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Sun-Compass Orientation During Natal Dispersal in Blanding’s Turtles  

(Emydoidea blandingii)  

Meredith Anne Schlenner 

Master of Science in Biology  

Minnesota State University, Mankato  

Mankato, Minnesota 

Abstract 

Blanding’s turtle hatchlings emerge from their natal nests naïve to environmental stimuli 

and primarily sense visual cues on the horizon as a dispersal target. During a period of 

hours or days, hatchlings develop a compass mechanism that allows them to maintain a 

direction of travel, even when the target is not visible. We examined the dispersal 

directions of Blanding’s turtle hatchlings captured during dispersal by translocating them 

into a circular arena in a field of corn in order to measure their dispersal direction guided 

by a compass mechanism. To test for use of a sun compass, a magnetic compass, or both, 

we observed dispersal direction of hatchlings released at the center of the arena. 

Hatchlings were released in an initial trial, treated with normal (no-shift) or 6-hr clock-

shifted photoperiods for 4 to 10 days, and released into the arena for a second trial with 

magnets (or non-magnetic controls) adhered to their carapaces.  We predicted that clock-

shifting would reduce dispersal angle 90° and disruption of magneto-reception would 

disorient hatchlings. All four treatment groups dispersed directionally during first trials 

(Rayleigh’s Z-tests; all p < 0.001) and in second trials dispersal angles were unchanged in 

hatchlings with magnets (Watson’s U2; both p > 0.50); they were not using a geo-

magnetic compass.  Hatchlings that were not clock-shifted maintained their initial 

heading but clock-shifted hatchlings reduced dispersal angle a mean of 111°, not 
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significantly different than the experimental prediction of 90° (Rayleigh’s Z = 22.217, p 

< 0.001, no-shift; Rayleigh’s Z = 19.286, p < 0.001, shift; Watson’s U2
55,58 p < 0.001). 

An analysis of dispersal angles using only daily means of groups of turtles each released 

on different days also showed significant directionality, no magnet effect, and a 

significant clock-shift effect (two-sample Hotelling test, p < 0.002). Hatchlings were 

using a sun compass exclusively.  

Keywords: Sun-compass orientation, geomagnetic-reception, Blanding’s turtles 

hatchlings, clock-shift, magnet, natal dispersal, Minnesota
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Chapter 1. Literature Review                      

 Cycles caused by the tilt of the Earth’s rotational axis have profound influences 

on the behavior of many living organisms. Most organisms exhibit rhythms in their 

physiology and behavior that endure under constant conditions (Hart, 1964; Menaker, 

1969; Sharma, 2003a & 2003b; Phillips, 2005). These rhythms are guided by an 

endogenous mechanism called a biological clock (Sollberger, 1962; Aschoff, 1963; 

Menaker, 1969).  Most measurable activities exhibited by organisms bear a synchronous 

relationship to the 24-hr daily cycle (Hart, 1964). These activities are termed circadian 

rhythms. Circadian rhythms have been widely observed in plants, animals, fungi, and 

cyanobacteria (Sharma, 2003b; Phillips, 2005).  

 Daily rhythms behave in much the same way as do many physical oscillators 

(Menaker, 1969). Therefore, it is important to become familiar with the language of 

physical oscillations and its application to biological cycles. Menaker (1969) provides a 

review of the relevant vocabulary. He considers the behavior of a nonlinear spring with a 

mass attached to one end and the other attached to a rigid surface. Upon initiation, and 

ignoring the effects of friction, oscillations will continue unless disturbed by an external 

force. These recurring oscillations comprise a rhythm. The repeating unit of a rhythm is 

referred to as a cycle. The length of time required to complete one cycle is referred to as 

the period. Rhythms can be displaced in time without changing the basic character of the 

oscillation. This is termed a phase shift. Phase shifts can occur in either direction and in 

any amount. The oscillator will exhibit a certain natural period for a given displacement 

in the absence of external forces. In this condition, the oscillator is said to be free- 
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running. If a sufficient external force with a different period is applied to the oscillator, 

it will then exhibit the period of the applied force. This phenomenon is termed 

entrainment. The biological clock is considered to be a collection of coupled oscillators 

(Beersma et al., 2011).  

 In mammals, the circadian clock resides in the suprachiasmatic nucleus (SCN); 

(Ralph et al., 1990; Young, 2000; Hastings & Herzog, 2004). The SCN is a neuronal 

hypothalamic tissue located just above the optic chiasm. The SCN consists of 

approximately 10,000 interconnected neurons and pacer cells (Moore & Eichler, 1972; 

Moore, 1973; Ralph et al., 1990; Hastings & Herzog, 2004; Beersma et al., 2011). 

  The specific genes that individual clocks use to generate circadian clocks can 

differ considerably among taxa (Rosato & Kyriacou, 2001; Phillips, 2005). Standard 

models for circadian clocks are generated and sustained by a transcription-translation 

negative feedback loop (Reppert & Weaver, 2002; Hastings & Herzog, 2004). In groups 

as diverse as mammals and fruit flies, a set of three primary genes produces proteins that 

interact with one another to regulate the activity of certain other genes on a cycle lasting 

approximately 24 hours. The period gene (per), codes for a protein (PER) that gradually 

accumulates inside and outside of the cell nucleus. Another key gene called tau in 

mammals and dbt in flies, codes for an enzyme, casein kinase epsilon (CKIe), that helps 

break down PER. Consequently, slowing the rate of accumulation in the cell. However, 

during peak periods of production of PER, more per is available to bond with another 
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protein (TIM), coded for by the third gene (tim). When the PER protein is bound 

incomplexes with TIM, (and another protein, chryptochrome (CRY), in the case of 

mammals), it cannot be broken down as quickly by CKIe. Therefore, more intact PER is 

carried back into the nucleus, where it blocks the activity of the gene that produces it. 

