_173049.gz KMPX20080425_094806.gz KMPX20080607_110747.gz 

KMPX20080417_174028.gz KMPX20080425_095223.gz KMPX20080607_111202.gz 

KMPX20080417_175007.gz KMPX20080425_095637.gz KMPX20080607_111618.gz 

KMPX20080417_175945.gz KMPX20080425_100051.gz KMPX20080607_112033.gz 

KMPX20080417_180924.gz KMPX20080425_100506.gz KMPX20080607_112448.gz 

KMPX20080417_181902.gz KMPX20080425_100921.gz KMPX20080607_112902.gz 

KMPX20080417_182840.gz KMPX20080425_101335.gz KMPX20080607_113316.gz 

KMPX20080417_183425.gz KMPX20080425_101750.gz KMPX20080607_113731.gz 

KMPX20080417_184011.gz KMPX20080425_102305.gz KMPX20080607_114146.gz 

KMPX20080417_184556.gz KMPX20080425_102722.gz KMPX20080607_114600.gz 

KMPX20080417_185141.gz KMPX20080425_103141.gz KMPX20080607_115015.gz 

KMPX20080417_185725.gz KMPX20080425_103555.gz KMPX20080607_115430.gz 

KMPX20080417_190310.gz KMPX20080425_104010.gz KMPX20080607_115844.gz 

KMPX20080417_190854.gz KMPX20080425_104426.gz KMPX20080607_120259.gz 

KMPX20080417_191439.gz KMPX20080425_104841.gz KMPX20080607_120713.gz 

KMPX20080417_192025.gz KMPX20080425_105255.gz KMPX20080607_121129.gz 

KMPX20080417_192609.gz KMPX20080425_105710.gz KMPX20080607_121544.gz 

KMPX20080417_193156.gz KMPX20080425_110124.gz KMPX20080607_121958.gz 

KMPX20080417_193742.gz KMPX20080425_110539.gz KMPX20080607_122415.gz 

KMPX20080417_194329.gz KMPX20080425_110954.gz KMPX20080607_122829.gz 

KMPX20080417_194914.gz KMPX20080425_111408.gz KMPX20080607_123244.gz 

KMPX20080417_195500.gz KMPX20080425_111823.gz KMPX20080607_123658.gz 

KMPX20080417_200045.gz KMPX20080425_112238.gz KMPX20080607_124114.gz 

KMPX20080417_200629.gz KMPX20080425_112652.gz KMPX20080607_124529.gz 

KMPX20080417_201214.gz KMPX20080425_113107.gz KMPX20080607_124945.gz 

KMPX20080417_201800.gz KMPX20080425_113521.gz KMPX20080607_125359.gz 

KMPX20080417_202345.gz KMPX20080425_113936.gz KMPX20080607_125814.gz 

KMPX20080417_202931.gz KMPX20080425_114351.gz KMPX20080607_130231.gz 

KMPX20080417_203516.gz KMPX20080425_114805.gz KMPX20080607_130645.gz 

KMPX20080417_204100.gz KMPX20080425_115220.gz KMPX20080607_131100.gz 

KMPX20080417_204644.gz KMPX20080425_115636.gz KMPX20080607_131514.gz 

KMPX20080417_205229.gz KMPX20080425_120050.gz KMPX20080607_131929.gz 
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KMPX20080417_205813.gz KMPX20080425_120505.gz KMPX20080607_132344.gz 

KMPX20080417_210358.gz KMPX20080425_120920.gz KMPX20080607_132758.gz 

KMPX20080417_210942.gz KMPX20080425_121334.gz KMPX20080607_133213.gz 

KMPX20080417_211528.gz KMPX20080425_121749.gz KMPX20080607_133627.gz 

KMPX20080417_212112.gz KMPX20080425_122205.gz KMPX20080607_134042.gz 

KMPX20080417_212658.gz KMPX20080425_122621.gz KMPX20080607_134457.gz 

KMPX20080417_213244.gz KMPX20080425_123036.gz KMPX20080607_134911.gz 

KMPX20080417_213828.gz KMPX20080425_123450.gz KMPX20080607_135325.gz 

KMPX20080417_214412.gz KMPX20080425_123905.gz KMPX20080607_135740.gz 

KMPX20080417_214956.gz KMPX20080425_124319.gz KMPX20080607_140154.gz 

KMPX20080417_215541.gz KMPX20080425_124734.gz KMPX20080607_140610.gz 

KMPX20080417_220125.gz KMPX20080425_125149.gz KMPX20080607_141024.gz 

KMPX20080417_220711.gz KMPX20080425_125604.gz KMPX20080607_141440.gz 

KMPX20080417_221256.gz KMPX20080425_130020.gz KMPX20080607_141854.gz 

KMPX20080417_221840.gz KMPX20080425_130436.gz KMPX20080607_142311.gz 

KMPX20080417_222424.gz KMPX20080425_130851.gz KMPX20080607_142726.gz 

KMPX20080417_223009.gz KMPX20080425_131305.gz KMPX20080607_143141.gz 

KMPX20080417_223649.gz KMPX20080425_131720.gz KMPX20080607_143555.gz 

KMPX20080417_224233.gz KMPX20080425_132135.gz KMPX20080607_144010.gz 

KMPX20080417_224818.gz KMPX20080425_132550.gz KMPX20080607_144425.gz 

KMPX20080417_225402.gz KMPX20080425_133004.gz KMPX20080607_144838.gz 

KMPX20080417_225949.gz KMPX20080425_133419.gz KMPX20080607_145253.gz 

KMPX20080417_230536.gz KMPX20080425_133833.gz KMPX20080607_145707.gz 

KMPX20080417_231120.gz KMPX20080425_134248.gz KMPX20080607_150122.gz 

KMPX20080417_231705.gz KMPX20080425_134703.gz KMPX20080607_150536.gz 

KMPX20080417_232249.gz KMPX20080425_135118.gz KMPX20080607_150950.gz 

KMPX20080417_232833.gz KMPX20080425_135532.gz KMPX20080607_151405.gz 

KMPX20080417_233418.gz KMPX20080425_135947.gz KMPX20080607_151821.gz 

KMPX20080417_234002.gz KMPX20080425_140402.gz KMPX20080607_152235.gz 

KMPX20080417_234549.gz KMPX20080425_140816.gz KMPX20080607_152649.gz 

KMPX20080417_235133.gz KMPX20080425_141231.gz KMPX20080607_153104.gz 

KMPX20080417_235719.gz KMPX20080425_141646.gz KMPX20080607_153519.gz 

KMPX20080418_000306.gz KMPX20080425_142100.gz KMPX20080607_153933.gz 

KMPX20080418_000851.gz KMPX20080425_142515.gz KMPX20080607_154349.gz 

KMPX20080418_001437.gz KMPX20080425_142929.gz KMPX20080607_154803.gz 

KMPX20080418_002023.gz KMPX20080425_143344.gz KMPX20080607_155219.gz 

KMPX20080418_002607.gz KMPX20080425_143759.gz KMPX20080607_155635.gz 

KMPX20080418_003152.gz KMPX20080425_144213.gz KMPX20080607_160049.gz 

KMPX20080418_003736.gz KMPX20080425_144629.gz KMPX20080607_160504.gz 

KMPX20080418_004323.gz KMPX20080425_145043.gz KMPX20080607_160920.gz 

KMPX20080418_004907.gz KMPX20080425_145458.gz KMPX20080607_161336.gz 

KMPX20080418_005454.gz KMPX20080425_145913.gz KMPX20080607_161750.gz 

KMPX20080418_010038.gz KMPX20080425_150327.gz KMPX20080607_162205.gz 

KMPX20080418_010626.gz KMPX20080425_150742.gz KMPX20080607_162619.gz 

KMPX20080418_011210.gz KMPX20080425_151157.gz KMPX20080607_163034.gz 

KMPX20080418_011756.gz KMPX20080425_151611.gz KMPX20080607_163448.gz 

KMPX20080418_012341.gz KMPX20080425_152027.gz KMPX20080607_163902.gz 

KMPX20080418_012925.gz KMPX20080425_152441.gz KMPX20080607_164317.gz 
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KMPX20080418_013512.gz KMPX20080425_152856.gz KMPX20080607_164732.gz 

