Minnesota State University, Mankato

Cornerstone: A Collection of Scholarly
and Creative Works for Minnesota
State University, Mankato

CORNERSTONE

Z MINNESOTA STATE UNIVERSITY Maxkato

All Graduate Theses, Dissertations, and Other Graduate Theses, Dissertations, and Other
Capstone Projects Capstone Projects
2016

Effects of Hydrology on the Growth and Recruitment of Stream
Fish in the Eastern Broadleaf Province of Minnesota

Eric J. Krumm
Minnesota State University Mankato

Follow this and additional works at: https://cornerstone.lib.mnsu.edu/etds

b Part of the Aquaculture and Fisheries Commons, Hydrology Commons, and the Natural Resources

Management and Policy Commons

Recommended Citation

Krumm, E. J. (2016). Effects of Hydrology on the Growth and Recruitment of Stream Fish in the Eastern
Broadleaf Province of Minnesota [Master’s thesis, Minnesota State University, Mankato]. Cornerstone: A
Collection of Scholarly and Creative Works for Minnesota State University, Mankato.
https://cornerstone.lib.mnsu.edu/etds/624/

This Thesis is brought to you for free and open access by the Graduate Theses, Dissertations, and Other Capstone
Projects at Cornerstone: A Collection of Scholarly and Creative Works for Minnesota State University, Mankato. It
has been accepted for inclusion in All Graduate Theses, Dissertations, and Other Capstone Projects by an
authorized administrator of Cornerstone: A Collection of Scholarly and Creative Works for Minnesota State
University, Mankato.


http://cornerstone.lib.mnsu.edu/
http://cornerstone.lib.mnsu.edu/
https://cornerstone.lib.mnsu.edu/
https://cornerstone.lib.mnsu.edu/
https://cornerstone.lib.mnsu.edu/
https://cornerstone.lib.mnsu.edu/etds
https://cornerstone.lib.mnsu.edu/etds
https://cornerstone.lib.mnsu.edu/theses_dissertations-capstone
https://cornerstone.lib.mnsu.edu/theses_dissertations-capstone
https://cornerstone.lib.mnsu.edu/etds?utm_source=cornerstone.lib.mnsu.edu%2Fetds%2F624&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/78?utm_source=cornerstone.lib.mnsu.edu%2Fetds%2F624&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1054?utm_source=cornerstone.lib.mnsu.edu%2Fetds%2F624&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/170?utm_source=cornerstone.lib.mnsu.edu%2Fetds%2F624&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/170?utm_source=cornerstone.lib.mnsu.edu%2Fetds%2F624&utm_medium=PDF&utm_campaign=PDFCoverPages

Effects of Hydrology on the Growth and Recruitment of Stream
Fish in the Eastern Broadleaf Province of Minnesota

By

Eric J. Krumm

A thesis submitted in partial fulfillment
of the requirements for the
Master of Science

Department of Biological Sciences
Minnesota State University, Mankato
2016



Effects of Hydrology on the Growth and Recruitment of Stream
Fish in the Eastern Broadleaf Province of Minnesota

Endorsement Date: 25 February 2016

This thesis, completed by Eric J. Krumm, has been examined and approved.

Committee

Dr. Shannon J. Fisher, Chair
Academic Advisor, Thesis Co-Advisor

Dr. Douglas Dieterman, Member
Thesis Co-Advisor

Dr. John Krenz, Member
Statistical/Research Design Advisor



ACKNOWLEDGMENTS

| would like to thank my advisor Dr. Shannon Fisher for giving me the
opportunity to pursue a Master’s degree at Minnesota State University, Mankato. His
knowledge of fisheries and willingness to lend an ear to a stressed out student aided me
in my struggle to finish my thesis. | also owe a great debt of gratitude to my co-advisor
Dr. Douglas Dieterman of the Minnesota Department of Natural Resources. How he was
able to put up with my numerous questions throughout the thesis writing process is
beyond me, and I'm glad he was able to take the time to help me revise and shape the
final product into something intelligible. A special thank you goes out to the staffs of
the Minnesota Department of Natural Resources Fisheries Offices in Lake City,
Montrose, and East Metro-Saint Paul for helping me with my fieldwork, and data
analyses. | am particularly indebted to John R. Hoxmeier for aiding me with fish ageing,
and to Daniel Spence for letting me crash at his house, thus avoiding the long commute
from Lake City back to Mankato five days a week. Additionally, | would like to thank Dr.

John Krenz, and David Staples for assistance with statistical matters.

Furthermore, | would like to thank Brett Nelson, Brady Swanson, and the rest of
my fellow graduate students at Minnesota State University, Mankato for the advice they
gave me throughout the thesis writing process. | also would like to thank the staff of the
Water Resources Center, particularly Diane Wiley, and Richard Moore, for helping me

with any formatting and technical issues.

Finally, | would like to thank my wife Jami Krumm, my parents, my sister Jenny,
and my family and friends back in the Driftless Area for giving me encouragement, and
putting up with me during a somewhat stressful time in my life. My wife was especially

forgiving of my ornery moods, and | could not have made it through without her.



ABSTRACT
Effects of Hydrology on the Growth and Recruitment of Stream

Fish in the Eastern Broadleaf Province of Minnesota

Eric J. Krumm

Master of Science Degree, Department of Biological Sciences
Minnesota State University, Mankato

2016

Agricultural practices and urban development have altered streamflows within
the Eastern Broadleaf Province of Minnesota. Stream-flow alteration can produce
significant changes in native freshwater communities. Therefore, knowledge of
streamflow effects on representative freshwater populations and communities within
the province are needed to maintain ecological integrity. Fish community and
population dynamics often display predictable responses to flow regimes, which can
make fishes model organisms for examining flow-ecology relationships.

In lotic systems, annual variation in streamflow can influence the annual growth
and recruitment of fishes. Understanding the growth and recruitment of fish
populations is essential for management and conservation efforts. Growth can affect
population size structure and sexual maturation, while recruitment can affect the
abundance, and genetic diversity of a population.

Recruitment was quantified using studentized residuals from weighted catch-
curve regressions as a measure of year-class strength. Relationships between annual
streamflow magnitude and variability and the recruitment of the three species of
interest were identified according to species-specific traits. | quantified the growth of
Smallmouth Bass Micropterus dolomieu, Rock Bass Ambloplites rupestris, and Northern

Hogsucker Hypentelium nigricans populations with mixed-effects growth models. Data



from streams exhibiting growth-year effects were used to examine relationships
between summer-high-flow duration and annual fish growth.

Little evidence was found for either long-term or short-term flow effects on
recruitment during the adult spawning or juvenile rearing periods. The recruitment of
nest-building and benthic-lithophilous fishes was not significantly related to long-term-
spawning-period flow magnitude for the majority (i.e., 10 of 14) of streams, and was not
significantly related to short-term-spawning-period flow magnitude at any of the 14
streams. Recruitment of fishes exhibiting cruiser, maneuverer, and benthic-hugger
locomotion morphologies was not significantly related to long-term-rearing-period flow
variability for the majority (i.e., 12 of 14) of streams, and was not related to short-term-
rearing-period flow variability for any of the 14 streams. Growth was attributed to age
and individual fish effects for 11 of the 28 fish populations among species. Most
populations that exhibited growth-year effects among streams did not show a
significant relationship between growth and the duration of summer-high flows (i.e., 4
of 11 populations).

Temperature regimes, as well as the timing, magnitude, and frequency of flows
may have contributed to differences in the annual recruitment and growth of fishes
among some of the streams in this study. However, minimal growth-year effects
observed at the majority of my streams suggest that biotic factors (e.g., fish age, genetic
differences) may play a large role in determining the growth rates of fishes within the

streams studied.
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BACKGROUND

A steady global population increase has led to freshwater resource conflicts and
has impacted facets of society, as well as aquatic ecosystems (Arthington et al. 2006).
Global climate change has further complicated matters by presenting new uncertainties
about the variability of river flows that could potentially lead to increased water-
engineering responses and escalating ecosystem stress (Arthington et al. 2006; Poff et
al. 2010). Until relatively recently, anthropogenic uses of freshwater resources often
took precedence over the water needs of aquatic ecosystems. However, there is now
broad acceptance that it is in society’s best interests to consider rivers (and other
freshwater systems) as legitimate users of fresh water (Postel and Richter 2003;
Arthington et al. 2006).

Methods designed to quantify minimum in-stream flows to sustain aquatic
ecosystems first appeared in the U.S. in the late 1940s, and remains a prevalent
technique for managing streamflow for riverine fisheries (O’Shea 1995; Arthington et al.
2006; Blann and Kendy 2012). However, owing to the advent of the “environmental
flows” scientific field, scientists now recognize that arbitrary minimum flows are
inadequate to maintain the structure and function of a riverine ecosystem.

Environmental flow prescriptions can be used to mimic natural flow variability
and can be defined as the quantity, timing, and quality of water flows required to
sustain freshwater and estuarine ecosystems (Poff et al. 2010). Environmental flow
methods that mimic the natural flow regime of a stream or river can be used to ensure
that considerable socioeconomic benefits already provided by sustainable freshwater
ecosystems are not lost and that degraded ecosystems are restored (Arthington et al.
2006; Poff et al. 2010).

Scientists can help water managers strike a balance between the water needs of
river ecosystems and human water demands by providing environmental flow
recommendations based on current, best available scientific information (Richter et al.

2006). To be effective, environmental flow recommendations must be explicit about



flow-ecology relationships that determine the amount and timing of water required
(Davies et al. 2013).

Fish community and population dynamics often display predictable responses to
flow regimes that can make fishes model organisms for examining flow-ecology
relationships (McManamay and Frimpong 2015). For example, the growth and
recruitment of many fish species has been shown to be positively related to high stream
flows corresponding to increased habitat and food availability in floodplain
environments (Gutreuter et al. 1999; King et al. 2003). By testing the transferability of
fish-flow relationships to individual rivers and streams, managers can make informed
decisions for the prescription of environmental flow targets (Richter et al. 2006).

After determining environmental flow targets based on fish responses; and/or
other biological responses to stream flows, an adaptive management approach can be
employed to monitor, evaluate, and make any necessary revisions to flow targets
(Richter et al. 2006; Davies et al. 2013). In essence, each environmental flow
prescription should be viewed as an experiment for which hypotheses can be developed
and tested to enable scientific refinement of environmental flow recommendations.
However, even in cases where an adaptive management process is not feasible due to
monetary constraints or conflicting stakeholder goals, flow-ecology relationships should
still be identified to make informed water management decisions (Richter et al. 2006).

In this study, | examined the effect of selected stream flow components on the
recruitment and growth of fishes in streams in the Eastern Broadleaf Province of
Minnesota. Many Minnesota waterways have been altered by anthropogenic factors,
such as surface and subsurface drainage systems, land use and land cover changes
(Lenhart et al. 2011). Alterations to natural streamflow patterns can put stress on
certain native stream fish populations, and lead to declines in their growth and
recruitment. Consequently, knowledge of the relationships between fish community
and population dynamics and streamflow are critical to the management of fisheries in

Minnesota’s rivers and streams (Blann and Kendy 2012).



CHAPTER | - FISH RECRUITMENT RESPONSES TO FLOW MAGNITUDE AND VARIABILITY
Introduction

Recruitment is one of the most important factors affecting fish populations
because it can influence abundance, size structure, and genetic composition (Cargnelli
and Gross 1996). Recruitment can be variously defined as the number of fish hatched or
born in any year that survive to various life stages, including reproductive size,
harvestable size, a particular size or age, or a size captured by a particular sampling gear
(Murphy and Willis 1996). Early life history stages corresponding to the first year of life
are especially critical for fish recruitment, since substantial natural mortality is common
during this interval (Ludsin and Devries 1997; Zanden et al. 1998; Garvey et al. 2002).

Two key time periods during a fishes’ first year can dictate recruitment in any
given year: the spawning and rearing periods (Craven et al. 2010). The spawning period
has often been defined as the time from the start of pre-spawning activity (e.g., adult
movement to spawning habitat, nest building behaviors) until hatched larvae reach a
free-swimming phase (DeAngelis et al. 1993). Adult fish body size, spawning habitat
availability, and changes in the physical environment can strongly influence larval fish
abundance at the end of the spawning time period (Chambers and Trippel 1997). The
rearing period can be considered to encompass the time between the free-swimming
larval phase until onset of winter (Nickelson 1992). Upon reaching the free-swimming
phase, larval fishes must find habitat with adequate food, which can also serve as refuge
from predators. The quality and quantity of available rearing habitat can be a limiting
factor for young-of-the-year fish survival (Schlosser 1995).

In lotic systems, fish recruitment has been linked to abiotic factors during both
the spawning and rearing time periods, particularly stream flows (Schlosser 1991; 1995).

Stream-flow conditions can provide negative or positive effects to fish recruitment.



For example, the timing of high flows during the spawning time period may serve as an
important environmental cue initiating adult fish spawning behaviors, whereas lack of
high flows may prohibit successful spawning (Schlosser 1991; Poff and Allan 1995). The
simple volume of water associated with differing streamflows, also defines the physical
habitat space available for rearing larval and over-wintering juvenile fishes in lotic
systems. Furthermore, temporal patterns in streamflow volume dictate longitudinal
and latitudinal access to spawning, nursery, and feeding habitats fundamental to
successful recruitment of stream fishes (Schlosser 1991; Poff and Allan 1995; Poff et al.
1997; Bunn and Arthington 2002; Mims and Olden 2012; 2013).

Different spawning strategies of adult fishes may interact with streamflows
during the spawning period affecting recruitment (Craven et al. 2010). Common
spawning strategies of stream fishes include nest-spawning, benthic-lithophil broadcast
spawning, and open-water-pelagophil broadcast spawning (Simon 1999). Prolonged
high stream flows during and immediately after spawning of nest-building and benthic-
lithophil fishes has been shown to negatively affect recruitment, due in part to nest
scouring, and egg and fry displacement (Jennings and Phillip 1994; Lukas and Orth 1995;
Weyers et al. 2003). Conversely, pelagophil-riverine fishes require prolonged high flows
during and immediately after spawning to keep eggs and larvae adrift until reaching the
free-swimming phase. The absence of high flows during and immediately after
spawning can cause drifting eggs and larval fishes to settle out of the water column onto
the substrate where they may be fatally buried by sediments (Durham and Wilde 2006;
Dudley and Platania 2007).