Subsequently, a new cycle of per gene activity and PER protein production begins 

(Young, 2000). A more detailed description of the process can be found in Ralph et al.  

(1990), Forger & Peskin (2003), Hastings & Herzog (2004), and Beersma et al  (2011). 

 Not only are daily rhythms widespread phylogenetically, but they also occur at all 

levels of organization within species (Pittendrigh, 1960a & 1960b; Menaker, 1969). The 

ubiquity of circadian rhythms implies its strong adaptive significance. It is generally 

thought that organisms possessing a circadian clock gain fitness advantages in two ways: 

(1) coordinating internal metabolic processes and (2) allowing organisms to synchronize 

their behavior with environmental cues.  

 Circadian clocks provide organisms a fitness advantage by coordinating internal 

metabolic processes (Sharma, 2003b). It is thought that incompatible metabolic 

processes, requiring different physiochemical conditions for their successful functioning, 

appear to be separated temporally in an efficient way by means of the circadian clock 

(Moore-Ede et al., 1982; Sharma, 2003b). Circadian clocks also provide organisms a 

fitness advantage by synchronizing behavioral and physiological processes to reliable, 

cyclic environmental changes (Sharma, 2003b).  Although it remains unclear how and 

why clocks with an approximately 24-hour period evolved, a vigilant analysis would 
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suggest that it provides ultimate stability to its expression under consistent 

environmental cues (Beersma et al., 1999; Roenneberg et al., 2003; Sharma, 2003a & 

2003b). Organisms that possess circadian clocks are able to prepare their metabolic 

processes and behaviors appropriate for a specific time of day before the time actually 

arrives, as opposed to meeting daily cycles unprepared (Phillips, 2005). 

 Circadian rhythms allow organisms to anticipate and prepare for regular 

environmental changes through entrainment. Several cyclic features of the environment 

such as light-dark (LD) cycles, temperature, and humidity are examples of cues that are 

used to entrain circadian rhythms (Phillips, 2005). The natural LD cycle is arguably the 

most reliable of the environmental signals and is, consequently, the primary zeitgeber for 

resetting the clock (Phillips, 2005). However, circadian rhythms persist even in the 

absence of zeitgebers (Menaker, 1969; Sharma, 2003b). Organisms held under constant 

conditions typically exhibit rhythms different than but resembling a 24-hour cycle 

(Menaker, 1969). Thus, the period is said to be self-generating or endogenous and is 

referred to as the free-running period (FRP); (Menaker, 1969).  

 Circadian rhythms can be subjected to a phase shift upon the application of a 

periodic signal. The phase of the rhythm with respect to the signal will continue to adjust 

until the signal is positioned in such a manner that its daily effect compensates for the 

difference between the FRP of the rhythm and the period of the signal (Pittendrigh & 

Minis, 1964; Menaker, 1969). This practice is also commonly referred to as clock-

shifting. Clock-shifting experiments can be utilized to assess navigation and orientation 
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mechanisms present within organisms. The following publications are exemplary 

illustrations of clock-shifting experiments on pigeons, fresh water turtles, lizards, 

sparrows, and sea turtles, respectively: Schmidt-Koenig, 1960; DeRosa & Taylor, 1978, 

1980, & 1982; Muheim & Aakesson, 2002; Foà et al., 2009; Mott & Salmon, 2011.  

 Navigation is movement from a starting point to a specific goal location. To orient 

means to determine and keep a compass direction. Organisms with compass orientation, 

but without knowledge of a specific geographic goal, maintain their direction of travel 

even when displaced laterally. There are a number of ways in which environmental cues 

may be used to guide organisms during these movements. Multiple compass systems 

exist in vertebrates (sun, star, polarized light and magnetic compasses); (Wiltschko & 

Wiltschko, 1972 & 1996; Emlen, 1975; Able, 1980; Wiltschko, 1983; Phillips, 1986; 

Moore, 1987; Schmidt-Koenig et al., 1991; Phillips & Moore, 1992; Lohmann & 

Lohmann, 1996 & 2006; Lohmann et al., 2007). Compass mechanisms allow an 

organism to determine which direction to travel in a landscape and how to maintain that 

direction. This differs from a map sense, derived from a compass mechanism, which 

allows an organism to know where it is located within a landscape based on learned 

markers (Caldwell & Nams, 2006).  

 The utilization of the sun, as an aid in navigation and orientation, is referred to as 

a sun compass. This particular type of celestial orientation is accomplished via the 

determination of the position of the sun on the horizon (i.e., its azimuth) and the 

determination of local time (Adler, 1970). In order to sun-compass orient, an organism 
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requires a natural or synthetic light stimulus and a biological clock in phase with the 

local time (DeRosa & Taylor, 1978). Utilization of a time-compensated sun compass for 

orientation is present in both invertebrate and vertebrate taxa (Avens & Lohmann, 2003). 

Due to the temporal component of this directional sense, use of a sun compass is typically 

demonstrated via the conduction of a clock-shift experiment.  

