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Abstract

This work explores the trade-offs between time and frequency information dur-

ing the feature extraction process of an automatic speech recognition (ASR) system

using wavelet transform (WT) features instead of Mel-frequency cepstral coefficients

(MFCCs) and the benefits of combining the WTs and the MFCCs as inputs to an

ASR system. A virtual machine from the Speech Recognition Virtual Kitchen re-

source (www.speechkitchen.org) is used as the context for implementing a wavelet

signal processing module in a speech recognition system. Contributions include a

comparison of MFCCs and WT features on small and large vocabulary tasks, appli-

cation of combined MFCC and WT features on a noisy environment task, and the

implementation of an expanded signal processing module in an existing recognition

system. The updated virtual machine, which allows straightforward comparisons of

signal processing approaches, is available for research and education purposes.
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Chapter 1

Introduction

Humans have developed machines to share their tasks. Although machines cannot

outperform humans at many complex tasks, it is known that machines can run simple

and repetitive computations very quickly. Unfortunately, the way humans interact

with machines is far from ideal because mechanical peripherals are the main means

of exchanging data. By using them, it is assumed that users can press buttons

and move mouse cursor positions. These are difficult constraints when people with

disabilities interact with machines. Using mechanical peripherals is also not natu-

ral to humans because humans do not interact with each other by pressing buttons

and moving mouse cursor positions. This brings challenges for human-friendly in-

teractions between humans and machines. In order to tackle the challenges, human

speech enabled interfaces such as SIRI have been developed [1, 2, 3, 4]. Machines

can easily handle digitized signals from the mechanical peripherals (ASCII code from

a keyboard, for instance) without additional conversion processes. Human speech,

on the other hand, is not so natural to the machines because it is a continuous sig-

nal and additional conversion processes are needed to digitize the speech signal and

then transform that input to appropriate commands. Feature extraction is a part of

the digitization process and extracts characteristics of a phone, the smallest unit of

speech typically labeled by linguists. Feature coefficients should contain both time

1
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and frequency information because they both contain information about the speech

signal.

Fourier transforms (FT) allow the representation of the frequency information of

the speech signal. One of the most popular feature extraction methods based on the

FT for speech processing is Mel-frequency cepstral coefficients (MFCCs) [4, 5]. The

MFCC method is based on the cepstrum, the result of taking the inverse Fourier

transform of the log magnitude of the FT. It is useful to separate the spectra of

vocal excitation and the vocal tract of the speech signal for better phone recognition.

However, the speech signal has the spectra of the two multiplied together. By taking

the log of the spectra, they have an additive relationship rather than multiplicative.

Taking the inverse FT of linearly combined log spectra of the vocal excitation and

the vocal tract separates the information from vocal excitation and the vocal tract

and returns the information to the time domain. Unfortunately the output of the

FT has no time information from the original signal because the FT operates in the

frequency domain. The short time Fourier transform (STFT) can be used to partially

solve this problem [6]. The STFT is applied to time segments of the signal. The size

of the time segments correspond to time resolutions. This means that time-frequency

resolutions are constant because the size of the time segments do not change. Since

time and frequency information of speech is not evenly concentrated, having constant

time-frequency resolutions may not represent speech well.

An alternative approach, wavelet transforms (WTs) [7], can provide both time

and frequency information with varying resolutions at different decomposition levels.

The WT is based on the idea of representing a signal as shifted (related to time) and

scaled (related to frequency) versions of a small wave called a wavelet. The simplest
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example of a wavelet is the Haar wavelet shown in Figure 1.1. An advantage of the

WT method is that it represents local time-frequency content with varying resolutions,

which has potential for a higher degree of flexibility and an increase in algorithmic

efficiency when desired time-frequency components are not evenly concentrated. Since

Figure 1.1: The Haar Wavelet [8]

the acoustic information extracted by wavelet transforms is different from MFCCs,

the following research questions can be asked in the context of automatic speech

recognition (ASR) for both clean and noisy speech environments:

1. Can a wavelet transform signal processing module be added to an existing ASR

system?

2. Can WT features match the performance of MFCCs?

3. Are there benefits to combining the MFCC and WT methods?

This thesis begins with some background to describe the process of automatic

speech recognition including the two feature extraction methods. The data used in

experiments is presented, followed by a description of the experimental approach to

answer the research questions. Recognition results for WT coefficients and MFCCs on

three data sets are described and discussed in Chapter 5. In addition, two approaches
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to combining features are presented with a comparison of results.

A virtual machine with both MFCC and wavelet transform modules from the

Speech Recognition Virtual Kitchen resource (SRVK) is used to make comparisons

and to demonstrate recognition performance improvements when addressing noisy

conditions. Along with addressing the research questions, a major contribution of

this work is the implementation of a new signal processing module in a publically

available, open source virtual machine, which can be used for further research or

education applications.



Chapter 2

Background

In this chapter, the major components of an automatic speech recognition (ASR)

system shown in Figure 2.1 will be explained. The training speech waveform first

goes through signal processing of some sort, whether MFCCs or WTs. Then, the

following training block takes the output from the signal processing of the training

speech waveform, along with matching transcriptions, to produce acoustic models.

Similarly, training text is fed into its training block to produce language models.

Finally, the test speech waveform goes through the same signal processing and gets fed

into the decoding block. The decoding block then takes these three inputs (acoustic

model, language model, and the output from the signal processing of the test speech

waveform) and produces hypothesized word sequences for the input waveforms.

2.1 Signal Processing

The signal processing, or feature extraction, portion of an ASR system takes the

speech and splits it into many utterances, typically during silence, or in the case

of multiple speakers, during speaker changes. Utterances can have different lengths

depending on duration, but are analogous to sentences. Utterances contain one or

more words, which are built with phones (the smallest labeled unit of sound). An

5
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Figure 2.1: A Typical ASR System

example utterance is “Cats are awesome”. A sequence of vectors which represent

the acoustic characteristics of phones from each utterance can be generated using

feature extraction methods such as Mel-frequency cepstral coefficients (MFCCs) and

the wavelet transform (WT). Filter banks are typically used in both MFCC and WT

method implementations. A filter bank refers to a series of filters that takes an input

and separates it into multiple components based on frequency. A single frequency

sub-band of the original signal is carried by each filter. The MFCC method applies

fixed-duration time windowing and the Mel filter bank to obtain associated time

information from the windowing and frequency information that differentiates phones.

The WT method, on the other hand, provides varying time-frequency resolutions at

different decomposition levels. Sub-band coding describes the basic behaviors of the

decomposition using a pair of filter banks, created from a low pass filter and a high

pass filter.
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Figure 2.2: The MFCC Method

2.1.1 Mel-frequency Cepstral Coefficients (MFCCs)

The MFCC method consists of several sub-processes shown in Figure 2.2. The first

sub-process is called pre-emphasis and is responsible for increasing the energy levels

in the high frequencies. Since more energy can be found at the low frequencies than

at the higher frequencies, having more detail in the high frequencies can improve

speech signal processing. The reason more energy is in the low frequencies is due to

the glottal pulse used to generate human speech. This energy drop between high and

low frequencies is called spectral tilt [9].

The second sub-process is called windowing. Small windows of approximately 20

to 25ms are applied to an utterance signal with a 10ms frame shift rate to simulate

piece-wise stationarity of the utterance signal when it is considered non-stationary

because of the changing sounds. Phones are generally a minimum of three windows

long so piece-wise stationarity holds for the windows. The feature extraction process

is applied to obtain coefficients for each time window. The coefficients will have

higher time resolutions if the window size is small and have lower time resolutions if

the window size is large. The Hamming window, w[n], is the most common window
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used in the MFCC method, where

w[n] =


0.53− 0.46 cos(2πn

L
), if 0 ≤ n ≤ L− 1

0, else.

The third sub-process is called the discrete Fourier transform (DFT), which en-

ables representations of a signal or the windowed utterance signal in the frequency

domain. The DFT is defined as

N−1∑
n=0

x[n]e−j
2πkn
N .

A fast Fourier transform (FFT) algorithm is typically used to implement the DFT.

The FFT reduces the complexity of computing the DFT from O(n2) to O(n log(n)),

where n is the data size.

The next sub-processes are the mel filter bank and application of the logarithm.

The mel scale separates or compresses frequencies into bands that are perceived as

equal by listeners. Since human hearing is more sensitive below roughly 1kHz, in-

corporating this into the mel scale improves speech signal processing. The mel scale

is linear below 1kHz but logarithmic above 1kHz. Implementation of this can be

achieved by using a bank of filters collecting each frequency band. One implementa-

tion has the first 10 filters spaced linearly below 1kHz and then additional filters are

spaced logarithmically above 1kHz. The mel frequency can be obtained by

mel(f) = 1127 ln(1 +
f

700
)

where f is the raw acoustic frequency. Taking the log of the output separates the vocal

excitation from the vocal tract information and it may help address power variations

too.
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The next sub-process is the inverse discrete Fourier transform (DFT−1). The in-

verse DFT enables representations of a signal or the windowed utterance signal in

the time domain. So this overall process can be defined as the inverse DFT of the log

magnitude of the DFT of the signal:

c[n] =
N−1∑
n=0

log(|
N−1∑
n=0

x[n]e−j
2πkn
N |)ej

2πkn
N

where c[n] is a cepstral vector and x[n] is the windowed signal.

The final sub-process is delta and energy computation. The energy computation

is literally obtaining the energy of the framed signal:

Energy =

t2∑
t=t1

x2[n]

where t1 and t2 are frame starting and end points. The delta coefficients are computed

by taking the difference between nearby frames for each element of the cepstral vector

d[n] =
c[n+ 1]− c[n− 1]

2

where d[n] is the delta value and c[n] is the cepstrum. Typically a delta order of two

is used. The first delta computation represents the rate of change and the second

delta computation represents a rate of change of the first rate of change.

The results of this process are cepstral coefficients with deltas which can be used

as inputs to an ASR system. The cepstral coefficients represent information solely

about the vocal tract filter, cleanly separated from information about the glottal

source. Signal processing and recognition performance using MFCCs is fairly good

[4, 10], primarily because the process has been used and tuned by many people to

optimize the features for this application.
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2.1.2 Wavelet Transform (WT)

Wavelet transforms were motivated by the shortcomings of the Fourier transform.

When the FT represents a signal in the frequency domain, it can not tell where those

frequency components are present in time. Cutting the signal at a certain moment

in time (windowing) and transforming that into the frequency domain to obtain a

relevant time sequence of frequency information is equivalent to convolving the signal

and the cutting window, resulting in possible smearing of frequency components along

the frequency axis [11, 12]. Wavelet transforms address this by using small waves of

integral 1 with a finite duration and represented by

γ(s, τ) =

∫
f(t)ψ∗

s,τ (t)dt (2.1.1)

where f(t), the signal to be represented, gets decomposed into a set of basis functions

ψs,τ (t) called the mother wavelet

ψs,τ (t) =
1√
s
ψ(
t− τ
s

)

with scale parameter s and shift parameter τ . t−τ
s

from the mother wavelet definition

determines different scaled and shifted versions of the wavelet. ψs,τ (t) can be selected

from a range of wavelet types. Since the mother wavelet can be either real-valued or

complex-valued, the conjugate term is added to compensate the inversion of imaginary

parts after transforming [13], and this is shown in Equation 2.1.1. Obtaining the

correlation between the the signal f(t) and the scaled and shifted versions of the

mother wavelet results in wavelet coefficients.