KMPX20080418_014055.gz KMPX20080425_153311.gz KMPX20080607_165147.gz 

KMPX20080418_014641.gz KMPX20080425_153726.gz KMPX20080607_165601.gz 

KMPX20080418_015225.gz KMPX20080425_154140.gz KMPX20080607_170015.gz 

KMPX20080418_015809.gz KMPX20080425_154555.gz KMPX20080607_170429.gz 

KMPX20080418_020354.gz KMPX20080425_155009.gz KMPX20080607_170843.gz 

KMPX20080418_020939.gz KMPX20080425_155424.gz KMPX20080607_171353.gz 

KMPX20080418_021525.gz KMPX20080425_155839.gz KMPX20080607_171807.gz 

KMPX20080418_022110.gz KMPX20080425_160254.gz KMPX20080607_172223.gz 

KMPX20080418_022654.gz KMPX20080425_160709.gz KMPX20080607_172638.gz 

KMPX20080418_023238.gz KMPX20080425_161123.gz KMPX20080607_173052.gz 

KMPX20080418_023824.gz KMPX20080425_161538.gz KMPX20080607_173506.gz 

KMPX20080418_024408.gz KMPX20080425_161953.gz KMPX20080607_173920.gz 

KMPX20080418_024953.gz KMPX20080425_162410.gz KMPX20080607_174334.gz 

KMPX20080418_025537.gz KMPX20080425_162824.gz KMPX20080607_174748.gz 

KMPX20080418_030122.gz KMPX20080425_163239.gz KMPX20080607_175202.gz 

KMPX20080418_030706.gz KMPX20080425_163654.gz KMPX20080607_175617.gz 

KMPX20080418_031252.gz KMPX20080425_164109.gz KMPX20080607_180030.gz 

KMPX20080418_031837.gz KMPX20080425_164523.gz KMPX20080607_180446.gz 

KMPX20080418_032421.gz KMPX20080425_164938.gz KMPX20080607_180900.gz 

KMPX20080418_033005.gz KMPX20080425_165353.gz KMPX20080607_181314.gz 

KMPX20080418_033551.gz KMPX20080425_165807.gz KMPX20080607_181729.gz 

KMPX20080418_034135.gz KMPX20080425_170223.gz KMPX20080607_182144.gz 

KMPX20080418_034722.gz KMPX20080425_170637.gz KMPX20080607_182557.gz 

KMPX20080418_035306.gz KMPX20080425_171052.gz KMPX20080607_183012.gz 

KMPX20080418_035853.gz KMPX20080425_171507.gz KMPX20080607_183425.gz 

KMPX20080418_040437.gz KMPX20080425_171922.gz KMPX20080607_183841.gz 

KMPX20080418_041022.gz KMPX20080425_172337.gz KMPX20080607_184255.gz 

KMPX20080418_041606.gz KMPX20080425_172752.gz KMPX20080607_184708.gz 

KMPX20080418_042152.gz KMPX20080425_173207.gz KMPX20080607_185122.gz 

KMPX20080418_042737.gz KMPX20080425_173622.gz KMPX20080607_185537.gz 

KMPX20080418_043321.gz KMPX20080425_174037.gz KMPX20080607_185950.gz 

KMPX20080418_043906.gz KMPX20080425_174451.gz KMPX20080607_190404.gz 

KMPX20080418_044450.gz KMPX20080425_174906.gz KMPX20080607_190818.gz 

KMPX20080418_045037.gz KMPX20080425_175321.gz KMPX20080607_191232.gz 

KMPX20080418_045623.gz KMPX20080425_175737.gz KMPX20080607_191648.gz 

KMPX20080418_050210.gz KMPX20080425_180152.gz KMPX20080607_192102.gz 

KMPX20080418_050754.gz KMPX20080425_180610.gz KMPX20080607_192516.gz 

KMPX20080418_051339.gz KMPX20080425_181025.gz KMPX20080607_192930.gz 

KMPX20080418_051925.gz KMPX20080425_181439.gz KMPX20080607_193343.gz 

KMPX20080418_052510.gz KMPX20080425_181854.gz KMPX20080607_193759.gz 

KMPX20080418_053054.gz KMPX20080425_182408.gz KMPX20080607_194213.gz 

KMPX20080418_053639.gz KMPX20080425_182823.gz KMPX20080607_194626.gz 

KMPX20080418_054225.gz KMPX20080425_183238.gz KMPX20080607_195041.gz 

KMPX20080418_054811.gz KMPX20080425_183653.gz KMPX20080607_195454.gz 

KMPX20080418_055356.gz KMPX20080425_184108.gz KMPX20080607_195909.gz 

KMPX20080418_055938.gz KMPX20080425_184522.gz KMPX20080607_200322.gz 

KMPX20080418_060525.gz KMPX20080425_184937.gz KMPX20080607_200736.gz 
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KMPX20080418_061111.gz KMPX20080425_185352.gz KMPX20080607_201152.gz 

