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Abstract 

Rain water penetration testing on power generator units requires a number of complicated 

procedures, requiring many resources. As such, a Computational Fluid Dynamics (CFD) tool, 

“FloEFD for Creo,”is used to study the water penetration behavior on a OM924 diesel power 

generator enclosure in a computational environment. First, the three governing equations in 

fluid dynamics are derived and explained using simple methods.  Next, behavior of rain water 

droplets upon impact is briefly discussed. Air velocity, volumetric flow rate and static pressure 

drop were measured physically in the OM924 generator enclosure. Then, a CFD model for the 

OM924 enclosure was developed and validated using the measured data. Using the particle 

studies option in FloEFD, rain water penetration studies were conducted on the CFD model. The 

terminal velocity of the droplets was assumed as a function of droplet diameter and the co-

efficient of restitution was measured using basic observational methods. In an enclosure, the 

water penetration can be explained using three methods; free flowing, dripping and splashing. 

Each of the methods was tested using water droplet diameters that ranged from 0.1 to 2.5 mm. 

Results verified that the current baffle plate design was capable of preventing water penetration 

with the exception of those droplets with the smallest diameters.  

Key words: Modeling and simulations, fluid as particle packets, forces and stress on fluids, fluid 

dynamic governing equations, material derivation, computational fluid dynamics and rain water 

penetration testing. 
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Introduction 

Modeling and simulations (M & S) have developed impressively in most of the academic 

and industrial disciplines over the past decades. Currently, it is recognized as a National Critical 

Technology by the U.S Government. Fluid dynamic modeling is the most frequently used M&S 

system, used in nearly every science and engineering discipline. Fluid dynamics is the study of 

fluid flow, convective heat transfer and species mass transfer. When fluid dynamics concepts 

are applied within a computational environment (CFD), a set of mathematical methods are used 

to obtain an approximate solution for a particular application. Fluid Dynamics are governed by 

three principles; the conservations of mass, Newton’s second law and the conservation of 

energy. This paper illustrates the derivation of the governing equations using more traditional 

methods. Afterward, the general computational fluid dynamic methods and rain water droplet 

behavior are explained.  

A CFD model of the OM924 diesel powered generator enclosure is designed using the Creo 

computer-aided drafting tool. Then, using FloEFD, a computational software tool, the model was 

simulated and the results were validated against measured data. Air flow velocity, volumetric 

flow rate and the static pressure drop were compared and calculated for errors. Finally, using 

the particle study option on FloEFD, the model was tested for rain water penetration.  
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Literature Review 

1.1 Introduction for Modeling and Simulations 

On July 2007, U.S. House Resolution 487 officially reorganized Modeling and Simulation 

(M&S) as a National Critical Technology (National Training and Simulation Association, 2011, p. 

1). “Simulation is the process of designing a model of a real system and conducting experiments 

with this model for the purpose of either understanding the behavior of the system and/or 

evaluating various strategies for the operation of the system” (Pegden, Sadowski, & Shannon, 

1991).  

The term “simulations” relates to an extensive range of industries, from defense, 

engineering and science to marketing, economics and finance analysis. M&S tools are used for 

research and development in many fields. In fact, the National Training and Simulations 

Association estimates that just in the U.S. defense sector along, $4 billion to $7.5 billion is spent 

annually on M&S tools, processes and products (National Training and Simulation Association, 

2011, p. 1). Nevertheless, human decision making and competency are still required in all stages 

of M&S system development. Innovation in M&S design and implementation is a continuous 

process (Maria, 1997, p. 8). 

Modeling and Simulations have improved greatly throughout history; in fact, currently, 

M&S tools are more dominate and popular than most of the engineering computer programs 

(Kelton, Sadowski, & Sadowski, 1997, p. 3). Also, M&S has become an academic program of 

choice for students in all disciplines ( Sokolowski & Banks, 2010, p. 1).  Similarly, science and 

engineering fields have been uniquely transformed or immensely improved with the integration 

of Modeling and Simulation methods (Glotzer, 2009, p. 1).  
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For example, in the field of emergency medicine, M&S tools have been incorporated in 

to rehearsal environments for first responders and medical personal to improve the speed and 

quality of care. Thus, using virtual simulation models are a cost effective alternative for 

replicating real life situations (National Training and Simulation Association, 2011, p. 3).  

1.1.1 History of Modeling and Simulations 

Even though the origins of modeling and simulations cannot be tracked to any particular 

date, it is believed that the first known simulation “Caturanga” was a predecessor of modern 

chess. It was used in India to simulate battle field tactics in 7th century (National Training and 

Simulation Association, 2011, p. 5).  

1.1.1.1 Pre computer era 

Before the era of electronics or computers, the Monte Carlo method is considered to be 

the first simulation that had any significant contribution to the modern M&S techniques. Monte 

Carlo simulation consisted of “throwing needles randomly onto a plane with equally spaced 

parallel lines in order to estimate pi” (National Training and Simulation Association, 2011, p. 5). 

Although original credit goes to Compte De Buffon in 1777, it is believed the extended version of 

his experiment was corrected by Laplace in 1812. Therefore, the Monte Carlo method is often 

referred to as the Buffon-Laplace needle problem (Goldsman, Nance, & Wilson, 2010, p. 568). 

 During World War I, defense programs began adopting M&S systems to train troops for 

battle conditions. Specifically, ground based flight simulators such as the Ruggles Orientator and 

the Lender and Heilderberg model were used to train pilots (National Training and Simulation 

Association, 2011, p. 5).  
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1.1.1.2 Computer era 

The first general purpose computer, the Electronic Numerical Integrator and Calculator 

(ENIAC) was completed in 1946 at the University of Pennsylvania (Shrader, 2006, p. 111). ENIAC 

could be described as “A collection of electronic adding machines and other arithmetic units, 

which were originally controlled by a web of large electrical cables” (Grier, 2004 Jul-Sep, p. 2).  

 ENIAC was originally designed to simulate and produce ballistics trajectory tables. As a 

result, the air defense simulations were created by the Army Operations Research Office at John 

Hopkins University. They were part of the first North American Air defense system. However, 

ENIAC also had various other applications, such as weather prediction, atomic energy 

calculations, cosmic ray studies, thermal ignition rates, random number studies, wind tunnel 

designs and other scientific applications (Shrader, 2006, p. 111). 

 Subsequently in 1946, Polish mathematician Stanislaw Ulam used a computational 

model to develop the hydrogen bomb (National Training and Simulation Association, 2011, p. 6). 

Ulam collaborated with John Neumann and others to apply the Monte Carlo method using an 

electronic computer to solve neutron diffusion problems that lead to the design of the hydrogen 

bomb (Goldsman, Nance, & Wilson, 2010, p. 568).  

 The next major breakthrough in the simulation world was performed by operational 

research professor at the University of Southampton, Keith Douglas Tocher. His innovation, the 

first general purpose simulator, was used as a method to compute the state of production time 

in an industrial plant (Tocher & owen, 2008). His general purpose simulator system contained a 

model of an industrial plant and a set of machines embedded in it.  It reported and computed 

the condition of each machine in the plant, such as busy, idle, unavailable and failed (Goldsman, 
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Nance, & Wilson, 2010, p. 568). By doing so, it could be used to predict the final time needed to 

complete the manufacturing production task.  

1.1.1.3 Present Advancement  

The field of M&S has grown rapidly and has become a robust method for research and 

development in many disciplines ( Sokolowski & Banks, 2010). These fields are varied and 

evolving rapidly with the progression of technology. Furthermore, Deshmukh (2009) stated that, 

in almost every engineering domain and every phase in the life cycle of an engineered system, 

computational models and simulations have been extensively used ( p. 79). 

Furthermore, M&S tools have evolved and grown more complex with time and 

advancing technology. For instance, M&S tools have developed from standalone tools and 

languages to advanced network-based languages such fluid dynamics and mechanical analysis 

tools. Especially with the expansion of the World Wide Web, computing and solving can be done 

in a different location or server rather than in a dedicated operation system (Fortmann-Roe, 

2014, p. 1).  

 As computers and the internet are becoming more affordable and accessible for 

students and researchers, the world of simulations has become more comprehensible even as it 

has grown in complexity. Subsequently, new multicore computer chip architectures now provide 

exceptional accuracy and resolution (Glotzer, 2009, p. 2). Above all, the internet has made the 

simulation world closer by providing knowledge to non-experts and students. For example, the 

website ISI web of knowledge reports that papers published related to modeling and simulations 

tools has grown immensely, from 299 between 1985 and 1989 to 3,727 between 2005 and 2009 

(Fortmann-Roe, 2014). 
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1.1.2 What is modeling 

According to the National Training and Simulations Association, “Modeling is the 

representation of an object or phenomena, which is used by simulations” (National Training and 

Simulation Association, 2011, p. 3). In fact, models may be mathematical, physical or logical 

representations of a system, entity, phenomenon or process, or a combination of two or more 

of these.  Moreover, a model can also be a system with integrated functions constructed in 

completely an artificial environment. Hence, the only thing that distinguishes a model from 

reality is that it should be comparable but simpler than a real system.  

Creating a model with an approximation of the system is the first step of an M&S 

system. Then, the model can be modified according to the experimental procedure desired ( 

Sokolowski & Banks, 2010, p. 1). In other words, the main object of a model is to forecast or 

predict the outcome of an alteration of the system. (Maria, 1997, p. 7). Models can be divided in 

to two main categories; Physical models and mathematical models.  

Physical models are replicas or a scaled version of the actual systems. For an example, in 

many fast food chains a full scale model is used to experiment with new products and services 

before launching to the market. Also, flight simulators are commonly used to train pilots in 

lifelike environments (Kelton, Sadowski, & Sadowski, 1997, p. 6).  

Mathematical models, also known as logical models, are argumentative realities with 

approximations and assumptions about the functionality of the system. A Logical model is 

frequently inserted into computer software with the required mathematical and scientific 

functions embedded.  Mathematical models are relatively cheaper since models can be built in 

using computer programs rather than recreating actual systems (Kelton, Sadowski, & Sadowski, 

1997, p. 5). However, models need to be validated in order to rationalize the model.  A typical 
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validating technique is to simulate a known system and compare the model’s output results with 

known or observed outputs of the system (Maria, 1997, p. 7). Specifically in computer models, 

mistakes and errors will not be included, rather in the real systems mistakes and errors are 

adapted accordingly (Kelton, Sadowski, & Sadowski, 1997, p. 6).  

1.1.3 What are Simulations 

According to the National Training and Simulations Association, “Simulation is a 

representation of the functioning of a system or process” (National Training and Simulation 

Association, 2011, p. 3).  Through simulations, a model can be implemented with unlimited 

variations; as a result, it can produce complex scenarios and results. 

Simulations can be the procedure of the modeling system (Maria, 1997, p. 8). Through 

simulations, models can be used to experiment with or investigate a nearly unlimited variety of 

situations (see Figure 1). Conversely, experimenting in a real system would be expensive and 

impractical (Maria, 1997, p. 1). In other words, simulations are a functional approach that can 

define the performance of a system using either a mathematical model or a representational 

model, or both ( Sokolowski & Banks, 2010, p. 5).   
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Figure 1 A flow chart of a basic M&S system processors (Maria, 1997, p. 8)   

 Simulations can be classified under three main categories: Static vs. Dynamic, 

Continuous vs. Discrete, Deterministic vs. Stochastic (Kelton, Sadowski, & Sadowski, 1997, p. 9). 

However, whatever category a simulation falls into, each uses an approximate-numerical 

approach to solving the simulation (Bungartz, Zimmer , Buchholz, & Pfluger, 2014).  

Static vs. Dynamic – time will not be used as a function in a static model. Therefore, the 

system is considered to be in a neutral position relative to time. The “Buffon Needle” problem 

discussed earlier is an example of a static system. On the other hand, dynamic systems 

continuously evolve with time. The manufacturing plant model, also presented earlier, would be 

one example. However, in the interests of simplifying a model, dynamic systems can be treated 

and analyzed as a static system (Kelton, Sadowski, & Sadowski, 1997, p. 9).  
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Continuous vs. Discrete – Continuous simulations attempt to compute the deviations in 

a system continuously over time with regards to feedback controls. In other words, the system 

clock will continuously advance with time. As an example, flight simulators will continuously 

adapt to change accordingly as pilots provide feedback or control. While, a system clock in 

discrete simulations will only move forward from one event to the next. For example, in a 

plantation model a machine complete its task and changes the statuses from busy to idle (Fayek, 

2002, p. 2).  

Deterministic vs. Stochastic – Deterministic simulations are frequently defined in 

differential equations that have unique inputs. In other words, no random inputs are 

considered. As an example, steady state simulations with no progressive variations. A class 

schedule with fixed time periods would be an example of deterministic simulations. Conversely, 

stochastic simulations maneuver with random inputs. Moreover, unique inputs will lead to 

different outputs as a result of random components of the system. However, single simulations 

can only give one conceivable result. Therefore, many runs are used to estimate probability 

distributions and process (Kelton, Sadowski, & Sadowski, 1997, p. 9). 

1.2 Fluid Dynamics 

The first known documented fluid dynamics application, “the water screw” was 

invented by Archimedes, the famous Greek mathematician, physicist and inventor.  His well-

known theorem about fluid equilibrium is considered to be the first theory of fluid dynamics.  

Leonhard Euler and Daniel Bernoulli, working centuries later, also contributed greatly to the 

present day fluid dynamics equations (Rieutord, 2015, p. 1).  

According to Bungartz, fluid flow modeling is the most common type of M&S system, 

used in nearly every science and engineering application (Bungartz, Zimmer , Buchholz, & 
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Pfluger, 2014, p. 355). The nature of the multiplicity motion of fluid can be illustrated and 

analyzed by examining motion and deformation of materials lines and surfaces of fluids 

(Pozrikidis, 2009, p. 1). In other words, fluid dynamics could be theorized as the study of fluid 

flow, convective heat transfer and species mass transfer (Kleinstreuer, 2010, p. 3).  

“CFD (computational fluid dynamics) is a set of numerical methods applied to obtain 

approximate solutions of problems of fluid dynamics and heat transfer” (Zikanov, 2010, p. 1). 

Fluid dynamics calculations are governed by three rudimentary principles: the conservation of 

mass, Newton’s second law and the conservation of energy. By using these equations in a form 

of differential equations, a numerical solution can be obtained. However, the final product of 

CFD is a collection of numbers; numerical analysis methods should be used to understand the 

results (Wendt, Anderson, & Von Karman Institute, 2008, p. 6). In depth details about CFD 

principles and methods are explained in section 1.4. 

1.2.1 Fluid vs. Solid 

A fluid is anything that flows; it could be either liquid or gas (Pedley, 1997, p. 1). At the 

same time, a fluid can be distinguished as any material in a condition that cannot stand firm to 

shear forces (Bungartz, Zimmer , Buchholz, & Pfluger, 2014, p. 356). When presented with shear 

stress, fluid will deform. Moreover, even when the force is removed, a fluid will continue to 

deform and will not recover its original shape (Hauke, 2008, p. 7).   

To sum up, the differentiations of fluids and solid materials are governed by “rheological 

Law”, which explains how a matter deforms with respect to the magnitude of the stress 

(Rieutord, 2015, p. 1).  Nevertheless, with sufficient potential and kinetic energy, fluids can be 

transformed into solids and solids can transform into fluids (Pozrikidis, 2009, p. 2). In simpler 

terms, a fluid can be defined as continuous media.  That means, fluid will adopt the shape of the 
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vessel it is placed in, while solids have their own identity when it comes to their shape 

(Pozrikidis, 2009, p. 1).  

1.2.2 The theory of fluid as particle packets 

The theory of fluid particle is a generalized framework. This is an impeccable view of a 

piece of fluid; the body of fluid is subdivided in to small particles. These particles are small 

enough so that the fluid properties are uniform inside (Rieutord, 2015, p. 3). Hence, it is 

assumed that all molecules in that particle are identical, in other words, the fluid is assumed to 

be a homogeneous mixture (Pozrikidis, 2009, p. 2). Nevertheless, a particle is big enough to 

enclose a large number of atoms or molecules; so that the fluid will assume the local 

thermodynamic equilibrium. Yet, such a particle is not considered to be a point mass, but 

instead, the surface of the particle will allow contacting forces with other particles (Rieutord, 

2015, p. 3).   

1.2.3 Fluid Kinematics 

Establishing a mathematical relationship between the relative motion of fluid particles 

and structure of a flow is defined as fluid motion. Also, fluid dynamics focuses on the forces 

acting up on a fluid body by external conditions such gravitational forces, as well as forces 

developing inside the fluid such as stress and tension. Hence, the combination of fluid motion 

and fluid dynamics is called fluid kinematics (Pozrikidis, 2009, p. 2). 

1.2.3.1 Continuous Media 

The motion and state of a fluid can be identified by its velocity, pressure and density at a 

given point in space and time (Pedley, 1997, p. 1). Since it is impracticable to describe the 

motion of every molecule and atoms individually in a fluid, only the mean motion of a fluid can 

be taken in to account. In other words, the atoms or molecules that create the fluid flow will be 
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replaced by an assumed medium that acts as the mean motion. Therefore, in order to validate 

that assumption, the scale 𝐿, of the interested area must be large compared to mean free path 𝑙 

of atoms and molecules. This equation is defined as Knudsen Number (Rieutord, 2015, p. 2). 

𝐾𝑛 =  
𝑙
𝐿

 

Equation 1-1 

1.2.3.2 Lagrangian Specification 

Lagrangian specification uses the initial position of a fluid particle as a reference to 

identify changes to a moving particle (Pedley, 1997, p. 7). In other words, the measuring 

instrument or the computational mesh is not in a fixed position (see Figure 2), instead, the mesh 

computes and reports the fluid changes while moving through the fluid domain (Kleinstreuer, 

2010, p. 22). Thus, every fluid particle has a unique equation following its path.  Since, the fluid 

domains have infinite numbers of particles, the position of any individual particle is identified by 

stipulating its position 𝑥0 at time 𝑡 =0. Hence, Equation 1-2 can be used to locate the position of 

individual particle 𝑥 at any given time 𝑡 (Hauke, 2008, p. 11).  

𝑥 = 𝑥(𝑡, 𝑥0) 

Equation 1-2 

 When Lagrangian specification follows large distortions of the fluid domain it attempts 

to regenerate the meshing operations recurrently. As a result, this will consume large amounts 

of computing power when creating the mesh (Donea, Huerta, Ponthot, & Rodriguez-Ferran, 

2004, p. 413).   
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For instance, let’s consider an example of measuring the temperature of a flowing 

stream of a river using a thermometer. Also, the thermometer is fixed in to a very light boat and 

the boat moves at exactly the same rate as the flowing stream.  In this example, because the 

thermometer moves with the fluid particle, it will be reading the temperature of the same fluid 

particle with respect to time (Hauke, 2008, p. 12). Hence, the distorted areas of the mesh will 

frequently regenerate with time. 

 

Figure 2 One dimensional example of a Lagrangian Method 

1.2.3.3 Eulerian Specification 

According to the Encyclopedia of Computational Mechanics, Eulerian specification is 

broadly used in mathematical modeling of fluid dynamics simulations (Donea, Huerta, Ponthot, 

& Rodriguez-Ferran, 2004, p. 413). Eulerian method involves measuring the fluid motion with 

respect to fixed instruments (Pedley, 1997, p. 2). In other words, the measurement instrument 

or computational mesh is considered to be fixed and the fluid domain is moving relative to the 

mesh (see Figure 3). Mathematically, the velocity 𝑣 at every spatial point 𝑥 in the fluid domain 

can be calculated at any instant of time 𝑡 using Equation 1-3 (Hauke, 2008, p. 12). 

𝑣 = 𝑣(𝑥, 𝑡) 

Equation 1-3 
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A trivial example would be identifying the velocity of stream flow in a river using a flow 

meter (Rieutord, 2015, p. 3). Depending on the river bank location that the flow meter is fixed, 

the velocity of the flow could be either fast or slow at any given time. Also, the flow meter is 

measuring the velocity of the fluid particles as they pass a fixed point. Hence, the fluid domain is 

not calculated as it changes; instead, the calculations are centered on a fixed three-dimensional 

domain, and the fluid flows through it (Hauke, 2008, p. 13).  

 

Figure 3 One dimensional example of a Eulerian Method 

1.2.3.4 Arbitrary Lagrangian-Eulerian Specification (ALS) 

With the effort of improving the accuracy of the mesh, a combination of Lagrangian and 

Eulerian specification was developed called Arbitrary Lagrangian-Eulerian specification (ALS). 

Depending on the applications, this method is commonly used in modern computational 

dynamics tools (Donea, Huerta, Ponthot, & Rodriguez-Ferran, 2004, p. 413). It calculates and 

records the data at points which move arbitrarily relative to the fluid domain. Moreover, if the 

fluid properties are computed at the mesh nodes and after that if the mesh moves, ALS can be 

used to calculate the fluid variables at the mesh nodes (Hauke, 2008, p. 15).  

 In addition, in ALE specification, the computational mesh could be moved as in the 

Lagrangian method or be held constant as in the Eulerian method, or, it could be moved in an 
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arbitrary way as using some combination of both (see Figure 4). Hence, by using the ALS 

method, the mesh resolution can be increased to a greater extent than it can by only using 

Eulerian way; or, distortions of the mesh can be adjusted for more precisely than they can by 

only using the Lagrangian way (Donea, Huerta, Ponthot, & Rodriguez-Ferran, 2004, p. 414). 

 

Figure 4 One dimensional example of an ALS method 

1.2.4 Forces and stresses  

Two main forces act on fluid particles; homogeneous forces acts on the volume surface 

of the particle, and the surface forces acts on the boundaries of the particle. A moving fluid 

particle will experience these forces as a total vector for any direction in the Cartesian plane 

(Rieutord, 2015).   

1.2.4.1 Body forces 

Body forces act on the whole material volume at a distance; such as gravitational, 

electrical and magnetic forces. Electrical or electromagnetic forces occur when particles contain 

molecules of polarized material or the fluid is electrically charged (Pozrikidis, 2009, p. 163). 

These forces do not have a direct relationship or direct contact with the particle. Instead, the 
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forces act on a per unit volume or per unit mass of the fluid element (Wendt, Anderson, & Von 

Karman Institute, 2008, p. 28).  

If 𝑓𝑣 Is the volume force and 𝑓𝑚 is the massic force, respectively, 

𝑓𝑣 =  𝐹𝑜𝑟𝑐𝑒
𝑉𝑜𝑙𝑢𝑚𝑒

 𝑓𝑛 =  𝐹𝑜𝑟𝑐𝑒
𝑚𝑎𝑠𝑠

 

Hence, body forces acting on the x direction are, 

�𝐵𝑜𝑑𝑦 𝑓𝑜𝑟𝑐𝑒𝑠 𝑜𝑛
𝑥 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 � =  𝜌𝑓𝑥 (𝑑𝑥 𝑑𝑦 𝑑𝑧) 

Equation 1-4 

For an example, if 𝑔 is the acceleration of gravity; and 𝑑𝐹𝑔 is the gravitational force acting on a 

fluid particle that has a volume of 𝑑𝑉𝑔, density of 𝜌 and mass 𝑑𝑚𝑔 = 𝜌𝑑𝑉𝑔 

𝑑𝐹𝑔 = 𝑔𝜌𝑑𝑉𝑔 

Equation 1-5 

The right hand side of the Equation 1-5 is acceleration and mass; which means the left 

hand side will be a force. However, gravitational body forces are independent from molecular 

motion. In other words, whether the fluid is motionless or flows, a mass of the same fluid 

weighs the same (Pozrikidis, 2009, p. 164).  

Likewise, by integrating the Equation 1-5, total force over a given volume domain(𝑉) as per unit 

volume is, 

𝐹𝑣 =  �𝐹𝑣𝑑𝑉
𝑣

 

Equation 1-6 
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Or, per unit mass  

𝐹𝑣 =  �𝜌𝐹𝑚𝑑𝑉
𝑣

 

Equation 1-7 

Equation 1-6 and Equation 1-7 can be generalized as, 

𝑓𝑣  =  𝜌𝑓𝑚 

Equation 1-8 

1.2.4.2 Surface forces 

On the other hand, surface forces act directly on the fluid element surface; such as, 

bubbles rising through a liquid or the hood of a moving vehicle (Pozrikidis, 2009, p. 164).  There 

are two main reasons for surface forces. (a)  Surrounding fluid elements inflict a pressure on the 

surface of the fluid element, and (b) due to tugging and pulling actions created by friction of the 

outside surfaces of fluid elements(see Figure 5 ), shear and normal stress acts on the fluid 

particle (Wendt, Anderson, & Von Karman Institute, 2008). In order to understand the physical 

origin of the surface forces, it is crucial to consider the direction of molecular motion and to 

differentiate between gases and liquids (Pozrikidis, 2009, p. 164).  