However, in practice there are problems with wavelet transforms. First, since

calculating the wavelet transform is done by continuously shifting a continuously
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scalable function over a signal, it produces a lot of redundancy. Second, by definition

the WT needs an infinite number of wavelets for covering all frequency bands. Third,

the WT generally has no analytical solutions for most functions, but instead can only

be solved with numerical computation requiring some sort of fast algorithm. A piece-

wise continuous version of the function called the discrete mother wavelet therefore

should be considered:

ψj,k(t) =
1√
sj0

ψ(
t− ksj0
sj0

)

where j and k are integers and s0 > 1 represents fixed integer scale steps. This

discretized wavelet can now be sampled at discrete intervals. In order for the Nyquist

rate to hold true for any given frequency of the signal, dyadic sampling is typically

chosen as an optimal sampling pattern. A sampling pattern is dyadic if the mother

wavelet is shifted by k2j and scaled by 2j. Therefore, the value of s0 is usually 2.

The discrete wavelet transform (DWT) can be thought of as a special case of the WT

with wavelets scaled and shifted by factors of powers of 2. The DWT coefficients can

then be obtained from

γ(s, τ) =

∫
f(t)

1√
2s
ψ(
t− τ2s

2s
)dt

where the mother wavelet is

ψs,τ (t) =
1√
2s
ψ(
t− τ2s

2s
).

Even though the wavelet can be sampled at discrete intervals with the discretized

wavelets, an infinite number of scales and shifts are still required. The way to solve

this problem is to use a finite number of discrete wavelets with a scaling function,
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ϕ(t), introduced by Mallat [7]

ϕ(t) =
∑
j,k

γ(j, k)ψj,k(t),

which covers the remaining wavelet spectra of the signal.

In order to use these equations, there are two conditions that should be met:

admissibility and regularity. The admissibility condition is defined as∫
|ψ(w)|2

|w|
dw < +∞

where ψ(w) is the FT of ψ(t). The equation means that ψ(t) vanishes at the zero

frequency producing a band-pass-like spectrum

|ψ(w)|2 |w=0 = 0↔
∫
ψ(t)dt = 0

where the average value of the wavelet in the time domain is zero.

The second condition is regularity [14]. Notice in Equation 2.1.1 that the WT of

a one-dimensional function, f(t), becomes a two-dimensional function, γ(s, τ), a two-

dimensional function, f(t1, t2), becomes a four-dimensional function, γ(s1, s2, τ1, τ2),

and so on. The time-bandwidth of the wavelet transform product is the square of

the original signal, which causes problems in most WT applications. This undesired

property motivates regularity: to decrease the value of wavelet transforms with a

factor s.

Implementing the WTs requires using a filter bank. The scaling function behaves

like a low pass filter and covers the remaining spectrum of the wavelets by reducing

an infinite set of wavelets into a finite set of wavelets. Taking as a given that Fourier

theory says compression in time is equivalent to stretching the spectrum in the fre-

quency domain, a time compression of the wavelet by a factor of two will stretch the
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spectrum of the wavelet by a factor of two. This means the finite spectrum of the

signal can be described with the spectra of scaled wavelets. Therefore, a series of

scaled wavelets and a scaling function can be seen as a filter bank.

Implementing such a filter bank can be described by sub-band coding. One way to

apply this is to build a number of bandpass filters with different ranges of bands. This

could take a long time because all individual filters need to be specifically designed.

Another way to implement this is to have a low pass filter (LPF) and a high pass

filter (HPF). By iteratively applying the pair of filters on the outputs of each low

pass filter, a desired number of bands can be obtained. Down-sampling is applied

after each filtering in order to keep the output of a discrete WT the same size as the

original signal. The advantage of this building method is the simplicity of designing

filters as only two filters are needed, a low pass and a high pass.

This method requires a special technique called the lifting scheme [17], where the

LPF and HPF pair can be achieved by taking the average and difference between

polyphase representation of even and odd components of the original signal. The Z-

transforms of the polyphase components are used to take the average and difference

between the even and odd polyphase components. Since the LPF and HPF are

achieved by taking the average and difference respectively, the outputs are called

approximation coefficients when taking the average and detail coefficients when taking

the difference. There is another more intuitive way to describe why the coefficients are

called the approximation and detail coefficients. The low frequency signal has a longer

period than the high frequency signal and thus represents a close approximation of the

original signal. However, the high frequency signal represents detailed information

about the original signal.
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The resulting coefficients from each sub-band represent correlations between the

original signal and a wavelet that is shifted and scaled by some factor of τ and s. τ

and s change as they go through a series of filters. Convolving the signal and the

filters results in wavelet coefficients. Since the τ and s factors are not constant, the

coefficients from each band have different (varying) time-frequency resolutions, unlike

MFCCs.

The wavelet type (shape) can also further characterize the acoustic features and

an optimum type for a given context can be found experimentally. There are four

different wavelet shapes with different scales that are likely to be useful for ASR

applications. Figures 2.3, 2.4, 2.5, and 2.6 show sample wavelets from the symlet

(sym), Coiflet (coif), Daubechies (db), and biorthogonal (bior) families. Different

wavelet scales correspond to different time-frequency resolutions. The larger wavelet

scales (narrower wavelet width) give better the time resolution. Similarly smaller

wavelet scales (wider wavelet width) give better the frequency resolution.

Wavelet types can be described by orthogonality, symmetry, vanishing moment

condition, and compact support. Wavelets are orthogonal if the inner products of

a mother wavelet and its shifted and scaled version of wavelet are zero, which en-

ables decomposing a signal into non-overlapping sub-frequency bands [19]. In Figure

2.6, wavelet pairs are used for decomposition (left) and reconstruction (right) be-

cause biorthogonal wavelets require two scaling functions for a relaxed orthogonal or

biorthogonal condition [16]. The symmetry property of a wavelet ensures that the

mother wavelet can serve as a linear phase filter; lacking this property can cause

phase distortion [19]. The moment vanishing condition is defined by the number of

vanishing moments in a wavelet. Consider expanding Equation 2.1.1 into a Taylor
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Figure 2.3: Symlet Wavelet Family with Scales of 2, 3, 4, and 5 [18]

Figure 2.4: Coiflet Wavelet Family with Scales of 1, 2, 3, 4, and 5 [18]

series of order n

γ(s, τ) =
1√
s

[f(τ)M0s+
f (1)(τ)

1!
M1s

2 +
f (2)(τ)

2!
M2s

3 + ...+
f (n)(τ)

n!
Mns

n+1] (2.1.2)

where f (p) is pth derivative of f and Mp is a wavelet moment defined as

Mp =

∫
tpψ(t)dt.

A wavelet has N vanishing moments if N number of Mp terms go to zero in Equa-

tion 2.1.2 [12]. The more vanishing moments a wavelet has, the better the scaling

function can represent complex functions. Equivalently, the higher the number of

zero moments, the higher the number of zero derivatives and the smoother the signal

decays from the center frequency to the zero frequency in the frequency domain [20].

The db wavelet has N vanishing moments, the bior wavelet has N − 1 vanishing

moments, the coif wavelet has 2N vanishing moments, and the sym wavelet has N

vanishing moments but is more symmetrical than the db wavelet. If wavelets are
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Figure 2.5: Daubechies Wavelet Family with Scales of 2, 3, 4, 5, 6, 7, 8, 9, and 10 [18]

Figure 2.6: Biorthogonal Wavelet Family with Scales of 1.3, 1.5, 2.2, 2.4, 2.6, 2.8, 3.1,

3.3, 3.5, 3.7, 3.9, 4.4, 5.5, and 6.8 [18]. Two wavelets are shown for each bior wavelet.

The wavelet on the left is used for decomposition and the wavelet on the right is used

for reconstruction.
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compactly supported, their duration is finite and non-zero, which provides good lo-

calization of time and frequency [21]. These different wavelet shapes can be useful for

distinctly localized signals, like spikes or bursts [22] and identifying the symmetry and

orientation of the signal [23]. Wavelets that can provide better frequency localization

(db and coif wavelets), linear phase characteristic (bior wavelet), and orientation (sym

wavelet) could be beneficial for speech processing.

Types of wavelet transforms include the stationary wavelet transform (SWT) and

wavelet packet transforms (WPT). The stationary wavelet transform solves the lack of

time invariance by not taking down-samples from each decomposition step. However,

this requires more memory space and computation time than the discrete wavelet

transform. The wavelet packet transform applies decomposition through both a low

pass filter that outputs approximation coefficients and a high pass filter that outputs

detail coefficients. This can provide more information because of the additional detail

coefficients but again requires more memory space and computation time on the order

of 2N where N is the decomposition level.

The results of wavelet transforms are coefficients that can be used as inputs to an

ASR system by, for instance, calculating the normalized energy in each sub-band:

Wavelet Sub-band Normalized Energy =

t2∑
t=t1

x2[n]

t2 − t1

where t1 and t2 are are sub-band start and end points. WT coefficients have been

used in pitch detection and formant tracking [24], and phone classification [25], which

shows potential for wavelet transform usefulness in the realm of speech processing.

Equivalent rectangular bandwidth (ERB) scaling has also been implemented using

wavelet packet transforms to test whether ERB scaling can be substituted for MFCC
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mel scaling in speech processing or not [26, 27]. None of these studies made direct

numerical comparisons with MFCCs. Combining the wavelet transform with already

existing feature extraction methods such as linear predictive coding [28] and MFCCs

[29] showed improvements by 0.6% when using clean data and by 6% when using data

with additive white Gaussian noise at different signal to noise ratio (SNR) levels. This

suggests that recognition performance could improve when combining the MFCC and

WT methods.

2.1.3 Time and Frequency Resolutions of the WT

Fourier transform based feature extraction methods use fixed-duration time window-

ing and therefore provide constant resolutions over the time-frequency axes unless

additional frequency scaling processes are applied. If a signal has time and fre-

quency content evenly spread out along the axes, this is reasonable. However in

practice, speech signals have lower frequencies that are usually longer in time and

higher frequencies that are usually shorter. This property of unevenly spaced time

and frequency content is typical for most non-stationary signals [30]. The MFCC

method has separate steps such as windowing and mel-scaling in order to compen-

sate. The WT method, on the other hand, is designed to represent energies at high

frequencies with good time resolution and give energies at low frequencies with good

frequency resolution. Consider Figure 2.7, which shows the time-frequency resolu-

tions for a short time Fourier transform and a discrete WT. It can be seen that at

high frequency, the time window is narrower for the WT, which corresponds to good

time resolution and at low frequency, the frequency window is narrower, which corre-
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Figure 2.7: Resolution Grids of the Short Time Fourier Transform and the Wavelet

Transform [31]

sponds to good frequency resolution. Wavelet transforms have the potential to better

describe speech signals. However, MFCCs have been used for ASR for decades and

systems have been finely tuned to work with them.