Another species trait that can mediate stream flow effects on fish recruitment is
locomotion morphology. Locomotion morphology is defined as the differential body
shapes and sizes observed among fishes as they relate to movement within their
environment. Goldstein and Meador (2004) identified six dominant locomotion
morphology types termed cruisers, accelerators, maneuverers, benthic-high-velocity

huggers, benthic-low-velocity creepers, and specialists. Fish species were classified into



these six dominant morphology types based on a descriptive body shape pattern and a
taxonomic identity representative of each locomotion morphology type. Body shape
descriptors and taxonomic archetypes for the six morphology types were cruisers
(torpedo; Salmonidae), accelerators (arrow; Esocidae), maneuverers (disk; Lepomis
spp.), benthic-high-velocity huggers (arched; Cottidae), benthic-low-velocity creepers
(teardrop; Ictaluridae), and specialists (elongate; Anguillidae). Locomotion morphology
can especially influence the response of age-0 stream fishes to high and variable flows
during the rearing period (Goldstein and Meador 2004; Craven et al. 2010). For
example, Craven et al. (2010) found that young-of-the-year (YOY; i.e., fishes born in a
particular reproductive year) fishes that exhibited cruiser locomotion morphology
(torpedo-shaped fishes) were more negatively influenced by discharge variability
relative to species with other swimming morphologies. Many species that display
cruiser-locomotion morphology inhabit the water column, which can make them more
vulnerable to high-magnitude spates and flashy flows (Craven et al. 2010). Similarly,
Bernardo et al. (2003) found that recruitment of Pumpkinseed Sunfish Lepomis
gibbosus, a species that displays maneuverer-locomotion morphology, was negatively
impacted by high-magnitude spates and flashy streamflows. Fish species that exhibit
maneuverer-locomotion morphologies are not adapted to maintain position in turbulent
currents and may be displaced to unfavorable areas (Bernardo et al. 2003).

Craven et al. (2010) examined hydrology effects on fish recruitment, as
measured through YOY fish density in the fall, for two flow time periods: short-term (10
day) and long-term (60 or 90 days). They found that short-term flow magnitude and
variability during spawning and rearing periods had stronger effects on fish recruitment
than long-term flow magnitude and variability. Specifically, Craven et al. (2010) found
strong fish recruitment in years when short-term flows were high during the spawning
period and less variable during the rearing period. Modeling results in Craven et al.
(2010) also found little support for long-term flow effects on stream fish recruitment.

However, Craven et al. (2010) noted that specific relationships between recruitment and



short term flow magnitude and variability were dependent on spawning strategies and
locomotion morphologies. For example, recruitment of broadcast spawning fishes
(including benthic lithophils) was negatively related to short-term high flows during the
spawning period whereas recruitment of cruiser morphology species was more
negatively related to short-term flow variation during the rearing period compared to
fishes with other locomotion morphologies.

In Minnesota, increases in land devoted to agricultural production and urban
development have altered stream hydrology (Lenhart et al. 2011; Blann and Kendy
2012). Due to agricultural practices such as subsurface tiling, large areas of southern
and central Minnesota have seen significant increases in mean annual flows, and most
median monthly flows, and a decrease in annual variability of flows (Lenhart et al. 2011;
Blann and Kendy 2012). The effects of these altered flows on stream fishes in
Minnesota are almost completely unknown. To assess effects of these altered flow
regimes on stream fish populations in Minnesota, water resource managers need tools
to predict how changes in flow regimes affect fishes (Lenhart et al. 2011; Blann and
Kendy 2012). Life history traits such as spawning strategies and locomotion morphology
types can exhibit predictable responses to stream flows that can aid development of
water management plans (Mims and Olden 2012; Peterson and Shea 2014).

Streams and rivers in central and southeastern Minnesota in the Eastern
Broadleaf Province support relatively high fish diversity in the state and include
important recreational fisheries, especially for Smallmouth Bass Micropterus dolomieu
(Thorn and Anderson 1999). Smallmouth Bass, Rock Bass Ambloplites rupestris and
Northern Hogsucker Hypentelium nigricans are three common stream fishes endemic to
this ecoregion that also represent contrasting spawning strategies and locomotion
morphologies. Smallmouth Bass are a nest-spawning species with cruiser-body
morphology. Rock Bass are another nest-spawning fish but exhibit maneuverer body
morphology. Northern Hogsuckers use a lithophilic spawning strategy where adults

deposit eggs over rock and gravel substrates and hatched larvae continue to hide



beneath coarse substrates with no parental care. Northern Hogsuckers represent
benthic-high-velocity-hugger body morphologies. Based on current literature, especially
findings in Craven et al. (2010) and Peterson and Shea (2014), several predictions can be
made regarding the likely effects of altered hydrology on fish recruitment in streams
and rivers in the Eastern Broadleaf Province of Minnesota (Table 1.1). To verify the
geographic transferability of these predictions, | tested associations between fish
recruitment and the magnitude, and variability of stream flows during spawning and
rearing time periods for fishes representing nest-building and lithophilic spawning
strategies and cruiser, maneuverer and benthic-hugger body morphologies. | predicted

that:

e recruitment of nest-building fishes would show positive relationships with short-
term spawning flow magnitude;

e recruitment of benthic lithophils would show a negative relationship with short-
term- spawning flow magnitude;

e long-term magnitude of streamflow would show no relationship with recruitment of
fishes regardless of spawning strategy during the spawning period;

e recruitment of fishes exhibiting cruiser and maneuverer morphologies would show a
negative relationship with short-term-rearing flow variability;

e recruitment of fishes exhibiting cruiser morphology would show a negative
relationship with long term flow variability during the rearing period;

e maneuverer recruitment would show no relationship with long-term-rearing flows;

e and recruitment of fish with benthic-hugger morphology would show no relationship

with long- or short-term-flow variability during the rearing period.
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Study Area

The Eastern Broadleaf Province in Minnesota extends in a northwest direction
from the extreme southeast through the central portion of the state, and serves as a
transitional zone between the prairie to the west and the mixed coniferous-deciduous
forest to the northeast (Figure 1.1). Topography varies from level to rolling plains in the
northwest and central portions to steep blufflands bordering the Mississippi River in the
southeast. Row crop agriculture is one of the major land uses in the province
(Minnesota Department of Natural Resources 2006). It is also home to a majority of
Minnesotans, as it includes the urban and suburban areas of Minneapolis and St. Paul,
and other regional centers like St. Cloud and Rochester.

To test associations between fish recruitment and selected hydrologic variables, |
randomly selected study sites representative of streams and rivers within the Eastern
Broadleaf Province that were publicly accessible. To ensure representative hydrologic
data, | only selected sites within 50 river km of an adequate hydrologic gage. A gage
was considered adequate if it had discharge data for the years 2000-2012 and a major
dam was not located between the gage and study site. Discharge records from 2000-
2012 were required so that all age classes of fishes captured in this study (see below)
were encompassed within the hydrologic period of interest. Gages that had a dam
between them and the site of interest were discounted, because dams often alter
hydrology (Braatne et al. 2008). In certain cases when more than one site was randomly
selected on a particular river or stream within 50 river km, and not separated by a dam,
fish recruitment data from those sites were combined to better represent the fish
population. A total of 17 sites on eight rivers fit the established criteria. Six sites were
combined with a nearby site, resulting in 11 individual study rivers or streams (Table

1.2).
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Methods

Fishes were sampled from June to September in 2012 and 2013 when streams
were near baseflow conditions to expedite representative sampling of all lotic habitats
present. Sampling distance for wadeable and non-wadeable stream sites were based on
recommendations in Lyons (1992), and Lyons et al. (2001) to ensure sampling of most
microhabitats. Wadeable streams were sampled for a distance of 35 times the mean
stream width using a three-anode-tow-barge electrofisher. A single pass upstream was
completed at each site. On non-wadeable rivers, fishes were sampled with a two-
anode-4.3 m mini boom electrofisher, using a standardized sampling distance of 1,600
m. Boat electrofishing was conducted in a downstream manner with the current. All
sampling was done in a zig-zag pattern using pulsed DC current, with net mesh sizes of
17 mm. To increase sample size at some sites, supplemental sampling was conducted to
acquire more target fishes. Captured fishes were counted, measured (nearest 1.0-mm
TL), and had species-specific structures taken to facilitate aging. Sagittal otoliths were
used to age Smallmouth Bass and Rock Bass, while pectoral fin rays were used to age
Northern Hogsucker (Maceina and Sammons 2006; Reid 2007).

Procurement of pectoral fin rays from Northern Hogsucker was possible without
the need to sacrifice fish, but euthanasia was necessary to obtain sagittal otoliths from
most Smallmouth Bass and Rock Bass. Fishes were euthanized by immersion in an
overdose of MS-222 (tricaine-methanesulfonate; 250-500 mg/L; Topic-Popovic et al.
2012). Some fishes were spared at sites where it was determined that sacrificing all
bass might decimate the local population, or where | collected more than 100
individuals. For sites where otoliths were not collected for all bass, an age-length key
was developed and used to determine ages for spared fishes (Devries and Frie 1996).
Aged fishes from each stream site were considered representative of the age structure
of the population.

An Olympus (Unitron z850) dissecting and Leica (DM750) compound microscope

were used to age fishes. Sagittal otoliths were aged in whole-view, and annuli were
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identified and counted, starting at the focus (center of otolith) to the anterior edge (Sipe
and Chittenden 2001). Pectoral fin rays were sectioned with a low speed diamond saw
(Buehler Isomet, Buehler Inc., Lake Bluff, IL) prior to being aged. To prevent fracturing
during cutting, fin rays were embedded in epoxy resin. As with sagittal otoliths, annuli
of pectoral fin rays were identified and counted, starting at the focus and proceeding to
the outer edge (Mills and Chalanchuk 2004). Two independent readers were used to
age fishes. If the two readers did not agree on the age of a particular fish, the fish was
not used in the study.

To quantify recruitment | used a catch-curve method (Maceina 1997; Maceina
and Pereira 2007). Maceina and Pereira (2007) used studentized residuals from
weighted linear catch-curve regressions as a measure of recruitment variability in fish
populations, where negative and positive residuals represent weak and strong year-
classes, respectively. An advantage of using the weighted catch-curve method as
described by Maceina and Pereira (2007) is that inferences about past recruitment can
be secured from a single sample year, rather than requiring multiple years of relative
abundance data. The method assumes that fishes were aged accurately, that mortality
was constant among age groups, and requires identification of the first age group that
was fully recruited to the sampling gear as well as the oldest age group adequately
captured by the sampling gear. Recruitment estimates only apply to age groups fully
recruited and adequately captured by the sampling gear. The age at which fishes were
fully recruited to a population was based on a catch-curve histogram assessment across
all stream sites for each species of interest (Allen and Hightower 2010).

Based on age-frequency histograms, Smallmouth Bass and Rock Bass were
considered to be recruited to the electro-fishing gear at age 1 (Figures 1.2 and 1.3), and
Northern Hogsuckers were considered to be recruited to the electro-fishing gear at age
4 (Figure 1.4). To determine the oldest age group adequately captured by the sampling

gear | used criteria from Isermann et al. (2002).



14

"€T0C pue ¢10¢
JO Jaquwialdas-aunr woJj pajdwes e10S3UUIA JO DIUIAOIJ jedjpeoug uiaise] ayl
Ul SIS wealls g ssosoe weudolsiy Aouanbauy 93e sseg yinow|jews "z T 34n3i4

sse|) aby

S &£ o0
I IR Y ,,a%m, @@mm, f@m&, @%@ @mﬁ A%w p@@ e%m, z@%

| | | | | | | | | 1 | | | _“_

_|_|__|_|

0z

Aausnbald sse|) aby

- 00k

- DEL



15

"€T0Z pue ZT0T 40 Jaquiardas-aunf wouj pajdwes e10Sauul|A JO 32UINOIJ jed|peo.g
uJ315e3 33 Ul S9MS Wealls G ssodoe weaSo1siy Aduanbauy ade sseg ooy "€'T a4nsi4

sse) aby
La8by gaby gaby peby geby gzaby | aby

- 0
- 02
g
oy ©
0y
L7
L7
d
@
- 09 2
(D
30
Ly
e
- 08

0oL



16

gaby 4 aby

g aby

g aby

i aby

¢ aby

z aby

| 2By

"€T0¢
pue z10¢ 40 Jaqwaidas-auns woJj pajdwes BJ0SaUUIA JO SDUINOIJ Jed|peolq uiaise]

3Y3 Ul J9AIY 100Y 9y} 40} weadoisiy Aduanbaly a8e 49yons30H ulayoN ‘v'T 24n3i4
sse|) aby

[ |

]

- Ok

— 0¢

- 0t

or

Aousnbald sse|n sby



17

Isermann et al. (2002) recommended only including age groups in a recruitment index
calculation if a minimum of two fish per age-class were collected. Age classes with less
than two individuals could be included only if subsequent year classes included more
than two fish, or subsequent age classes were not represented in the sample.

Total recruitment variation among streams was measured using the recruitment
coefficient of determination (RCD) method developed by (Isermann et al. 2002). The
RCD is based on r? values from a weighted catch curve and ranges from 0-1, with values
closer to one indicative of more stable recruitment. The RCD assumes that total
mortality acts as a negative exponential and is equal among age classes (Isermann et al.
2002). A minimum sample size of 20 fully recruited fish was used to make recruitment
estimates among stream sites to allow for the inclusion of low density populations. A
minimum of four year-classes per population was also required, as the studentized
residuals from catch-curves heavily skewed values (values were either 1 or -1) when
calculated with less than four year classes.

To identify the specific spawning and rearing periods to facilitate calculation of
hydrologic indices for the three fish species in this study, | consulted regional taxonomy
references (Becker 1983; Pflieger 1997). Based on these sources, the spawning time
period was defined as the interval from April-May for Northern Hogsucker and May-
June for Smallmouth Bass and Rock Bass. Rearing periods for Smallmouth Bass and Rock
Bass were defined as the interval from July-November, while the Northern Hogsucker
rearing period was set as June-November.

