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Abstract 

Zooplanktonic Community Dynamics of the Minnesota River  
with an Ichthyoplankton Gear Comparison  
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April 2016 

 
 

The Minnesota River, like many large rivers, has been functionally altered by 

human activities and climate change. The Minnesota Pollution Control Agency has 

designated 271 kilometers (50.3%) of the 539 kilometer Minnesota River as “biologically 

impaired.” However, assessing biological communities in large rivers is often difficult 

and limited to examination of upper trophic levels (e.g., piscivorous fishes). Few studies 

examined zooplanktonic communities, largely due to difficulties associated with 

sampling. Because of the need to improve assessment strategies for biological 

impairments in the Minnesota River, the zooplanktonic community, including 

crustaceous zooplankton, rotifers, macroinvertebrates, and ichthyoplankton was 

evaluated within an impaired and unassessed reaches. Securing a better understand of 

the early life history of Minnesota River fishes has become a priority to state 

management agencies. However, to secure necessary data, icthyoplankton sampling 

strategies must be improve and thus several gears were evaluated during this study.  
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The zooplanktonic community was sampled from May 2014 to August 2014 and 

April 2015 to August 2015 in a stretch deemed impaired and an unassessed stretch in 

the Minnesota River. Gears utilized to sample biota included benthic and surface 

slednets, light traps with glow–stick or LED light sources, and a Wisconsin vertical trawl. 

Based on an analysis of similarities, zooplanktonic community composition was more 

similar between reaches for crustaceous zooplankton (R = 0.02), ichthyoplankton with 

the slednets (R = 0.03), macroinvertebrates with the light traps (R = 0.00), 

macroinvertebrates with the slednets (R = -0.04), and rotifers (R = -0.05) than different. 

Assessments indicate zooplanktonic communities in both impaired and unassessed 

reaches of the Minnesota River appear to be degraded as they were similar in a reach 

deemed impaired and an unassessed reach. Although the total number of zooplanktonic 

biota captured in both reaches was low, variations in catch rates were noted with 

changes in hydrology. However, the gears sampled more different portions of the 

ichthyoplankton community (R = 0.51) than similar portions, demonstrating the value of 

utilizing multiple gears.  
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Figure 13. Boxplots of the density (number/100m3) of the ten dominate orders (>1% of 

total catch) captured in the Minnesota River during the 2014 and 2015 sampling 
among the different hydrologic periods [first ascending limb (period one), 
second ascending limb (period two), major descending limb (period three), 
steady state (period four)]. Whiskers extend to the extremes of the data and 
lines represent the median of the data, and an asterisk (*) denotes significant 
differences between reach type within that period. Scale of each boxplot is set to 
appropriate scale for that plot. Comparisons among orders should be made 
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Figure 14. Percent each taxa group represented in the total catch of slednet trawls in 
the Minnesota River during the 2014- and 2015 field seasons. Other was 
comprised of taxa groups that numerically made up  < 5% of the total catch 
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and Plecoptera. N is the total number of individual macroinvertebrates captured 
during that year for that particular reach and the percentages are the taxa 
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Figure 15. NMDS ordinations plotted with mean densities (number/100m3) by sample 
date and orders captured in the Minnesota River during 2014 and 2015 between 
locations. Ellipses around each reach type denote the 95% confidence interval 
for that reach type. Text of reach status represents the mean of the ordination 
plot for the reach type. Each ordination is a separate ordination for only 2014, 
only 2015 and both years cumulatively. Therefore, comparison among 
ordinations is not appropriate. Numbers correspond to a particular taxa group: 
1: Amphipoda, 2: Apidae, 3: Arachnida, 4: Coleoptera, 5:Collembola, 6: 
Diplopoda, 7:Diptera, 8:Ephemeroptera, 9: Entomobryomorpha, 10:Formicidae, 
11: Gastropoda, 12:Hemiptera, 13: Hirudinea, 14: Hydra, 15:Hydracarina, 
16:Hymenoptera, 17:Isopoda, 18:Lepidoptera, 19:Megaloptera, 
20:Nematomorpha, 21:Nemertea, 22:Neuroptera, 24:Oligochaeta, 
25:Plecoptera, 26: Trichoptera ............................................................................. 55 

Figure 16. Mean macroinvertebrate abundance (number/trap night) among hydrologic 
periods [first ascending limb (period one), second ascending limb (period two), 
major descending limb (period three), steady state (period four)] between the 
impaired and unassessed reaches of the Minnesota River during 2014 and 2015.
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Figure 17. Percent each order of macroinvertebrate represented in the total catch of the 

light traps in the Minnesota River during the 2014- and 2015 field seasons within 
the impaired and unassessed reaches. Other was comprised of taxa groups that 
numerically made up < 1% of the total catch of Amphipoda, Arachnida, 
Gastropoda, Hydracarina, Nemertea and Oligochaeta. N is the total number of 
individual macroinvertebrates captured during that year for that particular 
reach. .................................................................................................................... 63 

Figure 18. Boxplots of the CPUE (number/trap night) of the ten dominate orders 
(number of individuals <4) captured in the Minnesota River during the 2014 and 
2015 sampling among the different hydrologic periods [first ascending limb 
(period one), second ascending limb (period two), major descending limb (period 
three), steady state (period four)]. Whiskers extend to the extremes of the data 
and lines represent the median of the data and an asterisk (*) denotes significant 
differences between reach type within that period. Scale of each boxplot is set to 
appropriate scale for that plot. Comparisons among orders should be made 
carefully. ................................................................................................................ 64 

Figure 19. NMDS ordinations plotted with mean CPUE (number/trap night) by sample 
outing of orders captured in the Minnesota River during 2014 and 2015 between 
locations. Ellipses around each reach type denote the 95% confidence interval 
for that reach type. Text of reach status represents the mean of the ordination 
plot for the reach type. Each ordination is a separate ordination for only 2014, 
only 2015 and both years cumulatively. Therefore, comparison among 
ordinations is not appropriate. Numbers correspond to a specific order; 1: 
Amphipoda, 2: Arachnida, 3: Coleoptera, 4: Diptera, 5: Ephemeroptera, 6: 
Entomobryomorpha, 7: Gastropoda, 8: Hemiptera, 9: Hydracarina, 10: 
Hymenoptera, 11: Megaloptera, 12: Nematomorpha, 13: Nemertea, 14: 
Neuroptera, 15: Odonata, 16: Oligochaeta, 17: Plecoptera, 18: Trichoptera. ..... 65 

Figure 20. Mean ichthyoplankton density (number/100 m3) among hydrologic periods 
[first ascending limb (period one), second ascending limb (period two), major 
descending limb (period three), steady state (period four)] between the impaired 
and unassessed reaches of the Minnesota River during 2014 and 2015. ............ 74 

Figure 21. NMDS ordinations plotted with mean CPUE (number/per 100m3) by sample 
date and genera of ichthyoplankton captured in the Minnesota River during 2014 
and 2015 between locations. Ellipses around each reach type denote the 95% 
confidence interval for that reach type. Numbers correspond to a specific 
genera; 1: Amia sp, 2: Aplodinotus sp., 3: Carpiodes spp., 4: Catostomus sp. 5: 
Cyprinus sp. 6: Cyprinus sp., 7: Dorosoma sp., 8: Etheostoma sp. 9: Hybognathus 
sp., 10: Ictiobus spp., 11: Lepomis spp., 12: Moxostoma spp., 13: Notropis spp., 
14: Percidae spp., 15: Pimephales spp., 16: Pomoxis spp., 17: Sander sp., 18: 
Scaphirhynchus sp. ................................................................................................ 75 
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Figure 22. Mean ichthyoplankton abundance (number/trap night) among hydrologic 

periods [first ascending limb (period one), second ascending limb (period two), 
major descending limb (period three), steady state (period four)] between the 
impaired and unassessed reaches of the Minnesota River during 2014 and 2015.
............................................................................................................................... 83 

Figure 23. Schematic of light traps used in sampling ichthyoplankton in the Minnesota 
River during the 2014 and 2015 field seasons. A. Eyebolt (0.64-cm) where light 
source was attached. B. Plexiglas sheet (0.63-cm thick), 22-cm by 22-cm for top 
of the trap and 30-cm by 30-cm for the bottom of the trap. C. Half a circle (10-cm 
outside diameter, 9.53-cm inside diameter) of clear extruded acrylic tube, 
cemented to the top and bottom Plexiglas plates. D. Hole (12.7-cm) in the center 
of bottom Plexiglas sheet. E. Entry slot (2-mm width) F. Stainless steel collection 
pan, systemically drilled with holes (0.63-cm diameter), then covered with mesh 
(500-µm) and attached to bottom Plexiglas plate with pony spring clamp (1.9-
cm) or binder clips (1.9-cm). G. Cinder block anchor (9.1-kg). H. Hard shell buoy. 
I. Vinyl coated, galvanized cable (0.32-cm thick, 30.48-cm length) attached to 
eyebolts (0.64-cm) and meeting at nickel plated, single ended snap hook. J. LED 
light source used in 2015. K. Photochemical light source used in 2014 and 2015.
............................................................................................................................... 96 

Figure 24. Schematic of the slednet and sounding weight attachment used in sampling 
ichthyoplankton in the Minnesota River during the 2014 and 2015 field seasons. 
A. Drift net (30-cm tall, 46-cm wide and 1.0-m long, 500-µm mesh). B. Dolphin 
bucket (1000-ml with 504-µm stainless steel mesh). C. Vertical PVC supports 
(3.81-cm diameter, 30-cm length). D. Threaded rod (1.27-cm thick, 50-cm long) 
horizontal supports. E. Horizontal PVC supports (3.81-cm diameter, 140-cm 
length). F. Steel rings (3.81-cm) secured to the PVC frame with U clamps (3.81-
cm). G. Vinyl coated, galvanized cable connecting sounding weight system to the 
cod end steel ring. H. Sounding weight attachment attached to F with snap hook 
carabiners (5-cm). I. Vinyl coated, galvanized cable lead, secured to D by nylock 
nuts (1.27-cm) and flat washer (1.27-cm) meeting at and attaching to a steel ring 
for towing. J. Carbon steel tubing (1.3-cm diameter, 55-cm length) K. Sounding 
weight (6.8-kg) bolted to J. L. Sounding weight (13.6-kg) added during high flows. 
M. Vinyl coated, galvanized cable directly attached to the sounding height 
hanger bars and using snap hook carabiners (5-cm) to the mouth end F’s. N. 
Vinyl coated, galvanized cable directly attached to J and using a hook carabiner 
(5-cm) to the F attached to I. ................................................................................ 97 
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Figure 25. Study reaches from the 2014 and 2015 sampling season on the Minnesota 

River. (A) Generalized distribution of sampling transects within a reach. (B) 
Placement of sampling gears within a single transect. The star represents a light 
trap, the diamond represents the benthic trawl and line represents the distance 
of a surface trawl. During the 2014 sampling year only the LT glow-stick and SN 
surface were used. While in 2015 the light trap light source was either a glow-
stick or LED and the slednet method could have been surface or benthic. ....... 100 

Figure 26. Daily mean flow (converted to m3/s from ft3/s values) for the Minnesota River 
gauging stations near Jordan, MN (USGS 05330000) ; (black line) and near 
Morton, MN (USGS 0533000) ; (grey line) during the (top) 2014 sampling season 
and (bottom) 2015 sampling season. Discrete sampling events throughout each 
year are represented by grey squares and hydrologic periods denoted by lines 
extending the entire period, with respective ranking on top. ........................... 103 

Figure 27. Total number of larvae  captured within the Minnesota River in (bottom) 
2014 and (top) 2015 using the benthic slednet, light trap glow stick, light trap 
LED and surface slednet in relation to discharge (converted to m3/s from ft3/s 
values) from USGS  gauging station (USGS 05330000) near Jordan, MN. .......... 117 

Figure 28. Total number of genera  captured within the Minnesota River in (bottom) 
2014 and (top) 2015 using the benthic slednet, light trap (LT) glow stick, LT LED 
and surface slednet in relation to discharge (converted to m3/s from ft3/s values) 
from USGS  gauging station (USGS 05330000) near Jordan, MN. ...................... 118 

Figure 29. Genera accumulation curves for the benthic slednet, light trap glow-stick and 
surface slednet in the Minnesota River during 2014 to 2015 at the Franklin, 
Henderson, New Ulm and Savage sampling locations. The polygon surrounding 
each accumulation curve represents the confidence interval associated with that 
curve.................................................................................................................... 120 

Figure 30. Non-metric multidimensional scaling of ichthyoplankton communities 
captured with benthic slednet, light trap glow stick, light trap LED, and surface 
slednet using mean number of larval per genera by sampling location (Franklin, 
Henderson, New Ulm, and Savage) and gear type during the 2014 and 2015 
sampling season in the Minnesota River. Hulls around each gear type encircle all 
taxa captured with that gear in. The numbers represent genera with 1: Amia 
calva, 2: Aplodinotus grunniens, 3: Carpiodes spp., 4: Catostomus spp., 5: 
Cyprinus sp. 6: Cyprinella sp. 7: Dorosoma sp. 8: Etheostoma spp., 9: 
Hybognathus sp., 10: Ictiobus spp. 11: Lepomis spp., 12: Moxostoma spp. 13: 
Notropis spp., 14: Percidae sp. 15: Pimephales spp. 16: Pomoxis spp., 17: Sander 
sp., 18: Scaphirhynchus sp. ................................................................................. 123 
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Figure 31. Mean number (number/trap night) of larvae and genera capture by the light 

trap glow stick and LED among months and hydrologic periods during the 2014 
and 2015 sampling seasons on the Minnesota River. No significant differences 
were found between light source type with in periods and months or among 
periods and months within a light source. ......................................................... 127 

Figure 32. Density (number/100m3) of larval fishes and genera among sampling months 
and hydrologic periods [first ascending limb (1), second ascending limb(2), major 
descending limb (3), steady state (4)] during the 2014 and 2015 sampling 
seasons on the Minnesota River with either the benthic or surface slednet. 
Whiskers extend to the extremes of the data and lines represent the median. 
Letters denote significant difference based on Kruskal-Wallis and Dunn’s post-
hoc test. No letter or the same letter signifies no significant difference among 
months and periods or between gear within one month and hydrologic period.
............................................................................................................................. 128 

Figure 33. Coefficient of variations during 2014 and 2015 sampling of the Minnesota 
River cumulatively among all four locations (Franklin, Henderson, New Ulm, 
Savage) for (A) abundance and densities of larvae and (B) genera among months 
and periods within a single gear among periods [first ascending limb (1), second 
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Introduction 

The Minnesota River originates at Big Stone Lake in the prairie region of 

Minnesota on the South Dakota border and just south of the Laurentian Divide at the 

Traverse Gap portage (MN DNR 2013). The Minnesota River then flows through some of 

the richest agricultural land in Minnesota (possibly the world) and is responsible for 

draining 43,771 km2 or nearly 20% of the state (Musser et al. 2009). Like most large 

Midwest rivers, however, human activities and climate change have altered Minnesota 

River functionality (Nelson 2015).  

Several dams in the upper reach of the Minnesota River create lentic conditions 

from river kilometer (RKM) 529.3 to RKM 414.7 at the Granite Falls Dam (MN DNR 

2013). Within the Minnesota River Basin, approximately 79% of the land has 

predominantly been converted from prairie, wetland, and forest to agricultural row 

cropping (Figure 1). The Minnesota Pollution Control Agency (MPCA 2007) noted that 

the lower river segments from RKM 23.7 to RKM 0 have been channelized for navigation 

to facilitate barge traffic from the Mississippi River.  

The Minnesota River can be divided into three relatively distinct regions: 

impounded, free flowing, and channelized. Impounded segments of the Minnesota River 

are used to manage floodwater levels, but also provide important wildlife management 
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areas and recreational opportunities (Musser et al. 2009). However, dams often cause 

losses in fish species richness, and prevent upstream migrations and recolonization of  
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Figure 1. Landuse in the Minnesota River Basin within the state of Minnesota prior to 
European settlement (MN Geocommons) and in 2011 (National Land Cover Database). 
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fishes (Katano et al. 2006). Permanent vegetation removal across the landscape has 

reduced nutrient filtration and water retention capacity, resulting in degraded runoff 

that can alter instream habitat and catalyze biodiversity losses (Lepers et al. 2005). In 

addition, channelization causes significant losses in river habitat (Brooker 1981) and has 

been shown to reduce species richness and diversity (Oscoz et al. 2005).  

To complicate the challenges already facing the Minnesota River, a naturalized 

population of invasive Common Carp Cyprinus carpio is present. Other invasive species, 

such as Bighead Carp Hypophthalmichthys nobilis, Silver Carp H. molitrix, and Zebra 

Mussels Dreissena polymorpha are in close proximity and have the potential to colonize 

the Minnesota River (MN DNR 2013). Invasive species are prolific and have the ability to 

rapidly alter communities (Sakai et al. 2001) and fundamentally modify ecological 

processes (Mack et al. 2000).  

Tremendous resources have been directed to address some of the major 

biological stressors in the Minnesota River Basin. From 1992 to 2002, US$1.2 billion 

were spent implementing land conservation measures, including 4,135 easements 

encompassing 61,617 hectares of the watershed (Sigford 2002). Easements are critical 

components of sediment and nutrient loading reduction plans and improve wildlife 

habitat and flood attenuation on private lands. Conservation effort within the 

Minnesota River watershed has resulted in decreasing trends in total suspended solids, 
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total phosphorus and orthophosphorus concentrations, however, nitrite-nitrogen 

concentrations continue to increase (Johnson et al. 2009).  

In 2014, 271 km (50.3%) of 539 km of the Minnesota River were assessed and 

listed as impaired biologically (MPCA 2014). The remaining segments have not been 

monitored sufficiently to be listed as impaired or unimpaired and are therefore often 

simply referred to as the “unassessed” segments. According to the MPCA (2014), a 

biological impairment occurs when biota within that reach are not as diverse, or as 

numerous, as they should be, and the functional groups and numerical community 

composition are dominated by tolerant species typical of impaired reaches. Status 

designations are based on benthic macroinvertebrates and adult and juvenile fish index 

of biological integrity (IBI) surveys completed by the MPCA. 

Indices of biological integrity score the ability a particular system to support and 

maintain a balanced, integrated, and functionally organized community, comparable to 

that of a natural state (Frey 1975). Strength of an IBI lies in its ability to integrate 

information from the individual, population, community, zoogeographic and ecosystem 

levels into a single ecology-based and relevant score (Karr et al. 1986). Investigating 

other lower trophic levels (e.g., zooplankton, limnetic macroinvertebrates, and 

ichthyoplankton), between reaches can determine if they align with that of the higher 

trophic levels investigated by the MPCA. 
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 The zooplanktonic community (i.e., crustaceous zooplankton, rotifer, larval 

fishes, and limnetic macroinvertebrates) provide critical energy flow pathways from 

microbial to upper trophic levels (Naiman et al. 1998; Fisher et al. 2001; Gajbhiye 2002). 

Larval fishes (i.e., ichthyoplankton) are also important vectors for energy transfer 

between invertebrates and higher trophic level piscivores. However, larval fish early life 

history is a critical survival period, and mortality events impact recruitment and 

frequently determine year-class strength (Chambers and Trippel 1997; Brander et al. 

2001). Fisher et al. (2001) demonstrated the critical energy transfer mechanisms 

facilitated by the zooplanktonic community and the challenges of securing these data 

among Missouri River backwaters. Securing much needed baseline data on 

zooplanktonic community dynamics in the Minnesota River has been difficult, but is 

needed to greatly improve our capacity to assess management efforts and impacts of 

potential invasive species naturalization.  

Data credibility requires that appropriate and adequate sampling be conducted, 

and therefore sampling gears and strategies must be trusted and reliable. Sampling 

zooplanktonic communities, particularly larval fishes, is often met with limited success, 

and when combined with the challenges of sampling large river systems, effective 

sampling is tenuous (Johnson et al. 1995). Thus, gear evaluations are needed to provide 

researchers with additional information to formulate the most effective monitoring plan 

by better understanding the biases and potential of each gear type (Brown et al. 2012).  
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Objectives 

This study aims to 

1) Compare zooplanktonic communities in an impaired and an unassessed reach of 
the Minnesota River (Chapter 1) 
 

2) evaluate ichthyoplankton sampling gears in the Minnesota River (Chapter 2) and, 
 

3) examine operational costs of the ichthyoplankton sampling gears for use in a 
long-term Minnesota River monitoring program (Chapter 3). 
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Chapter 1: Evaluation of Zooplanktonic Communities of an Impaired and 
an Unassessed Reach of a Midwest river, the Minnesota River 

Abstract 

Ecological functions and biotic communities of large rivers have been 

fundamentally altered by anthropogenic modification and climate change. The 

Minnesota Pollution Control Agency assessed 271 of the 539 km of the Minnesota River 

with fish and benthic macroinvertebrate indices of biotic integrity, and as of 2014, 

deemed all 271 km as impaired biologically. Comparing zooplanktonic communities in 

impaired and unassessed reaches could indicate if the unassessed stretches have similar 

biotic composition and lend insight into system-wide conditions. Minnesota River 

zooplanktonic community samples were collected from May to August 2014 and April to 

August 2015. Analyses of similarities indicated that community compositions were 

relatively more similar than different for crustaceous zooplankton (R = 0.02), 

ichthyoplankton sampled with slednets (R = 0.03), macroinvertebrates from light traps 

(R = 0.00) and slednets (R = -0.04), and rotifers (R = -0.05) between the impaired and 

unassessed reaches. The limited biotic richness and low abundances observed in both 

reaches could be the result of sampling gear limitations, but may also suggest a system-

level impairment. However, zooplanktonic community densities and richness were 

noted to vary with hydrologic conditions, suggesting that hydrology may at least 

partially be driving Minnesota River zooplanktonic community dynamics. Therefore, 

management efforts to restore and maintain natural hydrologic regimes and 

subsequent floodplain connections may be important to improving biological conditions.  
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Introduction 

Nearly all rivers in the upper Midwest have been degraded to some extent by a 

wide variety of human activities, including channelization for navigation or maximizing 

tillable land, establishment of dams for flood control and hydropower development, 

land use changes within upstream watersheds, and wastewater disposal (Nilsson et al. 

2005). Channelizing rivers, for example, reduces flooding, degrades the lateral 

connection to the flood plain (Brookes 1981), and starves systems of lateral nutrient 

cycling that has direct and indirect roles in biotic functioning (Junk et al. 1989). Dams 

regulate flow, too often reduce hydrologic stage variability, and increase hydrograph 

predictability (Morris et al. 1968). As a result, alternations in flow quantity and timing 

shift away from natural hydrographs that are critical components in water supply, water 

quality, and the ecological function of a riverine system (Poff et al. 1997). Land 

conversion from forest, perennial grassland, and wetlands has also increased peak 

runoff rates, as well as sediment and pollutant loading to surface water resources (Blann 

et al. 2009). Altering the natural loading, transport, utilization and storage of organic 

matter in which biota are thought to adjust in a predictable fashion too causing changes 

to biotic assemblage patterns (Vannote et al. 1980).  

The Minnesota River has been substantially altered by human activities (Musser 

et al. 2009). Four dams currently impound upstream portions of the Minnesota River 

and approximately 79% of pre-settlement permanent vegetation and wetlands have 

been converted to row-crop agriculture. The Minnesota River has also been impacted by 
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point and non-point source pollutants, streambank erosion, tile drainage, 

commercial/industrial processes, and wastewater treatment plants effluents (Mulla 

1998). Physical degradation of river systems is problematic, however, challenges in 

some waterways have also been exacerbated by the establishment of invasive species.  

One such invasive species, the Common Carp Cyprinus carpio, is naturalized 

within the Minnesota River Basin and more invasive species are threatening the system 

including Bighead Carp Hypophthalmichthys nobilis, Silver Carp H. molitrix, and Zebra 

Mussels Dreissena polymorpha (MN DNR 2013). Invasive species often lack natural 

enemies, have broad environmental tolerance, and exhibit high reproductive output 

(Kulhanek et al. 2011) that facilitate exploitation of open niches. Naturalizing invasive 

species populations can rapidly proliferate and cause abrupt changes to the biotic 

community (Sakai et al. 2001) that can severely damage biodiversity (Manchester and 

Bullock 2000).  

Efforts have been taken to regulate, evaluate, and restore riverine degradation 

caused by channelization, dams, invasive species, land use, and wastewater transport. In 

1973, the Clean Water Act required all states to assess status and impairment levels of 

their surface waters (Federal Water Pollution Control Act of 1973). The 1996 National 

Invasive Species Act also provided funding for prevention and control research, regional 

management organization, and education and technical assistance programs aimed to 

prevent invasive species from entering inland waters (National Invasive Species Act 

1996). In Minnesota, passage of the Clean Water Legacy Act in 2006 secured funding for 
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programs geared to protect, enhance, and restore water quality in lakes, rivers, and 

streams and to protect groundwater from degradation (Clean Water Legacy Act 2015).  

Tremendous resources have been dedicated to addressing the major stressors to 

the Minnesota River Basin to meet objectives of the legislation noted above. From 1992 

to 2002 alone, $1.2 billion were spent implementing land conservation measures in the 

Minnesota River watershed, including 4,135 easements to protect sensitive lands 

(Sigford 2002). Properly managed easements help improve water quality by reducing 

soil erosion and pollutant loading, but these lands also improve wildlife habitat and 

increase flood attenuation capacity on private property. Minnesota River water quality 

improvement management efforts are resulting in decreasing trends in total suspended 

solids, total phosphorus, and orthophosphorus concentrations, however, nitrite-

nitrogen concentrations continue to increase (Johnson et al. 2009). Water quality is 

important for biological integrity, but ecologists have also developed various indices for 

evaluating overall system quality using biotic communities as well (Sparks 1995).   

An index of biological integrity (IBI) is a common bioassessment/biomonitoring 

technique that provides a framework for translating biological community data into 

terms of the system’s ability to support and maintain a balanced, integrated, and 

functionally organized community (Frey 1975; Sparks 1995). An IBI evaluates community 

characteristics [e.g., community composition, habitat, life history, reproductive 

strategies, organisms tolerance, trophic catch per unit effort (CPUE), individual  taxa 

percentages, and taxa richness] that relate community characteristics to the biotic 
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integrity and environmental quality of that stream or river (Karr 1981). Biotic integrity is 

the umbrella concept that encompasses the needs of well-functioning systems 

(Fischman 2004). The strength of an IBI being its ability to integrate information from 

individual, population, community, zoogeographic and ecosystem levels into a single 

ecologically based and relevant score (Karr et al. 1986).  

Several IBIs for rivers and streams have been developed and differ based on the 

major taxa groups measured, including fish (Karr 1981), macroinvertebrates (Hilsenhoff 

1988), phytoplankton (Williams et al. 2009) and zooplankton (Kane et al. 2009). The 

Minnesota Pollution Control Agency (MPCA) has also developed a fish and benthic 

macroinvertebrates IBI with metrics developed and calibrated specifically to the 

regionalized structure and function of Minnesota River communities. Bouchard (2014) 

noted that metrics were systematically tested for inclusion based on responsiveness to 

disturbance (i.e., ability to detect disturbance), strong signal (i.e., variance among sites), 

and low noise level (i.e., variance within sites). The fish IBI metrics determine biological 

impairment utilizing twelve metrics that address fish based taxa composition, habitats, 

life histories, reproductive strategies, tolerance levels, and trophic statuses (Table 1). 