 Clock-shifting experiments are conducted by entraining the internal clock of an 

organism to a light-dark cycle that is equivalent to the natural cycle, except it is shifted in 

time a fraction of a cycle.    Subsequent to this shift, orientation trials under regular 

conditions are observed and assessed for predicted shifts in orientation. The sun moves 

approximately 15° along its azimuth per hour (Schmidt-Koenig et al., 1991). Thus, for 

each hour that an organism is clock-shifted from the local time, it should exhibit a 15° 

change in direction when released under natural conditions (Schmidt-Koenig et al., 1991; 

Southwood & Avens, 2010). Specifically, clock-shifting experiments have demonstrated 

the use of a sun compass in a number of reptiles including but not limited to garter snakes 

(Lawson, 1994), water snakes (Newcomer et al., 1974), and juvenile alligators (Murphy, 

1981).  

 Sun-compass orientation has been well documented in sea turtles (Mott & 

Salmon, 2011) but insufficiently in freshwater and terrestrial turtle species. Sun-compass 

orientation experiments have been conducted on adult box turtles (Terrapene carolina), 

softshell turtles (Trionyx spinifer), painted turtles (Chrysemys picta), and eastern long-

necked turtles (Chelodina longicollis); DeRosa & Taylor, 1978, 1980, & 1982; Graham 
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et al., 1996). We are not aware of any documentation of sun-compass orientation 

experiments conducted on hatchling, freshwater or terrestrial species. Few investigations 

of the behavior of freshwater hatchling turtles in general have been reported (Shine & 

Iverson, 1995; Southwood & Avens, 2010). 

 A second compass common to many varieties of organisms is the magnetic 

compass. Magnetic compasses are present in a wide variety of phylogenetic groups. They 

exist in several invertebrate groups as well as all major groups of vertebrates (Cain et al., 

2005; Lohman & Lohman, 2006). The exact mechanisms by which organisms detect 

magnetic fields are still poorly understood (Lohman & Lohman, 2006). Animals can 

evidently extract at least two different types of information from the earth’s magnetic 

field: (1) compass information which allows an organism to maintain a consistent 

direction of orientation and (2) map information which enables organisms to assess 

geographic location and, in some cases, navigate to target areas (Cain et al., 2005; 

Lohman & Lohman, 2006). Magnetic compasses are particularly adaptive to organisms 

by allowing them to establish a directional sense under environmental conditions where 

cues such as the sun, stars, or visual landmarks are not available for use, such as marine 

environments. Magnetic compasses also allow organisms to maintain a directional sense 

unaffected by seasons, winds, or the effects of day and night among other factors.   

 There does exist the possibility of redundancy among compasses. Having the 

ability to use two or more compasses simultaneously and/or non-synchronously would 

allow organisms to orient correctly under varying environmental conditions. If the cues 
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used for one compass were indistinct or blocked, the organism could utilize a secondary 

compass mechanism in order to orient properly. The use of multiple compasses has been 

well documented in birds (Wiltschko & Wiltschko, 1976 & 2001; Wiltschko, 1983; 

Wiltschko et al., 1987; Phillips & Moore, 1992). Wiltschko & Wiltschko (2001) reports 

that deflections produced by a 6-hr clock-shift in adult pigeons are markedly smaller than 

would be predicted on the basis of the difference of the sun azimuth (approximately 60% 

of the predicted deflection). The addition of small bar magnets to the clock-shifted birds 

increased the deflection to approximately 90% of that predicted. These findings suggest 

that the change in deflection in adult pigeons is to be attributed to the pigeons' use of a 

magnetic compass in the absence of accurate sun-azimuth cues; pigeons seem to combine 

directional information from the sun compass with information from the geomagnetic 

field. 

  Blanding’s turtle, Emydoidea blandingii, is a medium-sized fresh water turtle that 

is native to the northeastern United States, the Midwest, and southeastern Canada. 

Blanding’s turtles often occupy eutrophic habitats with abundant vegetation such as 

lakes, ponds, marshes, creeks, wet prairies, and sloughs (Ernst & Lovich, 2009). The 

species is listed as threatened or endangered in most of the locations in which it occurs.  

Within the literature, there exists extensive data pertaining to the natural history of 

Blanding’s turtles (MacCulloch & Weller, 1988; Power, 1989; Ross, 1989; Ross & 

Anderson, 1990; Congdon & van Loben Sels, 1991; Rowe, 1992; Congdon et al., 1993; 

Standing, 1997; Standing et al., 1999; Congdon et al., 2000; McNeil, 2002; Refsnider, 

2005; Ruane et al., 2008). Despite intensive research, however, the behavior of 
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Blanding’s hatchlings is still poorly understood (Congdon et al., 1983; Butler & 

Graham, 1995; Standing et al., 1997; McNeil et al., 2000; Dinkelacker et al., 2004; 

Smith, 2004; Refsnider, 2005; Carmaclang, 2007; Pappas et al., 2009 & 2013; Congdon 

et al., 2015).  