KMPX20080418_061658.gz KMPX20080425_185807.gz KMPX20080607_201605.gz 

KMPX20080418_062242.gz KMPX20080425_190222.gz KMPX20080607_202019.gz 

KMPX20080418_062827.gz KMPX20080425_190638.gz KMPX20080607_202433.gz 

KMPX20080418_063411.gz KMPX20080425_191053.gz KMPX20080607_202847.gz 

KMPX20080418_064053.gz KMPX20080425_191509.gz KMPX20080607_203301.gz 

KMPX20080418_064637.gz KMPX20080425_191924.gz KMPX20080607_203715.gz 

KMPX20080418_065224.gz KMPX20080425_192339.gz KMPX20080607_204129.gz 

KMPX20080418_065811.gz KMPX20080425_192753.gz KMPX20080607_204544.gz 

KMPX20080418_070355.gz KMPX20080425_193208.gz KMPX20080607_204957.gz 

KMPX20080418_070941.gz KMPX20080425_193623.gz KMPX20080607_205411.gz 

KMPX20080418_071525.gz KMPX20080425_194038.gz KMPX20080607_205825.gz 

KMPX20080418_072110.gz KMPX20080425_194452.gz KMPX20080607_210239.gz 

KMPX20080418_072656.gz KMPX20080425_194907.gz KMPX20080607_210653.gz 

KMPX20080418_073242.gz KMPX20080425_195322.gz KMPX20080607_211107.gz 

KMPX20080418_073827.gz KMPX20080425_195737.gz KMPX20080607_211521.gz 

KMPX20080418_074411.gz KMPX20080425_200151.gz KMPX20080607_211934.gz 

KMPX20080418_074956.gz KMPX20080425_200606.gz KMPX20080607_212348.gz 

KMPX20080418_075542.gz KMPX20080425_201021.gz KMPX20080607_212800.gz 

KMPX20080418_080129.gz KMPX20080425_201435.gz KMPX20080607_213215.gz 

KMPX20080418_080713.gz KMPX20080425_201850.gz KMPX20080607_213629.gz 

KMPX20080418_081257.gz KMPX20080425_202305.gz KMPX20080607_214043.gz 

KMPX20080418_081841.gz KMPX20080425_202720.gz KMPX20080607_214457.gz 

KMPX20080418_082428.gz KMPX20080425_203135.gz KMPX20080607_214911.gz 

KMPX20080418_083015.gz KMPX20080425_203551.gz KMPX20080607_215327.gz 

KMPX20080418_083559.gz KMPX20080425_204006.gz KMPX20080607_215740.gz 

KMPX20080418_084144.gz KMPX20080425_204421.gz KMPX20080607_220154.gz 

KMPX20080418_084728.gz KMPX20080425_204835.gz KMPX20080607_220608.gz 

KMPX20080418_085314.gz KMPX20080425_205250.gz KMPX20080607_221021.gz 

KMPX20080418_085902.gz KMPX20080425_205704.gz KMPX20080607_221438.gz 

KMPX20080418_090447.gz KMPX20080425_210120.gz KMPX20080607_221853.gz 

KMPX20080418_091031.gz KMPX20080425_210534.gz KMPX20080607_222307.gz 

KMPX20080418_091616.gz KMPX20080425_210949.gz KMPX20080607_222723.gz 

KMPX20080418_092202.gz KMPX20080425_211404.gz KMPX20080607_223136.gz 

KMPX20080418_092747.gz KMPX20080425_211818.gz KMPX20080607_223550.gz 

KMPX20080418_093331.gz KMPX20080425_212233.gz KMPX20080607_224004.gz 

KMPX20080418_093915.gz KMPX20080425_212648.gz KMPX20080607_224418.gz 

KMPX20080418_094500.gz KMPX20080425_213103.gz KMPX20080607_224831.gz 

KMPX20080418_095044.gz KMPX20080425_213519.gz KMPX20080607_225245.gz 

KMPX20080418_095628.gz KMPX20080425_213934.gz KMPX20080607_225659.gz 

KMPX20080418_100215.gz KMPX20080425_214349.gz KMPX20080607_230113.gz 

KMPX20080418_100759.gz KMPX20080425_214804.gz KMPX20080607_230527.gz 

KMPX20080418_101345.gz KMPX20080425_215220.gz KMPX20080607_230940.gz 

KMPX20080418_101929.gz KMPX20080425_215635.gz KMPX20080607_231356.gz 

KMPX20080418_102514.gz KMPX20080425_220050.gz KMPX20080607_231811.gz 

KMPX20080418_103100.gz KMPX20080425_220504.gz KMPX20080607_232224.gz 

KMPX20080418_103645.gz KMPX20080425_220920.gz KMPX20080607_232639.gz 

KMPX20080418_104229.gz KMPX20080425_221335.gz KMPX20080607_233052.gz 
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KMPX20080418_104813.gz KMPX20080425_221750.gz KMPX20080607_233507.gz 

KMPX20080418_105358.gz KMPX20080425_222205.gz KMPX20080607_233923.gz 

KMPX20080418_105942.gz KMPX20080425_222620.gz KMPX20080607_234338.gz 

KMPX20080418_110527.gz KMPX20080425_223035.gz KMPX20080607_234752.gz 

KMPX20080418_111111.gz KMPX20080425_223450.gz KMPX20080607_235206.gz 

KMPX20080418_111655.gz KMPX20080425_223905.gz KMPX20080607_235619.gz 

KMPX20080418_112239.gz KMPX20080425_224319.gz KMPX20080608_000035.gz 

KMPX20080418_112824.gz KMPX20080425_224734.gz KMPX20080608_000449.gz 

KMPX20080418_113410.gz KMPX20080425_225150.gz KMPX20080608_000903.gz 

KMPX20080418_113954.gz KMPX20080425_225604.gz KMPX20080608_001316.gz 

KMPX20080418_114539.gz KMPX20080425_230019.gz KMPX20080608_001730.gz 

KMPX20080418_115123.gz KMPX20080425_230434.gz KMPX20080608_002144.gz 

KMPX20080418_115708.gz KMPX20080425_230849.gz KMPX20080608_002557.gz 

KMPX20080418_120254.gz KMPX20080425_231303.gz KMPX20080608_003011.gz 

KMPX20080418_120839.gz KMPX20080425_231719.gz KMPX20080608_003425.gz 

KMPX20080418_121423.gz KMPX20080425_232134.gz KMPX20080608_003839.gz 

KMPX20080418_122010.gz KMPX20080425_232550.gz KMPX20080608_004253.gz 

KMPX20080418_122555.gz KMPX20080425_233006.gz KMPX20080608_004708.gz 

KMPX20080418_123139.gz KMPX20080425_233420.gz KMPX20080608_005123.gz 

KMPX20080418_123723.gz KMPX20080425_233835.gz KMPX20080608_005539.gz 

KMPX20080418_124307.gz KMPX20080425_234250.gz KMPX20080608_005954.gz 

KMPX20080418_124851.gz KMPX20080425_234705.gz KMPX20080608_010408.gz 

KMPX20080418_125435.gz KMPX20080425_235120.gz KMPX20080608_010821.gz 

KMPX20080418_130020.gz KMPX20080425_235535.gz KMPX20080608_011236.gz 

KMPX20080418_130604.gz KMPX20080425_235949.gz KMPX20080608_011745.gz 

KMPX20080418_131149.gz KMPX20080426_000405.gz KMPX20080608_012159.gz 

KMPX20080418_131733.gz KMPX20080426_000819.gz KMPX20080608_012612.gz 

KMPX20080418_132320.gz KMPX20080426_001233.gz KMPX20080608_013028.gz 

KMPX20080418_132904.gz KMPX20080426_001648.gz KMPX20080608_013441.gz 

KMPX20080418_133451.gz KMPX20080426_002103.gz KMPX20080608_013857.gz 

KMPX20080418_134035.gz KMPX20080426_002518.gz KMPX20080608_014310.gz 

KMPX20080418_134620.gz KMPX20080426_002933.gz KMPX20080608_014724.gz 

KMPX20080418_135204.gz KMPX20080426_003348.gz KMPX20080608_015138.gz 

KMPX20080418_135749.gz KMPX20080426_003802.gz KMPX20080608_015552.gz 

KMPX20080418_140335.gz KMPX20080426_004217.gz KMPX20080608_020008.gz 

KMPX20080418_140922.gz KMPX20080426_004632.gz KMPX20080608_020421.gz 

KMPX20080418_141505.gz KMPX20080426_005048.gz KMPX20080608_020835.gz 

KMPX20080418_142050.gz KMPX20080426_005503.gz KMPX20080608_021249.gz 

KMPX20080418_142637.gz KMPX20080426_005918.gz KMPX20080608_021703.gz 

KMPX20080418_143221.gz KMPX20080426_010333.gz KMPX20080608_022118.gz 

KMPX20080418_143805.gz KMPX20080426_010747.gz KMPX20080608_022532.gz 

KMPX20080418_144449.gz KMPX20080426_011202.gz KMPX20080608_022945.gz 

KMPX20080418_145032.gz KMPX20080426_011619.gz KMPX20080608_023402.gz 

KMPX20080418_145617.gz KMPX20080426_012034.gz KMPX20080608_023817.gz 

KMPX20080418_150201.gz KMPX20080426_012447.gz KMPX20080608_024232.gz 

KMPX20080418_150746.gz KMPX20080426_013027.gz KMPX20080608_024646.gz 

KMPX20080418_151331.gz KMPX20080426_013603.gz KMPX20080608_025100.gz 

KMPX20080418_151916.gz KMPX20080426_014139.gz KMPX20080608_025515.gz 
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KMPX20080418_152503.gz KMPX20080426_014716.gz KMPX20080608_025929.gz 