The benthic macroinvertebrate IBI evaluates eight metrics that investigate taxa 

composition, taxa richness, tolerance levels and trophic status (Table 1). 
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Table 1. Index of biotic integrity metrics used by the Minnesota Pollution Control 
Agency to calculate a fish based IBI and macroinvertebrate IBI for southern rivers, 
such as the Minnesota River. Response indicates the positive or negative relationship 
between the metric score and the index of biotic integrity score. 

Metric type Metric description  Category Response  

Fishes    

Individual percentage Percent Insectivorous individuals (excludes tolerant 
species) 

Trophic Positive 

Richness Simple lithophilic taxa Reproductive Positive 

Individual percentage Percent generalist feeder individuals Trophic Negative 

Taxon percentage Percent very tolerant taxa Tolerance Negative 

Taxon percentage Percent serial spawner taxa Reproductive Negative 

Individual percentage Percent tolerant individuals Tolerance Negative 

Individual percentage Percent short-lived individuals Life history Negative 

Taxon percentage Percent sensitive taxa Tolerance Positive 

Taxon percentage Percent detritivorous taxa Trophic Negative 

Richness Piscivorous taxa Trophic Positive 

Individual percentage Combined relative abundance of the two most 
abundant taxa 

Composition Negative 

Individual percentage Percent of individuals with deformities, eroded fins, 
lesions, tumors 

Composition Negative 

Macroinvertebrates    

Taxon percentage Relative abundance of dominant five taxa in subsample 
(Chironomid genera treated individually) 

Composition Increase 

Individual percentage Measure of pollution based on tolerance values 
assigned to each individual taxon within Minnesota 

Tolerance Increase 

Taxon percentage Taxa richness of macroinvertebrates with tolerance 
values less than or equal to 4 

Tolerance Decrease 

Richness Taxa richness of Odonata Richness Decrease 

Taxon percentage Taxa richness of predators Richness Decrease 

Taxon percentage Total taxa richness of macroinvertebrates Richness Decrease 

Individual Percentage Relative abundance of non-Hydropsychid Trichoptera 
individuals in subsample 

Composition Decrease 

Individual percentage Relative abundance of macroinvertebrate individuals in 
the subsample with tolerance values equal to or greater 
than 8 

Tolerance Increase 
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Values for each IBI metric are compared to a biocriteria threshold representing 

biological conditions, structures, and functions of aquatic communities from a reference 

stream that best represents a comparable natural system (Bouchard 2014). If the IBI 

score exceeds that biocriteria, environmental conditions are deemed sufficient to 

support a full biological community. However, IBI scores that fail to reach biocriteria 

thresholds are assumed to have insufficient environmental conditions to enable a full 

biological community, and are thus categorized as impaired (Anderson et al. 2012). 

Using the approach described above, 271 km of the 539 km of the Minnesota River were 

assessed and deemed biologically impaired (Figure 2; MPCA 2014). 

Use of IBI scores has been criticized for failing to be sensitive enough to 

adequately identify impairments, a perceived lack of ecological meaning, predictability, 

and diagnostic power, and applicability in water resources regulation (Sutter 1993). 

Investigating other taxa groups (e.g., limnetic macroinvertebrates and crustaceous 

zooplankton) and life stages (e.g., larval fishes) could reveal if this impairment status is 

consistent through the lower trophic levels of the Minnesota River. However, only one 

study was identified that previously investigated the zooplanktonic community in the 

Minnesota River, and impairment status was not the primary focus (Nickel 2014). 

At the community level, zooplankton abundance provides central information on 

trophic structure and dynamics (Kelso et al. 2012). Zooplankters are integral 

components of aquatic food webs, severing as top-down, and bottom-up regulators 

(Jeppesen et al. 2011). Plankton are, however, sensitive to environmental change  
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Figure 2. Minnesota River reaches listed as biologically impaired (light gray) by the 
Minnesota Pollution Control Agency in 2014. Impairment determinations were based 
on fish and macroinvertebrate index of biotic integrity scores.  
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(Schindler 1987) and because the biota are important energy resources for fish and 

other organisms, ripple effects across the food web can occur (Medeiros and Arthington 

2008). Zooplanktonic community likely serves as a critical food source during the 

development of ichthyoplankton (Helfman et al. 1997). 

The ichthyoplanktonic portion of fishes life history plays a vital role in the overall 

abundance of juvenile and adult populations, growth, mortality, and recruitment (Hjort 

1914). The icthyoplanktonic stages are a sensitive and vulnerable life stage, because 

small size and thin skin leave the larval fish with minimal recourse in the face of rapidly 

changing conditions (Blaxter 1974). Therefore, survival during the ichthyoplanktonic 

stage is pivotal for the overall recruitment and size of the adult population (Snyder 

1985). However, ichthyoplankton abundance is affected by various environmental and 

community interaction factors, such as sudden shifts in temperature, availability of food 

resources, and limnetic macroinvertebrates predation (Bailey 1984; Kelso et al. 2012).  

Poulton et al. (1995) noted that limnetic macroinvertebrates should play a 

significant role in any bioassessment for evaluating the overall status of a water 

resource. Some limnetic macroinvertebrates contribute to nutrient cycling by breaking 

down course organic materials into fine particulate matter, or even dissolved organic 

matter (Cummins 1974). As consumers in the lower and intermediate trophic levels, 

limnetic macroinvertebrates can serve as important conduits propagating effects both 

up and down trophic levels (Wallace and Webster 1996; Fisher et al. 2001).  
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Evaluations of zooplanktonic community in the Minnesota River could provide 

information on lower trophic levels that would help facilitate biological impairment 

evaluations. Securing a more comprehensive understanding of the variability within 

trophic levels in relation to impairment status and the importance of a natural 

hydrologic regime is an important data need. In addition, there is an increasing need for 

baseline information to gauge the effects of potential invasive species naturalization. 

Therefore, the objective of this chapter is to 

 contrast zooplanktonic composition between a biologically impaired and an 
unassessed reach of the Minnesota River.  

It was hypothesized that 

 the biologically impaired reach of the Minnesota River will have less diverse and 
higher densities of tolerant crustaceous zooplankton, limnetic 
macroinvertebrates and larval fish, due to presumed degraded ecological 
functionality of that reach. 
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Methods  

Data collection 

Zooplanktonic communities were sampled approximately biweekly in the 

Minnesota River from 15 May to 15 August 2014 and 23 April to 15 August 2015 (Figure 

3). Sampling did not occur from 11 June to 4 July 2014 due to high water and from 8 July 

to 3 August 2015.  

Two portions of the Minnesota River were sampled, including one stretch that 

was IBI-assessed and categorized as biologically impaired (hereinafter referred to as 

impaired). The other stretch was selected from the river segments that were not 

assessed with IBIs (hereinafter referred to as unassessed). To accommodate more 

efficient use of resources, site selection was influenced by proximity to MN DNR 

intensive study sites on the Minnesota River each year. During 2014, sample reaches 

were near Franklin, RKM 298 and Savage, RKM 24 (Figure 4). While in 2015, sample 

reaches were near Henderson, RKM 105 and New Ulm, RKM 234 (Figure 4). Ten 

sampling transects spaced at 200-m intervals were arranged systematically on the left 

downstream bank. Transects spanned the entire channel width diagonally upstream to 

the right downstream bank (Figure 4).  

Crustaceous Zooplankton and Rotifers  

Near the bank at the downstream end of each transect (N=10), crustaceous 

zooplankton and rotifers were sampled using a Wisconsin Style vertical tow net (13-cm 

diameter mouth, with a 200-ml dolphin bucket with 80-μm mesh). Contents from the 

dolphin bucket were rinsed into a 250-ml sample jar and immediately preserved in 90%  
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Figure 3. Daily mean flow (converted to m3/s from ft3/s values) for the Minnesota 
River gauging stations near Jordan, MN (USGS 05330000) ; (black line) and near 
Morton, MN (USGS 0533000) ; (grey line) during the (top) 2014 sampling season and 
(bottom) 2015 sampling season. Discrete sampling events throughout each year are 
represented by grey squares. 
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Figure 4. Minnesota River reaches sampled in 2014 (black dots) and 2015 
(white dots) in the biologically impaired (light gray segments) unassessed 
reach (dark grey) of the Minnesota River by the Minnesota Pollution 
Control. (A) Generalized distribution of sampling transects within a 
reach. (B) Placement of sampling gears within a single transect. Star 
represents a light trap and a Wisconsin net, the diamond represents the 
benthic trawl and line represents the distance of a surface trawl. During 
the 2014 sampling year only the light trap glow-stick, surface slednet and 
Wisconsin net were used. While in 2015 the light trap light source was 
either a glow-stick or LED and the slednet could have been a surface or 
benthic and Wisconsin net were used.  
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ethyl alcohol (Kelso et al. 2012). Samples were then transported back to the laboratory 

and filtered through an 80-μm mesh sieve and rinsed into a 50-ml beaker with water. 

Samples were then transferred into a Wildco Ward acrylic counting wheel (model 

number 3-1810-E80) with a disposable 7.5-ml transfer pipet.  

After transfer into counting wheel, zooplankton and rotifers were identified, 

enumerated and measured under a Olympus SZ61 dissecting microscope with the aid of 

the computerized Zooplankton Sonar© software program provided by the MN DNR. 

Zooplankton identification was aided with keys by Balcer et al. (1984), Haney et al. 

(2013), LaMay et al. (2013), and Smith (2001). Adult copepods were identified to 

suborder and immature copepods counted as nauplii or copepodites. Cladocerans and 

rotifers were identified to genus, with the exception of Chydoridae, were identified to 

family. 

Macroinvertebrates and ichthyoplankton 

At the downstream end of each transect, near the bank and directly below the 

water surface in water ≥ 1-m in depth, a quatrefoil LT (41.4-cm high x 21.5-cm wide with 

2-mm slot openings; Floyd et al. 1984) was placed targeting limnetic macroinvertebrates 

(hereinafter macroinvertebrates) and ichthyoplankton. Light traps were set between 

0800 and 1100 h and retrieved about 24 h later. In 2014, a single, 12-h photochemical 

light stick was used in each LT. After reviewing data from the first year of sampling, 

modifications were made to include a brighter light source in an attempt to better 

penetrate turbid conditions in the 2015 field season. In 2015, either one 12-h 
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photochemical light stick or a 120x43-mm LED light with 2 green LED lamps and a 

polycarbonate resin body were randomly selected as the light source in each LT.  

A slednet (SN; 30-cm tall, 46-cm wide, 1-m long with a 1,000-ml dolphin bucket 

with 500-μm mesh) designed by Nickel (2014) was used to sample at each transect 

during both years of the study. A General Oceanics mechanical flow meter (Model 

number 2030R) was suspended in the mouth of the net and used to estimate volume of 

water sampled in m3. In 2014, surface SN samples were collected from the upper 0.5 m 

of the water column at each transect during each sample period. Surface SNs were 

towed across the entire length of each transect in an upstream manner parallel to the 

side of the boat a speed ∼1.6 km/h greater than the discharge of the river.   

In 2015, a detachable sounding weight system (27.2-kg) was added to the SN so 

the gear could be used to sample 0.5 m from the bottom of the river. The weighted 

benthic SN samples could be collected and the weight easily detached allowing for quick 

transition to surface SN sample collections. During each sampling period in 2015, one 

surface SN or one benthic SN tow was completed at each transect. Surface and benthic 

SN samples were randomly selected among the 10 transects (N=5 for each SN type each 

sample date). Surface SN collections were completed using the same methods as 2014. 

For transects sampled with the benthic SN, the boat was anchored in the thalweg of the 

transect, the sounding weight apparatus was attached, and the SN was manually 

deployed from the side of the boat. The benthic SN was fished in the thalweg drift for 5 
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min to passively sample ichthyoplankton and macroinvertebrates 0.5 m from the 

bottom. After five minutes had elapsed, the benthic SN was manually pulled back to the 

surface.   

Contents collected from LT and SN gears during both years were fixed and 

preserved using methodology established by the United States Geological Survey (USGS: 

J. Larson, United States Geological Services Upper Midwest Environmental Sciences 

Center, personal communication) and the MN DNR (J. Waters, Minnesota Department 

of Natural Resources, personal communication). The protocol included immediate 

fixation of captured biota in 10% buffered formalin. After 24 to 48 h, sample contents 

were filtered through a 53-µm sieve, rinsed back into the same sample bottle, and 

preserved with 90% ethyl alcohol. Macroinvertebrate and ichthyoplankton specimens 

were identified using an Olympus SZ61 dissecting microscope. Macroinvertebrates were 

identified, typically to order, with keys by Bouchard (2004) and Merritt et al. (2008). 

Ichthyoplankton were identified, usually to genus, using the keys by Auer (1982), and 

Fuiman et al. (1983) and Wallus and Simon (1990, 1994, 2003, 2005, 2006, and 2008).  

Ichthyoplankton from 2014, were sent to Thomas Simon at Indiana State 

University for verification and to provide case specimens to aid in the 2015 

identifications. Due to aggregation of samples to meet fiscal constraints, percent 

agreement between expert identification and my identifications could not be 

determined. However, families and genera were represented in both the professional 

and my identifications in similar abundances, expect for Hiodontidae genera 
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identifications. My Hiodontidae specimens were reanalyzed and adjustments made. The 

2015 samples were not expert-verified due to time and logistical constantans.  

Analyses 

The two different light sources for the LT samples and the two SN sampling 

methods were analyzed collectively as LT and SN samples. Precedent for combining 

samples comes from Pritt et al. (2015) that combined their surface and benthic net 

samples when they described the ichthyoplankton community in the Detroit and St. 

Clair rivers. Additionally, Radwell and Camp (2009) found LED light sources performed as 

well as a disposable photochemical light stick for capturing aquatic insects and was a 

suitable alternative.  

Data were aggregated based on the prevailing hydrologic condition at the time 

of sampling. These aggregations were based on evidence presented by Nickel (2014) 

that community structure of the biota varied based on the hydrologic stage being 

sampled. Historically, the Minnesota River has had two major peaks flows, one after the 

snowmelt and one during summer rain events (Figure 5). Therefore, data were 

aggregated based on their relationship to the first ascending limb, the second ascending 

limb, major descending limb and the consequent steady state (Figure 5 and Table 2).  

Crustaceous zooplankton and rotifer densities were reported as number/L for all 

taxa captured. Macroinvertebrate and ichthyoplankton catches by LT were summarized 

as number/trap night for each taxon. Macroinvertebrate and ichthyoplankton captured 

in SNs were recorded as number/100m3 of water.  
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Figure 5. Daily mean flow (converted ft3/sec to m3/sec values) for the Minnesota 
River gauging stations (USGS 05325000) in Mankato, MN. (A) Historical daily mean 
flow from 1915-1935, 1935- 1955 and 1991-2015 of the Minnesota River. IA indicates 
typical location of first ascending limb, SA indicates typical location of secondary rise 
when overbank flooding occurs, D indicates the typical major descend and S 
indicates typical steady state. (B) 2014 and 2015 hydrographs with indicating the 
four periods [first ascending limb (period one), second ascending limb (period two), 
major descending limb (period three), steady state (period four)] when zooplankton, 
macroinvertebrates, and ichthyoplankton occurred during those two years.  
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 Table 2. Daily mean flow (m3/sec), hydrograph direction, and water temperature 
(C°) for the sampling reaches in Minnesota River in all four periods [first ascending 
limb (period one), second ascending limb (period two), major descending limb 
(period three), steady state (period four)] during 2014 and 2015. Discharge and flow 
direction for the impaired reach collected from USGS gauging station (05330000) 
near Jordan, MN and the unassessed reach from USGS gauging station 05316580 
near Morton, MN. Water temperature collected in the field at each reach during 
sampling. 

Period Reach Year 
Discharge 
(m3/s) 

Flow 
direction 

Water 
Temperature (C°) 

1      

 Impaired 2014 1130 Falling 13.8 
 Unassessed 2014 4710 Falling 13.0 
 Impaired 2015 2760-2360 Falling 13.3-15.6 
 Unassessed 2015 1230-5350 Rising 8.3-13.7 

2      

 Impaired 2014 15900 Rising 20.0 
 Unassessed 2014 3720 Rising 17.8 
 Impaired 2015 8320-8900 Rising 17.8-23.8 
 Unassessed 2015 4300-5060 Rising 20.5-22.2 

3      

 Impaired 2014 9120 Falling 23.7 
 Unassessed 2014 7620 Falling 23.6 
 Impaired 2015 6300 Falling 26.6 
 Unassessed 2015 3200 Falling 23.8 

4      

 Impaired 2014 5250-2310 Falling 23.5-23.8 
 Unassessed 2014 3610-3040 Falling 23.2-24.3 
 Impaired 2015 4100 Falling 25.0 
 Unassessed 2015 950 Falling 25.4 

  



27 
 

Qualitatively, data for each taxa group (e.g., crustaceous zooplankton, rotifers, 

macroinvertebrates, and ichthyoplankton) were assessed using a non-metric 

multidimensional scaling’s (NMDS; Kruskal 1964). To examine community compositional 

similarities between reaches, NMDS evaluations were completed for each taxa group 

within each gear type for all periods combined, for each year individually and for both 

years combined. The NMDS used the Bray-Curtis dissimilarities, a technique considered 

robust for ecological analysis (Chirhart 2014). The NMDS scaling “maps” results in such a 

way that the rank order between reaches represents the rank order of the 

similarities/dissimilarities between reaches (Morris and Ball 2006). This method allowed 

for the relationships between reach type and taxa community present to be evaluated. 

Dimensionalities of plots were determined when plots of final stress versus number of 

dimensions showed that a greater number of axes resulted in small reductions in stress. 

The NMDS were performed using the program R software 3.1.2 and the vegan package.  

Additionally, an analysis of similarities (ANOSIM) was performed for each taxa 

group by the Wisconsin net, LT and SN in each year and both years cumulatively, to 

compare communities between unassessed and impaired reach. This non-parametric 

randomization procedure determines if significant community differences exist between 

groups (in this case reaches) as samples within groups should be more similar in 

composition than samples from different groups (Clarke 1988). An R-statistic with a 

range of -1 to 1 and a P-value are calculated. With the R-statistic itself being useful for a 

comparative measure of the degree of separation (Clarke 1988). An R-statistic close to 1 



28 
 
suggest dissimilarity among groups, while an R-statistic close to 0 suggest even 

distribution.  

Data pairs (unassessed and impaired reaches) within each period and each gear 

type (e.g., SN, LT, Wisconsin net), for each taxa group, were tested for normality using a 

Shapiro-Wilk test. If data were not normally distributed, data were log-transformed 

[log10 (n+1)] in an attempt to conform to normality and reduce heterogeneity variance. 

Transformed data were again tested for normality. If normality assumptions were met, 

taxa densities of each zooplanktonic taxa group between reaches and within each gear 

type were analyzed with a two-way analysis of variance (ANOVA) with reach type and 

period as the main factors. If significant interactions were detected between periods 

and reach type, further analyses between reaches were completed within each period 

and gear. If the data sets could not reach the normality assumptions, analyses between 

reaches within gear type were compared using Mann Whitney U tests to compare two 

groups (t-test procedure, SigmaPlot 11.0). For all comparisons, a P <0.05 indicated 

statistical significance. 

Results  

Crustaceous zooplankton 

In total, 1,147 crustaceous zooplankters from 371,887 l of water were captured, 

representing thirteen different taxa grouping in the impaired and unassessed reaches 

over the two years. During 2014, 739 crustaceous zooplankters were captured with 503 

from the impaired reach and 202 from the unassessed reach. Those zooplankters 

represented all thirteen taxa groupings in the unassessed and impaired reach. During 
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2015 however, fewer total crustaceous zooplankters were captured with 206 from the 

impaired reach and 236 from the unassessed reach, representing 11 taxa groupings in 

the unassessed and impaired reach. 

Total crustaceous zooplankton densities varied among hydrologic periods. 

Greatest crustaceous zooplankton densities were during period one (first ascending 

limb) and period three (major descending limb) in both reach types and in both years 

(Figure 6). The greatest densities of crustaceous zooplankton for were found in the 

impaired reach during period 1 of 2014 and in period 3 of 2014 for the unassessed 

reach. Decreases crustaceous zooplankton densities during periods two (second 

ascending limb) and four (steady state). Similar densities of crustaceous zooplankton 

occurred during periods two and four in both years and reach types (Figure 6).  

Moina sp. was the only crustaceous zooplankton taxa not found in the 

unassessed reach, but was found in the impaired reach. Numerically, only seven taxa 

groups represented more than 5% of the catch. Those taxa were Cyclopoida 

representing 38%, Ostracoda representing 14%, Copepoda nauplii representing 10%, 

Daphnia spp. representing 8%, and Chydoridae, Calanoida and Bosmina spp. each 

representing 7% (Figure 7).  

The NMDS plot displayed weak ties between reach type and zooplankton 

community present. The impaired and unassessed were on almost the exact same  
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Figure 7. Percent each taxa group represented in the total catch of zooplankton trawls 
in the Minnesota River during the 2014 and 2015 field seasons. Other classification 
comprised of taxa groups numerically making up  < 5% of the total catch represented 
by Moina sp., Pontoporeia sp., Sida crystalline, Simocephalus spp. and Diaphanosoma 
spp. N is the total number of individual zooplankters captured during that year for 
that particular reach and the percentages are the taxa groups that represented >50% 
of the community.  

65%

22%

75%

25%

6%

30%

4%

50%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

2014 2015 2014 2015

Impaired Unassesed

Bosmina sp. Calanoida Ceriodaphnia sp.

Chydoridae Cyclopoida Daphnia spp.

nauplii Ostracoda Other



32 
 
points on both the NMDS axis 1 and 2 for each year separately and both years combined 

(Figure 8). The 95% confidence ellipses nearly overlapped and encompassed the same 

area on the plot, indicating similar zooplankton communities between the impaired and 

unassessed reaches of the Minnesota River.  

Analysis of similarities results revealed no significant differences between 

communities sampled between the unassessed and impaired reaches for 2014 

(ANOSIM: R = 0.04; P = 0.33) and both years cumulatively (ANOSIM: R = 0.02, P =0.28). 

However, a significant difference was detected in 2015 between the impaired and 

unassessed reaches (ANOSIM: R = 0.18; P = 0.03), but the R-value was still close to 0. 

Due to similarities in community structure among years, analyses among periods 

included combined data from both years. 

Period one 

Zooplankton densities differed significantly in five of the 11 taxa groupings 

during period one between the impaired and unassessed reaches of the Minnesota 

River during 2014 and 2015. Differences were detected in Cyclopoida (U = 14, df = 2, P = 

0.01), Daphnia spp. (U = 19, df = 2, P = 0.02), Bosmina spp. (U = 23, df = 2, P = 0.04), 

Chydoridae (U = 19, df = 2, P = 0.02) and Diaphanosoma spp. (U = 18, df  = 2, P = 0.01). 

The unassessed reach had significantly greater mean densities per liter of Cyclopoida 

(1.11±0.44, [mean±SE]) and Bosmina spp. (0.07±0.03) compared to the impaired 

Cyclopoida (0.26±0.08) and Bosmina spp. (0.04±0.02; Table 3 ). While the impaired  
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Table 3. Mean density (number/liter) of zooplankton taxa sampled in the impaired 
(N=40) and unassessed (N=40) reaches of Minnesota River during period one (first 
ascending limb) of the 2014 and 2015 sampling. For each taxa grouping, the mean 
density, standard error (in parentheses), and statistical results are noted. Bold 
indicates a significant difference between reaches and an asterisk (*) indicates taxa 
group was sampled but in mean densities <0.01/liter.    

Taxa group Impaired Unassessed P-value 

Bosmina spp. 0.04(0.02) 0.07(0.03) 0.04 

Calanoida 0.03(0.01) 0.05(0.02) 0.10 

Ceriodaphnia spp. 0.06(0.03) 0.01(0.01) 0.59 

Chydoridae 0.03(0.01) 0.00(0.00)* 0.02 

Cyclopoida 0.26(0.08) 1.11(0.44) 0.01 

Daphnia spp. 0.08(0.02) 0.01(0.01) 0.02 

Diaphanosoma spp. 0.03(0.01) 0.00(0.00)* 0.01 

Nauplii 0.06(0.01) 0.09(0.04) 0.56 

Ostracoda 0.05(0.01) 0.09(0.03) 0.10 

Sida crystallina 0.00(0.00) 0.00(0.00)* 0.37 

Simocephalus spp. 0.00(0.00)* 0.00(0.00) 0.37 
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reach had significantly greater mean densities per liter of Daphnia spp. (0.08±0.02), 

Chydoridae (0.03±0.01) and Diaphanosoma spp. (0.03±0.01) compared to the 

unassessed Daphnia spp. (0.01±0.01), Chydoridae (0.00±0.00), and Diaphanosoma spp. 

(0.00±0.00); (Table 3 ). 

Period two 

Zooplankton densities differed significantly in three of the 11 taxa groups 

captured during period two between the impaired and unassessed reaches of the 

Minnesota River in 2014 and 2015. Significant differences were detected in the Daphnia 

spp. (U = 643, df = 2, P = 0.04), Chydoridae (U = 591, df = 2, P = 0.02), and Ostracoda (U = 

600, df = 2, P = 0.05). The impaired reach had significantly greater mean densities of 

Daphnia spp. (0.02±0.01) and Chydoridae (0.03±0.01) compared to the unassessed 

reach densities for the Daphnia spp. (0.00±0.00) and Chydoridae (0.01±0.01; Table 4). 

However, the unassessed reach had significantly greater densities of Ostracoda 

(0.08±0.01) compared to the Ostracoda densities (0.06±0.01) of the impaired reach 

(Table 4).  

Period three 

Crustaceous zooplankton densities were significantly different in five of the ten 

taxa groupings captured during period three between the impaired and unassessed 

reaches of the Minnesota River during 2014 and 2015. Significant differences were 

detected in the Bosmina spp. (U = 114, df = 2, P = 0.02),  Cyclopoida (U = 119, df = 2, P = 

0.05), Daphnia spp.(U = 95, df = 2, P = 0.01), Diaphanosoma spp. (U = 96, df = 2, P =  
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Table 4. Mean density (number/liter) of zooplankton taxa sampled in the impaired 
(N=40) and unassessed (N=40) reaches of Minnesota River during period two 
(second ascending limb) of the 2014 and 2015 sampling. For each taxa grouping, 
the mean density, standard error (in parentheses), and statistical results are noted. 
Bold indicates a significant difference between reaches and an asterisk (*) indicates 
taxa group was sampled but in mean densities <0.01/liter.    