To quantify inter-annual differences in magnitude and variability of stream flows,
daily discharge data near sampling sites was obtained from the U.S. Geological Survey’s

National Water Information System Website (http://waterdata.usgs.gov/mn/nwis/rt),

and hydroelectric dam data from county databases. Hydrologic variables representing
short-term and long-term variation in magnitude and variability of streamflow were
calculated for spawning, and rearing periods with the aid of Indicators of Hydrologic

Alteration Software (The Nature Conservancy 2009; Table 1.3).


http://waterdata.usgs.gov/mn/nwis/rt
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Short-term hydrologic variables were defined as intervals of seven days because the
Indicators of Hydrologic Alteration software recommends seven-day intervals to define
ecologically relevant short-term time periods.

The short-term flow magnitude was determined by first calculating the mean
daily flow for each seven-day interval in each spawning, and rearing period. For
example, for a spawning-time period from May 1-June 30 a mean flow was calculated
for each consecutive seven-day interval (e.g. May 1 — May 7; May 8 — May 15; etc.,).
The seven-day interval with the highest mean value was the seven-day flow magnitude
value used. To calculate short-term-flow variability, the seven-day interval with the
lowest mean value was selected and the coefficient of dispersion was calculated for
those seven days.

The rationale for using the seven-day period with the lowest mean flow was that
the time period when flows were at their lowest would be expected to have the
greatest impact (i.e., the least amount of habitat volume available) to fishes if flows
fluctuated substantially. Long-term hydrology variables encompassed an entire period
of interest (i.e., all days within each spawning, and rearing period). The median daily
flow over all days within each spawning time period constituted the long-term
magnitude flow values. The coefficient of dispersion was then calculated across all the
days within each rearing time period and used to characterize the long-term flow
variability.

To test associations between fish recruitment and hydrology variables, | used
univariate-least-squares regression. For each fish species, regressions were developed
and tested independently for each of the 12 streams to further assess spatial
repeatability of predictions. Years were replicates in all regressions. Dependent
variables were the inter-annual recruitment estimates (i.e., inter-annual studentized
residual values from catch-curve regressions). Independent variables were the inter-
annual values for short-term-flow magnitude, long-term-flow magnitude, short-term-

flow variability, and long-term-flow variability. A Shapiro-Wilk test was used to
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determine data normality, and a Breusch-Pagan test was used to examine the constant
variance assumptions for each regression analysis. An alpha value of 0.10 was chosen to
determine statistical significance. | deviated from a typical alpha value of 0.05 to
identify additional biologically significant relationships that may be present at alpha
values between 0.05 and 0.10. A Bonferroni correction was implemented to maintain
the experiment-wide alpha value of 0.10. All regressions were performed using R 3.1.3

statistical software (R Core Team 2015).

Results

A total of 466 Smallmouth Bass, 295 Rock Bass, and 196 Northern Hogsuckers
were captured across the 11 stream sites. Smallmouth Bass were captured at all 11
sites, but the minimum of 20 fish fully recruited to the gear was only obtained at eight
sites. The highest numbers of Smallmouth Bass were captured at the Mississippi River
site at Monticello, and the lowest at the Cannon River site (Appendix 1). Rock Bass were
captured at all sites except for the Mississippi River at Pool 1, and the Cannon River.
However, the minimum of 20 fully recruited fish were only captured at five sites. The
greatest numbers of Rock Bass were captured in the Cedar River, while lowest numbers
were captured in the Straight River (Appendix 2). Northern Hogsuckers were captured
at six of the 11 sites. The streams where Northern Hogsuckers were captured were the
Root River, Cannon River, Straight River, Cedar River, Mississippi River near Saint Cloud,
and the North Branch Root River. Out of the six streams where Northern Hogsuckers
were captured, only the Root River met the minimum criteria of 20 fully recruited fish.
The Cannon River, Straight River, Cedar River, and Mississippi River near Saint Cloud
sites did not have the minimum of 20 fully recruited fish, and the North Branch at Root

River did not have at least four fully recruited year classes (Appendix 3).
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Recruitment

Mississippi River sites at Monticello and near Saint Cloud had the most
Smallmouth Bass year classes present, 13 and 11 respectively, whereas, the Cannon and
North Branch Root rivers had the fewest (Table 1.4). Smallmouth Bass year classes
between 2006 and 2011 were present in most river and stream sites. Although
Smallmouth Bass recruitment varied among most streams and years, a few years
seemed to show ecoregion-wide similarities in Smallmouth Bass recruitment. For
example, Smallmouth Bass recruitment was strong in almost all streams in 2010 and
strong in half of streams in 2009, whereas, bass recruitment was weak at most sites in
2007 and 2011 (Table 1.4).

For Rock Bass, the Cedar River had the most, and the North Branch Root River
the fewest year classes recruited to the gear. Few Rock Bass captured were older than
age four at most sites (Table 1.4). Similar to Smallmouth Bass, Rock Bass recruitment
varied among most streams and years but had one similarity. Rock Bass recruitment
was similarly weak in almost all streams in 2011. Contrary to strong Smallmouth Bass
recruitment in 2010, Rock Bass recruitment was neither strong nor weak in any streams
in that year. However, Rock Bass recruitment was strong in all three streams sampled in
2012.

Year classes of Northern Hogsuckers were present for the years 2004-2008 in the
Root River. The strongest and weakest year classes were in 2006 and 2008,
respectively. Furthermore, the 2007 year class was particularly strong, and the 2005
year class particularly weak (Table 1.4). With a RCD value of 0.89, Northern Hogsucker
recruitment appeared to be relatively stable (Table 1.5).

RCD values for Smallmouth Bass varied among streams and ranged from 0.84 at
the North Branch Root River to 0.02 at the Mississippi River at Pool 1. The North Branch
Root River, Mississippi River near Saint Cloud, and the Root River all had RCD values >

0.65 suggesting relatively stable recruitment.



Table 1.4. Year class strength of Smallmouth Bass, Rock Bass, and Northern

Hogsuckers populations in streams of the Eastern Broadleaf Province of Minnesota

represented by studentized residuals from a weighted catch curve (bold values > 0.8,

and underlined values < -0.8 indicate particularly strong and weak year classes,

respectively).
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N N N N N N N N N N N N N
Stream site 8 8 8 8 8 8 8 8 8 8 8 S S

o [l N w D ()] ()] ~N (o) o o [l N

Smallmouth Bass
Mississippi River 110 -117 -022 -037 1.64 -0.92
at Camp Ripley —
Mississippi River 0.88 090 -146 -0.61 137 -0.02 002 039 1.44 029 -1.89
near St. Cloud e —
Mississippi River o 5c 575 004 030 012 -015 010 -077 157 -1.54 -2.00 074 1.62
at Monticello =2 Se=
Mississippi River .0.88 -0.63 1.07 113 033 -1.64
at Pool 1 — E—
Rum River 029 008 -1.05 145 082 -142
Cannon River -1.34 1.16 -0.24 1.01 -1.19
North Branch 135 -0.86 -0.78 1.20
Root River
Root River 048 002 001 -0.13 -1.87 136 1.07 -0.93
Rock Bass

Mississippi River 181 -027 -115 -044 -038 0.96
at Camp Ripley —
Elk River 164 -0.96 -030 -0.67 1.12
Straight River 071 098 038 -153 0.96
North Branch 037 035 -141 1.26
Root River -
Cedar River 160 045 -001 037 144 028 -1.68

Root River

Northern Hogsuckers

-045 -0.88 1.26 0.81 -1.40




Table 1.5. Recruitment Coefficient of Dispersion estimates for Smallmouth Bass,
Rock Bass, and Northern Hogsuckers populations in streams of the Eastern
Broadleaf Province of Minnesota.

Stream Site RCD

Smallmouth Bass

Mississippi River at Camp Ripley 0.07
Mississippi River near St. Cloud 0.67
Mississippi River at Monticello 0.52
Mississippi River at Pool 1 0.02
Rum River 0.35
Cannon River 0.19
North Branch Root River 0.84
Root River 0.66
Rock Bass
Mississippi River at Camp Ripley 0.96
Elk River 0.73
Straight River 0.01
North Branch Root River 0.02
Cedar River 0.70

Northern Hogsuckers

Root River 0.89
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Conversely, the Cannon River, Mississippi River sites at Camp Ripley and Pool 1 each had
values < 0.19 indicating relatively unstable recruitment (Table 1.5).

Rock Bass recruitment stability varied among streams. RCD values ranged from
0.96 at the Mississippi River at Camp Ripley to 0.01 at the Straight River. The Mississippi
River at Camp Ripley, Elk River, and Cedar River had values > 0.69 indicating relatively
stable recruitment, whereas the North Branch Root River and Straight River had values <

0.03, suggesting relatively unstable recruitment (Table 1.5).

Hydrology

Hydrology during the Smallmouth Bass-spawning period exhibited considerable
variation among streams and years (Tables 1.6, 1.7). Long-term spawning flow
magnitudes were much higher in the four Mississippi River sites than in the Cannon
River, North Branch Root River, Root River, and Rum River. In many years, long-term
spawning flow magnitudes at the Mississippi River sites were at least five times greater
than that of the other four streams. For the Mississippi River sites, the lowest long-term
spawning flows (96 m3/s) were observed in the Mississippi River at Camp Ripley in 2010,
whereas the highest flows (801 m3/s) occurred in the Mississippi River at Pool 1 in 2011.
Among the other four streams, long-term spawning flows ranged from a low of 6 m3/s in
the Cannon and North Branch Root Rivers in 2009 and 2012, respectively, to a high of 66
m3/s in the Rum River in 2011. The Root River had the most stable long-term spawning
flows, with coefficient of dispersion values < 0.50 for most years. Conversely, long-term
spawning flows were the least stable at the Cannon and Root Rivers, with coefficient of
dispersion values > 0.60 in a majority of years.

The highest stability of long-term spawning flows (coefficient of dispersion =
0.20) were found in the Root River in 2011, whereas extremely variable long term
spawning flows (coefficient of dispersion > 1.0) were present in 2006 at Mississippi River

sites at Monticello and near St. Cloud and in the Rum River.



25

{0z0) amov :Mov (ev'0) (1€0) (sv0) (€z0) (60°T)

J9AIY 100y
1¢ €1 [ 95 v 43 9z 43
€0 (8€0) (ro't)  (1£°0) JaAly 100y
9 9z o1 6 Youe.g yoN
(€£0) (80°1) 690 (s6'0) (¥8'0) Janry UouuEs
L€ 6 9 8¢ 8
(c€0) (99°0) Awhov (rT°T) ?Me (0s'T) JoA Wny
99 0t 11 w 11 0¢
(tz°0) {0€0) (zv0) (z9'0) (65°0) (zso) T |00d i€
819 108 St 85¢ 6tS 9¢C Jan1y 1ddississin
(06°0) (€€0) (zv0) (r9'0) (zs0) (ov0) (Lo1) (¥9°0) (150) (¥90) (zz0) (ovo) (9€0) O|[3213UOIAl 18
16€ 9¢ty GET 98T 743 98T 90¢ TLE LST 76T AN SLS €LT JaAIY 1ddissiIssIIN
(06°0) (€€0) (zv0) (r9'0) (zs0) (ov'0) (z0o1) (¥v9°0) (150) (v9'0) (2L0) pnoj) jules 1e
16€ 9ct GET 98T 5743 98T 90¢ TLE LST 76T A4 JOAIY 1ddissIsSIIN
(€€0) (¥s o) (zzro)  (tv0)  (ev0)  (v8°0) As|diy dwe) 1e
r433 9% €91 L8C 6T 8T Jan1y 1ddississin
710¢ 1102 0T10¢ 600C 800 £00C 900¢ S00C  ¥00T €00C TOOC TO0C  000C 21IS weans

"u0IsJadsIp JO JUSID1}4202 B S| UOIIBLIBA MO|4 "S/cW Ul S| 9pn}USeW MO|4 "paullJapun aJe sanjeA wnwiuiw
pue ‘p|og Ul 2Je SaN|eA WNWIXE|A "SSeg YInow||ews Jo sasse|d Jeah 01 Suipuodsaliod B10SaUUIA 9dUINOId Jed|peolg
uJa3se3 ay3 ul says weads ySia Joj porsad Sulumeds ay3 jo (uoielien) pue apniugew mojy wial-8uol '9'T d|gel



26

(€1°0) (T00) ame (00°0) (£00) (zT'0) (0T'O) (£0°0)

J9AIY 100y

9¢ Y4 €¢ cLe 8¢ 19 LE 94T
(€00) (tT°0) (v0'0) (0z'0) JBAIY 100Y
a 9€ 6¢ 9¢ youeig yuoN

(L¥0) (so0) (9000 (80°0) (090) JaA1Y uouue)

06 61 a1 vL 44

(ot°0) (80°0) {so0) (9z'0) (oz0) :HI.Q JaAry winy

16 8 1C A 3 €1
(ev°0) (tT°0) (81°0) 8o'0) (81°0) (€€0) T |00d e
60TT 8v6 334 €9% 8LL 1247 Jan1y 1ddississin
(£00) {200) (80°0) (or0) (tt0) (szo) (et0) (z00) (9z0) (or0) (£10) (€T0) (€€°0) O|[321IUOIAl 1B
LS. 144 8.C 13743 08¥% ST (o] €15 e oLt (5743 7433 16T JaArY 1ddississi|A|
(£0°0) 200 (80°0) (ot0) (tt0) (szo) (et0) (L00) (9z0) (oT0) (LT1°0) pnojpd ules 1e
LSL Tes 8/T 13743 08t ST (o]3% €/S vt (VA7 (5743 JaALY 1ddississi|A
(so0) (£00) (60'0) Tso0) (et0) (zT°0) As|dry dwe) 1e
r4:13 6T 4013 ¥6€ LET GLE Jan1y 1ddississin
41014 110¢ 010¢ 600C 800C £00T 900C SO0C  ¥00CT €00T <COOCZ 1T00C  000T 21IS Weans

"u0IsJadsIp JO JU3ID1}J909 B S| UOIIBIIBA MOJ4 *S/cW Ul SI 9pnlIuSew Moj4 "PaullJapun aJe sanjea
WNWIUIW pue ‘p|og Ul 3Je SaNjeA WNWIXBIA ‘SSeg YINow||ewsS JO Sasse|d JeaA 03 Suipuodsaliod B10SUUIA JO 9JUINOId
jea|peoug uJaise3 ay3 ul salls wealls g Joj polsad Suiumeds ay3 jo (uolelien) pue apniuSew waal-1oys */ T d|gel



27

Extremely variable long-term spawning flows were also present in 2010 in the Cannon
and North Branch Root rivers and the Root River in 2004. Short-term spawning flow
magnitudes at the Mississippi River sites were also greater (at least five times greater)
than flows in the Cannon, North Branch Root, Root, and Rum rivers in many years. The
magnitude of short-term spawning flows for Mississippi River sites ranged from 192
m3/s in the Mississippi River at Camp Ripley in 2010 to 1109 m3/s in the Mississippi River
at Pool 1in 2012. Short-term spawning flows in the other four streams ranged from a
low of 12 m3/s in the North Branch Root River in 2012 to a high of 272 m3/s in the Root
River in 2008. Spawning flows over short-term intervals were relatively stable
(coefficient of dispersion < 0.40) among years and streams in the spawning period.
However, short term flows were slightly more variable for the Mississippi River site at
Pool 1in 2012, and for the Cannon River in 2007, with coefficients of dispersion of 0.43,
and 0.60, respectively.