2.1.4 Wavelet Software Libraries

There are multiple wavelet libraries written in different languages such as Blitzwave

C++ Wavelet Library [32], the University of Washington Wavelet Library [33], and

The Imager Wavelet Library [34]. Some are available as binaries and some as open

source tools. The “C++ Wavelet Libraries” package [35] was chosen, because the

recognition system used is also written in C++ (see Section 2.5 for more informa-

tion). This library provides discrete and stationary wavelet transforms with code

for the four wavelet families of Daubechies, biorthogonol, Coiflet, and symlet. Other

types of wavelet transforms and wavelet types can be added by users. The wavelet
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transform functions in libraries usually take five input arguments: an input signal

vector, decomposition levels, wavelet type and its scale, lengths of respective approx-

imation and detail vectors to the decomposition level, and an output signal vector.

The output signal vector contains the wavelet transform coefficients. The coefficients

from the output signal vector can be used as acoustic feature vectors in an ASR

system.

2.2 Training an Acoustic Model

An acoustic model describes the likelihoods of the observed spectral feature vectors

given linguistic units (words, phones, or sub-parts of phones). A commonly used

statistical model for this is the hidden Markov model (HMM) [36]. Figure 2.8 shows a

3-state HMM including the special start and the end states, where aij is the transition

probability matrix from state i to j, and bi is a set of observation likelihoods, which

are typically represented by mixtures of Gaussian models.

Figure 2.8: 3-State HMM

A word is made of phones, the smallest identifiable units of sound. For example the
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word “translate” is made of the following eight phones “T R AE N Z L EY T”. There

are two ways these phones can be modeled, as monophone or context-independent

models, and as triphone or context-dependent models. Monophone models ignore the

surrounding context so there would be seven models representing T, R, AE, N, Z,

L, and EY. Triphone models include the left and right context of the neighboring

phones: T+R, T-R+AE, R-AE+N, AE-N+Z, N-Z+L, Z-L+EY, L-EY+T, and EY-

T. Monophone models would have a single model for each phone, typically 41. In the

case of triphones, there could be up to 413 individual models, but in practice, this is

reduced because not all triphones appear in English and some may be acoustically

similar to others. Training triphone models requires significantly more training data.

2.2.1 Gaussian Mixture Model

A Gaussian mixture model (GMM) is often used to represent the observation likeli-

hoods ([37] p.425-p.435). The Guassian, or normal, distribution is a function with

two parameters, mean and variance. The Gaussian function can be written as

f(x|µ, σ) =
1√

2πσ2
exp(−(x− µ)2

2σ2
).

For a discrete random variable X, the mean, µ, and the variance, σ2, can be computed

using

µ = E(X) =
N∑
i=1

p(Xi)Xi

σ2 = E(Xi − E(X))2 =
N∑
i=1

p(Xi)(Xi − E(X))2

where p(Xi) is the probability mass function. The mean is the weighted sum over

the values of X and the variance is the weighted squared average deviation from the
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mean.

If the possible values of a dimension of an observation feature vector ot can be

assumed to be normally distributed, the univariate Gaussian probability density func-

tion can represent the output probability of an HMM state j determining the value

of a single dimension of the feature vector. The observation likelihood function bj(ot)

can be then expressed with one dimension of the acoustic vector as a Gaussian and

written as

bj(ot) =
1√

2πσ2
exp(−(ot − µj)2

2σ2
j

).

For each HMM state j, the Gaussian parameters of the mean and the variance can

be computed by taking the average of the values for each ot and taking the sum of

the squared difference between each observation and the mean respectively.

Since multiple dimensions are typically used, for instance 13 dimensions for MFCCs

(12 + 1 energy coefficient) and at least 9 dimensions for WT coefficients (8 + 1 en-

ergy coefficient), multivariate Gaussians are used to estimate the probabilities of the

HMM states. The variance of each dimension and the covariance between any two

dimensions can be described by the covariance matrix Σ where X and Y are two

random variables

Σ = E((X − E(X))(Y − E(Y ))) =
N∑
i=1

p(XiYi)(Xi − E(X))(Yi − E(Y )).

Then a mean vector with a dimensionality matching the input dimension and the

covariance matrix can define a multivariate Gaussian

f(~x|~µ,Σ) =
1

(2π)
D
2 |Σ| 12

exp(−1

2
(x− µ)TΣ−1(x− µ)), (2.2.1)

where ~x and ~µ are vector notations and D is the dimensionality of ~µ. When different

dimensions of the feature vector do not co-vary, a variance that is distinct for each
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feature dimension is equivalent to a diagonal covariance matrix, where only the diag-

onal of the matrix has non-zero elements. A non-diagonal covariance matrix models

the correlations between the feature values in multiple dimensions. A Gaussian with

a full covariance is therefore a better model of acoustic likelihood. However, diagonal

covariances are often used because the full covariance has high implementation com-

plexity and requires more training data with more parameters. The estimation of the

observation likelihood of a D-dimensional feature vector ot given HMM state j using

a diagonal covariance matrix can be written as

bj(ot) =
D∏
d=1

1√
2πσ2

jd

exp(−1

2

(otd − µjd)2

σ2
jd

),

which is simplified from Equation 2.2.1 keeping the mean and the variance for each

dimension.

However, each dimension of feature vector may not be a normal distribution. Mod-

eling the observation likelihood with a weighted mixture of multivariate Gaussians

should be considered. Based on Equation 2.2.1, this modeling is called a Gaussian

mixture model where

f(x|µ,Σ) =
M∑
k=1

ckfk(x|µ,Σ)

f(x|µ,Σ) =
M∑
k=1

ck
1√

2π|Σk|
exp((x− µk)TΣ−1(x− µk))

and where M is the number of Gaussians summed together and ck is the mixture

weight for each Gaussian. The output observation likelihood is

bj(ot) =
M∑
k=1

cjk
1√

2π|Σjk|
exp((x− µjk)TΣ−1

jk (ot − µjk)).

This likelihood is used for individual output observation in the acoustic model train-

ing.



24

2.2.2 Hidden Markov Model

A classical approach to modeling acoustic information is the hidden Markov model

(HMM). The Markov assumption is used to describe the HMM, allowing a particular

state to depend on a certain number of previous states instead of all past states. This

reduces the number of hidden states of the HMM that are included in the model.

Obtaining the likelihood of a particular observation sequence P (U |λ) given an

HMM model λ = (A,B) and an observation sequence U can be done by using the

forward algorithm with the efficiency of O(N2T ) where N is the number of hidden

states and T is the number of observations from an observation sequence. The forward

algorithm finds the probability of the observation sequence by using a table that saves

intermediate values and summing over the probabilities of all possible hidden state

paths that get implicitly folded into a single forward trellis [38]:

αt(j) =
N∑
i=0

αt−1(i)aijbj(ut)

where αt−1(i) is the previous (t − 1) time step forward path probability, aij is the

transition probability, and bj(ut) is the state observation likelihood of the observation

symbol ot given the current state j. This is equivalent to obtaining the probability of

being in state j after getting the first t observations given the HMM λ.

Finding the best hidden sequence Q given an observation sequence U and an

HMM model λ = (A,B) can be done by using the Viterbi algorithm with a dynamic

programming trellis [39]:

vt(j) =
N

max
i=1

vt−1(i)aijbj(ut)

where vt−1(i) is the previous Viterbi path probability, aij is the transition probability,

and bj(ut) is the state observation likelihood. This is equivalent to finding the most
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probable sequence of states Q = q1, q2...qT given an HMM state and a sequence of

observations U = u1, u2...un.

Training the HMM parameters A and B given an observation sequence U and the

set of states in the HMM, where A denotes the transition probability and B denotes

the emission probability, can be done by using the Baum-Welch algorithm [40]. This

algorithm makes uses of the backward probability

βt(i) = P (ut+1, ut+2, ...uT |qt = i, λ)

where it views the partial observations from Ut+1 to the end given that the HMM is

in state i at time t and the HMM model λ. This algorithm is based on two intuitions.

The first intuition is to improve the estimate by computing iteratively. The second

intuition is to get estimated probabilities by computing the forward probability for

an observation and dividing that probability mass among all the different paths that

contributed to this forward probability.

In automatic speech recognition, the acoustic model refers to statistical represen-

tations for observed feature vector sequences. This is combined with the language

model to perform word transcription.

2.3 Training a Language Model

A language model describes the probability of a word sequence. A large amount of

transcribed or written sentences may be used to create statistical language models.

The probability of a sentence or a sequence of words is

P (W ) = P (w1, w2, w3...wn)
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where P (W ) is the probability of an entire n word sequence and P (wi) is the prob-

ability of each word, wi. The joint probability of a sentence or a sequence of words

can be computed using the chain rule of probability. The chain rule of probability

produces the product rule by rearranging the conditional probability equations

P (A,B) = P (A|B)P (B).

By applying the chain rule to a word sequence, extending the conditional probabilities

on words, the probability of the entire sequence of words can be written as

P (wn1 ) = P (w1)P (w2|w1)P (w3|w2
1)...P (wn|wn−1

1 ) =
n∏
k=1

P (wk|wk−1
1 ) (2.3.1)

where wn1 = w1...wn is a sequence of words. Modeling such statistical word sequences

results in language models.

In practice, storing the entire word sequence is almost impossible due to memory

constraints. In order to solve this, reasonable shortened sequences, N-grams, are

modeled [41]. N-grams allow the prediction of a next word from the previous (N − 1)

words. Bi-grams (N = 2), tri-grams (N = 3), and 4-grams (N = 4) are typically used

in the word prediction. The Markov assumption allows depending on only a word’s

recent history rather than looking at the complete history. An N-gram model is a

(N − 1) order Markov model. Applying the assumption, the conditional probability

of the next word in a sequence can be written as

P (wn|wn−1
1 ) ≈ P (wn|wn−1

n−N+1).

Substituting the bi-gram into Equation 2.3.1, the probability of a complete word

sequence can be written as

P (wn1 ) ≈
n∏
k=1

P (wk|wk−1).
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Estimating the N-gram probabilities can be done by maximum likelihood estima-

tion (MLE) [42]. The generalized N-gram parameter estimation can be calculated

using

P (wn|wn−1
n−N+1) =

C(wn−1
n−N+1, wn)

C(wn−1
n−N+1)

,

where C is count of the word or word sequence. The numerator represents the count

of the observed word given N − 1 preceding words. The denominator represents the

count of the N − 1 word sequence. This is also called a relative frequency.

There are some special cases where this LM can be replaced. When all the possible

word-to-word transitions are known, a finite state grammar can be used. For instance,

small corpora such as digits are comprised of sequences of digits from zero to nine.

In that case, since the input words are limited to that range, a finite state grammar

can replace the LM.

The decoding process takes the acoustic and language models, a dictionary map-

ping words to phone strings, and an input speech waveform to produce a matching

word sequence, which is discussed next.