 

Figure 5 Forces acting on a microscopic fluid particle (Hauke, 2008, p. 36) 
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The force acting on a surface of 𝑑𝑆 is, 

𝑑𝐹𝑠 =  𝑓𝑠𝑑𝑆 

Equation 1-9 

When integrated for the whole surface of the fluid particle, 

𝐹𝑠 =  �𝑓𝑠𝑑𝑆
𝑆

 

Equation 1-10 

As an example, pressure acting on a fluid particle is illustrated in Figure 6. Therefore, for 𝑛 

number of directions, 

𝐹𝑠 =  −𝑝𝑛 

 

Figure 6 Pressure inserting on all directions (Hauke, 2008, p. 34) 

1.2.4.3 Traction and the stress tensor 

Surfaces forces and stresses depend on the orientation of the surface. Hence, derivation 

of the mathematical formulas for surface forces is much more complex than body forces. 

Specifically, when there are infinite number planes at a point space, this condition needs to be 

considered for the derivation (Hauke, 2008, p. 35).  
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To calculate stress on a fluid particle, the planes are broken down to three perpendiculars 

planes. As shown in Figure 7, a surface area 𝑑𝑆 centered at a point 𝑋 =  (𝑥,𝑦, 𝑧) in fluid 

particle.  

 

Figure 7 Surface of fluid used to demonstrate the traction and stress tensor 

At point 𝑥, the direction of the unit vector normal to the surface is defined by 𝑛 =

 (𝑛𝑥 ,𝑛𝑦,𝑛𝑧) . As explained in section 1.2.4.2, the surface forces (𝑑𝐹𝑆) can be in any direction. In 

other words, it may carry elements tangential to the surface or normal to the surface.  

 The average stress acting on a surface is a ratio between surface force, 𝑑𝐹𝑆 and the 

area of the surface, 𝑑𝑆. Thus, when the surface area becomes microscopic, average stress 

trends toward a limit called “traction exerted on an infinitesimal surface, 𝑓” (Pozrikidis, 2009). 

Hence, 

𝑓 ≡  
𝑑𝐹𝑆

𝑑𝑆
 

Equation 1-11 
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Repositioning Equation 1-11,  

𝑑𝐹𝑆 =  𝑓𝑑𝑆 

Equation 1-12 

Equation 1-11 and Equation 1-12 are crucial in understanding that the traction is defined 

only when the location and the side of the surface are indicated. Likewise, by using the 

coordinates of point 𝑥 and the orientation of the unit normal vector, 𝑛, can be defined as, 

𝑓(𝑋,𝑛) 

Equation 1-13 

The three scalar components of traction are denoted by parentheses in the Equation 1-13. 

Similarly, using Equation 1-12 and Equation 1-13, traction exerted on a microscopic surface that 

is represented by perpendicular axis of 𝑥,𝑦, 𝑧 can be defined as, 

𝑓𝑥 =  �𝑓𝑥
(𝑥),𝑓𝑦

(𝑥),𝑓𝑦
(𝑥)� 

𝑓𝑦 =  �𝑓𝑥
(𝑦),𝑓𝑦

(𝑦),𝑓𝑦
(𝑦)� 

𝑓𝑧 =  �𝑓𝑥
(𝑧),𝑓𝑦

(𝑧),𝑓𝑦
(𝑧)� 

Equation 1-14 
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Figure 8 Stress tensor on a 3D fluid particle stacked on one point (Pozrikidis, 2009, p. 167) 

By stacking these three vectors on a single point in a specific order, a 3 ×  3 stress tensor can be 

obtained (see Figure 8). 

𝜏 =  

⎩
⎨

⎧𝑓𝑥
(𝑥),𝑓𝑦

(𝑥),𝑓𝑦
(𝑥)

𝑓𝑥
(𝑦),𝑓𝑦

(𝑦),𝑓𝑦
(𝑦)

𝑓𝑥
(𝑧),𝑓𝑦

(𝑧),𝑓𝑦
(𝑧)
⎭
⎬

⎫
 

Equation 1-15 

Next, traditional two-index notation can used to reform the stress tensor. 

𝜏𝑖𝑗 ≡  𝑓𝑗
(𝑖) 

Where 𝑖, 𝑗 =  𝑥,𝑦, 𝑧 

Equation 1-16 

Hence, Equation 1-15 can be written as, 

𝜏 =  �
𝜎𝑥𝑥,𝜎𝑥𝑦 ,𝜎𝑥𝑧
𝜎𝑦𝑥,𝜎𝑦𝑦 ,𝜎𝑦𝑧
𝜎𝑧𝑥 ,𝜎𝑧𝑦 ,𝜎𝑧𝑧

� 

Equation 1-17 
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To understand this notation, one must consider a two dimensional flow. Since there is 

no 𝑧 axis, all the 𝑧 axis components would be either zero or constant. Hence, a 2 × 2 stress 

tensor would look like, 

𝜏 =  �
𝜎𝑥𝑥,𝜎𝑥𝑦 ,𝜎𝑥𝑧
𝜎𝑦𝑥,𝜎𝑦𝑦 ,𝜎𝑦𝑧
𝜎𝑧𝑥 ,𝜎𝑧𝑦 ,𝜎𝑧𝑧

� 

𝜏 =  �
𝜎𝑥𝑥,𝜎𝑥𝑦
𝜎𝑦𝑥,𝜎𝑦𝑦� 

Equation 1-18 

The total forces acting on the fluid surface depends on the foreground faces and 

background faces. Hence, some faces will go through a dragging action and some will go through 

a tugging action. In Figure 5, foreground faces are those where the normal vectors are line up 

facing the coordinate axis and background faces are normal vectors in the opposite direction of 

the coordinate axis (Hauke, 2008). 

Moreover, normal stress acts perpendicular to the faces they represent. In Figure 9 

normal stress is denoted by 𝜏𝑥𝑥  and it acts towards the 𝑥 direction. Also, 𝜏𝑥𝑥  is a function of 

time rate of change of volume of the fluid particle it represents (Wendt, Anderson, & Von 

Karman Institute, 2008). To demonstrate, in Equation 1-17, normal stress components are, 

𝜏𝑥𝑥 , 𝜏𝑦𝑦, 𝜏𝑧𝑧 

Equation 1-19 
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Figure 9 Normal Stress 

On the other hand, shear stress acts tangential to the surface they represent. In the 

Figure 10, shear stress is represented by 𝜏𝑥𝑦 acting on the 𝑥𝑦 plane.  Also, 𝜏𝑥𝑦 is a function of 

time rate of change of the shearing deformation of the fluid particle (Wendt, Anderson, & Von 

Karman Institute, 2008). Using Equation 1-17, shear stress components are, 

𝜏𝑥𝑦, 𝜏𝑥𝑧, 𝜏𝑦𝑥 , 𝜏𝑦𝑧, 𝜏𝑧𝑥 , 𝜏𝑧𝑦  

Equation 1-20 

 

Figure 10 Shear stress 
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1.3 Material Derivative and Governing Equations 

The most common types of specification in CFD applications are Eulerian and ALS 

specifications. However, in these specifications the fluid particles are not tracked and the fluid 

motion is given with respect to arbitrary points (Hauke, 2008, p. 15).   

As a result, to obtain particle properties, conservation laws needs to be applied to fluid 

properties as vector or scalar functions of space 𝑥 and time 𝑡; such as, Velocity  𝑣(𝑥, 𝑡) , 

Temperature 𝑇(𝑥, 𝑡) or Density 𝜌(𝑥, 𝑡) or any other fluid properties (Zikanov, 2010, p. 12) . 

Before applying the governing equations of fluid dynamics, it is essential to establish the 

common aerodynamic notations in vector and scalar units, which is called the substantial 

derivative (Wendt, Anderson, & Von Karman Institute, 2008, p. 18). It is important to 

understand the physical aspects of substantial derivative because the basics of deriving the 

governing equations of fluid dynamics are based on the substantial derivative method.  

The governing equations of fluid dynamics are based on three equations; Conservation 

of mass, conservation of momentum and conservation of energy. The governing equations for 

unsteady, three dimensional, compressible, viscous flow is, 

Conservation of mass, 

𝑑
𝑑𝑡

 𝑀(𝑉𝑐) =  𝑀̇𝑖𝑛 −  𝑀̇𝑜𝑢𝑡 

Where, 𝑀̇ is the mass flow rate. 

Conservation of momentum, 

𝑑
𝑑𝑡

 𝑃(𝑉𝑐) =  𝐿𝑀̇𝑖𝑛 −  𝐿𝑀̇𝑜𝑢𝑡 +  �𝐹𝑒𝑥𝑡 
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Where, 𝐿𝑀̇ is the linear momentum and ∑𝐹𝑒𝑥𝑡 is the external forces acting on the particle. 

Conservation of energy, 

𝑑
𝑑𝑡

 𝐸(𝑉𝑐) =  𝐸𝑁̇𝑖𝑛 −  𝐸𝑁̇𝑖𝑛 +  𝑊̇𝑒𝑥𝑡 +  𝑄̇𝑖𝑛 

Where, 𝐸𝑁̇ is energy flux, 𝑊̇ is work done per unit time and 𝑄̇ is the heat added per unit time. 

The derivations of the equations are explained in the sections 1.3.1.2, 1.3.1.3 and 1.3.1.4, 

respectively.  

1.3.1.1 Substantial, Local and Convective Derivative 

Illustrating the motion of fluids is difficult because fluid moves within a three 

dimensional environment. When considering fluid motion, an artificial coordinate system is 

placed relative to the movement being analyzed (Basniev, Dmitriev, & Chilingar, 2012, p. 19).  

Therefore, a Cartesian coordinate system with three mutually orthogonal axes (x,y,z) will be 

introduced to describe the fluid motion (see Figure 11). The point 𝐵(𝑥1𝑦1𝑧1) can be described 

by vectors 𝚤 , 𝚥 ��⃗ 𝑎𝑛𝑑 𝑘�⃗  that start at a common origin of the Cartesian axes and end in any space 

coordinates (𝑢, 𝑣,𝑤) and time (𝑡) (Pozrikidis, 2009, p. 4).  
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Figure 11 Location of a fluid particle expressed in a Cartesian coordinates system 

Before applying fluid conservative rules, it is crucial to understand the substantial 

derivative physics of fluid mechanics.  The following material derivative method was used as 

presented in the Von Karman Institute for Fluid Dynamics (Wendt, Anderson, & Von Karman 

Institute, 2008). 

The vector velocity in a Cartesian space can be defined by following expression. 

𝑉�⃗ = 𝑢𝚤 + 𝑣𝚥 + 𝑤𝑘�⃗  

Equation 1-21 

Where velocity components can be defined by, 

𝑢 = 𝑢(𝑥,𝑦, 𝑧, 𝑡) 

𝑣 = 𝑣(𝑥,𝑦, 𝑧, 𝑡) 

𝑤 = 𝑤(𝑥,𝑦, 𝑧, 𝑡) 

Equation 1-22 
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These notations are considered to be general, and will apply to any fluid property such as 

density or temperature. Also, 𝑢, 𝑣 or 𝑤 are functions of both space and time in a fluid domain. 

Such as, 

𝜌 = 𝜌(𝑥,𝑦, 𝑧, 𝑡) 

𝑇 = 𝑇(𝑥,𝑦, 𝑧, 𝑡) 

If the density of the fluid particle in Figure 11 at point 0 (common origin of the three axes) and 

at time 𝑡 = 0 is, 

𝜌 = 𝜌(𝑥,𝑦, 𝑧, 𝑡) 

Equation 1-23 

After a time of 𝑡 =  𝑡1 the particle has moved to a new point 𝐵(𝑥1𝑦1𝑧1) (see Figure 11). Hence, 

at this time and point of space, the density of the particle can be mathematically expressed as, 

𝜌𝐵 =  𝜌2 =  𝜌(𝑥1,𝑦1,𝑧1,𝑡2,) 

Equation 1-24 

Combining the Taylor’s series regarding points and Equation 1-23, 𝜌2 can be expresses as 

follows, 

𝜌2 =  𝜌1 +  �
𝜕𝜌
𝜕𝑥
�
1

(𝑥2 −  𝑥1) +  �
𝜕𝜌
𝜕𝑦
�
1

(𝑦2 −  𝑦1) +  �
𝜕𝜌
𝜕𝑧
�
1

(𝑧2 −  𝑧1) + �
𝜕𝜌
𝜕𝑡
�
1

(𝑡2 −  𝑡1) 

After rearranging and dividing by(𝑡2 −  𝑡1), 

𝜌2 −  𝜌1
𝑡2 −  𝑡1

=  �
𝜕𝜌
𝜕𝑥
�
1
�
𝑥2 −  𝑥1
𝑡2 −  𝑡1

� + �
𝜕𝜌
𝜕𝑦
�
1
�
𝑦2 −  𝑦1
𝑡2 −  𝑡1

� + �
𝜕𝜌
𝜕𝑧
�
1
�
𝑧2 −  𝑧1
𝑡2 −  𝑡1

� + �
𝜕𝜌
𝜕𝑡
�
1

 

Equation 1-25 
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The left side of the equation denotes the average density change with reference to average time 

change(∆𝜌/∆𝑡), when the fluid particle moves from point 1 to 2. By applying limits to the left 

side of the Equation 1-25, 

lim
𝑡2→𝑡1

�
𝜌2 −  𝜌1
𝑡2 −  𝑡1

� ≡  
𝐷𝜌
𝐷𝑡

 

In the above equation, as the fluid particle moves from point 1, 𝐷𝜌/𝐷𝑡  the symbol 

represents the instantaneous time rate of change in density along the fluid particle trajectory. 

To explain,  𝐷𝜌/𝐷𝑡 is the change of density in one individual fluid particle as it move in space. In 

other words, if a density meter is locked onto one individual fluid particle and it measures the 

change of density as it moves within the space, it will be defined as a time rate of change in 

density.  This is the classification of substantial derivative. 

  On the contrary, (𝜕𝜌/𝜕𝑡) is the definite time rate of change at the fixed point 1. Such 

as, the density changes when it moves across the point 1. For instance, the density meter will be 

fixed to point 1 and it will report the density change of the fluid particle as it moves within it. 

This is called local derivative. In brief ,𝐷𝜌/𝐷𝑡 and (𝜕𝜌/𝜕𝑡) are mathematically and physically 

different (Wendt, Anderson, & Von Karman Institute, 2008, p. 20).  

Returning to Equation 1-25 and applying limits, 

lim
𝑡2→𝑡1

�
𝑥2 −  𝑥1
𝑡2 −  𝑡1

� ≡  𝑢 

lim
𝑡2→𝑡1

�
𝑦2 −  𝑦1
𝑡2 −  𝑡1

� ≡  𝑣 

lim
𝑡2→𝑡1

�
𝑧2 −  𝑧1
𝑡2 −  𝑡1

� ≡  𝑤 
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Hence, Equation 1-25 can be written as, 

𝐷𝜌
𝐷𝑡

= 𝑢 �
𝜕𝜌
𝜕𝑥
� +  𝑣 �

𝜕𝜌
𝜕𝑦
� +  𝑤 �

𝜕𝜌
𝜕𝑧
� +  �

𝜕𝜌
𝜕𝑡
�  

Equation 1-26 

Likewise, using Cartesian coordinates and vector notations, 

∇ ≡ 𝚤  
𝜕
𝜕𝑥

+  𝚥  
𝜕
𝜕𝑦

+ 𝑤��⃗  
𝜕
𝜕𝑧

 

Equation 1-27 

As a result, Equation 1-26 can be written in vector coordinates as the substantial derivative 

operator, 

 

𝐷𝜌
𝐷𝑡

≡  
𝜕
𝜕𝑡

+ �𝑉�⃗  ∇� 

Equation 1-28 

�𝑉�⃗  ∇� is classified as convective derivative. In other words, it is the time rate of change 

due to the fluid particle moving from one location to another, where the properties of the fluid 

are spatially varied. To sum up, 𝐷𝜌/𝐷𝑡 is the time rate of change following a fluid particle, 

substantial derivative; (𝜕𝜌/𝜕𝑡) is the time rate of change in a fixed location, local derivative; 

�𝑉�⃗  ∇� is the time rate of change due to change of location properties, convective derivative 

(Wendt, Anderson, & Von Karman Institute, 2008, p. 21). Similarly, the substantial derivative can 

be applied to any other properties, such as pressure (𝑝), temperature (𝑇) or velocity (𝑢); hence 

it could be expressed as 𝐷𝑝/𝐷𝑡, 𝐷𝑇/𝐷𝑡, 𝐷𝑣/𝐷𝑡. 
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Time rate of change of temperature can be written as, 

𝐷𝑇
𝐷𝑡�

𝑆𝑢𝑏𝑠𝑡𝑎𝑛𝑡𝑖𝑎𝑙
𝐷𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒

 ≡
𝜕𝑇
𝜕𝑡�

𝐿𝑜𝑐𝑎𝑙
𝐷𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒

 +   �𝑉�⃗  ∇����
𝐶𝑜𝑛𝑣𝑒𝑐𝑡𝑖𝑣𝑒 
𝐷𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒

 

Where,    

𝑇 = 𝑢 �
𝜕𝑇
𝜕𝑥
� +  𝑣 �

𝜕𝑌
𝜕𝑦
� +  𝑤 �

𝜕𝑌
𝜕𝑧
� +  �

𝜕𝑇
𝜕𝑡
� 

Equation 1-29 

As an example, let us consider the scenario of a very large pot of water placed over an 

open flame. The flame is concentrated on the middle of the pot. A thermometer is used to take 

the temperature of the water in different locations. The first position is in an area furthest away 

from the middle; hence, it will read the lowest temperature. The thermometer is gradually 

moved towards the middle of the pot; the temperature readings will increase as it gets closer to 

the middle of the pot. This is equivalent to the convective derivative in Equation 1-29. At the 

same time, let us consider a situation when a cup of boiling water is added near the location of 

the thermometer. The temperature readings will momentary increase at the same time when 

the hot water is added. This is similar to the local derivative in Equation 1-29. The net 

temperature difference as the thermometer is moving closer to the center is a combination of 

both the actions of moving the thermometer to the center and adding boiling water at the same 

instant, hence, this net temperature change is analogous to the substantial derivative in 

Equation 1-29. 

The above process is used to explain the substantial derivative physics. However, for 

Equation 1-23, total differential calculus could be used to archive Equation 1-26.  
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That is,   𝜌 = 𝜌(𝑥,𝑦, 𝑧, 𝑡)  

by apply the chain rule using differential calculus, 

𝐷𝜌 =
𝜕𝜌
𝜕𝑥

 𝑑𝑥 +  
𝜕𝜌
𝜕𝑦

 𝑑𝑦 + 
𝜕𝜌
𝜕𝑧

 𝑑𝑧 +  
𝜕𝜌
𝜕𝑡

 𝑑𝑡 

𝐷𝜌
𝑑𝑡

=
𝜕𝜌
𝜕𝑥

 
𝑑𝑥
𝑑𝑡

+  
𝜕𝜌
𝜕𝑦

 
𝑑𝑦
𝑑𝑦

+  
𝜕𝜌
𝜕𝑧

 
𝑑𝑧
𝑑𝑧

+ 
𝜕𝜌
𝜕𝑡

  

Equation 1-30 

Since /𝑑𝑡 = 𝑢 , 𝑑𝑦/𝑑𝑡 = 𝑣 and 𝑑𝑧/𝑑𝑡 = 𝑤,  

𝐷𝜌
𝑑𝑡

=
𝜕𝜌
𝜕𝑥

 𝑢 + 
𝜕𝜌
𝜕𝑦

 𝑣 + 
𝜕𝜌
𝜕𝑧

 𝑤 +  
𝜕𝜌
𝜕𝑡

 

Equation 1-31 

By compering Equation 1-26 and Equation 1-31, it is clear that the substantial derivative is the 

same as the total derivative with respect to time (Rieutord, 2015, p. 5).  

1.3.1.2 Mass conversation 

Conservation of mass is very intuitive and can be observed in the environment 

(Kleinstreuer, 2010, p. 51). The principle of conservation of mass dictates that the mass of a 

fixed volume of fluid particle is constant (Hauke, 2008, p. 75). In other words, in a fluid that 

contains the same number of fluid particles, “matter neither be created nor destroyed” (Tu & 

Yeoh, Guan Heng, 2007, p. 65). Following material derivative was used as provided in Rieutord 

(2015). 

Mass of fixed volume particle of 𝑣 is, 
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𝑀 =  �𝜌𝑑𝑉
(𝑣)

 

Equation 1-32 

If, mass flux density (variation with time) = 𝜌𝑣 

Overlapping Surface = (𝑆) 

Volume = (𝑉) 

𝑑𝑆 be the surface element oriented by the external normal 𝑛 so that 𝑑𝑆 =  𝑛𝑑𝑆 

Hence, 

𝑑𝑀
𝑑𝑡

=  −  � 𝜌𝑣 ∙  𝑑𝑆
(𝑠)

 ↔  �
𝜕𝜌
𝜕𝑡

 𝑑𝑉
(𝑣)

=  −  � ∇ ∙ 𝜌𝑣𝑑𝑉
(𝑣)

 

Equation 1-33 

↔  � �
𝜕𝜌
𝜕𝑡

+  ∇ ∙ 𝜌𝑣�𝑑𝑉
(𝑣)

= 0 

Equation 1-34 

In Equation 1-33, orientation of the surface (S) is the reason for the minus sign.  

Hence, when 𝑣 is parallel to 𝑑𝑆 the mass 𝑀 decreases.  

Equation 1-34 is valid for any volume, thus, 

𝜕𝜌
𝜕𝑡

+  ∇ ∙ 𝜌𝑣 = 0 

Equation 1-35 

Equation 1-35 is also known as the continuity equation.   
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When the fluid is incompressible, the continuity equitation can also be expressed using 

the material derivative of 𝜌. Since the mass is constant, Equation 1-36 proves that the density of 

a fluid can be changed because the volume variation is expressed by ∇ ∙ 𝑣 (Rieutord, 2015, p. 

12).  

𝐷𝜌
𝐷𝑡

=  −𝜌∇ ∙ 𝑣 

Equation 1-36 

Instead of the volume of the particle, the physical quantities of a fluid, such as energy 

and momentum are attached to the mass of the fluid particle. Hence, when evaluating the 

losses and gains of a fixed volume, as in Equation 1-33, it is crucial to understand the quantity of 

the mass flux carried over across (𝑆). Flux is the amount of property carried across a surface per 

unit time (Hauke, 2008, p. 26). If 𝜇 is a physical quantity such as energy or momentum and 𝑆𝜇 is 

the volumetric sources, 

Variations of 𝜇 in V = 𝜇 carried by v through S + Sources of 𝜇 

Or in mathematical terms, 

𝑑
𝑑𝑡
�𝜌𝜇 𝑑𝑣
𝑣

=  −  � 𝜌𝜇 ∙  𝑑𝑆
(𝑠)

 + � 𝑆𝜇𝑑𝑉
(𝑣)

 

Equation 1-37 

Hence, 

�
𝜕𝜌𝜇
𝜕𝑡

 𝑑𝑣
𝑣

=  −  � ∇ ∙ (𝜌𝜇𝑣)𝑑𝑣
(𝑠)

 + � 𝑆𝜇𝑑𝑉
(𝑣)

 

↔  � �𝜇
𝜕𝜌
𝜕𝑡

+  𝜌
𝜕𝜌
𝜕𝑡
�  𝑑𝑉 =  −  �(𝜇∇ ∙ 𝜌𝑣 +  𝜇∇ ∙ 𝜌𝑣)𝑑𝑣 +  �𝑠𝜇𝑑𝑣

𝑣
 

𝑣𝑣
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Using the continuity equation, 

� 𝜌
𝜕𝜇
𝜕𝑡

 𝑑𝑣
𝑣

+  �  𝑑𝑣 ∙ ∇𝜇𝑑𝑉 =  �𝑆𝜇𝑑𝑣
𝑣𝑣

 

Equation 1-38 

Thus,  

� 𝜌
𝐷𝜇
𝐷𝑡

 𝑑𝑣 =  �𝑆𝜇𝑑𝑣
𝑣𝑣

 

Equation 1-39 

Since this equation is valid for any volume of fluid, hence it is valid locally as, 

𝜌
𝐷𝜇
𝐷𝑡

=  𝑆𝜇 

Equation 1-40 

Equation 1-40 can be derived using volume change of rate 𝑉(𝑡) attach to the fluid. Since the 

volume contains the same number of fluid particles, 

Variations of 𝜇 in 𝑉(𝑡) = Sources of 𝜇 

In mathematical terms,  

𝑑
𝑑𝑡
� 𝜌𝜇 𝑑𝑣
𝑣(𝑡)

=  � 𝑠𝜇
𝑣(𝑡)

𝑑𝑉  

Thus, 

𝑑
𝑑𝑡
� 𝜌𝜇 𝑑𝑣
𝑣(𝑡)

=  � �
𝐷(𝜌𝜇)
𝐷𝑡

+  𝜌𝜇∇ ∙ 𝑣�
𝑣(𝑡)
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𝑑𝑣 =  � �𝜇 �
𝐷𝜌
𝐷𝑡

+  𝜌∇ ∙ 𝑣� +  𝜌
𝐷𝜇
𝐷𝑡�

 𝑑𝑉
𝑣(𝑡)

 

Using the mass conservations Equation 1-36, 

→  
𝑑
𝑑𝑡
� 𝜌𝜇 𝑑𝑣
𝑣(𝑡)

=  � 𝜌
𝐷𝜇
𝐷𝑡

𝑑𝑉
𝑣(𝑡)

 

Equation 1-41 

Equation 1-41 is similar to Equation 1-40. This method of material derivation will be 

used for the next two conservations laws. This equation structure can be used for other fluid 

properties such as momentum, energy or entropy. Then 𝜇 will become velocity field, internal 

energy or entropy per mass unit, respectively (Rieutord, 2015, pp. 11-13).  

