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                                                                   Abstract 

 

Filtering and estimation are two important tools of engineering. Whenever the state of the system 

needs to be estimated from the noisy sensor measurements, some kind of state estimator is used. If 

the dynamics of the system and observation model are linear under Gaussian conditions, the root 

mean squared error can be computed using the Kalman Filter. But practically, noise frequently enters 

the system as not strictly Gaussian. Therefore, the Kalman Filter does not necessarily provide the 

better estimate. Hence the estimation of the nonlinear system under non-Gaussian or quasi-Gaussian 

noise is of an acute interest. There are many versions of the Kalman filter such as the Extended 

Kalman filter, the Unscented Kalman filter, the Ensemble Kalman filter, the Particle filter, etc., each 

having their own disadvantages. In this thesis work I used a bridging strategy between the Ensemble 

Kalman filter and Particle filter called an Ensemble Kalman Particle filter. This filter works well in 

nonlinear system and non-Gaussian measurements as well. I analyzed this filter using MATLAB
TM 

simulation and also applied Gaussian Noise, non-zero mean Gaussian Noise, quasi-Gaussian noise 

(with drift), random walk and Laplacian Noise. I applied these noises and compared the 

performances of the Particle filter and the Ensemble Kalman Particle filter in the presence of linear 

and nonlinear observations which leads to the conclusion that the Ensemble Kalman Particle filter 

yields the minimum error estimate. I also found the optimum value for the tuning parameter which is 

used to bridge the two filters using Monte Carlo Simulation. 
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Chapter 1 

Introduction 

Estimation theory is mostly used in electronic signal processing systems like radar, sonar, image 

analysis, biomedicine, communications, controls, seismology, speech etc. and also includes diverse 

areas of science such as meteorology, biostatistics, econometrics, and geology as well as many 

others. Problems such as target tracking, time series analysis, communication and satellite navigation 

require the need to estimate values of the state or a group of parameters. For example, in radar and 

sonar the desired parameter is the position of the aircraft and the position of a target such as a 

submarine respectively. Estimation of the state of a stochastic system from a noisy measurements or 

uncertainties is a main problem faced in the almost all fields. The main objective is to estimate the 

signal from the noisy measurements. These problems come under the classification of Bayesian 

Inference problems, a sub category of statistical inference where the likelihood of a hypothesis is 

updated sequentially in the presence of observed data. These kinds of problems assume that the 

present state of the system depends only on the state at the prior instant. The state and their 

mathematical relations like mean, variance etc. may be known or may be hypothesized based on 

experience. In both cases the state space model connecting the observation and the states of interest 

is a probabilistic one, because of the presence of uncertainties and noises. Hence one needs a best 

estimation approach for the optimum solution. 

 

1.1 The Optimum Solution 

 

The optimum solution of a model which is entirely linear and the noises/uncertainties involved are 

Gaussian distributions with known parameters, is given by the Kalman filter [19]. The discrete 

Kalman filter is very useful and has been found to solve a wide variety of problems encountered in 

different fields of science and technology as discussed earlier. Kalman filtering can provide 

minimum estimation errors. Also the performance of Kalman filtering is easy to verify and it is easy 

to implement. The linear and Gaussian distribution model represents a small part of the Bayesian 

Inference Problems. In most cases the dynamics of the system will not be linear with Gaussian noise 

but nonlinear with non-Gaussian noice. Also higher dimensional systems add complexity to the 

problems. In this regard Kalman filter cannot provide an optimum solution.  
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1.2 The Sub-optimal solutions 

To solve problem of the nonlinearity involves linearizing the nonlinear system process and 

measurement functions. Different Kalman filters linearize the system function in different ways. 

Among these various filters the Extended Kalman Filter (ExKF) can be used when the problem 

involves a nonlinear function. ExKF linearizes the nonlinear function locally by using the first term 

of its Taylor series expansion. If the complexity of the system is large, ExKF uses higher order terms 

of the expansion. In that case the linearization errors are not negligible which eventually leads to an 

inconsistent estimate, and also increased computational complexity. In this filter it assumes the noise 

has a Gaussian distribution and uses the Kalman Filter equations to obtain the estimate at each step 

of estimation. The major drawback of this approach is that it assumes the noise is Gaussian so ExKF 

does not give an optimum solution for the non-Gaussian distribution. The detailed algorithm is 

provided in chapter 3. 

Another approach is the approximate grid based methods in which discretizing a continuous state 

space to get an optimal solution. In this method the continuous state domain is divided into a finite 

number of states and probability density functions of the estimations are modified into probability 

mass functions. The prediction step and update step equations are computed using the conditional 

probability of the state with respect to observation. But the problem with this method is the original 

space should be known and the area of high occurrence should be known. In most of the real time 

problems this is not possible. Another drawback is the truncation error originating from certain part 

of the state space. 

1.3 Monte Carlo Methods 

The Ensemble Kalman Filter and the particle filters are based on the Monte Carlo estimation 

methods. First of all a region of possible input points should be defined, which is equivalent to 

define the priori probability distribution in the Bayesian Estimation problem. Then a fixed number of 

samples are generated from this distribution. With the use of these sample points, estimation of the 

parameters are performed. Therefore these methods depend on the law of large numbers so they 

replace integration involving probability terms with computed sums and averages. The advantage of 

the Monte Carlo method is that it is easy to solve systems having complicated integrals as mentioned 
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earlier. The Ensemble Kalman filter and the Particle filter is used extensively in the Bayesian 

Inference problems especially in case of high dimensional non-Gaussian and nonlinear models. 

The Particle filter [20] is a recursive filter which generates the variables from a sample population, 

collaborates a specific weight and then computes a weighted average to find the final estimate. Even 

if the states are unknown it will draw from the approximate distribution of the samples. As the 

sample size increases, the characterization of the Monte Carlo method leads to the true value and 

also the filter tends to the optimal Bayesian estimate.  

The Ensemble Kalman Filter [14] is an extension of the discrete Kalman filter (this filter uses the 

Monte Carlo methods to generate the sample of model states) which is used for the nonlinear 

Bayesian filtering. Using the samples, states, and observation it will estimate the final result. First of 

all, predict the forecast ensemble estimates based on the estimates at the prior instant. Then the 

forecast ensembles are adjusted using the ensemble Kalman gain along with the most recent 

observation. The Ensemble Kalman filter will provide the best estimate for the Gaussian distribution. 

It has been shown that these filters work well and optimal solutions will converge with the Kalman 

filter solution under linear and Gaussian distribution [21 , 22]. 

The Ensemble Kalman filter (EnKF) and the Particle filter (PF) methods approximate the probability 

density function in different ways. The EnKF only approximates the mean and covariance of the 

state through a series of equally weighted ensemble members. The analysis of EnKF, which is a 

weighted combination of the prediction and observation through Kalman gain, and also it updates 

each ensemble member based on its distance from the observation in the state space. But in the case 

of particle filter only updates the weight of each particle in the analysis step without updating the 

particle itself. Because most particles may have small weights, a large number of particles are 

required to prevent filter degeneracy, making the particle filter impractical for high-dimensional 

models.  

The Ensemble Kalman Particle filter (EnKPF) takes the advantages of both ensemble Kalman filter 

and the Particle filter. This approach uses a combined analysis scheme including both the EnKF and 

the Particle Filter by using a controllable index (i.e., tuning) parameter. This new analysis scheme of 

the EnKPF is not only updates the particles but also considers its weights. Therefore this thesis 

analyzes the Ensemble Kalman Particle filter and applied the non-Gaussian noise. 
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1.4 Problem Description 

As many practical problems of Bayesian inference are nonlinear with non-Gaussian distribution, this 

work assumes the observations are related nonlinearly to the states and also distributed under the 

non-Gaussian support. For this type of model we compare the root mean squared error of the 

Ensemble Kalman Filter, Particle filter and the new method of Ensemble Kalman Particle filter. It 

will be shown that the Ensemble Kalman Particle filter yields minimum error. 

The problem being considered is to determine or predict a parameter x at a given time step and a 

noisy observation y. The variable x is assumed to follow a known probabilistic model that depends 

on the prior state. The observed variable y is a function of x under the non-Gaussian noise. We then 

consider various filtering approaches applied to both Gaussian and non-Gaussian noises and then 

analyzed the performance by changing the tuning parameter gamma. The EnKPF is demonstrated   

using MATLAB
TM

 simulation. Then we briefly discuss the simulation results and the future work in 

this regard. In order to understand this filter it is required to first understand the basic principle of the 

classical discrete Kalman filter which yields the best estimate for the Bayesian estimation problem. 
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Chapter 2 

Background 

2.1 Introduction to state estimation 

Estimation can apply to both static and dynamic systems. A dynamic system is a system in which the 

output at any particular time is completely determined by input samples at the same time as well as 

at other times including the past or the future. Since the output depends on past or future input 

samples, this system needs a memory to store such samples. Hence, a dynamic system has a 

memory. In this system there are system states and the evolution of the system state over time. The 

system state at time t is an instantaneous description of the system which means it is sufficient to 

predict the future states of the system without considering the prior states. The evolution of the 

system state indicates sequence or continuous trajectory through the space of all possible system 

states. This means that these types of states hold all the information about the past. Therefore there is 

a need to know the states at a given point of time and the inputs from there on (it may contain all the 

information of system from the beginning), which may require an infinite number of parameters to 

describe the system. This is of course impossible. Therefore there is a need to model all the space of 

possible system states. This is called the state space of the dynamical system. With the use of a state 

space model the past is encoded in a finite number of terms, which is the advantage of this modeling 

and also the state space model allows the description of the state, inputs, and the output. 

A discrete state space model is of the following form, 

 

    X (k+1) =AX (k) +BU (k)   (2.1) 

    Y (k) =CX (k) +DU (k)   (2.2) 

 

Where X (.) ∈ R
n   

is the state vector and n is the number of states, A is the system matrix, B is the 

input matrix, U (.)∈ R
m   

is the input vector and m is the number of inputs, and k is the discrete time 

index. Matrices A and B are of appropriate dimension. The future state can be expressed in terms of 

input and past state, so it has a finite description. Where Y (.) is the output vector, C is the output 

matrix and D is the feed through / feed forward matrix. The output which is composed of system 

measurements are actually related to the state and the input. Matrices C and D are also of appropriate 

dimensions. 
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The outputs are measured but states may not be measured directly. Some states may affect the 

dynamics of the system, which may also affect the output of the system but may not be measured. 

This problem actually demands estimation, if the states need to be determined. 

Although not always necessary state estimation may still be useful. Such state estimates can be used 

to construct a control mechanism, such as a rocket or a missile, which is supposed to hit another 

missile or an aircraft. The reference signal that usually comes in a control system defines the desired 

missile trajectory. This reference signal has a mixture of two properties. First of all it must follow 

the reference faithfully, and then it must reject all disturbances. This is the desired property of all 

tracking control systems. However if the problem is to compute the reference itself this problem is 

known as guidance. To intercept a moving object all its motion parameters such as its present 

position, its velocity, its acceleration, etc., are required. These are the states of the previously 

mentioned system. The position is measured with the use of sensors and then velocity and 

acceleration are estimated. But a non-trivial problem occurs when one tries to estimate the velocity 

and acceleration in the absence of a measurement of the position. In such a situation one needs to 

consider the various estimation methods such as a state observer via an estimation using Kalman 

filtering and an extended estimation. 