Similar to Smallmouth Bass-spawning-period flows, Smallmouth Bass-rearing-
period flows showed variation among streams and years, but trends in flow magnitude
and variability were somewhat similar between the two periods (Tables 1.8, 1.9). Long-
term-rearing-flow magnitudes at the Mississippi River sites were at least three times
higher than for the Cannon, North Branch Root, Root, and Rum Rivers in most years. For
the Mississippi River sites, long-term-rearing-flow magnitude ranged from a low of 36
m3/s in the Mississippi River at Camp Ripley in 2006 to a high of 280 m3/s in the
Mississippi River at Pool 1 in 2010.

In the remaining four streams, long-term-rearing-flow magnitude ranged from 3
m3/s in the Cannon and North Branch Root Rivers in 2008 and 2012, respectively, to 37
m3/s in the Rum River in 2011. The Root River had the most stable long-term-rearing
flows with coefficients of dispersion < 0.35 for most years, whereas the Mississippi River
sites at Camp Ripley and Pool 1, and the Cannon River had the least stable long-term-

rearing flows with coefficients of dispersion of > 0.80 for most years.
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The highest stability of long-term-rearing flows (coefficient of dispersion = 0.15) were
found in the Root River in 2006.

Extremely variable long-term flows occurred in 2012 for the Mississippi sites at
Monticello, near Saint Cloud, and at Pool 1, as well as for the Mississippi River sites at
Camp Ripley and Pool 1, and the Cannon River in 2007 and 2011. Similar to long-term-
rearing-flow magnitudes, short-term-rearing-flow magnitudes at the Mississippi River
sites were at least three times higher than that of the four smaller streams for most
years. Short-term-rearing flows among the Mississippi River sites ranged from 68 m3/s
in the Mississippi River at Camp Ripley in 2006 to 818 m3/s in the Mississippi River at
Pool 1in 2012.

Magnitudes of the short-term-rearing period for the remaining streams ranged
from a low of 4 m3/s in the North Branch Root River in 2012 to a high of 355 m3/s in the
Root River in 2007. Like short-term-spawning flows for Smallmouth Bass, short-term-
rearing flows for Smallmouth Bass were relatively stable among streams and years. The
least stable flows occurred in the Cannon River in 2011 (coefficient of dispersion = 0.51),
and the Mississippi River at Pool 1 in 2012 (coefficient of dispersion = 0.52).

For the five streams where Rock Bass were captured, hydrology during the Rock
Bass-spawning period varied among streams and years (Table 1.10). The Mississippi
River at Camp Ripley displayed long-term-spawning-period flow magnitudes much
higher than the Cedar, Elk, North Branch Root, and Straight River. In many years long-
term-spawning flows in the Mississippi River at Camp Ripley were at least 12 times
greater than flows in the other four streams. Long-term-spawning-period flow
magnitudes in the Mississippi River at Camp Ripley were the lowest (96 m3/s) in 2010
and the highest (332 m3/s) in 2011. In the four remaining streams long-term-spawning
flow magnitude ranged from 5 m3/s in the Elk River in 2009 to 26 m3/s in the North

Branch Root River in 2011.
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Table 1.10. Long-term and short-term magnitude and (variation) of flows during
Rock Bass spawning time period for five streams in the Eastern Broadleaf Province
of Minnesota. Maximum values in bold, and minimum values are underlined. Flow
magnitude is in m3/s. Flow variation is a coefficient of dispersion.

Long-Term
Stream Site 2005 2006 2007 2008 2009 2010 2011 2012
Mississippi
River at 184 149 287 163 96 332
Camp Ripley (0.84) (0.47) (0.47) (0.72) (0.54) (0.33)
Elk River 16 5 7 20 19

(0.83)  (057)  (0.46)  (0.39)  (0.76)

16 7 6 18 9

Straight River (0.87)  (0.80)  (1.63)  (L14)  (1.66)

North Branch 9 10 26 6
Root River (0.71) (1.04) (0.38) 0.37
Cedar River 8 9 1 13 8 8 17

(058)  (0.93)  (0.66)  (0.97)  (L06)  (1.11)  (0.43)

Short-Term

Stream Site 2005 2006 2007 2008 2009 2010 2011 2012

'r:/ilxliesrlsastlppl 375 237 394 302 192 382
Camp Ripley (0.12) (0.19) (0.05)  (0.09) (0.07)  (0.05)
Elk River 31 10 14 32 39

(0.07)  (0.14)  (0.05)  (0.17)  (0.32)

60 17 48 57 42

Straight River (025)  (017)  (0.1)  (0.27)  (0.40)

North Branch 36 29 36 12
Root River (0.20) (0.04) (0.11) 0.03
Cedar River 19 23 21 136 39 36 35

(0._14) (0.23) (0.11) (0.25) (0.30) (0.09) (0.12)
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The Mississippi River at Camp Ripley and the Elk River showed the most stable long-
term-spawning flows with coefficient of dispersion values < 0.60 for most years,
whereas the Straight and Cedar Rivers had the least stable long-term-spawning flows
with coefficient of dispersion values > 0.80 in many years.

The highest stability of long-term-spawning flows (coefficient of dispersion =
0.38) were found at the North Branch Root River in 2011 whereas extremely variable
flows were found at the Straight, Cedar, and North Branch Root Rivers in 2010.
Extremely variable long-term-spawning flows were also observed in the Straight River in
2011 and 2012, and in the Cedar River in 2009. Similar to long-term-spawning flow
magnitudes among streams, short-term-spawning flow magnitudes at the Mississippi
River at Camp Ripley were much greater than that of the other four streams. However,
unlike with long-term-spawning flow magnitudes, short-term-spawning flow magnitudes
at the Mississippi River at Camp Ripley were only 3 times greater than other streams in
most years. For the Mississippi River at Camp Ripley short-term spawning flows ranged
from 394 m3/s in 2008 to 192 m3/s in 2010. In the other four streams short-term-
spawning flows ranged from 10 m3/s in the Elk River in 2009 to 136 m3/s in the Cedar
River in 2008. Flows were relatively stable (coefficient of dispersion < 0.40) among
streams and years for short-term intervals during the Rock Bass spawning period.

As with flows during the Rock Bass spawning period, flows during the Rock Bass-
rearing period varied among streams and years (Table 1.11). Also, as with long-term
spawning flows, long-term-rearing flow magnitudes were much greater (at least 11
times greater) at the Mississippi River at Camp Ripley than for the other four streams in
most years. Long-term variability of rearing flows was fairly high (coefficient of
dispersion > 0.70) among streams and years. The most stable flows (coefficient of
dispersion = 0.17) were found in the North Branch Root River in 2012. Extreme flow
variability was observed at all streams except for the North Branch Root River in 2011,
and was also found in the Mississippi River at Camp Ripley in 2007, and the Cedar River
in 2007 and 2011.
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Table 1.11. Long-term and short-term magnitude and (variation) of flows during
Rock Bass rearing time period for five streams in the Eastern Broadleaf Province of
Minnesota. Maximum values in bold, and minimum values are underlined. Flow
magnitude is in m3/s. Flow variation is a coefficient of dispersion.

Long-Term
Stream Site 2005 2006 2007 2008 2009 2010 2011 2012
Mississippi
River at 36 55 82 61 138 82
Camp Ripley (0.61) (1.42) (0.82) (0.94) (0.26) (1.14)
Elk River 4 3 13 6 3

(026)  (0.75)  (0.71)  (1.95)  (0.69)

1 2 9 2 2

Straight River (075)  (0.89)  (0.98)  (3.53)  (0.51)

North Branch 6 11 6 3
Root River (0.84) (0.62) (0.55) 0.17
Cedar River 4 4 8 2 3 7 2

(0.68) (0.54) (1.96) (0.55) (0.96) (1.16) (1.34)

Short-Term

Stream Site 2005 2006 2007 2008 2009 2010 2011 2012
Mississippi
River at 68 270 151 170 351 246
Camp Ripley (0.10) (0.08) (0.06) (0.09) (0.06) (0.07)
Elk River 6 / 26 23 10

(0._18) (0.11) (0.11) (0.04) (0.01)

5 10 205 51 4

Straight River (0.03  (003) (0.16)  (0.05)  (0.07)

North Branch 47 115 19 4
Root River (0.01) (0.10) (0.01) 0.01
Cedar River 39 14 63 6 25 120 48

(0.04) (0.10) (0.19) (0._13) (0.07) (0.16) (0.05)
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Short-term rearing flow magnitude at the Mississippi River at Camp Ripley was
approximately three to four times greater than that of the other four streams among
most years. Short-term-rearing flow magnitude ranged from 68 m3/s in 2006 to 138
m3/s in 2010. The short-term-rearing flows at the remaining streams ranged from 4
m3/s in the North Branch Root and Straight Rivers in 2012 to 205 m3/s in the Straight
River in 2010. Flows were very stable (coefficient of dispersion < 0.20) in the short-term
among streams and years during the Rock Bass rearing period.

Northern Hogsucker spawning flows in the Root River varied among years.
Long-term spawning flows ranged from 13 m3/s in 2004 to 59 m3/s in 2008. Flows were
most stable in 2005, and least stable in 2004 and 2006 (Table 1.12). Short-term
spawning flows ranged from 44 m3/s in 2005 to 111 cm in 2006. Flows for short term
intervals in the spawning period were all very stable (coefficient of dispersion < 0.20)
among years (Table 1.12).

Similar to flows in the Northern Hogsucker spawning period, flows during the
rearing period varied among years in the Root River. Long-term rearing flows ranged
from 17 m3/s in 2006 to 30 m3/s in 2007. Long-term flows were most stable in 2005 and
2006, and least stable in 2007 (Table 1.12). Short-term rearing flows ranged from 31
m3/s in 2006 to 355 m3/s in 2007. Short term rearing flows were always very stable in

the Root River among years with coefficients of dispersion < 0.20 (Table 1.12).

Associations between Recruitment and Hydrology
Recruitment of nest-building fishes (Smallmouth Bass and Rock Bass) was not
significantly related to short-term flow spawning flow magnitude for any of the streams
in this study (Table 1.13). Consequently, the data did not support the prediction that
recruitment of nest building fishes would be positively related to short-term flow

magnitude during the spawning period.
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Table 1.12 Long-term and short-term magnitude and (variation) of flows during
Northern Hogsucker spawning, and rearing time periods in the Root River,
Minnesota. Maximum values in bold, and minimum values are underlined. Flow
magnitude is in m3/s. Flow variation is a coefficient of dispersion.

2004 2005 2006 2007 2008

Spawning Period (Long Term)

13 31 46 27 59
(0.64) (0.25) (0.65) (0.46) (0.59)

Spawning Period (Short Term)

46 44 111 70 96
(0.15) (0.02) (0.11) (0.09) (0.09)

Rearing Period (Long Term)

23 19 17 30 22
(0.63) (0.34) (0.27) (0.79) (0.69)

Rearing Period (Short Term)

174 75 31 355 272
(0.20) (0.06) (0.02) (0.13) (0.02)
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Recruitment among fishes displaying a nesting spawning strategy showed significant
relationships with long term magnitude in the spawning period for only 4 of 13
populations (Table 1.13), which showed relatively strong support for the prediction that
long-term flow magnitude during the spawning period would not influence recruitment
of fishes. Long-term magnitude during the spawning period showed a significant
negative relationship with Smallmouth Bass recruitment at the Root River (r?> = -0.638; P
=0.017), but a positive relationship at the Mississippi River site at Monticello (r? = 0.404;
P =0.020; Figures 1.5, 1.6). Rock Bass recruitment showed negative relationships with
long-term magnitude during the spawning period at the North Branch Root (r? = -0.865;
P =0.022) and Straight Rivers (r> =-0.965; P = 0.018; Figures 1.7, 1.8).

Recruitment of benthic lithophils (Northern Hogsuckers) was not significantly
related to short-term flow magnitude (r?> = 0.139; P = 0.536) in the spawning period at
the Root River. The lack of a relationship between benthic lithophil recruitment and
short-term spawning flows in the Root River did not support the prediction that benthic
lithophil recruitment would be negatively related to short-term flow magnitude during
their spawning period. Recruitment of benthic lithophils was also not significantly
related to long-term flow magnitude (r? = -0.028; P = 0.789) in the spawning period at
the Root River, which did support the prediction that benthic lithophil recruitment
would show no relationship with long-term flow magnitude during the spawning period.

Recruitment of fish with cruiser morphology (Smallmouth Bass) showed a
significant negative relationship with short-term rearing flow variability for 1 of 8
streams (i.e., the Mississippi River near Saint Cloud; r? = -0.623; P = 0.004; Figure 1.9),
but no relationships at the other seven streams (Table 1.13). Therefore, the data
showed little support for the prediction that cruiser recruitment would be negatively

related to short-term rearing flow variability.
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Cruiser fish recruitment was negatively related to long term variability during the
rearing period in 2 of 8 streams (Table 1.13): Mississippi River sites near Saint Cloud (r? =
-0.560; P = 0.008) and at Camp Ripley (r? =-0.927; P = 0.002; Figures 1.10, 1.11). The
two negative relationships between cruiser recruitment and long-term rearing flow
variability suggest weak support for the prediction that cruiser recruitment would be
negatively influenced by long-term rearing flow variability.