To sum up, in a flow that consists of the same molecules and with density of (𝑥, 𝑡) , velocity of 

𝑉(𝑥, 𝑡) and fluid domain volume of 𝛿𝑣; its mass 𝛿𝑚 =  𝜌𝛿𝑣 must remain constant (Zikanov, 

2010, p. 14). 

1.3.1.3 Momentum Conservation 

Newton’s second law of motion describes the rate of change in the momentum of a 

body and defines this change as being equal to the net force acting on it. This law describes the 

conservation of momentum in fluids (Zikanov, 2010, p. 16).  A fluid body would have momentum 

both due to its local acceleration, that is change of location in space and due to convective 

acceleration, and because a fluid particle may move to a location with different velocity (Pedley, 

1997).  The following momentum conservation equation is derived using the methods described 

in (Wendt, Anderson, & Von Karman Institute, 2008) and (Zikanov, 2010). 
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𝑑
𝑑𝑡

(𝑚𝑉)  =  𝐹 

Equation 1-42 

Since Equation 1-42 is a vector function, it could be divided in to three scalar relations along the 

𝑥,𝑦, and 𝑧 axes of the Cartesian coordinate system (see Figure 11).   

Considering the left side of Equation 1-42, the mass of the fluid can be defined as, 

𝑚 =  𝜌 (𝑑𝑥 𝑑𝑦 𝑑𝑧) 

Equation 1-43 

Also, the time rate of change of velocity is defined as acceleration. Hence, the left hand side of 

Equation 1-42 can be replaced by the material derivative. 

𝐹 =  𝜌
𝐷
𝐷𝑡

 (𝑉) 

Where, 

𝜌
𝐷
𝐷𝑡

 (𝑉) =  𝜌 �
𝜕
𝜕𝑡

 (𝑉) + (𝑉 ∙ ∇)𝑉� 

Equation 1-44 

Equation 1-45 can be written in Cartesian notation,  

𝜌
𝐷𝜌
𝑑𝑡

= 𝜌 �
𝜕𝑢
𝜕𝑥

 𝑢 + 
𝜕𝑢
𝜕𝑦

 𝑣 +  
𝜕𝑢
𝜕𝑧

 𝑤 +  
𝜕𝑢
𝜕𝑡�

 

𝜌
𝐷𝜌
𝑑𝑡

= 𝜌 �
𝜕𝑣
𝜕𝑥

 𝑢 + 
𝜕𝑣
𝜕𝑦

 𝑣 +  
𝜕𝑣
𝜕𝑧

 𝑤 +  
𝜕𝑣
𝜕𝑡�
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𝜌
𝐷𝜌
𝑑𝑡

= 𝜌 �
𝜕𝑤
𝜕𝑥

 𝑢 +  
𝜕𝑤
𝜕𝑦

 𝑣 +  
𝜕𝑤
𝜕𝑧

 𝑤 + 
𝜕𝑤
𝜕𝑡 �

 

Equation 1-45 

As discussed in section 1.2.4, there are two kinds of forces continually acting on a fluid element. 

Hence, using Equation 1-19 and Equation 1-20, 

Where 𝜌 𝐷𝜌
𝑑𝑡

= 𝑚𝑎𝑥  and 𝜕𝜏𝑥𝑥 
𝜕𝑥

+  𝜕𝜏𝑦𝑥 

𝜕𝑦
+  𝜕𝜏𝑧𝑥 

𝜕𝑧
= 𝐹𝑥 

𝜌
𝐷𝜌
𝑑𝑡

= 𝜌𝑓𝑥  + 
𝜕𝜏𝑥𝑥 

𝜕𝑥
+  
𝜕𝜏𝑦𝑥 

𝜕𝑦
+  
𝜕𝜏𝑧𝑥 

𝜕𝑧
 

Equation 1-46 

𝜌
𝐷𝜌
𝑑𝑡

= 𝜌𝑓𝑦 +  
𝜕𝜏𝑥𝑦 

𝜕𝑥
+ 
𝜕𝜏𝑦𝑦
𝜕𝑦

+  
𝜕𝜏𝑧𝑦 

𝜕𝑧
 

Equation 1-47 

𝜌
𝐷𝜌
𝑑𝑡

= 𝜌𝑓𝑧  +  
𝜕𝜏𝑥𝑧 

𝜕𝑥
+  
𝜕𝜏𝑦𝑧 

𝜕𝑦
+ 
𝜕𝜏𝑧𝑧 

𝜕𝑧
 

Equation 1-48 

The surface forces applied on the 𝑥 direction are illustrated in Figure 12. For illustrative 

purposes, 𝜏𝑖𝑗  represent the stress applied towards the 𝑗-direction on the plane perpendicular to 

the 𝑖-axis. Also, on the 𝑎𝑏𝑐𝑑 face in Figure 12, it is assumed that the only force in the 𝑥 direction 

is due to shear stress, 𝜏𝑦𝑥 𝑑𝑥 𝑑𝑧. Moreover, the face 𝑒𝑓𝑔ℎ is parallel to the 𝑎𝑏𝑐𝑑 face with a 

distance of 𝑑𝑦.  
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Hence, the shear force acting towards x direction from the face 𝑒𝑓𝑔ℎ is, 

�𝜏𝑦𝑥 + �
𝜕𝜏𝑦𝑥
𝜕𝑦 �𝑑𝑦�  𝑑𝑥 𝑑𝑧 

Equation 1-49 

 

 

Figure 12 Surface forces acting on the x-direction of a fluid particle (Wendt, Anderson, & Von Karman Institute, 

2008) 

It is important to highlight that the shear forces acting on the bottom of faces 𝑎𝑏𝑐𝑑 and 

𝑒𝑓𝑔ℎ are towards the negative 𝑥-direction[𝜏𝑧𝑥 𝑑𝑥𝑑𝑦] and those acting on the top of the faces 

are towards the positive 𝑥 direction�𝜏𝑦𝑥 + �𝜕𝜏𝑦𝑥
𝜕𝑦

𝑑𝑦�  , �𝜏𝑧𝑥 + �𝜕𝜏𝑧𝑥
𝜕𝑧

𝑑𝑧���.  
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The directions of these forces can be proven using the components of velocity. In Figure 

12, It is acknowledged that the velocities  𝑢, 𝑣 and 𝑤 are in the positive direction of the axes. In 

other words, the value of 𝑢 increases with positive 𝑦 direction. Hence, velocity on top of the 

𝑒𝑓𝑔ℎ face is slightly higher than on the 𝑒𝑓𝑔ℎ face. As a result, it creates a tugging motion that 

tries to move the fluid particle towards the positive x direction. Conversely, velocity is lower 

underneath the 𝑎𝑏𝑐𝑑 face than on the 𝑎𝑏𝑐𝑑 face. Hence, it creates a dragging motion on the 

fluid particle towards the negative 𝑥 directions. 

Similarly, other stress forces and directions are illustrated in Figure 12 can be justified in 

the same manner. However, the face 𝑎𝑑ℎ𝑒 is perpendicular to the x axis and the only force 

towards x direction is the pressure force (𝑝 𝑑𝑥 𝑑𝑦) acting towards the fluid particle.  

With reference to Figure 12, 

�𝑁𝑒𝑡 𝑓𝑜𝑟𝑐𝑒𝑠 𝑎𝑐𝑡𝑖𝑛𝑔
 𝑜𝑛 𝑋 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 �

=  �𝑝 −  �𝑝 +
𝜕𝑝
𝜕𝑥

𝑑𝑥�𝑑𝑦𝑑𝑧� + ��𝜏𝑥𝑥 +
𝜕𝜏𝑥𝑥
𝜕𝑥

𝑑𝑥� −  𝜏𝑥𝑥� 𝑑𝑦𝑑𝑧

+  ��𝜏𝑦𝑥 +
𝜕𝜏𝑦𝑥
𝜕𝑦

𝑑𝑦� −  𝜏𝑦𝑥� 𝑑𝑥𝑑𝑧 +  ��𝜏𝑧𝑥 +
𝜕𝜏𝑧𝑥
𝜕𝑧

𝑑𝑧� −  𝜏𝑧𝑥� 𝑑𝑥𝑑𝑦 

Equation 1-50 

Referring to Equation 1-4 from section 1.2.4.1, body forces acting in 𝑥 direction is, 

𝐹𝑥 =  𝜌𝑓𝑥(𝑑𝑥 𝑑𝑦 𝑑𝑧) 

Hence, by combining Equation 1-4 and Equation 1-50; and using algebraic simplification, 
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𝐹𝑥 = �−
𝜕𝑝
𝜕𝑥

+  
𝜕𝜏𝑥𝑥
𝜕𝑥

+  
𝜕𝜏𝑦𝑥
𝜕𝑦

+  
𝜕𝜏𝑧𝑥
𝜕𝑧 �  𝑑𝑥 𝑑𝑦 𝑑𝑧 +  𝜌𝑓𝑥  𝑑𝑥 𝑑𝑦 𝑑𝑧 

Equation 1-51 

Recalling Newton’s second law and Equation 1-43, 

𝑚 =  𝜌 (𝑑𝑥 𝑑𝑦 𝑑𝑧) 

Also, acceleration in 𝑥 direction is, 

𝑎𝑥 =  
𝐷𝑢
𝐷𝑡

 

Equation 1-52 

Combining Equation 1-42, Equation 1-43, Equation 1-51 and Equation 1-52, the momentum 

equation of 𝑥 direction is, 

𝜌
𝐷𝑢
𝐷𝑡

=  −
𝜕𝑝
𝜕𝑥

+  
𝜕𝜏𝑥𝑥
𝜕𝑥

+  
𝜕𝜏𝑦𝑥
𝜕𝑦

+  
𝜕𝜏𝑧𝑥
𝜕𝑧

+  𝜌𝑓𝑥 

Equation 1-53 

Similarly, the momentum equation for the 𝑦 and 𝑧 directions are, 

𝜌
𝐷𝑣
𝐷𝑡

=  −
𝜕𝑝
𝜕𝑦

+ 
𝜕𝜏𝑥𝑦
𝜕𝑥

+ 
𝜕𝜏𝑦𝑦
𝜕𝑦

+  
𝜕𝜏𝑧𝑦
𝜕𝑧

+  𝜌𝑓𝑦 

𝜌
𝐷𝑤
𝐷𝑡

=  −
𝜕𝑝
𝜕𝑧

+ 
𝜕𝜏𝑥𝑧
𝜕𝑥

+  
𝜕𝜏𝑦𝑧
𝜕𝑦

+ 
𝜕𝜏𝑧𝑧
𝜕𝑧

+  𝜌𝑓𝑧 

Equation 1-54 

Comparing Equation 1-46 and Equation 1-53, the difference in Equation 1-53 is due to the added 

pressure force of viscous actions acting on the surface. 
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Since the fluid particle is moving with the flow, Equation 1-53 and Equation 1-54 are in 

non-conservation form. Instead, they are designated as scalar equations. These equations, 

called Navier-Stokes equations, can be transformed into conservation form using the following 

method. 

The left hand side of the Equation 1-53 can be written in substantial derivative form, 

𝜌
𝐷𝑢
𝐷𝑡

=  𝜌 
𝜕𝑢
𝜕𝑡

+  𝜌𝑉�⃗ ∙ ∇𝑢 

Equation 1-55 

By rearranging, 

𝜕(𝑝𝑢)
𝜕𝑡

=  𝜌
𝜕𝑢
𝜕𝑡

+ 𝑢
𝜕𝜌
𝜕𝑡

 

Hence, 

𝜌
𝜕𝑢
𝜕𝑡

=  
𝜕(𝑝𝑢)
𝜕𝑡

−  𝑢
𝜕𝜌
𝜕𝑡

 

Equation 1-56 

Using the vector identity for the divergence, 

∇ ∙ �ρu𝑉�⃗ � = 𝑢∇ ∙ �ρ𝑉�⃗ � + (𝜌𝑉�⃗ ) ∙ ∇𝑢 

Rearranging, 

ρ𝑉�⃗ ∙ ∇u =  ∇  ∙ �ρu𝑉�⃗ � − 𝑢∇ ∙ (ρ𝑉�⃗ ) 

Equation 1-57 

Using Equation 1-56 and Equation 1-57 in Equation 1-55, 
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𝜌
𝐷𝑢
𝐷𝑡

=  
𝜕(𝜌𝑢)
𝜕𝑡

− 𝑢
𝜕𝜌
𝜕𝑡

− 𝑢∇ ∙ �𝜌𝑉�⃗ �+ ∇ ∙ (ρu𝑉�⃗  

𝜌
𝐷𝑢
𝐷𝑡

=  
𝜕(𝜌𝑢)
𝜕𝑡

− 𝑢 �
𝜕𝜌
𝜕𝑡

+  ∇ ∙ �𝜌𝑉�⃗ ��+  ∇ ∙ (𝜌𝑢𝑉�⃗ ) 

Equation 1-58 

Referring to Equation 1-35 it is shown that 𝜕𝜌/𝜕𝑡 +  ∇ ∙ 𝜌𝑣 = 0. Hence, Equation 1-58 can be 

written as, 

𝜌
𝐷𝑢
𝐷𝑡

=  
𝜕(𝜌𝑢)
𝜕𝑡

+  ∇ ∙ (𝜌𝑢𝑉�⃗ ) 

Equation 1-59 

Using Equation 1-59 in Equation 1-53, 

𝜕(𝜌𝑢)
𝜕𝑡

+  ∇ ∙ �𝜌𝑢𝑉�⃗ � =  −
𝜕𝑝
𝜕𝑥

+  
𝜕𝜏𝑥𝑥
𝜕𝑥

+  
𝜕𝜏𝑦𝑥
𝜕𝑦

+  
𝜕𝜏𝑧𝑥
𝜕𝑧

+  𝜌𝑓𝑥 

Equation 1-60 

Likewise, Equation 1-54 can be written as, 

𝜕(𝜌𝑢)
𝜕𝑡

+  ∇ ∙ �𝜌𝑢𝑉�⃗ � =  −
𝜕𝑝
𝜕𝑦

+  
𝜕𝜏𝑥𝑦
𝜕𝑥

+  
𝜕𝜏𝑦𝑦
𝜕𝑦

+  
𝜕𝜏𝑧𝑦
𝜕𝑧

+  𝜌𝑓𝑦 

𝜕(𝜌𝑢)
𝜕𝑡

+ ∇ ∙ �𝜌𝑢𝑉�⃗ � =  −
𝜕𝑝
𝜕𝑧

+  
𝜕𝜏𝑥𝑧
𝜕𝑥

+ 
𝜕𝜏𝑦𝑧
𝜕𝑦

+  
𝜕𝜏𝑧𝑧
𝜕𝑧

+  𝜌𝑓𝑧 

Equation 1-61 

Equation 1-60 and Equation 1-61 are the conservation form of Navier-stokes equations. 

Newton identified that shear stress in a fluid is proportional to the time rare-of-strain (velocity 

gradients), and he called them Newtonian fluids. Virtually all the engineering aerodynamics 

problems are considered to involve Newtonian fluids.  
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Hence,  

𝜏𝑥𝑥 =  𝜆∇ ∙  𝑉�⃗ + 2𝜇
𝜕𝑢
𝜕𝑥

 

𝜏𝑦𝑦 =  𝜆∇ ∙  𝑉�⃗ + 2𝜇
𝜕𝑣
𝜕𝑣

 

𝜏𝑧𝑧 =  𝜆∇ ∙  𝑉�⃗ + 2𝜇
𝜕𝑤
𝜕𝑤

 

𝜏𝑥𝑦 =  𝜏𝑦𝑥 =  𝜇 �
𝜕𝑣
𝜕𝑥

+  
𝜕𝑢
𝜕𝑦
� 

𝜏𝑥𝑧 =  𝜏𝑧𝑥 =  𝜇 �
𝜕𝑢
𝜕𝑧

+ 
𝜕𝑤
𝜕𝑥
� 

𝜏𝑦𝑧 =  𝜏𝑧𝑦 =  𝜇 �
𝜕𝑤
𝜕𝑦

+  
𝜕𝑣
𝜕𝑧
� 

Equation 1-62 

Stokes made the assumption that, 

𝜆 =  −
2
3
𝜇 

Where, 𝜆 is the molecular viscosity coefficient and 𝜇  is the bulk viscosity coefficient. 

By combining Equation 1-60 and Equation 1-62, Navier-stokes equations in conservation form 

can be obtained. 
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𝜕(𝜌𝑢)
𝜕𝑡

+
𝜕(𝜌𝑢2)
𝜕𝑥

+
𝜕(𝜌𝑢𝑣)
𝜕𝑦

+
𝜕(𝜌𝑢𝑤)
𝜕𝑧

=  −
𝜕𝑝
𝜕𝑥

+  
𝜕
𝜕𝑥

�𝜆∇ ∙  𝑉�⃗ + 2𝜇
𝜕𝑢
𝜕𝑥
� +  

𝜕
𝜕𝑦 �

 𝜇 �
𝜕𝑣
𝜕𝑥

+ 
𝜕𝑢
𝜕𝑦
�� +  

𝜕
𝜕𝑧 �

 𝜇 �
𝜕𝑢
𝜕𝑧

+ 
𝜕𝑤
𝜕𝑥
��

+  𝜌𝑓𝑥 

Equation 1-63 

Similarly, Equation 1-61 can also be written in conservation form, 

𝜕(𝜌𝑣)
𝜕𝑡

+
𝜕(𝜌𝑢𝑣)
𝜕𝑥

+  
𝜕(𝜌𝑣2)
𝜕𝑦

+
𝜕(𝜌𝑣𝑤)
𝜕𝑧

=  −
𝜕𝑝
𝜕𝑦

+
𝜕
𝜕𝑥 �

 𝜇 �
𝜕𝑣
𝜕𝑥

+ 
𝜕𝑢
𝜕𝑦
�� +  

𝜕
𝜕𝑦

�𝜆∇ ∙  𝑉�⃗ + 2𝜇
𝜕𝑣
𝜕𝑦
�  + 

𝜕
𝜕𝑧 �

 𝜇 �
𝜕𝑤
𝜕𝑦

+ 
𝜕𝑣
𝜕𝑧
��

+  𝜌𝑓𝑦 

𝜕(𝜌𝑤)
𝜕𝑡

+
𝜕(𝜌𝑢𝑤)
𝜕𝑥

+  
𝜕(𝜌𝑣𝑤)
𝜕𝑦

+
𝜕(𝜌𝑤2)
𝜕𝑧

=  −
𝜕𝑝
𝜕𝑦

+
𝜕
𝜕𝑥 �

 𝜇 �
𝜕𝑢
𝜕𝑧

+  
𝜕𝑤
𝜕𝑥
�� +

𝜕
𝜕𝑦 �

 𝜇 �
𝜕𝑤
𝜕𝑦

+  
𝜕𝑣
𝜕𝑧
��  +  

𝜕
𝜕𝑧
�𝜆∇ ∙  𝑉�⃗ + 2𝜇

𝜕𝑤
𝜕𝑧
�  

+  𝜌𝑓𝑧 

Equation 1-64 

1.3.1.4 Energy conversation 

Conservation of energy equations can be derived in the same way as mass conservation 

and momentum conservation. The basic theory behind conservation of energy is the first 

principle of thermodynamics in a fluid element. 
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�
𝑅𝑎𝑡𝑖𝑜 𝑜𝑓 𝑐ℎ𝑎𝑛𝑔𝑒 

𝑜𝑓 𝑒𝑛𝑒𝑟𝑔𝑦
𝑖𝑛𝑠𝑖𝑑𝑒 𝑡ℎ𝑒 𝑓𝑙𝑢𝑖𝑑 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒

� =  �
𝑁𝑒𝑡 𝑓𝑙𝑢𝑥 𝑜𝑓 ℎ𝑒𝑎𝑡
𝑔𝑜𝑖𝑛𝑔 𝑖𝑛 𝑡𝑜 𝑡ℎ𝑒
𝑓𝑙𝑢𝑖𝑑 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒

�+  �
𝑟𝑎𝑡𝑒 𝑜𝑓 𝑚𝑜𝑡𝑖𝑜𝑛 𝑑𝑢𝑒 𝑡𝑜 
𝑏𝑜𝑑𝑦 𝑎𝑛𝑑 𝑠𝑢𝑟𝑓𝑎𝑐𝑒

𝑓𝑜𝑟𝑐𝑒𝑠
� 

∆𝐸𝑆𝑦𝑠𝑡𝑒𝑚 = 𝑄𝑖𝑛 +  𝑊𝑒𝑥𝑡 

Equation 1-65 

𝑊𝑒𝑥𝑡 is the rate of motion due to body and surface forces. Recalling section 1.2.4.1, body forces 

can be represented as, 

𝜌𝑓 ∙ 𝑉�⃗ (𝑑𝑥 𝑑𝑦 𝑑𝑧) 

Equation 1-66 

As described in section 1.3.1.3, surface forces acting on a fluid particle are a 

combination of pressure forces plus shear and normal stresses. With reference to Figure 12, 

work done in the 𝑥 direction is a function of the velocity and forces acting on the surfaces.  In 

order to highlight the energy equations, forces acting in the 𝑥 direction are redrawn in Figure 

13.  
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Figure 13 Energy acting on the x direction of a fluid particle (Wendt, Anderson, & Von Karman Institute, 2008) 

Analyzing the forces acting on the face 𝑎𝑑ℎ𝑒 and 𝑏𝑐𝑔𝑓 in Figure 13, the net rate of work applied 

by pressure in the 𝑥 directions is, 

�𝑢𝑝 −  �𝑢𝑝 +  
𝜕(𝑢𝑝)
𝜕𝑥

𝑑𝑥��  𝑑𝑦 𝑑𝑧 =  −  
𝜕(𝑢𝑝)
𝜕𝑥

 𝑑𝑥 𝑑𝑦 𝑑𝑧 

In the same manner, net rate of work applied by shear stresses on the 𝑥 direction on the face 

𝑎𝑑ℎ𝑒 and 𝑏𝑐𝑔𝑓 is, 

��𝑢𝜏𝑦𝑥 + 
𝜕(𝑢𝜏𝑦𝑥)
𝜕𝑦

𝑑𝑦� − 𝑢𝜏𝑦𝑥� 𝑑𝑥𝑑𝑦 =  
𝜕�𝑢𝜏𝑦𝑥�
𝜕𝑦

 𝑑𝑥 𝑑𝑦 𝑑𝑧 

Bearing in mind that in Figure 13, the net rate of work implemented on the moving fluid particle 

is, 

𝐹𝑥  =  �−  
𝜕(𝑢𝑝)
𝜕𝑥

+ 
𝜕(𝑢𝜏𝑥𝑥)
𝜕𝑥

+  
𝜕�𝑢𝜏𝑦𝑥�
𝜕𝑦

+  
𝜕(𝑢𝜏𝑧𝑥)
𝜕𝑧

�  𝑑𝑥𝑑𝑦𝑑𝑧 

Equation 1-67 
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Similarly, the net forces acting in the 𝑦 and 𝑧 directions are, respectively, 

𝐹𝑦 =  �−  
𝜕(𝑣𝑝)
𝜕𝑦

+  
𝜕�𝑣𝜏𝑥𝑦�
𝜕𝑥

+ 
𝜕�𝑣𝜏𝑦𝑦�
𝜕𝑦

+  
𝜕(𝑣𝜏𝑧𝑦)
𝜕𝑧

�  𝑑𝑥𝑑𝑦𝑑𝑧 

𝐹𝑧 =  �−  
𝜕(𝑤𝑝)
𝜕𝑧

+  
𝜕(𝑤𝜏𝑥𝑧)
𝜕𝑥

+ 
𝜕�𝑤𝜏𝑦𝑧�
𝜕𝑦

+  
𝜕(𝑤𝜏𝑧𝑧)
𝜕𝑧

�  𝑑𝑥𝑑𝑦𝑑𝑧 

Equation 1-68 

Hence, the net rate of work acting on a moving fluid particle is equal to the total surface 

forces acting in x, y and z directions plus the body forces. Thus, 𝑄𝑖𝑛 can be represented by 

combining Equation 1-66, Equation 1-67 and Equation 1-68, 

𝑊𝑒𝑥𝑡 =  �−�
𝜕(𝑢𝑝)
𝜕𝑥

+  
𝜕(𝑣𝑝)
𝜕𝑦

+  
𝜕(𝑤𝑝)
𝜕𝑧 � + 

𝜕(𝑢𝜏𝑥𝑥)
𝜕𝑥

+ 
𝜕�𝑢𝜏𝑦𝑥�
𝜕𝑦

+  
𝜕(𝑢𝜏𝑧𝑥)
𝜕𝑧

+  
𝜕�𝑣𝜏𝑥𝑦�
𝜕𝑥

+  
𝜕�𝑣𝜏𝑦𝑦�
𝜕𝑦

+ 
𝜕�𝑣𝜏𝑧𝑦�
𝜕𝑧

+  
𝜕(𝑤𝜏𝑥𝑧)
𝜕𝑥

+  
𝜕�𝑤𝜏𝑦𝑧�
𝜕𝑦

+ 
𝜕(𝑤𝜏𝑧𝑧)
𝜕𝑧

�  𝑑𝑥𝑑𝑦𝑑𝑧 +  𝜌𝑓

∙ 𝑉�⃗ (𝑑𝑥 𝑑𝑦 𝑑𝑧) 

Equation 1-69 

The net flux of heat in the fluid particle is denoted by 𝑄𝑖𝑛 part of the Equation 1-65. 