 

2.2 State space observation 

 

State observation is used to estimate the parameters for ideal conditions. Linear systems lend 

themselves to a simple model representation which can be used for state observation such as 

            X (k+1) =AX (k) +BU (k)                                                      (2.3) 

                                                                                                       

                  Y (K) =CX (k)                                                              (2.4) 

 

In this approach the input should be known without any disturbance (which is the ideal condition), 

initial conditions of the state are unknown or assumed zero and also there are no measurement 

noises. Hence a state observer is used to perfectly recreate the state dynamics. This situation is not 

realistic. 

 

Now consider that there is some noise in the measurement and also assume some uncertainty in the 

inputs, which implies some input may be known but some other inputs are unknown. The other kinds 

of inputs are called disturbance inputs, which are applied by the environment. Most disturbances are 

immeasurable in real time. A common way to characterize the unknown or uncertain things is to 

have a probabilistic distribution. Bayesian state estimation is used to solve these kinds of problems. 
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2.3 Bayesian state estimation 

 

Bayesian theory is used to solve these kinds of problems. Bayesian theory was originally discovered 

by the British researcher Thomas Bayes in a posthumous publication in 1763 [1]. The renowned 

Bayes theorem specifies the fundamental probability law determining the process of logical 

inference. Bayesian theory (e.g., [2]) is a branch of mathematical probability theory that allows 

people to model the uncertainty about the world and the outcomes of interest by incorporating prior 

knowledge and observations. In Bayesian analysis, the probability is described as a conditional 

measure of uncertainty, is one of the popular methods used to solve the estimation problems [3]. 

Let’s introduce some fundamental Bayesian statistics. The state estimation problem has two 

components. The first part is associated with an accurate prediction of the sensor measurements of 

the state. For example a prediction of the position similar to the measured quantities of a position 

sensor which in turn yields a prior estimate of state.  The second part is associated with joining the 

measured observation with the predicted one to form a posterior estimate of the state. (The equations 

given below are obtained from [4]). 

 

Consider two random variables, x and y. This x can take one of NX values and y can take one of  

NY  values, that is x ∈ NX,y ∈NY. 

The joint probability of observing when x = xi and y = yj  is Pr(x=xi, y=yi) 

If x and y are statistically independent, this joint probability is just the product of the probabilities 

   Pr(x=xi) Pr(y=yi)                          (2.5) 

If x and y are statistically dependent, take the probability that x = xi conditioned on the event y=yj. 

This is the conditional probability Pr(x=xi| y=yj) 

Bayes’s theorem is a result of the property that joint probability is commutative, i.e. 

   Pr(x=xi, y=yj) = Pr(y=yj , x=xi )                             (2.6) 

Expanding both sides of with the equation for conditional probability will yield [3] 

                       Pr(x=xi| y=yj) Pr(y=yi) = Pr(y=yj| x=xi) Pr(x=xi)    (2.7) 

Bayes theorem is then obtained by [3] 
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                  Pr(x=xi| y=yj) = Pr(y=yj | x=xi)Pr(x=xi)/Pr(y=yi)     (2.8) 

 

This theorem is applicable not only for the probability values but also for the probability 

distributions. 

So if x and y are continuous random variables then according to Bayes theorem the relation between 

the distribution is 

                                                         P(x|y)= P(y|x) 
𝑷(𝒙)

𝑷(𝒚)
                                            (2.9) 

If the variable x represents the state of the dynamical system and y represents an observation (or 

measured output from a sensor), P(y|x) is the likelihood of an observation given that the state 

represents the true underlying model. P(x|y) yields the probability that  the model is correct  “after 

the fact” given a  collected an observation. Therefore it is called the posterior distribution [4]. 

P(x) is the probability distribution of the state independent of the observation or the prior x. P(y) is 

the prior probability of observation. 

There are three types of intractable problems inherently related to the Bayesian statistics: [3] 

1. Normalization: To find the posterior P(x|y) with the given prior P(x) and the likelihood 

P(y|x) [3] 

P(x|y ) = 
𝑷(𝒚|𝒙)𝑷(𝒙)

∫ 𝑷(𝒚|𝒙)𝑷(𝒙)𝒅𝒙𝑿

                                                (2.10) 

 

2. Marginalization:  Given the joint posterior (x,z),the marginal posterior[3] 

     P(x|y )=∫ 𝑷(𝒙, 𝒛|𝒚)𝒅𝒛
𝒛

                                                (2.11) 

 

3. Expectation for a given conditional probability distribution function [3] 

EP(x|y )[f(x)]=∫ 𝒇(𝒙) P(x|y )dx.       (2.12) 

           where f(x) is the system function 
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There are three major steps in Bayesian Analysis 

1) Select the model with given data and assumed priors. 

2) Estimate the parameters to fit the data and assumed priors. 

3) Update the parameters of the prior. 

Now consider the situation such that the observation changes with respect to time. Recursive 

Bayesian estimation is a method to estimate the real value of an observed variable that changes with 

time. 

 

2.4 Recursive Bayesian Estimation 

 

 

In this method there are two main assumptions. First of all the states follow the first order Markov 

process. This process is a random process that undergoes transitions from one state to another on a 

state space. But the probability distribution of the future state depends only on the current state from 

[3] 

                            P (Xk|X0, X1, X2, X3, . . . . ,.Xk-1) =P(Xk|Xk-1 )                                         (2.13) 

Second assumption is the observations are independent of the given states. 

From Bayes rule the conditional probability [3] 

P(Xk|Yk) = P(Yk|Xk) 
𝑷(𝒙)

𝑷(𝒚)
       (2.14) 

 

P(Xk |Yk)  =                           
𝑷(𝒚𝒌,𝒚𝒌−𝟏|𝒙𝒌)𝑷( 𝒙𝒌)  

𝑷(𝒚𝒌,𝒚𝒌−𝟏) 
                           

      =     
𝑷(𝒚𝒌,𝒚𝒌−𝟏|𝒙𝒌)𝑷(𝒙𝒌)𝑷(𝒚𝒌,𝒚𝒌−𝟏|𝒙𝒌) 𝑷( 𝒚𝒌−𝟏 |𝑿𝒌) 𝑷(𝒙𝒌)  )  

𝑷(𝒚𝒌|𝒚𝒌−𝟏) 𝑷𝒚𝒌−𝟏)  
 

    =          
𝑷(𝒚𝒌,𝒚𝒌−𝟏|𝒙𝒌) 𝑷(𝒙𝒌|𝒚𝒌−𝟏) 𝑷(𝒚𝒌−𝟏 ) 𝑷(𝒙𝒌)    

𝑷(𝒚𝒌|𝒚𝒌−𝟏) 𝑷(𝒚𝒌−𝟏) 𝑷(𝒙𝒌)  
 

 

   =                     
𝑷(𝒚𝒌|𝒙𝒌)𝑷(𝒙𝒌|𝒚𝒌−𝟏)      

𝑷(𝒚𝒌|𝒚𝒌−𝟏)  
                                                      (2.15) 
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Here P(Xk|Yk-1) is the prior which defines the knowledge of the model [3] 

P(Xk|Yk-1)=∫ 𝑷(𝒙𝒌|𝒙𝒌−𝟏)𝑷(𝒙𝒌−𝟏|𝒚𝒌−𝟏)𝒅𝒙𝒌 = 𝟏   ,                             (2.16) 

 and  P(Xk|Yk-1) is the transition density of the state. 
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Chapter 3 

Kalman Filter 

3.1 Discrete Kalman Filter 

 

The Kalman Filter is the special case in the recursive Bayesian state estimation. Now consider the 

measurement error (practically the sensors have measurement error). Even though it is a linear 

system, in these model equations the system matrix, input, and output matrices are time varying 

since the Kalman filter formulation is done for the time varying case. Let’s assume that the system is 

time invariant in order to reduce the complexity of estimation [5]. 

The system model where k is the time step 

         X (k+1)= A X(k)+B U(k) + w                                                                                                  (3.1) 

        Y(k) = C  X(k)+ D U(k)+ v                                                                                                     (3.2) 

 

Where w ∈ R
n   

is the system noise which is applied through the input like disturbances unknown 

noise. And v ∈ R
m   

is the measurement noise term. 

The assumptions for the Kalman filter are as follows [5] 

1) E(w) and E(v)is zero for all k.( E() is the expectation) 

2) The correlation and covariance are same because the mean is zero.  

3) E(w w
T
)= Q  is called process noise covariance and it should be positive definite. 

4) E(v v
T
) = R 

5) The input noise and the observation noise are mutually uncorrelated that is 

E(w  v
T
) = E(X0 w

T
) = E(X0 v

T
)=0 for all k. 

�̂�𝒌
− is the  a priori state estimate at step k given knowledge of the process prior to step k. 

�̂�𝒌 is the a  posteriori state estimate at step k given measurement 𝒚𝒌 

The priori and a posteriori estimate errors are as follows [5] 

e
-
k =𝒙𝒌 -�̂�𝒌

−                  (3.3) 

                                                                 𝒆𝒌= 𝒙𝒌 - �̂�𝒌                                                                                                (3.4) 

The priori estimate error covariance is Pk
-
 = E[e-

ke
-
k

T].    The posteriori estimate error covariance is 

Pk = E[ekek
T
]. The a posteriori estimate is computed as 

                                                          �̂�𝒌=�̂�𝒌
−  +K(𝒚𝒌 − 𝑪�̂�𝒌

−  )                                                                        (3.5) 

 where (𝒚𝒌 − 𝑪�̂�𝒌
−) is called the measurement innovation or the residual and 

K  is the Kalman gain which minimizes the posteriori error covariance. 

In order to minimize the error, 

𝒆𝒌= 𝒙𝒌 - �̂�𝒌 ,  substitute equation (3.5) in the error  
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                                                                          �̂�𝒌=�̂�𝒌
−  +K(𝒚𝒌 − 𝑪�̂�𝒌

−  )                             (3.6) 

yielding gain K at each step                                   

                                                               𝑲𝒌=Pk
-
C

T
(CPk

-
C

T
+ R)

-1
                             (3.7) 

When the measurement error covariance R approaches to zero 

𝑲𝒌=C
-1      

so the
 
gain weights the residual more heavily. 

When the a priori estimate error covariance Pk
-    

approaches to zero, the gain approaches to zero 

i.e.    𝑲𝒌=0.  The gain weights the residual less heavily. Which means when R tends to zero the actual 

measurement 𝒚𝒌 is accurate compare with the predicted measurement C�̂�𝒌
−. When the priori estimate 

error covariance Pk
- 

tends to zero then the predicted measurement C�̂�𝒌
− is accurate than the actual 

measurement. Probability of a priori estimate �̂�𝒌
− conditioned on all prior measurements  𝒚𝒌 (Bayes 

Rule) yields 

E[𝑿𝒌] = �̂�𝒌  (this is the mean of the state distribution) 

E[(𝒙𝒌-�̂�𝒌
−)(𝒙𝒌 -�̂�𝒌

−)
T
]= Pk  (variance of the distribution.) 