2.4 Decoding

The goal of decoding is to obtain the string of words with the highest posterior

probability given the training data represented by the acoustic and language model

and contained by a dictionary representing the vocabulary. The highest value from

the product of the two probabilities is used if Bayes rule from noisy-channel modeling
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can be assumed ([37] p.1). Such value can be obtained from

W = arg max
W

P (O|W )P (W )

where P (O|W ) is the likelihood or the model of the noisy channel producing any

random observation, P (W ) is the hidden prior term, and W stands for the entire

string of words.

Since the acoustic model produces the likelihood of a particular acoustic observa-

tion or a frame given a particular state or a sub-phone, multiplying such probabilities

together from each frame to get the probability of the whole word introduces a drastic

range difference between the two probabilities P (O|W ) and P (W ). A language model

scaling factor (LMSF) is used to better scale the probabilities. When the acoustic

model has more influence than the language model, longer words are more likely to

be recognized as a sequence of short words, even if that sequence is not likely ac-

cording to the language model. In order to compensate for this, a word insertion

penalty (WIP) is used. Increasing the penalty keeps the decoding processing from

including additional words in the output, which can reduce the number of insertion

errors. Since calculations are done in logarithms in order to avoid underflow errors in

computing, the highest value from the two probabilities can be written as

W = arg max
W

(logP (O|W )P (W ) + LMSF logP (W ) +N logWIP ),

where N is the number of words in the hypothesized word string.
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2.5 Speech Recognition Virtual Kitchen

The Speech Recognition Virtual Kitchen (SRVK), available at www.speechkitchen.org,

is a project that “aims to extend the model of lab-internal knowledge transfer to

community-wide dissemination via immediate, straightforward access to the tools

and techniques used by advanced researchers” [43]. In order to use most speech

recognition systems, a lot of programming tasks and experiment setups are required.

The SRVK solves this through the use of virtual machines with scripts, data, and

pre-compiled code as shown in Figure 2.9.

Figure 2.9: Architecture Diagram of the SRVK [44]

A virtual machine (VM) is a tool where users can load an operating system (OS)

of their choice on top of their running OS. Open source resources such as Debian

Linux derivatives for a base OS and pre-installed open source, C++ speech recog-

nizer Kaldi [45] are included in an ASR VM available through the SRVK. The Kaldi
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recognizer includes features such as integration with finite state transducers, linear

algebra support, open source software (http://kaldi.sourceforge.net), and databases

from the Linguistic Data Consortium. Four layers of components shown in Fig-

ure 2.10 define the Kaldi recognizer structure. All layers can be modified to expand

the recognition system. Other VMs may vary in data sets, test challenges, recogni-

Figure 2.10: The Kaldi Recognizer Overview [45]

tion system, or task. For complex systems, VMs enable infrastructure for meeting

numerous challenges in ASR research and education by providing repositories that

facilitate exchanges among ASR community members [44].

The work of this thesis is based on SRVK VMs. The processes of learning an ASR

system, implementing sub-processes of the system, and conducting experiments using

the VM are all done using and modifying VMs from the SRVK. Because this is an

open source project, the extensions developed in this work will be made available as

new VMs through the SRVK.
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2.6 Summary

A standard ASR system was introduced in this chapter. Since this work focuses

on the signal processing components, two feature extraction methods, MFCCs and

WTs, were presented, with MFCCs being the baseline standard and WTs providing

a different approach to time-frequency resolution. Finally, the SRVK virtual machine

framework used in experiments was discussed. The first research question is addressed

by successfully implementing a wavelet module based on an open source library into

an SRVK VM. Conducting different experiments with MFCCs and WTs will address

the second and the third research questions.



Chapter 3

Data

ASR systems require a large amount of data for training and testing a system. The

process of creating a data corpus includes recording and transcribing speech. Further

processing can be done to cut waveforms into smaller segments, label data at the sub-

word, or phone level, as well as sentence level, and add different types of noise to the

data. Three datasets, or corpora, are used in this work: TI-Digits (small vocabulary)

[46], TED-LIUM (large vocabulary) [47], and Noizeus (noisy data) [48].

3.1 TI-Digits

The TI-Digits corpus contains speech collected by Texas Instruments to design and

evaluate algorithms for speaker-independent recognition of digit sequences [46]. Be-

cause it was collected in 1982, it has been used in many systems (e.g., [49, 50]). Digit

sequences were read into a high quality, close-talking microphone. 326 speakers are

included in the data (111 men, 114 women, 50 boys, and 51 girls). Each speaker pro-

nounced 77 digit sequences, with a total of more than 25,000 digit sequences. There

is 4 hours of data, sampled at 20kHz. The data has been partitioned into a test set of

12,551 words and a training set of 12,551 words. The vocabulary is small, comprised

of the ten digits, with two pronunciations of 0, “oh” and “zero”. Example strings are

32



33

“7 3 8 7 oh” and “3 8 zero zero”. Because of the small vocabulary size, 21 phones

are sufficient to describe the sounds used in TI-Digits.

3.2 TED-LIUM

The TED-LIUM corpus [47] contains speech collected from TED talks [51]. TED-

LIUM speech is planned and delivered in a formal presentation to a large audience.

685 speakers are included in the 122 hours of speech (85 hours of male speech and 37

hours of female speech). The data has been partitioned into a test set of 28,000 words

and a training set of 2,560,000 words. This data is sampled at 16kHz. The vocabulary

is large, comprised of 156,700 number of words. The corpus includes labels for show

names, channels, speaker IDs, start and end times, genre identifications, silences,

fillers, and pronunciation variants. An example sentence is “What I’m going to tell

you about in my eighteen minutes is how we’re about to switch from reading the

genetic code to the first stages of beginning to write the code ourselves.” The TED-

LIUM dictionary used in this work describes word pronunciations in terms of 41

unique phones.

3.3 Noizeus

The Noizeus corpus contains speech collected by the University of Texas at Dallas

[48]. Six speakers (3 adult male and 3 adult female) each recorded 5 sentences. The

data consists of a test set of 241 words. The vocabulary size is small, comprised of 167

words. Sentences in the Noizeus corpus are not very long and the speakers frequently
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hyper-articulate. Example sentences are “A good book informs of what we ought to

know.” and “The lazy cow lay in the cool grass.” Eight different noisy conditions,

airport, babble, car, exhibition, restaurant, street, and train noises, were added to

each utterance at 0dB, 5dB, 10dB, and 15dB SNRs. Sentences were originally sampled

at 25kHz but were down-sampled at 8kHz by the corpus creators. Because the Noizeus

corpus does not have enough data to train either acoustic or language models, it is

used only as a test set.



Chapter 4

Methodology

Three research questions were posed in Chapter 1:

1. Can a wavelet transform signal processing module be added to an existing ASR

system?

2. Can WT features match the performance of MFCCs?

3. Are there benefits to combining the MFCC and WT methods?

This chapter shows how the questions are answered given the background from Chap-

ter 2 and using the data described in Chapter 3. First, the ASR virtual machine

context is presented. Then the WT features and the combined features from the two

methods are shown. Finally, the performance metrics used to compare approaches

are presented.

4.1 The ASR Context

In a typical ASR system, the test speech waveform and the training speech waveform

go through signal processing that produces the MFCCs. In this work, the signal pro-

cessing extends to include WTs and combinations of WTs and MFCCs as shown in

Figure 4.1. In order to implement this, “C++ Wavelet Libraries” (version 0.4.0.0)

35
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Figure 4.1: An ASR System with Multiple Options for Signal Processing

[35] was added to the Kaldi recognizer (version 1.0) [45] on an SRVK VM. Figure 4.2

is an updated version of Figure 2.10 showing where the C++ Wavelet Libraries and

new functions were added to the system. All layers needed modification except for the

external library component in experiments presented in this work. Since the Kaldi

Figure 4.2: The Kaldi Recognizer Overview [45]

recognizer declares its own data types such as VectorBase and BaseFloat, these types
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have to be converted into the base C++ variable types when interfacing with the

wavelet libraries in “featbin”. Options for feature extraction such as the number of

features and time window duration were changed in header files from “feat” in order to

match the baseline experiments of this work. In shell scripts, to run experiments, op-

tions such as whether the input will go through cepstral mean variance normalization

or not were changed since MFCCs use this option by default but the WT features do

not. These options can be changed in different header files. Appendix A.1 describes

where these header files are located and how these options can be changed.

4.2 Wavelet Transform Features

Three different types of wavelet transforms were used to extract acoustic features

and compare to MFCCs. For each WT, maximum energy values from each decom-

position level are taken as features with varying time window durations. Varying

time-frequency resolution is provided for by the varying window whereas the MFCC

method typically uses a fixed 25ms window. There was a limitation with this ap-

proach, because the Kaldi recognizer checks intermediate values in ways that they

are finely tuned for MFCCs. This made it difficult to adjust the process to use appro-

priate values for the wavelet features. For instance, the duration of the frame window

can only go up to 50ms, otherwise the process was terminated for having bad values.

This negates the benefit of varying resolutions, one of the advantages the WT has

over MFCCs.
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4.2.1 Discrete Wavelet Transform

The discrete wavelet transform (DWT) decomposes a signal using a set of low and

high pass filters followed by down-sampling that outputs approximation and detail

coefficients respectively. By definition, the decomposition takes place on only low

pass filters. Figure 4.3 shows an example three level decomposition where g[n] is

the output of the high pass filter and h[n] is the output of the low pass filter. If a

16kHz sampled signal with 10,000 sample points is assumed, the first detail coefficients

have the frequency band range from 8kHz to 16kHz with 5,000 sample points, the

second detail coefficients have the frequency band range from 4kHz to 8kHz with

2,500 sample points, the third detail coefficients have the frequency band range 2kHz

to 4kHz with 1,250 sample points, and the third approximation coefficients have the

frequency band range from 0Hz to 2kHz with 1,250 sample points. Changing the

duration of the window has trade-offs: the longer the duration of window, the better

the frequency resolutions and the shorter the duration of window, the better the

time resolutions. The maximum energies from each decomposition level with a 50ms

window and a 25ms frame rate are taken as input features to the ASR system using

the DWT function. For details, see the DWT source code in Appendix B.1.
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Figure 4.3: Three Level Discrete Wavelet Transform Decomposition

4.2.2 Stationary Wavelet Transform

The stationary wavelet transform (SWT) also decomposes a signal into a set of low

and high pass filters but without down-sampling. Figure 4.4 shows a three level

decomposition as an example. Omitting the down-sampling processes ensures that

the output size from each decomposition is the same as the original signal. This

solves the lack of time-invariance with respect to the DWT but brings redundancy.

This trade-off needs to be considered when the stationary WT is used, as the output

size from each decomposition level is increased. If a 16kHz sampled signal with
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10,000 sample points is assumed, the frequency band range will be the same as the

previous example, but the number of sample points is different as it keeps the same

10,000 sample points at all decomposition levels. The maximum energies from each

decomposition level with a 50ms window and a 25ms frame rate are taken as input

features to the ASR system using the SWT function. For details, see the SWT source

code in Appendix B.2.