Recruitment of fish displaying maneuverer (Rock Bass) morphology showed no
significant relationships with short- or long-term flow rearing flow variability at any of
the streams (Table 1.13). The data does not show support for the prediction that short-
term rearing flow variability would be negatively related to maneuverer recruitment,
but does show support for the prediction that long-term variability of rearing flows
would show no relationship with maneuverer recruitment.

Benthic hugger (Northern Hogsucker) recruitment did not show a significant
relationship with short- (P = 0.943) or long-term (P = 0.739) flow variability during the
rearing period. This data shows support for the predictions that short-term and long-
term-rearing flow variability would show no relationship with the recruitment of benthic

huggers.
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Discussion

This study represents the first robust assessment for multiple species
representing several populations across multiple rivers) of flow-ecology, fish-
recruitment relationships in Minnesota. However, contrary to what others have found
(Craven et al. 2010; Peterson and Shea 2014), | found little support for either long-term
or short-term flow relationships with recruitment during the adult spawning and
juvenile rearing periods. Predictions that were developed according to selected fish
traits also showed little support among populations, suggesting minimal explanatory

power for flow-recruitment relationships among stream fish in the study area.

Associations between spawning traits and spawning period hydrology

Recruitment of nest building fishes was predicted to show a positive relationship
with short-term-spawning flow magnitude. Short-term-high magnitude spates during
spawning can flush fine sediments and increase interstitial spaces that are important in
protecting and oxygenating developing eggs (Craven et al. 2010). However, short-term-
spawning flow magnitude was not significantly related to nest-building fish recruitment
at any of my streams. The timing of short-term-high flow spates can often influence
their effect on fish reproductive success, as high spates often initiate spawning cues for
fishes (Poff et al. 1997; Craven et al. 2010). Although, if short-term-high flows during
the spawning period do not coincide with optimal spawning temperatures they may
have a minimal impact on fish reproductive success (Humphries et al. 1999). My
findings differed from those of Peterson and Shea (2014), who found that short-term
spawning period flows in streams of the Flint River Basin in Georgia had a positive effect
on the recruitment of nest builders. However, dramatic increases in water withdrawals
have occurred in the Flint River Basin since the 1970s to meet growing water demands
of the metropolitan Atlanta area, as well as for agricultural irrigation in Southwestern
Georgia (Richter et al. 2003). Water withdrawals can decrease flow magnitudes and

decrease seasonal variability (Richter et al. 2003; Freeman and Marcinek 2006). Stable
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flows and decreased flow magnitudes have been shown to increase the reproductive
success of nesting building fish, such as centrarchids (Swenson et al. 2002; Smith et al.
2005).

Short-term spawning period flow magnitude was predicted to show a negative
relationship with benthic lithophil recruitment. Due to a lack of parental care, egg and
larval stages of broadcast spawning fishes, such as benthic lithophils are especially
susceptible to displacement by high flow pulses (Weyers et al. 2003; Craven et al. 2010).
Results of my study did not show a significant relationship between benthic lithophil
recruitment and short-term flow magnitude, lending no support to the prediction that a
negative relationship would be observed between benthic lithophil recruitment and
short-term flow magnitude.

My findings conflicted with those of Craven et al. (2010) who found that
broadcast spawners, including benthic lithophils, were negatively influenced by short-
term-flow magnitude during their spawning periods. Craven et al. (2010) sampled fish
in three rivers: the Kankakee River in lllinois, the Flint River in Georgia, and Tallapoosa
River in Alabama. However, the majority of broadcast spawning species that Craven et
al. (2010) captured were from the Kankakee River in lllinois. The Kankakee River and its
tributaries have been channelized to a great degree from its headwaters in Indiana, until
shortly before the Momence Wetlands Nature Preserve in lllinois (Kwak 1993). The
channelization of the Kankakee River has made spring floods short and more intense
than in non-channelized streams (Kwak 1993), which could decrease recruitment by
limiting access to floodplain spawning and nursery areas, and displacing eggs and YOY
fishes (Simonson and Swenson 1990; Weyers et al. 2003).

Long-term-spawning flow magnitude showed significant relationships with
recruitment for only four of 14 populations of nest builders and benthic lithophils
combined showing relatively strong support for the prediction that fish recruitment
would show no relationship with long-term spawning flow magnitude. The lack of a

relationship found between long-term spawning flow magnitude and fish recruitment
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among many of failed to corroborate the findings of other studies that found a positive
relationship between high spring-summer flows and fish recruitment (e.g., Quist and
Guy 1998; Phelps et al. 2010).

Many studies that found a positive relationship between fish recruitment and
high flows were conducted on large floodplain rivers (e.g., Raibley et al. 1997; Coutant
2004; Phelps et al. 2010). Predictable flooding in larger rivers (Strahler order >7) allows
fishes access to floodplain spawning and nursery habitats and enhances recruitment
(Junk et al. 1989; Schlosser 1991). The streams in this study were medium-sized streams
and rivers (Strahler order 4-6) with the exception of larger Mississippi River sites. Short
and unpredictable pulses in streams and rivers of lower orders make it more difficult for
organisms to successfully use floodplain environments (Junk et al. 1989), which could
lessen the importance of high flows for fish recruitment in such systems (Bunn and
Arthington 2002).

Significant relationships between nest-builder recruitment and long-term -
spawning flow magnitude were negative, with the exception of a positive relationship
for the Mississippi River at Monticello. High-magnitude flows can scour nests and
displace eggs and larvae of nest building fishes, leading to decreased reproductive
success (Lukas and Orth 1995; Smith et al. 2005). The mechanism behind the positive
relationship between long-term-spawning flows and nest-builder recruitment at the
Mississippi River at Monticello was unclear. Recruitment of nest builders could have
been influenced by warm-water discharge from a nuclear power plant that flows into
the Mississippi River near the sampling area in Monticello. For example, Altena (2003)
found that Smallmouth Bass below the warm water discharge near Monticello moved to
spawning areas up to a week earlier than those upstream of the discharge. Additionally,
in a study of Smallmouth Bass in the Mississippi near Monticello, Swenson et al. (2002)
found strong interdependence of temperature and discharge that suggested that
relationships to year class strength identified by linear regression could be due to the

composite influence of several variables. Further research aimed at identifying multiple
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variables contributing to year class strength of nest building fishes near Monticello could

help explain the exact mechanisms affecting their recruitment.

Associations between locomotion morphology and rearing period hydrology

Cruiser recruitment was predicted to be negatively related to short-term-rearing
flow variability. Cruiser fishes are often found in the water column where they are more
likely to be displaced into unfavorable habitat (e.g., drying pools, deeper pools with
more piscivorous predators) during flashy flows, leading to death from causes such as
suffocation and predation (Craven et al. 2010; Cocherell et al. 2011; Peterson and Shea
2014). However, recruitment of cruisers was only negatively related to short-term
rearing flow variability in one of the eight populations in my study, while the remaining
five populations did not show any relationship. These results show very little support
for the prediction that cruiser recruitment would be negatively related to short-term
rearing flow variability. My findings failed to corroborate with those of Craven et al.
(2010), and Peterson and Shea (2014), who found negative relationships between
cruiser recruitment and short-term rearing flow variability.

The river basins where Craven et al. (2010) and Peterson and Shea (2014)
conducted their studies, namely the Kankakee, Tallapoosa, and Flint basins, are subject
to increased amounts of water appropriation for municipal and agricultural uses (Kwak
1993; Irwin and Freeman 2002; Ruhl 2005). Water withdrawals can accelerate stream
drying, which could lead to fish stranding mortality during sharp falls in stream flow
(Grantham et al. 2012). It should be noted that some streams in my study also
experienced water appropriations for agriculture (such as the Root River; Minnesota
Pollution Control Agency 2012), however the intensity of these withdrawals may have
been less severe in my streams than those examined by Craven et al. (2010) and
Peterson and Shea (2014).

The only negative relationship found between short-term rearing flow variability

and cruiser recruitment was in the Mississippi River near Saint Cloud. Hydropower
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operations upstream of my study reaches near Saint Cloud could have intensified short-
term variability in the rearing period. Flashy flows created by hydropower generation
may reduce stable shallow water habitats that YOY fishes depend on for refugia, which
could lead to decreased survival (Freeman et al. 2001).

| predicted that recruitment of fish with maneuverer locomotion morphology
would be negatively related to short-term rearing flow variability. Fish species that
exhibit maneuverer locomotion morphologies are not adapted to maintain position in
turbulent currents created by flashy high flow pulses and may be displaced to
unfavorable areas (Bernardo et al. 2003), which can reduce fish recruitment (Cocherell
et al. 2011). Contrary to my prediction, my results showed that recruitment of fishes
displaying maneuverer recruitment was not related to short-term rearing flow variability
among streams. Some maneuverer fish, such as Rock Bass and some Lepomis spp. often
use deeper, more structurally complex habitats that exhibit greater than average
resiliency to stage declines and flashy flows, which could protect them from
displacement into harsh habitats and increase survival rates (Probst and Rabeni 1984;
Dutterer and Allen 2008).

Long-term-rearing flow variability was predicted to be negatively related to the
recruitment of cruisers. Similar to my prediction for short-term-rearing flow variability
and cruiser recruitment, the prediction of a negative relationship between cruiser
recruitment and long-term-rearing flow variability was based on the assumption that
cruiser species tend to occupy the water column and would be more easily displaced
during flashy, high flows (Craven et al. 2010). My results showed negative relationships
between cruiser recruitment and long-term-rearing flow variability for only two of eight
populations, which did not support my prediction. Many fishes have adapted to long-
term variability in stream flows, which is often related to the natural flow regime of a
stream or river (e.g., utilization of floodplain habitat for refugia, increased streamlining

of body shapes). Such adaptations may make them less susceptible to reduced
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recruitment from long-term flow variation during the rearing period (Lytle and Poff
2004; Brinsmead and Fox 2002).

Negative relationships found between long-term-rearing flow variability and
cruiser recruitment were in the Mississippi River sites at Camp Ripley and near Saint
Cloud. Long-term variation in streamflow in temperate streams and rivers is largely
driven by seasonal floods and drought conditions that may vary in intensity on an inter-
annual basis (Tockner et al. 2000). High flows during the rearing period of fishes may
negatively impact their recruitment (Buynak and Mitchell 2002; Smith et al. 2005).

Long-term variability of rearing flows was not related to maneuverer recruitment
in any of my streams, which supports my prediction. As previously discussed, many
fishes have adapted to long-term variability in stream flows, which is often related to
the natural flow regime of a stream or river. These adaptations may influence the
behaviors and body shapes of fishes, making them less susceptible to long-term flow
variation (Lytle and Poff 2004; Brinsmead and Fox 2002). Additionally, many
maneuverers may use cover that is more resilient to the effects of flow variation,
protecting them from any negative effects it may have on their recruitment (Dutterer
and Allen 2008).

Benthic hugger recruitment showed no relationship to either long- or short-
term-rearing flow variability, which supports my prediction. Peterson and Shea (2014)
found that species displaying benthic-hugger-locomotion morphology were the least
sensitive to rearing-flow variability when compared to species with other types of
morphologies. Benthic fishes that have hugger morphology are often able to avoid
swimming directly against the current by positioning themselves in the low flow
boundary layer near the stream’s bottom substrate, which can help them maintain
position during sudden spikes in stream flow (Meyers and Belk 2014). Additionally, YOY
benthic huggers often exploit cover provided by boulders and debris to avoid
displacement into sub-optimal habitat (Kennedy and Vinyard 2006; White and Harvey

2003), such as areas prone to drying up in highly variable flows.
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My results showed little evidence that flow magnitude and variability affected
fish recruitment among selected streams in the Eastern Broadleaf Province of
Minnesota. Factors such as the quantity and quality of available refuge and feeding
habitats, as well as temperature regimes could have affected fish recruitment in the
streams in this study (Schlosser 1991; 1995; Nunn et al. 2003). Additionally, aspects of
the flow regime not quantified in this study, such as the timing, duration, and frequency
of flows may have had an influence on recruitment among streams (Poff et al. 1997;
Humphries et al. 1999; Durham and Wilde 2009). Further research may help to uncover
the exact mechanisms driving fish recruitment in the streams of the Eastern Broadleaf

Province.



53

CHAPTER II-FISH GROWTH RESPONSE TO HIGH FLOW DURATION
Introduction

The growth of fishes determines several aspects of their ecology, such as
vulnerability to predation, sexual maturation, and recruitment into a population
(Murphy and Willis 1996). Growth can be defined as the addition of biomass by
individuals over a specific time interval (e.g., daily, and annual growth). It can be
accrued to the population, and is generally measured as an increase in length or a
change in weight (Murphy and Willis 1996). During a fish’s first year of life, faster
growth can increase body size, and confer a host of advantages over slower growing
conspecifics. At a time when mortality is typically high (Garvey et al. 1998), a larger size
can reduce predation risk through improved swimming ability, reduce vulnerability to
gape limited predators, and lower the risk of starvation through enhanced feeding
opportunities. In northern latitudes, faster growth, leading to a larger fall body size of
age-0 fishes, is especially important. Fish with a larger fall body size have more
abundant energy reserves than smaller fish, which can aid survival through harsh winter
conditions (Garvey et al. 1998; Graeb et al. 2004).

Minnesota fishes experience the largest amount of annual growth during
summer, followed by progressively slower growth through fall, and into winter (Lux
1960; Dieterman et al. 2012). As a result, the window for age-0 fishes to grow to a body
size sufficient for winter survival lies predominantly in the summer season (Simonson
and Swenson 1990; Cunjak 1996). Factors such as food availability and temperature can
affect inter-annual growth of age-0 fishes during the summer season (Neuheimer and
Taggart 2007; Kaemingk et al. 2012). For example, Kaemingk et al. (2012) found that
age-0 Bluegill Sunfish Lepomis macrochirus growth was significantly faster in a year with
higher summer densities of Daphnia spp. compared to years with lower densities. An

increase in the annual number of “growing degree days” can also affect fish growth.
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A positive relationship exists between fish growth and the number of growing degree
days, because a growing degree day represents a daily interval when temperatures are
in the range where metabolic reaction rates are near linear functions of temperature
(Neuheimer and Taggart 2007).