 Blanding’s hatchlings emerge from the nest in late August through early October 

and migrate to a wetland habitat. Studies of post-emergent behavior of hatchlings show 

no significant orientation towards water (Standing et al., 1997; McNeil et al., 2000; 

Smith, 2004; Refsnider, 2005; Carmacling, 2007; Pappas et al., 2009). Studies of post 

emergent behavior of hatchlings show a general modality toward dark horizons (Butler & 

Graham, 1995; Standing et al., 1997; McNeil et al., 2000; Carmacling, 2007; Pappas et 

al., 2009; Congdon et al., 2015). Pappas et al.  (2009 & 2013) and Congdon et al.  (2015) 

found that experienced hatchlings (those having a period of dispersal experience) were 

able to maintain their initial direction of travel upon translocation into experimental 

arenas. While the mechanisms used to maintain directionality in Blanding’s hatchling 

turtles is unknown, there is evidence suggesting that geotaxis, olfactory cues, humidity 

gradients, social facilitation, and geomagnetic cues are all unlikely (Noble & Breslau, 

1938; Anderson, 1958; Burger, 1976; Ehrenfeld, 1979; Manton, 1979; Congdon et al., 

1983; Robinson, 1989; Butler & Graham, 1995; Standing et al., 1997; McNeil et al., 

2000; Dinkelacker et al., 2004; Smith, 2004; Refsnider, 2005; Carmaclang, 2007; 

Congdon et al., 2015).  
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Chapter 2. Use of sun compass during natal dispersal in hatchling Blanding’s turtles 

Contact address:  

Department of Biological Sciences  

Minnesota State University 

Mankato, Minnesota 56001 

Introduction 

 Orientation has been defined as a selective process in which certain 

environmental cues elicit a response that results in a non-random pattern of locomotion, a 

change in the direction of the body axis, or both (Adler, 1970). Movement in a specific 

direction, regardless of the homeward direction, in unfamiliar territory is known as 

compass orientation (Griffin, 1952). Organisms use external cues such as magnetic fields, 

prevailing winds, or celestial bodies to compass orient.  If the position of the external cue 

is cyclic, an organism must use an internal biological clock to adjust its orientation 

relative to the cue depending on time of day (DeRosa & Taylor, 1976). The internal clock 

must be entrained to the external cycle. (Roenneberg et al., 2003; Sharma, 2003a; 

Beersma et al., 2011). If the stimulus used to entrain the clock cycles with a 24-hr period, 

it is referred to as a circadian rhythm (Menaker, 1969; Sharma, 2003a; Sharma, 2003b). If 

the stimulus used to reset the clock is the sun, an organism can use the sun’s azimuth to 

maintain a constant compass orientation at any time of day (sun-compass
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orientation; Adler, 1970; DeRosa & Taylor, 1976).  

 Organisms have been experimentally caused to alter their orientation by 

subjecting them to entrainment by a light-dark (LD) cycle out of phase with the natural 

LD cycle (DeRosa & Taylor, 1976; Wiltschko et al., 2000; Muheim & Aakesson, 2002; 

Giunchi et al., 2003; Foa et al., 2009; Nesbit et al., 2009). This process is referred to as 

clock-shifting (Wiltschko & Wiltschko, 2001; Muheim & Akesson, 2002; Giunchi et al., 

2003).  The sun moves across the horizon approximately 15° per hr (Schmidt-Koenig et 

al., 1991). Thus, for each hour that an organism is clock-shifted from the natural cycle, it 

should exhibit a 15° change in direction when released under natural conditions (DeRosa 

& Taylor, 1976; Schmidt-Koenig et al., 1991; Southwood & Avens, 2010; Mott & 

Salmon, 2011). 

 Sun-compass orientation has been well documented in sea turtles (Mott and 

Salmon, 2011) but insufficiently in freshwater and terrestrial turtle species. Sun-compass 

orientation experiments have been conducted on adult box turtles (Terrapene carolina), 

softshell turtles (Trionyx spinifer), painted turtles (Chrysemys picta), and eastern long-

necked turtles (Chelodina longicollis) (DeRosa & Taylor, 1978, 1980, & 1982; Graham 

et al., 1996). We are not aware of any sun-compass experiments on freshwater hatchling 

turtles.  

 Blanding’s turtle, Emydoidea blandingii, is a medium-sized fresh water turtle that 

is native to the northeastern and mid-western United States, and southeastern Canada. 

Despite intensive research, the behavior of Blanding’s hatchlings is poorly understood 
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(Congdon et al., 1983; Butler and Graham, 1995; Standing, 1997; Standing et al., 

1997; McNeil et al., 2000; McNeil, 2002; Dinkelacker et al., 2004; Smith, 2004; 

Refsnider, 2005; Carmaclang, 2007; Pappas et al., 2009 & 2013; Congdon et al., 2015).  

 Blanding’s hatchlings emerge from the nest in late August through early October 

and are generally thought to migrate to wetland habitats. Pappas et al. (2009 & 2013) and 

Congdon et al. (2015) reported that experienced hatchlings (those having a period of 

dispersal experience) were able to maintain their initial direction of travel upon 

translocation into experimental arenas. While the mechanisms used to maintain 

directionality during dispersal in Blanding’s turtle hatchlings are unknown, there is 

evidence suggesting that the use of geotaxis, olfactory cues, humidity gradients, and 

social facilitation are unlikely (Noble and Breslau, 1938; Anderson, 1958; Burger 1976; 

Ehrenfeld, 1979; Manton, 1979; Congdon et al., 1983; Robinson, 1989; Butler and 

Graham, 1995; Standing et al., 1997; McNeil et al., 2000; McNeil, 2002; Dinkelacker et 

al., 2004; Smith, 2004; Refsnider, 2005; Carmaclang, 2007). We suggest an initial 

dispersal toward dark horizons and the use of a sun compass in maintaining direction 

after a period of dispersal experience. A sun compass that allows individuals to maintain 

straight-line movements toward an identified goal in an efficient manner would be highly 

adaptive to hatchlings that are susceptible to desiccation and predation during neonatal 

dispersal (Zollner and Lima, 1999). Straight-line travel decreases the time and energy 

spent dispersing, therefore, preserving energy reserves and limiting time exposed to 

predators.  The other advantage of straight-line travel (versus random or wandering) is 
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the likelihood of finding an aquatic habitat; straight-line travel would always avoid the 

possibility of a turtle crossing its own path, which would reduce such likelihood.   