Taxa group Impaired Unassessed P-value 

Bosmina spp 0.02(0.01) 0.01(0.01) 0.79 

Calanoida 0.01(0.01) 0.02(0.01) 0.91 

Ceriodaphnia spp. 0.00(0.00)* 0.00(0.00)* 0.19 

Chydoridae 0.03(0.01) 0.01(0.01) 0.02 

Cyclopoida 0.08(0.02) 0.13(0.03) 0.25 

Daphnia spp. 0.02(0.01) 0.00(0.00)* 0.04 

Diaphanosoma spp 0.00(0.00)* 0.00(0.00)* 0.11 

Nauplii 0.04(0.02) 0.04(0.01) 0.73 

Ostracoda 0.06(0.01) 0.08(0.01) 0.05 

Sida crystallina 0.00(0.00)* 0.00(0.00)* 0.58 

Simocephalus spp. 0.00(0.00) 0.00(0.00)* 0.16 
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<0.01) and Nauplii (U = 52, df = 2, P = <0.01). The impaired reach had significantly more 

Bosmina spp. (0.05±0.01), Cyclopoida (0.62±0.13), Daphnia spp. (0.04±0.01), 

Diaphanosoma spp. (0.03±0.01) and Nauplii (0.09±0.02) compared to the unassessed 

reach captures of Bosmina spp. (0.01±0.01), Cyclopoida (0.31±0.22), Daphnia spp. 

(0.01±0.01), Diaphanosoma spp. (0.00±0.00), and Nauplii (0.02±0.02; Table 5). 

Period four 

Crustaceous zooplankton densities during were significantly different in six of the 

12 taxa groupings captured during period four between the impaired and unassessed 

reaches. Significant differences were detected in Ceriodaphnia spp. (U = 311, df = 2, P = 

0.01), Chydoridae (U = 328, df = 2, P = 0.03), Cyclopoida (U = 145, df = 2, P = <0.01), 

Daphnia spp. (U = 318, df  = 2, P = 0.01), Diaphanosoma spp. (U = 377, df = 2, P = 0.01) 

and Simocephalus spp. (U = 279, df  = 2, P = 0.02). The impaired reach captured 

significantly more Ceriodaphnia spp. (0.01±0.01), Cyclopoida (0.31±0.06), Daphnia spp. 

(0.01±0.01), Diaphanosoma spp. (0.00±0.00) and Simocephalus spp. (0.02±0.01) 

compared to the unassessed reach’s Ceriodaphnia spp. (0.00±0.00), Cyclopoida 

(0.02±0.01), Daphnia spp. (0.00±0.00), Diaphanosoma spp. (0.00±0.00) and 

Simocephalus spp. (0.00±0.00) densities (Table 6). While the unassessed reach captured 

significantly more Chydoridae (0.02±0.01) compared to the impaired reach’s Chydoridae 

(0.00±0.00; Table 6). 
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Table 5. Mean density (number/liter) of zooplankton taxa sampled in the 
impaired (N=20) and unassessed (N=20) reaches of Minnesota River during 
period three (major descending limb) of the 2014 and 2015 sampling. For each 
taxa grouping, the mean density, standard error (in parentheses), and 
statistical results are noted. Bold indicates a significant difference between 
reaches and an asterisk (*) indicates taxa group was sampled but in mean 
densities <0.01/liter.    

Taxa group Impaired Unassessed P-value 

Bosmina spp. 0.05(0.01) 0.01(0.01) 0.02 

Calanoida 0.03(0.01) 0.02(0.01) 0.15 

Ceriodaphnia spp. 0.01(0.01) 0.01(0.01) 0.69 

Chydoridae 0.03(0.01) 0.04(0.20) 0.39 
Cyclopoida 0.62(0.13) 0.31(0.22) 0.05 

Daphnia spp. 0.04(0.01) 0.01(0.01) 0.01 

Diaphanosoma spp. 0.03(0.01) 0.00(0.00)* <0.01 

Moina sp. 0.00(0.00)* 0.00(0.00) 0.98 

Nauplii 0.09(0.02) 0.02(0.02) <0.01 

Ostracoda 0.11(0.02) 0.11(0.02) 0.62 
Sida crystallina 0.00(0.00)* 0.01(0.01) 0.97 
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 Table 6. Mean density (number/liter) of zooplankton taxa sampled in the 
impaired (N=30) and unassessed (N=30) reaches of Minnesota River during 
period four (steady state) of the 2014 and 2015 sampling. For each taxa 
grouping, the mean density, standard error (in parentheses), and statistical 
results are noted. Bold indicates a significant difference between reaches and 
an asterisk (*) indicates taxa group was sampled but in mean densities 
<0.01/liter. 

Taxa group Impaired Unassessed P-value 

Bosmina spp. 0.03(0.01) 0.03(0.02) 0.20 
Calanoida 0.00(0.00)* 0.01(0.01) 0.22 
Ceriodaphnia spp. 0.01(0.01) 0.00(0.00)* 0.01 
Chydoridae 0.00(0.00)* 0.02(0.01) 0.03 
Cyclopoida 0.31(0.06) 0.04(0.01) <0.01 
Daphnia spp. 0.01(0.01) 0.00(0.00)* 0.01 
Diaphanosoma spp. 0.00(0.00)* 0.00(0.00) 0.05 
Nauplii 0.02(0.01) 0.04(0.01) 0.17 
Ostracoda 0.06(0.02) 0.12(0.03) 0.24 
Pontoporeia sp. 0.00(0.00) 0.00(0.00)* 0.15 
Sida crystallina 0.00(0.00)* 0.00(0.00)* 0.98 
Simocephalus spp. 0.02(0.01) 0.00(0.00)* <0.01 
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Rotifers  

In total, 518 rotifers were captured after sampling 371,887 l of water, 

representing fifteen different taxa groupings in both the impaired and unassessed 

reaches over the two years. During 2014, 219 rotifers were captured with 139 from the 

impaired reach and 80 from the unassessed reach both represented by 15 genera. In 

2015, 299 rotifers were captured with 166 from the impaired and 133 from the 

unassessed representing 13 genera in both reaches. Cumulatively, all 15 genera were 

sampled in the impaired reach but only 13 of the 15 were sampled in the unassessed 

reach. Mean rotifer densities varied among hydrologic periods. Greatest mean rotifer 

densities were during period three (major descending limb) in both reach type and in 

both years (Figure 9). Overall, limited densities were found in both reaches with greater 

densities in the impaired reach during 2014 and 2015. 

During 2014, the impaired reach catch was dominated by Ascomorpha sp. In 

2015, Lecean sp. and Gastrous sp. dominated the community in the impaired reach 

(Figure 10). While in 2014 and 2015, the unassessed reach had greater evenness in 

community structure as Ascomorpha sp., Asplanchna sp., Conochilus sp., Lecane sp., 

Monstyla sp., and Synchaeta sp. accounted for similar proportions of the community 

(Figure 10).  

Due to limited catch of rotifers, NMDS ordinations for each year individually 

were unable to be ran and reach a convergent solution, no matter the number of 

dimensions, or how the data were aggregated and means taken. However, mean by  
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Figure 10. Percent each genera of rotifers represented in the total catch of 
zooplankton trawls in the Minnesota River during the 2014 and 2015 field seasons 
within the impaired and unassessed reaches. N is the total number of individual 
rotifers captured during that year for that particular reach and the percentages are the 
taxa groups that represented >50% of the community. 
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sample date for both years cumulatively was able to reach a convergent solution (Figure 

11). The mean by sample date for both years NMDS plot displayed weak ties between 

reach type and rotifer community present. The impaired and unassessed were on 

almost the exact same points on both the NMDS axis 1 and 2. The 95% confidence 

ellipses nearly completely overlapped and encompassed the same area on the plot, 

indicating similar rotifer communities being sampled between the impaired and 

unassessed reaches of the Minnesota Rive are similar. The ANOSIM displays no 

significant difference between the unassessed and impaired reaches for the rotifer 

communities (ANOSIM: R = -0.05; P = 0.90). Due to these similarities among years and 

the limited catch, analyses among period used both years cumulatively.  

Period one 

Rotifer densities differed significantly in one of the 10 genera sampled during 

period one between the impaired and unassessed reaches of the Minnesota River 

during 2014 and 2015 (Table 7). The significant difference was detected in Asplanchna 

sp. (U = 288, df =2, P = 0.01). The impaired reach captured significantly greater densities 

of Asplanchna sp. (0.04±0.02) compared with the unassessed reach densities of 

Asplanchna sp. (0.00±0.00); (Table 7).  
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Figure 11. NMDS ordinations plotted with rotifer genera densities (number/liter) 
captured in the Minnesota River during 2014 and 2015 between locations. Ellipses 
around each reach type denote the 95% confidence interval for that reach type. 
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Table 7. Mean density (number/liter) of rotifer taxa sampled in the impaired 
(N=40) and unassessed (N=40) reaches of Minnesota River during period one 
(first ascending limb) of the 2014 and 2015 sampling. For each taxa grouping, 
the mean density, standard error (in parentheses), and statistical results are 
noted. Bold indicates a significant difference between reaches and an 
asterisk (*) indicates taxa group was sampled but in mean densities 
<0.01/liter.    

Genera Impaired Unassessed P-value 

Ascomorpha sp. 0.03(0.01) 0.01(0.01) 0.17 

Asplanchna sp. 0.04(0.02) 0.00(0.00)* 0.01 

Gastropus sp. 0.00(0.00)* 0.00(0.00) 0.15 

Hydra 0.01(0.01) 0.00(0.00)* 0.84 
Hydracarina 0.01(0.01) 0.00(0.00)* 0.23 

Keratella sp. 0.00(0.00)* 0.00(0.00) 0.96 

Lecane sp. 0.00(0.00) 0.06(0.06) 0.35 

Monstyla sp. 0.01(0.01) 0.00(0.00)* 0.84 

Notholca sp. 0.00(0.00)* 0.00(0.00) 0.53 

Trichocerca sp. 0.01(0.01) 0.00(0.00) 0.07 
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Period two 

 Rotifer densities differed significantly in two of the 14 genera sampled during 

period two between the impaired and unassessed reaches of the Minnesota River 

during 2014 and 2015 (Table 8). Significant differences were detected in Hydra (U = 586, 

df =2, P = 0.01) and Trichocerca sp. (U = 720, df = 2, P = 0.04). The impaired reach 

captured significantly more Trichocerca sp. (0.01±0.00) compare the unassessed reach 

Trichocerca sp. (0.00±0.00); (Table 8). While the unassessed reach captured significantly 

greater densities of Hydra (0.02±0.01) compared to the impaired reach Hydra densities 

(0.00±0.00); (Table 8 ). 

Period three 

Rotifer densities differed significantly in two of the 13 genera sampled during 

period three between the impaired and unassessed reaches of the Minnesota River 

during 2014 and 2015 (Table 9). Significant differences were detected in Ascomorpha sp. 

(U = 54.50, df = 2, P =<0.01) and Monstyla sp. (U = 122, df = 2, P = 0.01). The impaired 

reach had significantly greater densities for both Ascomorpha sp. (2.02±0.76) and 

Monstyla sp. (0.27±0.14) compared to the unassessed densities of Ascomorpha sp. 

(0.01±0.01) and Monstyla sp. (0.00±0.00; Table 9). 

Period four 

Rotifer densities differed significantly in one of 13 genera sampled during period 

four between the impaired and unassessed reaches of the Minnesota River during 2014 

and 2015 (Table 10). Significant difference was detected in the Synchaeta sp. (U = 345,  
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Table 8. Mean density (number/liter) of rotifer taxa sampled in the impaired (N=40) 
and unassessed (N=40) reaches of Minnesota River during period two (second 
ascending limb) of the 2014 and 2015 sampling. For each taxa grouping, the mean 
density, standard error (in parentheses), and statistical results are noted. Bold 
indicates a significant difference between reaches and an asterisk (*) indicates taxa 
group was sampled but in mean densities <0.01/liter.    

Genera Impaired Unassessed P-value 

Anuraeopsis sp. 0.00(0.00)* 0.00(0.00) 0.33 
Ascomorpha sp. 0.01(0.01) 0.02(0.01) 0.08 
Asplanchna sp. 0.02(0.01) 0.02(0.01) 0.69 
Collotheca sp. 0.01(0.01) 0.00(0.00)* 0.45 
Conochilus sp. 0.01(0.010 0.01(0.01) 0.63 
Filinia sp. 0.00(0.00)* 0.00(0.00) 0.33 
Hydra 0.00(0.00)* 0.02(0.01) 0.01 
Hydracarina 0.00(0.00) 0.00(0.00) 0.43 
Keratella sp. 0.00(0.00)* 0.00(0.00)* 0.19 
Lecane sp. 0.00(0.00) 0.00(0.00) 0.47 
Monstyla sp. 0.01(0.01) 0.01(0.01) 0.35 
Notholca sp. 0.00(0.00)* 0.00(0.00)* 0.17 
Synchaeta sp. 0.01(0.01) 0.01(0.01) 0.46 
Trichocerca sp. 0.00(0.00)* 0.00(0.00)* 0.04 
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  Table 9. Mean density (number/liter) of rotifer taxa sampled in the impaired 
(N=20) and unassessed (N=20) reaches of Minnesota River during period 
three (major descending limb) of the 2014 and 2015 sampling. For each taxa 
grouping, the mean density, standard error (in parentheses), and statistical 
results are noted. Bold indicates a significant difference between reaches and 
an asterisk (*) indicates taxa group was sampled but in mean densities 
<0.01/liter.    

Genera Impaired Unassessed P-value 

Ascomorpha 2.02(0.76) 0.01(0.01) <0.01 
Asplanchna 0.07(0.03) 0.01(0.01) 0.08 
Collotheca 0.01(0.01) 0.00(0.00)* 0.13 
Conochilus 0.01(0.01) 0.02(0.01) 0.40 
Filinia 0.00(0.00) 0.00(0.00)* 0.33 
Hydra 0.00(0.00)* 0.00(0.00) 0.98 
Hydracarina 0.05(0.04) 0.01(0.01) 0.86 
Keratella 0.05(0.05) 0.00(0.00) 0.17 
Lecane 0.00(0.00) 0.01(0.01) 0.42 
Monstyla sp. 0.27(0.14) 0.00(0.00)* 0.01 
Notholca 0.01(0.01) 0.01(0.01) 0.75 
Synchaeta sp. 0.05(0.04) 0.00(0.00)* 0.09 
Trichocerca sp. 0.06(0.05) 0.00(0.00)* 0.12 
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Table 10. Mean density (number/liter) of rotifer taxa sampled in the impaired 
(N=30) and unassessed (N=30) reaches of Minnesota River during period four 
(steady state) of the 2014 and 2015 sampling. For each taxa grouping, the mean 
density, standard error (in parentheses), and statistical results are noted. Bold 
indicates a significant difference between reaches and an asterisk (*) indicates 
taxa group was sampled but in mean densities <0.01/liter.    

Genera Impaired Unassessed P-value 

Ascomorpha 0.03(0.01) 0.03(0.01) 0.71 
Asplanchna 0.02(0.01) 0.02(0.01) 0.57 
Collotheca 0.00(0.00)* 0.00(0.00)* 0.33 
Conochilus 0.00(0.00)* 0.01(0.01) 0.17 
Gastropus sp. 0.00(0.00)* 0.00(0.00) 0.33 
Hydra 0.00(0.00)* 0.00(0.00)* 1.00 
Hydracarina 0.00(0.00)* 0.00(0.00)* 0.57 
Keratella 0.00(0.00)* 0.00(0.00) 0.33 
Lecane 0.00(0.00)* 0.00(0.00)* 0.40 
Monstyla sp. 0.00(0.00)* 0.01(0.01)* 0.36 
Notholca 0.00(0.00)* 0.00(0.00) 0.16 
Synchaeta sp. 0.01(0.01) 0.02(0.01) 0.03 
Trichocerca sp. 0.00(0.00)* 0.00(0.00)* 0.99 
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df = 2, P = 0.03). The unassessed reach had significantly greater Synchaeta sp. 

(0.02±0.01) compared to the impaired reach Synchaeta sp. (0.01±0.01); (Table 10). 

Macroinvertebrates 

Slednet 

  Cumulatively over the two years, and between both reach types, 9,349 

macroinvertebrates were captured from the Minnesota River representing 26 different 

orders. The impaired reach produced 5,635 macroinvertebrates cumulatively over the 

two years, representing by 21 different orders with 2,728 and 2,901 during 2014 and 

2015 respectively. Whereas, 3,714 macroinvertebrates were captured from the 

unassessed reach cumulatively over the two years, representing 23 orders with 986 and 

2,734 during 2014 and 2015 respectively.  

Total macroinvertebrate densities varied among periods and between reach 

types. During both years, mean relative densities in period one (first ascending limb) for 

both reach types were nearly identical (Figure 12). During both years, increases in total 

relative macroinvertebrate densities occurred in the impaired reach first, occurring 

during period two (second ascending limb) and dropping in period three (major 

descending limb) and four (steady state; Figure 12). The unassessed reach had mean 

relative macroinvertebrate densities that were lower than the impaired reach in period 

one (steady state), but densities increased to greater than the impaired reach in period 

3 and 4 for both years (Figure 12).  
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Of the orders captured with the SN, only ten represented > 1% of the total catch 

among the four hydrologic periods. Those orders were Arachnida, Coleoptera, 

Collembola, Diptera, Ephemeroptera, Gastropoda, Hemiptera, Hydracarina, 

Hymenoptera, and Trichoptera (Figure 13). Of those orders representing > 1%, Diptera, 

Ephemeroptera, accounted for ~50% of the captures in the impaired and unassessed 

reaches during both years (Figure 14). During 2014, Hemiptera made up a greater 

percent of the total catch in the impaired reach (44%) compared to impaired reach in 

2015 (2%); (Figure 14). While in 2015, Gastropoda made up a greater percent of the 

total catch in both the impaired (21%) and unassessed (17%) reach compared the 

impaired (4%) and unassessed (3%) reach in 2014 (Figure 14). 

  The NMDS plots showed weak ties to the reach type and the macroinvertebrate 

community. Reaches varied slightly along NMDS axis 2 and NMDS axis 1 in 2014, 2015 

and both years combined (Figure 15). The 95% confidence ellipses nearly completely 

overlapped indicating similar macroinvertebrate communities being sampled between 

the impaired and unassessed reaches of the Minnesota River. Analysis of similarities  

results revealed no significant difference between the unassessed and impaired reach 

between communities sampled in 2014 (ANOSIM: R = -0.05; P = 0.49), 2015 (ANOSIM: R 

= -0.03; P = 0.59) and both year cumulatively (ANOSIM: R  = -0.04; P = 0.76). Due to 

these similarities among years, analyses among period used both years cumulatively. 
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Figure 13. Boxplots of the density (number/100m3) of the ten dominate orders (>1% 
of total catch) captured in the Minnesota River during the 2014 and 2015 sampling 
among the different hydrologic periods [first ascending limb (period one), second 
ascending limb (period two), major descending limb (period three), steady state 
(period four)]. Whiskers extend to the extremes of the data and lines represent the 
median of the data, and an asterisk (*) denotes significant differences between reach 
type within that period. Scale of each boxplot is set to appropriate scale for that plot. 
Comparisons among orders should be made carefully.  
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Figure 14. Percent each taxa group represented in the total catch of slednet trawls in 
the Minnesota River during the 2014- and 2015 field seasons. Other was comprised of 
taxa groups that numerically made up  < 5% of the total catch being Amphipoda, 
Apidae, Collembola, Diplopoda, Entomobryomorhpa, Formicidae, Hirudinea, Hydra, 
Hymenoptera, Isopoda, Lepidoptera, Megaloptera, Nematomorphas, Nemertea, 
Neuroptera, Odonata, Oligochaete and Plecoptera. N is the total number of individual 
macroinvertebrates captured during that year for that particular reach and the 
percentages are the taxa groups that represented > 75% of the community.  
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Period one. –Macroinvertebrate densities differed significantly between reaches in two 

of the 15 orders sampled during period one (Table 11). Those differences were within 

Hemiptera (U = 300, df = 2, P = 0.03) and Collembola (U = 300, df = 2, P = 0.02). The 

unassessed reach’s relative Hemiptera density (0.27±0.13) was significantly greater than 

that of the impaired reach (0.15±0.15; Table 11). While the impaired reach relative 

Collembola density (0.17±0.07) was significantly greater than that of the unassessed 

reach (0.00±0.00; Table 11). 

Period two.—Macroinvertebrate densities differed significantly in 6 of the 23 orders 

captured in the SN (Table 12). Those differences were in the Amphipoda  (U = 660, df  = 

2, P = 0.01),  Ephemeroptera (U = 548, df  = 2, P = 0.01), Coleoptera (U = 539, df  = 2, P = 

0.01), Diptera (U = 553, df = 2, P = 0.02), Hemiptera (U =534, df  =2, P = 0.01) and 

Nemertea (U =720, df = 2, P = 0.04). The impaired reach’s density of Ephemeroptera 

(2.92±0.53), Coleoptera (1.11±0.30), Diptera (20.13±3.34), Hemiptera (8.10±2.37), and 

Nemertea (0.08±0.05) were significantly greater than that of the unassessed reach 

Ephemeroptera (1.27±0.28), Coleoptera (0.33±0.14), Diptera (12.82±2.58), Hemiptera 

(0.49±0.21), and Nemertea (0.00±0.00; Table 12). However, the unassessed reach 

relative density of Amphipoda (0.40±0.23) was significantly greater than that of the 

impaired reach’s relative density (0.00±0.00; Table 12). 

Period three.—Macroinvertebrates densities between the impaired and unassessed 

reaches of the Minnesota River during 2014 and 2015 were significantly different in one  
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Table 11. Mean density (number/100m3) of macroinvertebrates sampled in the 
impaired (N=30) and unassessed (N=25) reaches of Minnesota River during 
period one (first ascending limb) of the 2014 and 2015 using the slednet. For 
each order, the mean density, standard error (in parentheses), and statistical 
results are noted. Bold indicates a significant difference between reaches.    

Order Impaired Unassessed P-value 

Amphipoda 0.03(0.02) 0.06(0.03) 0.46 

Apidae 0.00(0.00) 0.02(0.02) 0.29 

Arachnida 0.06(0.03) 0.23(0.09) 0.20 

Coleoptera 0.08(0.03) 0.65(0.33) 0.32 

Collembola 0.17(0.07) 0.00(0.00) 0.02 

Diptera 9.28(2.39) 7.38(1.54) 0.82 

Ephemeroptera 0.43(0.16) 0.52(0.03) 0.66 

Gastropoda 2.66(1.08) 2.66(1.40) 0.38 

Hemiptera 0.15(0.15) 0.27(0.13) 0.03 

Hydracarina 0.08(0.03) 0.10(0.05) 0.79 

Hymenoptera 0.02(0.02) 0.00(0.00) 0.38 

Odonata 0.04(0.02) 0.10(0.05) 0.47 

Oligochaeta 0.03(0.03) 0.14(0.07) 0.11 

Plecoptera 0.77(0.73) 0.08(0.08) 0.42 

Trichoptera 0.22(0.07) 0.59(0.22) 0.37 
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Table 12. Mean density (number/100m3) of macroinvertebrates sampled in 
the impaired (N=40) and unassessed (N=40) reaches of Minnesota River 
during period two (second ascending limb) of the 2014 and 2015 using the 
slednet. For each order, the mean density, standard error (in parentheses), 
and statistical results are noted. Bold indicates a significant difference 
between reaches.    

Order Impaired Unassessed P-value 

Amphipoda 0.00(0.00) 0.40(0.23) 0.01 

Arachnida 0.40(0.14) 0.57(0.27) 0.88 

Coleoptera 1.11(0.30) 0.33(0.14) 0.01 

Collembola 0.09(0.05) 0.23(0.10) 0.46 

Diptera 20.13(3.34) 12.82(2.58) 0.02 

Ephemeroptera 2.92(0.53) 1.27(0.28) 0.01 
Entomobryomorpha 0.05(0.03) 0.00(0.00) 0.08 

Gastropoda 8.68(1.76) 6.26(1.96) 0.06 

Hemiptera 8.10(2.37) 0.49(0.21) 0.01 

Hirudinea 0.00(0.00) 0.04(0.02) 0.08 

Hydracarina 0.04(0.02) 0.05(0.03) 0.98 

Hymenoptera 0.11(0.10) 0.45(0.20) 0.17 

Isopoda 0.18(0.12) 0.00(0.00) 0.16 

Lepidoptera 0.02(0.02) 0.00(0.00) 0.16 

Megaloptera 0.01(0.01) 0.00(0.00) 0.33 

Nematomorpha 0.00(0.00) 0.02(0.02) 0.16 

Nemertea 0.08(0.05) 0.00(0.00) 0.04 

Neuroptera 0.01(0.01) 0.00(0.00) 0.33 
Odonata 0.12(0.05) 0.04(0.04) 0.06 

Oligochaeta 1.02(0.40) 0.34(0.14) 0.13 

Plecoptera 0.10(0.05) 0.08(0.04) 0.77 

Trichoptera 1.95(0.51) 1.94(0.60) 0.78 
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of the 22 orders captured (Table 13). Collembola relative densities were significantly 

different (U =150, df = 2, P = 0.02). The unassessed reach had a significantly greater 

relative density (0.97±0.62) compared to the impaired relative density of (0.00±0.00; 

Table 13).  

Period four. –Macroinvertebrate relative densities between the impaired and 

unassessed reaches of the Minnesota River during 2014 and 2015 were significantly 

different in five of the 18 orders captured (Table 13). Significant differences existed in 

the relative densities of the Ephemeroptera(U = 253, df = 2, P = <0.00), Diptera (U = 242, 

df  = 2, P = <0.00), Trichoptera (U = 280, df  = 2, P = 0.01), Hydracarina (U = 339, df  = 2, P 

= 0.03), and Collembola (U = 375, df  = 2, P = 0.02) orders. With the unassessed reach’s 

relative densities of Ephemeroptera(1.40±0.21), Diptera (6.24±1.01), Trichoptera 

(1.24±0.17), and Collembola (0.27±0.14) significantly greater than the impaired reach’s 

Ephemeroptera(0.76±0.23), Diptera (2.66±0.56), Trichoptera (0.83±0.24), and 

Collembola (0.00±0.00; Table 13). While the impaired reach’s relative density of 

Hydracarina (0.62±0.27) was significantly greater than the unassessed reach’s 

(0.08±0.04; Table 13). 

Light traps 

Cumulatively in 2014 and 2015, and between both reaches, 2,550 

macroinvertebrate were sampled representing fifteen different macroinvertebrate 

orders with the LTs in the Minnesota River. In 2014, 1,088 macroinvertebrates were 

captured representing 12 orders while in 2015, 1,462 macroinvertebrates were  
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Table 13. Mean density (number/100m3) of macroinvertebrates sampled in 
the impaired (N=30) and unassessed (N=30) reaches of Minnesota River 
during period four (steady state) of the 2014 and 2015 using the slednet. For 
each order, the mean density, standard error (in parentheses), and statistical 
results are noted. Bold indicates a significant difference between reaches.    