Volumetric heating related to absorption or emission of radiation and heat transfer due to 

temperature gradients are the two contributors to 𝑄𝑖𝑛.  

If the rate of volumetric heat addition per unit mass is defined as 𝑞̇, 

�
𝑉𝑜𝑙𝑢𝑚𝑒𝑡𝑟𝑖𝑐 ℎ𝑒𝑎𝑡𝑖𝑛𝑔
𝑜𝑓 𝑡ℎ𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 � =  𝜌𝑞̇ 𝑑𝑥 𝑑𝑦 𝑑𝑧 

Equation 1-70 



48 
 

Referring back to Figure 13, the heat conveyed by thermal conduction across the face 𝑎𝑑ℎ𝑒 in 𝑥 

direction is, 

𝑞̇𝑥  𝑑𝑦 𝑑𝑧 

Equation 1-71 

Where, 𝑞̇𝑥 is per unit time, per unit area. 

Also, the heat conveyed out of the face 𝑏𝑐𝑔𝑓 is 

�𝑞̇𝑥 + �
𝜕𝑞̇𝑥
𝜕𝑥

�𝑑𝑥� 𝑑𝑦 𝑑𝑧 

Equation 1-72 

Hence, by combining Equation 1-71 and Equation 1-72, the net heat conveyed in the 𝑥 direction 

is, 

−
𝜕𝑞̇𝑥
𝜕𝑥

𝑑𝑥𝑑𝑦 𝑑𝑧 

Similarly, heat conveyed in 𝑦 and 𝑧 direction is, 

−
𝜕𝑞̇𝑦
𝜕𝑦

𝑑𝑥𝑑𝑦 𝑑𝑧 

−
𝜕𝑞̇𝑧
𝜕𝑧

𝑑𝑥𝑑𝑦 𝑑𝑧 

Thus, 

� 𝐻𝑒𝑎𝑡𝑖𝑛𝑔 𝑑𝑢𝑒 𝑡𝑜
 𝑡ℎ𝑒𝑟𝑚𝑎𝑙 𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑖𝑜𝑛�

=  −�
𝜕𝑞̇𝑥
𝜕𝑥

+ 
𝜕𝑞̇𝑦
𝜕𝑦

+ 
𝜕𝑞̇𝑧
𝜕𝑧 �

 𝑑𝑥 𝑑𝑦 𝑑𝑧 

Equation 1-73 
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𝑄𝑖𝑛 is the summation of Equation 1-70 and Equation 1-73, 

𝑄𝑖𝑛 =  �𝜌𝑞̇ − �
𝜕𝑞̇𝑥
𝜕𝑥

+  
𝜕𝑞̇𝑦
𝜕𝑦

+  
𝜕𝑞̇𝑧
𝜕𝑧 �

� 𝑑𝑥 𝑑𝑦 𝑑𝑧 

Equation 1-74 

Heat conveyed is relative to the local temperature gradient, 

𝑞̇𝑥 =  −𝑘
𝜕𝑇
𝜕𝑥

, 𝑞̇𝑦 =  −𝑘
𝜕𝑇
𝜕𝑦

, 𝑞̇𝑧 =  −𝑘
𝜕𝑇
𝜕𝑧

 

Where, 𝑘 is the thermal conductivity of the fluid. 

Equation 1-74 can be re-written as, 

𝑄𝑖𝑛 =  �𝜌𝑞̇ +
𝜕
𝜕𝑥

�𝑘
𝜕𝑇
𝜕𝑥
� +

𝜕
𝜕𝑥

�𝑘
𝜕𝑇
𝜕𝑦
� +

𝜕
𝜕𝑥

�𝑘
𝜕𝑇
𝜕𝑧
� � 𝑑𝑥 𝑑𝑦 𝑑𝑧 

Equation 1-75 

Referring back to Equation 1-65, ∆𝐸𝑆𝑦𝑠𝑡𝑒𝑚 is the time rate of change of energy of the fluid 

particle.  

∆𝐸𝑆𝑦𝑠𝑡𝑒𝑚 =  �
𝑠𝑢𝑚 𝑜𝑓 𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙
𝑒𝑛𝑒𝑟𝑔𝑦 𝑝𝑒𝑟
𝑢𝑛𝑖𝑡 𝑚𝑎𝑠𝑠

(𝑒)�+  �𝑘𝑖𝑛𝑒𝑡𝑖𝑐 𝑒𝑛𝑒𝑟𝑔𝑦
𝑝𝑒𝑟 𝑢𝑛𝑖𝑡 𝑚𝑎𝑠𝑠  �

𝑉2

2 �� 

Since the particle is in motion, the time rate of change of energy per unit mass should be in 

substantial derivative form. Hence, 

∆𝐸𝑆𝑦𝑠𝑡𝑒𝑚 =  𝜌
𝐷
𝐷𝑡 �

𝑒 +  
𝑉2

2 �  𝑑𝑥 𝑑𝑦 𝑑𝑧 

Equation 1-76 
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The energy equation, Equation 1-65, can be represented using Equation 1-69, Equation 1-75 and 

Equation 1-76, 

𝜌
𝐷
𝐷𝑡 �

𝑒 + 
𝑉2

2 � =  𝜌𝑞̇ +
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𝜕
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𝜕𝑇
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� − �

𝜕(𝑢𝑝)
𝜕𝑥

+  
𝜕(𝑣𝑝)
𝜕𝑦

+  
𝜕(𝑤𝑝)
𝜕𝑧 �

+ 
𝜕(𝑢𝜏𝑥𝑥)
𝜕𝑥

+  
𝜕�𝑢𝜏𝑦𝑥�
𝜕𝑦

+  
𝜕(𝑢𝜏𝑧𝑥)
𝜕𝑧
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+  𝜌𝑓 ∙ 𝑉�⃗    

Equation 1-77 

Equation 1-77 is the energy equation in non-conservation form. Therefore, the 

substantial derivative method used in section 35 should be used to transform it into 

conservation form.  

Hence, 

𝜕
𝜕𝑡

 �𝜌 �𝑒 + 
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Equation 1-78 

Equation 1-78 is the energy equation in conservation form. 
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1.4 Computational Fluid Dynamics (CFD) 

Computational Fluid Dynamics (CFD) is the method of applying the governing equations of 

fluid dynamics and advancing these equations in space and/or time to obtain an approximate 

solution to a fluid dynamics and heat transfer practical application (Zikanov, 2010, p. 1). The 

governing equations and derivation of those equations are explained in section 1.3. 

Initially, CFD was only reserved for high end applications like astronautics or aeronautics. 

But, with the advancement of technology, CFD has spread to other engineering fields as a 

replacement for wind tunnel or other experimental tests (Tu & Yeoh, Guan Heng, 2007, p. 1). 

Moreover, some of the CFD software tools are available on the web for free as open source 

systems. Commercial CFD tool, on the other hand, are relatively expensive, but normally 

produce results with greater accuracy. However, regardless of the CFD tool that used, it is 

important to use experimental analysis in order to verify theories and validate CFD results 

(Kleinstreuer, 2010, p. 523).  
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Figure 14 Flow process of a CFD modeling 

As illustrated in Figure 14, a key aspect of CFD is to understand the CFD problem and have 

the ability to improve the model based on the results or analysis. By using CFD methods, one 

can help to better understand the key elements of fluid flow and heat transfer of modeled 

objects (Tu & Yeoh, Guan Heng, 2007, p. 6). CFD can be used to identify a variety of creative 

solutions to various problems. However, critical elements of any successful CFD simulation are 

to identify the nature of the problem correctly and apply the appropriate methods to solve a 

particular challenge (Kleinstreuer, 2010, p. 526).  

In order to identify the problem and solutions of CFD simulations, CFD codes are broken 

down to three main elements; pre-processor, solver and post-processor (Tu & Yeoh, Guan Heng, 

2007, p. 30). With that in mind, Figure 15 illustrates the relationship of individual elements of a 

CFD simulation.  
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Figure 15 Relationship of the main elements  

1.4.1 Problem Identification and Pre-Process 

1.4.1.1 Creating the Model 

The first and the most fundamental step in a CFD simulation is creating the model with 

the correct geometry and computational domain. Usually, models are created using CAD 

(Computer Aided Design) software that can handle advanced geometrical features. However, 

these complex geometrical models need to be simplified before they are imported into CFD 

tools (Wendt, Anderson, & Von Karman Institute, 2008, p. 305).  

  The computational domain consists of a grid or mesh, and defines cells or controls 

volume (Kleinstreuer, 2010, p. 526).  It is important to understand the concept of a 

computational domain because the computational domain is not always the solid part of the 
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model. Most CFD tools require modeling the computational domain or empty spaces of a model, 

rather than modeling the solid parts. The computational domain is an important factor as it 

holds and computes all the dependent variables throughout the domain. To illustrate, Figure 16 

(also referred to as model 1) shows the fluid flowing between two parallel plates and Figure 17, 

(also referred to as model 2) shows the fluid flowing around two cylinders (Tu & Yeoh, Guan 

Heng, 2007, p. 33). It is important to understand the limitations of the physical domain and the 

computational domain. For the purposes of demonstrating the CFD simulation of model 1 and 2, 

a two-dimensional computational domain is assumed.   

 

 

Figure 16 Model 1: flowing between two plates (Tu & Yeoh, Guan Heng, 2007, p. 34) 
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Figure 17 Model 2: Flowing around two cylinders (Tu & Yeoh, Guan Heng, 2007, p. 34) 

Analyzing the two models, it is evident that model 1 is an internal flow simulation and 

model 2 is an external flow simulation. Also, in both models, flow is entering through the left 

side boundary and exiting through the right side boundary. However, the main difference is that 

the computational domain of model 1 is limited by the two horizontal plates. Meaning, the area 

of the computational domain is restricted by rigid physical external walls. On the other hand, in 

model 2, the computational domain is not restricted by physical walls (Tu & Yeoh, Guan Heng, 

2007, p. 34). It is important to pay attention to the model geometry, as some CFD tools require 

modeling the empty space (or fluid domain) and some require modeling the physical space.  
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1.4.1.2 Computational Mesh Generation 

The next step is to create a computational mesh; this step is crucial in a simulation, as 

the mesh resolution decides the resolution of the results. The mesh generation is the process of 

breaking down the fluid domain into a number of smaller, non-overlapping subdomains (Tu & 

Yeoh, Guan Heng, 2007, p. 35). Generally, mesh generation starts at the edges, and then moves 

to the faces, and finally to the volume of the domain (Wendt, Anderson, & Von Karman 

Institute, 2008, p. 310). 

 Improving the mesh geometry or increasing the mesh density will improve the accuracy 

of the results. However, it also increases the use of computer resources and calculation time as 

well. An important point to consider while creating a mesh design is to identify the appropriate 

balance between creating a satisfactory mesh and the use of reasonable amounts of computer 

resources. There are two main meshing categories and each category serves a different purpose 

(Tu & Yeoh, Guan Heng, 2007, p. 36).  

When large blocks of a fluid domain are broken down to into discrete cells, it is called 

structured mesh generation. In the same manner, when variable cells are directly surrounded by 

complex geometric domains, it is called unstructured mesh generation (Kleinstreuer, 2010, p. 

527). Generating a successful mesh takes the most time and resources in most CFD projects (Tu 

& Yeoh, Guan Heng, 2007, p. 36). It is up to the user to identify the best method of mesh 

generation to optimize any particular CFD simulation.  

Referring back to model 1 in Figure 16, the structured method is used for mesh 

generation. It is a relatively straightforward method and it is constructed using simple 

rectangular cells that are stacked together. Figure 18 shows the mesh in model 1 with 20 (L) x 30 

(H) cells resulting a total of 400 cells.  
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Figure 18 simple structured meshing for Model 1 (Tu & Yeoh, Guan Heng, 2007, p. 36) 

In contrast, Figure 19 shows a more complex unstructured mesh generation with 

triangular shaped cells. Triangles (or other regular geometric shapes) can be used for more 

complex and tight geometrical areas. In model 2, there are 16,637 cells in the computational 

domain (Tu & Yeoh, Guan Heng, 2007, p. 36).  

 

Figure 19 complex unstructured meshing for Model 2 (Tu & Yeoh, Guan Heng, 2007, p. 37) 

As a final point, it is acceptable to interchange or combine structured and unstructured 

methods in creating mesh designs. Also, in some geometry, both the structured and 

unstructured method is used as a combination of two; it is called the hybrid method (see Figure 

20 Hybrid mesh (Kleinstreuer, 2010, p. 528). Rectangular cells are mostly used near the 

boundary wall and prismatic or triangular cells are used in the volume of the domain (Wendt, 

Anderson, & Von Karman Institute, 2008, p. 314). 
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Figure 20 Hybrid mesh (Kleinstreuer, 2010, p. 528) 

1.4.1.3 Physics and fluid characteristics  

The perfection of the CFD solution depends on the accurate selection of the physics and 

fluid properties. Since, fluid flow involves many different forms of physical properties, it is up to 

the user to select and apply the best flow physics for the application. Therefore, in a complex 

CFD problem, the user is required to have extensive knowledge regarding the behavior and 

physics of the problem before applying it to a CFD tool.  

In order to assist the selection of physics, the following flow chart (See Figure 21) can be 

used as a guideline. However, it is up to the user to apply correct physics and methods for a 

successful CFD simulation (Tu & Yeoh, Guan Heng, 2007, p. 38). Also, one must bear in mind that 

the physical properties change with different fluid applications. Therefore, it is important to 

apply the physics to the correct fluid domains.  
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Figure 21 Flowchart for applying various physics for CFD tools (Tu & Yeoh, Guan Heng, 2007) 

1.4.1.4 Boundary conditions 

Boundary conditions are defined at each face of a three dimensional model and each 

edge of a two dimensional model (Kleinstreuer, 2010, p. 527). The purpose of the boundary 

conditions is to define the flow field within the boundaries of the flow region, and to mimic the 

actual physical representation of the application (Wendt, Anderson, & Von Karman Institute, 

2008, p. 306).  

Typical flow movements relevant to boundary conditions are inlets, outlets, walls or fan 

conditions. Other boundary conditions such as solid walls, heat sources or fluid subdomain walls 
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also need to be defined accordingly. Figure 22 and Figure 23 represents the boundary conditions 

of model 1 and 2 (see 1.4.1.1 for more details about the model).  

 

Figure 22 Basic boundary condition of a simple Model 

 

 

Figure 23 Boundary conditions of model 2 (Tu & Yeoh, Guan Heng, 2007, p. 42) 
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Each flow characteristic has a unique set of boundary conditions. The following are 

some of the boundary conditions that are used in simple flow simulations. For turbulent 

compressible flow; inlet or outlet velocity components, total or static pressure, flow direction, 

temperature and turbulence variables are assigned. For incompressible flow with heat transfer 

or laminar compressible flow; wall temperature or heat transfer rates should be defined 

(Wendt, Anderson, & Von Karman Institute, 2008, p. 325). For external or internal fans; pressure 

difference, rpm and blade diameter needs to be specified.  

 Referring back to Figure 22, the velocity at the external solid walls bounding the fluid 

domain is zero. Also, in Figure 23, velocity at the fixed cylinder walls is zero. The flow direction is 

obtained by the fluid entering through the inlet and the fluid exiting through the outlet; this is 

defined by the user as appropriate to the application. In general, if the inlet is defined as a 

volume or mass flow rate, then the outlet is typically defined as a pressure opening with relative 

pressure.    

Nevertheless, the above mentioned boundary conditions and definitions are only valid if 

the fluid flow is below the speed of sound, sub-sonic flow. There is a distinct range of boundary 

conditions if the flow is above the speed of sound. But, supersonic flow is beyond the scope of 

this paper and will not be addressed. Interested readers are advised to refer to Wendt, 

Anderson, & Von Karman Institute, 2008 and Tu & Yeoh, Guan Heng, 2007 for more detailed 

information’s about supersonic flow. 

1.4.2 Numerical Analysis and CFD Solver 

The next step in CFD simulation is to program the parameters of the solver. The solver 

contains two important parts; initialization and solution control.  
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 Since fluid flow calculation is a complex process, results are determined using an 

iterative solution approach.  Iterative process requires all the flow properties such as, velocity, 

pressure, temperature and other relevant characteristics to be initialized before the 

computational process. In other words, initial conditions are the starting point of the 

calculations, and theoretically, can be entirely arbitrary.  

That being said, by using initial conditions appropriate to the application, users can 

achieve quick and accurate results. For example, by using initial conditions that are closer to the 

final results, the iteration process will be simplified; resulting in less computational time.  Also, if 

improper initial conditions are used, the convergence process can be disorganized; resulting in 

higher computational times or incorrect results (Tu & Yeoh, Guan Heng, 2007, p. 47).  

 The next crucial step in the solver category is properly tracking the convergence process. 

Convergence is the process used to determine the point at which the solution to the algebraic 

equations is close to that of the partial differential equations. However, in order to a solution to 

properly converge, consistency and stability of the solution is essential and compulsory.  (Tu & 

Yeoh, Guan Heng, 2007, p. 192). 

Convergence is achieved by monitoring the imbalance or residuals brought forward by 

the numerical calculations of each iteration step. These imbalances reflect and report the global 

flow property conservation to the CFD tool. Modern CFD software provides a graphical user 

interface (GUI) tool that can be used to monitor the convergence sequence.   
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Figure 24 monitoring the iterations using a GUI in FloEFD software 

The descending trend in Figure 24 shows the continual removal of surplus residuals 

leading to a convergent solution. When the trend is ascending, it means the residuals are 

possibly accumulating, resulting in divergent solution or no solution at all. The results are 

considered to be stable when the residuals fall below a pre-determined number that is 

embedded in the software.  

1.4.3 Results, analysis and visualization  

Once the results have converged and are stable, the next step is to perform an analysis 

and visualization of the data. Commercial CFD software can display the results in graphical 

images, and some programs can generate colorful animations. Consequently, these 

visualizations help to convert the numerical data into a more presentable graphical format.  

It is important to understand the different graphical representations, as each helps one 

to understand and evaluate the results. For example, cut plots display the distribution of the 

selected parameter on a user-configured two-dimensional plane. Depending on the software 
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used, users can select vector functions designated with arrows. However, any cut plots have the 

ability to display the perspective view of the flow property in a two-dimensional plane with 

appropriate magnitude. On the other hand, X-Y plots can be used to compare and contrast the 

numerical data. These are traditionally used to directly compare numerical data with the 

experimental data.  

Nevertheless, it is up to user to organize the date in a creative and presentable way. Not 

to mention, some software provides animations of the air flow particles and some provides 

complete analytical reports. To sum up, the post-processor step provides the simulation results 

as numerical data. However, different methods can be used to convert the numerical data into 

graphical visualizations that help to better understand the solutions.  

1.4.4 Finite Volume Method (FVM) 

The basic theory of computational involves fluid dynamic is applying the conservation 

laws on closed volume surfaces. In order to represent the laws in their integral form, the laws 

have to discretize the integral form of the equations instead of the differential form. This 

conversion technique is the basis of finite volume method (Wendt, Anderson, & Von Karman 

Institute, 2008, p. 134). Moreover, most modern general purpose CFD tools use the finite 

volume technique rather the conventional finite element method (Zikanov, 2010, p. 86).  

The mathematics behind the FVM method involves subdividing the computational 

domain or the flow field into a finite number of non-over-lapping cells that cover the entire fluid 

region. This is so that exact conservation of properties occurs inside each individual piece of the 

control volume (Tu & Yeoh, Guan Heng, 2007, p. 134). These cells can be either structured or 

unstructured grid, hence, they can be of either a triangular or rectangular shape (Wendt, 
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Anderson, & Von Karman Institute, 2008, p. 278). Therefore, the FVM method has the ability to 

accommodate any type of grid, shape or location (Tu & Yeoh, Guan Heng, 2007, p. 134).  

1.5 MTU Onsite Energy Generators 

MTU Onsite Energy offers a cost-effective, reliable power system solution in the form of 

stationary generator sets. MTU offers a variety of energy solutions, from emergency power to 

continuous power, heating and cooling. They have customer databases around the world with a 

wide range of applications, such as healthcare, data centers, airports, farms and independent 

power stations. These generators range from diesel-powered generator sets up to 3,250 KW, 

gasoline-powered cogeneration systems up to 2,500 KW and natural gas-powered turbines up 

to 50, 00 KW. Whatever the applications or the fuel sources used, these generators have a 

common set-up, where the engine is mounted in the middle, with the generator mounted 

behind and the radiator and cooling package located in front of the engine (See Figure 25) (MTU 

Onsite Energy).  

 

Figure 25 18V 2000 Generator Set (MTU Onsite Energy) 
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These generators operate under a wide range of conditions, on the tops of buildings, 

inside buildings or out in the open air. Also, MTU generators are located all the around the 

world; from densely populated areas to isolated farm lands.  

Therefore, one of the main requirements for a stationary generator is to have an 

enclosure that protects all the electrical and non-electrical equipment from rain, snow or other 

debris (see Figure 26). Also, the enclosures are specially designed to restrict the sound emitted 

from the generators to the spaces around it (Blanks, 1997, p. 1). However, when designing an 

enclosure there are other consideration; such as, air flow requirements, bird protection screen 

and water proofing.  

 

Figure 26 (MTU Onsite Energy) 

An important aspect of engine performance is providing for an adequate amount of air 

flow that will efficiently transfer the heat from the radiator and other cooling assemblies to the 

environment. A fan at the end of the engine is used to force feed the air through the enclosure. 

In other words, air will enter the enclosure through the inlet and move though the enclosure 

and radiator, and then exists through the outlet. However, sometimes the absence of pressure 

created by these forced fed air movements will allow the rain water to move inside the 
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enclosure. There are numerous electrical components located inside the enclosure and 

rainwater penetration could lead to equipment failure or even possible encourage danger of 

electrocution.  For these reasons, standards and regulations must be followed to avoid any rain 

water penetration. 