KMPX20080418_153048.gz KMPX20080426_015252.gz KMPX20080608_030345.gz 

KMPX20080418_153634.gz KMPX20080426_015829.gz KMPX20080608_030759.gz 

KMPX20080418_154219.gz KMPX20080426_020406.gz KMPX20080608_031212.gz 

KMPX20080418_154805.gz KMPX20080426_020943.gz KMPX20080608_031626.gz 

KMPX20080418_155350.gz KMPX20080426_021522.gz KMPX20080608_032042.gz 

KMPX20080418_155934.gz KMPX20080426_022058.gz KMPX20080608_032456.gz 

KMPX20080418_160520.gz KMPX20080426_022732.gz KMPX20080608_032909.gz 

KMPX20080418_161104.gz KMPX20080426_023310.gz KMPX20080608_033323.gz 

KMPX20080418_161649.gz KMPX20080426_023847.gz KMPX20080608_033737.gz 

KMPX20080418_162235.gz KMPX20080426_024423.gz KMPX20080608_034153.gz 

KMPX20080418_162820.gz KMPX20080426_024959.gz KMPX20080608_034607.gz 

KMPX20080418_163404.gz KMPX20080426_025538.gz KMPX20080608_035021.gz 

KMPX20080418_163950.gz KMPX20080426_030115.gz KMPX20080608_035434.gz 

KMPX20080418_164537.gz KMPX20080426_030651.gz KMPX20080608_035850.gz 

KMPX20080418_165124.gz KMPX20080426_031230.gz KMPX20080608_040305.gz 

KMPX20080418_165708.gz KMPX20080501_145352.gz KMPX20080608_040719.gz 

KMPX20080418_170252.gz KMPX20080501_150331.gz KMPX20080608_041135.gz 

KMPX20080418_170840.gz KMPX20080501_151309.gz KMPX20080608_041550.gz 

KMPX20080418_171426.gz KMPX20080501_152248.gz KMPX20080608_042003.gz 

KMPX20080418_172011.gz KMPX20080501_153226.gz KMPX20080608_042418.gz 

KMPX20080418_172558.gz KMPX20080501_154204.gz KMPX20080608_042831.gz 

KMPX20080418_173145.gz KMPX20080501_155143.gz KMPX20080608_043246.gz 

KMPX20080418_173731.gz KMPX20080501_160121.gz KMPX20080608_043701.gz 

KMPX20080418_174315.gz KMPX20080501_161059.gz KMPX20080608_044115.gz 

KMPX20080418_174900.gz KMPX20080501_162037.gz KMPX20080608_044530.gz 

KMPX20080418_175445.gz KMPX20080501_163016.gz KMPX20080608_044943.gz 

KMPX20080418_180029.gz KMPX20080501_163954.gz KMPX20080608_045357.gz 

KMPX20080418_180616.gz KMPX20080501_164932.gz KMPX20080608_045811.gz 

KMPX20080418_181200.gz KMPX20080501_165911.gz KMPX20080608_050225.gz 

KMPX20080418_181745.gz KMPX20080501_170850.gz KMPX20080608_050640.gz 

KMPX20080418_182329.gz KMPX20080501_171828.gz KMPX20080608_051054.gz 

KMPX20080418_182914.gz KMPX20080501_172806.gz KMPX20080608_051508.gz 

KMPX20080418_183458.gz KMPX20080501_173744.gz KMPX20080608_051922.gz 

KMPX20080418_184044.gz KMPX20080501_174723.gz KMPX20080608_052336.gz 

KMPX20080418_184629.gz KMPX20080501_175701.gz KMPX20080608_052749.gz 

KMPX20080418_185213.gz KMPX20080501_180640.gz KMPX20080608_053203.gz 

KMPX20080418_185758.gz KMPX20080501_181618.gz KMPX20080608_053617.gz 

KMPX20080418_190342.gz KMPX20080501_182556.gz KMPX20080608_054031.gz 

KMPX20080418_190927.gz KMPX20080501_183534.gz KMPX20080608_054445.gz 

KMPX20080418_191511.gz KMPX20080501_184513.gz KMPX20080608_054859.gz 

KMPX20080418_192057.gz KMPX20080501_185451.gz KMPX20080608_055313.gz 

KMPX20080418_192644.gz KMPX20080501_190429.gz KMPX20080608_055727.gz 

KMPX20080418_193231.gz KMPX20080501_191500.gz KMPX20080608_060140.gz 

KMPX20080418_193815.gz KMPX20080501_192438.gz KMPX20080608_060556.gz 

KMPX20080418_194359.gz KMPX20080501_193417.gz KMPX20080608_061010.gz 

KMPX20080418_194944.gz KMPX20080501_194354.gz KMPX20080608_061423.gz 

KMPX20080418_195528.gz KMPX20080501_195332.gz KMPX20080608_061837.gz 
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KMPX20080418_200113.gz KMPX20080501_200310.gz KMPX20080608_062251.gz 