 The objective of this experiment was to determine the mechanisms by which 

hatchling turtles maintain compass orientation during natal dispersal. We hypothesized 

that once a hatchling has experienced visual horizon cues and begun to disperse toward 

one, it soon thereafter establishes a direction of travel and maintains it using a sun 

compass, a magnetic compass, or both. Field experiments were used to test the prediction 

that either clock-shifting or the blocking of magneto-reception would alter or disrupt 

compass orientation (table 1). Controlling for the possible use of each type of compass is 

necessary because some organisms are known to use two or more redundant compasses, 

each having utility under different environmental conditions. The use of more than one 

compass has been well-documented in birds (Wiltschko & Wiltschko, 1976 & 2001; 

Wiltschko, 1983; Wiltschko et al., 1987; Phillips & Moore, 1992; Lohmann & Lohmann, 

1996). Our experimental design accounts for the possibility that hatchlings have the 

ability to use both a sun compass and a magnetic compass redundantly in addition to 

testing for the use of each of the compasses independently.  

 

 

 



  

 

 

27
Methods 

Study Area  

 Fieldwork occurred from May 2012 to September 2013 in the Weaver Dunes area 

of southeastern Minnesota (44°15’N and 91°55’W). The Weaver Dunes area consists of 

285 ha of gently rolling, sand dune topography interrupted by steep sloping, stabilized 

dunes and occasional blowouts. Some of the dunes are stabilized by sand prairie, oak 

savannah plant communities, or recently planted pine plantations, and some areas have 

been converted to agricultural fields. The dunes are located adjacent and on the east side 

of a 1500-ha wetland.  

Obtaining hatchlings 

 Dispersing hatchlings were captured while dispersing in a westerly direction as 

we patrolled a 2-km paved north-to-south highway located between the dunes area and 

the wetland. Hatchlings were captured crossing the road throughout the day for several 

days during each of our field seasons; end of August through September. We transported 

each hatchling immediately to the field station laboratory, painted a unique number on 

the carapace, and maintained the animal under moist conditions with a natural light:dark 

cycle until released in an arena (1 or 2 days for most hatchlings).    
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Experimental arena 

 A circular arena approximately 95 m in diameter was constructed of solid 

aluminum flashing 15 cm tall and buried to a depth of 5 cm on relatively flat terrain in an 

agricultural field of mature corn plants. The arena was constructed in the same area of the 

same cornfield for both years of the study. The purpose of the cornfield site was to 

provide a uniform horizon and therefore eliminate horizon cues (Congdon et al., 2015). 

Sixteen pitfall traps were placed at uniform intervals (22.5°) along the interior of the 

fence to prevent significant movement along the fence prior to capture.  By patrolling the 

fence continually following each release, most hatchlings were captured before they fell 

into a pitfall trap, and we recorded their capture location using 160 evenly spaced marks 

on the fence (2.25° interval; figure 1).  

Release protocol  

 Hatchlings were released in the arena on the first sunny or partly sunny day after 

initial capture following the protocol of Pappas et al.  (2009).  Prior to release, hatchlings 

were placed into a bucket with four compartments; each with a covered escape hole.  

Buckets were transported to the arena center between 0700 and 1000 hr; the release time 

depending on ambient temperature.  We removed the escape hole covers and quickly left 

the arena. We removed the bucket after 1 hr.  The arena fence was patrolled continuously 

starting approximately 30 min after hatchling release and continuing until 1 hr had 

elapsed with no hatchling captures. At capture, hatchling identification, time, and 
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position along fence were recorded.  A second release occurred after a 4 to 10-day 

clock-shifting period and magnet treatment and followed the same protocol as the first 

release. Following final captures, all hatchlings used in the study were released in 

wetlands near their original point of capture.  

Clock-shifting protocol 

 Subsequent to the initial release, all hatchlings that were collected were 

transported to a light controlled room and maintained under constant conditions for 4 to 

10 days. The length of light treatment varied due to weather constraints; turtles 

were released into experimental arenas only on warm, sunny days after at least 4 

days of light treatment. The turtles were randomly divided into two groups and treated 

with indoor LD cycles that were either a natural mimic or clock-shifted 6 hr.  The natural 

LD cycle (no-shift) was 0635 - 1950 hr (Central Daylight Time); the clock-shifted cycle 

was 0035 - 1350 hr. In each chamber, two 75-W fluorescent, grow-light bulbs were 

suspended approximately 2 m above the floor and the appropriate LD cycle was governed 

by automatic timers. Temperature in the light chambers was approximately 20° Celsius. 

The hatchlings were maintained in large plastic bins and provided moist soil and free 

water.   
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Disruption of magneto-reception 

 The two photoperiod treatment groups were further divided by assigning 

hatchlings randomly to a magneto-reception disruption treatment (magnet) or no-

disruption control treatment (no-magnet), thereby creating an experimental design with 

four treatments.  Disruption of magneto-reception was accomplished by the adhesion of 

neodymium disc magnets (6.3 mm diameter and 1.5 mm thick) with epoxy to the anterior 

portion of the carapace of hatchlings. Flux densities were approximately 25 and 9 gauss 

at 15 and 22 mm, respectively (part number D41-N52, K&J Magnetics, Inc.).  For each 

hatchling in the no-magnet treatment, we glued an aluminum disc on their carapace; a 

small number of hatchlings in the no-disruption treatment received no metal. The four 

experimental groups described are illustrated in table 1.  