Order Impaired Unassessed P-value 

Amphipoda 0.03(0.02) 0.02(0.02) 0.57 

Arachnida 0.06(0.03) 0.30(0.14) 0.12 

Coleoptera 0.06(0.03) 0.09(0.05) 0.99 

Collembola 0.00(0.00) 0.27(0.14) 0.02 

Diplopoda 0.00(0.00) 0.01(0.01) 0.33 

Diptera 2.66(0.56) 6.24(1.01) <0.01 

Ephemeroptera 0.76(0.23) 1.40(0.21) <0.01 

Gastropoda 0.22(0.12) 0.09(0.05) 0.29 

Hemiptera 0.44(0.37) 0.28(0.08) 0.15 

Hydra 0.08(0.08) 0.00(0.00) 0.33 

Hydracarina 0.62(0.27) 0.08(0.04) 0.03 

Hymenoptera 0.44(0.37) 0.04(0.03) 0.37 

Nematomorpha 0.03(0.03) 0.00(0.00) 0.33 

Neuroptera 0.01(0.01) 0.00(0.00) 0.33 

Odonata 0.01(0.01) 0.04(0.03) 0.54 

Oligochaeta 0.04(0.02) 0.00(0.00) 0.08 

Plecoptera 0.04(0.02) 0.16(0.10) 0.63 

Trichoptera 0.83(0.24) 1.24(0.17) 0.01 
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captured representing 12 orders. In 2014, 847 macroinvertebrates were capture in the 

impaired reach compare to 241 captured the unassessed. In 2015, 708 

macroinvertebrates were captured impaired reach captured compared to 754 in the 

unassessed reach. 

During 2014, peak macroinvertebrate abundance occurred during period three in 

both the impaired (Figure 16). However, in 2015, peak macroinvertebrate abundance 

occurred during period two in both the impaired and unassessed reaches (Figure 16). In 

the impaired reach during 2015, abundance continued to decline through period four, 

but the unassessed reach increased (Figure 16).  

Cumulatively over both years, all 15 orders sampled with the LTs were 

represented in both reach types. Of those 15 orders, only 10 had captures greater than 

4 individuals (Figure 17) over the two years. Those ten were Amphipoda, Coleoptera, 

Ephemeroptera, Diptera, Hemiptera, Odonata, Plecoptera, Trichoptera, 

Entomobryomorpha, and Oligochaete. Of those, the Ephemeroptera, Diptera and 

Trichoptera comprised the major portion (~95%) of the catch in both the impaired and 

unassessed reaches (Figure 18). 

The NMDS plots from each reach showed weak ties to the reach type and the 

macroinvertebrate community. Reaches varied slightly along NMDS axis 2 but not as 

much on the NMDS axis 1 (Figure 19) in 2014, 2015, and both years cumulatively. The  
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Figure 17. Percent each order of macroinvertebrate represented in the total catch of the 
light traps in the Minnesota River during the 2014- and 2015 field seasons within the 
impaired and unassessed reaches. Other was comprised of taxa groups that numerically 
made up < 1% of the total catch of Amphipoda, Arachnida, Gastropoda, Hydracarina, 
Nemertea and Oligochaeta. N is the total number of individual macroinvertebrates 
captured during that year for that particular reach. 
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Figure 18. Boxplots of the CPUE (number/trap night) of the ten dominate orders 
(number of individuals <4) captured in the Minnesota River during the 2014 and 
2015 sampling among the different hydrologic periods [first ascending limb (period 
one), second ascending limb (period two), major descending limb (period three), 
steady state (period four)]. Whiskers extend to the extremes of the data and lines 
represent the median of the data and an asterisk (*) denotes significant differences 
between reach type within that period. Scale of each boxplot is set to appropriate 
scale for that plot. Comparisons among orders should be made carefully. 
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95% confidence ellipses nearly completely overlapped indicating similar 

macroinvertebrate communities being sampled between the impaired and unassessed 

reaches of the Minnesota River. The ANOSIM results found no differences between the 

impaired and unassessed reaches in 2014 (R = 0.16, P = 0.15), 2015 (R = 0.03, P = 

0.31),and both years combined (R = <0.00, P = 0.40; Figure 19). Due to these similarities 

in community structure among years, analyses among period used both years 

cumulatively. 

Period one. –Macroinvertebrate catch rates between the impaired and unassessed 

reaches of the Minnesota River during 2014 and 2015 were not significantly different in 

any of the 11 orders captured in period one with the LTs (Table 14). 

Period two. –Macroinvertebrate catch rates between reaches were not significantly 

different between the impaired and unassessed reaches of the Minnesota River during 

2014 and 2015 in any of the 13 orders captured in period two with the LTs (Table 15).  

Period three. –Macroinvertebrate catch were significantly different between the 

impaired and unassessed reaches of the Minnesota River during 2014 and 2015 in three 

of the 13 orders during period three (Table 16). Differences existed in Coleoptera (U = 

360, df =2, P = 0.05), Trichoptera (U = 249, df = 2, P = 0.02) and Gastropoda (U = 360, df 

=2, P = 0.05). The unassessed reach captured significantly more Coleoptera (0.10±0.07) 

and Gastropoda (0.10±0.07) compared to the impaired reach’s Coleoptera (0.00±0.00) 

and Gastropoda (0.00±0.00; Table 16). However, the impaired reach captured  
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  Table 14. Mean CPUE (number/trap night) of macroinvertebrates sampled in 
the impaired (N=26) and unassessed (N=27) reaches of Minnesota River during 
period one (first ascending limb) of the 2014 and 2015 using the light trap. For 
each order, the mean density, standard error (in parentheses), and statistical 
results are noted. Bold indicates a significant difference between reaches. N is 
the number of trap nights collected in each reach type during those two years. 

Order Impaired  Unassessed  P-value 

Coleoptera 0.08(0.08) 0.07(0.05) 0.63 

Diptera 4.42(0.56) 2.30(0.65) 0.45 

Ephemeroptera 0.58(0.26) 0.44(0.19) 0.72 

Entomobryomorpha 0.42(0.22) 0.00(0.00) 0.04 

Hemiptera 0.15(0.11) 0.00(0.00) 0.15 
Hymenoptera 0.04(0.04) 0.00(0.00) 0.33 

Nemertea 0.04(0.04) 0.00(0.00) 0.33 

Odonata 0.04(0.04) 0.00(0.00) 0.33 

Oligochaeta 0.08(0.08) 0.04(0.04) 0.98 

Plecoptera 0.15(0.07) 0.48(0.20) 0.28 

Trichoptera 1.04(0.39) 3.07(0.97) 0.08 
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Table 15. Mean CPUE (number/trap night) of macroinvertebrates sampled in the 
impaired (N=36) and unassessed (N=39) reaches of Minnesota River during period 
two (second ascending limb) of the 2014 and 2015 using the light trap. For each 
order, the mean density, standard error (in parentheses), and statistical results are 
noted. Bold indicates a significant difference between reaches. N is the number of 
trap nights collected in each reach type during those two years. 

Order Impaired Unassessed P-value 

Amphipoda 0.05(0.04) 0.00(0.00) 0.14 
Arachnida 0.03(0.03) 0.00(0.00) 0.31 
Coleoptera 0.16(0.08) 0.18(0.07) 0.64 
Diptera 5.16(1.09) 3.90(0.97) 0.12 
Ephemeroptera 10.49(7.22) 6.13(2.73) 0.86 
Gastropoda 0.03(0.03) 0.00(0.00) 0.31 
Hemiptera 0.03(0.03) 0.10(0.06) 0.35 
Hymenoptera 0.00(0.00) 0.05(0.03) 0.18 
Nemertea 0.03(0.03) 0.00(0.00) 0.13 
Odonata 0.03(0.03) 0.03(0.03) 0.97 
Oligochaeta 0.08(0.06) 0.00(0.00) 0.14 
Plecoptera 0.05(0.04) 0.10(0.05) 0.46 
Trichoptera 0.97(0.32) 1.25(0.25) 0.13 
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  Table 16. Mean CPUE (number/trap night) of macroinvertebrates sampled in 
the impaired (N=20) and unassessed (N=20) reaches of Minnesota River 
during period three (major descending limb) of the 2014 and 2015 using the 
light trap. For each order, the mean density, standard error (in parentheses), 
and statistical results are noted. Bold indicates a significant difference 
between reaches. N is the number of trap nights collected in each reach type 
during those two years. 

Order Impaired Unassessed P-value 

Amphipoda 0.18(0.08) 0.00(0.00) 0.11 
Coleoptera 0.00(0.00) 0.10(0.07) 0.05 
Diptera 2.63(1.05) 0.90(0.31) 0.22 
Ephemeroptera 2.95(0.74) 3.65(0.70) 0.08 
Gastropoda 0.00(0.00) 0.10(0.07) 0.05 
Hemiptera 0.33(0.12) 0.10(0.07) 0.30 
Hydracarina 0.08(0.04) 0.00(0.00) 0.22 
Hymenoptera 0.00(0.00) 0.05(0.05) 0.17 
Nemertea 0.03(0.03) 0.00(0.00) 0.50 
Odonata 0.05(0.03) 0.15(0.08) 0.20 
Oligochaeta 0.03(0.03) 0.05(0.05) 0.63 
Plecoptera 0.03(0.03) 0.00(0.00) 0.50 
Trichoptera 11.73(2.95) 3.75(1.22) 0.02 
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significantly more Trichoptera (11.73±2.95) compared to the unassessed (3.75±1.22; 

Table 16). 

Period four. –Macroinvertebrate catch rates among orders were not significantly 

different between the two reaches during 2014 and 2015 in any of the seven orders 

captured during period four with the LTs (Table 17). 

Ichthyoplankton                                                                 

Slednet 

 Cumulatively, 184 ichthyoplankton were captured with SNs, representing 8 

families and 17 genera were sampled between unassessed and impaired reaches of the 

Minnesota River during 2014-2015. Of those 17 genera, 13 were found in the impaired 

reach and 13 in the unassessed area (Table 18). In 2014, 38 and 34 ichthyoplankton 

were captured in the impaired and unassessed reaches, respectively. The impaired 

reach was represented by 8 genera, while the unassessed reach had 6 genera. In 2015, 

50 and 62 ichthyoplankton were captured in the impaired and unassessed reaches of 

the Minnesota River, respectively. The impaired reach was represented by 9 genera, 

while the unassessed reach had 13 genera.  

Over both years of this study, 9 SN-captured genera were represented by more 

than one individual in the impaired reach, including Carpiodes spp., Catostomus sp., 

Cyprinella sp., Cyprinus sp., Ictiobus spp., Notropis spp., Pimephales spp., and Pomoxis 

spp. In the unassessed reach, 7 genera had more than one individual, including  
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Table 17. Mean CPUE (number/trap night) of macroinvertebrates sampled in 
the impaired (N=30) and unassessed (N=29) reaches of Minnesota River during 
period four (steady state) of the 2014 and 2015 using the light trap. For each 
order, the mean density, standard error (in parentheses), and statistical results 
are noted. Bold indicates a significant difference between reaches. N is the 
number of trap nights collected in each reach type during those two years. 

Order Impaired Unassessed P-value 

Coleoptera 0.00(0.00) 0.07(0.07) 0.60 

Diptera 0.30(0.21) 0.79(0.19) 0.17 

Ephemeroptera 1.10(0.31) 4.21(1.45) 0.11 

Hemiptera 0.00(0.00) 0.07(0.05) 0.42 

Odonata 0.00(0.00) 0.07(0.05) 0.42 

Plecoptera 0.10(0.10) 0.03(0.03) 0.45 

Trichoptera 1.80(0.68) 2.17(0.59) 0.95 
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Table 18. Total individual larvae captured for genera within the 
impaired and unassessed reaches of Minnesota River with the 
slednet during 2014 and 2015. 

Taxa Impaired Unassessed 

Acipenseridae 
 

 

Scaphirhynchus sp. 1 0 

Amiidae 
 

 

Amia calva 0 1 

Catostomidae  
 

Carpiodes spp. 27 14 
Catostomus sp. 3 1 
Ictioubus spp. 7 1 
Moxostoma spp. 1 9 

Centrarchidae  
 

Lepomis spp. 0 8 
Pomoxis spp. 3 0 

Clupeidae 
 

 

Dorosoma sp. 1 1 

Cyprinidae 
 

 

Cyprinella  sp. 13 11 
Cyprinus sp. 3 4 
Hybognathus sp. 0 1 
Notropis spp. 20 25 
Pimephales spp. 6 19 

Percidae 
 

 

Etheostoma spp. 2 0 
Sander sp. 1 0 

Sciaenidae 
 

 

Aplodinotus sp. 0 1 

Total 88 96 
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Carpiodes spp., Cyprinella sp., Cyprinus sp., Lepomis spp., Moxostoma spp., Notropis 

spp., and Pimephales spp. 

Overall, the mean density of ichthyoplankton was <1.0/100m3 (SE = 0.05), 

however, detectable variations in density among hydrologic periods and between years 

were noted (Figure 20). In the impaired reach, relative densities of ichthyoplankton 

were greatest in period two in 2014, but during 2015, greatest in period 4 with the SN. 

In the unassessed reach, relative densities of ichthyoplankton were greatest in period 

three in both 2014 and 2015 with the SN.  

Due to that limited ichthyoplankton catch, NMDS ordinations for each year 

individually were unable ran to reach a convergent solution with an acceptable level of 

stress. However, mean densities by sample date for both years together did reach a 

convergent solution with the SN. The NMDS plot for the SN showed weak ties to the 

reach type and the ichthyoplankton community on the mean relative number of larvae 

per 100m3 of water by date. Reaches varied minimally along NMDS axis 2 and NMDS 

axis 1 (Figure 21). The 95% confidence ellipses nearly completely overlapped, indicating 

ichthyoplankton communities being sampled between the impaired and unassessed 

reaches of the Minnesota River were similar. Analysis of similarities results revealed no 

significant differences between communities in the unassessed and impaired reaches 

(ANOSIM: R = 0.03; P = 0.29), supporting the contention that the reaches are not  
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Figure 21. NMDS ordinations plotted with mean CPUE (number/per 100m3) by 
sample date and genera of ichthyoplankton captured in the Minnesota River during 
2014 and 2015 between locations. Ellipses around each reach type denote the 95% 
confidence interval for that reach type. Numbers correspond to a specific genera; 1: 
Amia sp, 2: Aplodinotus sp., 3: Carpiodes spp., 4: Catostomus sp. 5: Cyprinus sp. 6: 
Cyprinus sp., 7: Dorosoma sp., 8: Etheostoma sp. 9: Hybognathus sp., 10: Ictiobus 
spp., 11: Lepomis spp., 12: Moxostoma spp., 13: Notropis spp., 14: Percidae spp., 15: 
Pimephales spp., 16: Pomoxis spp., 17: Sander sp., 18: Scaphirhynchus sp. 
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substantively different. Due to the limited number of larvae captured and the 

similarities between reaches, analyses within a period used both years cumulatively. 

Period one. –Of the four ichthyoplankton genera sampled during period one of 2014 and 

2015, only densities of Carpiodes spp. differed significantly between the impaired and 

unassessed reaches of the Minnesota River during 2014 and 2015 (U = 300, df =2, P = 

0.02). The impaired reach had a significantly greater density of Carpiodes spp. 

(0.14±0.06) compared to the unassessed reach (0.00±0.00; Table 19).  

Period two. –Of the 12 Ichthyoplankton genera sampled during period two none 

differed significantly between reaches between the impaired and unassessed reaches of 

the Minnesota River during 2014 and 2015. Three of the four genera captured in period 

one were also captured in period two, as well as 8 previously uncaptured genera (Table 

20).  

Period three. –Of the 11 ichthyoplankton genera densities captured during period three 

none differed significantly between the impaired and unassessed reaches of the 

Minnesota River during 2014 and 2015 (Table 21). However, seven of the 

ichthyoplankton genera captured had been captured in the early periods, and four new 

genera were sampled in period three.  

Period four. –Of the seven Ichthyoplankton genera captured during period four, only the 

densities of Lepomis spp. differed  between the impaired and unassessed reaches of the 

Minnesota River during 2014 and 2015 (U = 375, df =2, P = 0.02); (Table 22). The  
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  Table 19. Mean density (number/100m3) of larval genera sampled in the 
impaired (N=30) and unassessed (N=25) reaches of Minnesota River during 
period one (first ascending limb) of the 2014 and 2015 using the slednet. For 
each genera, the mean density, standard error (in parentheses), and statistical 
results are noted. Bold indicates a significant difference between reaches. N is 
the number of samples collected in each reach during that period 

Genera Impaired Unassessed P-value 

Carpiodes spp. 0.14(0.06) 0.00(0.00) 0.02 
Cyprinus sp. 0.02(0.02) 0.02(0.02) 0.94 
Dorosoma sp. 0.00(0.00) 0.02(0.02) 0.29 
Notropis spp. 0.04(0.03) 0.00(0.00) 0.20 
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Table 20. Mean density (number/100m3) of larval genera sampled in the 
impaired (N=40) and unassessed (N=40) reaches of Minnesota River during 
period two (second ascending limb) of the 2014 and 2015 using the slednet. For 
each genera, the mean density, standard error (in parentheses), and statistical 
results are noted. Bold indicates a significant difference between reaches. N is 
the number of samples collected in each reach during that period 

Genera Impaired Unassessed P-value 

Carpiodes spp. 0.11(0.04) 0.21(0.09) 0.99 
Catostomus sp 0.03(0.02) 0.01(0.01) 0.55 
Cyprinus sp. 0.02(0.01) 0.01(0.01) 0.59 
Cyprinella sp. 0.00(0.00) 0.03(0.03) 0.33 
Etheostoma spp. 0.01(0.01) 0.00(0.00) 0.33 
Hybognathus sp. 0.00(0.00) 0.01(0.01) 0.33 
Ictiobus spp. 0.07(0.03) 0.01(0.01) 0.16 
Moxostoma spp. 0.01(0.01) 0.07(0.03) 0.16 
Notropis spp. 0.06(0.03) 0.02(0.01) 0.37 
Pimephales spp. 0.00(0.00) 0.05(0.03) 0.08 
Sander sp. 0.01(0.01) 0.00(0.00) 0.33 
Scaphirhynchus sp. 0.04(0.04) 0.00(0.00) 0.33 
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Table 21. Mean density (number/100m3) of larval genera sampled in the 
impaired (N=20) and unassessed (N=20) reaches of Minnesota River during 
period three (major descending limb) of the 2014 and 2015 using the slednet. 
For each genera, the mean density, standard error (in parentheses), and 
statistical results are noted. Bold indicates a significant difference between 
reaches. N is the number of samples collected in each reach during that period 

Genera Impaired Unassessed P-value 

Amia calva 0.00(0.00) 0.05(0.05) 0.34 
Aplodinotus sp. 0.00(0.00) 0.02(0.02) 0.34 
Carpiodes spp. 0.09(0.04) 0.04(0.04) 0.11 
Cyprinus sp. 0.00(0.00) 0.02(0.02) 0.34 
Cyprinella sp. 0.04(0.02) 0.02(0.02) 0.57 
Dorosoma sp. 0.02(0.02) 0.00(0.00) 0.34 
Ictiobus spp. 0.04(0.03) 0.00(0.00) 0.16 
Lepomis spp. 0.00(0.00) 0.04(0.03) 0.16 
Notropis spp. 0.11(0.07) 0.44(0.20) 0.13 
Pimephales spp. 0.03(0.03) 0.15(0.07) 0.17 
Pomoxis spp. 0.02(0.02) 0.00(0.00) 0.34 
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Table 22. Mean density (number/100m3) of larval genera sampled in the 
impaired (N=30) and unassessed reaches (N=30) of Minnesota River during 
period four (steady state) of the 2014 and 2015 using the slednet. For each 
genera, the mean density, standard error (in parentheses), and statistical 
results are noted. Bold indicates a significant difference between reaches. 
N is the number of samples collected in each reach during that period in 
each reach during that period 

Genera Impaired Unassessed P-value 

Carpiodes spp. 0.02(0.02) 0.00(0.00) 0.33 

Cyprinella sp. 0.24(0.22) 0.14(0.05) 0.10 

Etheostoma spp. 0.02(0.02) 0.00(0.00) 0.33 

Lepomis spp. 0.00(0.00) 0.11(0.05) 0.02 

Notropis spp. 0.15(0.09) 0.09(0.06) 0.27 

Pimephales spp. 0.09(0.04) 0.15(0.07) 0.92 

Pomoxis spp. 0.03(0.03) 0.00(0.00) 0.33 
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unassessed reach had significantly greater relative density of Lepomis spp. (0.14±0.06) 

compared to the impaired (0.00±0.00; Table 22). 

Light trap 

Cumulatively, 29 larvae, representing six genera and four families were captured 

in the unassessed and impaired reaches of the Minnesota River during 2014-2015. All six 

genera were found in the impaired reach, but only three were found in the unassessed 

area (Table 23). Additionally, only three genera were represented by more than one 

individual in each reach type, including Cyprinella sp. in the impaired reach and Percina 

spp. and Lepomis spp. in the unassessed reach. In 2014, 28 larvae were captured, 22 

from the impaired reach and 6 from the unassessed area, representing six genera. In 

2015, only one larvae was captured with LTs in the impaired reach and none were 

captured in the unassessed reach. Ichthyoplankton LT CPUEs were quite low during all 

hydrologic periods (Figure 22). The greatest number of ichthyoplankton were capture 

during periods three and four both years in the impaired reach (Figure 22).  

A NMDS plot could not reach a convergent solution with an acceptable level of 

stress for the LT data due to the low capture of ichthyoplankton. Therefore, only Mann 

Whitney U tests were used for both years combined to compare reach types within 

periods.  

Periods one to four. –Ichthyoplankton captures did not differ significantly among 

any genera captured among periods (Table 24). Each period captured genera that were 

only captured during that period except for period three. Cyprinella sp. had the greatest  
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Table 23. Total individual larvae captured in each genera and percentage of capture 
the comprised within the impaired and unassessed reaches of Minnesota River [first 
ascending limb (period one), second ascending limb (period two), major descending 
limb (period three), steady state (period four)] using the light traps during 2014 and 
2015. 

  Impaired Unassessed 
Taxon N % N % 

Catostomidae  
   

Ictioubus spp. 1.00 3.45 0.00 0.00 
Moxostoma spp. 1.00 3.45 0.00 0.00 

Centrarchidae  
   

Lepomis spp. 1.00 3.45 3.00 10.34 

Cyprinidae 
 

   
Cyprinella  sp. 18.00 62.07 0.00 0.00 

Percidae 
 

   

Etheostoma spp. 1.00 3.45 1.00 3.45 
Percina spp. 1.00 3.45 2.00 6.90 

Total 23.00 79.31 6.00 20.69 
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Table 24. Mean relative CPUE (number/trap night) of larval genera sampled in the 
impaired and unassessed reaches of Minnesota River during all four periods [first 
ascending limb (period one), second ascending limb (period two), major descending 
limb (period three), steady state (period four)] of the 2014 and 2015 using the light 
trap. For each period, the amount of effort is noted (italicized).For each genera, the 
mean density, standard error (in parentheses), and statistical results are noted. N is 
the number of samples collected in each reach during that period. 

Period/Genera Impaired Unassessed P-value 

Period one 
N=26 N=27 

 

Ictioubus spp. 0.04(0.04) 0.00(0.00) 0.33 

Period two N=36 N=39 
 

Moxostoma spp. 0.03(0.03) 0.00(0.00) 0.31 

Period three N=20 N=20 
 

Etheostoma spp. 0.00(0.00) 0.05(0.05) 0.34 
Lepomis spp. 0.05(0.05) 0.00(0.00) 0.34 

Period four N=30 N=29 
 

Cyprinella  sp. 0.60(0.47) 0.00(0.00) 0.08 
Etheostoma spp. 0.03(0.03) 0.00(0.00) 0.34 
Lepomis spp. 0.00(0.00) 0.10(0.10) 0.34 
Percidae spp. 0.03(0.03) 0.07(0.07) 0.98 
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CPUE among all periods and reach type. Period four in the impaired reach captured the 

greatest Cyprinella sp. (0.60±0.47) and may be biologically significant compared to the 

unassessed reach (0.00±0.00). 

Discussion 

Lower trophic levels in the impaired and unassessed reaches of the Minnesota 

River were quite similar. A high degree of overlap among taxa groupings and 

comparable catches between the reaches suggest that the unassessed reaches are 

relatively analogous to the reaches deemed impaired. Key variables, particularly 

hydrology, appear to be playing a substantial role in shaping lower trophic level 

community composition. Therefore, disruptions in natural hydrographs, and the 

associated alterations to sedimentation and nutrient dynamics, are contributing to the 

biological impairments identified in the Minnesota River. 

Minnesota River sediment load is particularly high, being 26 times greater than 

the St. Croix River and four times greater than the Mississippi River (Johnson et al. 

2009). Elevated concentrations of suspended sediment and other solids can significantly 

reduce survival of larval fish, limnetic macroinvertebrates, and larval fish. Striped Bass 

Morone saxatilis, Yellow Perch Perca flavescens, and American Shad Alosa sapidissima 

larvae exposed to sediment concentrations ≥ 100 mg l-1 for 96-h survival was 

significantly reduced (Auld and Schubel 1976). High turbidity also causes selective 

feeding and decreases fecundity and survival of zooplankton (Gasparini and Castel 
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1999). If significant mortality were happening among taxa groups studied, low densities 

would be expected with only the most tolerant species dominating the communities. 

The impaired and unassessed reaches possessed the majority of same taxa 

groupings. Moina sp., Pomoxis spp., Sander sp., and Scaphirhynchus sp., Lepidoptera, 

and Nemertea were not found in the unassessed reach. While Amia calva, Apidae, 

Aplodinotus sp., Hybognathus sp., Diplopoda, Formicidae, and Megaloptera were not 

found in the impaired reach. However, these taxa were found in low densities and 

influence on community dynamics was hypothesized as minimal.  

Battle et al. (2007) also found minimal differences among macroinvertebrate 

communities throughout the Mississippi River Basin. They hypothesized that because of 

similar food (i.e., energy sources) transported from upstream, few barriers preventing 

long-distance dispersal, and nominal localized habitat differences compared to a lower 

order stream, could explain similarities. The two reaches observed in the Minnesota 

River were both within the free-flowing section, thereby making long-distance dispersal 

possible. In addition, watershed characteristics dominated by row-crop agriculture are 

present in the watersheds for both reaches. Therefore, one could hypothesize that food, 

energy sources, and suspended sediment particle size are typically comparable between 

the two reaches due to the similarity of watershed traits. If the conditions described 

above are valid, it would also stand to reason that the zooplanktonic communities 
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would be influenced by largely the same set of parameters and would therefore exhibit 

similar structure and dynamics. 

Communities in both reaches were dominated by a few smaller-statured taxa 

groupings, including Bosmina spp., Cyclopoida copepods, Chydoridae spp., Asplanchna 

sp. and Monstyla sp.; however, even the most abundant taxa were found in low 

densities. Smaller-sized taxa have shorter generation times (Pace and Orcutt 1981, Wahl 

et al. 2008) and are more durable than larger limnetic taxa in the river environment 

(Zimmermann-Timm et al. 2007). Therefore, the smaller-sized taxa may have been able 

to withstand the harsh conditions of this turbid riverine system, and had the capacity to 

take advantage of brief periods of favorable conditions to reproduce. Low numbers of 

individuals and few taxa groups can be indicators of degradation in permanent 

Minnesota streams (Niemela and Feist 2000). Because the impaired and unassessed 

reaches exhibited similar taxa dominance, albeit at very low densities, it is implied that 

the zooplanktonic community across the entire free-flowing portion of the Minnesota 

River is likely experiencing the same impairment challenges. 