KMPX20080418_200659.gz KMPX20080501_201248.gz KMPX20080608_062709.gz 

KMPX20080418_201244.gz KMPX20080501_202226.gz KMPX20080608_063123.gz 

KMPX20080418_201829.gz KMPX20080501_203204.gz KMPX20080608_063537.gz 

KMPX20080418_202413.gz KMPX20080501_204142.gz KMPX20080608_063951.gz 

KMPX20080418_202958.gz KMPX20080501_205120.gz KMPX20080608_064405.gz 

KMPX20080418_203542.gz KMPX20080501_210059.gz KMPX20080608_064818.gz 

KMPX20080418_204127.gz KMPX20080501_211036.gz KMPX20080608_065235.gz 

KMPX20080418_204711.gz KMPX20080501_212014.gz KMPX20080608_065648.gz 

KMPX20080418_205256.gz KMPX20080501_212952.gz KMPX20080608_070103.gz 

KMPX20080418_205842.gz KMPX20080501_213930.gz KMPX20080608_070516.gz 

KMPX20080418_210427.gz KMPX20080501_214908.gz KMPX20080608_070930.gz 

KMPX20080418_211011.gz KMPX20080501_215845.gz KMPX20080608_071344.gz 

KMPX20080418_211556.gz KMPX20080501_220823.gz KMPX20080608_071757.gz 

KMPX20080418_212143.gz KMPX20080501_221318.gz KMPX20080608_072212.gz 

KMPX20080418_212726.gz KMPX20080501_221816.gz KMPX20080608_072626.gz 

KMPX20080418_213313.gz KMPX20080501_222314.gz KMPX20080608_073039.gz 

KMPX20080418_213857.gz KMPX20080501_222809.gz KMPX20080608_073455.gz 

KMPX20080418_214441.gz KMPX20080501_223307.gz KMPX20080608_073908.gz 

KMPX20080418_215026.gz KMPX20080501_223802.gz KMPX20080608_074322.gz 

KMPX20080418_215610.gz KMPX20080501_224259.gz KMPX20080608_074736.gz 

KMPX20080418_220154.gz KMPX20080501_224754.gz KMPX20080608_075151.gz 

KMPX20080418_220739.gz KMPX20080501_225250.gz KMPX20080608_075604.gz 

KMPX20080418_221325.gz KMPX20080501_225746.gz KMPX20080608_080020.gz 

KMPX20080418_221912.gz KMPX20080501_230243.gz KMPX20080608_080436.gz 

KMPX20080418_222456.gz KMPX20080501_230739.gz KMPX20080608_080851.gz 

KMPX20080418_223043.gz KMPX20080501_231234.gz KMPX20080608_081306.gz 

KMPX20080418_223627.gz KMPX20080501_231729.gz KMPX20080608_081721.gz 

KMPX20080418_224214.gz KMPX20080501_232225.gz KMPX20080608_082134.gz 

KMPX20080418_224854.gz KMPX20080501_232720.gz KMPX20080608_082548.gz 

KMPX20080418_225438.gz KMPX20080501_233213.gz KMPX20080608_083003.gz 

KMPX20080418_230023.gz KMPX20080501_233709.gz KMPX20080608_083417.gz 

KMPX20080418_230607.gz KMPX20080501_234205.gz KMPX20080608_083833.gz 

KMPX20080418_231152.gz KMPX20080501_234700.gz KMPX20080608_084248.gz 

KMPX20080418_231738.gz KMPX20080501_235156.gz KMPX20080608_084702.gz 

KMPX20080418_232325.gz KMPX20080501_235650.gz KMPX20080608_085116.gz 

KMPX20080418_232909.gz KMPX20080502_000146.gz KMPX20080608_085530.gz 

KMPX20080418_233453.gz KMPX20080502_000642.gz KMPX20080608_085944.gz 

KMPX20080418_234038.gz KMPX20080502_001136.gz KMPX20080608_090358.gz 

KMPX20080418_234624.gz KMPX20080502_001631.gz KMPX20080608_090812.gz 

KMPX20080418_235211.gz KMPX20080502_002127.gz KMPX20080608_091227.gz 

KMPX20080418_235757.gz KMPX20080502_002622.gz KMPX20080608_091642.gz 

KMPX20080419_031330.gz KMPX20080502_003117.gz KMPX20080608_092152.gz 

KMPX20080419_031915.gz KMPX20080502_003613.gz KMPX20080608_092606.gz 

KMPX20080419_032458.gz KMPX20080502_004106.gz KMPX20080608_093020.gz 

KMPX20080419_033043.gz KMPX20080502_004602.gz KMPX20080608_093436.gz 

KMPX20080419_033627.gz KMPX20080502_005057.gz KMPX20080608_093850.gz 

KMPX20080419_034212.gz KMPX20080502_005551.gz KMPX20080608_094304.gz 
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KMPX20080419_034757.gz KMPX20080502_010046.gz KMPX20080608_094718.gz 

KMPX20080419_035344.gz KMPX20080502_010542.gz KMPX20080608_095132.gz 

KMPX20080419_035928.gz KMPX20080502_011037.gz KMPX20080608_095546.gz 

KMPX20080419_040512.gz KMPX20080502_012012.gz KMPX20080608_100000.gz 

KMPX20080419_041056.gz KMPX20080502_012427.gz KMPX20080608_100414.gz 

KMPX20080419_041640.gz KMPX20080502_012841.gz KMPX20080608_100828.gz 

KMPX20080419_042225.gz KMPX20080502_013256.gz KMPX20080608_101244.gz 

KMPX20080419_042812.gz KMPX20080502_013710.gz KMPX20080608_101658.gz 

KMPX20080419_043356.gz KMPX20080502_014125.gz KMPX20080608_102113.gz 

KMPX20080419_043943.gz KMPX20080502_014540.gz KMPX20080608_102526.gz 

KMPX20080419_044529.gz KMPX20080502_014954.gz KMPX20080608_102940.gz 

KMPX20080419_045114.gz KMPX20080502_015409.gz KMPX20080608_103356.gz 

KMPX20080419_045659.gz KMPX20080502_015825.gz KMPX20080608_103810.gz 

KMPX20080419_050242.gz KMPX20080502_020240.gz KMPX20080608_104225.gz 

KMPX20080419_050827.gz KMPX20080502_020654.gz KMPX20080608_104639.gz 

KMPX20080419_051411.gz KMPX20080502_021109.gz KMPX20080608_105055.gz 

KMPX20080419_051955.gz KMPX20080502_021524.gz KMPX20080608_105510.gz 

KMPX20080419_052540.gz KMPX20080502_021939.gz KMPX20080608_105925.gz 

KMPX20080419_053124.gz KMPX20080502_022354.gz KMPX20080608_110339.gz 

KMPX20080419_053709.gz KMPX20080502_022808.gz KMPX20080608_110753.gz 

KMPX20080419_054253.gz KMPX20080502_023222.gz KMPX20080608_111207.gz 

KMPX20080419_054839.gz KMPX20080502_023637.gz KMPX20080608_111623.gz 

KMPX20080419_055423.gz KMPX20080502_024052.gz KMPX20080608_112038.gz 

KMPX20080419_060008.gz KMPX20080502_024506.gz KMPX20080608_112453.gz 

KMPX20080419_060552.gz KMPX20080502_024924.gz KMPX20080608_112908.gz 

KMPX20080419_061138.gz KMPX20080502_025339.gz KMPX20080608_113321.gz 

KMPX20080419_061723.gz KMPX20080502_025754.gz KMPX20080608_113736.gz 

KMPX20080419_062309.gz KMPX20080502_030208.gz KMPX20080608_114150.gz 

KMPX20080419_062854.gz KMPX20080502_030623.gz KMPX20080608_114604.gz 

KMPX20080419_063441.gz KMPX20080502_031037.gz KMPX20080608_115020.gz 

KMPX20080419_064026.gz KMPX20080502_031549.gz KMPX20080608_115434.gz 

KMPX20080419_064610.gz KMPX20080502_032004.gz KMPX20080608_115848.gz 

KMPX20080419_065250.gz KMPX20080502_032418.gz KMPX20080608_120302.gz 

KMPX20080419_065836.gz KMPX20080502_032833.gz KMPX20080608_120716.gz 

KMPX20080419_070421.gz KMPX20080502_033247.gz KMPX20080608_121130.gz 

KMPX20080419_071006.gz KMPX20080502_033702.gz KMPX20080608_121546.gz 

KMPX20080419_071550.gz KMPX20080502_034116.gz KMPX20080608_122000.gz 

KMPX20080419_072139.gz KMPX20080502_034531.gz KMPX20080608_122414.gz 

KMPX20080419_072724.gz KMPX20080502_034947.gz KMPX20080608_122828.gz 

KMPX20080419_073308.gz KMPX20080502_035404.gz KMPX20080608_123242.gz 

KMPX20080419_073852.gz KMPX20080502_035818.gz KMPX20080608_123657.gz 

KMPX20080419_074437.gz KMPX20080502_040234.gz KMPX20080608_124111.gz 

KMPX20080419_075021.gz KMPX20080502_040649.gz KMPX20080608_124525.gz 

KMPX20080419_075606.gz KMPX20080502_041103.gz KMPX20080608_124939.gz 

KMPX20080419_080150.gz KMPX20080502_041517.gz KMPX20080608_125353.gz 

KMPX20080419_080734.gz KMPX20080502_041932.gz KMPX20080608_125810.gz 

KMPX20080419_081318.gz KMPX20080502_042348.gz KMPX20080608_130224.gz 

KMPX20080419_081905.gz KMPX20080502_042803.gz KMPX20080608_130640.gz 
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KMPX20080419_082452.gz KMPX20080502_043217.gz KMPX20080608_131054.gz 