 

3.2 The Kalman filter Algorithm 

 
The Kalman filter equations are categorized into two forms. First one is to predict (time update) 

which is used to obtain the a priori estimates for the next time step. The other one is the 

measurement update equations are used for the feedback that is incorporating the new measurement 

into the predicted estimate to get the a posteriori estimate [5]. 

The predictor equations                                           update equations 

�̂�𝒌
− = A �̂�𝒌−𝟏 + B uk                                                                                 𝑲𝒌= Pk

-
𝑪𝑻(CPk

-
𝑪𝑻+R)

-1
 

Pk
-
= A 𝑷𝒌−𝟏𝑨𝑻+Q                        �̂�𝐤=�̂�𝐤

−  +Kk(𝐲𝐤 − 𝐂�̂�𝐤
−  )  

                   𝑷𝒌=(I-𝑲𝒌C)Pk
-   

                               (3.8) 

 

After each prediction and updating step, the process is repeated with the use of previous a posteriori 

estimates used to predict the new a priori estimates. This recursive nature makes the Kalman filter 

practical. Kalman filters yields optimal solution for the linear systems given process noise and the 

measurement noise have zero mean with Gaussian support. Now consider the system is nonlinear but 

all other assumptions are the same including Gaussian noise. In that case linearization technique are 

used in the approximation, i.e. the Extended Kalman Filter. 
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(The complete derivation of the Kalman filter equations can be found at “Kalman Filtering Theory 

and Practice using MATLAB” by Mohinder S.Grewal, Angus P. Andrews. In chapter 4, section 4.2 

Kalman Filter) 

3.3 Extended Kalman Filter 

Extended Kalman Filtering provides the estimate by linearizing the nonlinear model of the system. 

That is, it linearizes about the current mean and covariance. Taylor series is used to linearize the 

model using the partial derivatives of the process and measurement functions to provide the 

estimate. 

Now assume the process is modeled by a nonlinear differential equation. 

Xk= f(xk-1,uk,wk-1) , where x∈R
n              

(3.9) 

With measurement y∈R
m

 , 

                                          Yk=h(Xk,vk)                                 (3.10) 

The main difference from the Kalman filter algorithm is that one linearizes the process and 

measurement functions using a Taylor series. Hence, the system matrix and output matrix of the 

state space model are replaced with Jacobian matrixes by using the partial derivatives. 

Using new equations to linearize an estimate about Kalman Filter equation yields 

Xk  =     �̃�k + A (xk-1-�̂�k-1)+Ww k-1                                (3.11) 

                                                                   Yk =  �̃�k +H(xk-�̃�k)+Vvk                         (3.12) 

 where Xk  and Yk  are the true state and measurement vectors, 

�̃�k  and �̃�k are the approximate state and measurement vectors, 

�̂�𝒌 is a posterior estimate of the state at step k, and 

w k-1 and vk  are the process and measurement noise. 

For simplicity did not use the time step k for the Jacobians even if they change with respect to time. 

 The matrix A is the Jacobian matrix of the partial derivatives of f with respect to x. That is 

A[i,j]=
𝝏𝒇[𝒊]

𝝏𝒙[𝒋]
 (�̂�𝒌−𝟏  ,uk ,0)           (3.13) 

where i, j is the number of state equations and the number of states respectively. uk  is the input. 
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W is the Jacobian matrix of f with respect to w 

                         W[i,j]=
𝝏𝒇[𝒊]

𝝏𝒘[𝒋]
 (�̂�𝒌−𝟏  ,uk ,0)                              (3.14) 

H is the Jacobian matrix of h with respect to x 

                                                                         H[i,j]=
𝝏𝒉[𝒊]

𝝏𝒙[𝒋]
 (�̃�,0)             (3.15) 

V   is the Jacobian matrix h with respect to v 

                                                                        V[i,j]=
𝝏𝒉[𝒊]

𝝏𝒗[𝒋]
 (�̃�,0)                       (3.16) 

 

3.4 Extended Kalman Filter Algorithm 

 
Prediction equations [5]               update equations [5] 

�̂�𝒌
-
 = f(�̂�𝒌−𝟏  ,uk ,0)     Kk= Pk

-
Hk

T
(HkPk

-
Hk

T
+VkRkVk

T
)

-1
 

Pk
-
  = AkPk-1Ak

T 
+ WkQk-1Wk

T
    �̂�𝒌=�̂�𝒌

-
  +Kk(yk-h(�̂�𝒌

-
  ,0)) 

       Pk=(I-Kk Hk)Pk
-                                            

(3.17) 

Extended Kalman Filter is an improvised Kalman filter and simply an ad-hoc state estimator. Even 

though this filter is used for the nonlinear estimation it has some disadvantage. Since it uses Taylor 

series to linearize it can cause large truncation errors. Extended Kalman filtering gives the best 

optimal solution for simple nonlinear models. There is no one to one mapping between the 

measurements Yk and the state via h. Hk affects the Kalman Gain which only magnifies the residual 

but does not affect the state. Therefore it has a chance to diverge. Hence, for a highly nonlinear 

system one can apply a new approximation method called Unscented Kalman Filter. 

3.5 Unscented Kalman Filter  

The Unscented Kalman filter is also called Sigma-Point Kalman Filter or Linear regression Kalman 

Filter which uses the statistical linearization technique [7, 8]. This method is used to linearize a 

nonlinear function of the states through a linear regression between n points drawn from the prior 

distribution of the states. This linearization technique is an improvement over Taylor series 

linearization [9]. 

The state distribution of the Extended Kalman filter is analytically propagated through the first order 

linearization of the nonlinear system, in which there is a chance of divergence in the posterior mean 
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and covariance. The Unscented Kalman Filter overcomes this problem through a deterministic 

sampling method called unscented transformation [10]. Consider the same nonlinear system as in the 

Extended Kaman Filter 

Xk= f(xk-1,uk,wk-1) , where     x ∈R
n
 

Yk=h(Xk,vk),          with measurement y∈R
m

. 

Now assume the initial state x0 is a random vector with known mean �̅�0 = E(x0).  The covariance       

P0 =  E[(x0- �̅�0)(x0- �̅�0)
T
] where �̅�k =E(xk) is the mean of the state vector and Pk =E[(xk- �̅�k)(xk- �̅�k)

T
] is the 

covariance. 

In the Unscented Transform, 

1) Selection of Sigma Points (the sigma points are denoting by  𝛘). The number of sigma 

points is 2n+1 where n is the dimension of the state [11] 

        𝛘[0]  =  �̅�k  first sigma point is the mean.  [i] = 0                    (3.18) 

         𝛘[i]  = �̅�k+ (√(𝒏 + 𝝀)𝑷𝒌)i  for [i]=1,2,……n        (3.19) 

    𝛘[i]  = �̅�k- (√(𝒏 + 𝝀)𝑷𝒌)i-n             for [i]=n+1,…………..2n                        (3.20) 

Note: √(𝒏 + 𝝀)𝑷𝒌   - is a matrix square root there is two methods to compute the square 

root, one is diagonalization and another method is Cholesky Matrix Square root. 

2) Set the weights (the weights are denoted by 𝜔) [12]     

    ∑ 𝜔𝑖
[i]

  = 1               (3.21) 

    �̅�=∑ 𝜔𝑖
[i]𝛘[i]

               (3.22) 

   Pk =∑ 𝜔𝑖
[i]

 (𝛘[i]
  - 𝒙k )( 𝛘

[i]
  - �̅�k )

T
                      (3.23) 

There is no unique solution to compute the sigma points and the weights. 

3) Weighted sample mean and covariance [11,12] 

           𝜔𝑚
[0]

= 
𝝀

𝑛+𝝀
                              (3.24) 

          𝜔𝑐
[0]

 =𝜔𝑚
[0]

 +(1-α
2
+β) where 𝝀, α, β are the scaling parameters        (3.25) 

 

          𝜔𝑐
[𝑖]

= 𝜔𝑚
[𝑖]

 =
𝟏

2(𝑛+𝝀)
 for i= 1,2,. . . 2n (n- is the number of states)       (3.26) 

          The parameter 𝝀 can be computed by 𝝀= α
2
(n+ κ)-n 

           Where  𝜔𝑚
[0], 𝜔𝑚

[𝑖]
  are needed in order to compute the mean and 
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           𝜔𝑐
[0]

,𝜔𝑐
[𝑖]

 are needed to compute the variance.      

         The values for α∈(0,1], β=2, κ≥0and also these values depend 

          on how far the sigma points are from the mean [11, 12]. 

4) Transform these points through a nonlinear mapping 

Yk = G(xk,w) 

where xk is the input, Yk is the output, G(.) is the nonlinear map parameterized by the 

vector w weights 

5) Compute the mean and covariance from weighted transformed points 

�̅� ́=∑ 𝜔𝑚
[𝑖]

𝑮(𝛘[i])𝟐𝒏
𝒊=𝟎            (3.27) 

𝑷𝒌 ́ = ∑ 𝜔𝑚
[𝑖]

𝑮(𝛘[i] − �̅� ́)𝟐𝒏
𝒊=𝟎 𝑮(𝛘[i] − �̅� ́)T

         (3.28) 

 

3.6 Unscented Kalman Filter Algorithm  

     Prediction [13]        

            �̂�𝒌
-
  =∑ 𝜔𝑚

[𝑖]
𝛘𝟐𝒏

𝒊=𝟎 i(k|k-1)       

           Pk
-
  =∑ 𝝎𝒄

[𝒊]
(𝛘𝟐𝒏

𝒊=𝟎 i(k|k-1)-�̂�𝒌
-
  )( 𝛘 i(k|k-1) -�̂�𝒌

-
  )

T
+Q 

          Yk|k-1 = H(𝛘 (k|k-1)) 

            �̂�𝒌
-
  =∑ 𝝎𝒎

[𝒊]𝟐𝒏
𝒊=𝟎 Yk|k-1                                (3.29) 

     Update [13] 

             P�̂�𝒌-�̂�𝒌-   = ∑ 𝝎𝒄
[𝒊]

(𝐘𝟐𝒏
𝒊=𝟎 i(k|k-1) -�̂�𝒌

-
  )( 𝐘 i(k|k-1) -�̂�𝒌

-
  )

T
+R 

            P�̂�𝒌-�̂�𝒌-   =∑ 𝝎𝒄
[𝒊]

(𝛘𝟐𝒏
𝒊=𝟎 i(k|k-1) -�̂�𝒌

-
  )( 𝐘 i(k|k-1) -�̂�𝒌

-
  )

T 

             Kk = P�̂�𝒌-�̂�𝒌-   (P�̂�𝒌-�̂�𝒌-   )
-1 

             �̂�𝒌=�̂�𝒌
-
  +Kk(yk-�̂�𝒌

-
) 

            Pk =Pk
-
 - KkP�̂�𝒌-�̂�𝒌-Kk

T               (3.30) 

Where Q and R are process and measurement noises covariance respectively. 

Even though Unscented estimation is accurate, this method is based on a small set of sigma points 

therefore it is not a truly global approximation technique. Computation cost is greater because of the 

Cholesky factorization on every step. This yields slower computation when compared with other 
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techniques. And it is also applied to models driven by Gaussian noises. For these reasons this filter is 

difficult to implement. 