Figure 4.4: Three Level Stationary Wavelet Transform Decomposition

4.2.3 Wavelet Packet Transform

The wavelet packet transform (WPT) is very similar to the DWT but differs in that

it applies decomposition at both the high pass filter and low pass filter. Figure 4.5

shows an example of two level decomposition. The WPT uses more memory space

and computation time than DWT or SWT, but provides more information at all levels

because the decomposition is also taken at the HPF. If a 16kHz sampled signal with
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10,000 sample points is assumed, the second detail coefficients from the first detail

coefficients have the frequency band range from 12kHz to 16kHz with 2,500 sample

points, the second approximation coefficients from the first detail coefficients have

the frequency band range from 8kHz to 12kHz with 2,500 sample points, the second

detail coefficients from the first approximation coefficients have the frequency band

range from 4kHz to 8kHz with 2,500 sample points, and the second approximation

coefficients from the first approximation coefficients have the frequency band range

from 0Hz to 4kHz with 2,500 sample points.

The WPT was not originally implemented in the selected wavelet library. Since

the only different between the WPT and the DWT is whether to decompose detail

coefficients from the HPF or not, the WPT was implemented by decomposing the

coefficients from the HPF. Decomposing the coefficients from the HPF required ad-

ditional temporal values, which explains why the WPT uses more memory space and

computation time. Another option for WPT was to extend the SWT in a similar

manner. Extending the SWT to implement the WPT required even more temporal

values, so was not done. The maximum energies from each decomposition level with

a 50ms window and a 25ms frame rate are taken as input features to the ASR system

using the WPT function. Window energies are obtained in the same way for all WT

approaches. For more detail of the WPT source code, see in Appendix B.3.

Implementing these three WTs provides a means to addressing the second research

question, whether using WTs can provide comparable performance to MFCCs in an

ASR system. The DWT provides varying time-frequency resolutions with the use of

a pair of filters and a down-sampler. The SWT also provides varying time-frequency

resolutions without time-invariance by omitting the down-sampling, but requires more
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Figure 4.5: Two Level Wavelet Packet Transform Decomposition

memory space and computation time than the DWT. The WPT provides varying

time-frequency resolutions by decomposing the output of the HPF and providing

more information in the detail coefficients, which also requires more memory space

and computation time than the DWT.

Different wavelet families, Daubechies, biorthogonal, Coiflet, and symlet, were

used to simulate qualities such as frequency localization, linear phase characteristic,

and orientation of speech signals. Orthogonality, symmetry, vanishing moment con-

ditions, and compact support of a wavelet determines which wavelet families better

describe the speech signals. The best family shape for the ASR tasks examined here

is chosen experimentally.
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4.3 Combined Features from the Two Methods

Two ways of combining the two feature extraction methods are considered in order

to address the third research question. The first is adding wavelet features to the

MFCC feature vector. Since the wavelet feature vector contains different information

about the speech signal, it can be appended to the MFCC vector. However, the same

limitation discussed in the previous section should be considered: how the duration

of the window is limited by the ASR system to 50ms. The second approach is using

the WT as a pre-processing step to address noise before MFCC processing. For each

experiment, different wavelet families and scales can be applied as desired. Since that

produces so many possible combinations, three wavelets with different scales from

different wavelet families were used to address noise before the MFCC processing.

4.3.1 Wavelet Sub-band Energy

The first way to combine features is to add wavelet features to the MFCC feature

vectors as shown in Figure 4.6. Since the wavelet coefficients have different time-

frequency resolutions than MFCC’s mel-scaled resolutions, the wavelet coefficient

energies contain different information about the speech signal. Wavelet shapes can

also make a difference in the energy level from different time-frequency resolutions

provided by wavelet shapes. Another option to this approach is to replace MFCC

feature with WT features. The number of feature added or replaced can vary as

desired. For details about appending and replacing WT features, see the source code

in Appendix B.4.
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Figure 4.6: Combining Wavelet Features with the MFCC Features

4.3.2 Wavelet Denoising

The second way to combine features is to pre-process the acoustic signal using a

wavelet transform then process the MFCCs as shown in Figure 4.7. The stationary

WT is known to give good denoising performance [52, 53]. Different wavelet shapes

are used to see what types give better denoising performance under different noise

conditions. The speech signal is decomposed into a desired number of sub frequency

Figure 4.7: The Wavelet Denoising Process
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bands by taking the stationary WT. The next step is to define an absolute value that

limits or modifies the signal value. This absolute value is called the threshold value.

Applying the threshold value to the noisy signal, d, provides an updated signal δλ(d)

where

δλ(d) =



0 if |d| ≤ λ,

d− λ if d > λ ,

d+ λ if d < −λ ,

and λ is the threshold value, typically the variance of a signal. For every value of d,

the threshold value is compared and either forces the signal value to zero, subtracts

the threshold value from the signal value, or adds the threshold value to the signal.

Since threshold value parameters such as mean and variance were implemented in the

source code, other thresholding methods, such as hard thresholding, could be used.

Figure 4.8 shows hard and soft thresholding methods. For details about thresholding,

see the source code in Appendix B.5. The last step is taking the inverse stationary

Figure 4.8: Hard Thresholding and Soft Thresholding [54]
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WT to the thresheld signals and recover the signal to compute MFCCs. To test the

denoising performance, recognition experiments are done using the Noizeus corpus.

4.4 Performance Evaluation

Word error rate (WER) is commonly used to evaluate speech recognition systems. It

is based on how much the hypothesized word string differs from the reference tran-

scription. The WER is the number of words substituted, inserted, and deleted in

the hypothesized string divided by the number of words in the reference transcrip-

tion string. The reference and hypothesized strings are dynamically aligned so that

substitutions, insertions, and deletions can be identified. An example alignment is

shown in Figure 4.9. Then using the WER equation

%WER = (
S +D + I

N
)× 100

where S is the number of substituted words, D is the number of deleted words, I is

the number of inserted words, and N is the number of words in the reference string,

the example results in a WER of (8+2+2)/(26) ×100% = 46.1%. Other measures for

Figure 4.9: An Example of Aligned Reference and Hypothesized Word Strings from

TED-LIUM
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performance evaluation are computation time and memory usage. A shell script was

used to keep track of the execution time in seconds and the memory usage was seen

using the Linux “top” command and kept in a separate text file.

4.5 Summary

In order to address the research questions, three different types of wavelet trans-

forms were introduced: the discrete wavelet transform, the stationary wavelet trans-

form, and the wavelet packet transform. The DWT and SWT provide varying time-

frequency resolutions, although the SWT avoids the problem of time invariance. The

WPT provides more information through additional detail coefficients. Two different

combining methods were introduced: using wavelet sub-band energy in the MFCC

feature vector and wavelet denoising as a pre-process. Results for these methods are

discussed in Chapter 5.



Chapter 5

Results

The first research question has been addressed by creating the signal processing mod-

ule, allowing for three different types of wavelet transforms, DWT, SWT, and WPT

with four different wavelet families: Daubechies, biorthogonal, Coiflet, and symlet.

This chapter presents results that answer the second and third research questions

posed in Chapter 1. The baseline MFCC results with 13 features (+ deltas and delta

deltas features) with the window size of 25ms and frame rate of 10ms are shown in

Table 5.1 for the TI-Digits and TED-LIUM systems. The systems were trained using

matching acoustic data.

Table 5.1: Baseline MFCC Results

WER

TI-Digits 0.48%

TED-LIUM 21.4%

48
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5.1 Wavelet Transform Features

Results with 15 wavelet transform features (+ delta and delta delta features) for

the TI-Digits corpus and also 15 features (+ delta and delta delta features) for the

TED-LIUM corpus from different WTs are shown in Table 5.2. Experiments with

different window sizes and frame rates were run. Originally, a 20ms frame rate was

used but smaller rates were tried to represent finer time windows. The window size

and frame rate used for different WT features are also presented inside parentheses in

Table 5.2. Although the 15ms frame rate worked better for DWT on TI-Digits, the

smaller frame rate did not improve the SWT in TI-Digits, and showed only a slight

improvement for WPT. Therefore, the shorter frame rate was only tried for the DWT

TED-LIUM case.

Different wavelet families, Daubechies (db), biorthogonol (bior), Coiflet (coif), and

symlet (sym), and scales provided in the wavelet software library were tested on the

TI-Digits corpora. The wavelet packet transform features showed better recognition

performance than discrete and stationary WTs because WPT decomposes the infor-

mation in detail coefficients, which increases the information about high frequency

components of the speech signal. All provided wavelet types from the library were

used for WPT on the TI-Digit system. The biorthogonal wavelet with a scale of 2.2

gave the best recognition performance in preliminary results so it was used for the

other two WTs on TI-Digits and for all WTs on TED-LIUM. MFCC results (Table

5.1) show better recognition performance for both TI-Digits and TED-LIUM systems

(Table 5.2).

Computation time and memory usage of the WTs and MFCCs with 45 features,
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Table 5.2: Recognition WER Results Using 2.2 Scale Biorthogonal Wavelet Trans-

forms with 15 Features for TI-Digits and TED-LIUM. Two numbers in parentheses

are the window size and frame rate respectively. All experiments used delta and delta

delta features.

TI-Digits TI-Digits TED-LIUM TED-LIUM

DWT 6.76% (50ms/15ms) 7.61% (50ms/20ms) 82.7% (50ms/15ms) 84.5% (50ms/20ms)

SWT 10.96% (50ms/13ms) 13.2% (50ms/20ms) NA 80.4% (50ms/20ms)

WPT 3.13% (50ms/16ms) 3.5% (50ms/20ms) NA 51.3% (50ms/20ms)

Table 5.3: Computation Time and Memory Usage of the Wavelet Transforms

Computation Time Memory Usage

MFCCs 577 seconds 10,000 MB

DWT 3212 seconds 16,400 MB

SWT 9084 seconds 16,800 MB

WPT 6705 seconds 17,200 MB

including deltas and delta-deltas for the TI-Digits corpus are shown in Table 5.3. The

window size and frame rate used for MFCCs are 25ms and 10ms respectively. For

WTs, the window size and frame rate used are 50ms and 20ms respectively. Having

smaller frame rates gave longer computation time in general. The results show that

the WTs take more time and memory to compute the same number of features.

However since the libraries do not take the advantage of faster wavelet algorithms

[55], the wavelet feature computation time result could improve.
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While the theoretical contribution of wavelets to automatic speech recognition

could better address the time-frequency variation in speech, the limitations of simply

adding a wavelet transform module to a speech recognition system tuned for MFCCs

mean that using wavelet transforms on their own do not improve recognition perfor-

mance. Therefore, at this point, the second research question is answered negatively

in this work.

5.2 Combined MFCC and WT Features

Results from the two approaches for combining feature extraction methods are pre-

sented in the following sections. For the first method, both the TI-Digits and TED-

LIUM systems were used but the results from the TED-LIUM test data are not

presented because the recognition performance was the same as the baseline in Table

5.1. For the second method, the Noizeus data was used as the test set in an ASR

system trained with TED-LIUM data.