Other factors, however, such as taxonomic resolution may have also played a 

role in the similarity of results between reaches. Identification of many biota to 

taxonomic classifications more inclusive than genus species could have caused my 

assessment to miss finer differences between the impaired and unassessed reaches. 

Researchers have, however, used similar identification techniques as those used in this 
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study and still quantify biotic differences between study sites (e.g., Bouchard et al. 

2005). It is possible, however, that differences between unassessed and impaired 

reaches may require lower taxonomic resolution to identify differences. 

Sample design may have also been a driver of community composition results. A 

majority of the sampling efforts, regardless of gear type, occurred in lower-flow areas 

near the channel bank, as opposed to the higher-flow thalweg of the river. Bank areas 

typically have lower turbulence and greater water retention (Sluss et al. 2008), 

increasing the residence times of the individuals. However, limited swimming 

capabilities of taxa groups investigated during this study, may have decreased their 

abilities to reach these areas. Increasing sampling effort directly in the drift may help 

determine if densities found in this study were an artifact of study design or actually 

indicative of low densities.  

 Although some experimental design error has come into question above, 

additional investigation of sediment loading influences on biota within the system, and 

if reductions would increase survival of the zooplanktonic community is warranted. 

However, the dynamic nature of the hydrologic regime, regardless of sedimentation, is 

influencing the zooplanktonic community in the Minnesota River. Hydrologic stage 

appears to be a driver in community composition within the Minnesota River. Poff et al. 

(1998) suggested emphasis be placed on high and low flow events that serve as catalysts 

to ecological function. Recall in this study, zooplanktonic densities and species richness 
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increased following periods of high flows. Fisher and Willis (2000) noted that high-flow 

periods within the hydrologic regime allow floodplain wetlands and backwaters to 

connect with the river channel and experience a flushing event.   

Backwater flushing generates a mass export of organic resources, including 

zooplanktonic biota, from the floodplain into the main channel. The annual pulse of 

floodplain resources is typically a rejuvenating factor to riverine systems that allows 

species with rapid generational turnover and good colonizing abilities to reestablish 

(Fisher 1983). Backwaters have also been found to be substantial production habitats 

for zooplankton (Fisher 2011), macroinvertebrates (Konrad 2010), and ichthyoplankton 

(Slipke et al. 2005). Periods of high flow in the Minnesota River appear to be important 

for lower trophic levels and are likely a crucial component of a functional river system. 

Therefore, the importance of the natural hydrologic regime should not be understated 

and efforts to maintain and restore channel-floodplain connections should be a high 

priority.  
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Chapter 2: Evaluation of Four Ichthyoplankton Sampling  

Methods in a Large, Midwestern River 

Abstract 

Sampling large rivers for fish, particularly ichthyoplankton, can be difficult and 

sampling gears have inherent biases that must be identified to secure reliable data. The 

need to improve ichthyoplankton sampling strategies in the Minnesota River is a priority 

to state management agencies. Therefore, a benthic slednet, light trap equipped with a 

glow-stick light source, light trap equipped with a LED light source, and a surface slednet 

were evaluated for efficacy in capturing Ichthyoplankton in a large, Midwestern river. 

Ichthyoplankton were sampled from 15 May through 15 August in 2015 and 23 April to 

15 August in 2015 with four gears noted above in the Minnesota River. During this 

study, 213 ichthyoplankton were captured. The surface slednet captured the greatest 

number of larvae (N = 141), most genera (N = 15), most unique genera (N = 6) and had 

the lowest coefficient of variation of icthyoplankton catch (167). However, each gear 

sampled a narrow range of genera (Niche breadth: 0.00-0.35) and different components 

of the ichthyoplankton community (ANOSIM: R = 0.12; P = 0.04). Results suggest that 

the selection of ichthyoplankton sampling gears for assessing ichthyoplankton in a 

Midwestern river need to be objective orientated and sampling designs will often 

require a multiple gear approach.  
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Introduction 

Examination of fish early life history is often essential for understanding aquatic 

ecosystems, fish community dynamics, understanding fish species ecology and 

development of management strategies (Snyder and Muth 2004). For example, 

ichthyoplankton drift patterns allow inferences of spawning dates, spawning activity, 

and spawning locations (Braaten et al. 2010). Ichthyoplankton densities can also predict 

year-class strength as mortality during the larval stage influences recruitment and 

ultimately stock abundance (Houde 2008, Roseman et al. 2007). Ichthyoplankton have 

also been used as indicator taxa, establishing their accordance with other biotic and 

abiotic factors (Kelso et al. 2012). Unfortunately, sampling ichthyoplankton is inherently 

difficult, time consuming, and expensive (U.S. Fish and Wildlife Service 1992). 

Sampling ichthyoplankton can be complicated by their spatial and temporal 

variability (Chambers and Trippel 1997). Temporally, ichthyoplankton distributions tend 

to cluster, centered on spawning events (Kelso et al. 2012). Seasonally, ichthyoplankton 

distributions are dependent on species and ideal abiotic conditions, as spawning events 

have a wide temporal range, from days to months (Neal et al. 2012). Spatially, 

ichthyoplankton distributions vary among habitats (King 2004) including the water 

column (Kelso et al. 2012) depending on the stage of larval development. Later-stage 

larvae are mobile and tend to reside in different habitats, compared to earlier stages 

that are less mobile that mostly drift (Reichard et al. 2004). Seasonal and temporal 

icthyoplankton variability will also occur annually, because of temperature and 
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hydrology (Kelso et al. 2012). Due to the unpredictability in sampling icthyoplankton, the 

variety of habitats icthyoplankton inhabitat and specific species tendencies, numerous 

active and passive sampling gears have been developed, tested, and used across a range 

of temporal periods and sampling ichthyoplankton (Neal et al. 2012). 

Common active methods for sampling ichthyoplankton have included 

electrofishing, pumping, and trawling. Electrofishing stuns larvae with electricity to 

facilitate capture and is best suited for sampling shallow, yet structurally complex 

habitats (King and Crook 2002). Pumping intakes water and suspended organisms 

delivering the mixture to a filter that allows targeted sampling of specific depths and 

volumes of water (Nayar et al. 2002). Trawls have been designed with (Tibbs and Galat 

1997) or without frames and usually consist of plankton nets that simply filter water and 

capturing suspended organisms while the gear is pulled or pushed through the water 

column (Claramunt et al. 2005). Various trawl designs and arrangements (e.g., round, 

square, single, or paired); have been developed for use in riverine systems (Gallagher 

and Conner 1983). 

 Ichthyoplankton net mesh sizes often range from 363 (Neal et al. 2012) to 1,000 

µm with mesh size influencing size selectivity of larvae (Iserman et al. 2002). Fisher 

(1999) and Nickel (2014) used a 500-µm bar-measure mesh surface trawl during an 

assessment of the Missouri River and Minnesota River and associated backwaters. Trawl 

tow speed range from <0.5 m/s (Isaacs and Kidd 1953) to an excess of 2.5 m/s (Wiebe 
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and Benfield 2003). Due to the success of various trawl designs among different 

conditions, the gear is considered well suited for a variety of habitats and several 

portions of the water column, from benthic (Carleton and Hamner 2007), to pelagic 

(Oozeki et al. 2004) and surface (Overton and Rulifson 2007).  

Passive methods primarily include drift nets and stationary traps (Neal et al. 

2012, Siegwarth and Johnson 1993). Drift nets allow discharge and natural flow of water 

to pass through a mesh and thereby capture larvae. Drift nets often have similar designs 

as active trawls, but are held stationary. Stationary traps are typically engineered to 

capture larvae by taking advantage of their phototaxic nature to attract and then entrap 

larvae as they emerge from nests, enter the swim up stage, or are otherwise utilizing 

the habitat (Kelso et al. 2012). Traps have been designed of wooden frames with 

fiberglass screen bottoms (Gammon 1965), devices similar to traditional minnow traps 

(Baugh and Pedretti 1986), activity traps (Niles and Hartman 2007), and translucent light 

traps (LT; Floyd et al. 1984).  

Light traps, however, are believed to be one of the gears capable of capturing 

large numbers of larval fish representing a wide variety of species (Snyder and Meismer 

1997). Several different light sources have been used to attract  ichthyoplankton to LTs. 

Light sources used include bright light emitting diodes (LED; Gyekis et al. 2006), white 

fluorescent light (Miller and Shanks 2005), and chemical light sticks (Kehayias and 
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Doulka 2007) and have been found to capture similar densities and taxa (Gyekis et al. 

2006).  

Currently, the MN DNR is interested in developing standardized sampling 

protocols for sampling ichthyoplankton in the Minnesota River (MN DNR 2013). 

Understanding the bias each gear possesses, can aid in monitoring protocol 

development to meet specific objectives, target specific various life history 

characteristics and species, or secure data in particular habitat (Leis 2000). 

Ichthyoplankton sampling methods, like all fish sampling methods, capture specific 

species and sizes more effectively than others and vary in performance among habitats 

and seasons (Quist et al. 2006). Hickford and Schiel (1999) recommended combination 

of LTs and plankton nets to obtain a more comprehensive understanding of an 

ichthyoplankton community. Additionally, Nile and Hartman (2007) recommended using 

LTs for capturing ichthyoplankton in large rivers.  

Based on the literature, Minnesota River characteristics, (i.e., accessibility, size, 

and morphology), and prior research on the system (e.g., Nickel 2014), an 

ichthyoplankton sampling strategy was developed that included two different modified 

trawls (e.g., surface and benthic slednets; SN) and LTs equipped with two different light 

sources were hypothesized to be potentially effective at capturing a representative 

sample of ichthyoplankton in the Minnesota River. 
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The objective of this chapter was to 

 evaluate a benthic and surface slednet and light traps equipped with glow-

stick and LED light sources SN for sampling ichthyoplankton in the 

Minnesota River over time and in relation to the hydrologic stage by 

a. comparing ichthyoplankton taxonomic richness among gears over time 
and in relation to the hydrologic stage,  

b. estimating overlap of ichthyoplankton genera captured among gears, 
and 

c. estimating ichthyoplankton CPUE over time and in relation to the 
hydrologic stage among gears. 

 
It was hypothesized that a 

 ichthyoplankton catches in the benthic slednet, the light trap with a glow-
stick light source, light trap with a LED light source and surface slednet 
within the Minnesota river, over time and in relation to hydrologic stage will 

a. capture different components of ichthyoplankton community 
because three are passive gears and one is active,  

b. have minimal  overlap of ichthyoplankton captures because three are 
passive gears and one is active, and 

c. ichthyoplankton CPUE within gears will be similar as gears are 
sampling the same system.  
 

Methods 

Gears 

During the 2014 field season, quatrefoil LTs (41.4-cm high x 21.5-cm wide with 2-

mm slot openings; Floyd et al. 1984) fitted with one 12-h glow-stick (Figure 23), and a SN 

were used (Figure 24). The SN was a 500-µm drift net (30-cm tall, 46-cm wide and 1.0-m 

long with a 1,000-ml dolphin bucket) with a 3.81-cm diameter polyvinyl chloride (PVC) 

pipe frame (Figure 24). The PVC frame surrounded the net creating a sled similar to the 

one utilized by Galat et al. (2004) and identical to Nickel (2014). The sled allowed the net 

to be actively towed, sampling the upper 0.5 m of the water column and slide over 

obstacles without damaging the net or compromising that sample.  
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Figure 23. Schematic of light traps used in sampling ichthyoplankton in the 
Minnesota River during the 2014 and 2015 field seasons. A. Eyebolt (0.64-cm) 
where light source was attached. B. Plexiglas sheet (0.63-cm thick), 22-cm by 22-
cm for top of the trap and 30-cm by 30-cm for the bottom of the trap. C. Half a 
circle (10-cm outside diameter, 9.53-cm inside diameter) of clear extruded acrylic 
tube, cemented to the top and bottom Plexiglas plates. D. Hole (12.7-cm) in the 
center of bottom Plexiglas sheet. E. Entry slot (2-mm width) F. Stainless steel 
collection pan, systemically drilled with holes (0.63-cm diameter), then covered 
with mesh (500-µm) and attached to bottom Plexiglas plate with pony spring 
clamp (1.9-cm) or binder clips (1.9-cm). G. Cinder block anchor (9.1-kg). H. Hard 
shell buoy. I. Vinyl coated, galvanized cable (0.32-cm thick, 30.48-cm length) 
attached to eyebolts (0.64-cm) and meeting at nickel plated, single ended snap 
hook. J. LED light source used in 2015. K. Photochemical light source used in 2014 
and 2015. 
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Figure 24. Schematic of the slednet and sounding weight attachment used in 
sampling ichthyoplankton in the Minnesota River during the 2014 and 2015 field 
seasons. A. Drift net (30-cm tall, 46-cm wide and 1.0-m long, 500-µm mesh). B. 
Dolphin bucket (1000-ml with 504-µm stainless steel mesh). C. Vertical PVC 
supports (3.81-cm diameter, 30-cm length). D. Threaded rod (1.27-cm thick, 50-cm 
long) horizontal supports. E. Horizontal PVC supports (3.81-cm diameter, 140-cm 
length). F. Steel rings (3.81-cm) secured to the PVC frame with U clamps (3.81-cm). 
G. Vinyl coated, galvanized cable connecting sounding weight system to the cod end 
steel ring. H. Sounding weight attachment attached to F with snap hook carabiners 
(5-cm). I. Vinyl coated, galvanized cable lead, secured to D by nylock nuts (1.27-cm) 
and flat washer (1.27-cm) meeting at and attaching to a steel ring for towing. J. 
Carbon steel tubing (1.3-cm diameter, 55-cm length) K. Sounding weight (6.8-kg) 
bolted to J. L. Sounding weight (13.6-kg) added during high flows. M. Vinyl coated, 
galvanized cable directly attached to the sounding height hanger bars and using 
snap hook carabiners (5-cm) to the mouth end F’s. N. Vinyl coated, galvanized cable 
directly attached to J and using a hook carabiner (5-cm) to the F attached to I.  
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After reviewing data from the first year of sampling, modifications were made to 

each gear. In 2015, half of the LTs were fitted with either one 12-h glow-stick and the 

other half of the LTs were equipped with one green LED light (120-mm x 43-mm LED 

light with 2 green LED lamps and a Poly Carbonate resin body; Figure 23), which is 

brighter and longer lasting light source of one   

In attempts to sample ichthyoplankton near the river bottom or benthos, a 

sounding weight system was constructed to allow the SN to fish near the river bottom 

and essentially function as a benthic larval drift net that passively fished 0.5-m from the 

river bottom. The sound weight was constructed with a carbon steel bar (1.3-cm 

diameter, 55-cm length) and 27.2-kg of sounding weights to easily attach to and detach 

from the SN. Detachment of the sounding weight system allowed the SN to function 

identically to as it had the previous year, as a surface trawl (surface SN). 

Initially, the sounding weight system was constructed with two 6.8-kg sounding 

weights, bolted to a 1.3-cm diameter, 55-cm long, carbon steel tube. Increased flows 

during the field season required the addition of another 13.6-kg sounding weight (Figure 

24) to maintain SN position in the water column. The sounding weight system, had four 

vinyl coated, galvanized cables attached through 1.3-cm eyebolts to the carbon steel 

tube. 5-cm snap hook carabiners allowed the weight to be quickly attached/detached to 

four 3.81-cm steel rings attached to the SN PVC frame steel rings with 3.81 U clamps. 
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Ichthyoplankton Collections  

Ichthyoplankton were sampled approximately biweekly in the Minnesota River 

between 15 May 2014 to 15 August 2014 and 23 April 2015 to 15 August 2015. Two 

reaches were sampled each year based on proximity to MN DNR intensive study sites on 

the Minnesota River. During 2014, sample reaches were near Franklin (RKM 298) and 

Savage (RKM 24; Figure 25). In 2015, sample reaches were near Henderson (RKM 105) 

and New Ulm (RKM 234; Figure 25).  

 During both years, starting points of 10 sampling transects were systematically 

arranged on the left downstream bank at 200-m intervals and spanned diagonally 

upstream across the entire channel to the opposite (right downstream) bank (Figure 25). 

During the 2014 field season, on the downstream end of each transect, near the bank 

directly below the water surface in water ≥ 1-m in depth, one LT fitted with one 12-h 

glow-stick was deployed. Light traps were set between 0800 and 1100 h, let set for 

approximately 24 h and retrieved the following day. In 2015, either one 12-h 

photochemical light stick or a 120x43-mm LED light with 2 green LED lamps and a 

polycarbonate resin body were randomly selected as the light source in each LT on the 

downstream end among all 10 transects (N=5 for each LT light source per sample date).  

Surface SNs were towed upstream parallel to the side of the boat at speeds ∼1.6 

km/h greater than the discharge of the river, across the entire length of each transect 

(Figure 25). General Oceanics mechanical flow meter (Model number2030R) was  
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Figure 25. Study reaches from the 2014 and 2015 sampling season on the Minnesota 
River. (A) Generalized distribution of sampling transects within a reach. (B) Placement of 
sampling gears within a single transect. The star represents a light trap, the diamond 
represents the benthic trawl and line represents the distance of a surface trawl. During 
the 2014 sampling year only the LT glow-stick and SN surface were used. While in 2015 
the light trap light source was either a glow-stick or LED and the slednet method could 
have been surface or benthic. 
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suspended in the mouth of the net and used to estimate volume of water sampled in 

m3. In 2014, surface SN samples, were collected from the upper 0.5 m of the water 

column was collected at each transect. During the 2015 field season, SN methods were 

randomly selected of either benthic or surface (N=5 for each SN method per sample 

date). If surface SN was selected for a transect, it was deployed identically as in 2014. If, 

benthic SN was selected, the boat was anchored in the thalweg of that transect. After 

anchoring, the sounding weight attachment secured to the SN frame and then manually 

deployed from the side of the boat, sunk to the bottom and left stationary for five 

minutes. After five minutes had elapsed, the benthic SN was manually retrieved. 

Contents collected from LTs and SN gears during both years were fixed and 

preserved using methodology established by the United States Geological Survey (USGS: 

J. Larson, United States Geological Services Upper Midwest Environmental Sciences 

Center, personal communication) and the MN DNR (J. Waters, Minnesota Department 

of Natural Resources, personal communication). The protocol included immediate 

fixation of captured biota in 10% buffered formalin. After 24 to 48 h, sample contents 

were filtered through a 53-µm sieve, rinsed back into the same sample bottle, and 

preserved with 90% ethyl alcohol. Preserved sample contents were placed in a Pyrex 

sorting pan and ichthyoplankton separated from detritus, course particulate matter, and 

other biota and identified under an Olympus SZ61 dissecting microscope. Larval fish 

identification was to the lowest taxonomic category possible, usually genus. 
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Identifications were aided using an ichthyoplankton key by Auer (1982) and Fuiman et 

al. (1983) and Wallus and Simon (1990, 1994, 2003, 2005, 2006, and 2008).  

 The 2014 ichthyoplankton identifications were verified by Thomas Simon at 

Indiana State University. Due to aggregation of samples to meet fiscal constraints, 

percent agreement between expert identification and my identifications could not be 

determined. However, all families and genera were represented in similar abundances 

in both the professional and my identifications, with the exception of my identifications 

of the genera Hiodontidae. Hiodontidae specimens were reanalyzed and adjustments 

made to their identifications. The 2015 samples were not sent out for expert verification 

due to budgetary and time constraints.  

Gear Analyses  

Since species-level identification of ichthyoplankton is not easily and accurately 

achieved, analyses were completed on genera-level. Data of captured ichthyoplankton 

were aggregated based on month, similar to Pritt et al. (2015), and prevailing hydrologic 

regime hydrologic (i.e., first rise, major rise, major descending limb, steady state; Figure 

26) similar to Nickel (2014).  

Typically, SN data are based on water volume filtered (e.g. number/m³, 

number/100m3) and LT data are reported as a unit of time (number/night, 

number/10mins), creating difficulties for direct comparison of ichthyoplankton catch 

data among gears. To facilitate comparison among gears, larval densities and genera 

densities relationships to the volume of water sampled by the SN methods and the 
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Figure 26. Daily mean flow (converted to m3/s from ft3/s values) for the Minnesota 
River gauging stations near Jordan, MN (USGS 05330000) ; (black line) and near 
Morton, MN (USGS 0533000) ; (grey line) during the (top) 2014 sampling season and 
(bottom) 2015 sampling season. Discrete sampling events throughout each year are 
represented by grey squares and hydrologic periods denoted by lines extending the 
entire period, with respective ranking on top.  
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minutes the LT methods were set for were investigated with regression analyses. No 

significant relationship between total time set for LT glow-stick and abundance of larvae 

(r2 = 0.00, P = 0.69) or genera richness (r2 = 0.00, P = 0.89) existed. Also, no significant 

relationship exited between the total time set of LT LED and abundance of larvae (r2 = 

0.00, P = 0.68) or genera richness (r2 = 0.00, P = 0.68) either. Additionally, no significant 

relationship between volume of water sampled for benthic SN and relative density of 

larvae (r2 = 0.01, P = 0.57), and relative density of genera richness (r2 = 0.01, P = 0.38) 

existed. Similarly, no significant relationship was detected between volume of water 

sampled for surface SN and relative density of larvae (r 2 = 0.01, P = 0.44), or relative 

density of genera richness (r2 = 0.01, P = 0.39) as well. Thus, catch was standardized per 

sample unit of effort (i.e., one benthic SN was equal to one LT fitted with a LED) for the 

qualitative analyses. This method of standardization was also used by Sluss et al. (2008) 

in the Ohio River to compare sampling gears for riverine zooplankton.  

However, to enable quantitative analyses and future comparisons with these 

data, ichthyoplankton catches with LT methods were summarized as number/trap night 

for number of larvae and genera and catches SNs were recorded as number/100m3 of 

larvae and genera. Summarizations by number/trap night and number/100m3 of water 

were used in the quantitative comparison between gears with similar sampling methods 

(i.e., LT glow-stick vs LT LED) among months and hydrologic periods.  
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Qualitative analyses  

Catches of ichthyoplankton were summarized as total number of larvae and 

genera captured in each gear during each month during each of the two years of this 

study. The percent each gear caught was also calculated. 

Species accumulation curves were then plotted for each gear type (i.e., benthic 

SN, LT glow-stick, LT LED, and surface SN). Species accumulation curves record the rate 

new species are added to a dataset as a function of cumulative effort and used in 

assessing total abundance, species evenness and species diversity (McCune and Grace 

2002). As more species are sampled, and the more even their abundances within that 

gear, the more rapidly the curve will rise (Gotelli and Colwell 2011). Curves were 

generated using the program R software 3.1.2 (R Development Core Team., Vienna, 

Austria) and the vegan package, using the random method with 100 permutations.  

Exploring similarities of ichthyoplankton taxonomic composition among gears, a 

non-metric multidimensional scaling (NMDS; Kruskal 1964) analysis was performed. The 

NMDS technique “maps” results in such a way that the distance between gears 

represents the degree of similarity between their catches (Morris and Ball 2006). 

Dimensionality was kept below three axes as greater than three axes makes the eyes 

unable to spot patterns (Bartholomew et al. 2008). Stress was also kept between 0.05-

0.25 ensuring that the model created represented a proper fitting model (Kruskal 1964). 

Non-metric multidimensional scalings were attempted on the unmodified 

ichthyoplankton genera captured data, the mean number of each ichthyoplankton 
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genera captured by date and gear type, and mean number individual ichthyoplankton of 

each genera by gear type and sampling trip using a Bray-Curtis dissimilarity calculation 

with the program R software 3.1.2 and the vegan package. 

To determine if the benthic SN, LT with the glow-stick, LT with the LED and 

surface SN captured significantly different portions of the ichthyoplankton community, 

an analysis of similarities (ANOSIM) was completed. An ANOSIM is a non-parametric 

randomization procedure that determines if samples within groups are more similar in 

composition than samples from different groups (Clarke 1988). An R-statistic with a 

range of -1 to 1 and a P-value are provided. The R-statistic itself is useful for 

comparative measures of the degree of separation (Clarke 1988). An R-statistic close to 

1 suggested dissimilarity among gears, while an R-statistic close to 0 suggested a more 

even distribution among gears. Additionally, to assess the amount of overlap in larval 

fish catch composition between all gears used in this study, a Schoener’s percentage 

overlap index (Schoener 1970) was used. This index provides a qualitative description of 

the amount of overlap in genera composition. The Schoener’s percentage overlap 

indices were calculated using the program R 3.1.2, its spaa package, and the Schoener 

function. Indices were calculated as 

Pjk = [∑(minimum pij, pik)]100

𝑛

𝑖=1

, 
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where pij was the proportion of genera “i" to the total number of “i” larval fish in gear 

“j” (i.e., surface SN), pik was the proportion of each genera captured “i” to the total 

number of larval fish in gear “k” (i.e., benthic SN), n was the total number of genera 

captured, and Pjk was the percentage overlap between gears. Values from 0 to 100 were 

possible, with 0 suggesting no overlap and 100 indicating complete overlap. Schoener 

indices are commonly used in diet studies and an overlap value ≥ 60% has been 

considered biologically significant (Wallace and Ramsay 1983 and Hill et al. 2015). 

Although diet overlap was not assessed, the ≥ 60% criteria between gears was applied 

to suggest biological significant overlap in larval fish catches between gears. 

The Levins’ measure of niche breadth (Levins 1968) was also calculated for each 

gear as a measure of the amount of specialization to specific genera or equal use by all 

genera. Levins’ measures (B) were calculated in the program R software 3.1.2 using the 

spaa package and the following equation of 

B = 1/ ∑ pj2 ,  

where pj was the proportion of larvae in genera “i” associated with gear j (e.g., LT LED or 

surface SN). The value for B can range from 1 to N, where N is the total number of 

genera captured among all gears combined (N = 19). A score of 1 signifies complete 

specialization of the gear to capture a single genera and the closer to N, the less 

specialized the gear is.  



108 
 

Levins’ index was then standardized to (Ba) a 0 to 1 scale using the modification 

suggested by (Hurlbert 1978) to allow for easier biological interpretations. Using the 

equation 

Ba = (B − 1 n − 1⁄ ), 

in the program R software 3.1.2, where n is the number of total number fish genera 

captured among all gears (N = 19) B is the Levins’ measure and “a” is the particular gear. 

A Ba value of 0 indicated complete specialization of genera to a gear type, whereas a 

value of 1 indicated a more equal likelihood of all genera to be capture with that gear 

type.  

Percentage of ichthyoplankton genera captured cumulatively among all gears, 

and within each gear type were calculated in terms of the adult fish community sampled 

within the Minnesota River during the last six years of standardized electrofishing (A. 

Sindt, Minnesota Department of Natural Resources, personal communication; Table 25). 

The adult community sampled should represent the majority of potential spawning 

species in the Minnesota River and the genera of ichthyoplankton that should be 

present. Calculation of percentage of ichthyoplankton genera capture from those 

genera potentially spawning should determine effectiveness of the sampling gears in 

terms of sampling the entire ichthyoplankton community. 
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Table 25. Fish species found in the Minnesota River in the last six years during 

standardize electrofishing surveys performed by the Minnesota Department of Natural 

Resources throughout the Minnesota River (Source: A. Sindt, Minnesota Department of 

Natural Resources, personal communication). 