KMPX20080419_083036.gz KMPX20080502_043631.gz KMPX20080608_131510.gz 

KMPX20080419_083620.gz KMPX20080502_044047.gz KMPX20080608_131925.gz 

KMPX20080419_084205.gz KMPX20080502_044502.gz KMPX20080608_132340.gz 

KMPX20080419_084751.gz KMPX20080502_044916.gz KMPX20080608_132754.gz 

KMPX20080419_085336.gz KMPX20080502_045333.gz KMPX20080608_133210.gz 

KMPX20080419_085922.gz KMPX20080502_045747.gz KMPX20080608_133625.gz 

KMPX20080419_090507.gz KMPX20080502_050201.gz KMPX20080608_134039.gz 

KMPX20080419_091053.gz KMPX20080502_050618.gz KMPX20080608_134455.gz 

KMPX20080419_091640.gz KMPX20080502_051114.gz KMPX20080608_134909.gz 

KMPX20080419_092225.gz KMPX20080502_051608.gz KMPX20080608_135325.gz 

KMPX20080419_092810.gz KMPX20080502_052104.gz KMPX20080608_135742.gz 

KMPX20080419_093354.gz KMPX20080502_052559.gz KMPX20080608_140156.gz 

KMPX20080419_093940.gz KMPX20080502_053055.gz KMPX20080608_140610.gz 

KMPX20080419_094525.gz KMPX20080502_053552.gz KMPX20080608_141024.gz 

KMPX20080419_095109.gz KMPX20080502_054046.gz KMPX20080608_141438.gz 

KMPX20080419_095653.gz KMPX20080502_054543.gz KMPX20080608_141852.gz 

KMPX20080419_100238.gz KMPX20080502_055036.gz KMPX20080608_142307.gz 

KMPX20080419_100822.gz KMPX20080502_055528.gz KMPX20080608_142721.gz 

KMPX20080419_101408.gz KMPX20080502_060024.gz KMPX20080608_143135.gz 

KMPX20080419_101954.gz KMPX20080502_060521.gz KMPX20080608_143549.gz 

KMPX20080419_102539.gz KMPX20080502_061016.gz KMPX20080608_144004.gz 

KMPX20080419_103123.gz KMPX20080502_061511.gz KMPX20080608_144419.gz 

KMPX20080419_103707.gz KMPX20080502_062006.gz KMPX20080608_144834.gz 

KMPX20080419_104252.gz KMPX20080502_062501.gz KMPX20080608_145248.gz 

KMPX20080419_104838.gz KMPX20080502_062956.gz KMPX20080608_145703.gz 

KMPX20080419_105422.gz KMPX20080502_063451.gz KMPX20080608_150117.gz 

KMPX20080419_110009.gz KMPX20080502_063946.gz KMPX20080608_150531.gz 

KMPX20080419_110554.gz KMPX20080502_064441.gz KMPX20080608_150947.gz 

KMPX20080419_111138.gz KMPX20080502_064936.gz KMPX20080608_151401.gz 

KMPX20080419_111722.gz KMPX20080502_065432.gz KMPX20080608_151816.gz 

KMPX20080419_112307.gz KMPX20080502_065925.gz KMPX20080608_152230.gz 

KMPX20080419_112851.gz KMPX20080502_070420.gz KMPX20080608_152645.gz 

KMPX20080419_113435.gz KMPX20080502_070915.gz KMPX20080608_153059.gz 

KMPX20080419_114019.gz KMPX20080502_071412.gz KMPX20080608_153644.gz 

KMPX20080419_114606.gz KMPX20080502_071906.gz KMPX20080608_154228.gz 

KMPX20080419_115150.gz KMPX20080502_072400.gz KMPX20080608_154813.gz 

KMPX20080419_115737.gz KMPX20080502_072855.gz KMPX20080608_155357.gz 

KMPX20080419_120323.gz KMPX20080502_073350.gz KMPX20080608_155941.gz 

KMPX20080419_120908.gz KMPX20080502_073845.gz KMPX20080608_160524.gz 

KMPX20080419_121454.gz KMPX20080502_074340.gz KMPX20080608_161109.gz 

KMPX20080419_122041.gz KMPX20080502_074834.gz KMPX20080608_161654.gz 

KMPX20080419_122627.gz KMPX20080502_075329.gz KMPX20080608_162239.gz 

KMPX20080419_123212.gz KMPX20080502_075824.gz KMPX20080608_162822.gz 

KMPX20080419_123756.gz KMPX20080502_080320.gz KMPX20080608_163408.gz 

KMPX20080419_124340.gz KMPX20080502_080817.gz KMPX20080608_163953.gz 

KMPX20080419_124927.gz KMPX20080502_081311.gz KMPX20080608_164539.gz 

KMPX20080419_125511.gz KMPX20080502_081807.gz KMPX20080608_165124.gz 
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KMPX20080419_130056.gz KMPX20080502_082302.gz KMPX20080608_165709.gz 