 To ensure the magnets would provide adequate disruption of hatchling magneto-

reception, we estimated magnet strength relative to geomagnetism in the laboratory by 

placing a magnet and a compass on a level surface and moving the magnet toward the 

compass from the west and measuring deflection of the compass needle (total needle 

length 22 mm) at four distances.  At each distance, we used four magnet orientations to 

simulate the slight variation in magnet position relative to the turtles’ bodies during the 

field trials (figure 2).  We also tested magnet strength by rotating the surface while the 

magnet and compass were in position to simulate changes in the angle of a turtle’s line-

of-travel during the field experiments. Although needle deflection was sensitive to 

magnet orientation at the longer distances, magnet distance had a significant effect on 
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deflection: at 22 mm distance orientation was unimportant and needle deflection was 

maximal (west, 90°) and significantly greater than at 32 mm (64.5°, t = 6.05, p < 0.001).  

When the surface was rotated, the compass needle remained locked into position relative 

to the compass at a distance of 22 mm.  During rotation of the surface with the magnet at 

32 mm, the compass needle was not locked in place completely but was significantly 

affected by the magnet position.  For the purpose of disruption of magneto-reception, 

these results demonstrate significant disruption at distances greater than those occurring 

during the field trials; hatchlings with magnets attached to their carapace could not 

possibly have navigated by magneto-reception of the geomagnetic field (figure 2).  

Statistical analysis 

 Angles of dispersal were analyzed as circular data. We tested for nonrandom 

distributions using Rayleigh’s Z-test and tested for the significance of differences in 

mean angles between treatment groups using Watson’s U2-test (Oriana software Version 

4; Zar, 1999). Because of the possibility that hatchlings who were released together 

during second trials on the same day may have behaved non-independently, we 

conducted a second-order analysis with Hotelling tests comparing the daily mean 

dispersal angles by treatment.  The non-random distribution of dispersal angles within 

each treatment was analyzed using the one-sample Hotelling test and treatment 

differences were analyzed using the two-sample Hotelling test (Zar, 1999). 
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Results 

 We collected complete data on 113 turtles over the course of two years; 2012 and 

2013. 102 of those turtles were from the 2013 field season. Complete data refers to those 

turtles who were found moving WNW on a road, were translocated and released in the 

corn arena, captured within 12hrs, put into light treatment for 4-10 days, re-released in 

the corn arena, and re-captured within 12hrs. The main observation of interest is the 

difference before and after light treatments in dispersal angle in the corn arena.  

 Hatchlings captured while crossing the road in a westerly direction exhibited the 

same directionality when translocated and released into the corn arena. (Mean vector � = 

290.0◦; Length of vector r = 0.5, Rayleigh’s Z = 28.1, p < 0.001; figure 3).  

 Dispersal angles of the magnet and no-magnet treatments were significantly non-

random for the no-shift light treatment (Rayleigh’s Z = 10.31, p < 0.001, no-magnet; 

Rayleigh’s Z = 12.49, p < 0.001, magnet) and for the clock-shift treatment (Rayleigh’s Z 

= 10.34, p < 0.001, no-magnet; Rayleigh’s Z = 9.09, p < 0.001, magnet). However, the 

effect of the magnet treatment on dispersal angle was not significant in either light 

treatment; Watson’s U2
26,29 = 0.05, p > 0.5, no-shift; Watson’s U2

29,29 = 0.03, p > 0.5, 

shift; figure 4). Hatchlings in the no-shift treatment consistently went he same direction 

in corn release one and corn release two, regardless of magnet treatment. Hatchlings in 

the shift treatment exhibited the expected change in dispersal angle between their first 

and second trials, regardless of magnet treatment. Because there was no effect of the 
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magnet treatment, all data from magnet and no-magnet treatment groups were pooled 

to perform subsequent statistical tests of the effect of clock-shifting.  

 In 2012, dispersal angles of both no-shift and clock-shifted hatchlings 

significantly different from random (Rayleigh’s Z = 7.02, p < 0.001, no-shift; Rayleigh’s 

Z = 4.88, p = 0.003, shift). Change in dispersal angle from the first to second release of 

no-shift versus clock-shifted hatchlings was significantly different and in accord with the 

predicted change of 90° (mean change in dispersal angle = -3.2°, no-shift; -90.2°, shift; 

SE = 10,0, no-shift; 11.6, shift; Watson’s U2
6,9 = 0.33, p < 0.005; figure 5). 

 Dispersal angles of all 2013 hatchlings in release four were not significantly 

different than random (Rayleigh’s Z = 0.83, p = 0.449, shift). Change in dispersal angle 

from the first to second release of no-shift versus clock-shifted hatchlings was not 

significantly different (mean change in dispersal angle = -20.3°, no-shift; 28.7°, shift; SE 

= 27.4, no-shift; 33.0, shift; Rayleigh’s Z = 1.54, p = 0.220, no-shift; Watson’s U2
6,9 = 

0.16, 0.1 > p > 0.05; figure 6). 