Underwriter’s Laboratories (UL) created a set of standards that has been unanimously 

adopted throughout the power generation community. UL is a global independent safety 

science company employing experts in safety standards and regulations (UL Standards ).  

The standards for stationary engine generator assemblies are listed under section 

UL2200. They cover stationary engine generator assemblies rated at 600 volts or less. These 

standards are in accordance with the National Fire Prevention Agency (NFPA) requirements and 

regulations (UL Standards ).  

1.6 Rain water testing 

An outdoor-use generator should go through UL2200 rain testing before being introduced 

into the market. Depending on the classification of the enclosures, test results can vary. When 

the enclosure is rated as rainproof, there should be no wetting of live parts or entrance of water 

above the lowest live part, and when the enclosure is rated as rain tight, there should be no 

entrance of water into the enclosure at all. Also, after being subjected to a rain test, the 

generator should have an insulation resistance of not less than 50,000 ohms between live parts 

and interconnected dead metal, and, it should withstand a Dielectric voltage-withstand test as 

well (UL Standards ).  

The water spray equipment used in the testing has to have three consistent spray heads 

mounted on to a rack as illustrated in Appendix A-1. Each spray nozzle should be constructed as 
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shown in Appendix A-2 and mounted rigidly to the structure. The spray is directed at 45 degrees 

vertically towards the louvers or any other opening of the generator, and the structure should 

be placed so that the center nozzle is 1.5 meters away from the generator. The water pressure 

should be maintained at 5 psi during the 4 hours of testing (UL Standards ).  

1.7 Behavior of water droplets 

Rain water droplets fall when their falling velocity exceeds the upward wind speed or lift 

velocity of the air (Mook, 2003) . When a water droplet falls on to a solid surface, it splashes, 

spreads or breaks into smaller particles. There are plenty of examples of water droplets hitting a 

solid surface; rainfall is a natural example that can be observed everywhere. Also, inkjet printing 

provides another example of a drop impact application (Lagubeau, et al., 2012, p. 50).  

 Depending on the properties of the impact surface solid, typically, when a water 

droplet hits on a solid it typically creates a splash, spreading or bouncing (Durickovic & Varland, 

2005). One could summarize the behavior of a water droplet based on three primary factors, the 

nature and inclination of the surface, the properties of the liquid and the velocity and the size of 

the droplet (Villermaux & Bossa, 2011, p. 413). From the materials view, droplet behavior is 

determined by kinetic energy, the surface energy of the drop, and the energy created by the 

internal motion of the water droplet (Durickovic & Varland, 2005).  

A droplet only holds kinetic energy before the impact. When the drop touches the 

surface, the surface area of the droplet will increase because the impact will deform the droplet 

and the shock wave will spread quickly away from the center of the droplet. Hence, the surface 

energy will be increased. Also, part of the kinetic energy will transform into internal energy such 

as heat (Durickovic & Varland, 2005).  
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Depending on the droplet’s initial kinetic energy, sometimes, the surface tension will 

absorb the energy upon impact like a spring, and the forces of restitution will make the drop to 

recoil away from the surface. Hence, this recoil motion will make the droplet shrink, thereby 

increasing the kinetic energy. Thus, the deformation will create a jet shape in the center of the 

droplet which can cause the droplet to lift off and bounce back (Durickovic & Varland, 2005).  

Conversely, when the initial kinetic energy is higher, the drop spreads upon impact 

because the surface tension is not adequate to stop the outward motion. Hence, the 

deformation will create a rim while the center part will flatten to the surface. Thus, the outward 

velocity of the particle will exceed the surface tension; as a result, the main droplet breaks away 

and creates smaller droplets. This is called splashing.  

During this phenomenon, a droplet will exhibit different behaviors; as illustrated in 

Figure 27, a droplet can either attach to the surface, also known as deposition Figure 27(A), or it 

can partially rebound Figure 27(B) or it can completely rebound Figure 27(C). If it is a complete 

rebound, the entire droplet elevates away off the surface. If it partially rebounds, part of the 

droplet sticks to the surface while other part will elevate away from the surface. Also, Figure 

27(D) shows the break-up behavior whereby the satellite drops are ejected and the main drop 

and satellite drops all have a tendency to bounce off of the solid. Finally, Figure 27(E) shows the 

splashing effect, whereby the small secondary droplets form up on impact. (Van der Wal, 2006, 

p. 69).  
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Figure 27 drop motion A) deposition, B) partial rebound, C) full rebound, D) break up, E) splashing (Van der Wal, 

2006) 

However, in actuality, the mechanics of fluid droplet velocity and deformation will 

depend on many other characteristics that are beyond the scope of this project (Oqielat , 

Turner, Belward, & McCue, 2011). 

In short, when calculating the behavior of a fluid droplet on a flat solid surface, two 

dynamical dimensionless numbers, Weber’s number(𝑊𝑒) and Reynolds’s number (𝑅𝑒) are the 

main determinants.   

The inertia with capillary effects of the droplet is calculated by Weber number(𝑊𝑒). To 

explain, the liquid inside the droplet is held together by the surface tension of the liquid (see 

Figure 28) and the droplet shape can be deformed if the surface tension changes. Also, the 

change of inertia created by the impact will affect the shape of the droplet. Hence, the ratio 

between the inertial force and the surface tension will govern the amount of the deformation.  

If the drop diameter is 𝐷 =  2𝑅0 and velocity at impact is 𝑉0, 

C 

E D 

B A 
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𝑊𝑒 =  
ρDv02

𝛾
 

Equation 1-79 

Where ρ and 𝛾 are, respectively, the liquid density and the surface tension coefficient 

 

Figure 28 surface tension acting on a droplet (Yuan & Lee, 2013) 

In analyzing Equation 1-79, if 𝑊𝑒 > 1, inertial forces are higher and will likely cause the 

drop shape to change up on impact.  If 𝑊𝑒 < 1, the surface tension is higher and the drop will 

be stable upon impact (Van der Wal, 2006, p. 76).  

Likewise, upon impact, the droplet deforms and encounters a shear force that is created by 

its shear viscosity. Hence, Inertia with viscous effects are calculated by the Reynolds’s number 

(𝑅𝑒), 

𝑅𝑒 =  
𝜌𝐷𝑉0
𝜈

 

Equation 1-80 

Where, 𝜌 is the density and 𝜈 is the kinematic viscosity of the fluid. 
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Apart from Weber’s number and Reynolds’s number, several other factors influence the 

energy dissipation of a droplet upon impact. Viscous dissipation, contact angle hysteresis, and 

after the lift-off, a droplet might rotate and/or oscillate thereby dissipating internal energy.  

1.7.1 Droplet Diameter 

Calculating the droplet diameter is virtually impossible because several factors influence 

the size of the droplet. For rainwater, it is theorized that the minimum droplet diameter is 

around 0.1 mm and the maximum will be around 7 mm. The upper limit of 7mm diameter is 

defined as droplets any larger will break apart during the fall.  The lower limit of 0.1 mm is 

defined because a droplet has to overcome the updraft (or the lift) of the wind (Mook, 2003).  

The shape of the droplet depends on the magnitude of its diameter as well. Perfect 

spherical shapes at terminal velocity are only observed in droplets that are less than 0.3mm (see 

Figure 29). Droplets that are larger than 1mm look alike spheroids with flat bases (Mook, 2003).  

 

Figure 29 Rainwater droplet size vs. shape (Mook, 2003) 

1.7.2 Droplet Terminal velocity 

The terminal velocity of a droplet is very important for the rainwater penetration test, 

as the behavior of the droplet on impact is dependent upon the droplet’s terminal velocity. The 

motion of the droplet is due to gravitational force and drag/lift forces of the air. 
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Figure 30 Free body diagram of a rain water droplet 

Hence, 

𝑚𝐷
𝑑𝑢
𝑑𝑡

=  𝐹𝑔 − 𝐹𝐷 

𝑚𝐷
𝑑𝑢
𝑑𝑡

= 𝑚𝐷𝑔 −  
1
2
𝐶𝑑𝜌𝑎𝑣2𝐴 

Equation 1-81 

Where, 𝑚𝐷 = mass of the droplet, 𝑢 = droplet velocity, 𝐶𝑑 = drag coefficient in air (function of 

Re), 𝜌𝑎 = density of air, 𝑣 = wind velocity, 𝐴 droplet area. 

 However, the droplet shape is not going to be a perfect sphere every time; therefore, 

the area in Equation 1-81 cannot be calculated precisely. However, by combining Equation 1-80 

and Equation 1-81, the area of the droplet can be estimated using the Reynolds’s number.  

𝑚𝐷
𝑑𝑢
𝑑𝑡

=  𝑚𝐷𝑔 −  
𝜋
8
𝜈𝑅𝑒𝐶𝑑𝐷(𝑢 − 𝑣) 

Equation 1-82 
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Where, 𝜈 is the kinematic viscosity, 𝐷 droplet diameter. 

 The terminal velocity is the maximum vertical velocity a rain particle can obtain. 

However, this is  assuming that there are no horizontal forces acting up on the droplet, as these 

would affect the shape of the droplet and create additional drag (Mook, 2003).  

 Since the terminal velocity of a droplet is hard to calculate, an approximation for the 

formula was obtained using the data collected by Gunn & Kinzer, 1949. Hence, the terminal 

velocty of a droplet can be approximated as a function of the droplet’s diameter (Gunn & Kinzer, 

1949 ; Mook, 2003).  

𝑉𝑡 ≈ 9.40 [1− e𝑥(−1.57 × 103𝐷1.15)] 

Equation 1-83 

Where, 𝑉𝑡is the terminal velocity and 𝐷is the droplet diameter in meters. 

1.7.3 Coefficient of Restitution 

For small diameter droplets, a measure of elasticity is introduced as they dissipate less 

energy through internal vibrations. This measure is called the coefficient of restitution and its 

denoted by 𝑐, 

𝑐 =  
𝑉𝑓
𝑉𝑖

=  �
ℎ
𝐻

 

Equation 1-84 

Where, 𝑉𝑓 and 𝑉𝑖 is the velocity before and after the impact. Also,  ℎ is the height the drop 

bounce after impact and 𝐻 is the height from which the droplet was originally released. The 

coefficient of restitution is dimensional less number that rest between 0 and 1. 
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 Calculating the maximum diameter of a droplet after an impact is a cumbersome 

process. Hence, several estimates have taken this into account, and the following formula gives 

the maximum diameter on a hydrophobic surface (Van der Wal, 2006, p. 9).  

𝐷𝑚𝑎𝑥  ≈ 𝐷0𝑊𝑒
1
4 

Equation 1-85 

Where, 𝐷0is the initial diameter. 

 A hydrophobic material will repel water on the molecular level upon impact. These 

material repel water by making large contact angles on the droplet surface (Figure 31). The 

contact angle is the geometrical angle created by the interaction of the liquid-solid interface 

(Yuan & Lee, 2013). Some materials are super-hydrophobic and they can create contact angles 

up to 170𝑜 (Durickovic & Varland, 2005, p. 2). 

 

Figure 31 Contact angle on a smooth solid (Yuan & Lee, 2013, p. 4) 

Therefore, in super-hydrophobic materials, there will be very little contact with surface of 

the droplet and solid. Hence, bouncing and splashing happens more frequently. As the surface 

interaction is low, it assists the droplet to leave the surface, creating a bouncing behavior; or, 

the droplet simply breaks apart, creating increased splashing behavior. 
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2 OM924 Generator CFD Model Design 

The design of the CFD model is based on the OM924 50Hz generator supplied by MTU. The 

CFD tool used was FloEFD for Creo by Mentor Graphics. The PTC Creo Computer Aided Drawing 

(CAD) tool was used in MTU for design and drafting purposes of the CAD models (Figure 32).  

 

Figure 32 OM924 Generator Enclosure Original CAD Model 

The purpose of a CAD model is to convey details to other parties such as, customers and 

product engineers. The original CAD drawing of OM924 contained complex geometrical outlines 

and advanced design details, from the engine and generator down to small details such as, nuts, 

washers and tubing (Figure 33). Thus, it made the model very detailed and complex. However, 

for CFD simulations these advance details are not compulsory. Also, by including details which 

are insignificant to the CFD Model, the calculation time will increase and the simulation will use 

more computing power. 
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Figure 33 OM924 original model – Doors has been removed to illustrate the inside of the enclosure  

The actual enclosure of the generator is made out of sheet metal parts combined together. 

Thus, the enclosure of the original CAD model was designed using sheet metal parts as well. 

Unlike solid metal parts, models made out of sheet metal parts are not completely sealed.  

When the original CAD model was imported to FloEFD, it reported a water leak error. 

Meaning, that there are internal and external leaks in the original CAD model and it is not 

impervious. The simulation requires the fluid domain to be waterproof; any open areas should 

be designated as boundary conditions such as inlets, outlets or pressure openings. Also, the 

sheet metal parts were not mated using the coincided option in Cero CAD tool. Hence, improper 

mating of parts contributed to the water leak error as well.  

2.1.1 OM924 CFD Model 1 

OM924 CFD Model 1 was created as a replica of the original CAD model. Therefore, all 

the original dimensions were preserved in the CFD model. However, any parts that were not 
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relevant to the fluid domain behavior were removed; the engine, exhaust, generator, just to 

name a few. The CFD model is only considers in the fluid domain (or empty space). Therefore, all 

the physical boundaries were built as solids and extrusion tools were used to construct 

individual shapes. For the purpose of waterproofing the model, the CFD model 1 assembly only 

contained solid parts. Moreover, when parts were imported, they were mated as coincident 

style (Figure 34).  

 

Figure 34 CFD Model 1 - crucial components for air flow were imported from the original model and mated as 

coincident style 
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Also, all crucial components that control air flow, such as the front grill, side air inlet 

grill, baffle plates and the middle blade were directly imported from the original CAD model as 

independent parts (Refer to Appendix E for more details). In addition, any individual part that 

was imported from the original model was assembled as a coincident mating structure to avoid 

any leakage of the CFD model. However, it should be pointed out that the CFD model is not a 

100% match to the original CAD model.  

Consequently, inlet and outlet grill areas were extended by creating covers, and lids 

were placed on top of the covers to seal the fluid domain. The covers serve as an extension for 

the inlet and outlet grills. Since the grill is made out of many small squares, it is difficult to create 

lids for each individual square. Instead, the simplest solution is to create a cover and put a lid on 

the cover. Also, the outlet cover helps to reduce the vortex effect. In a pressure opening, the 

flow will try to circulate back into the model and this is called the vortex effect.   
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Figure 35 CFD Model 1 with inlet and outlet covers (in yellow). The fluid domain is sealed using lids (in green). Each 

lid will act as and boundary as well. 

Finally, Model 1 was tested for any water leaks or boundary condition errors using 

FloEFD. After testing, the inlet boundary condition was defined as a volumetric flow opening 

with 8,386 CFM of volumetric flow (see section 3.2.1 for more details about the air flow data) 

and the outlet boundary condition was defined as a pressure opening. Finally, the simulation 

was solved and converged without any error reports. 

2.1.2 OM924 CFD Model 2 

In order to remove excess heat from the radiator and the charge air cooler, air is blown 

through the enclosure using a fan that is coupled to the engine.  Then the engine power is used 

to flow or push the air across the enclosure. In the engine, chemical energy is converted into 

mechanical energy and it is used to drive the fan. The fan converts this energy into kinetic 

Inlet covers 
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energy in the moving air particles. However, in CFD model 1, the fan was not integrated, and it 

was assumed that the air was blown using an outside force. Thus, the inlet boundary condition 

was defined as a volumetric flow rate of 8,386 CFM. 

After verifying that the CFD model 1 solved the simulation without any problems, for CFD 

model 2, a fan boundary condition was introduced. The fan used in OM924 generator is from 

Multi-Wing America Incorporation. For more details regarding the fan specification, refer to 

Appendix B. 

In the OM924 generator, the fan was an internal fan and located between the radiator and 

engine. However, in the CFD model 2, the fan boundary condition was defined as an external 

outlet fan to simplify the model. Hence, the fan and the radiator shroud were located outside 

the enclosure (Figure 36). However, the radiator shroud and the fan dimensions are exactly the 

same as the original model. Also, since these simulations are not focused on thermal analysis, 

the radiator was not modeled in the CFD model 2.  
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Figure 36 CFD model 2 - fan is located outside the enclosure as an external outlet fan 

2.1.3 OM924 CFD Model 3 

The final step is to add the internal components of the OM924 generator into the CFD 

model. The engine and generator assemblies, however, are comprised of extremely complex 

geometrical parts. Hence, re-drawing those parts will be a very difficult and time consuming 

task. The CFD model is only concerns the physical boundaries or the outer shell of the internal 

components.  

Therefore, the engine, the generator and the master box assembly were imported as a 

“shrink wrap” volume feature in Creo. By doing so, the outer geometry of the parts were 
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preserved with the original shape and the internal components were removed (Figure 37). 

However, an insignificant amount of surface deformation can be observed.  

 

Figure 37 volume shrink-wrap of the engine, generator and the master box assembly. The part is hollow inside and 

only the outer shell is visible. 

 Finally, the engine, the generator and the master box were imported to CFD model 3 as 

a whole part. In actuality, the engine and generator are positioned on top of a solid base. 

However, the base part was omitted in the CFD model 3 design because it is not relevant to fluid 

flow behavior. Hence, in the CFD model 3, the engine and the generator combination looks as it 

is floating within the enclosure (Figure 38).  
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Figure 38 CFD model 3 
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3 Validation of the Model 

Given that, modeling and simulation are an approximation of the real application, the 

model needs to be validated before evaluating the data. Therefore, three main validation areas 

were examined; velocity points, air flow rate and pressure difference.  

Data taken from experiments was compared to the theoretical data obtained from the 

simulation. However, it should be expected that these two sets of data will not be an exact 

match; instead, the simulated data will be an approximation of the experimental data.  

3.1 Velocity Data 

The OM924 generator was brought up to full load and the air speed was measured near 

the two inlet grills and the outlet grill. Measurements were taken at each air inlet using an 

anemometer that was placed on the plane at which air enters the enclosure, in other words the 

anemometer blades were perpendicular to the air flow. Moreover, for accuracy, the 

anemometer was fixed to a flat plate and that plate was placed parallel to the inlet louvers 

(Figure 39 is just for illustration purpose only. Not the actual OM924 enclosure).  

 

Figure 39 Anemometer is attached to a flat plate, so that the air flow is parallel to the anemometer. 
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3.1.1 Measured Air Velocity Values 

Each inlet grill was separated by a solid wall in the middle. Therefore, for identification 

purposes, the inlet grills are referred as right side inlet 1, right side inlet 2, left side inlet 1 and 

left side inlet 2 (See Figure 40).  

 

Figure 40 Anemometer was placed on each inlet 1 and 2 according to a grid pattern. 

In order to collect uniform air speed data, the anemometer was placed in front of the 

inlet grill based on a grid pattern yielding nine equally spaced data points. The same process was 

repeated for the left side inlet 1 and 2.   

Similarly, air speed was measure on the outlet grill as well. For data collection 

identification purpose, the outlet grill was divided in half and labeled as outlet 1 and outlet 2. 

Outlet 1 had 15 equally divided data collection points and outlet 2 had 20 equally divided points. 

The following table contains the average air flow velocity of the enclosure. Appendix F contains 

more details about the data point locations and air speeds measured at those locations. 

  

Right side inlet 2 Right side inlet 1 
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Left Side 

     

Right Side 

 Inlet 1 

 

Inlet 2 

   

Inlet 1 

 

Inlet 2 

469.11 

 

485.22 

 

Outlet 

 

507.22 

 

477.44 

   

Outlet 1 

 

Outlet 2 

   

   

822.06 

 

638.6 

   Table 1 Average measured air flow velocity of the enclosure  

3.1.2 Simulated Air Velocity Values 

Velocity at the left and right side inlet were visualized using a contour plot. Figure 41 

illustrates the air speed at the inlet. Also, the flow path vs. velocity was visualized using a flow 

trajectory plot (Figure 42).  

By observing the contour plot and the flow trajectory plot, it was concluded that further 

investigation is needed to accurately pin point the different air velocities. Also, the air speed 

measured using the anemometer only represents the air particles which are moving 

perpendicular to the inlet; in the simulation, it will be the velocity in 𝑥 direction. Being that 

velocity is a vector, and the  𝑥 = 0  point is at the center of the enclosure, the right side inlet 

velocity will be a negative value and left side inlet velocity will be a positive value.  

 

Figure 41 Air velocity at the right side inlet. High of 1471 ft/min [red] and low of 0 ft/min [Blue] 
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Figure 42 Flow trajectories of the air particles. 

To investigate the air velocity further, a point study on the inlet surfaces was conducted. 

Figure 43 shows the locations of the points at which that the air velocity in 𝑥 direction was 

simulated. 

 

Figure 43 The red dots marks the locations at which the velocity was simulated 
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Table 2 illustrates the magnitude of the velocity simulated on the right side inlet. For 

identification purpose, the velocity values were color coded according to 100 𝑓𝑡/𝑚𝑖𝑛  

increments. 

 

Right side Inlet 1 

  

Right side Inlet 2 

922 889 848 

 

883 905 945 

789 726 727 

 

700 721 743 

741 723 736 

 

735 730 790 

Table 2 Simulated velocity magnitude on the right side inlet grill. Yellow – 700 range, green – 800 range, red – 900 

range. 

 Comparing the measured and the simulated average velocity data, the percent error 

between measured and simulated data for the right side inlet was, 

% 𝑒𝑟𝑟𝑜𝑟 𝑓𝑜𝑟 𝑎𝑖𝑟 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑖𝑛 𝑥 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 =  �
|492− 792|

492 �× 100 = 60.00%  

Equation 3-1 

Similarly, Table 3 illustrates the magnitude of the velocity simulated on the left side. The 

percent error between the measured and simulated for the left side inlet was 48.84%. 

 

Left Side Inlet 1 

  

Left Side Inlet 2 

839 809 770 

 

802 801 823 

711 662 660 

 

632 643 651 

675 658 663 

 

658 644 685 

Table 3 Simulated velocity magnitude on the left side inlet grill. Yellow – 600 range, green – 700 range, blue – 800 

range, red – 900 range, purple – 1000 range. 



90 
 

 Table 4 summarizes the air velocity values at the outlet. The percent error between the 

measured and simulated for the outlet was 30.41% . 

   

Outlet Air Velocity 

  504 776 883 899 864 637 407 

913 1096 1222 1199 1038 829 818 

1058 1259 1413 1430 1307 995 936 

895 1035 1137 1197 1131 967 810 

770 841 899 933 884 768 571 

Table 4 Summery of the outlet air velocity 

For comprehensive details of the point vs. velocities tables, refer to Appendix H. 

3.2 Volumetric Flow Rate data 

Volumetric flow rate can be calculated using the air velocity and cross-sectional area.  

According to the conservation laws, the volume flow rate values should be a constant 

throughout the enclosure. Hence, the inlet volume flow rate can be calculated using, 

𝑉𝑜𝑙𝑢𝑚𝑒 𝑓𝑙𝑜𝑤 𝑟𝑎𝑡𝑒 =  𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑎𝑖𝑟 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 ×  𝐼𝑛𝑙𝑒𝑡 𝑎𝑟𝑒𝑎 

Equation 3-2 

3.2.1 Measured Volumetric Flow Rate Values 

Using the air flow velocity data collected in Section 3.1  and the inlet cross sectional 

area, an average inlet volume flow rate of 4755 CFM was calculated. Similarly, the average 

outlet air flow was calculated as 7711 CFM. However, according to the conservations laws, the 

inlet flow rate and the outlet flow rate should be the same. Hence, the data collected needed to 

be investigated for errors. 
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One explanation is, since the enclosure is made out of multiple sheet metal parts, there 

are leaks in the enclosure and outside air can be pulled into the enclosure through the leaks and 

forced out through the outlet. Hence, the outlet air flow values can be higher than those 

measured at the inlet. Another explanation is in regard those human and equipment errors that 

may be influencing the data. Especially since the volumetric flow rate was calculated using air 

speed, even a small error in measuring the air speed will impact the flow rate exponentially.  