KMPX20080419_130640.gz KMPX20080502_082756.gz KMPX20080608_170255.gz 

KMPX20080419_131227.gz KMPX20080502_083251.gz KMPX20080608_170841.gz 

KMPX20080419_131811.gz KMPX20080502_083744.gz KMPX20080608_171424.gz 

KMPX20080419_132356.gz KMPX20080502_084238.gz KMPX20080608_172010.gz 

KMPX20080419_132940.gz KMPX20080502_084732.gz KMPX20080608_172649.gz 

KMPX20080419_133527.gz KMPX20080502_085227.gz KMPX20080608_173238.gz 

KMPX20080419_134113.gz KMPX20080502_085722.gz KMPX20080608_173823.gz 

KMPX20080419_134700.gz KMPX20080502_090217.gz KMPX20080608_174407.gz 

KMPX20080419_135244.gz KMPX20080502_090712.gz KMPX20080608_174951.gz 

KMPX20080419_135828.gz KMPX20080502_091208.gz KMPX20080608_175535.gz 

KMPX20080419_140412.gz KMPX20080502_091703.gz KMPX20080608_180119.gz 

KMPX20080419_140957.gz KMPX20080502_092158.gz KMPX20080608_180703.gz 

KMPX20080419_141545.gz KMPX20080502_092654.gz KMPX20080608_181248.gz 

KMPX20080419_142132.gz KMPX20080502_093148.gz KMPX20080608_181832.gz 

KMPX20080419_142716.gz KMPX20080502_093643.gz KMPX20080608_182418.gz 

KMPX20080419_143300.gz KMPX20080502_094138.gz KMPX20080608_183001.gz 

KMPX20080419_143844.gz KMPX20080502_094634.gz KMPX20080608_183547.gz 

KMPX20080419_144431.gz KMPX20080502_095129.gz KMPX20080608_184133.gz 

KMPX20080419_145015.gz KMPX20080502_095624.gz KMPX20080608_184717.gz 

KMPX20080419_145655.gz KMPX20080502_100120.gz KMPX20080608_185303.gz 

KMPX20080419_150238.gz KMPX20080502_100613.gz KMPX20080608_185848.gz 

KMPX20080419_150823.gz KMPX20080502_101108.gz KMPX20080608_190434.gz 

KMPX20080419_151407.gz KMPX20080502_101604.gz KMPX20080608_191018.gz 

KMPX20080419_151952.gz KMPX20080502_102059.gz KMPX20080608_191603.gz 

KMPX20080419_152536.gz KMPX20080502_102554.gz KMPX20080608_192147.gz 

KMPX20080419_153121.gz KMPX20080502_103051.gz KMPX20080608_192732.gz 

KMPX20080419_153705.gz KMPX20080502_103545.gz KMPX20080608_193316.gz 

KMPX20080419_154252.gz KMPX20080502_104040.gz KMPX20080608_193900.gz 

KMPX20080419_154836.gz KMPX20080502_104536.gz KMPX20080608_194446.gz 

KMPX20080419_155421.gz KMPX20080502_105031.gz KMPX20080608_195030.gz 

KMPX20080419_160005.gz KMPX20080502_105526.gz KMPX20080608_195614.gz 

KMPX20080419_160549.gz KMPX20080502_110022.gz KMPX20080608_200159.gz 

KMPX20080419_161133.gz KMPX20080502_110517.gz KMPX20080608_200743.gz 

KMPX20080419_161720.gz KMPX20080502_111010.gz KMPX20080608_201327.gz 

KMPX20080419_162304.gz KMPX20080502_111559.gz KMPX20080608_201911.gz 

KMPX20080419_162848.gz KMPX20080502_112054.gz KMPX20080608_202457.gz 

KMPX20080419_163433.gz KMPX20080502_112549.gz KMPX20080608_203040.gz 

KMPX20080419_164017.gz KMPX20080502_113045.gz KMPX20080608_203624.gz 

KMPX20080419_164601.gz KMPX20080502_113540.gz KMPX20080608_204210.gz 

KMPX20080419_165146.gz KMPX20080502_114037.gz KMPX20080608_204756.gz 

KMPX20080419_165730.gz KMPX20080502_114534.gz KMPX20080608_205341.gz 

KMPX20080419_170315.gz KMPX20080502_115027.gz KMPX20080608_205925.gz 

KMPX20080419_170859.gz KMPX20080502_115523.gz KMPX20080608_210508.gz 

KMPX20080419_171443.gz KMPX20080502_120018.gz KMPX20080608_211053.gz 

KMPX20080419_172028.gz KMPX20080502_120513.gz KMPX20080608_211638.gz 

KMPX20080419_172614.gz KMPX20080502_121007.gz KMPX20080608_212222.gz 

KMPX20080419_173201.gz KMPX20080502_121501.gz KMPX20080608_212807.gz 
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KMPX20080419_173745.gz KMPX20080502_121957.gz KMPX20080608_213351.gz 

KMPX20080419_174330.gz KMPX20080502_122452.gz KMPX20080608_213934.gz 

KMPX20080419_174914.gz KMPX20080502_122949.gz KMPX20080608_214520.gz 

KMPX20080419_175459.gz KMPX20080502_123444.gz KMPX20080608_215103.gz 

KMPX20080419_180045.gz KMPX20080502_123939.gz KMPX20080608_215647.gz 

KMPX20080419_180629.gz KMPX20080502_124436.gz KMPX20080608_220231.gz 

KMPX20080419_181214.gz KMPX20080502_124933.gz KMPX20080608_220814.gz 

KMPX20080419_181758.gz KMPX20080502_125428.gz KMPX20080608_221359.gz 

KMPX20080419_182341.gz KMPX20080502_125923.gz KMPX20080608_221942.gz 

KMPX20080419_182927.gz KMPX20080502_130419.gz KMPX20080608_222526.gz 

KMPX20080419_183511.gz KMPX20080502_130912.gz KMPX20080608_223113.gz 

KMPX20080419_184059.gz KMPX20080502_131407.gz KMPX20080608_223529.gz 

KMPX20080419_184643.gz KMPX20080502_131903.gz KMPX20080608_223944.gz 

KMPX20080419_185227.gz KMPX20080502_132358.gz KMPX20080608_224359.gz 

KMPX20080419_185812.gz KMPX20080502_132853.gz KMPX20080608_224814.gz 

KMPX20080419_190358.gz KMPX20080502_133349.gz KMPX20080608_225229.gz 

KMPX20080419_190943.gz KMPX20080502_133845.gz KMPX20080608_225645.gz 

KMPX20080419_191529.gz KMPX20080502_134341.gz KMPX20080608_230100.gz 

KMPX20080419_192114.gz KMPX20080502_134836.gz KMPX20080608_230515.gz 

KMPX20080419_192658.gz KMPX20080502_135331.gz KMPX20080608_230929.gz 

KMPX20080419_193245.gz KMPX20080502_135825.gz KMPX20080608_231344.gz 

KMPX20080419_193828.gz KMPX20080502_140320.gz KMPX20080608_231758.gz 

KMPX20080419_194413.gz KMPX20080502_140815.gz KMPX20080608_232212.gz 

KMPX20080419_194959.gz KMPX20080502_141312.gz KMPX20080608_232627.gz 

KMPX20080419_195544.gz KMPX20080502_141807.gz KMPX20080608_233042.gz 

KMPX20080419_200128.gz KMPX20080502_142303.gz KMPX20080608_233459.gz 

KMPX20080419_200713.gz KMPX20080502_142800.gz KMPX20080608_233914.gz 

KMPX20080419_201257.gz KMPX20080502_143254.gz KMPX20080608_234328.gz 

KMPX20080419_201842.gz KMPX20080502_143751.gz KMPX20080608_234742.gz 

KMPX20080419_202426.gz KMPX20080502_144246.gz KMPX20080608_235156.gz 

KMPX20080419_203010.gz KMPX20080502_144741.gz KMPX20080608_235610.gz 

KMPX20080419_203557.gz KMPX20080502_145237.gz KMPX20080609_000024.gz 

KMPX20080419_204141.gz KMPX20080502_145732.gz KMPX20080609_000438.gz 

KMPX20080419_204726.gz KMPX20080502_150227.gz KMPX20080609_000853.gz 

KMPX20080419_205310.gz KMPX20080502_150723.gz KMPX20080609_001308.gz 

KMPX20080419_205856.gz KMPX20080502_151218.gz KMPX20080609_001723.gz 

KMPX20080419_210440.gz KMPX20080502_151713.gz KMPX20080609_002137.gz 

KMPX20080419_211025.gz KMPX20080502_152209.gz KMPX20080609_002551.gz 

KMPX20080419_211609.gz KMPX20080502_152703.gz KMPX20080609_003004.gz 

KMPX20080419_212154.gz KMPX20080502_153200.gz KMPX20080609_003419.gz 

KMPX20080419_212738.gz KMPX20080502_153654.gz KMPX20080609_003833.gz 

KMPX20080419_213323.gz KMPX20080502_154149.gz KMPX20080609_004247.gz 

KMPX20080419_213909.gz KMPX20080502_154643.gz KMPX20080609_004702.gz 

KMPX20080419_214455.gz KMPX20080502_155138.gz KMPX20080609_005116.gz 

KMPX20080419_215039.gz KMPX20080502_155633.gz KMPX20080609_005532.gz 

KMPX20080419_215626.gz KMPX20080502_160129.gz KMPX20080609_005946.gz 

KMPX20080419_220210.gz KMPX20080502_160626.gz KMPX20080609_010400.gz 

KMPX20080419_220755.gz KMPX20080502_161123.gz KMPX20080609_010815.gz 
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KMPX20080419_221339.gz KMPX20080502_161618.gz KMPX20080609_011229.gz 