 Dispersal angles of 2013 no-shift hatchlings in release six were not significantly 

different than random. Dispersal angels of 2013 clock-shifted hatchlings in release six 

were significantly different than random (Rayleigh’s Z = 1.50, p = 0.227, no-shift; 

Rayleigh’s Z = 5.42, p = 0.003, shift). Change in dispersal angle from the first to second 

release of no-shift versus clock-shifted hatchlings was significantly different and in 

accordance with the 90°shift prediction (mean change in dispersal angle = 29.1°, no-shift; 
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-101.0°, shift; SE = 30.2, no-shift; 15.9, shift; Watson’s U2

11,15 = 0.27, p < 0.020; 

figure 7). 

 Dispersal angles of all 2013 hatchlings in release eight were significantly different 

than random (Rayleigh’s Z = 11.35, p < 0.001, shift). Change in dispersal angle from the 

first to second release of no-shift versus clock-shifted hatchlings was significantly 

different and in accordance with the 90°shift prediction (mean change in dispersal angle 

= -11.9°, no-shift; -112.6°, shift; SE = 8.2, no-shift; 9.6, shift; Rayleigh’s Z = 14.64, p < 

0.001, no-shift; Watson’s U2
23,19 = 0.56, p < 0.001; figure 8). 

 Mean dispersal angles were pooled for all release dates, and the distributions 

within both shift and no-shift treatments were non-random (Rayleigh’s Z = 19.29, p < 

0.001, no-shift; Rayleigh’s Z = 22.22, p < 0.001, shift) and differed between the shift and 

no-shift treatments. Change in dispersal angle from the first to second release of no-shift 

versus clock-shifted hatchlings was significantly different and in accordance with the 90° 

shift prediction (mean change in dispersal angle = 1.2°, no-shift; -111.0°, Shift; SE = 7.9, 

no-shift; 9.9, shift; Watson’s U2
55,58 = 1.32, p < 0.001; figure 9). 

 The distributions of daily mean dispersal angles by treatment were non-random 

(one-sample Hotelling test, p = 0.031, n = 5 releases, no-shift; p = 0.037, n = 7 releases, 

shift). The effect of clock-shifting was a significant reduction in dispersal angle of  -99.4° 

(no-shift mean 2.3°, two-sample Hotelling test p < 0.002; figure 10). Neither mean was 

different than the experimental predictions of -90° and 0°.   
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Discussion 

 Soon after emergence from natal nests, Blanding’s turtle hatchlings develop a 

compass mechanism that allows them to maintain a direction of travel towards a dispersal 

target. Possessing a mechanism that allows for straight-line travel during dispersal may 

have a number of benefits including but not limited to minimizing time and energy spent 

reaching the dispersal target, exposure to predation, and risk of desiccation. The 

mechanisms used to maintain directionality in Blanding’s hatchling turtles are poorly 

understood. The use of a sun compass and/or geo-magnetic compass are likely the most 

practical means of maintaining directionality for hatchlings who exhibit a strong 

tendency to move on sunny, warm days during the daytime hours. The possibility of 

redundancy among compasses does exist. Having redundant compass mechanisms would 

allow an organism to maintain directionality under the circumstances that the cues for 

one compass were temporarily indistinct or unavailable. If hatchlings possess a magnetic 

compass, then their ability to maintain a previously established direction of travel should 

be disrupted by the attachment of a magnet to their carapace (magnet treatment). If 

hatchlings possess a sun compass, then their ability to maintain a previously established 

direction of travel should be disrupted by a shift in their natural LD cycle (clock-shift). If 

hatchlings possess both compasses, then their ability to maintain a previously established 

direction of travel should only be disrupted by both magnet treatment and a clock-shift. 

Under all other circumstances, they would be able to utilize their other compass 

mechanism as a means to maintain directionality.  
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 Hatchlings in each of four treatments were not affected by the magnet 

treatment (table 2). Hatchlings maintained under natural LD conditions (no-shift) 

treatment maintained their direction of travel between releases (table. 3). Hatchlings 

exposed to a 6-hr clock-shift behind the natural LD cycle (clock-shift) exhibited a change 

of direction of approximately 90° counter-clockwise, commensurate with the magnitude 

of the clock-shift (table 3). Our experimental analysis (figure 2) in addition to existing 

data (Keeton, 1971; Lohmann & Lohmann, 1996) suggests that our manipulation for the 

magnet treatment was strong enough to impose a significant disruption of any existing 

magneto-reception. Natural experienced hatchlings captured moving approximately west 

in their natural environment provided compelling evidence for the use of a sun compass 

but not a geo-magnetic compass.  

 It is unclear how quickly sun-compass orientation is developed in individuals or 

how plastic orientation is once developed.  Our data shows that 4 days of clock-shifting is 

sufficient to cause the expected change in orientation in hatchlings, but the necessary 

duration of clock-shifting may be more brief. Future studies should focus on the stimuli 

and mechanisms responsible for the formation of the sun compass in reptiles as well as 

the length of time and conditions required to develop it. It appears that our clock-shift 

treatment did not stimulate hatchlings to alter their intended direction of travel; 

orientation persisted despite captivity of more than 10 days for some batches of 

experimental hatchlings. Future studies could assess whether circumstances exist that 

would cause a hatchling to modify its original direction of orientation towards a target.
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Table 1.  Predicted changes in compass orientation by natural-experienced, dispersing 

hatchlings in four experimental treatments including clock-shifting (clock-shift versus 

no-shift) and disruption of geomagnetism (magnet versus no-magnet). Natural 

experienced hatchlings are those that were captured while dispersing in a westerly 

direction across a paved road from a sand dunes area where females naturally nest.  These 

captives have developed compass orientation during the hours and days prior to capture.  