 Therefore, as volumetric flow rate values, outlet flow rate values were used instead of 

the inlet flow rate values. Also, the air consumed by the engine in the combustion process is 

expelled through the exhaust manifold and the exhaust pipe. Therefore, the air consumption of 

the engine was added to the outlet air flow values as well. Hence, the final corrected air flow 

number is, 8,386 CFM, and this figure was used for all the analysis. Refer to Appendix F for more 

information about volumetric flow rate and engine air consumption calculations. 

3.2.2 Simulated Volumetric Flow Rate Values 

In CFD model 3, a goal area was created for maximum flow rate and it was assigned to 

the outside face of the outlet lid. That means that, in the simulation, the maximum flow rate 

was used as one of the stopping criteria for the solver. Table 5 illustrates the volume flow rate 

as reported by FloEFD. 

 

Goal Name Unit Value 

Averaged 

Value 

Minimum 

Value 

Maximum 

Value 

SG Volume Flow Rate 

1 [ft^3/min] 

10302.6949

2 

10215.7821

2 10149.12215 

10302.6949

2 

Table 5 Volumetric flow rate at outlet 



92 
 

With reference to the practical volume flow rate measured in section 3.2.1 and using 

the average flow rate values obtained from the simulation, the percent error between the 

practical and simulated volumetric flow rate is, 

% 𝑒𝑟𝑟𝑜𝑟 𝑣𝑜𝑙𝑢𝑚𝑒𝑡𝑟𝑖 𝑓𝑙𝑜𝑤 𝑟𝑎𝑡𝑒 =  �
|8386− 10215|

8386 � × 100 = 21.81% 𝐶𝐹𝑀 

Equation 3-3 

Similarly, by using the outside face of the inlet lids, the surface parameter study 

calculated a combined flow rate of 10,302 CFM. As mentioned earlier, the measured inlet flow 

rate was not considered for data analysis. Hence, inlet percent error was not calculated.  

Also, by doing a surface parameter study on the outside faces of the outlet lid, a total 

volumetric flow rate of -10,322 CFM was calculated. The negative value signifies that the fluid is 

flowing away from the outlet lid. Refer to Appendix G for a detailed report of the surface 

parameter studies. 

3.3 Pressure Lost Data 

One of the purposes of an enclosure is to restrict the noise level generated by the engine 

and the generator. Therefore, the inlet should be large enough so that it will supply the required 

air flow needed. However, it should be small enough so that it will constrain the noise. Because 

of this size limitation, the inlet acts as an orifice plate or a restrictor of air flow. As a result, the 

pressure inside the enclosure will change when the generator is operating. 

Regardless of whether the fluid particles are in motion or not, the pressure will apply to 

any part of the fluid domain. There are two kinds of pressure, static pressure and dynamic 

pressure.  Static pressure is the pressure applied on a surface when the fluid is at rest relative to 

the flow, not the pressure created by the motion of fluid particles.  Dynamic pressure is the 
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pressure applied as a result of moving particles, and is only exerted in the direction of the flow. 

Therefore, measuring only the dynamic pressure is difficult and always requires some degree of 

calculation.  

Hence, every particle in the fluid domain has its own static pressure 𝑃𝑆, dynamic pressure 

 𝑃𝐷 and total pressure 𝑃𝑇, regardless of the fluid speed. Thus, the total pressure along a 

streamline is, 

 𝑃𝑆 +   𝑃𝐷 =   𝑃𝑇 

Equation 3-4 

By applying a simplified version of Bernoulli’s equation, the Equation 3-4 can be written as,   

𝑃𝑆 +   
1
2
𝜌𝑣2 =   𝑃𝑇 

Equation 3-5 

Where, 𝜌 is the density of the fluid and 𝑣 is the flow velocity. 

Also, static and dynamic pressures can vary during the course of the fluid flow, but the 

total pressure will be constant along the streamline of air flow. Therefore, depending on the 

changes in dynamic pressure, static pressure will also change.  

Moreover, because dynamic pressure cannot be easily measured, static pressure is 

measured instead. So the changes in the static pressure are to some extent a reflection of the 

changes in dynamic pressure. Therefore, the static pressure is measured relative to atmospheric 

pressure or relative to two points in the stream line.  
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Using the Equation 3-2, it can be concluded that the air velocity at the inlet will be higher 

than that outside of the enclosure. To explain this further, according to the conservation laws, 

the flow rate should be constant throughout the generator. However, the inlet acts as an orifice 

to the air flow; hence, air velocity is higher inside the enclosure than outside. Referring back to 

the Equation 3-5, this higher velocity will create a higher dynamic pressure. However, the total 

pressure should be constant along the streamline. Hence, static pressure will drop in order to 

accommodate the rise in dynamic pressure.  

3.3.1 Measured Static Pressure Values 

While the generator is in full load, static pressure drop across the enclosure was 

measured using a manometer. A measurement was taken inside the enclosure in-between the 

fan and the engine. An assumption was made that the static pressure values will be the same in 

other parts of the enclosure. Hence, differential pressure of 0.12"𝐻2𝑂 was used throughout the 

analysis. 

3.3.2 Simulated Pressure Values 

A cut plot was used to visualize the dynamic pressure inside the enclosure (Figure 44 

and Figure 45). However, since the simulation calculates and visualizes the pressure in each fluid 

particle, it was difficult to obtain an average value for the pressure lost. By analyzing the contour 

plot, it was theorized that the dynamic pressure inside the enclosure ranged from 0" 𝐻2𝑂 

to 0.33" 𝐻2𝑂. 
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Figure 44  front view Cut plot of dynamic pressure inside the enclosure. The cut plot was placed in the middle of the 

enclosure (y=0) 

 

Figure 45 side view Cut plot of dynamic pressure inside the enclosure. Cut plot was placed in the middle of the 

enclose (x=0) 
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The next step was to identify the static pressure throughout the system. For 

identification purposes, the range was narrowed down to 4 spans. Figure 46 illustrates a 

simplified contour plot of average static pressures in the system at the front of the enclosure. 

Likewise, Figure 47 illustrates the static pressure at the back of the enclosure. The higher 

pressure denoted in red should reflect the ambient environmental pressure (406.7823" 𝐻2𝑂). 

However, the simulated pressure calculated at the inlet cover was determined to 

be 406.7168" 𝐻2𝑂. The reason hypothesized for this difference is that the boundary of the fluid 

domain is at the end of the inlet covers and not at the entrance to the enclosure. Therefore, 

inside the inlet covers there is a significant amount of air movement, thus, there is a static 

pressure drop of 0.06586" 𝐻2𝑂. So, when calculating the simulated static pressure drop across 

the enclosure, the static pressure inside the inlet covers should be considered as well. 

 

Figure 46 Static pressure at the front of the enclosure 
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Figure 47  Static pressure at the back of the enclosure 

Finally it was decided to conduct a point study at the two inlet covers and at the center of 

the enclosure. A plane parallel to the front of the enclosure was selected at the central point of 

the enclosure ( 𝑧 =  0). Also, another plane was positioned at the midpoint, parallel to the side 

of the enclosure. The Table 6 summarizes the data from the static pressure point study. 
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Static Pressure: 

  

Static Pressure: 

 

Static Pressure: 

Left Inlet 

  

inside the enclosure 

 

Right Inlet 

406.7168365 

 

Right Side 406.2755348 

 

406.7160575 

  

Front Side 406.2245889 

  

  

Average 406.2500619 

   

Table 6 Static pressure values inside and outside the enclosure 

Thus, the simulated static pressure drop just inside the enclosure is, 

𝑆𝑡𝑎𝑡𝑖𝑐 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝐷𝑟𝑜𝑝 =  �
406.7168365 + 406.7160575

2
� − 406.2500619 

𝑆𝑡𝑎𝑡𝑖𝑐 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝐷𝑟𝑜𝑝 =  0.466 "𝐻2𝑂 

 Compared to the measured static pressure drop, the percent error was 288%. However, 

it is important to point out that the measured pressure drop was taken only with two points 

while the simulated static pressure drop was calculated for more than 80 points. Also, as 

discussed earlier, the real enclosure is not completely water tight. Therefore, the measured 

pressure drop might predict to be lower than the actual pressure drop. Refer to Appendix I for a 

detailed list of static pressure data. 

3.4 Discussion of the CFD model  

As mentioned earlier, the CFD model is an approximation of the real application. Also, it is 

very difficult to apply all the real world conditions in a CFD model. For example, in an actual 

enclosure, the inside walls are covered with a sound absorbing material. This material acts as a 

restrictor to the air flow. However, in the CFD model, the wall conditions were defined as an 

adiabatic wall. Meaning, the simulation assumes that the wall surfaces have no effect on the air 
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flow conditions. Likewise, many other assumptions were made in the CFD model.  Other 

examples of assumptions that were not considered in the CFD model, to name a few, were:  

heat conditions were not accounted for, vibrations were ignored and flow was considered to be 

in ideal conditions.  

Analyzing the difference between the measured and simulated air velocities, error 

percentages were calculated at 60% for the right side inlet, 48.84% for the left side inlet and 

30.41% for the outlet. Even though the inlet error percentages are high, the measured and 

simulated velocities exhibit similar behaviors. 

Table 7 compares the raw measured and simulated velocity values for the inlets. In both 

data tables, the velocity values increase as it moved towards the right of the table (highlight in 

light green and dark green). Although the figures vary between the measured and simulated 

velocities (587, 589, 614 ft/min and 802, 801 and 823 ft/min) the pattern of variation is 

consistent in both of the tables. To illustrate, in the measured data set, the difference between 

the first two velocity values (587, 589 ft/min) was two. Likewise, in the simulated data, the 

difference between the first two velocity values (802, 801 ft/min) was one. Moreover, the third 

velocity value (614 ft/min) of the measured data set got increased by 25; the corresponding 

simulated value (823 ft/min) got increased by 22. 

 

Measured - Left Side Inlet 2 

 

Simulated - Left side Inlet 2 

587 589 614 

 

802 801 823 

486 445 506 

 

632 643 651 

370 366 404 

 

658 644 685 

 

Table 7 Measured Vs. Simulated velocity values - right side inlet 2 
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Also, analyzing the bottom row of Table 7, both data values demonstrated that the first and 

the second column (370, 366 ft/min and 658, 644 ft/min) had an almost identical data range, 

and the third column values (404 and 685 ft/min) were higher (highlighted in yellow and red).  

Likewise, other measured and simulated inlet air velocity values demonstrated similar 

trends. Moreover, for the two inlet grills, the lowest measured air velocity was at the bottom 

row or the bottom data point locations. In a like manner, referring to all the simulated inlet 

velocity data values, the bottom row had the lowest air velocity values.  

Moreover, in the simulation, the location at which velocity was calculated had an enormous 

effect on the velocity values. For example, when the plane was moved 10 mm away from its 

current location, the velocity values changed dramatically. The highest velocity values are 

simulated nearest to the inlet grill. However, it is impossible to use the same location to 

measure the velocity in the actual enclosure. Therefore, depending on the location, the 

measured and simulated velocities can vary considerably.   

The measured volumetric flow rate is based on the measured air velocity values. Hence, 

any error applied to the velocity values will be reflected in the volume flow rate values. On the 

other hand, simulation considered smooth wall interactions. Thus, the simulation may be 

predicted to demonstrate higher flow values.  

With reference to static pressure differences between the measured and simulated 

situations, the measured only used one data point; while the simulated used more than 80 data 

points. Also, the range of the pressure drop is from 0.0793 "𝐻2𝑂 to 0.5590 "𝐻2𝑂. Thus, it may 

not contain an accurate pressure reading of the whole enclosure. However, the measured static 

pressure loss (0.12 "𝐻2𝑂) is in the simulated static pressure range. Also, the actual enclosure is 



101 
 

not a 100% water tight enclosure. Therefore, the static pressure drop between the measured 

and simulated situation differed significantly.  

To conclude, it is very difficult to rate the level of validation. A model can fail in one 

validation point by 200% while, the same model can pass by 20% for a different validation point. 

However, there is not a conventional ratio that differentiates between a good model and bad 

model. Also, the mesh setting plays an important role in the model calculations. For an example, 

CFD model 3 can solve the simulation within 5 hours or it can solve it within 48 or more hours. 

However, between the 5 hour solver and 48 hour solver, the flow rate was 400 CFM lower in the 

48 hour solver. In other words, a finer mesh will calculate results more accurately, but will 

involve greater expense in terms of time and computing power.  

4 Rain water penetration Analysis 

As discussed in section 1.6, generators should undergo rainwater penetration testing 

before releasing it to the market. Even a single water droplet moving past the baffle plates is 

considered water penetration. When the generator is in full load, there are three main 

explanations for rain water penetration.  

1. Free flowing 

2. Dripping 

3. Splashing 

In order to observe the rain water behavior in the computational environment, a particle 

study was conducted in the simulation to replicate the water droplet motion. For the particle 

study, properties such as, velocity, diameter, particle material and wall conditions needed to be 
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defined. Water was selected as the default particle and the maximum number of droplets 

selected was 200. 

The rainwater test apparatus mentioned in Appendix A is used to mimic the natural rain fall 

phenomenon. However, as discussed in section 1.7, droplet velocity and diameter changes 

throughout the droplets fall.  Hence, to mimic the natural rain fall phenomena in a 

computational environment, the diameter and the terminal velocity needs to be defined. 

Therefore, velocity and the diameter values were assumed in individual analyses. Also, the wall 

conditions were selected based on the analysis type. 

The next step was to define the wall conditions. The user has to configure the wall 

conditions according to the analysis type. There are three differing types of wall conditions; 

absorption, ideal reflection and reflection. If the wall condition is defined as absorption, the 

particles will be absorbed by the wall. If it is ideal reflection, the particle will reflect in the 

opposite direction at the same magnitude of the impact velocity. Finally, in reflection condition, 

the user can assign the coefficient of restitution.  

The coefficient of restitution will depend on many variables, such as, paint, rust resistant 

coatings, material type, among others.  Also, measuring the coefficient of restitution is a 

cumbersome process which requires specialized testing equipment. Hence, it was decided to 

calculate the reflection rate using observational methods.  

The rain test apparatus was set-up next to a baffle plate so that the rain water would 

collide with the sheet metal surface of the baffle plate. Using a slow motion camera that was 

placed parallel to the surface of the impact area, pictures and videos were taken of the water 

droplet behavior. The vertical distance between the test apparatus and the baffle plate was 5 m. 

Also, the pressure in the system was maintained at 5 psi. After analyzing the data, it was 
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observed that the water droplets did not bounce back more than 5 cm. Hence, the assumption 

was made that the coefficient of restitution is very low and was assigned a value of 0.1.  

 

Figure 48 The camera was placed parallel to the impact surface. 

4.1 Free flowing 

Because of the high air velocity and the static pressure drop created near the inlet, rain 

water droplets can get carried through the air stream into the enclosure. In order to stop the 

free flowing penetration, baffle plates are placed at the back of the inlet grill (Figure 49). The 

purpose of the baffle plate is to act as a barrier, directing the air flow towards the ceiling of the 

enclosure.  

The purpose of the baffle plate is to separate the water droplets from the air particles. 

Because of the change in momentum permitted by altering the direction, the relatively heavier 

water droplets will bump into the inner face of the baffle while the lighter air particles will flow 

in their natural path. Also, there is a blade in the middle of the baffle to stop any water droplets 

flowing perpendicular to the inner face.  
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Figure 49 Baffle plate and the blade. 

When the direction of the air flow is suddenly changed, it creates high and low velocity 

areas (Figure 50). The loss of velocity creates static pressure drops and influences the volumetric 

flow rate.  Hence, an angled face is used to ease the directional change of the air flow, making 

the transition smoother.  

Inner face 

Blade 

Angled face 
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Figure 50 Contour plot in velocity at middle of the enclosure.  

 In order to simulate the free flowing water droplets, the terminal velocity and the 

diameter of the droplets need to be calculated. Initially, terminal velocity was to be calculated 

using the rain test apparatus. However, the complex geometry of the nozzle and lack of 

information about the apparatus made the calculation extremely difficult. Hence, using Equation 

1-83, the droplet velocity was estimated as a function of the droplet diameter (Table 8). A lower 

limit of 0.1 mm and an upper limit of 2.0 mm diameter were selected. Depending on the 

simulation results, the upper limit could have been increased.  

 

 



106 
 

 

Vt = 9.4 (1-exp(-1.57*10^3D^1.15)) 

    D (mm) Vt [m/s] Vt [ft/min] Relative Velocity []ft/min] 

0.1 0.36349 71.55295 228.4470547 

0.2 0.787675 155.0538 144.9462439 

0.3 1.223985 240.9414 59.05861552 

0.5 2.086765 410.7797 -110.7796615 

1 4.01481 790.3153 -490.315269 

2 6.669396 1312.871 -1012.87064 

 Table 8 Terminal Velocity as a function of diameter 

The next step was to define the wall conditions. Since this analysis was focused on water 

droplets that are free flowing, the behavior of the droplets after impact was not considered. 

Hence, all the wall conditions are selected as absorptions. In other words, if a water droplet hits 

the wall, the simulations assume the droplet is absorbed by the wall. As a result, the simulation 

only displayed the droplets that will flow without any obstructions. 

The droplets were injected at a 45 degree plane with respect to the enclosure (Figure 51). 

By doing so, droplets experienced the maximum horizontal and vertical terminal velocities. At 

this location, the droplets encountered the air flow. As a result, the flow velocity influenced the 

droplet velocity. Hence, the droplet velocity was assigned as being relative to the flow velocity. 

The flow velocity at the injection point was calculated as 300 ft/min. Therefore, in Table 8, the 

absolute value of the relative velocity was used as the droplet injection velocity. 
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Figure 51 water droplet injection plane. 

At the end of the particle study, it was concluded that only 0.1 mm water droplets will 

penetrate the enclosure in free flow situations (Figure 52). The air flow will carry these droplets 

and collide on the enclosure ceiling. All the other droplets will collide with the baffle plate 

surfaces and will not penetrate. 

Therefore, it can be concluded that the baffle plates act as an effective barrier for water 

droplets that are larger than 0.1 mm. Droplets with diameter sizes larger than 2 mm were not 

analyzed because initial results concluded that only the smaller droplets (0.1 mm or below) 

penetrated, while droplets larger than 0.1mm collided with the baffle plate and did not 

penetrate into the enclosure. Moreover, referring to Figure 50, it can be concluded that the 

water penetration path is consistent with the high velocity areas.  Refer to Appendix J for more 

information about the free flow study. 

 

Injection plane 
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Figure 52 Water droplet size 0.1 mm. Some of the droplets get carried by the air flow 

 

Figure 53 Top view of the 0.1 mm diamter droplets 
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4.2 Dripping 

The main purpose of the angled face of the baffle plate and the blade is to stop water 

droplets from entering the enclosure. However, because of surface tension, the water droplets 

that collide with the inner face and the blade will attach themselves to their surfaces. Droplets 

can climb up through the surfaces due to forces created by the air flow, and can get swept up 

into the flowing air. To avoid that, a lip is placed on top of the inner face and the blade (Figure 

54). As a result of this lip, droplet diameters will increase as the smaller droplets coalesce until 

the point that the gravitational force acting on them is higher than the surface tension, causing 

them to drop down the angled face.  

 

Figure 54 Baffle plate, blade and the inlet grill. Front view 

However, some of these falling droplets can still get carried through the air stream into the 

enclosure. This occurrence is called penetration by dripping. It is important to highlight that the 

diameter of the falling droplets cannot be calculated. Because the enclosure suffers heavy 

vibrations and this vibration energy will affect the downward force of the droplets. In other 

words, the combination of vibration energy and the gravitational forces are both acting on 

Lip 

Inlet Grill 
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surface tension. Also, it is important to mention that heat transfer was not accounted for in the 

simulations, and that heat energy will affect the water’s properties. Therefore the droplet 

diameter is not a constant and it was assumed to range of 0.1mm to 2.5 mm. Also, depending 

on the results, the diameter could have been increased if needed. Dripping will occurred in two 

locations, at the inlet grill and at the middle blade. 

4.2.1 Dripping at the inlet grill 

Since this particle study is focused on the water droplet formation on top of the inlet 

grill surface, the injection point was defined as the entire surface of the inlet grill. Also, the wall 

condition of the inlet grill was defined as ideal reflection. As the study concerns a variety of 

droplet formation locations, including the droplet formation at the top part of the grill surface, 

this definition was required.  In this condition the droplets that form on top of the grill slide 

down until get caught up in the air stream in the simulation. 

Moreover, wall conditions for the blade, inner face and the lips were defined as 

absorption. Meaning, the water droplets which collided with those surfaces were assumed to be 

retained by the lips and prevented from penetrating into the enclosure (see section 4.1 for more 

details about absorption). 

 As the velocity of dripping droplets is near zero and the simulation applies the 

gravitational forces to the droplets. The relative velocity type was selected and the velocity was 

defined as zero in all three planes �𝑉 =  [0]𝑥𝑦𝑧� and the simulation automatically calculated 

the applicable velocity to be in a downward direction. Based on observational data, the co-

efficient of restitution in the angled face was selected as 0.1. Finally, the diameters of the water 

droplets were selected as 0.1, 0.25, 0.5, 0.75, 1.0, 1.5, 2.0, 2.5 mm and the number of each sized 

particles was selected as 50. 
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 It was concluded that, when the droplet diameter is 0.1 mm, droplets will get carried 

through the air stream (Figure 55). When the droplet diameter size is 0.25mm to 2.5 mm, the 

baffle plates and the blade will retain the droplets from penetrating the enclosure.  

 

Figure 55 0.1 mm diameter droplets will penetrate the enclosure 

However, after further investigation the 0.1 mm study, it was determined that the 

penetration will only occur only in few locations (Figure 56). Upon investigating the top view of 

the study, water penetration was detected near the middle and the two sides. 

In Figure 56, locations marked “1” are the two sides of the baffle plate. These surfaces 

do not have lips on their top edges. Hence, the droplets can be impelled up these surfaces by 

the combination of wind forces and surface tension and get caught up with the flow stream. 
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Moreover, at location “3” there is a solid wall dividing and supporting the grill.  The air particles 

go around this solid wall. 

 

Figure 56 0.1 mm droplet size penetration location. Top view 

Also, the air velocities are higher at the two sides of the baffle plate and near the solid 

dividing wall of the grill (Figure 57). 

Water 
Penetration 

1 

1 

3 

2 
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Figure 57 Contour plot across the baffle plate illustrate high velocity near the solid wall and the two sides of the 
baffle plate 

Therefore, it can be concluded that when dripping occurs at the inlet grill, the water 

droplets will not penetrate if the droplet diameter is higher than 0.1 mm. However, as 

mentioned previously, the droplet diameter cannot be computed as well as there are no upper 

or lower limits. Also, for future recommendations, using lips at the two sides of the baffle will 

stop the penetrations from the sides. This study was not able to address the problem of water 

penetration posed by the middle solid wall, nor does it suggest any solution. Refer to Appendix 

J, for more information about the dripping at the inlet grill study. 

4.2.2 Dripping at the blade  

Similar to dripping from the inlet grill, water droplets can accumulate at the bottom edge of 

the blade as well. Therefore, the injection point was defined as the bottom face of the blade 

(Figure 58). Since this study concentrated only on the droplet behavior inside the enclosure 

from the blade and beyond, wall conditions for inlet grill itself were not defined.  
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Figure 58 Injection point was defined as the bottom surface 

 However, the wall conditions for the inner face were defined as absorption and the co-

efficient of restitution for the angled face was kept at 0.1. The droplet velocity was defined as 

𝑉 =  [0]𝑥𝑦𝑧 and the number of droplets chosen was, once again, 50. As mentioned in section 

4.2.1, the droplet diameter cannot be accurately calculated due to vibrations and other forces. 

Therefore, the diameter of the droplets was assumed to be in the range of 0.1 mm to 2.5 mm.  

After conducting the study, it was concluded that water penetration occurs when the 

droplet diameter is in the range of 0.1 mm to 1.0 mm. However, each of these diameter sizes 

exhibit a unique set of behaviors and the droplet behavior can best be generally explained using 

the air flow velocity at the baffle plate. 

Figure 59 illustrates the higher air flow velocity near the lip areas, specifically at the top of 

the inner face lip. On the other hand, right behind or right underneath the blade plate, velocity 

is virtually zero. This velocity difference is important for understanding the dripping phenomena. 

To explain, water droplets that build up at the bottom of the blade are more likely to be swept 

up into the air flow if the velocity is higher in that area. This process continues until the droplet 

Injection surface 
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mass is higher than the lift forces created by the air stream. Hence, when the droplet diameter 

is increases, the droplets collide with the inner face and drops down to the angled face.  