In lotic systems, stream flow has been identified as another important factor
affecting fish growth (Buynak and Mitchell 2002; Jacquemin et al. 2014). Stream flow
conditions can be defined by five components: magnitude, frequency, timing, duration,
and rate of change of flow (Richter et al. 1996; 1997). Magnitude is the amount of
water moving past a fixed location per unit time. Frequency refers to how many times a
flow exceeds or falls below a certain magnitude (e.g., overbank flooding) over a
specified time interval. Timing is the Julian day when flows reach a given magnitude and
help quantify the overall predictability of flows. Duration is the period of time that a
specific flow magnitude lasts, and rate of change refers to how quickly flow rises or falls
(e.g., cubic feet/second/day). Magnitude, frequency, duration, timing, and rate of
change of flows are used to characterize the entire range of flows, including specific
hydrologic phenomena, such as low flows, high flows, and flood events (Figure 2.1; Poff
et al. 1997).

High flows, defined as daily flows exceeding the 75™ percentile, have been linked
to increased growth among several species of stream dwelling fishes (Peterson and
Jennings 2007; Grabowski et al. 2012, Quist and Spiegel 2012). High flows can inundate
a river’s floodplain and increase growth in some fishes by increasing access to floodplain
feeding habitats and providing refuge from high velocities in the main river channel
(Gutreuter et al. 1999; Sammons and Maceina 2009; Quist and Spiegel 2012). However,
high flows can also lead to increased metabolic costs and reduced feeding efficiency in
some fishes, leading to decreased growth (Grant and Noakes 1987; Weyers et al. 2003).
Larval and juvenile fishes can be especially sensitive to high flows due to their weak

swimming abilities and reduced metabolic reserves (Schlosser 1991; Weyers et al. 2003).
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High flows may also be associated with increased suspended sediment
concentrations (Bond and Downes 2003). High suspended sediment concentrations can
decrease feeding efficiency of sight feeding fishes, and upon settling, can cover coarse
substrates that makes important benthic habitat inaccessible for many invertebrate
prey (Nerbonne and Vondracek 2001; Shaw and Richardson 2001; Robertson et al.
2006).

In the last three decades, many upper Midwestern rivers have exhibited an
increase in the magnitude of most monthly median flows, along with an increase in the
duration of those high flows (Lenhart et al. 2013). For example, Lenhart et al. (2013)
found that the magnitude and duration of June and July high flows have greatly
increased between the early 1980s and early 2000s for some Southern Minnesota
streams. The state of Minnesota has an abundance and diversity of riverine resources
that support important recreational fisheries, aquatic biodiversity, unique aquatic
habitats, and ultimately economic and social benefits (Blann and Kendy 2012).

The Eastern Broadleaf Province of Minnesota is an especially important lotic
region in the state. It is a transition zone between the prairie to the west and the mixed
coniferous-deciduous forest to the northeast (Figure 2.1). Row crop agriculture is one of
the major land uses in the province (Minnesota Department of Natural Resources 2006).
The Eastern Broadleaf Province of Minnesota also includes many of the premiere
recreational warmwater stream fisheries in the state for Smallmouth Bass Micropterus
dolomieu, Rock Bass Ambloplites rupestris, and Walleye Sander vitreus (Thorn and
Anderson 1999). Increasing amounts of land devoted to agriculture and urban
development in the province has increased the magnitude and duration of high flows in
early summer, and winter (Blann and Kendy 2012; Lenhart et al. 2011; 2013). However,
the effects of land use change and associated stream flow alteration on stream fish

growth in the province is unknown.
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In light of the current trend in stream flow, water managers require information
on the impact that land use influenced flow alterations has on fish population dynamics.
Consequently, identification of relationships between fish growth and stream flow
parameters is important for adequate water management to benefit fish populations.
To identify these relationships I: 1) quantified inter-annual growth of selected stream
fish populations, 2) quantified inter-annual duration of summer (June-September) high
flows, and 3) assessed relationships between duration of summer high flows and inter-
annual growth of selected fishes in several populations representative of streams within

the Eastern Broadleaf Province of Minnesota.

Hypotheses:

Ho: Fish growth will show no significant relationships with duration of summer
high flows.

Ha1: Fish growth will show significant positive relationships with duration of
summer high flows at each stream regardless of species.

Ha2: Fish growth will show significant negative relationships with duration of
summer high flows at each stream regardless of species.

Methods

Study sites were chosen from representative streams and rivers within the
Eastern Broadleaf Province that were publicly accessible, and were within 50 km of an
adequate hydrologic gage. An adequate gage had discharge data for the years 2000-
2012 and did not have a major dam between it and the study site. Discharge records
from 2000-2012 were needed so that all growth years of fishes captured in this study
were included within the hydrologic period of interest. Gages with a dam between
them and the site of interest were excluded, as dams can often alter river hydrology
(Braatne et al. 2008). However, | did include three sites that did not have an adequate

gage, namely the Middle Fork Zumbro, Silver Creek, and Sauk River site near Melrose.
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These sites were included to compare factors affecting stream-fish growth among sites
in the same geographical region, but relationships between stream flow and fish growth
were not investigated for the three sites. In some cases when more than one site was
randomly selected on a particular river or stream within 50 river km, and not separated
by a dam, fish growth data from those sites were combined to better represent the fish
population. A total 18 sites were selected after combining sites within 50 river km
(Table 2.1).

Smallmouth Bass, Rock Bass, and Northern Hogsuckers Hypentelium nigricans
were the three species chosen to investigate relationships between fish growth and
duration of summer high flows. These three species are common stream dwelling fish
within the Eastern Broadleaf Province. Also, Smallmouth Bass and Rock Bass are
considered to be important sport fish in Minnesota’s rivers and streams.

To quantify inter-annual growth, stream fishes were captured with electrofishing
gear; measured and a hard (calcified) part body structure was removed for aging.
Sagittal otoliths were used to age Smallmouth Bass and Rock Bass, while pectoral fin
rays were used to age Northern Hogsucker (Maceina and Sammons 2006; Reid 2007).
Procurement of pectoral fin rays from Northern Hogsucker was possible without the
need to sacrifice fish, but euthanasia was necessary to obtain sagittal otoliths from most
Smallmouth Bass and Rock Bass. Fishes were euthanized by immersion in an overdose
of MS-222 (tricaine-methanesulfonate; 250-500 mg/L; Topic-Popovic et al. 2012).

Incremental growth of individual fish was quantified using back calculated length
at age, which was the proportion between the total length of the fish and the radius
from the age structure focus to each annulus (Busacker et al. 1990). The Dahl-Lea
method of back-calculation was used in this study, because it assumes a direct
proportional (1:1) relationship between incremental increases in fish length and hard
body part, which is applicable to the use for calcified structures that form at fish hatch

(DeVries and Frie 1996).
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The Dahl-Lea method back-calculates length at age according to the equation Li =
(Ri/Rc)Lc, where Li = length at the ith increment, Lc = length at time of capture, Ri = radius
of hard body part at the ith annulus, and Rc = radius of hard body part at time of capture
(Dahl 1909; Lea 1910).

To estimate inter-annual growth of selected fish species, back-calculated values
of incremental fish growth at age were entered into mixed effects growth models
developed by Weisberg et al. (2010). The Weisberg Mixed-Effects Growth Model
estimates growth more accurately than the Dahl-Lea model, because the mixed model
accounts for growth effects due to individual fish, cohorts (year-classes), and years,
instead of just accounting for age effects like the Dahl-Lea model. Weisberg et al. (2010)
developed linear fixed-effects and mixed-effects (additive error terms) models to
describe fish growth as a function of fish age and growth year. Independent variables
used for the mixed models were fish age, growth year, an individual fish growth factor
and cohort. Fish age accounts for differential growth rates among fishes of distinct age
groups, and growth year quantifies growth of fishes in each year across age groups. The
individual fish growth factor allowed each fish to have its own growth rate that applied
to all growth increments for that fish, and was compared to the growth rates of all other
individual fish in the model. Age was considered a fixed effect in the models, while
growth year and the individual fish growth factor were considered random effects
(Weisberg et al. 2010). Growth analyses were restricted to fish age 12 and less in the
2000-2012 year classes. Years with only one growth year data point (i.e., one fish for a
given year) were excluded.

Three candidate mixed-effects growth models were developed and compared
for each species.

Model One:  Growth ~ Age Effect + Individual Fish Effect
Model Two: Growth ~ Age Effect + Individual Fish Effect + Year Effect

Model Three: Growth ~ Age Effect + Individual Fish Effect + Year Effect + Cohort
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Model One indicated that variation in fish growth was due to fixed age-effects (e.g.,
younger fish growing faster than older fish), and random individual-effects only (e.g.,
certain fish have a genetic predisposition to grow faster, and/or differences in growth
between sexes). Model Two described growth variation in fishes due not only to age-
and individual-effects, but also year-effects (i.e., fishes, of all cohorts, grew faster in
certain years; Nelson 2015). Model Three was a modification of a model presented by
Weisberg et al. (2010), where a cohort-effect (age-year) was substituted for the
interaction term. The model accounted for repeated measures of the same cohort (fish
born in the same year) over time, and deflated growth impacts of cohort contribution.
This cohort effect indicated that different age groups grew differently in each year
(Nelson 2015).

Akaike’s information criterion (AIC) was used to compare candidate models. To
correct for small sample size and overfitting of models, a second-order bias correction
(AICc) was applied when n/K was less than 40 for the model with the largest K (Burnham
and Anderson 2004). Criterion differences (Ai) were considered meaningful for model
selection of candidate models and were the difference between each model and that of
the best approximating model (i.e., the model with the lowest Aj; Burnham and
Anderson 2004; Nelson 2015). Criterion differences provide a ranking scheme for all
models in comparison to the best model. Generally, models having Aj from 0 to 2 are
showing similar levels of support, models with Ai values from 2 to 4 show some support,
models having Ai from 4 to 7 show considerably less support, and models with Aj >10
essentially show no support (Burnham and Anderson 2004; Nelson 2015). Among
competing candidate models, the model with the lowest AlCc was selected, as it was
considered to be the most parsimonious model. However, if AlCc values were less than
2 for more than one model, the model with the fewest terms was selected.

The growth of each fish species was only tested in hydrologic models if the final
selected growth model contained a year-effect (i.e., model 2 or model 3). Growth

results were interpreted as deviations (+/-) from a mean of zero, not as positive or
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negative growth. By using this technique, all components of each growth model
contribute to the predicted growth increment for each year and are the differences
between the observed and predicted values (Davis-Faust 2012). A minimum of four
years with a growth year-effect was required for testing relationships to hydrology
variables to achieve adequate sample size for regression analysis.

To quantify inter-annual differences in duration of summer (June-September)
high flows, daily discharge data near sampling sites was obtained from the U.S.
Geological Survey’s National Water Information System Website

(http://waterdata.usgs.gov/mn/nwis/rt), and hydroelectric dam data from county

databases. Summer high flow duration was quantified as the maximum number of
consecutive days from June-September for which flow exceeded the 75% percentile of
stream flow magnitude. Thresholds for the 75 percentile of stream flow magnitude
were calculated from 20 years of continuous daily flow data for each site, with the
exceptions of the Mississippi River site at Camp Ripley, Cannon River site, and the North
Branch Root River, which were calculated with 16, 12, and 10 years of continuous daily
flow data, respectively. Richter et al. (1997) recommended a period of at least 20 years
for the assessment of current hydrologic conditions to dampen effects of inter-annual
climatic variation. However, Poff et al. (2010) indicated that continuous daily discharge
records of at least 10 years duration can be used to characterize current conditions
when faced with an inadequate period of record.

To test associations between yearly growth estimates (dependent variables) and
summer high flow duration (independent variables), | used univariate least squares
regression. For each fish species, regressions were developed and tested independently
for each population that exhibited a year effect to assess spatial repeatability of
predictions. Years were replicates in all regressions. A Shapiro-Wilk test was used to
detect significant departures from normality, and a Breusch-Pagan test was used to

examine the constant variance assumptions for each regression analysis. An alpha value


http://waterdata.usgs.gov/mn/nwis/rt
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of 0.10 was chosen to determine statistical significance. All regressions were performed

using R 3.1.3 statistical software (R Core Team 2015).

Results

A total of 533 Smallmouth Bass, 317 Rock Bass, and 230 Northern Hogsuckers
were captured across the 18 stream sites. Smallmouth Bass were captured at 14 of the
18 sites, but the minimum of five fish age one and older required to run growth models
was only obtained at 12 of those 14 sites. The highest numbers of Smallmouth Bass
were captured at the Mississippi River at Monticello and the lowest at the Cedar River
near Austin. Smallmouth Bass lived longest at Mississippi River sites near Saint Cloud
and Monticello, with age classes up to 11 and 12, respectively (Appendix 4). Rock Bass
were captured at 14 of the 18 sites, however, the minimum of five fish age one and
older was only obtained at 9 of those 14 sites. The greatest numbers of Rock Bass were
captured at the Cedar River while the lowest numbers were captured at the Sauk River
at Melrose. Rock Bass had the longest life spans at the Cedar River and the Mississippi
River at Camp Ripley, which both had age classes up to age six (Appendix 5). Northern
Hogsuckers were captured at 9 out of 18 streams, but only 7 of those 9 streams had the
minimum of five fish age one and over. The highest numbers of Northern Hogsuckers
were captured at the Root River and the lowest numbers were captured at the Cedar
River. The Root River exhibited the greatest longevity for Northern Hogsuckers, with

age classes up to eight (Appendix 6).

Growth
Smallmouth Bass growth was only influenced by age- and individual- effects
(Model 1) in seven of 12 populations. The Crow River site, Mississippi River sites near
Monticello, and at Pool 1, North Branch Root River, and Rum River all exhibited year-

effects in growth (Table 2.2).



Table 2.2. Factors affecting Smallmouth Bass growth based on mixed effects growth
models with associated K (number of model parameters), AlCc, AAIC, and AlCc
Weights. The model with the best fit is bolded, while models with growth year
effects are highlighted in gray.