The presence or absence of sun-compass orientation and magnetic compass orientation 

predicts that dispersing hatchlings will orient correctly (maintain their initial direction of 

travel) or be disoriented (orient in a direction other than their initial direction of travel). 

Disorientation is observed as a 90° error in direction of orientation (commensurate with a 

6 hr clock-shift and indicative of the use of a sun compass) or random orientation 

(indicative of the use of a magnetic compass). Predictions assume that at least one 

compass orientation mechanism exists. a. outlines the results indicative of the exclusive 

use of a sun compass. b. outlines the results of the exclusive use of a magnetic compass. 

c. outlines the results of the use of both compasses.  
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Table 2. Sample sizes; numbers of hatchlings completing experiment (dispersal to arena 

perimeter within 12hrs both before and after laboratory LD treatments). 

Julian date  

of release 

Treatment 

 No-shift LD cycle Clock-shifted LD cycle 

 Magnet Aluminum Magnet Aluminum 

2012a 0 9 0 6 

2013     

  Release 3 (251) 0 0 0 5 

  Release 4 (245) 3 3 6 3 

  Release 5 (256) 3 3 1 1 

  Release 6 (257) 7 4 9 6 

  Release 7 (259) 0 0 1 1 

  Release 8 (265) 14 9 9 10 

     

Total 27 28 26 32 

 
a – Includes animals pooled from 4 experimental releases during fall 2012.   
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Table 3. Analysis of the effect of clock-shifting on angle of dispersal in natural-experienced Blanding's turtle hatchlings.  

Shown are the sample size (number of hatchlings), the mean change in direction in degrees, the standard error of the mean 

change in direction, and the Rayleigh’s Z test statistic and corresponding p-value for each release; 2012 data represents all 

turtles for that field season. In addition, Watson’s U2 test value and corresponding p-value for each release are shown. 

Watson’s U2 test value is  <0.001 for all data combined; indicating a significant result. The no-shift treatment resulted in a 

grand mean of -0.5°change in the dispersal angle while the clock-shift treatment resulted in a -83.8° shift in dispersal angle; 

not significantly different than the predicted shift of -90°.  
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 Light Treatment   

 No-shift   Clock-shift Treatment effect 

Year and 

release 

number  

(Julian 

day) 

 

 

 

n 

 

 

Mean   

vector 

 

 

 

r 

 

 

Rayleigh’s 

Z 

 

 

 

p 

  

 

 

n 

 

 

Mean 

vector 

 

 

 

r 

 

 

Rayleigh’s 

Z 

 

 

 

p 

 

 

Watson’s 

U2 

 

 

 

p 

2012a 9 -3.2 0.88 7.02 <0.001  6 -89.7 0.90 4.88 0.003 0.33 <0.005 

2013              

  3 (251)       5       

  4 (245) 6 -15.1 0.51 1.54 0.222  9 108.3 0.30 0.83 0.449 0.16 <0.10 

  5 (256) 6      2       

  6 (257) 11 75.6 0.37 1.50 0.227  15 -111.7 0.60 5.42 0.003 0.27 <0.02 

  7 (259)       2       

  8 (265) 23 -9.81 0.80 14.64 <0.001  19 -115.4 0.77 11.35 <0.001 0.56 <0.001 

              

Total 55 -1.0 0.64 19.29 <0.001  58 -111.0 0.58 22.22 <0.001 1.32 <0.001 

n - sample size. 

Mean vector refers to mean vector of dispersal for all hatchlings in a treatment group on their second release in the corn arena.  

r – Mean length of vector 
a – Includes animals released on 4 days during fall of 2012.  
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Change in dispersal angle between first and second releases in the corn arena caused by 

shift and no-shift light treatments for all 2013 release 8.  The means of both treatment 

groups are significantly different. Distributions of both the no-shift and shift treatments 

are significantly directional, and mean vectors of dispersal (v) are not significantly 

different than the predicted shift of 0° for no-shift treatment and -90° for shift treatment (-

9.8°, no-shift; -115.4°, shift). Arrows indicate mean vector (v). Length of arrow indicates 

length of mean vector (r). Sample size (n), Rayleigh’s z test p-value, and Watson’s U2 test 
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shift and shift treatments are significantly directional, and mean vectors of dispersal (v) 

are not significantly different than the predicted shift of 0° for no-shift treatment and -90° 

for shift treatment (1.0°, no-shift; -111.0°, shift). Arrows indicate mean vector (v). 

Length of arrow indicates length of mean vector (r). Sample size (n), Rayleigh’s z test p-

value, and Watson’s U2 test statistic and corresponding p-value are also shown. 
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Hotelling test comparing mean of all daily release means. The mean of means of both 

treatment groups were significantly different. Distributions of both the no-shift and shift 

treatments are significantly directional, and mean vectors of dispersal (v) are not 

significantly different than the predicted shift of 0° for no-shift treatment and -90° for 

shift treatment (2.3°, no-shift; -99.4°, shift). Arrows indicate mean vector (v). Length of 

arrow indicates length of mean vector (r). Sample size (n) and Hotelling test p-values are 

also shown. Points within figure represent means of each release for both treatment 

groups. Distance from center of figure to release mean points represent the length of 

mean vector for each individual release.  
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Figure 1. 
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Figure 2.  
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Figure 3.  
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Figure 4.  
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Figure 5.  
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Figure 6 
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Figure 7.  
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Figure 8.  
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Figure 9.  
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Figure 10. 
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