 

 

Figure 59 Air flow velocity at the baffle plate. Zoomed into highlight the blade and the lips 

Analyzing Figure 60, it is clear that the water penetration path is consistent with the 

high velocity path illustrated in Figure 59.  It is also apparent that none of the droplets collide 

with the inner face; therefore, the lips will not prevent water penetration. This behavior 

continues until the droplet diameter is equal to 0.75 mm.  

High Velocity 
Path 
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Figure 60 0.1mm diameter size. Penetration occurs severely 

 When droplet diameter falls between 0.75 mm and 1.0 mm, the penetration occurs in a 

slightly different way. Figure 61 demonstrates the behavior of water droplets when the 

diameter is  0.75 mm. However, the penetration only happens at the two sides and the middle 

part of the baffle. In order to examine this behavior further, a contour velocity plot was 

combined with the particle study.  
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Figure 61 0.75 mm diameter size. Penetration occurs at the middle and two sides (black circle)  

Then, the contour plot with velocity as a parameter was placed in between the blade 

and the inner face. After that, water droplet appearance was changed into lines instead of 

spheres. Figure 62 visualize the combination of contour plot and particle study in one picture.  
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Figure 62 Combination of contour plot of velocity and particle study data.  This view is presented from the left side 

in order to bring the particles in front of the plot. The higher simulated velocities near the midpoint and at the two 

sides are highlighted in the black circles.  

 In the analysis of Figure 62, it is notable that the velocities at the two sides and near the 

middle part of the baffle plate are higher than the in other areas. Therefore, in those areas, 

greater upward forces will exist; thus, these greater velocities will carry droplets that are heavier 

than in other areas. 

 However, these higher velocities have their limits as well. When the diameter size is 1.0 

mm, penetration only occurs near the middle (Figure 63). When the diameter is 1.5 mm or 

larger, however, no penetration will occur (Figure 64). Instead, all the droplets will collide with 

the inner face.  
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Figure 63 Droplet size 1.0 mm. Penetration only happens near the middle 

To conclude, water penetration due to dripping at the blade will only happen when the 

droplet diameter is in the range of 0.1 mm to 1.00 mm. Also, in between the inner face and the 

blade, the droplet penetration path is consistent with the high velocity path. Overall, however, 

the baffle plate design is a fairly successful one because it generates low velocity areas right 
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behind and right underneath the blade. Therefore, it does not create high velocity paths that 

can carry larger droplets (D ≤ 1.5 mm). 

 

Figure 64 1.5 mm diameter. No penetration 
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4.3 Splashing 

Splashing occurs when water droplets collide with any solid surface, breaking them into 

smaller droplets with different velocity profiles. In applying this principle to the generator 

enclosure, splashing can occur at the inlet grill and at the angled face. However, due to lack of 

information about surface tension of water with sheet metal, coefficient of restitution and an 

lacking an exact method to determine the water droplet break up, many assumptions had to be 

made regarding these phenomena. Also, splashing at the angled face was not considered as the 

co-efficient of restitution is low, and even if droplets were to bounce back, they would exhibit 

similar behavior to the free flowing droplets.  

The first step in the splashing particle study was to define the velocity of the droplets after 

impact. As mentioned earlier, the co-efficient of restitution was assumed to be 0.1. However, 

co-efficient of restitution only applies to those droplets that bounce back without breaking 

apart. The droplets created as a result of splashing will exhibit a variety of diameter size and 

velocity. Due to limits of testing equipment and thus, lack of data, the velocity of these smaller 

droplets created by impact had to be assumed as well.  

Again an observational method was used to investigate the velocity of the splashing 

droplets (refer to Section 4 for more details about the observational method chosen). After 

analyzing slow motion videos, it was observed that the splashing droplets do not bounce far 

away from the grill. Hence, it was assumed that the velocity of splashing droplets is nearly zero. 

In other words, the behavior of splashing droplets can be simulated the same way as the 

behavior of those dripping at the inlet grill (section 4.2.1).  
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5 Discussion and Recommendations 
 
In the current model, the difference between the measured and simulated static pressure 

should have been examined further. In particular, the measured static pressure should have 

been taken in multiple locations and examined for errors. Also, the techniques for measuring air 

velocity should be re-examined in an attempt to improve the precision of the measurements. 

One great improvement for potential future models would be to factor in the heat 

generation of the engine and the generator. The heat energy that is produced by the engine 

could be calculated using brake specific fuel consumption of the engine and by measuring the 

exhaust gas flow. Also, the charge air radiator heat dissipation rate would need to be calculated 

as well. 

Next, the coolant and charge air radiator should be modeled as a heat exchanger. Instead 

of modeling the complete design, the radiator could be modeled as a porous media.  By this 

method, a porous media could account for the heat exchange rate or the porosity of the 

radiator, as opposed to only considering the air flowing through the radiator. Also, the air 

pressure lost due to the restriction of flow created by the radiator would need to be accounted 

for. 

Finally, more realistic wall conditions should be incorporated into the model. The current 

model’s wall conditions are defined as adiabatic conditions. This means, walls have no effect on 

air flow or heat transfer. However, in an actual enclosure, the inside walls are covered with a 

sound absorbing material which does restrict the flow and affects heat transfer.  
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Appendix A 

Appendix A-1 

Test Structure 

 

Figure 65 Rain water test structure 
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Appendix A-2 

Nozzle Design of the rain test structure 

 

Figure 66 Rain water test structure nozzle design 
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Figure 67 Water droplet formation at the nozzle 
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Appendix B 

Fan Curve Data and Specifications 

 

Figure 68 Fan data - 1 
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Figure 69 Fan data - 02 
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Figure 70 Fan data - 03 
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Figure 71 Fan data was entered to the engineering data base in FloEFD. The curve is developed using the data 

supplied by multi-wing 
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Appendix C 

FloEFD simulation reports for CFD model 3 

FULL REPORT 

System Info 

Product FloEFD FEP14.0.0. Build: 2960 

Computer name USMKTDT0557 

User name andawattak 

Processors Intel(R) Xeon(R) CPU           W3565  @ 3.20GHz 

Memory 24573 MB / 8388607 MB 

Operating system Windows 7 Service Pack 1 (Build 7601) 

CAD version Pro/Engineer Creo 2.0 M150 

CPU speed 3200 MHz 

 

General Info 

Model OM924_RAIN_DESIGN_4.ASM 

Project name Rain Test_D4 

Project path G:\Engineering\01 Application Engineering\13 
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CFD\SAK\OM924_designs\OM924_Design_4\2 

Units system MTU Flow 

Analysis type Internal 

Exclude cavities without flow conditions On 

Coordinate system Global coordinate system 

Reference axis X 

 

INPUT DATA 

Initial Mesh Settings 

Automatic initial mesh: On 

Result resolution level: 8 

Advanced narrow channel refinement: Off 

Refinement in solid region: Off 

Geometry Resolution 

Evaluation of minimum gap size: Manual 

Minimum gap size: 15.000 mm 

Evaluation of minimum wall thickness: Manual 

Minimum wall thickness: 15.000 mm 
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Local Mesh Settings 

Local Initial Mesh 1 

Components SUA106857--0001-GEHAEUSETEIL___-135 

SUA106857--0001-GEHAEUSETEIL___-130 

XG2106100023--0001-TABLEAU_____-67 

XG2106100023--0001-TABLEAU_____-72 

Solid/fluid interface Small solid features refinement level: 3 

Curvature refinement level: 0 

Curvature refinement criterion: 0.451 rad 

Tolerance refinement level: 3 

Tolerance refinement criterion: 5.217 mm 

Refining cells Refine fluid cells: Off 

Refine solid cells: Off 

Refine partial cells: Off 

Narrow channels Advanced narrow channel refinement: On 

Characteristic number of cells across a narrow 

channel: 14 

Narrow channels refinement level: 4 
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The minimum height of narrow channels: Off 

The maximum height of narrow channels: Off 

 

Computational Domain 

Size 

X min -1145.016 mm 

X max 1145.016 mm 

Y min 38.184 mm 

Y max 1857.361 mm 

Z min -1405.612 mm 

Z max 1486.974 mm 

 

Boundary Conditions 

2D plane flow None 

At X min Default 

At X max Default 

At Y min Default 
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At Y max Default 

At Z min Default 

At Z max Default 

 

Physical Features 

Heat conduction in solids: Off 

Time dependent: Off 

Gravitational effects: On 

Rotation: Off 

Flow type: Laminar and turbulent 

High Mach number flow: Off 

Humidity: Off 

Default roughness: 0 micrometer 

Gravitational Settings 

X component 0 m/s^2 

Y component -9.81 m/s^2 

Z component 0 m/s^2 
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Default wall conditions: Adiabatic wall 

Initial Conditions 

Thermodynamic parameters Static Pressure: 406.78 in H(2)O 

Temperature: 20.05 °C 

Velocity parameters Velocity vector 

Velocity in X direction: 0 ft/min 

Velocity in Y direction: 0 ft/min 

Velocity in Z direction: 0 ft/min 

Turbulence parameters 

 

Material Settings 

Fluids 

Air 

Boundary Conditions 

Environment Pressure 1 

Type Environment Pressure 

Faces  
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Coordinate system Global coordinate system 

Reference axis X 

Thermodynamic parameters Environment pressure: 406.78 in H(2)O 

Temperature: 20.05 °C 

Turbulence parameters Boundary layer parameters 

Boundary layer type: Turbulent 

 

Fans 

External Outlet Fan 1 

Type External Outlet Fan 

Fan curve Milti_wing_Om924 

Outlet faces Face<17>@LID559_-253 

Outlet coordinate system Face Coordinate System 

Outlet reference axis X 

Outlet flow parameters Outlet flow vector direction: Normal to face 

Thermodynamic parameters Environment pressure: 406.78 in H(2)O 

Toggle On 
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Goals 

Surface Goals 

SG Av Static Pressure 1 

Type Surface Goal 

Goal type Static Pressure 

Calculate Average value 

Faces LID558-252 LID557-251 

Coordinate system Global coordinate system 

Use in convergence On 

 

SG Volume Flow Rate 1 

Type Surface Goal 

Goal type Volume Flow Rate 

Faces LID558-252 LID557-251 

Coordinate system Global coordinate system 

Use in convergence On 
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Calculation Control Options 

Finish Conditions 

Finish Conditions If one is satisfied 

Maximum travels 4 

Goals convergence Analysis interval: 5.000000e-001 

 

Solver Refinement 

Refinement: Disabled 

Results Saving 

Save before refinement On 

 

Advanced Control Options 

Flow Freezing 

Flow freezing strategy Disabled 

 

RESULTS 

General Info 

Iterations: 359 
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CPU time: 99134 s 

Calculation Mesh 

Basic Mesh Dimensions 

Number of cells in X 54 

Number of cells in Y 42 

Number of cells in Z 68 

 

Number Of Cells 

Total cells 3197005 

Fluid cells 2164468 

Solid cells 273690 

Partial cells 758847 

Irregular cells 0 

Trimmed cells 0 

 

Maximum refinement level: 5 



143 
 

Goals 

Name Unit Value Progress Use in 

convergence 

Delta Criteria 

SG Av 

Static 

Pressure 1 

in H(2)O 406.72 100 5.2200296e-

005 

5.20760275e-

005 

On 

SG 

Volume 

Flow Rate 

1 

ft^3/min 10302.6949 100 249.252823 153.572776 On 

 

Min/Max Table 

Name Minimum Maximum 

Pressure [in H(2)O] 402.16 408.40 

Temperature [°C] 19.92 20.06 

Density (Fluid) [kg/m^3] 1.19 1.21 

Velocity [ft/min] 0 3241.820 

Velocity (X) [ft/min] -2876.195 3010.013 

Velocity (Y) [ft/min] -2407.387 2788.213 
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Velocity (Z) [ft/min] -2399.155 2426.605 

Temperature (Fluid) [°C] 19.92 20.06 

X (cartesian) [mm] -1142.731 1142.731 

Y (cartesian) [mm] 40.000 1855.545 

Z (cartesian) [mm] -1402.725 1458.274 

Phi (cylindrical) [rad] 0.070 3.072 

Radius r (cylindrical) [mm] 40.087 2179.097 

Z-axis (cylindrical) [mm] -1402.725 1458.274 

Phi (spherical) [rad] 0.070 3.072 

Theta (spherical) [rad] -1.538 1.539 

Position Vector R (spherical) 

[mm] 

49.257 2599.131 

Mach Number [ ] 0 0.05 

Axial Velocity [ft/min] -2399.155 2426.605 

Radial Velocity [ft/min] -2446.063 2872.025 

Circumferential Velocity 

[ft/min] 

-3140.469 3009.666 
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Normal Velocity [ft/min] -3241.820 3241.820 

Tangential Velocity [ft/min] 0 3241.820 

Velocity RRF (X) [ft/min] -2876.195 3010.013 

Velocity RRF (Y) [ft/min] -2407.387 2788.213 

Velocity RRF (Z) [ft/min] -2399.155 2426.605 

Total Pressure [in H(2)O] 402.16 408.55 

Dynamic Pressure [in H(2)O] 0 0.66 

Friction Coefficient [ ] 0 148.4053 

Shear Stress [in H(2)O] 0 6.44 

Reference Pressure [in H(2)O] 406.78 406.78 

Relative Pressure [in H(2)O] -4.62 1.62 

Specific Heat (Cp) [J/(kg*K)] 1006.6 1006.6 

Dynamic Viscosity [Pa*s] 1.8140e-005 1.8147e-005 

Prandtl Number [ ] 0.7073881 0.7073900 

Fluid Thermal Conductivity 

[W/(m*K)] 

0.0258 0.0258 

Stanton Number [ ] 0 0 
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Heat Transfer Coefficient 

[W/m^2/K] 

0 0 

Surface Heat Flux [W/m^2] 0 0 

Wall Temperature [°C] 19.95 20.06 

Turbulent Viscosity [Pa*s] 8.0460e-014 0.1103 

Turbulent Time [s] 3.407e-005 110.806 

Turbulence Length [m] 1.242e-006 0.076 

Turbulence Intensity [%] 0.03 1000.00 

Turbulent Energy [J/kg] 3.476e-009 48.898 

Turbulent Dissipation [W/kg] 3.14e-011 398912.33 

 

Engineering Database 

Gases 

Air 

Path: Gases Pre-Defined 

Specific heat ratio (Cp/Cv): 1.399 

Molecular mass: 0.0290 kg/mol 
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Dynamic viscosity 

 

Specific heat (Cp) 
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Thermal conductivity 

 

Fan Curves 

Milti_wing_Om924 

Path: Fans User Defined 

Fan Type: Axial 

Set up reference density: Yes 

Reference density: 1.01 kg/m^3 

Mass/Volume flow rate: Volume flow rate 
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Value 

 

Rotor speed: 190.066 rad/s 

Outer diameter: 863.092 mm 

Hub diameter: 265.938 mm 

Direction of rotation: Clockwise 
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Appendix D 

OM924 Engine and Generator Assembly 

 

Figure 72 OM924 Engine and Generator, without the enclosure 
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Appendix E 

Appendix E.1 

CFD Model 1 

 

Figure 73 CFD Model 1 front view 

 

Figure 74 CFD Model 1 Side View 
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Figure 75 Baffle plates and blades helps to stop water penetration 

 

Figure 76 CFD model 1 front view 

  



153 
 

Appendix E.2 

CFD Model 2 

 

Figure 77 in the original CAD model, the fan is located inside the enclosure next to the engine 
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Figure 78 CFD model 2 – the fan is located outside the enclosure 

 

 

Figure 79 CFD model 2, isometric view without side air inlet covers 
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Appendix E.3 

CFD model 3 

 

Figure 80 Complete CFD model 3 in isometric view 
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Figure 81 CFD model 3. Top view 
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Appendix F 

OM924 Inlet Air flow data 
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Figure 82 OM924 inlet air flow data and points 
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OM924 Outlet Air Flow data 

 

Figure 83 OM924 outlet air flow data and points 
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OM924 Engine Data 

 

Figure 84 OM924 Engine data 
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Appendix G 

Goal plot 1- Maximum Volumetric Flow Rate 

OM924_RAIN_DESIGN_4.ASM [Rain Test_D4 [OM924_RAIN_DESIGN_4]] 

  
          

Goal Name Unit Value 

Averag

ed 

Value 

Minimu

m 

Value 

Maxim

um 

Value 

Progr

ess 

[%] 

Use In 

Converge

nce Delta 

Criteri

a 

SG Volume 

Flow Rate 

1 

[ft^3

/min

] 

10302

.6949

2 

10215.

78212 

10149.

12215 

10302.

69492 100 Yes 

153.5

72775

5 

249.2

52823

1 

 

Table 9 Goal plot 1 with stopping criteria. The average floe rate value should be used for calculations 

Surface Parameter Study – at the outlet lid 

Integral Parameters 

     

Integral Parameter Value 

X-

componen

t 

Y-

componen

t 

Z-

componen

t 

Surface Area 

[ft^2] 

Volume Flow Rate 

[ft^3/min] 

-

10322.011

33       6.61725558 

Table 10 Surface parameter for volumetric flow rate. Outside face of the outlet lid was selected. The value is a 

negative number indicating the air is flowing outside that face. 
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Surface Parameter Study – at the right side inlet lid 

Integral Parameters 

     

Integral Parameter Value 

X-

componen

t 

Y-

componen

t 

Z-

componen

t 

Surface Area 

[ft^2] 

Volume Flow Rate 

[ft^3/min] 

5430.6680

83       30.96131192 

Table 11 Surface parameter for volumetric flow rate. Outside face of the right-side inlet lid was selected.  

Surface Parameter Study – at the left side inlet lid 

Integral Parameters 

     

Integral Parameter Value 

X-

componen

t 

Y-

componen

t 

Z-

componen

t 

Surface Area 

[ft^2] 

Volume Flow Rate 

[ft^3/min] 

4872.026

84       30.96131192 

 

Table 12 Surface parameter for volumetric flow rate. Outside face of the left-side inlet lif was selected. 
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Appendix H 

Appendix H.1 

Right Velocity [Rain Test_D4 [OM924_RAIN_DESIGN_4]] 

     Global Coordinate System 

   
     
     Medium - Fluid; Iteration = 359 

  X [mm] Y [mm] Z [mm] Velocity [ft/min] Velocity (X) [ft/min] 

663.4365916 1402.257442 1012.664557 814.6681403 -789.6958697 

663.4365916 1308.065772 828.5437226 823.3021335 -741.3895617 

663.4365916 1496.449113 828.5437226 945.8893045 -922.2349918 

663.4365916 1402.257442 644.4228888 734.0815828 -726.7302784 

663.4365916 1308.065772 460.3020549 805.2881864 -723.7518128 

663.4365916 1496.449113 460.3020549 913.0444929 -889.1807792 

663.4365916 1402.257442 276.181221 733.3307214 -727.0398905 

663.4365916 1308.065772 92.06038713 803.139274 -736.1987725 

663.4365916 1496.449113 92.06038713 875.1648786 -848.0166541 

663.4365916 1402.257442 -92.06044674 711.5208446 -700.9988203 

663.4365916 1308.065772 -276.1812806 815.6712724 -735.5705089 

663.4365916 1496.449113 -276.1812806 909.3102136 -883.8634054 

663.4365916 1402.257442 -460.3021145 728.8086873 -721.9527993 

663.4365916 1308.065772 -644.4229484 816.1131987 -730.9300719 

663.4365916 1496.449113 -644.4229484 929.2133561 -905.4539812 
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663.4365916 1402.257442 -828.5437822 752.4932633 -743.6408106 

663.4365916 1308.065772 -1012.664557 869.4656082 -790.4822778 

663.4365916 1496.449113 -1012.664557 983.239338 -945.343959 

  

Average 831.3191387 -792.3597358 

Table 13 Right Side Air Velocity Point Study 
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Appendix H.2 

Left Velocity [Rain Test_D4 [OM924_RAIN_DESIGN_4]] 

     Global Coordinate System 

   
     
     Medium - Fluid; Iteration = 359 

  X [mm] Y [mm] Z [mm] Velocity [ft/min] Velocity (X) [ft/min] 

-663.4365916 1402.257442 -1012.664557 735.7287507 711.0431381 

-663.4365916 1496.449113 -828.5437226 860.9595584 839.9335628 

-663.4365916 1308.065772 -828.5437226 748.9800089 675.6840873 

-663.4365916 1402.257442 -644.4228888 669.7614557 662.8999986 

-663.4365916 1496.449113 -460.3020549 830.8724349 809.411011 

-663.4365916 1308.065772 -460.3020549 733.8700617 658.0287298 

-663.4365916 1402.257442 -276.181221 666.7964975 660.8424942 

-663.4365916 1496.449113 -92.06038713 794.7657022 770.3224563 

-663.4365916 1308.065772 -92.06038713 725.2263354 663.7584951 

-663.4365916 1402.257442 92.06044674 642.3015697 632.9199977 

-663.4365916 1496.449113 276.1812806 823.1524815 802.0320399 

-663.4365916 1308.065772 276.1812806 731.846524 658.1001855 

-663.4365916 1402.257442 460.3021145 650.5097821 643.9876369 

-663.4365916 1496.449113 644.4229484 822.53209 801.8837723 

-663.4365916 1308.065772 644.4229484 719.715739 644.8851887 

-663.4365916 1402.257442 828.5437822 660.1426399 651.6384322 



166 
 

-663.4365916 1496.449113 1012.664557 857.5886895 823.7520894 

-663.4365916 1308.065772 1012.664557 756.1232893 685.5523707 

  

Average 746.159645 710.926427 

Table 14 Left Side Air Velocity Point Study 
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Appendix H.3 

Outlet Velocity [Rain Test_D4 [OM924_RAIN_DESIGN_4]] 

Global Coordinate System 

   Medium - Fluid; Iteration = 359 

  X [mm] Y [mm] Z [mm] Velocity [ft/min] Velocity (Z) [ft/min] 

-337.685402 904.9871748 1197.789906 1500.945226 504.7379237 

-340.0293562 218.2085064 1197.789906 1184.748006 770.242354 

-330.6535393 579.1774993 1197.789906 1652.235771 1058.703625 

-337.685402 750.2861778 1197.789906 1649.118587 913.1466718 

-337.685402 365.8776399 1197.789906 1469.484725 895.1807713 

381.9085453 900.2992658 1197.789906 1440.79313 407.5065883 

-227.5195534 904.9871748 1197.789906 1650.301925 776.2589549 

-126.7295217 907.3311293 1197.789906 1659.928823 883.4318776 

-9.531810369 902.6432203 1197.789906 1693.805753 899.608707 

112.3538094 904.9871748 1197.789906 1839.312873 864.6365745 

245.9592002 902.6432203 1197.789906 2227.94188 637.3763675 

-232.2074618 759.6619958 1197.789906 1662.28326 1096.096756 

-239.2393245 583.8654083 1197.789906 1567.729924 1259.539731 

-239.2393245 372.9095034 1197.789906 1503.738192 1035.495524 

-239.2393245 222.8964154 1197.789906 1393.346112 841.0268141 

-126.7295217 757.3180413 1197.789906 1585.212011 1222.349903 

-124.3855674 588.5533173 1197.789906 1450.651023 1413.635286 

-133.7613843 370.5655489 1197.789906 1514.559111 1137.994406 
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-133.7613843 225.2403699 1197.789906 1549.095588 899.1747994 

-7.187856143 766.6938593 1197.789906 1598.618374 1199.445443 

-7.187856143 586.2093628 1197.789906 1491.616034 1430.376636 

-21.2515815 382.2853214 1197.789906 1545.0103 1197.750836 

-28.28344417 232.2722334 1197.789906 1627.97802 933.7844084 

110.0098551 766.6938593 1197.789906 1763.209692 1038.53903 

93.60217556 588.5533173 1197.789906 1623.531607 1307.603573 

100.6340382 386.9732304 1197.789906 1574.865934 1131.37205 

105.3219467 229.9282789 1197.789906 1591.27887 884.6250112 

248.3031545 769.0378138 1197.789906 2261.534408 829.5010121 

250.6471087 583.8654083 1197.789906 1906.043886 995.320515 

238.9273376 384.6292759 1197.789906 1584.582004 967.5559686 

231.8954749 227.5843244 1197.789906 1436.011239 768.3915877 

386.5964538 766.6938593 1197.789906 1850.906342 818.8527029 

388.940408 583.8654083 1197.789906 1959.77233 936.0962805 

384.2524996 384.6292759 1197.789906 1585.938029 810.3451547 

388.940408 227.5843244 1197.789906 1049.696939 571.835048 

  

Average 1618.452169 952.5011113 
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Outlet Data Points 

 

Figure 85 Outlet air velocity point study locations 
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Flow trajectory vs. velocity 

 

Figure 86 Flow trajectory 
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Appendix I 

Left inlet pressure data 

Pressure Left side -Outside [Rain Test_D4 

[OM924_RAIN_DESIGN_4]] 

   

        
Global 
Coordinate 
System 

      

        
        
Medium - Fluid; 
Iteration = 359 

     

X 

[mm

] 

Y 

[mm] 

Z 

[m

m] 

Pressure 

[in 

H(2)O] 

Total 

Pressure [in 

H(2)O] 

Dynamic 

Pressure [in 

H(2)O] 

Reference 

Pressure [in 

H(2)O] 

Relative 

Pressure [in 

H(2)O] 

-

760.