Stream Model K AlCc AAIC  AlCc Wt
Growth=Age+Individual 7 46599 0.00 0.72
Cannon Growth=Age+Individual+Year 8 46830 231 0.23
River Growth=Age+Individual+Year+Cohort 9  471.17 5.18 0.05
Growth=Age+Individual 7 14945 0.00 1.00
Cedar Growth=Age+Individual+Year 8 161.58 12.13 0.00
River Growth=Age+Individual+Year+Cohort 9  179.78 30.33 0.00
Growth=Age+Individual+Year 7 295.01 0.00 0.85
Crow Growth=Age+Individual+Year+Cohort 8 298.46 3.45 0.15
River Growth=Age+Individual 6 31246 17.35 0.00
] Growth=Age+Individual 13 586.75 0.00 0.80
Middle Fo.rk Growth=Age+Individual+Year 14 589.86 3.11 0.17
Zumbro River Growth=Age+Individual+Year+Cohort 15 593.09 6.34  0.03
Growth=Age+Individual 11 707.81 0.00 0.74
Mississippi River Growth=Age+Individual+Year 12 710.60 2.79 0.18
at Camp Ripley Growth=Age+Individual+Year+Cohort 13  712.24  4.43 0.08
o Growth=Age+Individual+Year+Cohort 17 3236.55 0.00 1.00
hei R0 Growth=Age+Individual+Year 16 326490 2834  0.00
at Monticello Growth=Age+Individual 15 328796 5140  0.00
Growth=Age+Individual+Year 11 1012.40 0.00 0.72
Mississippi River Growth=Age+Individual+Year+Cohort 12 1014.83 2.43 0.21
at Pool 1 Growth=Age+Individual 10 1017.16 4.76 0.07
o Growth=Age+Individual 14 1687.77 0.00 0.71
Mississippi River Growth=Age+Individual+Year 15 169009 232  0.22
near Saint Cloud Growth=Age+Individual+Year+Cohort 16 169243 4.66  0.07
Growth=Age+Individual+Year 10 845.50 0.00 0.70
North Branch Growth=Age+Individual+Year+Cohort 11 847.22  1.72 0.30
Root River Growth=Age+Individual 9 86281 1731  0.00
Growth=Age+Individual 11 1244.22 0.00 0.63
Root Growth=Age+Individual+Year 12 124579 157  0.29
River Growth=Age+Individual+Year+Cohort 13 1248.19 3.96 0.09
Growth=Age+Individual+Year 16 809.74 0.00 0.81
Rum Growth=Age+Individual+Year+Cohort 17 812.72  2.97 0.18
River Growth=Age+Individual 15 821.84 12.10 0.00
Sauk River near Growth=Age+Individual 15 808.12 0.00 0.54
Saint Cloud Growth=Age+Individual+Year 16  809.06 0.93 0.34
Growth=Age+Individual+Year+Cohort 17 811.05 2.93 0.12
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Model 3 was selected for the Mississippi River site at Monticello, suggesting that
variation in growth was due to age-effects, individual-effects, year-effects, and that
different cohorts grew differently in each year. Model 2 was selected for the Crow River
site, Mississippi River site at Pool 1, North Branch Root River, and Rum River sites,
indicating that variation in Smallmouth Bass growth at these sites was due to a
combination of age-, individual-, and year-effects (Table 2.2).

Smallmouth Bass growth appeared to decrease consistently with age, and by age
four, incremental growth decreased at all sites by 50 percent or more from what it was
at age one (Table 2.3). The Mississippi River sites near Saint Cloud, Monticello, and at
Camp Ripley, as well as the Sauk River near St. Cloud had particularly high incremental
growth from ages one to four when compared to other sites. Conversely, the Cedar
River, North Branch Root River, and Root River had particularly low incremental growth
from ages one to four when compared to other sites (Table 2.3).

Similar to Smallmouth Bass growth model selection, Model 1 was selected for
Rock Bass growth at a majority of stream sites. Consequently, variation in Rock Bass
growth for most stream sites seemed to be mainly due to age- and individual-fish effects
(Table 2.4). The Cedar River, Mississippi River site at Camp Ripley, and Straight River
were the only sites that displayed year-effects among the nine sites where mixed-
growth models were made for Rock Bass. Model 2 was selected for the Cedar River and
Straight River site, while Model 3 was selected for the Mississippi River site at Camp
Ripley (Table 2.4).

As with Smallmouth Bass growth, the incremental growth of Rock Bass
decreased consistently with age, and by age four, incremental growth decreased at all
sites by 50 percent or more from what it was at age one (Table 2.5). The Mississippi
River sites near Saint Cloud, and at Camp Ripley, along with the Sauk River near Melrose
had particularly high incremental growth from ages one to four, while the South Fork
Zumbro River, North Branch Root River, and Root River site showed relatively low

incremental growth for the same age range (Table 2.5).
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Table 2.4. Factors affecting Rock Bass growth based on mixed effects growth models
with associated K (humber of model parameters), AlCc, AAIC, and AlCc Weights. The
model with the best fit is bolded, while models with growth year effects are

highlighted in gray.
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Stream Model K AlCc AAIC  AlCc Wt
Growth=Age+Individual+Year 10 1938.66 0.00 0.60
C?dar Growth=Age+Individual+Year+Cohort 11 1939.45 0.79 0.40
River Growth=Age+Individual 9 1949.60 10.94  0.00
Growth=Age+Individual 7 33169 0.00 0.78
Elk Growth=Age+Individual+Year 8 33464 294 0.18
River Growth=Age+Individual+Year+Cohort 9 337.74 6.05 0.04
Growth=Age+Individual+Year+Cohort 10 700.31 0.00 0.65
MISSISSIPP! River Growth=Age+Individual+Year 9 70157 1.26 0.34
at Camp Ripley Growth=Age+Individual 8 709.01 8.70 0.01
o Growth=Age+Individual 6 158.36  0.00 0.93
Mississippi River Growth=Age+Individual+Year 7 16354 518  0.07
near Saint Cloud Growth=Age+Individual+Year+Cohort 8  169.76 11.40  0.00
Growth=Age+Individual 6 610.60 0.00 0.71
North Branch Growth=Age+Individual+Year 7 61296 236 0.22
Root River Growth=Age+Individual+Year+Cohort 8  615.38  4.78 0.07
Growth=Age+Individual 9 401.73 0.00 0.59
RPOt Growth=Age+Individual+Year 10 403.79 2.06 0.21
River Growth=Age+Individual+Year+Cohort 11  403.85  2.12 0.20
Growth=Age+Individual 10 221.23 0.00 0.93
Sauk River Growth=Age+Individual+Year 11 22654 5.31 0.07
near Melrose Growth=Age+Individual+Year+Cohort 12 232,51 11.28 0.00
Growth=Age+Individual 7 249.99 0.00 0.81
South Fork Growth=Age+Individual+Year 8 25317 3.18  0.16
Zumbro River Growth=Age+Individual+Year+Cohort 9 25657 657  0.03
_ Growth=Age+Individual+Year 8 478.93 0.00 0.78
Straight Growth=Age+Individual+Year+Cohort 9  481.60 2.66 0.21
River Growth=Age+Individual 7 48753 859 0.01
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For Northern Hogsuckers, Model 1 was selected for four of the seven of the
stream sites. Three out of the seven sites had growth-year effects, namely the North
Branch Root River, Root River, and the South Fork Zumbro River site. Model 2 was
selected for Northern Hogsucker growth at all three sites (Table 2.6).

Northern Hogsucker incremental growth did not decrease consistently as was
the case with Smallmouth Bass and Rock Bass. Age two growth was similar to age three
growth, with faster age 3 growth in some cases. However, apart from the lack of a
decrease in incremental growth from age two to age three, growth seemed to decrease

consistently as age increased (Table 2.7).

Growth-Year Effects on Populations

Smallmouth Bass growth showed similarities among years for the five streams
that exhibited year-effects. For example, all streams showed slower than average
growth in 2012, and each of the streams except for the Crow River showed slower than
average growth in 2011. Conversely, each of the five stream sites except for the Rum
River showed faster than average growth in 2010 (Table 2.8).

Among the three sites that showed growth year-effects for Rock Bass, there
were some similarities in certain years. The Cedar River, Mississippi River at Camp
Ripley, and Straight River all showed a negative year-effect for Rock Bass growth in
2011. Additionally, all three streams exhibited faster than average growth in 2008,
although the positive year-effect on growth at the Cedar River was fairly weak (Table 2.
8).

Northern Hogsucker growth showed similarities among years for the three
stream sites that had year-effects. The Root River, North Branch Root River, and South
Fork Zumbro River all showed negative growth year-effects in 2009 and 2010.
Additionally, the two sites that had growth data for 2012, the North Branch Root River,
and South Fork Zumbro River, both had positive growth year-effects for that year (Table
2.8).
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Table 2.6. Factors affecting Northern Hogsucker growth based on mixed effects growth

models with associated K (number of model parameters), AlCc, AAIC, and AlCc

Weights. The model with the best fit is bolded, while models with growth year effects

are highlighted in gray.

Stream Model K AlCc AAIC  AlICc Wt
Growth=Age+Individual 9 526.33 0.00 0.79
Crcmnon Growth=Age+Individual+Year 10 52930 2.98 0.18
River Growth=Age+Individual+Year+Cohort 11 532.41  6.09 0.04
Growth=Age+Individual 7 146.94 0.00 0.94
Le Sueur Growth=Age+Individual+Year 8 152,57 5.63 0.06
River Growth=Age+Individual+Year+Cohort 9 161.07 14.13 0.00
Growth=Age+Individual+Year 12 1549.71 0.00 0.76
North Branch Growth=Age+Individual+Year+Cohort 13 1552.05 2.34 0.24
Root River Growth=Age+Individual 11 1561.80 12.09  0.00
Growth=Age+Individual+Year 11 3334.76 0.00 0.74
R_°°t Growth=Age+Individual+Year+Cohort 12 3336.89 2.13 0.25
River Growth=Age+Individual 10 3344.28 9.52 0.01
Growth=Age+Individual 8 210.63 0.00 0.96
Silver Growth=Age+Individual+Year 9 21679 6.16 0.04
Creek Growth=Age+Individual+Year+Cohort 10 224.43 13.80 0.00
Growth=Age+Individual+Year 10 226.55 0.00 0.80
South Fork Growth=Age+Individual 9 22944 289  0.19
Zumbro River Growth=Age+Individual+Year+Cohort 11 23421 7.67  0.02
Growth=Age+Individual 7 196.67 0.00 0.93
Straight Growth=Age+Individual+Year 8 202.05 5.38 0.06
River Growth=Age+Individual+Year+Cohort 9  208.42 11.75  0.00
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Hydrology

Duration of summer high flows varied among streams and years (Table 2.9).
However, similarities existed among streams in certain years. Nine of 15 streams had
their longest high flow durations in 2011, and a majority of streams had their shortest
durations in 2009. High flow duration was greatest in 2011 in the Sauk River, Elk River,
Crow River, Rum River, and Pool 1 of the Mississippi River. In all five rivers, high flows
persisted for about 90 of the 122 summer days in 2011. Conversely, in 2009 there were
no high flows in the Elk River, Rum River, or any of the Mississippi River sites. Also, high
flows only lasted for one to three days in the Root and Cannon rivers, respectively.
Additionally, high flows had relatively long durations in 2008 and 2012 and relatively

short durations in 2006 and 2007 among streams.

Associations between Growth and Hydrology

Growth year-effects for Smallmouth Bass showed significant negative
relationships with summer-high-flow duration for 2 of 5 regressions, namely the
Mississippi River at Pool 1 (r?> =-0.84; P =0.01) and the Rum River (r? = -0.69; P = 0.04;
Table 2.10, Figures 2.3, 2.4). The strongest negative growth year-effects in the
Mississippi River at Pool 1 (-6.00 mm) and the Rum River (-13.14 mm) were observed in
2011, a year that also showed the longest duration of summer high flows among the
two streams (Table 2.9).

A significant negative relationship existed between summer-high-flow duration
and Rock Bass growth for the Cedar River (r> =-0.69; P = 0.04; Figure 2.5). However, the
other two streams that showed growth year-effects, the North Branch Root and Straight
rivers, showed no such relationship (Table 2.10). Similar to Smallmouth Bass growth in
the Mississippi River at Pool 1 at Pool 1 and the Rum River, the strongest negative
growth year effects for Rock Bass in the Cedar River (-3.67 mm) occurred in 2011, the

year with the longest duration of summer high flows (Table 2.9).



74

T St LE 9 JAAIY N3N
€7 €7 o€ A €7 ) 42N YBIRAIS
g 9 6T L €€ g 12NY 0IGUINZ 45
123 66 127 0 Y4 J3AY N13
0z £0T 9T 6 €7 0 0 g€ T PNOJD "1S 403U JaNIY YNDS
L6 ] 0 9z 0 0 ) JONY WY

T 14 T 0L 33 vT 6 ST (s 42014 100y

0 8¢ ST 81 0s (o ams) 22N 2004 "GN
€9 w 0 0 0z 6 0 (0] L 8T LE pnojD "1 Jpau 'ssi
S 68 8 0 0z 0 o) T 100d 30 "SSIA]
€9 (44 0 0 0z 6 0 o L 87 L 8¢ (aws) OlFNIUOW A0 “SSIA]
i 0 0 9t €T T (o 2101Y dwiDD 30 *SsIA

or 6 €E (qns) 42NY MO
9t 5T 6T (o A2NIY 40P

95 LT € a4 J3A1Y UoUUD)

7107 TT0T 010z 600C 8007 £00T 92007 S00z 00T €007 7007 T00T dlis weang

*(s49)2ns30H uJaynoN = SHN pue ‘sseg

320y = gy ‘sseqg yinow|jews = gIAIS 249ym ‘3dasiadns ul weauls yoea 4oj pajouadp aJe suojiejndod uowe 309449
JedA yimou3 a14123ds sa1aads jo aouasasd ay] ‘ASojoapAy Ajinuenb o3 93ed ajenbape ou sem a43y3 se ‘papn|oul Jou
9J9M 3SOU[DIA JE3U DS JBAIY YNES PUB Y334) JSA|IS ‘UBAIY 04qUINZ 3104 3|PPIIA 9y ‘WEeaJls yIes J0oj swnuwiulw aJe
SaNn|eA pauljJapun pue swnwixew aJe sanjeA p|og) "e10Sauul|A JO 9JUINOId Jes|peoUg uJa1se] ay) ul Sweauls GT Joy
(9113ud249d ;G/ < SMOJ} Y3IM MOJ B Ul SAep JO JaquInu WNWIXew) sMmoj} Ysiy Joawwns Jo uoliednp WnWixe ‘6°g a|qel



Table 2.10. Relationships between fish growth and the magnitude and the duration
of summer high flows among populations in nine streams in the Eastern Broadleaf
Province of Minnesota with associated statistics. Significant relationships are in gray.
Significance level = 0.10.