Family Genus Common Name 
Acipenseridae Acipenser Lake Sturgeon 
 Scaphirhynchus Shovelnose Sturgeon 
Amiidae Amia Bowfin  
Atherinopsidae Labidesthes Brook Silverside 
Catostomidae Carpiodes Highfin Carpsucker 
  Quillback 
  River Carpsucker 
 Catostomus White Sucker 
 Cycleptus Blue Sucker 
 Hypentelium Northern Hog Sucker 
 Ictiobus Bigmouth Buffalo 
  Black Buffalo 
  Smallmouth Buffalo 
 Moxostoma Golden Redhorse 
  River Redhorse 
  Shorthead Redhorse 
  Silver Redhorse 
Centrarchidae Ambloplites Rock Bass 
 Lepomis Bluegill 
  Green Sunfish 
  Orangespotted Sunfish 
  Hybrid Sunfish 
 Micropterus Largemouth Bass 
  Smallmouth Bass 
 Pomoxis Black Crappie 
  White Crappie 
Clupeidae Dorosoma Gizzard Shad 
Cyprinidae Campostoma Central Stoneroller 
 Cyprinella Spotfin Shiner 
 Cyprinus Common Carp 
 Hybognathus Brassy Minnow 
 Luxilus Common Shiner 
 Macrhybopsis Silver Chub 
  Speckled Chub 
 Nocomis Hornyhead Chub 
 Notemigonus Golden Shiner 
 Notropis Channel Shiner 
  Emerald Shiner 
  Rosyface Shiner 
  Sand Shiner 
  Spottail Shiner 
  Weed Shiner 
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Table 26 Continued.   

Family Genus Common Name 
Cyprinidae Pimephales Bluntnose Minnow 
  Bullhead Minnow 
  Fathead Minnow 
 Rhinichthys  Blacknose Dace 
Esocidae Esox Northern Pike 
Umbridae Umbra Central Mudminnow 
Gasterosteidae Culaea Brook Stickleback 
Hiodontidae Hiodon Goldeye 
  Mooneye 
Ictaluridae Ameiurus Black Bullhead 
  Yellow Bullhead 
 Ictalurus Channel Catfish 
 Noturus Stonecat 
  Tadpole Madtom 
 Pylodictis Flathead Catfish 
Lepisosteidae Lepisosteus Longnose Gar 
  Shortnose Gar 
Moronidae Morone White Bass 
Percidae Etheostoma Banded Darter 
  Fantail Darter 
  Iowa Darter 
  Johnny Darter 
 Perca Yellow Perch 
 Percina Blackside Darter 
  Logperch 
  River Darter 
  Slenderhead Darter 
 Sander Sauger 
  Walleye 
  Walleye/Sauger 
Petromyzontidae Ichthyomyzon Silver Lamprey 
Polydontidae Polyodon Paddlefish 
Sciaenidae Aplodinotus Freshwater Drum 
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Quantitative analyses 

Catch data between gears with the same units of effort (i.e., benthic and surface 

SN and glow-stick and LED LT) were tested for normality with a Shapiro-Wilk tests 

(program R software 3.1.2) among months and among hydrologic periods. If data were 

not normally distributed, data were log-transformed [log10 (N+1)] and tested again for 

normality. If the transformed data still did not meet normality requirements, the un-

transformed data were analyzed with appropriate nonparametric tests. For all 

quantitative comparisons, a P-value ≤ 0.05 indicated statistical significance. 

The two light trap light source catch data (number of ichthyoplankton and 

number genera/trap night) were compared with Mann-Whitney U tests (compare two 

groups; t-test procedure, SigmaPlot 11.0, Systat Software Inc., San Jose, CA). 

Comparison with the Mann-Whitney U tests occurred within a period and month using 

both years of data cumulatively to determine if catch rates of the number of 

ichthyoplankton or number of genera differed. The same procedure noted above was 

used to compare benthic and surface SN data (number larval fish or number genera/ 

100m3). Within each gear type, a Kruskal-Wallis test (compare many groups; non-

parametric procedure, SigmaPlot 11.0) was used to compare catch data among months 

and hydrologic periods. If Kruskal-Wallis procedures indicated the presence of a 

significant difference among months or hydrologic periods, a Dunn’s Test was 

conducted to determine in which month or hydrologic period those significant 

differences existed. 
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The final analyses performed were calculating the variability and precision for 

each gear type by determining the coefficient of variation (CV) of the total number of 

larvae captured and genera richness within each period, month, and cumulatively. 

Coefficient of variation is used to compare relative dispersion in one type of data to 

relative dispersion in another type of data, and used as an index of variability for catch 

per unit effort, allowing comparisons of variability among gear types with differing units 

of effort (e.g., benthic SN to LT LED). Coefficient of variation was calculated using the 

following equation 

CV = (
SD

mean
) ∗ 100. 

Coefficient of variation was then compared among gears, periods and months 

for normality and heterogeneity with a Shapiro-Wilk and Equal Variance Test (SigmaPlot 

11.0). Data passed normality and heterogeneity and a two-way analysis of variance 

(ANOVA; compare many groups; two-way ANOVA procedure, SigmaPlot 11.0) was ran 

having month and gear type as the independent variables and CV the dependent. Also, a 

two-way analysis of variance (ANOVA; compare many groups; two-way ANOVA 

procedure, SigmaPlot 11.0) was ran having hydrologic period and gear type as the 

independent variables and CV the dependent determining if mean CV among months or 

hydrologic periods differed significantly among gear types. 
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Results 

Sample Effort 

During this study, the number of samples collected with each gear type ranged 

from 64 to 100 dependent on the year and gear type (Table 26). Benthic SN sets 

sampled 633 m3 to 2,987 m3 of water and surface SN tows sampled ranged from 1,849 

m3 to 12,882 m3 of dependent on month or period sampled (Table 27). Light trap glow-

stick trap nights ranged from 4 to 49 and LT LED trap nights ranged from 4 to 28 

dependent on month or period sampled (Table 27). 

Gear Analyses 

Qualitative 

Cumulatively over both years, 213 larval fishes were captured, representing 8 

families and 19 genera (Table 28). Temporally, the number of larvae and genera 

increased as spring progressed into summer for all gears (Figure 27 and Figure 28). The 

greatest number of larvae and genera were captured in July with LTs and the surface SN 

(Figure 27 and Figure 28); however, the benthic SN captured the greatest number of 

larvae and genera in August 2015. It is worth noting though, that during 2014, no 

sampling occurred from 4 June to 11 July due to high flood stage flows that raised safety 

concerns and poor gear performance. Additionally, benthic SN samples were not 

collected anytime in 2014 due to late addition of gear evaluation or on 20 May 2015 due 

to equipment failure that resulted from increased flows.  
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Table 26. Sampling effort in terms of months sampled, number of collection trips, 

number of samples and units of effort taken using the light trap (LT) glow-stick and LT 

LED. As well as the benthic slednet (SN) and surface SN during 2014 and 2015 within the 

Minnesota River. 

Measure of effort Gear Year Effort amount 

Months    
 LT Glow 2014 4 
 2015 5 
 LT LED 2014 0 
 2015 5 
 Surface SN  2014 4 
 2015 5 
 Benthic SN  2014 0 
 2015 5 
Collection trips    

 LT Glow 2014 5 
 2015 7 
 LT LED 2014 0 
 2015 7 
 Surface SN  2014 5 
 2015 7 
 Benthic SN  2014 0 
 2015 7 

Samples collected    
 LT Glow 2014 99 
 2015 64 
 LT LED 2014 0 
 2015 64 

 Surface SN  2014 100 
 2015 70 
 Benthic SN  2014 0 
 2015 65 

Unit of effort    
 LT Glow 2014 99 
 Trap nights 2015 64 
 LT LED 2014 0 
 Trap nights 2015 64 
 Surface SN  2014 22,515 
 m3 of water 2015 19,564 
 Benthic SN  2014 0 

  m3 of water 2015 7,928  
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Table 27. (Top) Sampling effort categorized among hydrologic periods [first 
ascending limb (1), second ascending limb (2), major descending limb (3), steady 
state (4)] and (Bottom) months using the benthic slednet (SN), light trap (LT) 
glow-stick and LT LED and surface SN in 2014 and 2015 within the Minnesota 
River. Following each gear, in parentheses type is the unit of effort used. 

 Period 

Gear 1 2 3 4 

Benthic SN (m3 of water) 2,885 2,987 1,349 1,433 

LT glow-stick (trap nights) 37 47 30 49 

LT LED (trap nights) 16 28 10 10 

Surface SN (m3 of water) 9,839 12,882 7,860 11,497 

 Month 

Gear April May June July August 

Benthic SN (m3 of water) 633 2,161 2,349 1,349 1,433 

LT glow-stick (trap nights) 4 48 32 49 30 

LT LED (trap nights) 4 15 25 10 10 

Surface SN (m3 of water) 1,849 11,541 9,331 12,498 6,858 
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Table 28. Total number of larvae, genera and unique genera captured by the 
benthic slednet (SN), light trap (LT) glow stick, LT LED and surface SN within the 
Minnesota River during 2014 and 2015. Total in the number of families and 
number of genera columns are all the different families and genera captured 
cumulatively with all gears. 

Gear 

Number 
of 
Larvae 

Number 
of families 

Number 
of Genera 

Number of Unique 
Genera 

Benthic SN  43 6 8 2 

LT glow-stick 28 4 7 1 

LT LED 1 1 1 0 

Surface SN  141 6 15 6 

Total  213 8 19  

 



117 
 

  

 

Figure 27. Total number of larvae  captured within the Minnesota River in (bottom) 
2014 and (top) 2015 using the benthic slednet, light trap glow stick, light trap LED 
and surface slednet in relation to discharge (converted to m3/s from ft3/s values) 
from USGS  gauging station (USGS 05330000) near Jordan, MN. 
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Figure 28. Total number of genera  captured within the Minnesota River in 
(bottom) 2014 and (top) 2015 using the benthic slednet, light trap (LT) glow stick, 
LT LED and surface slednet in relation to discharge (converted to m3/s from ft3/s 
values) from USGS  gauging station (USGS 05330000) near Jordan, MN. 
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Genera accumulation rates increased as the number of samples collected 

increased for each gear type except the LT LED (Figure 29). An accumulation curve for 

the LT LED could not be produced as only 1 larvae was captured. The LT glow-stick 

accumulation curve was more level compared to the other gears, adding new genera 

more slowly as the number of samples collected increased (Figure 29). The surface SN 

accumulation curve was steeper compared to the LT glow-stick and the benthic SN 

produced a truncated curve similar in shape to the surface SN (Figure 29). However, 

none of these gears genera accumulation curves reached an asymptote, suggesting that 

more sampling effort would likely capture new icthyoplankton genera 

Light traps equipped with glow-sticks captured 28 larvae in total (13.3% of all 

larvae captured) during 2014 and 2015 for a CPUE of 0.17±0.09 larvae/night (Table 29). 

The larval fish captured with glow-stick LTs represented 4 families and 7 genera (Table 

29) with a catch rate of 0.06±0.02 genera per trap night. Percina spp. was captured by LT 

fitted with glow-sticks but not in any other gears (Table 29). The LT equipped with LEDs 

captured one larvae during this study (<0.0% of all larvae captured) for a CPUE of 

0.02±0.02 larvae and genera per trap night (Table 29). 

Benthic SN captured 43 larvae in total (20.2% of all larvae) during 2015 for a 

CPUE of 0.50±0.14 larvae per 100m3 of water (Table 29). Ichthyoplankton captured with 

the benthic SN represented 6 families, 8  genera (Table 29) with a CPUE of 0.34±0.08 

genera per 100m3 of water. Amia calva, and Scaphirhynchus sp. were only captured by 

the benthic SN and not any other gears (Table 29). The surface SN captured 141 larvae  
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Figure 29. Genera accumulation curves for the benthic slednet, light trap glow-
stick and surface slednet in the Minnesota River during 2014 to 2015 at the 
Franklin, Henderson, New Ulm and Savage sampling locations. The polygon 
surrounding each accumulation curve represents the confidence interval 
associated with that curve. 
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Table 29. Total number of larvae sampled and percent composition captured 
with light traps glow stick, light trap LED, benthic slednet and surface slednet 
samples in the Minnesota River during the 2014, and 2015 sampling seasons. 

 Benthic Glow stick LED Surface 
Taxon n % n % n % n % 

Acipenseridae         

Scaphirhynchus sp. 1.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 

Amiidae         

Amia calva 1.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 

Catostomidae         

Carpiodes spp. 7.0 3.4 1.0 0.5 0.0 0.0 33.0 16.1 
Catostomus spp. 0.0 0.0 0.0 0.0 0.0 0.0 4.0 2.0 
Ictioubus spp. 3.0 1.5 0.0 0.0 0.0 0.0 5.0 2.4 
Moxostoma spp. 0.0 0.0 1.0 0.5 0.0 0.0 10.0 4.9 

Centrarchidae         

Lepomis spp. 0.0 0.0 3.0 1.5 1.0 0.5 8.0 3.9 
Pomoxis spp. 0.0 0.0 0.0 0.0 0.0 0.0 3.0 1.5 

Clupeidae         

Dorosoma sp. 1.0 0.5 0.0 0.0 0.0 0.0 1.0 0.5 

Cyprinidae         

Cyprinella sp. 3.0 1.5 17.0 8.3 0.0 0.0 22.0 10.7 
Cyprinus sp. 2.0 1.0 0.0 0.0 0.0 0.0 6.0 2.9 
Hybognathus sp. 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.5 
Notropis spp. 17.0 8.3 1.0 0.5 0.0 0.0 19.0 9.3 
Pimephales spp. 5.0 2.4 0.0 0.0 0.0 0.0 20.0 9.8 

Percidae         

Etheostoma spp. 1.0 0.5 2.0 1.0 0.0 0.0 1.0 0.5 
Percina sp. 0.0 0.0 3.0 1.5 0.0 0.0 0.0 0.0 
Sander sp. 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.5 

Sciaenidae         
Aplodinotus grunniens 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.5 

         
 



122 
 
in total (66.2% of all larvae captured) during 2014 and 2015 for a CPUE of 0.33±0.04 

larvae per 100m3 of water. The Ichthyoplankton captured with the surface SN 

represented 6 families, 15 genera (Table 29) with a catch rate of 0.23±0.03 genera per 

100m3 of water. Aplodinotus grunniens, Catostomus spp., Cyprinus sp., Hybognathus sp., 

Pomoxis spp., and Sander spp. were only captured by the surface SN and not any other 

gears (Table 29). 

Due to low catches, NMDS could only reach a convergent solution with an 

acceptable number of axes and stress level for the mean number of individual 

ichthyoplankton of each genera by gear type and sampling trip. A two-dimensional 

solution, demonstrating weak ties in ichthyoplankton taxonomic composition was 

produced (Figure 30). The LT glow-stick and LT LED differed among the first and second 

NMDS axes to all other gears (Figure 30). While the benthic SN and surface SN were on 

similar points of the first NMDS axis (Figure 30). 

Based off each gears locations on the NMDS plot, the surface SN and benthic SN 

sampled relatively similar icthyoplankton communities, while the glow-stick and LED 

sampled relatively different icthyoplankton communities compared to the other gears 

used in this study. Keep in mind that a NMDS depicts the dissimilarity of samples with 

closer objects being more similar, or associated. It should be noted thought, that the 

LED only captured one larvae during this study. The ANOSIM also found significant  

  



123 
 

  

 

Figure 30. Non-metric multidimensional scaling of ichthyoplankton communities 
captured with benthic slednet, light trap glow stick, light trap LED, and surface 
slednet using mean number of larval per genera by sampling location (Franklin, 
Henderson, New Ulm, and Savage) and gear type during the 2014 and 2015 sampling 
season in the Minnesota River. Hulls around each gear type encircle all taxa captured 
with that gear in. The numbers represent genera with 1: Amia calva, 2: Aplodinotus 
grunniens, 3: Carpiodes spp., 4: Catostomus spp., 5: Cyprinus sp. 6: Cyprinella sp. 7: 
Dorosoma sp. 8: Etheostoma spp., 9: Hybognathus sp., 10: Ictiobus spp. 11: Lepomis 
spp., 12: Moxostoma spp. 13: Notropis spp., 14: Percidae sp. 15: Pimephales spp. 16: 
Pomoxis spp., 17: Sander sp., 18: Scaphirhynchus sp. 
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dissimilarities among larval composition based on the gears (ANOSIM: R = 0.12; P = 

0.04). 

Investigating genera more associated with each gear during this study using the 

NMDS, the surface SN was more associated with higher catch rates of Shiners Notropis 

spp., Redhorses Moxostoma spp., Carp Cyprinus sp., Sander spp., Pimephales spp. and 

Suckers Catostomus spp. (Figure 30). The benthic SN was more associated with higher 

catches of Buffalo Ictiobus spp. (Figure 30). Both the benthic SN and surface SN were 

associated with the Carpsucker Carpiodes spp. equally (Figure 30). Cyprinella sp., 

Etheostoma spp., and Percina sp. were more associated with the LT glow-stick. 

However, no taxa appeared to be more associated with LT LED (Figure 30). Additionally, 

no single gear seemed to be strongly associated with catches of Lepomis spp. (Figure 

30). 

Using Schoener’s percentage overlap index, significant biological overlap (≥ 60%) 

in genera captured existed between benthic SN and surface SN (Table 30). Non-

significant overlap was detected in the remaining gear comparison and no overlap 

existed between the LT LED and benthic SN (Table 30). Exploring the range of genera 

captured among gears utilizing niche widths, gears widths ranged from 1.00 to 7.32 with 

the LT LED being completely specialization (1.0) and surface SN capturing nearly half of 

the total genera captured (7.32;Table 30). Placing those values into a more biologically  
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  Table 30. Niche width, breadth (Levin’s index) and overlap 

(Schoener’s index) in ichthyoplankton captures by the benthic 
slednet (SN), light trap (LT) glow-stick, LT LED and surface SN in the 
Minnesota River during 2014 and 2015. 

Gear Type Niche width Niche breadth 

LT Glow  2.65 0.09 

LT LED 1.00 0.00 
Benthic SN  4.63 0.20 
Surface SN  7.32 0.35 

Overlap Comparison Niche overlap index 

Benthic vs Surface 61.20 
Benthic vs Glow stick 22.50 
Benthic vs LED 0.00 
Glow stick vs LED 10.30 
Glow stick  vs Surface 35.80 
LED vs Surface 5.90 
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interpretable term, the LT LED’s standardized breadth indice was 0 and the surface SN 

breadth score was 0.35 (Table 30).  

Of the 17 families and 45 genera sampled with standardize electrofishing surveys 

of the Minnesota River, gears used in this study cumulatively captured 47% (8 of 17) of 

the families and 42% (19 of 45) genera. The benthic SN and surface SN captured the 

greatest percentage of families, capturing 35% (6 of 17), followed by the LT glow-stick, 

capturing 24% (4 of 17), and the LT LED, capturing only 5% (1 of 17). The surface SN also 

captured the greatest percentages of genera, capturing 33% (15 of 45), followed by the 

benthic SN, capturing 22% (10 of 45), the LT glow-stick, capturing 15% (7 of 45) and 

finally the LT LED, capturing 2% (1 of 45). 

Quantitative 

Among hydrologic periods and months, no significant differences existed for 

either LT light source in terms of number of ichthyoplankton or number of 

ichthyoplankton genera per trap night (Figure 31). Additionally, between LT light sources 

within each hydrologic period and month, no significant differences existed for number 

of ichthyoplankton or number of ichthyoplankton genera per trap night (Figure 31). No 

significant differences were detected among months for density of larvae or relative 

genus richness per 100m3 of water (Figure 32). Significant differences were, however, 

detected among hydrologic periods for the density of larvae within the benthic SN 

(Kruskal-Wallis: H = 8.39, df  = 3, P = 0.04) and surface SN (Kruskal-Wallis: H = 12.84, df = 

3, P = 0.01). The benthic SN Dunn’s Test  among hydrologic periods revealed no  
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Figure 31. Mean number (number/trap night) of larvae and genera capture by the light 
trap glow stick and LED among months and hydrologic periods during the 2014 and 
2015 sampling seasons on the Minnesota River. No significant differences were found 
between light source type with in periods and months or among periods and months 
within a light source. 
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Figure 32. Density (number/100m3) of larval fishes and genera among sampling 
months and hydrologic periods [first ascending limb (1), second ascending limb(2), 
major descending limb (3), steady state (4)] during the 2014 and 2015 sampling 
seasons on the Minnesota River with either the benthic or surface slednet. Whiskers 
extend to the extremes of the data and lines represent the median. Letters denote 
significant difference based on Kruskal-Wallis and Dunn’s post-hoc test. No letter or 
the same letter signifies no significant difference among months and periods or 
between gear within one month and hydrologic period. 
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significant differences in the denstiy of larvae (Figure 32). However, the surface SN 

Dunn’s Test among hydrologic periods indicated that period two captured signifcantly 

greater densities of larvae and genera compared to period one (Figure 32).  

The LT LED had the highest overall CV (800) and the surface SN had the lowest 

CV (167; Table 31). Coefficient of variations were not significantly different for the 

number of larvae among months (ANOVA: F = 2.94; df = 4; P = 0.06) or periods (ANOVA: 

F = 0.88; df = 3; P = 0.49) within each gear. Additionally, CV for the number of genera 

captured were not significantly different among months (ANOVA: F = 2.16; df = 4; P = 

0.14) or periods (ANOVA: F = 1.49; df = 3; P = 0.28) within each gear. 

Significant differences did, however, exist among gears in the CV for the number 

of larvae captured (ANOVA: F = 12.353; df = 3; P = <0.00) and number of genera 

captured (ANOVA: F = 8.268; df = 3; P = 0.01) among gears among periods. A Tukey test 

revealed that the LT glow-stick (563±59) had a significantly greater CV for the number of 

larvae captured compared to the LT LED (79±79), benthic SN (216±58), and surface SN 

[(180±28); (Figure 33)]. A Tukey test also revealed the LT glow-stick (522±96) had a 

significantly higher CV for the number of genera captured compared to LT LED (79±79), 

benthic SN (203±63), and surface SN [(162±30; (Figure 33)]. 

Additionally, significant differences exist among gears among gears during 

months in the CV for the number of larvae captured (ANOVA: F = 7.72; df = 3; P = <0.01)  
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Table 31. Coefficient of variances for the number of larvae (number/trap night), density of 
larvae (number/100m3 of water), number of genera (number/trap night) ;[italicized] and 
density of genera (number/100m3 of water) ; [italicized] among months, hydrologic period 
[first ascending limb (1), second ascending limb(2), major descending limb (3), steady state 
(4)] and overall during the 2014 and 2015 sampling of the Minnesota River at four 
locations (Franklin, Henderson, New Ulm, Savage). A coefficient of variance of 0 means no 
larvae were captured during that month or period with that gear. 

  Month 

Gear April May June July August 

LT Glow (Trap night) 0 693 566 457 429 
 0 693 566 270 381 

LT LED (Trap night) 0 0 0 316 0 
 0 0 0 316 0 

Benthic SN (100m3 of water)  0 208 197 130 157 

 0 217 196 132 107 

Surface SN (100m3 of water) 0 186 101 191 173 

 0 182 93 159 147 

 

  Period 

Gear        1           2             3      4 Overall 

LT Glow (Trap night) 608 686 548 408 677 
 608 686 548 247 392 

LT LED (Trap night) 0 0 316 0 800 
 0 0 316 0 800 

Benthic SN (100m3 of water)  387 193 130 1570 222 
 387 187 132 107 177 

Surface SN (100m3 of water) 245 108 189 179 167 
 246 98 158 149 148 
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Figure 33. Coefficient of variations during 2014 and 2015 sampling of the Minnesota 
River cumulatively among all four locations (Franklin, Henderson, New Ulm, Savage) 
for (A) abundance and densities of larvae and (B) genera among months and periods 
within a single gear among periods [first ascending limb (1), second ascending 
limb(2), major descending limb (3), steady state (4)] and among months. Whiskers 
extend to the extremes of the data, lines represent the median, and dots represent 
the means of the data. Letters A-D signifies significant difference among gears for 
periods, same or no lowercase letter signifies no significant difference. Numbers 1-4 
signifies significant difference among gears for months, same or no number signifies 
no significant difference.  
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and number of genera captured (ANOVA: F = 4.98; df = 3; P = 0.02). A Tukey test 

revealed that the LT glow-stick (563±59) had a significantly greater CV for the number of 

larvae captured among months compared to the LT LED (79±79), benthic SN (216±58), 

and surface SN (180±28) among periods (Figure 33). A Tukey test also revealed that the 

LT glow-stick (522±96) had a significantly greater CV for the number of genera 

capturedamong months compared to the LT LED (79±79), but not to the benthic SN 

(203±63) or the surface SN [(163±30); (Figure 33)]. 

Discussion 

The four gears evaluated in this study, collectively captured a limited number of 

larvae. The results could be interpreted a couple of different ways, including 1) that the 

gears were ineffective at capturing ichthyoplankton or 2) icthyoplankton densities in the 

main channel of the Minnesota River were low during the sampling periods. Overall, 

ichthyoplankton abundance and genera richness increased from April into July, with the 

catch from surface SNs showing the highest taxonomic richness. The surface SNs also 

appeared to be the gear of choice by capturing the greatest number of larvae, the most 

number of unique genera, and having the lowest overall CV for the number of 

ichthyoplankton and genera captured.  

The benthic SN also demonstrated potential, as it captured the second greatest 

number of larvae, genera, and unique genera. The LT with glow-stick light sources also 

captured some larvae, but did not appear to be effective in the prevailing conditions. 

The LT LED captured only a single ichthyoplankton, but also had the least amount of 
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effort. Overall, CV for both the number of larvae and number of genera captured were 

significantly lower in benthic SN and surface SN compared to the LT glow-stick. Low 

catch rates during this study with LTs may suggest that this is not an effective gear for 

sampling ichthyoplankton in flowing waters of a turbid river. The icthyoplankton gears 

should be further evaluated in a wider range of habitat types and conditions. 

Temporally, benthic SN and surface SN captured more genera and individual 

larvae compared to both LT methods during the earlier months. However, during 2014, 

the LT glow-stick sets caught nearly as many individual larvae as the surface SN in July. 

During July, larvae from early spawning species would be more developed and mobile. 

Most larvae lose vulnerability to towed gears after they have grown large enough to 

actively avoid nets (Sammons and Bettoli 1998) and LTs tend to be more effective as 

icthyoplankton increase mobility, as is typically seen during late post-larvae and early 

juvenile larvae stages (D’Alessandro et al. 2007). Given the potential for active 

avoidance and phototaxic attractions, sampling with LTs in June, July, and August may 

benefit data collections by capturing those larvae not being sampled with a SN.  

The SN gears captured larvae during all hydrologic periods, except the first 

ascending limb, however, no larvae were captured during this period in any of the gears. 