Another method which can be applied to the nonlinear state estimation is known as the Ensemble 

Kalman filter. This filter can be used in the models of extremely higher order and nonlinear, if the 

initial states are uncertain and have a large number of measurements. 
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Chapter 4 

Ensemble Kalman filter 

This filter is derived from the basic Kalman filter which provides the best estimation in linear 

Gaussian models. Also it provides sub optimal solutions for extremely high order and nonlinear 

systems. This filter obtains an estimate by using the first and second moments of the error terms. 

Basically this filter is consists of Monte Carlo approximations of the Kalman filter in which the 

actual covariance is replaced by the ensembles covariance. 

4.1 Gaussian Linear observation  

Much of the material summarized in this chapter is derived from Shen & Tang [17]. Consider an 

ensemble of state estimates, which holds the initial probability distribution of the state. In order to 

capture statistical information of the predicted states, the sample points are propagated to the true 

nonlinear system and the probability density function of the actual state covariance of the prediction 

error is approximated by the ensemble of the estimates [14]. In unscented Kalman filtering the 

number of sample points is selected deterministically from a minimal set of points. But in Ensemble 

Kalman filter the number of ensembles can vary and it is also assumed that the prediction 

distribution is Gaussian. The application of Ensemble Kalman Filtering is given [14]. 

The prior ensembles are denoted by X
f∈R

LxN 
 where L is the number of states and N is the ensemble 

size.  

X
f
 = (X

f
1,X

f
2,. . . . . . .X

f
i,. . .X

f
N ) these ensembles are returned as updated ensembles [14]. 

The parameters f and i denote the i
th

 forecast ensemble member.   

The emperical mean and covariance are defined by 

                                                                          𝑿𝒇̅̅ ̅̅ =
𝟏

𝑵
∑ 𝑿𝒊

𝒇𝑵
𝒊=𝟏                       (4.1) 

                                                         𝑷𝒇̅̅̅̅ =
𝟏

𝑵−𝟏
∑ (𝑿𝒊

𝒇
−𝑵

𝒊=𝟏 𝑿𝒇̅̅̅̅ )(𝑿𝒊
𝒇

− 𝑿𝒇̅̅̅̅ )T                                                                
(4.2) 

The  Ensemble Kalman Filter performs the Kalman filter formula for each ensemble member, i.e. 

                                                                   𝑿𝒊
𝒂  =  𝑿𝒊

𝒇
+K(𝒚𝒊-h(𝑿𝒊

𝒇
)          (4.3) 

where K is the kalman gain and 𝑋𝑖
𝑎 is the updated ensembles for the linear measurement function 

For i= 1,2,. . . . .,N. 
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The measurement is 

           𝒚𝒊= y+𝒗𝒊           (4.4) 

where 𝑣𝑖 is a random variable with zero mean and covariance R. 

If the measurement function is linear under the additive  noise then yk=Hxk+ζ. 

The Kalman gain is defined by 

                                                         K=𝑷𝒇̅̅̅̅ 𝑯𝑻(H𝑷𝒇̅̅̅̅ 𝑯𝑻+R)
-1

 .        (4.5) 

 

4.2 Non Gaussian and nonlinear observation 

For the nonlinear measurement function 𝑃𝑓̅̅̅̅ 𝐻𝑇 and  H𝑃𝑓̅̅̅̅ 𝐻𝑇 can be calculted as [14] 

                                                𝑷𝒇̅̅̅̅ 𝑯𝑻=
𝟏

𝑵−𝟏
∑ (𝑿𝒊

𝒇
−𝑵

𝒊=𝟏 𝑿𝒇̅̅̅̅ )[𝒉(𝑿𝒊
𝒇

) − 𝒉(𝑿𝒇̅̅ ̅̅ ̅̅ ̅)]T                                                
(4.6)  

                                        H𝑷𝒇̅̅̅̅ 𝑯𝑻 =
𝟏

𝑵−𝟏
∑ (𝒉(𝑿𝒊

𝒇
) −𝑵

𝒊=𝟏 𝒉(𝑿𝒇̅̅ ̅̅ ̅̅ ̅)[𝒉(𝑿𝒊
𝒇
) − 𝒉(𝑿𝒇̅̅ ̅̅ ̅̅ ̅)]T

                 (4.7) 

where  ℎ(𝑋𝑓̅̅ ̅̅ ̅̅ ̅)=
1

𝑁
∑ ℎ(𝑋𝑖

𝑓
)𝑁

𝑖=1 . These equations work well under the following two conditions  

 1)   ℎ(𝑋𝑓̅̅ ̅̅ ̅̅ ̅)=ℎ(𝑋𝑖
𝑓

) 

 2)   Norm(𝑋𝑖
𝑓

− 𝑋𝑓̅̅̅̅ ) is small for i= 1,2,. . .N 

For a nonlinear model and nonlinear measurement function the ensemble kalman filter gain is 

        K=𝑷𝒙𝒚𝑷𝒚𝒚
−𝟏         (4.8) 

where 𝑃𝑥𝑦 is the cross covariance between the state and observation errors and   𝑃𝑦𝑦 is the error 

covariance between the observation and the prediction. 

The true value of the state and the observation can be defined as [14] 

                                                              𝑿𝒕𝒓=E(𝑿𝒊
𝒇
)+ξ = 𝑿𝒇̅̅̅̅ +ξ       (4.9) 

   𝒀𝒕𝒓=h(𝑿𝒇̅̅̅̅ )+ζ        (4.10) 

where ξ, and ζ  are the process noise and the measurement noise. Now 

                                                 𝑷𝒙𝒚=
𝟏

𝑵−𝟏
∑ (𝑿𝒊

𝒇
−𝑵

𝒊=𝟏 𝑿𝒇̅̅̅̅ )[𝒉(𝑿𝒊
𝒇
) − 𝒉(𝑿𝒇̅̅̅̅ )]T                                          

(4.11) 

                                                  𝑷𝒚𝒚= 
𝟏

𝑵−𝟏
∑ (𝒉(𝑿𝒊

𝒇
) −𝑵

𝒊=𝟏 𝒉(𝑿𝒇̅̅̅̅ )[𝒉(𝑿𝒊
𝒇
) − 𝒉(𝑿𝒇̅̅̅̅ )]T

+ R                (4.12) 
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                                                                                     𝑿𝒊
𝒂  =𝑿𝒊

𝒇
+K(𝒚𝒊-h(𝑿𝒊

𝒇
)      (4.13) 

 where 𝑋𝑖
𝑎 is the updated state for the nonlinear measurement function given the noise covariance R. 

The algorithm is simulated using these equations based on the paper by Shen and Tang [17]. This 

Ensemble Kalman Filter approach gives better estimates for very small ensemble size. Therefore this 

filter is suitable for large models. When the ensemble size increases, the performance of the filter 

also increases but in some extent the performance cannot improve even with the increase in 

ensemble size. The disadvantage of the ensemble size is the inherent Gaussian assumption. 
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Chapter 5 

The Particle filter 

A particle filter [20] based on the Monte Carlo method is used to solve a variety of problems 

including nonlinearity and high dimensionality. In the literature different terms are used to describe 

this filter. In this thesis we use [17] for the algorithm. The basic method of this filtering uses a set of 

particles of probability densities and computes the posterior density function by combining the 

particles with a set of weights. In some of the methods the same particles are used as trajectories 

while in the other new particles are generated in each step. In this work we use the same particles. 

Because this method is similar to Ensemble Kalman filtering so it yields a bridge between both the 

filters to form the Ensemble Kalman Particle filter (which is considered as the optimum solution). 

5.1 Particle filter algorithm 

Consider the same nonlinear system as for the previous filter 

Xk= f(xk-1,uk,wk-1),              where    Xk ∈R
n                                                        

(5.1) 

                                                                     Yk=h(Xk,vk)       with measurement Yk∈R
m
                           (5.2) 

 

The purpose of the particle filter is to estimate recursively the posterior distribution of the state 

P(𝑿𝟏:𝒌|𝒀𝟏:𝒌) or the marginal distribution P(𝑿𝒌|𝒀𝟏:𝒌) and consequently some functions of the states 

such as expectation of the sates. The assumption for the particle filter is that probability density 

function is approximated with weighted particles, that is the likelihood for an ensemble 

member 𝑿𝒌
(𝒊)

given the observation 𝒀𝒌 to update its weight. The pdf of the analysis at time step k-1 is 

assumed to be a linear combination of Dirac-Delta functions. 

P(𝑿𝒌−𝟏|𝒀𝒌−𝟏 )=∑ Ԝ𝒌−𝟏
(𝒊)

𝜹 (𝑿𝒌 − 𝑿𝒌−𝟏
(𝒊)

)𝑵
𝒊=𝟏                                      (5.3) 

which is not necessarily Gaussian. 

𝑿𝒌−𝟏
(𝒊)

is a particle at time a step k-1 with corresponding weight Ԝ𝐤−𝟏
(𝐢)

. 
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The new particle at step k has marginaldistribution 

P(𝑿𝒌|𝒀𝒌−𝟏 )=∑ Ԝ𝒌−𝟏
(𝒊)

𝜹 (𝑿𝒌 − 𝑿𝒌
(𝒊)

)𝑵
𝒊=𝟏                                                        (5.4) 

Based on Bayes’ rule the posterior pdf is 

P(𝑿𝒌|𝒀𝒌−𝟏 )=
𝟏

𝑨
∑ 𝑷(𝒀𝒌| 𝑿𝒌

(𝒊)
)Ԝ

𝒌−𝟏

(𝒊)
𝜹 (𝑿𝒌 − 𝑿𝒌

(𝒊)
)𝑵

𝒊=𝟏                         (5.5) 

                     =∑ Ԝ𝒌
(𝒊)

𝜹 (𝑿𝒌 − 𝑿𝒌
(𝒊)

)𝑵
𝒊=𝟏   where   Ԝ𝐤

(𝐢)
∝ 𝑷(𝒀𝒌| 𝑿𝒌

(𝒊)
)Ԝ

𝒌−𝟏

(𝒊)
             (5.6) 

The estimated pdf of the updated state vectors 𝑋𝑘 is 

                                                                �̅�𝒌=∑ Ԝ𝑘
(𝑖)

𝑿𝒌
(𝒊)𝑵

𝒊=𝟏 .               (5.7) 

The mean (the first moment)    𝒇(𝒙)̅̅ ̅̅ ̅̅  = ∑ Ԝ𝒌
(𝒊)

𝒇(𝑿𝒌
(𝒊)

)𝑵
𝒊=𝟏   where f(x) is a function 𝑋𝑘 

The posterior state  f(x)=𝑿𝒏 and the likelihood function  𝑷(𝒀𝒌| 𝑿𝒌
(𝒊)

) =   Φ(𝒀𝒌; 𝒉(𝑿𝒌
(𝒊)

), R) 

Here observation and the likelihood functions are Gaussian. 

                            P(Y|X)= Φ(y;h(x),R)= A exp{-
𝟏

𝟐
[𝒚 − 𝒉(𝒙)]𝑻𝑹−𝟏[𝒚 − 𝒉(𝒙)]}            (5.8) 

The problem of updating this process is that variance of the weights increases exponentially with 

respect to time, which means after a few iterations, the distribution of importance weights becomes 

more and more reduced. This is known as particle degeneracy.  In order to measure the degeneracy 

the effective ensemble size Neff   can be computed  

     Neff =1/  { ∑ (𝑊(𝒊))𝑵
𝒊=𝟏

2
}             (5.9) 

Neff varies between 1 and N where N is the number of particles. If Neff is close to 1 which means the 

filter is facing severe degeneracy. 