5.2.1 Adding Wavelet Sub-band Energy to MFCC Feature

Vectors

Simply adding from one to four additional wavelet sub-band energy features to the

MFCC vector did not show improvement in recognition performance. Adding addi-

tional features to the MFCC vector degraded recognition performance. Replacing the

frame energy in the MFCC vector with the wavelet sub-band energy showed slight

improvements, depending on different wavelet shapes and scales. Results with 13

MFCC features (+ delta and delta delta features) for TI-Digits data are shown in
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Tables 5.4, 5.5, 5.6, and 5.6 with Daubechies, biorthogonol, symlet, and Coiflet sub-

band energies with varying scales, each replacing the MFCC frame energy. Features

were calculated on 25ms windows and had a 10ms frame rate. Not all results are

better than the baseline results (Table 5.1), so only results with better recognition

performance are shown. At most improvements of 10.4% were shown in Table 5.4

and Table 5.5, however these changes were not significant given the size of the test

set.

Table 5.4: Combining Daubechies Sub-band Energy Results with MFCCs

Wavelet MFCCs db1 db3 db6 db8 db9 db14

WER 0.48% 0.47% 0.45% 0.47% 0.43% 0.43% 0.47%

Table 5.5: Combining Biorthogonol Sub-band Energy Results with MFCCs

Wavelet MFCCs bior1.1 bior2.4 bior3.3

WER 0.48% 0.47% 0.45% 0.47%

Table 5.6: Combining Symlet and Coiflet Sub-band Energy Results with MFCCs

Wavelet MFCCs sym3 sym6 sym8 sym9 coif2

WER 0.48% 0.45% 0.47% 0.46% 0.47% 0.46%
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5.2.2 Wavelet Denoising

The stationary WT is used to perform the denoising pre-processing. Soft thresholding

was used in this work. Recognition results using 13 MFCC features (+ delta and delta

delta features) for the Noizeus corpus with the ASR system trained with TED-LIUM

data are shown in Table 5.7. Baseline results for Noizeus data under different noise

levels and conditions using 13 MFCC features (+ delta and delta delta features) are

shown in Table 5.8. The Noizeus data with 15dB added train noise was not available.

As expected, results degrade with higher levels of noise.

Table 5.7: Baseline Clean Noizeus Result using MFCCs

WER

Noizeus 67.22%

Table 5.8: Baseline Noisy Noizeus Results using MFCCs

Airport Babble Car Exhibition Restaurant Station Street Train

15dB 80.91% 81.74% 85.06% 85.06% 80.08% 80.08% 81.74% NA

10dB 87.97% 86.31% 90.87% 91.29% 88.80% 86.31% 88.80% 88.80%

5dB 92.53% 95.44% 92.12% 92.12% 89.63% 93.36% 90.04% 94.19%

0dB 94.19% 93.78% 93.78% 94.61% 91.70% 93.78% 91.70% 93.78%

The Daubechies (db) wavelet family is first used to denoise the signal with scales

of 4 in Table 5.9, 8 in Table 5.10, and 12 in Table 5.11. The db wavelet with scale 8
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on average gave the best result for the Daubechies family. On average, there was a

1.98% improvement over the baseline.

Table 5.9: Results for Wavelet Denoising with Scale 4 Daubechies Wavelet. The bold

numbers indicate better recognition performance than the baseline

Airport Babble Car Exhibition Restaurant Station Street Train

15dB 82.16% 79.67% 81.74% 83.82% 80.50% 79.25% 80.08% NA

10dB 83.82% 84.23% 87.14% 86.72% 87.14% 85.89% 88.38% 89.63%

5dB 92.12% 92.95% 90.87% 92.12% 89.21% 92.53% 89.21% 93.78%

0dB 94.61% 95.44% 93.78% 92.12% 92.53% 93.36% 94.19% 94.61%

Table 5.10: Results for Wavelet Denoising with Scale 8 Daubechies Wavelet. The

bold numbers indicate better recognition performance than the baseline

Airport Babble Car Exhibition Restaurant Station Street Train

15dB 81.33% 77.59% 81.74% 83.82% 79.25% 80.50% 80.50% NA

10dB 84.23% 82.57% 86.72% 86.72% 85.06% 84.23% 87.55% 90.04%

5dB 90.87% 92.95% 92.95% 91.70% 87.97% 90.04% 86.72% 92.95%

0dB 94.61% 92.02% 92.95% 93.78% 83.36% 92.12% 94.61% 94.19%
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Table 5.11: Results for Wavelet Denoising with Scale 12 Daubechies Wavelet. The

bold numbers indicate better recognition performance than the baseline

Airport Babble Car Exhibition Restaurant Station Street Train

15dB 79.67% 80.91% 80.08% 85.89% 81.74% 81.74% 79.67% NA

10dB 84.65% 85.06% 87.97% 85.48% 87.55% 84.65% 88.38% 88.80%

5dB 92.53% 92.12% 90.46% 90.87% 89.21% 92.12% 89.63% 90.04%

0dB 94.61% 94.19% 92.95% 95.02% 93.78% 92.12% 95.02% 94.19%

The biorthogonal (bior) wavelet family is used to denoise the signal with scales

of 2.2 in Table 5.12, 3.7 in Table 5.13, and 5.5 in Table 5.14. The bior wavelet with

the scale of 3.7 on average gave the best result. On average, there was a 1.88%

improvement over the baseline.

Table 5.12: Results for Wavelet Denoising with Scale 2.2 biorthogonal Wavelet. The

bold numbers indicate better recognition performance than the baseline

Airport Babble Car Exhibition Restaurant Station Street Train

15dB 83.82% 81.33% 85.06% 85.06% 80.91% 81.74% 82.16% NA

10dB 84.23% 84.65% 90.04% 89.63% 87.55% 87.14% 88.38% 90.46%

5dB 91.70% 94.19% 92.53% 92.12% 88.80% 93.78% 89.21% 92.95%

0dB 95.02% 94.61% 95.02% 94.61% 92.12% 92.95% 95.02% 94.19%
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Table 5.13: Results for Wavelet Denoising with Scale 3.7 biorthogonal Wavelet. The

bold numbers indicate better recognition performance than the baseline

Airport Babble Car Exhibition Restaurant Station Street Train

15dB 80.50% 77.18% 79.67% 83.82% 76.76% 78.42% 80.50% NA

10dB 83.82% 82.99% 87.97% 87.14% 86.76% 83.82% 87.14% 89.63%

5dB 92.12% 91.29% 90.87% 92.53% 85.89% 91.70% 86.72% 92.12%

0dB 94.19% 95.02% 92.53% 94.61% 92.95% 91.29% 93.78% 94.61%

Table 5.14: Results for Wavelet Denoising with Scale 5.5 biorthogonal Wavelet. The

bold numbers indicate better recognition performance than the baseline

Airport Babble Car Exhibition Restaurant Station Street Train

15dB 83.40% 77.59% 81.33% 85.06% 78.42% 80.50% 81.74% NA

10dB 84.65% 82.57% 87.55% 87.55% 85.06% 85.06% 87.97% 90.04%

5dB 92.53% 94.19% 91.29% 92.12% 93.36% 93.36% 89.63% 92.53%

0dB 93.78% 94.61% 92.53% 93.78% 92.53% 92.53% 94.19% 93.78%

The Coiflet (coif) wavelet family is used to denoise the signal with scales of 1 in

Table 5.15, 3 in Table 5.16, and 5 in Table 5.17. The coif wavelet with the scale of

3 on average gave the best result. On average, there was a 1.23% improvement over

the baseline.
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Table 5.15: Results for Wavelet Denoising with Scale 1 Coiflet Wavelet. The bold

numbers indicate better recognition performance than the baseline

Airport Babble Car Exhibition Restaurant Station Street Train

15dB 84.23% 80.91% 83.40% 85.48% 82.57% 82.57% 82.16% NA

10dB 84.23% 85.89% 88.80% 89.63% 88.38% 88.38% 88.38% 90.46%

5dB 92.95% 94.19% 92.53% 92.95% 93.36% 93.36% 90.04% 92.53%

0dB 95.02% 94.19% 94.61% 94.19% 92.12% 92.12% 95.44% 94.19%

Table 5.16: Results for Wavelet Denoising with Scale 3 Coiflet Wavelet. The bold

numbers indicate better recognition performance than the baseline

Airport Babble Car Exhibition Restaurant Station Street Train

15dB 81.74% 78.84% 81.74% 82.57% 80.08% 78.84% 80.50% NA

10dB 84.65% 83.52% 87.97% 86.31% 86.31% 84.65% 87.55% 90.04%

5dB 93.36% 94.19% 91.70% 91.70% 87.97% 92.95% 87.14% 92.12%

0dB 95.02% 94.61% 92.95% 93.78% 92.95% 92.12% 94.61% 93.78%

Table 5.17: Results for Wavelet Denoising with Scale 5 Coiflet Wavelet. The bold

numbers indicate better recognition performance than the baseline

Airport Babble Car Exhibition Restaurant Station Street Train

15dB 80.50% 79.67% 81.33% 84.65% 80.91% 81.74% 80.91% NA

10dB 85.06% 84.65% 87.97% 86.31% 88.38% 84.23% 87.55% 90.87%

5dB 92.12% 91.29% 90.04% 90.87% 90.49% 92.53% 87.55% 90.87%

0dB 93.78% 93.78% 93.78% 94.19% 94.61% 92.53% 95.02% 93.78%
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The symlet (sym) wavelet family is used to denoise the signal with scales of 3 in

Table 5.18, 6 in Table 5.19, and 9 in Table 5.20. The sym wavelet with the scale of

9 on average gave the best result. On average, there was a 1.42% improvement over

the baseline.

Table 5.18: Results for Wavelet Denoising with Scale 3 symlet Wavelet. The bold

numbers indicate better recognition performance than the baseline

Airport Babble Car Exhibition Restaurant Station Street Train

15dB 82.57% 79.67% 81.74% 85.48% 80.50% 80.50% 78.42% NA

10dB 83.82% 85.06% 87.97% 87.14% 86.31% 87.97% 87.97% 90.04%

5dB 92.53% 92.95% 92.12% 92.95% 89.63% 91.70% 89.21% 92.95%

0dB 93.78% 95.02% 94.19% 94.19% 92.53% 92.95% 94.19% 93.78%

Table 5.19: Results for Wavelet Denoising with Scale 6 symlet Wavelet. The bold

numbers indicate better recognition performance than the baseline

Airport Babble Car Exhibition Restaurant Station Street Train

15dB 81.74% 79.25% 81.33% 82.57% 80.08% 78.84% 80.91% NA

10dB 85.06% 83.40% 87.55% 86.31% 86.72% 84.23% 87.97% 90.04%

5dB 92.95% 93.36% 91.29% 92.12% 87.14% 93.78% 87.97% 91.70%

0dB 95.02% 94.61% 92.95% 93.78% 93.36% 92.53% 94.61% 92.12%
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Table 5.20: Results for Wavelet Denoising with Scale 9 symlet Wavelet. The bold

numbers indicate better recognition performance than the baseline

Airport Babble Car Exhibition Restaurant Station Street Train

15dB 80.50% 78.84% 81.33% 85.06% 80.50% 78.84% 79.25% NA

10dB 82.99% 83.40% 87.55% 87.97% 86.31% 81.74% 88.80% 90.04%

5dB 93.36% 93.78% 89.63% 90.46% 90.04% 91.70% 87.97% 91.29%

0dB 94.61% 95.02% 92.95% 94.61% 92.12% 92.12% 94.61% 93.78%

Table 5.21 shows the best possible WER improvement under different noise levels

and environments by the provided wavelets of different shapes and scales. Each

number in the table represents the percentage improvement followed by the wavelet

used.