The LT methods captured the most icthyoplankton during period 4, the steady-flow 

stage. During stable and low flows, larvae would be more apt to have the ability to swim 

toward a light source. Whereas, in higher flows during periods two and three, it was 
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likely very difficult for icthyoplankton to actively swim to the LTs. Early stage 

icthyoplankton possess limited swimming capabilities. Lindquist and Shaw (2005) found 

increasing current speeds negatively affected LT catches of icthyoplankton and juvenile 

fishes. During high flows, icthyoplankton get caught up in the drift, and therefore would 

SN methods would likely be the better option.  

The genera accumulation curves for icthyoplankton captured in LT equipped with 

glow-sticks had the shallowest curve, indicating that it captured the fewest genera and 

abundance was concentrated in few genera. The surface SN, however, had a steeper 

genera accumulation curve, indicating it sampled the greatest number of genera and the 

distribution was more even over a greater number of genera. The benthic SN had a 

steeper curve than the LT glow-stick but shallower than the surface SN, indicating that 

the benthic SN sampled more genera than the LT glow-stick but fewer than the surface 

SN. However, the distributions of individuals among the genera were similar between 

the surface and benthic SN.  

Light traps are an increasingly utilized sampling tool along riverbanks (Niles and 

Hartman 2007). However, previous studies from different systems show conflicting 

results when comparing the number of individuals and genera capture between nets 

and LTs. Hickford and Schiel (1999) found that plankton nets captured more individual 

icthyoplankton and taxa compared to LT in inshore temperate waters. Whereas, Neal et 

al. (2012) found LTs captured more individual icthyoplankton and taxa compared to 
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plankton nets. This study did not support the Minnesota River research of Nickel (2014) 

who demonstrated that LTs captured more larvae, but the SN captured more genera in 

the Minnesota River. There are many factors that cause gear effectiveness to vary, and 

it appears to be system dependent. In this study, the SN methods captured a greater 

number of individuals and more taxa groupings. Using a SN method could allow one to 

get a better idea of the wider range of species of fish that are spawning, as it captures a 

greater number of genera, while LTs may be more effective at targeting specific taxa 

groups (e.g., Percina spp.) when the gear can be set in suitable flow conditions. 

Icthyoplankton taxa composition captured among all gears was similar to a 

previous study from the Minnesota River and, representative of a large navigable and 

channelized rivers, such as the Kanawha, Ohio, and Missouri rivers. Nickel (2014) found 

Percina spp. and Spotfin Shiner Cyprinella siploptera to be captured more in the LT than 

the SN. Similar results were found in this study, suggesting that Percina spp. and Spotfin 

Shiner can be sampled more effectively with LTs compared to SN methods in riverine 

habitats. In contrast, Nickel (2014) and this study found that Carpiodes spp. were 

sampled more often with the SN than LT, meaning that if Carpiodes spp. were the target 

taxa, a SN method would be the better choice. 

Although direct evidence is limited, the impacts of turbidity levels need to be 

considered when choosing an ichthyoplankton sampling method for a Midwestern river. 

During this study, light traps slowed water velocity, allowing sediment to drop out of 
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suspension, accumulating in the trap pans. High turbidity has been found to negatively 

affect LTs effective sampling radii (Lindquist and Shaw 2005). Prior research by Niles and 

Hartman (2007) reported being able to visually see larvae behavioral responses next to 

their LTs. Snyder and Meismer (1997) also reported being able to see the glow of their 

LTs from 15 m away with a glow-stick light source. We were unable to observe any light 

emitting from the light traps due to water clarity that was frequently <10 cm.  

Increasing the brightness of a LT light source should increase the effective range 

and elicit greater phototactic response from ichthyoplankton and juvenile fishes. 

Bulkowski and Meade (1983) found that walleye larvae preferred the most intense light 

in LTs and increased the distance from which larvae could be attracted in a turbid 

system. However, during 2015 when LED light sources were used, fewer larvae were 

caught than in 2014 when only light sticks were used. Snyder and Meismer (1997) 

suggested that light intensities can be too bright as well, and actually repel larvae. Given 

the high turbidity in the Minnesota River that drastically reduces water clarity, light 

inhibition is much more likely to be the problem, which helps explain why LT glow-stick 

did not catch any larvae in 2015 as well. 

Slednet methods were also affected by the turbidity, as high amounts of sand, 

sediment, and other detritus accumulated in the gear. As a towed net, such as the 

slednets use in this study, becomes inundated, the filtration rate slow because of a 

diminishing ratio between porosity and decreasing filtering area (Vannucci 1968). A 
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decreased filtering capacity would increase net avoidance and decrease larval catches 

(Iserman et al. 2002). Sampling with a SN, either as a function of distance (active gear 

movement) or set time (passive gear in the drift) will need additional consideration 

under highly turbid conditions. As turbidity levels increase, sampling designs may need 

to be adjusted to include shorter tow distances and reduced deployment times.  

Coefficient of variation was high for all gears, but particularly LTs. Demonstrating 

the gear had limited precision and high variability among samples. Low CV and high 

catch rates are important characteristics to try and achieve when selecting an 

ichthyoplankton sampling gear (Rozas and Minello 1997); however, none of the gears 

evaluated in this study meet that criteria. Ichthyoplankton have a tendency to be 

spatially and temporally clustered (Kelso et al. 2012) and highly variable catches among 

replicate samples is common (Hilden and Urho 1988). The CV during this study was 

similar to what Niles and Hartman (2007) found in the Kanawha River when using LTs 

and a benthic SN and may not be as concerning as first thought.  

Nevertheless, due to genera specialization of these gears, the variety of habitats 

present in a river, and the high CV, a multiple gear approach will be warranted in the 

Minnesota River. Multiple-gear approaches are commonly employed in sampling 

ichthyoplankton (Kwak and Peterson 2007) and this study lends further support to the 

approach.  No single gear in this study demonstrated clear superiority to the others. 

Additionally, the niche breadth indicated that each gear was sampling relatively distinct 
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portions of the larval fish community, limited to only a few specific genera. Bonar et al. 

(2009) noted that gears have inherent biases and Poesch (2014) noted that using 

multiple gears can reduce overall variability introduced by using an individual gear. 

Additional gears, speeds, and habitats should be considered for further 

evaluation. Structurally complex regions (e.g., finger dike and zipper dike) of the 

Kanawha River, provided conditions were LTs captured 9,221 larvae and benthic SNs 

395 larvae (Niles and Hartman 2009). Reeves (2006) found larval fish densities were 

greatest near sandbar edges in the lower Missouri river. Therefore, targeting these 

structurally complex regions with different gears in a Midwestern river, such as log jams, 

riffle areas, and sandbars may provide better relative abundance, species composition, 

and even spatial-temporal data regarding ichthyoplankton communities. 

Management implications  

Ichthyoplankton sampling efforts within the Minnesota River and other turbid 

systems appear to need to be objective oriented due to low densities and high 

variability. If interested in determining when and where a specific genus is spawning, a 

thorough review of life history should be performed and sampling efforts should focus 

on those habitats initially with gears that can easily sample that habitat in hopes of 

limiting variability. For example, if researchers or managers were interested in 

understanding Carpiodes spp. or Ictiobus spp. ichthyoplankton densities within the 

Minnesota River in order to establish a commercial harvest quota, a sampling protocol 

using a surface and benthic SN method would provide a truer estimate compared with a 
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sampling protocol using LT methods. If however, researchers and managers are 

interested in understanding the entire ichthyoplankton community, such as studies 

looking at species distributions or community dynamics, a multiple gear approached is 

suggested utilizing SN and LT with glow-sticks methods as well as experimentation with 

other gears. Single gear approaches are particularly susceptible to erroneous results due 

to inherent biases (Jackson and Harvey 1997). That multiple gear approach needs to 

encompass a diverse range of habitats and span a broad time spectrum of which larvae 

will likely be present allowing managers and fisheries biologists to reduce biases and 

variability.  

Additionally, alternative ichthyoplankton sampling gears and protocols should be 

explored for their use in a large, Midwestern river. A multitude of variables could have 

been the reasoning why such few larvae were captured with the gears during this study. 

However, testing additional ichthyoplankton sampling gears and sampling protocols 

should help determine if the low CPUEs were due to inefficiencies of the gears selected 

or indicative of low ichthyoplankton abundances, within the Minnesota River.  
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Chapter 3: Operational costs of Four Different Ichthyoplankton Sampling 

Gears for use in a Long-Term Minnesota River Monitoring Program 

 

Abstract  

Well-designed long-term monitoring programs provide critical data on the 

status, trends, or even evaluations of a system. However, most long-term monitoring 

programs can fail because conclusions are not ecologically relevant, do not secure 

statistically credible data, or fail to be cost effective. Therefore, cost of gear operations 

need to be consider. Here a benthic slednet, light trap with a glow-stick light source, 

light trap with a LED light source, and a surface slednet were evaluated for cost 

effectiveness in a long-term monitoring program that includes ichthyoplankton 

sampling. Initial gear investment, was greatest for the slednet method. However, little 

differences were found in the mean cost per sample among the four gears (<$1.00). 

Expenses did incur in different areas of the budget. Majority of expenses for the slednet 

methods came from labor in the laboratory, compared to light trap methods expenses 

coming from labor in the field. Economically, it appears that any method would be cost 

effective and pairing two or more together in a multiple gear approach would have little 

impact on total operations of the long-term monitoring program.   
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Introduction 

Ecologists and natural resources managers have long acknowledged the 

importance of long-term monitoring data (Lindenmayer and Likens 2009). Well-designed 

long-term monitoring programs provide information, that can be been used to assess 

impacts of climate change, provide baseline descriptions, evaluate responses of a 

system to management interventions, or even help understand threats to biodiversity 

(Lindenmayer et al. 2012).  

The success of a long-term monitoring program, however, depends on its ability 

to provide ecologically relevant conclusions and statistically credible data while being 

cost effective (Hinds 1984). Meaning, long-term benefits from data collected must 

justify the cost of the program (Caughlan and Oakley 2001). However, because we do 

not pay or trade most of the services provided by nature, putting an economic value to 

that data collected is difficult (Sukhdev 2011). 

One can, however, evaluate the economic cost of running a long term-

monitoring program and evaluate the statistical creditability of collected data. 

Particularly, in the early stages of development, by investigating cost effectiveness of 

each variable in a long-term monitoring program (Heathcote 2009). Within a long-term 

monitoring program, 60 to 69% of the whole budget is spent on data collection (Burk 

2005).  
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Costs associated with data collection include the cost of and maintenance of 

sampling gears, labor expenses in operating those gears and any additional materials 

that are needed to collect and interpret that sample (Caughlan and Oakley 2001). A cost 

analysis between of those expenses gives decision-makers a way to compare program 

elements allowing for the minimization of dollar cost and maximized output level to a 

fixed budgetary constraint (Loomis and Walsh, 1997). 

The MN DNR is in the process of developing a long-term monitoring program for 

the Minnesota River that includes standardized sampling for larval fish. Therefore, the 

cost effectiveness of gears used in sampling ichthyoplankton should be assessed. 

Ultimately, this cost effectiveness evaluation can be compared to opportunity costs 

allowing for the thorough evaluation of that portion of the monitoring program 

(Caughlan and Oakley 2001). The objective of this chapter was to assess, quantify, and 

describe the economic viability of a benthic SN, LT glow-stick, LT LED and surface SN per 

sample effort for use in a long-term monitoring program. It is hypothesized that the LT 

LED and LT glow-stick will cost more per sampling effort compared to the benthic and 

surface SN as two trips are required for each sample efforts. 

Methods 

To assess the economic viability of the gears in this study, the cost for one SN 

that could function as a surface SN or benthic SN and the cost of a single LT with either a 

glow-stick light source or LED light source were calculated. Additionally, the mean costs 
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per sample effort among gear types were determined. This will allow managers to 

understand initial cost required to implement these gears into and the costs of regular 

monitoring with those gears in a long-term monitoring program.  

Totals from the manufactures costs of the custom ordered (WILDCO) net and all 

materials required to build the frame and the sounding weight system were 

determined. Initial cost of a LT was determined by totaling the cost of all materials 

required in constructing a LT. The cost of light sources of glow-stick and LED were also 

recorded. These totals are noted in the results, but not included in the determination of 

sampling effort costs, as cost will vary depending on the number of samples collected 

with each gear type. With the LED cost decreasing and the glow-stick increasing in total 

cost. 

Sampling occurred approximately biweekly from 23 April 2015 to 11 August 

2015, using a benthic SN, a LT with a glow-stick light source, a LT with a LED light source 

and a surface SN with in the Minnesota River. Benthic SN and surface SN samples were 

collected with only one outing. While LT samples were let set overnight requiring two 

outings. It was estimated that each outing took four hours to get to the sampling 

location, collect the samples, and arrive back to the MN DNR office. This was used in the 

determination of some of the labor expenses. Each outing also assumed the need for 

two employees for the operational safety in a riverine system.  
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To assess cost per sample, labor expense and operational expense were 

determined. Labor expense was the cost of personnel to collect, sort and identify larvae 

from samples. Operational expenses were expenses incurred to collect a sample 

excluding labor (i.e., fixative and preservative cost). 

Labor expenses also included processing time per sample. Processing time was 

determined by noting the start and end time during sorting of a sample and calculating 

the number of minutes it took for processing of the 2015 samples. Mean sorting time 

per sample was than calculated by summing the total amount of time processing within 

each gear type and dividing it by the total number of samples for that gear.  

Labor expenses assumed a technician cost of 19.47/h. This is the average 

between the minimum and maximum hourly wage from the State of Minnesota Salary 

Plan (State of Minnesota Salary Plan 2013). It was felt to be a good representative of the 

actual cost of a technician, as all technicians currently working would not be at the 

lowest or highest pay grade, but would be most likely the ones completing the majority 

of the efforts.  

Additionally, the cost for expert identification was included in labor expenses. 

Identification of ichthyoplankton is notoriously difficult (Pritt et al. 2015) taking 

tremendous amount of time to understand how to identify solely off morphological 

characters. Therefore, it was felt that using the amount of time spent by a non-

professional would be inappropriate, but some cost needed to be included in that 
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analysis. The cost of identification, assumed the cost of US$50/sample for identification 

(Thomas Simon, Indiana University, unpublished data). Thomas Simon is the expert 

ichthyoplankton identifier, used previously by the MN DNR (J. Waters Minnesota 

Department of Natural Resources, personal communication).  

Operational costs of each gear included the mean cost of fixatives and 

preservative per sample for each gear. During sampling transfer from formalin to ethyl 

alcohol, the amount of formalin was measured to the nearest milliliter (ml). Formalin 

amount was measured with a 2,000 ml polypropylene graduated cylinder. Amount of 

perseverative was not recorded, but assumed identical to fixative amount. Mean ml of 

fixative and preservative used per sample were calculated by summing the amount of 

ml of fixative used within each gear type and dividing it by the total number of samples 

for that gear. That mean was than multiplied by the market cost of $1.08 and $3.25 for 

formalin and ethyl alcohol per liter respectively (March 2015) obtaining mean cost of 

fixative and preservative by gear. Total mean cost per sample unit was then determined 

by adding average labor expenses per sample and average operational expenses per 

sample. 

Results 

The production of a LT and a SN with the benthic and surface capabilities were 

$53.68 and $2,316.33, (Table 32) respectively. Light source costs for the LT were $0.35  
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 Table 32. Cost of materials to make a construct a light trap 
that can use both a glow-stick or LED light source and a 
slednet that functions as both a surface and benthic 
trawl.(OD=outside diameter ID=inside diameter). 

Gear/Material Cost 

Light Trap 
0.220 acrylic $8.83  
4" ODx3.75ID acrylic tube $24.99  
Collection pan w/mesh $5.28  
Nuts and bolts $7.20  
Cable $1.21  
Buoy $4.99  
Cinder block anchor $1.18  

Total $53.68 
Slednet 

Custom 500-µm net $299.00  
Dolphin adapter $79.00  
Dolphin bucket 1000ml $119.00  
Shipping $49.70  
PVC frame $132.00  
Sounding weight frame $12.63  
Sounding weights $1,625.00  

Total $2,316.33  
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for a single use glow-stick and $24.99 for multiple use LED, that could be used 780 h 

continuously, without battery replacement.  

Processing time of a sample was lower for the LT (19±1 minutes) compared to SN 

(77±3 minutes). Within each gear and its modifications the average minutes (mins) of 

time processing were similar (LT glow-stick 19±1 mins, LT LED 16±2 mins, SN Benthic 

75±6 mins, SN surface 78±3 mins ;Figure 34). Average cost for processing a sample from 

a LT glow-stick ($6.17) and LT LED ($5.19) was lower than the benthic SN ($24.33) and 

surface SN ($25.31; Table 33). Estimated labor cost for sample collection was higher for 

the LT ($31.15) compared to the SN methods ($15.58). 

The LT used less fixative per sample (328±8 ml) compared to the SN (997±41 ml). 

Within the LT, similar fixative volumes were used between the glow-stick (324±11ml) 

and LED (331±12 ml; Figure 35). While the surface SN used slightly more fixative per 

sample (1008±54 ml) compared to the benthic SN (985±62 ml; Figure 35). Average cost 

of $0.35 and $1.08 for fixative and $1.06 and $3.24 for preservative was lower for a LT 

sample compared to a SN sample respectively (Table 33). Light trap glow-stick and LT 

LED costs were the same for fixative ($0.35) and similar for preservative ($1.06 and 

$1.08; Table 13). The benthic SN and surface SN also had similar cost for fixative and 

preservative ($1.07 and $1.09 for fixative and $3.20 and $3.28 for preservative; Table 

33).  
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Figure 34. Processing time of a sample collected with a benthic slednet, light traps, 
glow-stick (Glow) and LED and the surface slednet in minutes during the 2015 
sampling on the Minnesota. Whiskers extend to the extremes of the data, lines 
represent the median of the data and dots represent the means. 
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Table 33. Average cost of sample collection, processing, fixing, preserving, 
identification and total cost per sample among the benthic slednet (SN) light trap 
(LT) glow-stick, LT LED and surface SN used in the Minnesota River during the 2015 
sampling season. 

  Gear 

Cost expenditure  Benthic SN  LT glow-stick LT LED Surface SN  

Collection $15.58  $31.15  $31.15  $15.58  

Processing $24.33  $5.19  $6.17  $25.31  

Fixative $1.07  $0.35  $0.35  $1.09  

Expert ID $50.00  $50.00  $50.00  $50.00  

Preservative $3.20  $1.08  $1.06  $3.28  

Total Cost $94.18  $87.77  $88.73  $95.26  
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Figure 35. Milliliters of fixative used by the light trap glow stick (Glow), LED and the 
slednet surface and benthic ichthyoplankton sampling gear during the 2015 sampling 
on the Minnesota. Whiskers extend to the extremes of the ml used, lines represent 
the median of ml and the dots represent the means. 
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Average operational and labor expense per sample for the 2015 sampling season 

within the Minnesota River were similar. The LT average cost was $88.25 per sample, 

while the SN average cost was $94.72 per sample. Within a gear type (e.g., LT glow-stick 

and LT LED) very little difference existed (~$1.00; Table 33). 

Discussion 

Managing bodies of the natural resources have begun to support monitoring 

ichthyoplankton and provided new opportunities to obtain extensive data sets on this 

life stage. However, sampling ichthyoplankton is inherently difficult, time consuming 

and expensive (U.S. Fish and Wildlife Service 1992). The cost analyses in this study took 

data from one year of ichthyoplankton sampling of the Minnesota River, quantified 

initial investment and cost of operations of those gears to evaluate the cost 

effectiveness of four ichthyoplankton sampling gears. 

If one were to start an ichthyoplankton monitoring program, initial investment of 

SN would be higher compared to a LT. However, rarely is a single LT deployed for use in 

a sampling design. Increasing the initial number of LTs to the number traps in this study 

(N=10), initial investment would have been $536.50. Additionally, modification could be 

made to the SN sounding weight system, reducing initial cost. The sounding weight 

system made up 70% of the total cost of the SN. Substitute sounding weights for more 

inexpensive weights, (i.e., downrigger weights) initial cost could be around $811.30. The 

weight system would than only make up 15% of the total cost of the net, reducing the 



152 
 
initial cost by 65%, and decrease initial difference between the two gears to $274. That 

is less than the labor expenses for collecting light trap samples. 

However, initial startup cost, makes up a minor portion to monitoring and 

further considerations need to be taken. Sixty to seventy percent of a budget for a long 

term monitoring is spent on data collection (Burk 2005) placing more emphasis and 

importance on the operational cost of each gear during monitoring. Mean cost per 

sample differences among gear types were minimal (<10%). Nevertheless, on average, 

the surface SN cost most per sample, followed by the benthic SN, the LT glow-stick and 

the LT LED. 

The majority (>50%) of the operational expense for all gears came from the cost 

of expert identification for all gears. Training individuals to become proficient at 

ichthyoplankton identification initially may be more costly than having an expert 

identify the samples. But, once proficient, should reduce the overall cost of the long-

term monitoring program, by reducing total cost for identification.  

Of the remaining costs, excluding cost of expert identification, expenses were 

inquired differently between the SN and LT. Light trap labor expenses for collecting a 

sample was double that of the SN. As in this study LT samples required two trips, were 

SN samples required only one. However, the SN labor processing a sample, fixing, and 

preserving a sample require nearly three times that of a LT sample.  



153 
 

Changing the sampling protocol, to limit LT sampling time to one day, allowing 

samples to be collected with a single trip,  would minimize field labor cost for the LT 

inquired in the field making it more economical. However, this potentially could 

negatively affect an already low catch rate of larval fish. Additionally, shortening 

filtration time or tow distance  of the SN would reduce the amount of water filtered and 

should theoretically reduce labor cost for processing sample and cost in fixing and 

preserving as less material would be sampled. However, again this could negatively 

affect catch rates of larvae. The reduced catch in larvae would decrease the ecological 

merit and statistical power of the data collected from those gears, increasing the 

likelihood that the monitoring may not meet its goals and objectives leading to failure. 

With initial cost of gear making up a small portion of budget for a long term 

monitoring program and  the similar operational costs among the gears during this 

study, it would appear negligible economic impacts over the life of a monitoring 

program would occur if one gear instead of the other were used. Schwanke and Hubert 

(2004) suggested that a combination of gears be utilized when creating a monitoring 

program. Hickford and Schiel (1999) made the recommendation for using LT and 

plankton nets when investigating the genera and density that were captured only. 

Economically, this appears to be a good pairing as well. As long as the same number of 

samples are collected whether one or multiple gears are used. The use of multiple gears 

has been found to remove some of the biases and overall variability (Poesch 2014) 



154 
 
creating a stronger and more ecologically relevant dataset. Multiple gears should 

provide managers a more ecologically relevant dataset that is statistically credible.  
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Appendices 

Appendix A. Mean crustaceous zooplankton (standard error in parentheses) community 
characteristics and abundances (number/liter) for taxa captured with the Wisconsin 
vertical trawl from the Minnesota River in 2014 and 2015 and among hydrologic periods 
[first ascending limb (period one), second ascending limb (period two), major 
descending limb (period three), steady state (period four)]. Reach type is noted in each 
table. Asterisk (*) indicated taxa present but sampled in mean densities <0.01 
individuals per liter.   

Impaired             

 Year Survey Period 

 2014 2015 1 2 3 4 

Variable/Taxon n=100 n=140 n=30 n=40 n=20 n=30 
Mean Total abundance 0.93(0.09) 0.24(0.04) 0.63(0.14) 0.23(0.04) 1.03(0.18) 0.47(0.06) 
Mean total taxa richness 6.22(0.29) 2.63(0.22) 3.81(0.53) 3.50(0.34) 6.6(0.66) 3.73(0.33) 
Bosmina. sp. 0.05(0.01) 0.01(0.01) 0.04(0.02) 0.02(0.01) 0.05(0.01) 0.03(0.01) 
Calanoida 0.03(0.01) 0.01(0.01) 0.03(0.01) 0.01(0.01) 0.03(0.01) 0.00(0.00)* 
Ceriodaphnia.sp. 0.03(0.02) 0.01(0.01) 0.06(0.03) 0.00(0.00)* 0.01(0.01) 0.01(0.01) 
Chydoridae 0.03(0.01) 0.02(0.01) 0.03(0.01) 0.03(0.01) 0.03(0.01) 0.00(0.00)* 
Cyclopoida 0.58(0.06) 0.05(0.01) 0.26(0.08) 0.08(0.02) 0.62(0.13) 0.31(0.06) 
Daphnia spp. 0.06(0.01) 0.02(0.01) 0.08(0.02) 0.02(0.01) 0.04(0.01) 0.01(0.01) 
Diaphanosoma.sp. 0.03(0.01) 0.00(0.00)* 0.03(0.01) 0.00(0.00)* 0.03(0.01) 0.00(0.00)* 
Moina. sp. 0.00(0.00)* 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00)* 0.00(0.00) 
Copepoda nauplii  0.05(0.01) 0.04(0.01) 0.06(0.01) 0.04(0.02) 0.09(0.02) 0.02(0.01) 
Ostracoda 0.05(0.01) 0.07(0.01) 0.05(0.01) 0.06(0.01) 0.11(0.02) 0.06(0.02) 
Pontoporeia sp. 0.00(0.00)* 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00) 
Sida crystallina 0.00(0.00)* 0.00(0.00)* 0.00(0.00) 0.00(0.00)* 0.00(0.00)* 0.00(0.00)* 
Simocephalus. sp. 0.02(0.01) 0.00(0.00) 0.00(0.00)* 0.00(0.00) 0.00(0.00) 0.02(0.01) 
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Appendix A Continued.  