KMPX20080419_221923.gz KMPX20080502_162112.gz KMPX20080609_011643.gz 

KMPX20080419_222510.gz KMPX20080502_162609.gz KMPX20080609_012058.gz 

KMPX20080419_223057.gz KMPX20080502_163104.gz KMPX20080609_012515.gz 

KMPX20080419_223643.gz KMPX20080502_163559.gz KMPX20080609_013030.gz 

KMPX20080419_224228.gz KMPX20080502_164054.gz KMPX20080609_013445.gz 

KMPX20080419_225205.gz KMPX20080502_164548.gz KMPX20080609_013859.gz 

KMPX20080419_230238.gz KMPX20080502_165043.gz KMPX20080609_014313.gz 

KMPX20080419_231215.gz KMPX20080502_165538.gz KMPX20080609_014727.gz 

KMPX20080419_232153.gz KMPX20080502_170033.gz KMPX20080609_015141.gz 

KMPX20080419_233131.gz KMPX20080502_170527.gz KMPX20080609_015554.gz 

KMPX20080419_234109.gz KMPX20080502_171023.gz KMPX20080609_020009.gz 

KMPX20080419_235047.gz KMPX20080502_171518.gz KMPX20080609_020426.gz 

KMPX20080421_095743.gz KMPX20080502_172509.gz KMPX20080609_020840.gz 

KMPX20080421_100720.gz KMPX20080502_173004.gz KMPX20080609_021253.gz 

KMPX20080421_101658.gz KMPX20080502_173459.gz KMPX20080609_021707.gz 

KMPX20080421_102635.gz KMPX20080502_173954.gz KMPX20080609_022121.gz 

KMPX20080421_103613.gz KMPX20080502_174450.gz KMPX20080609_022535.gz 

KMPX20080421_104551.gz KMPX20080502_174944.gz KMPX20080609_022949.gz 

KMPX20080421_105528.gz KMPX20080502_175439.gz KMPX20080609_023404.gz 

KMPX20080421_110506.gz KMPX20080502_175934.gz KMPX20080609_023818.gz 

KMPX20080421_111444.gz KMPX20080502_180431.gz KMPX20080609_024235.gz 

KMPX20080421_112422.gz KMPX20080502_180926.gz KMPX20080609_024649.gz 

KMPX20080421_113400.gz KMPX20080502_181420.gz KMPX20080609_025104.gz 

KMPX20080421_114338.gz KMPX20080502_181835.gz KMPX20080609_025518.gz 

KMPX20080421_115315.gz KMPX20080502_182250.gz KMPX20080609_025931.gz 

KMPX20080421_120253.gz KMPX20080502_182705.gz KMPX20080609_030345.gz 

KMPX20080421_121231.gz KMPX20080502_183120.gz KMPX20080609_030759.gz 

KMPX20080421_122209.gz KMPX20080502_183535.gz KMPX20080609_031213.gz 

KMPX20080421_123147.gz KMPX20080502_183950.gz KMPX20080609_031627.gz 

KMPX20080421_124125.gz KMPX20080502_184404.gz KMPX20080609_032042.gz 

KMPX20080421_125102.gz KMPX20080502_184820.gz KMPX20080609_032456.gz 

KMPX20080421_130040.gz KMPX20080502_185234.gz KMPX20080609_032910.gz 

KMPX20080421_131018.gz KMPX20080502_185650.gz KMPX20080609_033324.gz 

KMPX20080421_131956.gz KMPX20080502_190104.gz KMPX20080609_033739.gz 

KMPX20080421_132933.gz KMPX20080502_190519.gz KMPX20080609_034153.gz 

KMPX20080421_133911.gz KMPX20080502_190934.gz KMPX20080609_034609.gz 

KMPX20080421_134848.gz KMPX20080502_191349.gz KMPX20080609_035022.gz 

KMPX20080421_135826.gz KMPX20080502_191859.gz KMPX20080609_035437.gz 

KMPX20080421_140803.gz KMPX20080502_192314.gz KMPX20080609_035850.gz 

KMPX20080421_141741.gz KMPX20080502_192728.gz KMPX20080609_040304.gz 

KMPX20080421_142717.gz KMPX20080502_193144.gz KMPX20080609_040718.gz 

KMPX20080421_143303.gz KMPX20080502_193558.gz KMPX20080609_041132.gz 

KMPX20080421_143847.gz KMPX20080502_194013.gz KMPX20080609_041546.gz 

KMPX20080421_144432.gz KMPX20080502_194428.gz KMPX20080609_042000.gz 

KMPX20080421_145018.gz KMPX20080502_194842.gz KMPX20080609_042414.gz 

KMPX20080421_145602.gz KMPX20080502_195258.gz KMPX20080609_042828.gz 

KMPX20080421_150147.gz KMPX20080502_195712.gz KMPX20080609_043244.gz 
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KMPX20080421_150732.gz KMPX20080502_200127.gz KMPX20080609_043658.gz 

KMPX20080421_151413.gz KMPX20080502_200542.gz KMPX20080609_044113.gz 

KMPX20080421_151959.gz KMPX20080502_200957.gz KMPX20080609_044526.gz 

KMPX20080421_152544.gz KMPX20080502_201413.gz KMPX20080609_044942.gz 

KMPX20080421_153127.gz KMPX20080502_201827.gz KMPX20080609_045356.gz 

KMPX20080421_153712.gz KMPX20080502_202242.gz KMPX20080609_045810.gz 

KMPX20080421_154300.gz KMPX20080502_202657.gz KMPX20080609_050225.gz 

KMPX20080421_154844.gz KMPX20080502_203112.gz KMPX20080609_050641.gz 

KMPX20080421_155429.gz KMPX20080502_203527.gz KMPX20080609_051055.gz 

KMPX20080421_160014.gz KMPX20080502_203941.gz KMPX20080609_051509.gz 

KMPX20080421_160558.gz KMPX20080502_204356.gz KMPX20080609_051922.gz 

KMPX20080421_161142.gz KMPX20080502_204811.gz KMPX20080609_052337.gz 

KMPX20080421_161726.gz KMPX20080502_205225.gz KMPX20080609_052751.gz 

KMPX20080421_162311.gz KMPX20080502_205640.gz KMPX20080609_053206.gz 

KMPX20080421_162854.gz KMPX20080502_210055.gz KMPX20080609_053620.gz 

KMPX20080421_163441.gz KMPX20080502_210510.gz KMPX20080609_054203.gz 

KMPX20080421_164024.gz KMPX20080502_210925.gz KMPX20080609_054745.gz 

KMPX20080421_164609.gz KMPX20080502_211340.gz KMPX20080609_055328.gz 

KMPX20080421_165152.gz KMPX20080502_211754.gz KMPX20080609_055911.gz 

KMPX20080421_165737.gz KMPX20080502_212211.gz KMPX20080609_060453.gz 

KMPX20080421_170321.gz KMPX20080502_212626.gz KMPX20080609_061038.gz 

KMPX20080421_170905.gz KMPX20080502_213040.gz KMPX20080609_061621.gz 

KMPX20080421_171449.gz KMPX20080502_213457.gz KMPX20080609_062204.gz 

KMPX20080421_172034.gz KMPX20080502_213912.gz KMPX20080609_062749.gz 

KMPX20080421_172619.gz KMPX20080502_214327.gz KMPX20080609_063332.gz 

KMPX20080421_173203.gz KMPX20080502_214741.gz KMPX20080609_063918.gz 

KMPX20080421_173749.gz KMPX20080502_215159.gz KMPX20080609_064501.gz 

KMPX20080421_174333.gz KMPX20080502_215614.gz KMPX20080609_065044.gz 

KMPX20080421_174917.gz KMPX20080502_220028.gz KMPX20080609_065627.gz 

KMPX20080421_175503.gz KMPX20080502_220444.gz KMPX20080609_070213.gz 

KMPX20080421_180047.gz KMPX20080502_220858.gz KMPX20080609_070756.gz 

KMPX20080609_071339.gz KMPX20080609_082438.gz KMPX20080609_095201.gz 

KMPX20080609_071923.gz KMPX20080609_083414.gz KMPX20080609_100139.gz 

KMPX20080609_072507.gz KMPX20080609_084351.gz KMPX20080609_101116.gz 

KMPX20080609_073052.gz KMPX20080609_085328.gz KMPX20080609_102053.gz 

KMPX20080609_073636.gz KMPX20080609_090304.gz KMPX20080609_103031.gz 

KMPX20080609_074613.gz KMPX20080609_091242.gz KMPX20080609_104008.gz 

KMPX20080609_075548.gz KMPX20080609_092219.gz KMPX20080609_104946.gz 

KMPX20080609_080525.gz KMPX20080609_093247.gz KMPX20080609_105923.gz 

KMPX20080609_081502.gz KMPX20080609_094224.gz KMPX20080609_110900.gz 
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