Table 5.21: WER Improvement by Wavelets in Different Noisy Environments

- Airport Babble Car Exhibition

15dB 1.24%(db12) 4.56%(bior3.7) 5.39%(bior3.7) 2.49%(coif3)

10dB 4.98%(sym9) 3.74%(bior5.5) 4.15%(db8) 3.74%(db12)

5dB 1.66%(db8) 4.15%(coif5) 2.49%(sym9) 1.66%(sym9)

0dB 0.41%(bior5.5) 1.76%(db8) 1.25%(bior3.7) 2.49%(db4)

- Restaurant Station Street Train

15dB 3.32%(bior3.7) 1.66%(bior3.7) 3.32%(sym3) -

10dB 3.74%(bior5.5) 4.57%(sym9) 8.30%(bior3.7) -

5dB 3.74%(bior3.7) 3.32%(db8) 2.9%(bior3.7) 4.15%(db12)

0dB - 2.49%(bior3.7) - 1.66%(sym6)

Average WER values from the different wavelets are shown in Table 5.22. The
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best denoising performance was given by bior3.7 wavelet and the worst was given by

coif1 wavelet degrading the performance.

Table 5.22: Average WER for all Noisy Experiments

Type WER % Improvement

MFCC 89.37% -

db4 88.50% 0.97%

db8 87.60% 1.98%

db12 88.42% 1.06%

bior2.2 89.38% 0.00%

bior3.7 87.69% 1.88%

bior5.5 88.55% 0.92%

coif1 89.65% -0.31%

coif3 88.27% 1.23%

coif5 88.45% 1.03%

sym3 88.70% 0.75%

sym6 88.23% 1.27%

sym9 88.10% 1.42%

While the theoretical contribution of wavelet denoising has the potential for better

denoising performance, the third research question is answered inconclusively in this

work since the improvement is not significant.
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5.3 Summary

The first research question is answered positively by creating the wavelet transform

module that supports three different types of wavelet transforms: DWT, SWT, and

WPT with four different wavelet types. The second research question is answered

negatively using the three different types of wavelet transforms since MFCC per-

formacne was not matched. The third research question is answered inconclusively,

because although improvements were seen with pre-processing, the denoising results

were not significantly different.

The maximum energy feature is one of the simplest ways to extract features from

wavelet coefficients. This might have not fully taken advantage of useful wavelet prop-

erties. The Noizeus corpus used for wavelet denoising was very small and mismatched

training data was used. Using other noisy corpora with matched recording and lan-

guage condition would constrain these variables and allow for better exploration of

denoising to deal with added noise.



Chapter 6

Conclusion

This thesis has contributed a wavelet transform module implemented on a speech

recognition virtual machine and explored two different feature extraction methods,

made comparisons, and looked for benefits of combining the two methods. The three

research questions posed in Chapter 1 are reviewed and discussed, followed by sug-

gestions for future work.

6.1 Summary

• Can a wavelet transform signal processing module be added to an existing ASR

system?

The answer is yes. An open source wavelet library was used to implement a new

module with static compiling on two or more VMs and showed successful functionality.

Since the wavelet library had to be installed on top of the Kaldi recognizer, simply

adding the static library to sub-programs in the recognizer rather than setting up all

the necessary dynamic library paths was preferred for simpler implementation.

• Can WT features match the performance of MFCCs?

The answer is no. Using the approaches discussed in Chapter 4, it was shown that

the WT features did not give compatible recognition performance compared to the
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MFCCs shown in Chapter 5. Although there were constraints and limitations of the

experiment setup that may have caused the non-matching performance results, no

further tuning for better recognition performance was made in this work.

• Are there benefits to combining the MFCC and WT methods?

The answer is inconclusive. Two different ways to combine the two feature extraction

methods introduced in Chapter 4 showed slight improvement in recognition perfor-

mance presented in Chapter 5. The first method showed a slight improvement when

different wavelet sub-band energy was used in the MFCC vector and the second

method also showed slight improvements when wavelet denoising was applied before

processing MFCCs on a noisy data set.

6.2 Future Work

Implementing the wavelet library using dynamic compiling that only keeps functions

to be used should be considered in order to more positively answer the first research

question by reducing memory usage. Further tuning the wavelet features and modify-

ing the Kaldi recognizer experiment setup should be considered in order to positively

answer the second research question. One approach would be to modify the Kaldi

recognizer to loosen frame rate conditions and allow more dynamic frame rate ranges.

Implementing different thresholding methods and exploring different wavelets under

all decomposition levels for denoising could better address the third research question.
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Appendix A

Experiment Preparation

This Appendix shows how the primarily accessed directories are structured and where

the key files are located. It also presents installation and use instruction for “C++

Wavelet Libraries” along with compiling commands for use in the VM.

A.1 Directory Block

Figure A.1 shows the directory block of the primary locations on the virtual machine

used in this work. There are three directories frequently accessed in this work. Direc-

tory 1 contains the wavelet library related files: the source code, the object file from

the source code, and the library file that corresponds to the object file. Directory

2 contains header files used by code in Directory 3. The window types, the frame

length, the frame shift rate, the number of features and other things can be configured

in this directory. Directory 3 contains the source code and its executable files. The

wavelet header file is placed in directory 3 as well because static compiling was done

in this work. Directory 4 contains the main script that uses the programs in directory

3 and other programs in the Kaldi recognizer. The data used is placed in the data

sub-directory and the results are stored in the exp sub-directory in directory 4.
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Figure A.1: Directory Block

A.2 Installing the Wavelet Library

The “C++ Wavelet Libraries” is external to the Kaldi recognizer, therefore it needs

to be installed where it can be used. Note the wavelet library is placed in Directory

1 in Figure A.1. The wavelet library should be downloaded and installed in that

directory using this link: http://sourceforge.net/projects/wavelet2d/files/ wavelib-

0.4.0.0/wavelib.tar.gz. This library relies on another library called fftw which can

be downloaded link: ftp://ftp.fftw.org/pub/fftw/fftw-3.3.4.tar.gz. The fftw library

should be installed in the same directory before installing the wavelet library.



74

A.3 Compiling Commands

The file wavelet2s.cpp contains all wavelet functions. When modifications are made in

this file, the following compiling commands are used to update the wavelet library. A

Kaldi executable such as “compute-mfcc-feats” in directory 3 then can be recompiled

using the updated wavelet library.

g++ -static -c wavelet2s.cpp

ar rcs libwavelet2s.a wavelet2s.o



Appendix B

Source Code

In this appendix, code for implementing three different wavelet transform features

(discrete, stationary, and wavelet packet transform), wavelet sub-band energy, and

wavelet denoising is provided. This is implemented into the Kaldi recognizer, which

has source code available at http://kaldi.sourceforge.net/. The code provided here

was written for the thesis work, but uses library variables and functions such as

dwt sym() and swt(). Kaldi functions are also used in this code such as NumFrames(),

ExtractWindow(), and CopyFromVec().

The wavelet library functions take six input arguments for the discrete wavelet

transform (DWT) and five input arguments for the stationary wavelet transform

(SWT). Since the wavelet packet transform (WPT) was not implemented in the li-

brary, the WPT function was extended from the DWT. The six input arguments

for the DWT are input signal vector “sig”, decomposition level “J”, wavelet name

“nm”, vector that stores lengths of respective approximation and detail in each de-

composition step “length”, output vector “dwt output”, and a housekeeping vector

that contains an indicator of whether the signal is even or odd and a current decom-

position level “flag”. Since every length in all decomposition steps is the same as

the original signal for SWTs, the “flag” vector is not needed. Therefore five input

arguments are needed for the SWT. The output vector “dwt output” is mainly used
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to extract features. The size of the output vector depends on the decomposition level

“J” because the coefficients from all decomposition levels are stored in the output

vector, through “J” level coefficients, “J-1” level coefficients, etc. The library pro-

vides the following wavelets: Daubechies (with scales of 1, 2, 3, 4, 5, 6, 8, 9, 10, 11,

12, 13, 14, and 15), biorthogonol (with scales of 1.1, 1.3, 1.5, 2.2, 2.4, 2.6, 2.8, 3.1, 3.3,

3.5, 3.7, 3.9, 4.4, 5.5, and 6.8), Coiflet (with scales of 1, 2, 3, 4, and 5), and symlet

(with scales of 1, 2, 3, 4, 5, 6, 7, 8, and 9). More scales are theoretically possible

but they were not implemented in the library, which can be considered a limitation

of this library.

B.1 Discrete Wavelet Transform Features

Matrix<BaseFloat> wavelet_features;

Vector<BaseFloat> feature_vector, avg_sig, level_J, window;

vector<double> windowed_wave, dwt_output, flag;

vector<int> length;

string nm = "db8";

int J = 6, max_det = 0, max_appx = 0;

int32 rows_out = NumFrames(waveform.Dim(), mfcc.opts_.frame_opts);

int32 cols_out = mfcc.opts_.num_ceps;

features.Resize(rows_out, cols_out); // pre-declare feature size

for (int32 r = 0; r < rows_out; r++) {

// this for loop goes through one utterance

//by iterating windows with some frame rate
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BaseFloat log_energy;

ExtractWindow(waveform, r, mfcc.opts_.frame_opts,

mfcc.feature_window_function_, &window,

(mfcc.opts_.use_energy && mfcc.opts_.raw_energy ?

&log_energy : NULL)); // pull out a window

int windowed_sig_energy = 0;

for(int i = 0; i < window.Dim(); i++){ // energy calculation

windowed_wave.push_back(window(i));

windowed_sig_energy += (window(i)*window(i));

}

dwt_sym(windowed_wave, J, nm, dwt_output, flag, length);

// wavelet transform applied to the windowed signal

windowed_wave.clear();

feature_vector.Resize(9);

feature_vector(8) = windowed_sig_energy/window.Dim();

windowed_sig_energy = 0;

int previous_index = 0, current_index = 0;

for(int temp = 0; temp < 4; temp++){

//getting maximum energy features in each sub-band

previous_index = current_index;

current_index += length.at(3 - temp);

for(int i = previous_index; i < current_index; i++){

if(max_det < dwt_output[i])

max_det = dwt_output[i];
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if(max_appx < dwt_output[i + current_index])

max_appx = dwt_output[i + current_index];

}

feature_vector(temp * 2) = max_det;

feature_vector((temp * 2) + 1) = max_appx;

max_det = 0;

max_appx = 0;

}

features.Row(r).CopyFromVec(feature_vector);

dwt_output.clear();

length.clear();

flag.clear();

avg_sig.Resize(0);

}

B.2 Stationary Wavelet Transform Features

Matrix<BaseFloat> wavelet_features;

Vector<BaseFloat> feature_vector, avg_sig, level_J, window;

vector<double> windowed_wave, swt_output, flag; // ss

int length;

string nm = "db8";

int J = 6, max_det = 0, max_appx = 0;

int32 rows_out = NumFrames(waveform.Dim(), mfcc.opts_.frame_opts);
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int32 cols_out = mfcc.opts_.num_ceps;

features.Resize(rows_out, cols_out); // pre-declare feature size

for (int32 r = 0; r < rows_out; r++) { // r is frame index..