Unassessed             

 Year Survey Period 

 2014 2015 1 2 3 4 
Variable/Taxon n=100 n=140 n=30 n=40 n=20 n=30 
Mean Total abundance 1.07(0.33) 0.27(0.03) 1.44(0.53) 0.29(0.03) 0.53(0.21) 0.26(0.05) 
Mean total taxa richness 3.35(0.25) 2.71(0.19) 2.76(0.39) 2.98(0.21) 3.63(0.37) 2.76(0.30) 
Bosmina sp. 0.05(0.02) 0.02(0.01) 0.07(0.03) 0.01(0.01) 0.01(0.01) 0.03(0.02) 
Calanoida 0.04(0.01) 0.01(0.01) 0.05(0.02) 0.02(0.01) 0.02(0.01) 0.01(0.01) 
Ceriodaphnia. sp. 0.01(0.01) 0.00(0.00)* 0.01(0.01) 0.00(0.00)* 0.01(0.01) 0.00(0.00)* 
Chydoridae 0.02(0.01) 0.01(0.01) 0.00(0.00)* 0.01(0.01) 0.04(0.2) 0.02(0.01) 
Cyclopoida 0.80(0.28) 0.07(0.02) 1.11(0.44) 0.13(0.03) 0.31(0.22) 0.04(0.01) 
Daphnia spp. 0.01(0.01) 0.01(0.01) 0.01(0.01) 0.00(0.00)* 0.01(0.01) 0.00(0.00)* 
Diaphanosoma sp. 0.00(0.00)* 0.00(0.00)* 0.00(0.00)* 0.00(0.00)* 0.00(0.00)* 0.00(0.00) 
Moina. sp. 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00) 
Copepoda nauplii  0.09(0.03) 0.02(0.01) 0.09(0.04) 0.04(0.01) 0.02(0.02) 0.04(0.01) 
Ostracoda 0.04(0.02) 0.14(0.02) 0.09(0.03) 0.08(0.01) 0.11(0.02) 0.12(0.03) 
Pontoporeia sp. 0.00(0.00)* 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00)* 
Sida crystallina 0.01(0.01) 0.00(0.00)* 0.00(0.00)* 0.00(0.00)* 0.00(0.00) 0.00(0.00)* 
Simocephalus sp. 0.00(0.00)* 0.00(0.00)* 0.00(0.00) 0.00(0.00)* 0.01(0.01) 0.00(0.00)* 
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Appendix B. Mean rotifer (standard error in parentheses) community characteristics and 
abundances for taxa captured (number/liter) with the Wisconsin vertical trawl from the 
Minnesota River in 2014 and 2015 and among hydrologic periods [first ascending limb 
(period one), second ascending limb (period two), major descending limb (period three), 
steady state (period four)]. Reach type is noted in each table. Asterisk (*) indicated taxa 
present but sampled in mean densities <0.01 individuals per liter   

Impaired             

 Year Survey Period 

 2014 2015 1 2 3 4 
Variable/Taxon n=100 n=140 n=30 n=40 n=20 n=30 
Mean Total abundance 0.95(0.40) 0.20(0.03) 0.12(0.03) 0.08(0.02) 2.61(0.88) 0.07(0.02) 
Mean total taxa richness 1.14(0.17) 2.55(0.23) 1.33(0.28) 1.98(0.31) 3.55(0.34) 1.4(0.21) 
Anuraeopsis sp. 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00)* 0.00(0.00) 0.00(0.00) 
Ascomorpha sp. 0.76(0.33) 0.01(0.01) 0.03(0.01) 0.01(0.01) 2.02(0.76) 0.03(0.01) 
Asplanchna sp. 0.00(0.00) 0.00(0.00) 0.04(0.02) 0.02(0.01) 0.07(0.03) 0.02(0.01) 
Collotheca sp. 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.01(0.01) 0.01(0.01) 0.00(0.00)* 
Conochilus sp. 0.00(0.00) 0.00(0.00)* 0.00(0.00) 0.01(0.010 0.01(0.01) 0.00(0.00)* 
Filinia sp. 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00)* 0.00(0.00) 0.00(0.00) 
Gastropus sp. 0.00(0.00)* 0.00(0.00) 0.00(0.00)* 0.00(0.00) 0.00(0.00) 0.00(0.00)* 
Hydra 0.00(0.00)* 0.01(0.01) 0.01(0.01) 0.00(0.00)* 0.00(0.00)* 0.00(0.00)* 
Hydracarina 0.03(0.02) 0.00(0.00)* 0.01(0.01) 0.00(0.00) 0.05(0.04) 0.00(0.00)* 
Keratella sp. 0.02(0.02) 0.00(0.00)* 0.00(0.00)* 0.00(0.00)* 0.05(0.05) 0.00(0.00)* 
Lecane sp. 0.00(0.00)* 0.01(0.01) 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00)* 
Monstyla sp. 0.11(0.06) 0.01(0.01) 0.01(0.01) 0.01(0.01) 0.27(0.14) 0.00(0.00)* 
Notholca sp. 0.00(0.00) 0.00(0.00) 0.00(0.00)* 0.00(0.00)* 0.01(0.01) 0.00(0.00)* 
Synchaeta sp. 0.02(0.01) 0.00(0.00)* 0.00(0.00) 0.01(0.01) 0.05(0.04) 0.01(0.01) 
Trichocerca sp. 0.02(0.02) 0.00(0.00) 0.01(0.01) 0.00(0.00)* 0.06(0.05) 0.00(0.00)* 

 

  



171 
 
Appendix B continued.  

Unassessed             

 Year Survey Period 

 2014 2015 1 2 3 4 
Variable/Taxon n=100 n=140 n=30 n=40 n=20 n=30 
Mean Total abundance 0.08(0.04) 0.11(0.01) 0.08(0.05) 0.11(0.02) 0.08(0.02) 0.11(0.03) 
Mean total taxa richness 0.96(0.16) 2.04(0.21) 0.59(0.14) 2.23(0.28) 1.84(0.41) 1.57(0.26) 
Anuraeopsis sp. 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00) 
Ascomorpha sp. 0.01(0.01) 0.07(0.02) 0.01(0.01) 0.02(0.01) 0.01(0.01) 0.03(0.01) 
Asplanchna sp. 0.00(0.00) 0.06(0.01) 0.00(0.00)* 0.02(0.01) 0.01(0.01) 0.02(0.01) 
Collotheca sp. 0.00(0.00) 0.01(0.01) 0.00(0.00) 0.00(0.00)* 0.00(0.00)* 0.00(0.00)* 
Conochilus sp. 0.00(0.00)* 0.01(0.01) 0.00(0.00) 0.01(0.01) 0.02(0.01) 0.01(0.01) 
Filinia sp. 0.00(0.00) 0.00(0.00)* 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00) 
Gastropus sp. 0.00(0.00) 0.00(0.00)* 0.00(0.00) 0.00(0.00) 0.00(0.00)* 0.00(0.00) 
Hydra 0.01(0.01) 0.00(0.00)* 0.00(0.00)* 0.02(0.01) 0.00(0.00) 0.00(0.00)* 
Hydracarina 0.01(0.01) 0.00(0.00)* 0.00(0.00)* 0.00(0.00) 0.01(0.01) 0.00(0.00)* 
Keratella sp. 0.00(0.00)* 0.00(0.00)* 0.00(0.00) 0.00(0.00)* 0.00(0.00) 0.00(0.00) 
Lecane sp. 0.04(0.03) 0.01(0.01) 0.06(0.06) 0.00(0.00) 0.01(0.01) 0.00(0.00)* 
Monstyla sp. 0.01(0.01) 0.01(0.01) 0.00(0.00)* 0.01(0.01) 0.00(0.00)* 0.01(0.01)* 
Notholca sp. 0.00(0.00) 0.01(0.01) 0.00(0.00) 0.00(0.00)* 0.01(0.01) 0.00(0.00) 
Synchaeta sp. 0.00(0.00)* 0.01(0.01) 0.00(0.00) 0.01(0.01) 0.00(0.00)* 0.02(0.01) 
Trichocerca sp. 0.00(0.00)* 0.01(0.01) 0.00(0.00) 0.00(0.00)* 0.00(0.00)* 0.00(0.00)* 
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Appendix C. Mean macroinvertebrate (standard error in parentheses) community 
characteristics and abundances for taxa captured from the Minnesota River in 2014 and 
2015 and among hydrologic periods [first ascending limb (period one), second ascending 
limb (period two), major descending limb (period three), steady state (period four)]. 
Gear specification, and reach type are noted in each table. Asterisk (*) indicated taxa 
present but sampled in mean relative densities per 100m3 <0.01 individuals for the 
slednet or <0.01 individuals per trap night. 

Slednet       

Impaired       

  Year Survey Period 

 2014 2015 1 2 3 4 
Variable/Taxon n=50 n=70 n=30 n=40 n=20 n=30 

Mean total relative 
abundance 22.97(4.58) 27.19(4.19) 14.00(3.70) 45.17(6.77) 23.81(5.38) 5.54(1.31) 
Total taxa richness 4.06(0.38) 4.75(0.322) 2.66(0.35) 5.65(0.45) 5.1(0.47) 3.85(0.47) 
Amphipoda 0.09(0.03) 0.00(0.00)* 0.03(0.02) 0.00(0.00) 0.16(0.07) 0.03(0.02) 
Apidae 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00) 
Arachnida 0.14(0.07) 0.20(0.07) 0.06(0.03) 0.40(0.14) 0.07(0.03) 0.06(0.03) 
Coleoptera 0.26(0.09) 0.59(0.17) 0.08(0.03) 1.11(0.30) 0.28(0.12) 0.06(0.03) 
Collembola 0.00(0.00) 0.12(0.04) 0.17(0.07) 0.09(0.05) 0.00(0.00) 0.00(0.00) 
Diplopoda 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00) 
Diptera 7.78(1.52) 13.87(2.23) 9.28(2.39) 20.13(3.34) 9.81(2.60) 2.66(0.56) 

Ephemeroptera 1.28(0.29) 2.09(0.33) 0.43(0.16) 2.92(0.53) 2.91(0.49) 0.76(0.23) 

Entomobryomorpha 0.05(0.03) 0.00(0.00) 0.00(0.00) 0.05(0.03) 0.02(0.02) 0.00(0.00) 

Formicidae 0.00(0.00) 0.00(0.00)* 0.00(0.00) 0.00(0.00) 0.01(0.01) 0.00(0.00) 
Gastropoda 0.89(0.46) 5.82(1.13) 2.66(1.08) 8.68(1.76) 0.91(0.37) 0.22(0.12) 
Hemiptera 10.05(2.61) 0.52(0.19) 0.15(0.15) 8.10(2.37) 9.56(4.78) 0.44(0.37) 
Hirudinea 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00) 
Hydra 0.00(0.00) 0.05(0.03) 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.08(0.08) 
Hydracarina 1.88(0.47) 0.05(0.02) 0.08(0.03) 0.04(0.02) 3.75(0.97) 0.62(0.27) 
Hymenoptera 0.03(0.02) 0.33(0.17) 0.02(0.02) 0.11(0.10) 0.30(0.19) 0.44(0.37) 
Isopoda 0.00(0.00) 0.10(0.07) 0.00(0.00) 0.18(0.12) 0.00(0.00) 0.00(0.00) 
Lepidoptera 0.00(0.00) 0.01(0.01) 0.00(0.00) 0.02(0.02) 0.00(0.00) 0.00(0.00) 
Megaloptera 0.01(0.01) 0.00(0.00) 0.00(0.00) 0.01(0.01) 0.00(0.00) 0.00(0.00) 
Nematomorpha 0.02(0.02) 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.03(0.03) 
Nemertea 0.00(0.00) 0.05(0.03) 0.00(0.00) 0.08(0.05) 0.00(0.00) 0.00(0.00) 
Neuroptera 0.02(0.01) 0.00(0.00) 0.00(0.00) 0.01(0.01) 0.00(0.00) 0.01(0.01) 
Odonata 0.06(0.03) 0.05(0.03) 0.04(0.02) 0.12(0.05) 0.03(0.02) 0.01(0.01) 
Oligochaeta 0.02(0.01) 0.62(0.24) 0.03(0.03) 1.02(0.40) 0.06(0.05) 0.04(0.02) 
Plecoptera 0.05(0.02) 0.42(0.32) 0.77(0.73) 0.10(0.05) 0.15(0.07) 0.04(0.02) 
Trichoptera 0.36(0.08) 2.29(0.45) 0.22(0.07) 1.95(0.51) 3.45(1.12) 0.83(0.24) 
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Appendix C Continued.  

Slednet       

Unassessed       

  Year   Survey Period     

 2014 2015 1 2 3 4 

Variable/Taxon n=50 n=65 n=15 n=40 n=20 n=30 

Mean total relative 
abundance 14.06(6.94) 30.30(4.81) 12.81(3.41) 19.38(5.22) 48.75(13.64) 10.27(1.24) 
Total taxa richness 2.98(0.40) 5.66(0.29) 3.16(0.59) 3.63(0.51) 6.77(0.47) 4.20(0.32) 
Amphipoda 0.03(0.03) 0.27(0.15) 0.06(0.03) 0.40(0.23) 0.07(0.07) 0.02(0.02) 
Apidae 0.00(0.00) 0.01(0.01) 0.02(0.02) 0.00(0.00) 0.00(0.00) 0.00(0.00) 
Arachnida 0.14(0.07) 0.52(0.17) 0.23(0.09) 0.57(0.27) 0.17(0.06) 0.30(0.14) 
Coleoptera 0.28(0.17) 0.54(0.16) 0.65(0.33) 0.33(0.14) 0.82(0.43) 0.09(0.05) 
Collembola 0.00(0.00) 0.56(0.21) 0.00(0.00) 0.23(0.10) 0.97(0.62) 0.27(0.14) 
Diplopoda 0.00(0.00) 0.02(0.01) 0.00(0.00) 0.00(0.00) 0.04(0.04) 0.01(0.01) 
Diptera 8.54(4.94) 17.49(3.65) 7.38(1.54) 12.82(2.58) 33.96(15.73) 6.24(1.01) 
Ephemeroptera 2.23(0.70) 1.71(0.31) 0.52(0.03) 1.27(0.28) 5.83(1.62) 1.40(0.21) 
Entomobryomorpha 0.01(0.01) 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.03(0.03) 0.00(0.00) 
Formicidae 0.00(0.00) 0.03(0.03) 0.00(0.00) 0.00(0.00) 0.09(0.09) 0.00(0.00) 
Gastropoda 0.46(0.24) 5.16(1.32) 2.66(1.40) 6.26(1.96) 1.94(0.58) 0.09(0.05) 
Hemiptera 0.93(0.58) 0.53(0.14) 0.27(0.13) 0.49(0.21) 2.30(1.41) 0.28(0.08) 
Hirudinea 0.00(0.00) 0.03(0.02) 0.00(0.00) 0.04(0.02) 0.00(0.00) 0.00(0.00) 
Hydra 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00) 
Hydracarina 0.13(0.04) 0.09(0.03) 0.10(0.05) 0.05(0.03) 0.27(0.08) 0.08(0.04) 
Hymenoptera 0.03(0.03) 0.62(0.36) 0.00(0.00) 0.45(0.20) 1.13(1.11) 0.04(0.03) 
Isopoda 0.00(0.00) 0.01(0.01) 0.00(0.00) 0.00(0.00) 0.04(0.04) 0.00(0.00) 
Lepidoptera 0.00(0.00) 0.01(0.01) 0.00(0.00) 0.00(0.00) 0.02(0.02) 0.00(0.00) 
Megaloptera 0.05(0.05) 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.14(0.14) 0.00(0.00) 
Nematomorpha 0.00(0.00) 0.03(0.01) 0.00(0.00) 0.02(0.02) 0.04(0.04) 0.00(0.00) 
Nemertea 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00) 
Neuroptera 0.04(0.03) 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.09(0.07) 0.00(0.00) 
Odonata 0.02(0.01) 0.10(0.04) 0.10(0.05) 0.04(0.04) 0.10(0.07) 0.04(0.03) 
Oligochaeta 0.02(0.01) 0.38(0.15) 0.14(0.07) 0.34(0.14) 0.43(0.38) 0.00(0.00) 
Plecoptera 0.09(0.06) 0.10(0.04) 0.08(0.08) 0.08(0.04) 0.06(0.05) 0.16(0.10) 
Trichoptera 1.05(0.27) 2.10(0.43) 0.59(0.22) 1.94(0.60) 2.98(0.88) 1.24(0.17) 
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Appendix C Continued. 

Light trap       

Impaired       

  Year Survey Period 

 2014 2015 1 2 3 4 

Variable/Taxon n=50 n=65 n=26 n=36 n=20 n=30 

Total abundance 16.18(2.84) 11.24(4.38) 5.04(0.99) 17.11(7.26) 18(3.61) 3.30(0.79) 
Total taxa richness 2.6(0.22) 2.09(0.15) 1.92(0.25) 2.38(0.24) 2.7(0.22) 1.6(0.27) 
Amphipoda 0.12(0.05) 0.05(0.04) 0.00(0.00) 0.05(0.04) 0.18(0.08) 0.00(0.00) 
Arachnida 0.00(0.00) 0.02(0.02) 0.00(0.00) 0.03(0.03) 0.00(0.00) 0.00(0.00) 
Coleoptera 0.02(0.02) 0.11(0.06) 0.08(0.08) 0.16(0.08) 0.00(0.00) 0.00(0.00) 
Diptera 2.88(0.78) 3.46(0.76) 4.42(0.56) 5.16(1.09) 2.63(1.05) 0.30(0.21) 
Ephemeroptera 3.38(0.63) 5.76(4.26) 0.58(0.26) 10.49(7.22) 2.95(0.74) 1.10(0.31) 
Entomobryomorpha 0.00(0.00) 0.17(0.09) 0.42(0.22) 0.00(0.00) 0.00(0.00) 0.00(0.00) 
Gastropoda 0.00(0.00) 0.02(0.02) 0.00(0.00) 0.03(0.03) 0.00(0.00) 0.00(0.00) 
Hemiptera 0.16(0.08) 0.16(0.07) 0.15(0.11) 0.03(0.03) 0.33(0.12) 0.00(0.00) 
Hydracarina 0.06(0.03) 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.08(0.04) 0.00(0.00) 
Hymenoptera 0.02(0.02) 0.00(0.00) 0.04(0.04) 0.00(0.00) 0.00(0.00) 0.00(0.00) 
Nemertea 0.06(0.03) 0.00(0.00) 0.04(0.04) 0.03(0.03) 0.03(0.03) 0.00(0.00) 
Odonata 0.06(0.03) 0.02(0.02) 0.04(0.04) 0.03(0.03) 0.05(0.03) 0.00(0.00) 
Oligochaeta 0.1(0.06) 0.02(0.02) 0.08(0.08) 0.08(0.06) 0.03(0.03) 0.00(0.00) 
Plecoptera 0.02(0.02) 0.11(0.04) 0.15(0.07) 0.05(0.04) 0.03(0.03) 0.10(0.10) 
Trichoptera 9.3(2.46) 1.35(0.26) 1.04(0.39) 0.97(0.32) 11.73(2.95) 1.80(0.68) 
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Appendix C Continued. 

Light trap       

Unassessed       

  Year Survey Period 

 2014 2015 1 2 3 4 

Variable/Taxon n=50 n=66 n=27 n=39 n=20 n=29 

Total abundance 14.06(6.94) 11.25(1.79) 6.37(1.30) 11.73(2.82) 8.85(1.69) 7.41(1.56) 
Total taxa richness 1.82(0.17) 2.63(0.14) 1.74(0.26) 2.58(0.20) 2.6(0.23) 3.57(0.24) 
Amphipoda 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00) 
Arachnida 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00) 
Coleoptera 0.06(0.05) 0.15(0.05) 0.07(0.05) 0.18(0.07) 0.10(0.07) 0.07(0.07) 
Diptera 0.92(0.29) 3.18(0.62) 2.30(0.65) 3.90(0.97) 0.90(0.31) 0.79(0.19) 
Ephemeroptera 2.04(0.37) 5.25(1.74) 0.44(0.19) 6.13(2.73) 3.65(0.70) 4.21(1.45) 
Entomobryomorpha 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00) 
Gastropoda 0.00(0.00) 0.03(0.02) 0.00(0.00) 0.00(0.00) 0.10(0.07) 0.00(0.00) 
Hemiptera 0.08(0.04) 0.06(0.040 0.00(0.00) 0.10(0.06) 0.10(0.07) 0.07(0.05) 
Hydracarina 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00) 
Hymenoptera 0.06(0.03) 0.00(0.00) 0.00(0.00) 0.05(0.03) 0.05(0.05) 0.00(0.00) 
Nemertea 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00) 
Odonata 0.06(0.03) 0.04(0.03) 0.00(0.00) 0.03(0.03) 0.15(0.08) 0.00(0.00) 
Oligochaeta 0.00(0.00) 0.03(0.02) 0.04(0.04) 0.00(0.00) 0.05(0.05) 0.07(0.05) 
Plecoptera 0.06(0.03) 0.22(0.08) 0.48(0.20) 0.10(0.05) 0.00(0.00) 0.03(0.03) 
Trichoptera 2.41(0.63) 2.28(0.42) 3.07(0.97) 1.25(0.25) 3.75(1.22) 2.17(0.59) 
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Appendix D. Mean ichthyoplankton (standard error in parentheses) community 
characteristics and abundances for taxa captured from the Minnesota River in 2014 and 
2015. Gear specification, and reach type are noted in each table. Asterisk (*) indicated 
taxa present but sampled in mean densities <0.01 individuals per liter. 

Slednet       

Impaired       

  Year Survey Period 

 2014 2015 1 2 3 4 
Variable/Taxon n=50 n=70 n=30 n=40 n=20 n=30 
Mean relative abundance 0.32(0.06) 0.39(0.12) 0.20(0.08) 0.35(0.07) 0.34(0.12) 0.55(0.27) 
Total taxa richness 0.58(0.10) 0.49(0.09) 0.30(0.11) 0.60(0.11) 0.75(0.19) 0.50(0.15) 

Amia calva 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00) 
Aplodinotus sp. 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00) 
Carpiodes spp. 0.16(0.05) 0.04(0.02) 0.14(0.06) 0.11(0.04) 0.09(0.04) 0.02(0.02) 
Catostomus sp. 0.02(0.02) 0.00(0.00) 0.00(0.00) 0.03(0.02) 0.00(0.00) 0.00(0.00) 
Cyprinella sp. 0.01(0.01) 0.10(0.10) 0.00(0.00) 0.02(0.01) 0.04(0.02) 0.24(0.22) 
Cyprinus sp. 0.03(0.01) 0.00(0.00) 0.02(0.02) 0.00(0.00) 0.00(0.00) 0.00(0.00) 
Dorosoma sp. 0.01(0.01) 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.02(0.02) 0.00(0.00) 
Etheostoma spp. 0.00(0.00) 0.01(0.01) 0.00(0.00) 0.01(0.01) 0.00(0.00) 0.02(0.02) 
Hybognathus sp. 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00) 
Ictiobus spp. 0.00(0.00) 0.05(0.02) 0.00(0.00) 0.07(0.03) 0.04(0.03) 0.00(0.00) 
Lepomis spp. 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00) 
Moxostoma spp. 0.00(0.00) 0.01(0.01) 0.00(0.00) 0.01(0.01) 0.00(0.00) 0.00(0.00) 
Notropis spp. 0.04(0.02) 0.11(0.05) 0.04(0.03) 0.06(0.03) 0.11(0.07) 0.15(0.09) 
Percina spp. 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00) 
Pimephales spp. 0.02(0.01) 0.04(0.02) 0.00(0.00) 0.00(0.00) 0.03(0.03) 0.09(0.04) 
Pomoxis spp. 0.03(0.02) 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.02(0.02) 0.03(0.03) 
Sander sp. 0.00(0.00) 0.00(0.00)* 0.00(0.00) 0.01(0.01) 0.00(0.00) 0.00(0.00) 
Scaphirhynchus sp. 0.00(0.00) 0.02(0.02) 0.00(0.00) 0.04(0.04) 0.00(0.00) 0.00(0.00) 
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Appendix D Continued. 

Slednet       

Unassessed       
  Year Survey Period 

 2014 2015 1 2 3 4 

Variable/Taxon n=50 n=65 n=30 n=40 n=20 n=30 

Total  mean relative abundance 0.39(0.12) 0.49(0.10) 0.03(0.03) 0.43(0.10) 0.78(0.26) 0.49(0.12) 
Total taxa richness 0.36(0.08) 0.63(0.12) 0.08(0.08) 0.53(0.10) 0.90(0.32) 0.60(0.12) 

Amia calva 0.00(0.00) 0.02(0.02) 0.00(0.00) 0.00(0.00) 0.05(0.05) 0.00(0.00) 
Aplodinotus sp. 0.00(0.00) 0.01(0.01) 0.00(0.00) 0.00(0.00) 0.02(0.02) 0.00(0.00) 
Carpiodes spp. 0.07(0.04) 0.08(0.04) 0.00(0.00) 0.21(0.09) 0.04(0.04) 0.00(0.00) 
Catostomus sp. 0.00(0.00) 0.00(0.00)* 0.00(0.00) 0.01(0.01) 0.00(0.00) 0.00(0.00) 
Cyprinella sp. 0.05(0.03) 0.05(0.03) 0.00(0.00) 0.01(0.01) 0.02(0.02) 0.14(0.05) 
Cyprinus sp. 0.00(0.00) 0.02(0.01) 0.02(0.02) 0.03(0.03) 0.02(0.02) 0.00(0.00) 
Dorosoma sp. 0.00(0.00) 0.01(0.01) 0.02(0.02) 0.00(0.00) 0.00(0.00) 0.00(0.00) 
Etheostoma spp. 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00) 
Hybognathus sp. 0.00(0.00) 0.01(0.01) 0.00(0.00) 0.01(0.01) 0.00(0.00) 0.00(0.00) 
Ictiobus spp. 0.00(0.00) 0.01(0.01) 0.00(0.00) 0.01(0.01) 0.00(0.00) 0.00(0.00) 
Lepomis spp. 0.06(0.03) 0.01(0.01) 0.00(0.00) 0.00(0.00) 0.04(0.03) 0.11(0.05) 
Moxostoma spp. 0.01(0.01) 0.04(0.02) 0.00(0.00) 0.07(0.03) 0.00(0.00) 0.00(0.00) 
Notropis spp. 0.09(0.07) 0.12(0.04) 0.00(0.00) 0.02(0.01) 0.44(0.20) 0.09(0.06) 
Percina spp. 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00) 
Pimephales spp. 0.04(0.03) 0.11(0.04) 0.00(0.00) 0.00(0.00) 0.15(0.07) 0.15(0.07) 
Pomoxis spp. 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.05(0.03) 0.00(0.00) 0.00(0.00) 
Sander sp. 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00) 
Scaphirhynchus sp. 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00) 
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Appendix D Continued.  

Light Trap       

Impaired       
  Year Survey Period 

 2014 2015 1 2 3 4 

Variable/Taxon n=50 n=65 n=26 n=36 n=20 n=30 

Mean abundance 0.44(0.29) 0.02(0.02) 0.04(0.04) 0.03(0.03) 0.05(0.05) 0.66(0.47) 
Total taxa richness 0.14(0.05) 0.02(0.02) 0.03(0.03) 0.03(0.03) 0.05(0.05) 0.16(0.07) 
Cyprinellus sp. 0.36(0.29) 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.60(0.47) 
Etheostoma spp. 0.02(0.02) 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.03(0.03) 
Ictiobus spp. 0.02(0.02) 0.00(0.00) 0.04(0.04) 0.00(0.00) 0.00(0.00) 0.00(0.00) 
Lepomis spp. 0.00(0.00) 0.02(0.02) 0.00(0.00) 0.00(0.00) 0.05(0.05) 0.00(0.00) 
Moxostoma spp. 0.02(0.02) 0.00(0.00) 0.00(0.00) 0.03(0.03) 0.00(0.00) 0.00(0.00) 
Percina  spp. 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.03(0.03) 
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Appendix D Continued. 

Light Trap       

Unassessed       
  Year Survey Period 

 2014 2015 1 2 3 4 

Variable/Taxon n=50 n=66 n=27 n=39 n=20 n=29 

Mean abundance 0.12(0.08) 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.05(0.05) 0.17(0.12) 
Total taxa richness 0.06(0.03) 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.05(0.05) 0.07(0.05) 
Cyprinellus sp. 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00) 
Etheostoma spp. 0.02(0.02) 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.05(0.05) 0.00(0.00) 
Ictioubus spp. 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00) 
Lepomis spp. 0.06(0.06) 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.10(0.10) 
Moxostoma spp. 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00) 
Percina  spp. 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.07(0.07) 
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