To avoid the degeneracy problem one can increase the number of particles but a better solution is to 

apply resampling. The resampling is used to eliminate the particles having small weights and focus 

on the particles with significant weights. Hence the particles with large weights will be selected and 

propagated to the next step. 
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Chapter 6 

The Ensemble Kalman Particle Filter 

6.1 Bridging the Ensemble Kalman and the Particle Filter  

This chapter is based on [17, 18]. First we introduce a tuning parameter γ∈ [0, 1]. This makes a 

continuous transition between the Ensemble and the Particle Filter update. We used Monte Carlo 

Simulations to find the optimum value of γ for the minimum root mean square error. Besides Particle 

filters, other Kalman filters as mentioned earlier work well under Gaussian noise. The updating 

scheme of the Ensemble Kalman filter consists of Ensemble Kalman filter updates based on a 

likelihood corrected by a Particle filter update. The advantage of the Ensemble Kalman Particle filter 

is that it is easy to implement these two steps and also the particle weights do not depending on the 

observation noise variables. By applying resampling, this filter avoids the particle ties. The 

Ensemble Kalman Particle filter does not require any structure for the state dynamics. The system 

can be stochastic or dynamic. 

The tuning parameter γ∈ [0 , 1], which allows continous interpolation between the Ensemble 

Kalman filter and the Particle filter. The parameter γ controls the bias variance trade-off between a 

correct update and keeping the diversity of the sample. 

First, consider the analysis scheme at a single fixed time of Ensemble Kalman Particle Filter 

(EnKPF) for the linear measurement function. 

Assume the ensemble X
f
i = (X

f
1,X

f
2,. . . . . . .X

f
i,. . .X

f
N )  where  i= 1,2,. . .,N with N the number of 

ensembles and Y, the observation data, is available. 

 

6.2 Ensemble Kalman Particle Filter Algorithm 

1) Compute the estimated prediction covariance [14] 

Covariance of the ensembles can be calculated using the ensemble mean 

𝑿𝒇̅̅̅̅ =
𝟏

𝑵
∑ 𝑿𝒊

𝒇𝑵
𝒊=𝟏                             (6.1) 

𝑷𝒇̅̅̅̅ =
𝟏

𝑵−𝟏
∑ (𝑿𝒊

𝒇
−𝑵

𝒊=𝟏 𝑿𝒇̅̅̅̅ )(𝑿𝒊
𝒇

− 𝑿𝒇̅̅̅̅ )T                                                                     
(6.2) 

2) Choose γ∈ [𝟎 , 𝟏] apply the EnKF, based on the observation error covariance R/ γ 
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Here H is used to represent  the linear measurement function  

                   K1(γ)= 𝑷𝒇𝑯𝑻(H𝑷𝒇𝑯𝑻+R/γ )
-1

 = 𝜸𝑷𝒇𝑯𝑻(γH𝑷𝒇𝑯𝑻+R )
-1                                                   

(6.3) 

                                                             𝒗𝒊  =𝑿𝒊
𝒇
+K1(γ )(𝒚𝒊-H(𝑿𝒊

𝒇
)              (6.4)

  

3) Compute Q as the process covariance 

Q =  
𝟏

𝜸
K1(γ)RK1(γ)

T
               (6.5) 

4) Compute weights as 

                                            Wi= Φ(y;H𝒗𝒊,
𝑹

𝟏−𝜸
+HQ𝑯𝑻)               (6.6) 

Normalize the weights by diving by the weights with weight sum        

                                                      𝑾𝒊
̂  = 𝑾𝒊/∑ 𝑾𝒊

𝑵
𝒊=𝟏                                                             (6.7) 

5) Choose indices by sampling from the weights with some balanced sampling. 

The resampling index S(i) is chosen for each member  𝒗𝒊  according to 𝑾𝒊 
̂ with  

residual  resampling  

6) To compute the updated state generate Ɛ𝟏,𝒋 in 

                                               𝑿𝒊
𝒖= Vs(i)+ K1(γ)Ɛ𝟏,𝒋/√𝜸Ɛ𝟏,𝒋              (6.8) 

Here Ɛ𝟏,𝒋 is the random observation error drawn from the Gaussian N(0,R). 

7) Compute                                K2(1-𝜸) = (1- 𝜸)𝑸𝑯𝑻((1-γ) H𝑸𝑯𝑻+R )
-1

            (6.9)

  

and generate Ɛ2,𝑗 from N(0,R) and apply the EnKF with inflated observation error 

                                                         𝑿𝒊
𝒂= 𝑿𝒊

𝒖+ K2(𝟏 −  𝜸)[y+
Ɛ𝟐,𝒋

√𝟏−𝜸
− 𝑯𝑿𝒊

𝒖]                              (6.10) 

For the nonlinear measurement function is represented as h 

K1(γ)=                   (6.11) 

      {
𝟏

𝑵−𝟏
∑ (𝑿𝒊

𝒇
−𝑵

𝒊=𝟏 𝑿𝒇̅̅̅̅ )[𝒉(𝑿𝒊
𝒇
) − 𝒉(𝑿𝒇̅̅̅̅ )]T

}*{
𝟏

𝑵−𝟏
∑ (𝒉(𝑿𝒊

𝒇
) −𝑵

𝒊=𝟏 𝒉(𝑿𝒇̅̅̅̅ )[𝒉(𝑿𝒊
𝒇
) − 𝒉(𝑿𝒇̅̅̅̅ )]T

+R/γ )
-1

}   

                                                    𝑿𝒊
𝒂= 𝑿𝒊

𝒖+ K2(𝟏 −  𝜸)[y+
Ɛ𝟐,𝒋

√𝟏−𝜸
− 𝒉(𝑿𝒊

𝒖)]           (6.12) 

Here  matrix inversion is continuous therefore it is easy to check when γ tends to zero. 

Given K2(1 −  γ) is non zero, the particle filter update is obtained. When  γ  tends  to 1 

then K1(γ) exists so the Ensemble Kalman Filter is obtained [14]. 
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Chapter 7 

Noise 

As discussed in the introduction the noises are uncertainties. There are many ways to model these 

uncertainties. In this thesis uncertainties are modeled probabilistically. Because the observation or 

measurements are impure and also contaminated by the unknown effects, these effects are known as 

noise. Even the best model may not perfectly predict the new measurements which are known as 

modeling errors bias. In Kalman filtering one of the important assumptions is that noise is modeled 

using a Gaussian distribution. 

7.1 Gaussian Noise 

Sensors are commonly used for signal measurement. Imperfect sensors have noise characteristics.   

This sensor noise is modeled as an additive Gaussian random variable. The Gaussian noise 

component having the pdf equal to the normal distribution, (also called Gaussian distribution). Let P 

of a Gaussian random variable of x be defined by [23]   

                                   P(x) = 
1

 𝜎√2𝜋
𝑒

−
( x−µ)2

2𝜎2         (7.1) 

 where µ is the mean value and 𝛔 is the standard deviation. 

The exponential function −
( x−µ)2

2𝜎2  is a quadratic function of the variable x, hence the parabola points 

downwards depending on the coefficient of the negative quadratic term. The term 
1

 𝜎√2𝜋
 is 

independent of x, therefore assumed as a normalization factor [23]. 

                           
1

𝜎√2𝜋
∫ exp (−

( x−µ)2

2𝜎2 )
∞

−∞
dx = 1     (7.2)  

 

                                

  Figure 1: simulation result of generated zero mean Gaussian noise distribution µ=0, 𝜎 =1 
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7.2 Multivariate Gaussian distribution 

7.2.1 Non zero mean Gaussian 

A vector of random variable x = [x1, x2, x3. . .xn]
T
 is said to have Multivariate Gaussian distribution 

with mean µ, and covariance Ʃ. Its probability density function is defined by [23]. 

P(x) =
1

2𝜋𝑛/2|Ʃ|1/2 exp ( - 
1

2
( x − µ)T

 Ʃ
-1( x − µ))   (7.3) 

This can be represented as x ~ N (µ, Ʃ). 

In the case of non-zero mean or multivariate Gaussian, the argument of exponential function 

- 
1

2
( x − µ)T

 Ʃ
-1( x − µ)  is a quadratic form of the variable x. Since Ʃ is positive definite matrix, Ʃ

-1
 

also a positive definite matrix [23]. For any vector x≠  µ ; ( x − µ)T
 Ʃ

-1( x − µ)>0 hence 

- 
1

2
( x − µ)T

 Ʃ
-1( x − µ)<0.      

The coefficient term  
1

2𝜋𝑛/2|Ʃ|1/2  which is independent of x is then considered as normalization factor 

[23] 

1

2𝜋
𝑛
2|Ʃ|

1
2

∫ ∫ .  .  . ∫ exp (− 
1

2
 ( x − µ)

∞

−∞

∞

−∞

∞

−∞
 T Ʃ-1( x − µ) ) dx1, dx2, . . .dxn = 1;                     (7.4) 

 

 

                               Figure 2: simulation result for the nonzero mean Gaussian 
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7.2.2 Gaussian with non-zero mean and Bias offset 

As discussed earlier the inertial sensors like accelerometers and gyroscopes have errors due to the 

bias. Also, MEMS inertial sensors are affected by any change in physical properties like pressure, 

temperature or height leading to sensor bias. The bias can change the output value and providing 

additional error to the noise. The total bias of a sensor is defined as the average output signal which 

has no correlation with input signal related to acceleration or rotation. This means the bias offset can 

be defined as the value of output when the input is zero. This can be considered for an accelerometer 

by finding the acceleration when the object is not moving. Similarly for the Gyroscope the bias can 

be calculated by finding the angular rotation when the senor is not in rotation [24]. 

Simulation of Gaussian noise with mean = 5 and with bias of 10. The MATLAB code is given 

below. 

 

   

           Figure 3: simulation result for Gaussian with non-zero mean and Bias offset 
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7.2.3 Gaussian with Non zero mean and drift 

By considering the inertial sensors the input signals are time integrated therefore a constant bias of Ɛ 

causes an error which is growing linearly with time. For example an accelerometer x (t) = 
1

2
Ɛt

2
. 

This means for 10 micro g bias in accelerometer the error in position results in 0.005m after10 

seconds and 50m after 1000 seconds. This kind of accumulation of small bias over time is called 

drift [24]. 

 Simulation of non- zero mean with drift 

 

   

              Figure 4: simulation result for Non zero mean with drift 

 

7.3 Non Gaussian noise  

Noise is an extra signal which interferes with the observation or output signal from the sensor. These 

noises are unknown and may be from another sensor or from the other sensor itself but noise is 

present in every sensor is often difficult to characterize. Therefore in this thesis work Gaussian noise 

is modified and transformed to non-Gaussian. MEMS sensors typically consist of angular random 

walk, rate random walk, velocity random walk, acceleration random walk etc. The position random 

walk is used to reduce the complexity in this work. 