Stream site DF Slope Intercept F-Value r P-Value

Smallmouth Bass

Crow River 2 0.42 -25.6 0.8 0.45 0.535
Miss. near Monticello 11 -0.12 3.03 2.18 0.18 0.171
Miss. at Pool 1 5 -0.13 4.81 21.71 0.84 0.01
N.B. Root River 4 2.33 -14.69 2.22 0.43 0.233
Rum River 5 -0.2 7.73 8.94 0.69 0.04
Rock Bass
Cedar River 5 -0.19 4.23 8.72 0.69 0.042
Miss. at Camp Ripley 5 -0.04 0.53 0.38 0.09 0.57
Straight River 4 0.06 -1.17 0.02 0.01 0.894

Northern Hogsuckers

Root River 7 0.16 -3.08 17.28 0.74 0.006

N.B. Root River 5 -0.19 4.01 1.26 0.24 0.325

S.F. Zumbro River 4 -0.39 433 0.24 0.07 0.657




76

"ZT0T-£00T WOJ} T |00d 1€ JaALY 1ddISSISSIAl 9Y1 18 SMO|}
Y81y Jowwns Jo uolleINp 3yl pue Yimous sseg yinow|jews uaamiaq diysuoie|ay ‘gz 24nsi4

(sAe@) uoneing wnwixey
0zl 00} 08 09 o 0z 0

Te!
o

T
o
N

U.?

T
[Tp]

o
(W) ymols) |eluswaiou|

0100=d
80 =2

T
o
—

T
L
—



77

"TT0Z-9007 WO} J3AIY WNY 3Y3 18 SMO|}
Y81y Jowwns Jo uolleanp ay3 pue Yymous sseg yinow|jews usamiaq diysuoine|ay ‘€'z ainsi4

(sAeQ) uoleing wnwixen
0zl 001 08 09 o 02 0

L 1 1 1 1 1 L

uy
=
i

T
=)
—

i

L
uy
0

T
uy

o
(LW ) YIMOIS) |BJUBLLIBIOU |

T
=)
—

ov0'0=d ¢
690 = ¢

r
ud
—



78

"TTOC-900¢C W04y JaAlY Jepa) |y}
38 SMO[} Y31y Jawwns JO UolleINp 3y} pue YyimoJs sseq o0y usaamiaq diysuoiiedy ‘'z 94nsi4

(sAe) uoneing wnwixep

(1] 4 0€ 0c 0L 0
L 1 I 1 @l
S "3
®
-N-w
3
. o
._D 9
L 4 3
. =
- I
3
Ly 3




79

Growth-year effects for Northern Hogsuckers showed a significant positive
relationship with summer high flow duration at the Root River (r? = 0.74; P = < 0.01;
Figure 2.6). The other two streams, which were the North Branch Root and South Fork
Zumbro Rivers, did not show any relationships between Northern Hogsucker growth-
year effects and duration of summer high flows (Table 2.10). The strongest positive
growth year effect in the Root River (6.38, 6.00 mm) occurred in 2007 and 2008,

respectively, years with the longest duration of summer high flows (Table 2.9).
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Discussion

Growth year-effects for Smallmouth Bass, Rock Bass, and Northern Hogsucker
populations were negligible among several of the streams in this study as evidenced by
the selection of Model 1 (Growth = Age Effects + Individual Fish Effects). In most fish
populations growth is highly dependent on age, as growth rates tend to decline in a
linear fashion as fish approach maximum longevity (Maceina 1992; Sammons and
Maceina 2009). Additionally, individuals may show variation in growth due to genetics
and/or sex, which may influence population level estimates (Reynolds and Gross 1992;
Bhatta et al. 2012; Jacquemin et al. 2014).

Under stable environmental conditions characterized by low amounts of
temporal variability, growth is more likely to be controlled by biotic factors, such as
those related to differences in age, genetics, and sex (Egna and Boyd 1997;
Szczepkowski 2009; Beesley and Prince 2010). However, the maximum duration of
summer high flows varied considerably among years for streams where Model 1 was
selected, suggesting that they were not stable systems (Table 2.9). Not surprisingly,
since northern temperate streams often show a high degree of temporal variability in
physical habitat (Schlosser 1991). Consequently, | posit that in streams where Model 1
was selected, the influence of age- and individual- fish effects on growth was strong
enough to overwhelm year-effects to an inconsequential level. Further research of
these streams is needed to uncover the specific mechanisms that allow age- and
individual- effects such as, sex selective or genetic differences, to have such a strong
effect on fish growth.

Cohort-effects on growth were only observed for the population of Smallmouth
Bass at the Mississippi River at Monticello, and the population of Rock Bass at the
Mississippi River at Camp Ripley. Different growth rates among cohorts can occur due
to inter-annual variability in the physical environment as well as density-dependent
factors during years with strong recruitment (Marschall and Crowder 1995). Annual

variation in stream flow and temperature regimes can affect the reproductive success
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and survival of YOY fishes (Schlosser 1991), which can in turn affect abundance within
cohorts (Cattaneo et al. 2002). For example, optimal spawning conditions produced by
favorable coupling of flow and temperature have been shown to increase year class
abundance of fishes (Swenson et al. 2002; Nunn et al. 2003). In cohorts with high
abundance, feeding and refuge habitats may become a limiting factor due to intra-
specific competition resulting in decreased fish growth (Lobon-Cervia 2005; Finstad et
al. 2009).

Growth model selection differed among co-occurring populations of Smallmouth
Bass and Rock Bass in the Cedar River, North Branch Root River, and the Mississippi
River at Camp Ripley, which was somewhat surprising because the two species are
ecologically similar (Probst and Rabeni 1984; Roell and Orth 1993). Rock Bass showed
growth year-effects in the Cedar River and Mississippi River at Camp Ripley, whereas
Smallmouth Bass did not, and Rock Bass showed no growth year-effects in the North
Branch Root River, whereas growth year-effects were observed there for Smallmouth
Bass. The exact mechanisms that led to differences between factors affecting
Smallmouth Bass growth and Rock Bass growth in co-occurring populations are
unknown. However, inter-specific competition can affect the relative strength of factors
influencing growth in co-occurring populations of ecologically similar fish species (Hearn
1987).

Smallmouth Bass and Rock Bass have similar affinities for habitat and prey types,
which could lead to interspecific competition (Probst and Rabeni 1984; Roell and Orth
1993). At times of high environmental disturbance (e.g., floods and droughts)
competition is of minimal intensity, but may become more severe during stable periods
when population densities of competing species increase (Hearn 1987). Under such a
scenario, increased intensity of inter-specific competition could result in a significant
reduction in growth and condition of one species depending on growth year conditions

(Townsend et al. 1997). Studies exploring the niches that Smallmouth Bass and Rock
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Bass occupy in sympatric populations in Minnesota streams could ascertain the effect
that interspecific competition has on their growth.

A total of eleven populations had growth year-effects among fish species. Inter-
annual variation in growth was not significantly related to duration of summer high
flows for seven of the eleven populations. Temporal variation in water temperatures,
and other aspects of the flow regime such as timing, magnitude, frequency, and rate of
change of flows could have had a greater influence on fish growth in those streams
(Schlosser 1991; Neuheimer and Taggart 2007; Peterson and Jennings 2007).
Interactions between temperature and flow regime can be especially influential on the
growth of fishes (Gutreuter et al. 1999; Swenson et al. 2002; Quist and Spiegel 2012).
For example, Swenson et al. (2002) found that first year growth of Smallmouth Bass was
highest during years with a combination of warmer growth season temperatures and
lower stream discharge. Years with warmer growing season temperatures can increase
the metabolic capacity for growth, and when coupled with lower discharge levels,
perhaps lower than the 75%"-percentile quantified in this study, can also minimize
metabolic costs from swimming, subsequently increasing fish growth rates (Swenson et
al. 2002). The lack of a relationship between inter-annual growth and duration of
summer high flows for seven of the 11 fish populations lends relatively strong support
to the null hypothesis that inter-annual growth of fishes would not be influenced by
summer high flow duration.

Results in my study suggesting the lack of a relationship between high flow
duration and fish growth conflicted with the findings of other studies that have found
positive relationships between the two (Sammons and Maceina 2009; Quist and Spiegel
2012). Positive relationships between the duration of high flows and fish growth are
often associated with flows sufficient to inundate a river’s floodplain, which can
increase fish feeding habitat and serve as flow refugium for younger fish (Gutreuter et
al. 1999; Sammons and Maceina 2009). It is possible that my use of the 75% percentile

of flows as an explanatory variable for fish growth failed to adequately capture this



84

relationship. Return intervals for flood discharges can vary from one to ten years in
different streams depending on basin area, sediment character, basin geomorphology,
channel slope and channel entrenchment (Poff and Ward 1989). Therefore, they can
often only be accurately determined from field based measurements (Williams 1978;
Johnson and Heil 1996; Olsen et al. 1997) which were beyond the scope of this study.
Consequently, it was unknown how my 75% percentile flows related to floodplain
inundation flows in the various streams examined in my study area. Further research
exploring relationships between the extent and duration of floodplain inundation and
fish growth in the streams of the Eastern Broadleaf Province may help identify other
important hydrology drivers effecting fish growth.

Populations of Smallmouth Bass in the Mississippi River at Camp Ripley and Rum
River, as well as populations of Rock Bass at the Cedar River showed significant negative
relationships between inter-annual growth and duration of summer high flows.
Increased duration of high flows can lead to increased metabolic costs and reduced
feeding efficiency in some fishes, leading to decreased growth (Grant and Noakes 1987;
Weyers et al. 2003). The negative relationships between Smallmouth Bass and Rock
Bass inter-annual growth and the maximum duration of summer high flows at three
streams showed some evidence to support the hypothesis that the inter-annual growth
of fishes would be negatively related to the maximum duration of summer high flows,
but the evidence was relatively weak.

The population of Northern Hogsuckers in the Root River showed a significant
positive relationship between growth and duration of summer high flows. A couple of
different mechanisms may drive this relationship. Large precipitation events associated
with high flow pulses can transport substantial amounts of nutrients into streams,
especially in watersheds with relatively high amounts of agriculture, like the Root River
watershed (Royer et al. 2006; Duff et al. 2008; Minnesota Pollution Control Agency
2012). Increased phosphorus and nitrogen loads can increase stream productivity,

causing bottom up effects that could increase fish growth (Harvey et al. 1998).



85

Although, under such a scenario, bottom up effects caused by increased
phosphorus and nitrogen loads would have been expected to increase the growth of
Smallmouth Bass and Rock Bass in the Root River as well, this was not the case. It is
possible that the lower trophic position of Northern Hogsuckers relative to Smallmouth
Bass and Rock Bass could have allowed them to benefit more directly from increased
production at lower trophic levels (Lyons 1992; Davis et al. 2010, Schmitt et al. 2011).
Northern Hogsuckers are benthic omnivores, and feed mainly on aquatic invertebrates
and organic matter from the stream bottom, whereas Smallmouth Bass and Rock Bass
feed on aquatic invertebrates and smaller fishes (Probst et al. 1984; Schmitt et al. 2011).
Inefficient energy transfer between trophic levels can lead to disproportionate levels of
production that often favor organisms at lower trophic positions (Gibson and Cutting
1993; Davis et al. 2010). Additionally, the fin morphology and concave head of Northern
Hogsucker can serve as hydrofoils, pressing them to the substrate and making them less
susceptible to high flows (Matthews 1998; Meyers and Belk 2014), which could allow
them to conserve energy for growth during high flow spates. The significant positive
relationship between Northern Hogsucker growth and duration of summer high flows
provides some support for the hypothesis that fish growth increases with longer
duration of summer high flows.

This study showed little evidence that high flow duration affected fish growth
among selected streams in the Eastern Broadleaf Province of Minnesota. Inter-annual
variability in temperatures along with the timing, magnitude and frequency of flows
may have contributed to differences in the annual growth of fishes in some streams
(Schlosser 1991; Neuheimer and Taggart 2007; Peterson and Jennings 2007). However,
minimal growth year-effects observed at the majority of my sites suggests that biotic
factors (e.qg., fish age, genetic differences) may play a large role in determining the

growth rates of fishes within the streams of the study area.
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MANAGEMENT IMPLICATIONS
This study provided recruitment and growth measures for populations of
Smallmouth Bass, Rock Bass, and Northern Hogsuckers in a number of streams in the
Eastern Broadleaf Province of Minnesota. Inter-annual variability of the magnitude and
duration of stream flows were also quantified for a number of streams in the province.
Additionally, mixed effects models identified factors affecting Smallmouth Bass, Rock
Bass, and Northern Hogsucker growth for several populations among streams in the

study area. Key findings of this study are summarized below.

e Recruitment of Smallmouth Bass, Rock Bass, and Northern Hogsuckers was
highly variable among streams and years.

e Magnitude and duration of stream flows were highly variable among streams
and years during the spawning and rearing periods of Smallmouth Bass, Rock
Bass, and Northern Hogsuckers.

e Little support was found for either long-term or short-term flow effects on
recruitment during the adult spawning and juvenile rearing periods.

e Age and individual fish effects were the primary factors affecting growth for a
majority of the populations of Smallmouth Bass, Rock Bass, and Northern
Hogsuckers among streams.

e The maximum duration of summer high flows (75" flow percentile) did not show
a significant relationship with the inter-annual growth of Smallmouth Bass, Rock
Bass, and Northern Hogsuckers for most populations among streams.

Recruitment and growth measures from this study, particularly those for
Smallmouth Bass and Rock Bass, can be used in the assessment of several stream
fisheries in the Eastern Broadleaf Province. Specifically, these measures could be used
as a baseline status for future studies.

Additionally, during the course of this study | encountered several stream flow

gages with long gaps in long-term discharge data. Although the maintenance and status
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of stream flow gages are often dictated by budget constraints, the importance of long-
term flow data for studies such as mine cannot be understated. Therefore, whenever
possible, funding should be made available for the continued operation of gages to
ensure adequate long-term discharge records for future studies.

| found little evidence that the duration of high flows, and the magnitude and
variability of flows affected the growth and recruitment of Smallmouth Bass, Rock Bass,
and Northern Hogsuckers. Consequently, future studies focusing on different factors
that may affect fish growth and recruitment, such as temperature and habitat regimes,
and timing and frequency of flows may help to explain the inter-annual variability found

for the fish populations in this study.
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