081 

1718.

73148

5 

0 406.6990

776 

406.700366

9 

0.001289521 406.7823147 -

0.083237145 

-

893.

556 

1721.

98697

7 

0 406.6985

877 

406.700676

8 

0.002089576 406.7823147 -

0.083727074 

-

1049

.82 

1725.

24247 

0 406.6982

589 

406.700525

5 

0.0022671 406.7823147 -

0.084055891 

-

747.

059 

1497.

35800

2 

0 406.6997

285 

406.711009

9 

0.01128332 406.7823147 -

0.082586286 



172 
 

-

900.

067 

1503.

86898

7 

0 406.7064

544 

406.710950

9 

0.004497288 406.7823147 -

0.075860379 

-

1049

.82 

1510.

37997

2 

0 406.7074

163 

406.710696

1 

0.003280398 406.7823147 -

0.074898492 

-

750.

315 

1373.

64929

1 

0 406.7060

076 

406.717283

9 

0.011277992 406.7823147 -0.07630719 

-

900.

067 

1376.

90478

4 

0 406.7121

353 

406.716968

8 

0.004834257 406.7823147 -0.07017942 

-

1066

.097 

1380.

16027

6 

0 406.7135

959 

406.716871

6 

0.003276265 406.7823147 -

0.068718847 

-

750.

315 

1207.

61918 

0 406.7194

395 

406.725177

2 

0.005738456 406.7823147 -

0.062875239 

-

906.

578 

1210.

87467

2 

0 406.7218

275 

406.724884

8 

0.00305765 406.7823147 -

0.060487219 

-

1056

1217.

38565

0 406.7221

166 

406.724592

2 

0.002475995 406.7823147 -

0.060198166 



173 
 

.331 7 

-

753.

57 

1080.

65497

6 

0 406.7295

383 

406.730979

7 

0.001441559 406.7823147 -

0.052776442 

-

909.

834 

1083.

91046

9 

0 406.7292

852 

406.730925

3 

0.001640225 406.7823147 -

0.053029502 

-

1056

.331 

1087.

16596

1 

0 406.7291

141 

406.730770

3 

0.001656399 406.7823147 -

0.053200613 

-

747.

059 

943.9

24295

8 

0 406.7370

339 

406.737224

2 

0.000190286 406.7823147 -

0.045280845 

-

913.

089 

943.9

24295

8 

0 406.7367

753 

406.737560

5 

0.000785313 406.7823147 -

0.045539488 

-

1053

.075 

940.6

68803

4 

0 406.7366

647 

406.73772 0.00105539 406.7823147 -0.04565006 

   406.7168

365 

406.720288 0.003452055 406.7823147 -

0.065478239 

Table 15 Left Inlet static pressure data 

 



174 
 

Right inlet pressure data 

Pressure Right side -Outside [Rain 

Test_D4 [OM924_RAIN_DESIGN_4]] 

   
        Global 
Coordinate 
System 

      
        
        Medium - Fluid; 
Iteration = 359 

     

X [mm] Y [mm] 

Z 

[m

m] 

Pressure [in 

H(2)O] 

Total Pressure 

[in H(2)O] 

Dynamic 

Pressure [in 

H(2)O] 

Reference 

Pressure [in 

H(2)O] 

Relative 

Pressure [in 

H(2)O] 

760.081

1335 

1718.73

1485 0 

406.698739

2 406.7003285 0.001589628 406.7823147 -0.083575539 

893.556

3083 

1721.98

6977 0 

406.698133

1 406.7006759 0.002543349 406.7823147 -0.084181643 

1049.81

9928 

1725.24

247 0 

406.697735

9 406.7005289 0.002793528 406.7823147 -0.084578841 

747.059

1652 

1497.35

8002 0 

406.697206

3 406.7110163 0.013812277 406.7823147 -0.085108485 

900.067

2925 

1503.86

8987 0 

406.705448

2 406.7109652 0.005517976 406.7823147 -0.07686659 



175 
 

1049.81

9928 

1510.37

9972 0 

406.706672

3 406.7107115 0.004039856 406.7823147 -0.075642453 

750.314

6573 

1373.64

9291 0 

406.703524

2 406.7173585 0.013836339 406.7823147 -0.078790519 

900.067

2925 

1376.90

4784 0 

406.711049

5 406.7169869 0.005938303 406.7823147 -0.07126527 

1066.09

7388 

1380.16

0276 0 406.712854 406.7168897 0.004036311 406.7823147 -0.069460766 

750.314

6573 

1207.61

918 0 

406.718198

3 406.7252307 0.007033385 406.7823147 -0.06411649 

906.578

2766 

1210.87

4672 0 

406.721144

7 406.7248926 0.003748461 406.7823147 -0.06117009 

1056.33

0912 

1217.38

5657 0 

406.721553

9 406.7246005 0.003047021 406.7823147 -0.060760869 

753.570

1494 

1080.65

4976 0 

406.729189

7 406.7309728 0.001783241 406.7823147 -0.053125009 

909.833

7687 

1083.91

0469 0 

406.728917

2 406.7309302 0.002013186 406.7823147 -0.053397504 

1056.33

0912 

1087.16

5961 0 

406.728739

9 406.7307756 0.002035956 406.7823147 -0.053574839 



176 
 

747.059

1652 

943.924

2958 0 

406.736899

7 406.7371294 0.000229815 406.7823147 -0.045415092 

913.089

2607 

943.924

2958 0 

406.736595

5 406.7375652 0.000969806 406.7823147 -0.045719209 

1053.07

542 

940.668

8034 0 

406.736433

8 406.7377228 0.001289071 406.7823147 -0.04588092 

   

406.716057

5 406.7202934 0.004236528 406.7823147 -0.066257229 

Table 16 Right Inlet static pressure data 

  

  



177 
 

Middle front, pressure data (Z=0) 

Pressure Middle -Inside [Rain 

Test_D4 [OM924_RAIN_DESIGN_4]] 

   
        Global 
Coordinate 
System 

      
        
        Medium - Fluid; 
Iteration = 359 

     

X [mm] Y [mm] 

Z 

[m

m] 

Pressure 

[in H(2)O] 

Total Pressure 

[in H(2)O] 

Dynamic 

Pressure [in 

H(2)O] 

Reference 

Pressure [in 

H(2)O] 

Relative 

Pressure [in 

H(2)O] 

-

485.589

7175 

1673.7

65154 0 

406.53928

44 406.610134 0.070858628 406.7823147 -0.243030299 

-

298.398

9204 

1673.7

65154 0 

406.27061

26 406.3764632 0.105854426 406.7823147 -0.511702134 

-

131.554

949 

1673.7

65154 0 

406.28145

08 406.3710115 0.089567297 406.7823147 -0.50086397 



178 
 

116.676

3254 

1669.6

95789 0 

406.33263

32 406.4777567 0.145131535 406.7823147 -0.449681512 

283.520

2968 

1673.7

65154 0 

406.18950

82 406.3168479 0.127343376 406.7823147 -0.592806534 

470.711

0939 

1673.7

65154 0 

406.50817

71 406.56781 0.059640754 406.7823147 -0.27413767 

-

481.520

3524 

1490.6

437 0 

406.61479

22 406.6343778 0.019588542 406.7823147 -0.167522495 

-

294.329

5552 

1494.7

13066 0 

406.23419

63 406.2371892 0.002993392 406.7823147 -0.548118458 

-

123.416

2187 

1494.7

13066 0 

406.26913

81 406.2773552 0.008218099 406.7823147 -0.513176633 

116.676

3254 

1490.6

437 0 

406.19394

35 406.3786154 0.184668459 406.7823147 -0.588371246 

295.728

3923 

1494.7

13066 0 

406.15159

6 406.1776191 0.026026427 406.7823147 -0.630718739 

478.849 1486.5
0 

406.58581
406.6177146 0.031908719 406.7823147 -0.196504393 



179 
 

8243 74334 04 

-

485.589

7175 

1307.5

22246 0 

406.26438

4 406.2795068 0.015124674 406.7823147 -0.517930713 

-

298.398

9204 

1323.7

99709 0 

406.23666

08 406.305238 0.068582461 406.7823147 -0.545653913 

-

119.346

8536 

1323.7

99709 0 

406.25537

38 406.2819161 0.026544707 406.7823147 -0.526940976 

124.815

0558 

1323.7

99709 0 

406.20934

24 406.4434617 0.234102666 406.7823147 -0.572972384 

295.728

3923 

1331.9

3844 0 

406.20659

39 406.2133951 0.006802061 406.7823147 -0.575720867 

478.849

8243 

1336.0

07806 0 

406.62020

01 406.6374125 0.017214812 406.7823147 -0.16211467 

-

481.520

3524 

1104.0

53964 0 

406.23484

42 406.3108344 0.075993526 406.7823147 -0.547470562 

- 1108.1
0 

406.19439
406.283813 0.089421485 406.7823147 -0.587921388 



180 
 

294.329

5552 

23329 34 

-

115.277

4884 

1116.2

62061 0 

406.17405

7 406.2177359 0.043680825 406.7823147 -0.608257721 

116.676

3254 

1120.3

31426 0 

406.19552

49 406.4970915 0.301520625 406.7823147 -0.586789874 

295.728

3923 

1128.4

70158 0 

406.22339

58 406.2576587 0.034263991 406.7823147 -0.558918968 

486.988

5546 

1132.5

39523 0 

406.22509

72 406.243071 0.017975659 406.7823147 -0.557217587 

-

481.520

3524 

916.86

31439 0 

406.20132

3 406.3113595 0.110034977 406.7823147 -0.58099178 

-

302.468

2855 

925.00

18752 0 

406.15860

37 406.2694179 0.110811428 406.7823147 -0.623711023 

-

115.277

4884 

925.00

18752 0 

406.11338

84 406.1577683 0.04438065 406.7823147 -0.66892638 



181 
 

116.676

3254 

937.20

99721 0 

406.17456

64 406.4669595 0.292341598 406.7823147 -0.607748317 

291.659

0271 

929.07

12408 0 

406.23909

56 406.3121993 0.073101403 406.7823147 -0.543219119 

491.057

9197 

937.20

99721 0 

406.24329

44 406.2487155 0.00542159 406.7823147 -0.539020393 

-

477.450

9872 

717.46

42272 0 

406.19548

7 406.3139362 0.11844284 406.7823147 -0.586827789 

-

302.468

2855 

729.67

23241 0 

406.14650

12 406.2417087 0.095203877 406.7823147 -0.635813524 

-

99.0000

2778 

733.74

16898 0 

406.10934

15 406.166728 0.05738567 406.7823147 -0.672973249 

120.745

6906 

745.94

97867 0 

406.19871

04 406.4420015 0.243251872 406.7823147 -0.58360434 

291.659

0271 

741.88

04211 0 

406.26556

54 406.3121951 0.046628279 406.7823147 -0.516749391 

470.711 750.01
0 

406.27235
406.2746859 0.00233414 406.7823147 -0.509962916 



182 
 

0939 91524 18 

-

481.520

3524 

554.68

96013 0 

406.24595

52 406.3330014 0.087041657 406.7823147 -0.536359514 

-

314.676

381 

570.96

70639 0 

406.18963

28 406.267377 0.077740576 406.7823147 -0.592681911 

-

94.9306

6262 

570.96

70639 0 406.16649 406.2618044 0.095308351 406.7823147 -0.615824762 

132.953

7861 

570.96

70639 0 

406.26763

32 406.3778518 0.110207701 406.7823147 -0.514681551 

303.867

1226 

591.31

38921 0 

406.28727

25 406.3034377 0.016165148 406.7823147 -0.495042216 

474.780

4591 

579.10

57952 0 

406.29943

09 406.3071438 0.007713209 406.7823147 -0.48288388 

-

485.589

7175 

371.56

81472 0 

406.31416

36 406.3469416 0.032777369 406.7823147 -0.468151164 

- 371.56
0 

406.29477
406.3450219 0.05024182 406.7823147 -0.487537318 



183 
 

318.745

7462 

81472 74 

-

111.208

1232 

383.77

62441 0 

406.28449

3 406.3565859 0.07208721 406.7823147 -0.497821759 

116.676

3254 

371.56

81472 0 

406.30973

72 406.3317664 0.02202872 406.7823147 -0.472577538 

316.075

218 

371.56

81472 0 

406.32379

87 406.3377371 0.013938364 406.7823147 -0.458516028 

486.988

5546 

371.56

81472 0 

406.33725

37 406.345339 0.0080854 406.7823147 -0.445061026 

-

477.450

9872 

176.23

85961 0 

406.34591

68 406.3624766 0.016559601 406.7823147 -0.436397938 

-

330.953

8416 

184.37

73274 0 

406.33370

08 406.3486541 0.014953142 406.7823147 -0.448613991 

-

131.554

949 

188.44

6693 0 

406.32278

05 406.3473859 0.024604692 406.7823147 -0.459534199 



184 
 

116.676

3254 

196.58

54243 0 

406.33108

7 406.3520513 0.020963747 406.7823147 -0.451227738 

312.005

8529 

196.58

54243 0 

406.34489

22 406.3597247 0.014832298 406.7823147 -0.437422573 

491.057

9197 

192.51

60587 0 

406.35062

3 406.385658 0.035034264 406.7823147 -0.431691791 

   

406.27553

48 406.3444752 0.06893794 406.7823147 -0.506779978 

Table 17 Middle front, static pressure data 

  

  



185 
 

Middle – Side, pressure data (x = 0) 

prESSURE IN MIDDLE [Rain Test_D4 
[OM924_RAIN_DESIGN_4]] 

   
        Global 
Coordinate 
System 

      
        
        Medium - Fluid; 
Iteration = 359 

     

X 

[mm] Y [mm] Z [mm] 

Pressure 

[in H(2)O] 

Total 

Pressure [in 

H(2)O] 

Dynamic 

Pressure [in 

H(2)O] 

Reference 

Pressure [in 

H(2)O] 

Relative 

Pressure [in 

H(2)O] 

-

0.063

4362 

1054.5

20011 

-

1074.5

59569 

406.15452

48 406.2274113 0.072888136 406.7823147 -0.627789971 

-

0.063

4362 

757.48

00253 

-

1074.5

59569 

406.22055

88 406.3222664 0.101704521 406.7823147 -0.561755952 

-

0.063

4362 

460.44

00098 

-

1074.5

59569 

406.33861

91 406.402876 0.064254094 406.7823147 -0.443695662 

-

0.063

4362 

163.39

99944 

-

1074.5

59569 

406.34506

24 406.3979754 0.052910585 406.7823147 -0.437252333 



186 
 

-

0.063

4362 

1351.5

59997 

-

1074.5

59569 

406.20184

2 406.2843598 0.082520727 406.7823147 -0.580472697 

-

0.063

4362 

1648.5

99982 

-

1074.5

59569 

406.30452

9 406.3942704 0.089748676 406.7823147 -0.477785717 

-

0.063

4362 

1054.5

20011 

-

778.17

88111 

406.16746

4 406.1898697 0.022407439 406.7823147 -0.614850763 

-

0.063

4362 

757.48

00253 

-

778.17

88111 

406.20104

11 406.2153346 0.014294239 406.7823147 -0.581273667 

-

0.063

4362 

460.44

00098 

-

778.17

88111 

406.28948

01 406.3514183 0.061936257 406.7823147 -0.492834644 

-

0.063

4362 

163.39

99944 

-

778.17

88111 

406.33623

66 406.3884675 0.052227989 406.7823147 -0.446078095 

-

0.063

4362 

1351.5

59997 

-

778.17

88111 

406.25381

88 406.2935973 0.039781474 406.7823147 -0.528495951 



187 
 

-

0.063

4362 

1648.5

99982 

-

778.17

88111 

406.33597

03 406.4755203 0.139555761 406.7823147 -0.44634443 

-

0.063

4362 

1054.5

20011 

-

481.79

80826 

406.16167

34 406.2387417 0.077070846 406.7823147 -0.620641296 

-

0.063

4362 

757.48

00253 

-

481.79

80826 

406.19519

37 406.2210634 0.025870637 406.7823147 -0.587121065 

-

0.063

4362 

460.44

00098 

-

481.79

80826 406.27525 406.2930727 0.017822739 406.7823147 -0.507064747 

-

0.063

4362 

163.39

99944 

-

481.79

80826 

406.34919

07 406.3884469 0.039254449 406.7823147 -0.433124014 

-

0.063

4362 

1351.5

59997 

-

481.79

80826 

406.23679

82 406.3133264 0.076531923 406.7823147 -0.545516567 

-

0.063

4362 

1648.5

99982 

-

481.79

80826 

406.36387

29 406.5245167 0.160649599 406.7823147 -0.418441807 



188 
 

-

0.063

4362 

1054.5

20011 

-

185.41

73541 

406.15975

24 406.2379612 0.078210238 406.7823147 -0.622562337 

-

0.063

4362 

757.48

00253 

-

185.41

73541 

406.16008

69 406.2329704 0.072882531 406.7823147 -0.622227831 

-

0.063

4362 

460.44

00098 

-

185.41

73541 

406.27478

39 406.3535861 0.078797028 406.7823147 -0.507530838 

-

0.063

4362 

163.39

99944 

-

185.41

73541 

406.31869

98 406.3377316 0.019031255 406.7823147 -0.463614959 

-

0.063

4362 

1351.5

59997 

-

185.41

73541 

406.24574

74 406.3497773 0.104030042 406.7823147 -0.536567325 

-

0.063

4362 

1648.5

99982 

-

185.41

73541 

406.39847

07 406.5446203 0.14615541 406.7823147 -0.383844006 

-

0.063

4362 

1054.5

20011 

110.96

33744 

406.15599

58 406.2413621 0.08536587 406.7823147 -0.626318955 



189 
 

-

0.063

4362 

757.48

00253 

110.96

33744 

406.11595

95 406.1881682 0.072206754 406.7823147 -0.666355287 

-

0.063

4362 

460.44

00098 

110.96

33744 

406.24931

12 406.3792763 0.129950731 406.7823147 -0.533003594 

-

0.063

4362 

163.39

99944 

110.96

33744 

406.33332

31 406.3645493 0.031225023 406.7823147 -0.448991642 

-

0.063

4362 

1351.5

59997 

110.96

33744 

406.24162

12 406.3348096 0.09318873 406.7823147 -0.540693562 

-

0.063

4362 

1648.5

99982 

110.96

33744 

406.38560

45 406.557039 0.171439182 406.7823147 -0.39671027 

-

0.063

4362 

1054.5

20011 

407.34

41029 

406.19287

55 406.2637306 0.070857196 406.7823147 -0.589439226 

-

0.063

4362 

757.48

00253 

407.34

41029 

406.13239

4 406.171181 0.038787824 406.7823147 -0.649920723 



190 
 

-

0.063

4362 

460.44

00098 

407.34

41029 

406.20470

55 406.2804903 0.075781754 406.7823147 -0.577609289 

-

0.063

4362 

163.39

99944 

407.34

41029 

406.32130

79 406.3821197 0.060807785 406.7823147 -0.461006816 

-

0.063

4362 

1351.5

59997 

407.34

41029 

406.27903

45 406.3220128 0.042981292 406.7823147 -0.50328026 

-

0.063

4362 

1648.5

99982 

407.34

41029 

406.37915

63 406.5272596 0.148110315 406.7823147 -0.403158437 

-

0.063

4362 

1054.5

20011 

703.72

48611 

406.20341

14 406.2857104 0.082301216 406.7823147 -0.578903355 

-

0.063

4362 

757.48

00253 

703.72

48611 

406.12219

1 406.199539 0.077347424 406.7823147 -0.660123705 

-

0.063

4362 

460.44

00098 

703.72

48611 

406.15778

18 406.2267746 0.068990787 406.7823147 -0.624532992 
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-

0.063

4362 

163.39

99944 

703.72

48611 

406.29509

74 406.387736 0.092629581 406.7823147 -0.487217318 

-

0.063

4362 

1351.5

59997 

703.72

48611 

406.26603

19 406.295916 0.029887026 406.7823147 -0.516282825 

-

0.063

4362 

1648.5

99982 

703.72

48611 

406.34038

1 406.4872789 0.146904685 406.7823147 -0.441933711 

-

0.063

4362 

1054.5

20011 

1000.1

05619 

406.21002

52 406.3003044 0.090279713 406.7823147 -0.572289518 

-

0.063

4362 

757.48

00253 

1000.1

05619 

406.06899

15 406.1927742 0.123776521 406.7823147 -0.713323218 

-

0.063

4362 

460.44

00098 

1000.1

05619 

406.11162

94 406.2207549 0.109118111 406.7823147 -0.670685298 

-

0.063

4362 

163.39

99944 

1000.1

05619 

406.26901

02 406.3869753 0.117951625 406.7823147 -0.513304591 
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-

0.063

4362 

1351.5

59997 

1000.1

05619 

406.26945

01 406.3075341 0.03808719 406.7823147 -0.512864627 

-

0.063

4362 

1648.5

99982 

1000.1

05619 

406.30618

14 406.4108327 0.104658918 406.7823147 -0.476133313 

-

0.063

4362 

1054.5

20011 

1296.4

86378 

405.88500

89 405.8874503 0.002441304 406.7823147 -0.897305841 

-

0.063

4362 

757.48

00849 

1296.4

86378 

405.85353

64 406.0010917 0.147546984 406.7823147 -0.928778343 

-

0.063

4362 

460.44

00098 

1296.4

86378 

405.90454

81 406.0414402 0.136880334 406.7823147 -0.877766689 

-

0.063

4362 

163.39

99944 

1296.4

86378 

406.13539

29 406.2400209 0.104619132 406.7823147 -0.646921798 

   

406.22458

89 406.3050637 0.080474223 406.7823147 -0.557725805 

Table 18 Middle side, static pressure data 
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Appendix J 

Particle study for the free flowing water droplets 

 

Figure 87 Droplet size 0.2 mm. No penetration 
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Figure 88 Droplet size 0.3 mm. No penetration 
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Figure 89 Droplet size 0.5 mm. No penetration 
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Figure 90 Droplet size 1 mm. No penetration 
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Figure 91 Droplet size 2mm. No penetration 
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Appendix K  

Particle study of water droplets dripping at the inlet grill 

 

Figure 92 Droplet size 0.1 mm. The penetrating trajectory can be tracked using lines 
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Figure 93 Droplet size 0.25 mm. No penetration 
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Figure 94 Droplet size 0.5 mm. No penetration  
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Figure 95 Droplet size 0.75 mm. No penetration 
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Figure 96 Droplet size 1.0 mm. No penetration 
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Figure 97 Droplet size 1.5 mm. No penetration 
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Figure 98 Droplet size 2.0 mm. No penetration 
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Figure 99 Droplet size 2.5 mm. No penetration  
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Appendix L 

Particle study of water droplets dripping at the blade

 

Figure 100 Droplet size 0.25 mm. Water penetration occurs 
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Figure 101 Droplet size 0.25 mm, top view. Water penetration occurs. 
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Figure 102 Droplet size 0.75 mm. Water penetration occurs 
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Figure 103 Droplet size 0.75 mm. Water penetration occurs at the middle and two sides 

 

 

Figure 104 Droplet size 1.0 mm. Penetration only visible in the middle 
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Figure 105 Droplet size 2.0 mm. No penetration 
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Figure 106 Droplet size 2.5 mm. No penetration 

 

  



212 
 

Appendix M 
CFD Model Mesh 

 

Figure 107 Mesh - Front view 
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Figure 108 Mesh - Side view 
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Local finite mesh was assigned to the baffle plate and blade.  

 

Figure 109 A local initial mesh was assign to baffle plates. Baffle lips are 10mm wide, hence this area needed to be 
precisely calculated. 
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