7.3.1 The transformation of Gaussian to non- Gaussian  

With mean = 10 variance = 4 and added skewness = 0.5 (for a Gaussian noise it will be 0). The 

skewness is a measure of symmetry. If a distribution is symmetric it looks the same to the both sides 

of the center point. Finally the kurtosis = 4 (which is equal to 3 for purely Gaussian). Kurtosis is 

similar to skewness. If is a measure of “tailedness” of the probability distribution [27]. 
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                     Figure 5: the transformation of Gaussian to non-Gaussian distribution 

 

7.3.2 The simple Random walk 

Suppose that X= (X1, X2, X3…..) is a sequence of independent random variables, and each variables 

having values 1 and -1 with probabilities p∈ [0,1] and 1-p respectively. Let Y= (Y0, Y1, Y2, ..) be 

partial sum processes associated with X so that 

   Yn =∑ 𝑋𝑖
𝑛
𝑖=1 ,            (7.5) 

Where n ∈ N and N is the number of particles [25]. 

The sequence Y is the simple random walk with parameter p. Consider a particle on an axis at each 

discrete time step the particle either  one unit to the left (with probability p) or to the right(with 

probability 1-p), independently step to step. In this thesis work it is assumed that each step occurs 

with equal probability, i.e. p = 0.5. 

The expected value and standard deviation of sequence X are 

                                      E(X)    = 2p-1         (7.6) 

     Var(X) = 4p(1-p)         (7.7) 

 

Yn has probability density function [25] 

               P(Yn=k) = (
𝑛

(𝑛 + 𝑘)/2) p
(n+k)/2

 (1-p)
 (n-k)/2

 , k ∈ {-n,-n+2, . . . . n-2, n},               (7.8) 

The mean and variance of Yn are [25] 

E(Yn)  =  n(2p-1) 

Var (Yn) =  4np(1-p),  
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In this work simulation of random walk considered length of step space 0.1, length of time step 0.01, 

number of time step 40, number of particles 100, and probability to move left and to move right as 

0.5.  

 

7.3.3 Simulation of simple Random Walk 

 

Noise distribution of the random walk  

The Probability distribution of a Random walk is generated with Gaussian distribution and with 

added mean = 10 variance 4 and added skewnes 0.5 (for a purely Gaussian noise it will be 0) and 

finally with the kurtosis 4 (which is equal to 3 for Gaussian) to get non-Gaussian noise. 

     

 

                  Figure 6: simulation result for the simple random walk 
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7.3.4 Simulation of the probability density of transformed Gaussian Random Walk 

 

     

Figure 7: Simulation of the probability density of transformed Gaussian random walk 

 

 

7.4 Laplacian noise  

Due to the unknown noise in the environment the simplest approach to add noise is Laplacian noise. 

This is also called noise with bi-exponential distribution which means that two exponential functions 

are utilized back to back, one is positive and one is negative. Therefore it has two parameters. One is 

µ (the position) and b which is the scale (the spread). [26] 

f(x| µ,b) =
1

2𝑏
 exp    

−(|x− µ|)

𝑏
        (7.9) 

Generating of Laplacian noise requires transforming the Gaussian noise using a nonlinear memory- 

less transformation. Use the transformation of x as x= F
-1

(w) where F is the cumulative distribution 

of the Laplacian pdf and w is the uniform random variable of the interval [0, 1]. The MATLAB code 

for generating Laplacian noise  is given in the appendix. 
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7.4.1 Simulation results of the Laplacian noise  

 

Figure 8: Laplacian noise 

 

Figure 9.1: Laplacian noise distribution 

 

Figure 9.2: Laplacian noise distribution 
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Chapter 8 

Simulation Results  

This chapter describes a few simulation results where the states of the aforementioned system were 

estimated by the Particle filter, Ensemble Kalman filter and the Ensemble Kalman  Particle fiter. 

Consider a system where the state variable Xkis one dimensional andits nonlinearly connects the 

observation vector Ykwhichis also one dimensional. The state variable of the system under the noise 

is given by 

Xk =  
1

2
 Xk-1 +sin(1.2*k) + Uk                   (8.1) 

Yk = 
    𝑋𝑘

2   
 +Vk         (8.2) 

The state is initialized to X0 = [1,2]  

In order to compare  the Ensemble Kalman Particle Filter with Ensemble Kalman Filter and Particle 

filter  the norm of RMSE was computed. 

The number of ensembles and number of  steps are set as 100 and 40 respectively  for all the filters 

in this thesis. 

8.1 Norm. RMSE for different filters 

Filters [τ1 , τ2  ] Norm. rmse 

EnKPF [0.2 , 0.4]    γ=0.35 

[0.4 , 0.6]    γ=0.5 

[0.6 , 0.8]    γ=0.5 

 

1.8532 

0.8819 

0.9009 

 

 

 

EnKF  3.276 

PF  1.4815 
Table1: Norm.rmse for EnKF, PF and EnKPF under non zero mean Gaussian 

 

τ ∈ [τ1 , τ2  ]  is a key factor to select the gamma value, which is the tuning parameter to bridge the 

Ensemble Kalman Filter and Particle Filter as mentioned in chapter 6. The constrained diversity 

interval [τ1 , τ2  ] for different values the norm of rmse is less than EnKF and PF for all the 

simulations. From the table 1 the optimal performance of the EnKPF γ is 0.5the optimal gamma 

value under quasi-Gaussian with drift 
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Filters [τ1 , τ2  ]  Norm. rmse 

EnKPF [0.2 , 0.4]   γ=0.35 

[0.4 , 0.6]   γ=0.5 

[0.6 , 0.8]   γ=0.55 

 

0.8909 

0.90844 

0.9104 

 

EnKF  2.262 

PF  1.7393 

Table 2 :Norm.rmse for EnKF, PF and EnKPF under quasi-Gaussian with drift 

 

From the above table when γ is close to zero this filter will work as Particle filter and γ is close to 

one it works as Ensemble Kalman Filter. From the tables the optimum value for γ is 0.5 for quasi-

Gaussian noise. 

8.2 Monte Carlo Simulation results 

8.2.1 The optimal value gamma under Gaussian noise  

Number of samples Gamma value  

10 0.6538 

100 0.87003 

500 0.88017 

1000 0.51082 

Table 3 : The  value of gamma under Gaussian noise 

8.2.2 The optimal value of gamma  under Quasi-Gaussian noise  

Number of samples Gamma value  

10 0.60669 

100 0.5409 

500 0.52248 

1000 0.36328 

Table 4: The  value of Gamma  under Quasi-Gaussian noise 

 

 

 



40 
 

8.2.3 The optimal value of gamma under drift 

Number of samples Gamma value  

10 0.20659 

100 0.21999 

500 0.32898 

1000 0.298857 

Table 5: The value of gamma under drift 

 

8.2.4 The optimal value of gamma  under quasi-Gaussian Noise with random walk 

Number of samples Gamma value  

10 0.28504 

100 0.25032 

500 0.27327 

1000 0.31694 

Table 6: The value of gamma under random walk 

From these simulation result it is evident that under Gaussian noise EnKPF works as an Ensemble 

Kalman filter and under the quasi-Gaussian with drift it works similar to the Particle filter. The 

tuning parameter can take any value in the interval [0,1]. But from these table for quasi-Gaussian 

with drift or random walk γ value is close to 0 therefore it shows resembles a Particle Filter. 
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8.3 Simulation under different noise conditions 

The simulation results of the Ensemble Kalman Filter, the Particle filter and the Ensemble Kalman 

Particle filter under Gaussian and quasi-Gaussian noise conditions are given below. The generated 

noise is added to the measurements of the model and simulated on MATLAB for 100 number of 

ensembles  or particles and 40 iterations.  

8.3.1 Under zero mean Gaussian noise 

 The zero mean noise is discussed in the chapter 7 in section 7.1. The Matlab source code is provided 

in the appendix. 

 

Figure 10. The Gaussian distribution of the measurement noise 

 

 

 

The estimated state is computed using updated equations of the algorithm which is aforementioned 

in the previous chapters. The Matlab source code is included in the appendix. 
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8.3.2 State and estimated state of the system for EnKF,PF,EnKPF under Gaussian noise 

 

Figure 11.1: State and estimated state of EnKF under Gaussian 

 

Figure 11.2:  state and estimated state of PF under Gaussian 

 

Figure11.3 : state and estimated state of EnKPF under Gaussian 
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8.3.3 Observation and filtered observation for EnKF,PF,EnKPF under Gaussian noise 

The below shown simulation results of observation of the model and the filtered observation, which 

is computed using the  estimated state.  

 

Figure 12.1: observations for EnKF under Gaussian 

 

Figure 12.2 : observations for the PF under Gaussian 

 

Figure 12.3 : the observation for the EnKPF under Gaussian 
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8.3.4 Root mean square error for the Filters under Gaussian 

Filters EnKF PF EnKPF 
Norm.rmse 0.43577 4.7021 0.93193 
Table 7 :Rmse for the filters under Gaussian condition. 

From the table 7 it is evident that the Ensemble Kalman filter provides optimal solution under 

Gaussian noise. 

8.4 Multivariate Gaussian Distribution 

In this simulation the measurement noise generated with mean = 5 and the variance is 10  

8.4.1.The multivarate Gaussian Distribution of the measurement noise 

The multivariate Gaussian is discussed in the chapter 7 in section 7.2.1. The Matlab source code is 

provided in the appendix. 

 

 

 

  

Figure 13: the multivariate Gaussian Distribution 
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8.4.2. State and estimated state for EnKF, PF, and EnKPF under Multivariate Gaussian 

 

 

Figure 14.1: State and estimated state of EnKF under multivariate Gaussian 

 

Figure 14.2:  state and estimated state of PF under multivariate Gaussian 

 

Figure 14.3:  state and estimated state of EnKPF under multivariate Gaussian 
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8.4.3. The obseravation and filtered observation for EnKF, PF and EnKPF 

 

Figure 15.1: observations for EnKF under multivariate Gaussian 

 

Figure 15.2: observations for the PF under multivariate Gaussian 

 

 

Figure 15.3: the observations for the EnKPF under multivariate Gaussian 
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8.4.4. Root mean square error for the Filters under Multivariate Gaussian 

Filters EnKF PF EnKPF 
Norm.rmse 2.8164 1.4815 0.8782 
Table 8 :Rmse for the filters under Multivariate Gaussian 

The Ensemble Kalman Particle Filter is comparatively gives the optimum solution because of the 

less norm rmse. 

8.5 Simulations of filters under Gaussian with non-zero mean and Bias offset 

The measurement noise is generated as Gaussian with mean 5 and variance 10 and added a bias 

offset 10 

8.5.1.The Gaussian with non-zero mean and Bias offset distribution 

The Gaussian with non-zero mean and bias offset is discussed in the chapter 7 in section 7.2.2. The 

Matlab source code is provided in the appendix. 