// this for loop goes through one utterance

//by iterating windows with some frame rate

BaseFloat log_energy;

ExtractWindow(waveform, r, mfcc.opts_.frame_opts,

mfcc.feature_window_function_, &window,

(mfcc.opts_.use_energy && mfcc.opts_.raw_energy ?

&log_energy : NULL)); // pull out a window

int windowed_sig_energy = 0;

for(int i = 0; i < window.Dim(); i++){ // energy calculation

windowed_wave.push_back(window(i));

windowed_sig_energy += (window(i)*window(i));

}

swt(windowed_wave, J, nm, swt_output, length);

// wavelet transform applied to the windowed signal

windowed_wave.clear();

feature_vector.Resize(9);

feature_vector(8) = windowed_sig_energy/window.Dim();

windowed_sig_energy = 0;

int previous_index = 0, current_index = 0;

for(int temp = 0; temp < 4; temp++){

//getting maximum energy features in each sub-band
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previous_index = current_index;

current_index += length;

for(int i = previous_index; i < current_index; i++){

if(max_det < swt_output[i])

max_det = swt_output[i];

if(max_appx < swt_output[i + current_index])

max_appx = swt_output[i + current_index];

}

feature_vector(temp * 2) = max_det;

feature_vector((temp * 2) + 1) = max_appx;

max_det = 0;

max_appx = 0;

}

features.Row(r).CopyFromVec(feature_vector);

swt_output.clear();

length = 0;

avg_sig.Resize(0);

}

B.3 Wavelet Packet Transform Features

Matrix<BaseFloat> wavelet_features; // ss

Vector<BaseFloat> feature_vector, avg_sig, level_J, window;

vector<double> windowed_wave, swt_output, flag; // ss
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int length;

string nm = "db8";

int J = 3, max_det = 0, max_appx = 0;

int32 rows_out = NumFrames(waveform.Dim(), mfcc.opts_.frame_opts);

int32 cols_out = mfcc.opts_.num_ceps;

features.Resize(rows_out, cols_out); // pre-declare feature size

for (int32 r = 0; r < rows_out; r++) { // r is frame index..

// this for loop goes through one utterance

//by iterating windows with some frame rate

BaseFloat log_energy;

ExtractWindow(waveform, r, mfcc.opts_.frame_opts,

mfcc.feature_window_function_, &window,

mfcc.opts_.use_energy && mfcc.opts_.raw_energy ?

&log_energy : NULL)); // pull out a window

int windowed_sig_energy = 0;

for(int i = 0; i < window.Dim(); i++){ // energy calculation

windowed_wave.push_back(window(i));

windowed_sig_energy += (window(i)*window(i));

}

swt(windowed_wave, J, nm, swt_output, length);

// wavelet transform applied to the windowed signal

windowed_wave.clear();

feature_vector.Resize(15);

feature_vector(14) = windowed_sig_energy/window.Dim();
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windowed_sig_energy = 0;

int previous_index = 0, current_index = 0;

for(int temp = 0; temp < 7; temp++){

//getting maximum energy features in each sub-band

previous_index = current_index;

current_index += length;

for(int i = previous_index; i < current_index; i++){

if(max_det < swt_output[i])

max_det = swt_output[i];

if(max_appx < swt_output[i + current_index])

max_appx = swt_output[i + current_index];

}

feature_vector(temp * 2) = max_det;

feature_vector((temp * 2) + 1) = max_appx;

max_det = 0;

max_appx = 0;

}

features.Row(r).CopyFromVec(feature_vector);

swt_output.clear();

length = 0;

avg_sig.Resize(0);

}
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B.4 Wavelet Sub-band Energy

SubVector<BaseFloat> waveform(wave_data.Data(), this_chan);

Matrix<BaseFloat> features;

try {

// calculate MFCC features first

mfcc.Compute(waveform, vtln_warp_local, &features, NULL);

} catch (...) {

KALDI_WARN << "Failed to compute features for utterance " << utt;

continue;

}

size_t dim = features.NumCols();

MatrixIndexT index = 0;

Vector<BaseFloat> features_col;

features_col.Resize(dim);

Vector<BaseFloat> feature_vector, avg_sig, level_J, window;

vector<double> windowed_wave, dwt_output, swt_output, flag; // ss

vector<int> length;

string nm = "sym4";

int J = 3;

float max_det = 0, max_appx = 0;

int32 rows_out = NumFrames(waveform.Dim(), mfcc.opts_.frame_opts);

int32 cols_out = mfcc.opts_.num_ceps;

for (int32 r = 0; r < rows_out; r++) { // r is frame index..
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BaseFloat log_energy;

ExtractWindow(waveform, r, mfcc.opts_.frame_opts,

mfcc.feature_window_function_, &window,

(mfcc.opts_.use_energy && mfcc.opts_.raw_energy ?

&log_energy : NULL)); // pull out a window

dwt_sym(windowed_wave, J, nm, dwt_output, flag, length);

// wavelet transform applied to the windowed signal

windowed_wave.clear();

features_col.CopyFromVec(features.Row(r));

int previous_index = 0, current_index = 0;

for(int temp = 0; temp < 1; temp++){

// getting wavelet sub-band energy

previous_index = current_index;

current_index +=length.at(0 - temp);

for(int i = previous_index; i < current_index; i++){

max_det += dwt_output[i];

max_appx += dwt_output[i + current_index];

}

features_col(12 + (temp * 2))

= (max_det + max_appx)/length.at(0 - temp);

max_det = 0;

max_appx = 0;

}

features.Row(r).CopyFromVec(features_col);
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// replacing the MFCC frame energy with

// the wavelet sub-band energy

dwt_output.clear();

length.clear();

flag.clear();

avg_sig.Resize(0);

}

B.5 Wavelet Denoising

vector<double> wf_waveform, swt_output, iswt_output;

int J = 3, length = 0;

string nm = "bior2.2";

for(int i = 0; i < waveform.Dim(); i++){

// converting variable tpyes between Kaldi and

// default C++ variables

wf_waveform.push_back(waveform(i));

}

swt(wf_waveform, J, nm, swt_output, length);

// apply SWT to the signal

double total = 0, mean = 0;

for(int i = 0; i < length; i++){

// total value

total +=swt_output.at(i);
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}

mean = total/length; // mean

double standard_deviation = 0;

total = 0;

for(int i = 0; i < length; i++){

// variance

total += (swt_output.at(i) - mean) * (swt_output.at(i) - mean);

}

standard_deviation = sqrt(total/(length));

for(int i = 0; i < length; i++){

// soft thresholding

if(swt_output.at(i) <= standard_deviation){

swt_output.at(i) = 0;

}else if(swt_output.at(i) > standard_deviation){

swt_output.at(i) -= standard_deviation;

}else if(swt_output.at(i) < -standard_deviation){

swt_output.at(i) += standard_deviation;

}

}

iswt(swt_output, J, nm, iswt_output);

// signal reconstruction

Vector<BaseFloat> denoised_waveform(length);

for(int i = 0; i < length; i++){

// converting variable tpyes between Kaldi and
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// default C++ variables

denoised_waveform(i) =iswt_output.at(i);

}

B.6 Compiling Commands

All provided wavelet transform code can be compiled using the following commands.

There are two sets of compiling commands separated by dash lines. The first compil-

ing command is used on the TI-Digits VM, and the other one is used on the TED-

LIUM VM. The outputs are C++ executable sub-programs that running scripts can

call and work with.

g++ -msse -msse2 -Wall -I.. -pthread -DKALDI_DOUBLEPRECISION=0

-DHAVE_POSIX_MEMALIGN -Wno-sign-compare -Wno-unused-local-typedefs

-Winit-self -DHAVE_EXECINFO_H=1 -rdynamic -DHAVE_CXXABI_H -DHAVE_ATLAS

-I/home/mario/src/kaldi/kaldi-trunk/tools/ATLAS/include

-I/home/mario/src/kaldi/kaldi-trunk/tools/openfst/include

-I/home/mario/src/kaldi/kaldi-turnk/src/wavelib/src/static

-Wno-sign-compare -g -DKALDI_NO_EXPF -rdynamic -Wl,

-rpath=/home/mario/src/kaldi/kaldi-trunk/tools/openfst/lib

compute-mfcc-feats.cc ../feat/kaldi-feat.a

../wavelib/src/static/libwavelet2s.a

../transform/kaldi-transform.a ../gmm/kaldi-gmm.a

../thread/kaldi-thread.a ../tree/kaldi-tree.a

../matrix/kaldi-matrix.a ../util/kaldi-util.a
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../base/kaldi-base.a

-L/home/mario/src/kaldi/kaldi-trunk/tools/openfst/lib

-lfst -L/home/mario/src/kaldi/kaldi-trunk/src/wavelib/src/static

-lwavelet2s -lfftw3 /usr/lib/libatlas.so.3 /usr/lib/libf77blas.so.3

/usr/lib/libcblas.so.3 /usr/lib/liblapack_atlas.so.3

-lm -lpthread -ldl -o compute-mfcc-feats

/////////////////////////////////////////////////////////////////

g++ -msse -msse2 -Wall -I.. -pthread -DKALDI_DOUBLEPRECISION=0

-DHAVE_POSIX_MEMALIGN -Wno-sign-compare -Wno-unused-local-typedefs

-Winit-self -DHAVE_EXECINFO_H=1 -rdynamic -DHAVE_CXXABI_H -DHAVE_ATLAS

-I/kaldi-trunk/tools/ATLAS/include -I/kaldi-trunk/tools/openfst/include

-I/home/mario/src/kaldi/kaldi-turnk/src/wavelib/src/static

-Wno-sign-compare -g -DKALDI_NO_EXPF

-c -o compute-mfcc-feats.o compute-mfcc-feats.cc

g++ -rdynamic -Wl,-rpath=/kaldi-trunk/tools/openfst/lib

compute-mfcc-feats.o ../feat/kaldi-feat.a

../wavelib/src/static/libwavelet2s.a

../transform/kaldi-transform.a ../gmm/kaldi-gmm.a

../thread/kaldi-thread.a ../tree/kaldi-tree.a

../matrix/kaldi-matrix.a ../util/kaldi-util.a

../base/kaldi-base.a -L/kaldi-trunk/tools/openfst/lib

-lfst -L/kaldi-trunk/src/wavelib/src/static -lwavelet2s -lfftw3

-L/usr/lib -llapack -lcblas -latlas -lf77blas -lm

-lpthread -ldl -o compute-mfcc-feats
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