  

 

 

   

Figure 16: The Gaussian with non-zero mean and Bias offset distribution 
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8.5.2. State and estimated state for EnKF, PF, and EnKPF under quasi-Gaussian with bias 

The state and estimated state under quasi-Gaussian noise with bias offset 

 

Figure 17.1: State and estimated state for EnKF under quasi-Gaussian noise with bias offset 

 

Figure 17.2: State and estimated state for PF under quasi-Gaussian noise with bias offset 

 

Figure 17.3: State and estimated state for EnKPF under quasi-Gaussian noise with bias offset 
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8.5.2. The observation and the filtered observation  

 

Figure 18.1: Observation for EnKF Figure under quasi-Gaussian noise with bias offset 

 

Figure 18.2: Observation for PF under quasi-Gaussian noise with bias offset 

 

 

Figure 18.3: Observation for EnKPF under quasi-Gaussian noise with bias offset 

 



50 
 

 

 

8.5.3 Root mean square error for the Filters under quasi-Gassian with bias 

Filters EnKF PF EnKPF 
Norm.rmse 2.5662 1.7393 0.87211 

 Table 9 : Filters under quasi-Gassian with bias 

 

8.6 Simulations of filters under quasi-Gaussian with drift  

The measurement noise  is generated as Gaussian with mean = 5 and variance = 10 with drift =10t 

The quasi-Gaussian noise with drift is discussed in the chapter 7 in section 7.2.3.  The Matlab source 

code is provided in the appendix. 

 

   

Figure 19: The Quasi-Gaussian with drift 
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8.6.1 The state and estimated state under Quasi-Gaussian with drift 

 

Figure 20.1 : State and estimated state for EnKF under Quasi-Gaussian with drift 

 

 

Figure 20.2 : State and estimated state for PF under Quasi-Gaussian with drift 

 

 

Figure 20.3 : State and estimated state for EnKPF under Quasi-Gaussian with drift 
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8.6 .2 The observation and filtered observation under Quasi-Gaussian with drift 

 

Figure 21.1: Observations for EnKF under Quasi-Gaussian with drift 

 

 

Figure 21.2 : Observations for PF under Quasi-Gaussian with drift 

 

 

Figure 21.3 : Observations for EnKPF under Quasi-Gaussian with drift 
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8.6 .3 Root mean square error for the Filters under quasi-Gaussian with drift 

Filters EnKF PF EnKPF 
Norm.rmse 3.1916 2.4096 0.91985 
Table 10 : Filters under quasi-Gassian with drift 

 

8.7 Random walk 

The Random Walk is discussed in the chapter 7 in section 7.3.2. The Matlab source code is provided 

in the appendix. 

 

 

   

Figure 22 : Random walk distribution 
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8.7.1. State and estimated states under random walk 

 

 

Figure 23.1: State and estimated state for EnKF under random walk 

 

Figure 23.2 : State and estimated state for PF under random walk 

 

Figure 23.3 : State and estimated state for EnKPF under random walk 
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8.7.2 Observation and filtered observation under random walk 

 

Figure 23.1: Observations for EnKF under random walk 

 

Figure 23.2: Observations for PF under random walk 

 

Figure 23.3: Observations for EnKPF under random walk 
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8.7.3. Root mean square error for the Filters under quasi-Gaussian with random walk 

Filters EnKF PF EnKPF 
Norm.rmse 3.3245 3.0175 0.84663 
Table 11 : Filters under quasi-Gaussian with random walk 

 

8.8 Simulations of filters under quasi-Gaussian with Laplacian Noise 

 

The quasi-Gaussian with Laplacian noise is discussed in the chapter 7 in section 7.4. The Matlab 

source code is provided in the appendix. 

 

    

Figure 25: Quasi-Gaussian with Laplacian Noise 
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8.8.1 State and estimated state of the filters under Laplacian noise 

 

Figure 26.1: State and estimated state for EnKF under Laplacian noise 

 

Figure 26.2 : State and estimated state for PF under Laplacian noise 

 

Figure 26.3 : State and estimated state for EnKPF under Laplacian noise 
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8.8.2.Observation and filtered observation under Laplacian Noise 

 

Figure 27.1: Observation for EnKF under Laplacian Noise 

 

Figure 27.2 : Observation for PF under Laplacian Noise 

 

 

Figure 27.3: Observation for EnKPF under Laplacian Noise 
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8.8.3. Root mean square error for the Filters under quasi-Gaussian with Laplacian noise 

Filters EnKF PF EnKPF 
Norm.rmse 3.0448 1.3075 0.9422 
Table 12 : Filters under quasi-Gaussian with Laplacian noise 

By analyzing the result from tables 8,9,10,11,12 its shown that  under all the quasi-Gaussian conditions  the 

Ensemble Kalman Particle filter provides minimum root mean square error than the other filters. 
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Chapter 9 

Conclusion and Future work 

A lot of progress has been made in the field of estimation in recent years. Still, it is very difficult to 

address the nonlinear and non-Gaussian observations. These days the Kalman-based filters use 

Gaussian distribution to approximate the non-Gaussian distribution. This approach is not efficient 

because it can result in non-trivial estimation errors. In this thesis, the two filters the Ensemble 

Kalman filter and the Particle filter are described. For the linear model under Gaussian noise 

conditions the Ensemble Kalman Filter works well and also the root mean square error is less 

compared with other filters. The main disadvantage of the EnKF is the inability to handle the non-

Gaussian posterior distributions. The Particle filter is used but the estimates depend on the finite 

samples with weights updated by the likelihoods so it gives the impression that the Particle filter can 

handle all possible noise statistics of the model. The main disadvantage is high cost for the 

computations used to prevent the filter degeneracy. And also the sample size grows exponentially 

with the dimension of the system. Hence, the Particle filter is not useful for high dimensional 

models. In order to handle these kinds of problems the Ensemble Kalman Particle Filter was 

developed using a bridging strategy to combine both filters (EnKF and PF).  

Initially, EnKPF is used for the linear measurement functions and now this filter is extended to 

nonlinear measurement functions. Therefore this thesis analyzed the filter under different noise 

conditions and compared it with other filters. While considering the norm of  the root mean square 

error, it is comparatively less for Ensemble Kalman Particle filter for quasi-Gaussian measurements. 

From these simulation results, the optimum value for gamma which is the tuning parameter to bridge 

the Ensemble Kalman Filter and Particle filter is 0.2 for the quasi-Gaussian distribution and 0.6 for 

the Gaussian distribution. When γ close to zero it will work as a Particle Filter and if it is close to 1 it 

works similar to the Ensemble Kalman Filter. 

 This work also considered the generation of a quasi-Gaussian noise in order to analyze the 

Ensemble Kalman Particle filter. To test this filter under non-Gaussian measurement noise, further 

studies are required such as the study of various non-Gaussian measurement noises in the sensors, 

resampling methods, formulation of weights, etc. The main concern is the efficiency and 

performance of this filter when applied to a realistic model. 
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APPENDIX 

The MATLAB
TM

 source code used for the simulation has been presented in this thesis. 

For the comparison purpose the system and observation model are same. 

 

 

The Ensemble Kalman Particle Filter 
 

clear all; 

close all; 

Nens=100; % number of ensemble 

T=40;   % number of steps  

% system and observation 

nx = 1; %number of states 

sys = @(j, Xjm1, Uj) Xjm1/2 + sin(1.2*j) + Uj; %Process equation x[k] = sys(k, x[k-1], w[k]); 

where xkm1 is the previous state 

ny=1; % number of observed state 

obs = @(j, Xj, Vj) Xj^2 + Vj; % Observation equation y[k] = obs(k, x[k],    v[k]) similar to h 

 % generation of noise 

 nu=1;   % size of the vector of process noise 

 m=3;% non zero mean 

 sigma_u = sqrt(10); 

 gen_sys_noise= @(u) normrnd(m, sigma_u);  

 nv=1;% size of the vector of observation noise 

 mean=0.3; 

 R=0.6; 

 r_chol=chol(R); 

 sigma_v = sqrt(1); 

 gen_obs_noise = @(v) normrnd(mean, sigma_v); 

% seperate memry space 

 X = zeros(nx,T,Nens);  Y = zeros(ny,T,Nens); h_vi=zeros(ny,T,Nens); 

 U = zeros(nu,T,Nens);  V = zeros(nv,T,Nens); Xm=zeros(T,nx);Ym=zeros(T,ny); 

 E_X=zeros(nx,Nens); wip1=zeros(T,Nens); 

 E_Y=zeros(ny,Nens); 

 E_h_om=zeros(1,Nens);E_om=zeros(1,Nens); 

 Vi=zeros(1,T,Nens); 

 e1=zeros(1,T,Nens); 

 Om=zeros(T,Nens); 

 h_om=zeros(1,T,Nens); 

%P_xy=zeors(nx,ny); 

g=0.5; 

y=zeros(ny,T,Nens); 

whil=1; 

 % Simulate system 

 while(whil) 

for j=1:Nens 

    X(1,1,j) = 12;                                  % initial state 

    U(1,1,j) = 0;                               % initial process noise 
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    V(1,1,j) = gen_obs_noise(sigma_v);          % initial observation noise 

    Y(1,1,j) = obs(1, X(1,1,j), V(:,1));  

end 

%Prediction/Forecast of ensemble members for the state and the 

%observations for the next instant 

for j=1:T-1        

    

    for k = 1:Nens  

        U(1,j,k) = gen_sys_noise();             

        V(1,j,k) =gen_obs_noise()+10*k ;              

        X(1,j+1,k) = sys(j, X(1,j,k), U(1,j,k));     

        Y(1,j,k) = obs(j, X(1,j,k),   V(1,j,k)); 

        y(1,j,k)=obs(j,X(1,j+1,k),V(1,j,k)); 

    end 

end 

for j=1:T-1 

    for k=1:Nens 

        Xm= (1/Nens)*sum(X(1,j+1,:)); 

        E_X(:,k)=X(:,j,k)-Xm;  

        Ym= (1/Nens)*sum(Y(1,j+1,:)); 

        E_Y(:,k)=Y(:,j,k)-Ym; 

    end 

end 

    P_xy=(1/(Nens-1))*E_X*E_Y'; 

    P_yy=(1/(Nens-1))*(E_Y*(E_Y')+(R/g)); 

    K1_g=P_xy*(inv(P_yy)); 

 for j=1:T 

   for k=1:Nens 

         Vi(:,j,k)=X(:,j,k)+K1_g*(y(:,j,k)-Y(:,j,k)); 

   end 

 end 

 for j=1:T 

     e1=randn(1,Nens)*r_chol; 

     Om(j,:)=K1_g*e1/(sqrt(g)); 

     for i=1:Nens 

         OM=Om*Om'; 

         Q=(1/(Nens-1))*sum(OM(1,j,:)); 

         Om_m=(1/Nens)*sum(Om(j,:)); 

         h_om(1,j,i)=obs(j,Om(j,i),V(1,j,i)); 

         hm_om=(1/Nens)*sum(h_om(:,j,:)); 

         E_h_om(:,i)=h_om(:,j,i)-hm_om; 

         E_om(:,i)=Om(j,i)-Om_m; 

     end 

 end 

 HQHt=(1/(Nens-1))*E_h_om*(E_h_om'); 

 for j=1:T 

     for k=1:Nens 

         h_vi(1,j,k)=obs(j,Vi(1,j,k),V(1,j,k)); 
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     end 

 end 

 for j=1:T 

     for k= 1:Nens 

        wip1(j,k)=y(:,j,k)-h_vi(:,j,k); 

     end 

 end 

 wim=(1/Nens)*ones(Nens,Nens); 

 wi=expm(-(1/2)*(wip1')*(inv(HQHt+(R/(1-g))))*wip1); 

 %wi=(1/(sqrt((2*pi)^4)*abs(R/(1-g))))*wi; 

 for i=1:Nens 

     for j=1:Nens 

        wim(i,j)=wi(i,j)/sum(wi(i,:)); 

     end 

      

 end 

 wim=(1/Nens)*wim; 

 wk= wi*(inv(wim)); 

 wk_=(1/Nens)*wk; 

 diff=zeros(Nens,1); 

 for i=1:Nens 

     diff(i,1)=(wi(i,1)-(1/Nens))^2; 

 end 

    sumd=sum(diff(:,1)); 

    Neff=(Nens/(1+(Nens*sumd)))*30; 

  X_iu=zeros(1,T,Nens); 

 Tau=Neff/Nens; 

 tau1=0.8; 

 tau2=0.9; 

 if(Tau> tau1) 

     if(Tau<tau2) 

         for i=1:T 

            indx = randsample(1:Nens,Nens); 

            for j=1:Nens 

                X_iu(:,i,j)=Vi(:,i,indx(j))+Om(i,j); 

            end 

         end 

        whil=0; 

     else 

         g=g-0.05; 

         whil=1; 

     end 

 else 

     g=g+0.05; 

     whil=1; 

 end 
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 h_Xiu=zeros(1,T,Nens); 

for j=1:T 

     

     for k=1:Nens 

         h_Xiu(1,j,k)=obs(j,X_iu(1,j,k),V(1,j,k)); 

     end 

 end 

     K2gp1=(1/(Nens-1))*(E_om*(E_h_om')); 

     K2gp2=(1/(Nens-1))*((E_h_om*(E_h_om)')+(R/(1-g))); 

     K2g=K2gp1*(inv(K2gp2)); 

  X_est=zeros(1,T,Nens); 

for i=1:T 

    e2=randn(1,Nens)*r_chol; 

    for j=1:Nens 

        X_est(:,i,j)=X_iu(:,i,j)+K2g*(y(:,i,j)+(e2(:,j)*(1/sqrt(1-g)))-h_Xiu(:,i,j)); 

    end 

end 

 end % end for the while loop 

 y_Xest=zeros(1,T,Nens); 

for j=1:T 

     

     for k=1:Nens 

         y_Xest(1,j,k)=obs(j,X_est(1,j,k),V(1,j,k)); 

     end 

end 

X_diff=zeros(1,T,Nens); 

% Xtrue=squeeze(X(:,:,Nens)); 

% X_es=squeeze(X_est(:,:,Nens)); 

  

 for j=1:T 

     for k=1:Nens 

         X_diff(:,j,k)= X_est(:,j,k)-X(:,j,k); 

     end 

 end 

 X_dif=squeeze(X_diff(1,:,:)); 

rms_X=chol((X_dif)*X_dif'); 
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The Ensemble Kalman Filter 
 

 The system and observation model are same as the EnKPF 

 

% seperate memry space 

 X = zeros(nx,T,Nens);  Y = zeros(ny,T,Nens); h_vi=zeros(ny,T,Nens); 

 U = zeros(nu,T,Nens);  V = zeros(nv,T,Nens); Xm=zeros(T,nx);Ym=zeros(T,ny); 

 E_X=zeros(nx,Nens); wip1=zeros(T,Nens); 

 E_Y=zeros(ny,Nens); 

 E_h_om=zeros(1,Nens);E_om=zeros(1,Nens); 

 Vi=zeros(1,T,Nens); 

 e1=zeros(1,T,Nens); 

 Om=zeros(T,Nens); 

 h_om=zeros(1,T,Nens); 

%P_xy=zeors(nx,ny); 

g=0.5; 

y=zeros(ny,T,Nens); 

Y_fil=zeros(1,T,Nens); 

 % Simulate system 

for j=1:Nens 

    X(1,1,j) = 12;                                  % initial state 

    U(1,1,j) = 0;                               % initial process noise 

    V(1,1,j) = gen_obs_noise(sigma_v);          % initial observation noise 

    Y(1,1,j) = obs(1, X(1,1,j), V(:,1));  

end 

%Prediction/Forecast of ensemble members for the state and the 

%observations for the next instant 

for j=1:T-1        

    

    for k = 1:Nens  

        U(1,j,k) = gen_sys_noise();             

        V(1,j,k) =gen_obs_noise() ;              

        X(1,j+1,k) = sys(j, X(1,j,k), U(1,j,k));     

        Y(1,j,k) = obs(j, X(1,j,k),   V(1,j,k)); 

        y(1,j,k)=obs(j,X(1,j+1,k),V(1,j,k)); 

    end 

end 

f=squeeze(V(1,:,:)); 

R_v=cov(f'); 

  

 r=[2,5]; 

 mu=rand(1,T)*range(r)+min(r); 

 vi=mvnrnd(mu,R_v,Nens); 

Yi=(squeeze(Y(1,:,:)))+vi'; 

h_xm=zeros(T,1); 

for j=1:T-1 

    for k=1:Nens 
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        Xm(j,1)= (1/Nens)*sum(X(1,j+1,:)); 

        h_xm(j,1)=obs(j,Xm(j,1),V(1,j,k)); 

        E_X(:,k)=X(:,j,k)-Xm(j,1);  

        Ym= (1/Nens)*sum(Y(1,j+1,:)); 

        E_Y(:,k)=Y(:,j,k)-h_xm(j,1); 

        p_xy1=sum((X(:,j,k)-Xm(j,1))*(Y(:,j,k)-h_xm(j,1))'); 

        p_yy1=sum((Y(:,j,k)-h_xm(j,1))*(Y(:,j,k)-h_xm(j,1))'); 

    end 

end 

  

  

    P_xy=(1/(Nens-1))*p_xy1; 

    P_yy=((1/(Nens-1))*p_yy1)+R_v; 

    K=P_xy*(inv(P_yy)); 

    X_up=[squeeze(X(1,:,:))]+[K*(Yi-(squeeze(Y(1,:,:))))]; 

    X_tr=zeros(T,Nens); 

    Y_tr=zeros(T,Nens); 

    for i=1: T 

        for j= 1:Nens 

            X_tr(i,:)=Xm(i,1)+U(:,i,j); 

            Y_tr(i,:)=h_xm(i,1)+V(:,i,j); 

             

        end 

    end 

    for i= 1:T 

        for j= 1:Nens 

            Y_fil(1,i,j)= obs(j, X_up(i,j),V(1,i,j)); 

        end 

    end 
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The particle filter 

 
clear, clc, close all; 

nx = 1; 

sys = @(k, xkm1, uk) xkm1/2 + sin(1.2*k) + uk; 

ny = 1;     

obs = @(k, xk, vk) xk^2 + vk; 

nu = 1;   

sigma_u = sqrt(10); 

p_sys_noise   = @(u) normpdf(u, 0, sigma_u); 

gen_sys_noise = @(u) normrnd(0, sigma_u); 

nv = 1; 

sigma_v = sqrt(1); 

p_obs_noise   = @(v) normpdf(v, 0, sigma_v); 

gen_obs_noise = @(v) normrnd(0, sigma_v); 

gen_x0 = @(x) normrnd(0, sqrt(10)); 

p_yk_given_xk = @(k, yk, xk) p_obs_noise(yk - obs(k, xk, 0)); 

T = 40; 

x = zeros(nx,T);  y = zeros(ny,T); 

u = zeros(nu,T);  v = zeros(nv,T); 

xh0 = 0;                                  

u(:,1) = 0;                               

v(:,1) = gen_obs_noise(sigma_v);           

x(:,1) = xh0; 

y(:,1) = obs(1, xh0, v(:,1)); 

for k = 2:T 

    

   u(:,k) = gen_sys_noise();              

   v(:,k) = gen_obs_noise();               

   x(:,k) = sys(k, x(:,k-1), u(:,k));      

   y(:,k) = obs(k, x(:,k),   v(:,k));      

end 

xh = zeros(nx, T); xh(:,1) = xh0; 

yh = zeros(ny, T); yh(:,1) = obs(1, xh0, 0); 

pf.k               = 1;                    

pf.Ns              = 200;                  

pf.w               = zeros(pf.Ns, T);      

pf.particles       = zeros(nx, pf.Ns, T);  

pf.gen_x0          = gen_x0;               

pf.p_yk_given_xk   = p_yk_given_xk;        

pf.gen_sys_noise   = gen_sys_noise;       

for k = 2:T 

   %fprintf('Iteration = %d/%d\n',k,T); 

     pf.k = k; 

     [xh(:,k), pf] = particle_filter(sys, y(:,k), pf, 'systematic_resampling');    

    % filtered observation 

   yh(:,k) = obs(k, xh(:,k), 0); 

end 
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function [xhk, pf] = particle_filter(sys, yk, pf, resampling_strategy) 

k = pf.k; 

Ns = pf.Ns;                              % number of particles 

nx = size(pf.particles,1);               % number of states 

  

wkm1 = pf.w(:, k-1);                     % weights of last iteration 

if k == 2 

   for i = 1:Ns                          % simulate initial particles 

      pf.particles(:,i,1) = pf.gen_x0(); % at time k=1 

   end    

   wkm1 = repmat(1/Ns, Ns, 1);           % all particles have the same weight 

end 

xkm1 = pf.particles(:,:,k-1); % extract particles from last iteration; 

xk   = zeros(size(xkm1));     % = zeros(nx,Ns); 

wk   = zeros(size(wkm1));     % = zeros(Ns,1); 

for i = 1:Ns 

    xk(:,i) = sys(k, xkm1(:,i), pf.gen_sys_noise()); 

    wk(i) = wkm1(i) * pf.p_yk_given_xk(k, yk, xk(:,i)); 

end; 

wk = wk./sum(wk); 

Neff = 1/sum(wk.^2); 

resample_percentaje = 0.50; 

Nt = resample_percentaje*Ns; 

if Neff < Nt 

[xk, wk] = resample(xk, wk, resampling_strategy); 

end 

xhk = zeros(nx,1); 

for i = 1:Ns; 

   xhk = xhk + wk(i)*xk(:,i); 

end 

pf.w(:,k) = wk; 

pf.particles(:,:,k) = xk; 

  

return; 

function [xk, wk, idx] = resample(xk, wk, resampling_strategy) 

Ns = length(wk); 

edges = min([0 cumsum(wk)'],1); % protect against accumulated round-off 

       edges(end) = 1;                 % get the upper edge exact 

       u1 = rand/Ns; 

       [~, idx] = histc(u1:1/Ns:1, edges); 

xk = xk(:,idx);   

wk = repmat(1/Ns, 1, Ns);  

return; 
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Laplacian noise 
 

Nens=100; 

T=40; 

x=zeros(1,Nens); 

m1=5; 

varx=10; 

   u=rand(1,Nens); 

   for j=1:T 

    for i=1:Nens  

        if u(1,i)>0.5  

            x(1,j,i)=m1+sqrt(varx).*(1/sqrt(2))*log(1/(2*(1-u(1,j,i))));  

        else  

            x(1,j,i)=msqrt(varx)*(1/sqrt(2))*log(2*u(1,i));  

        end 

     end 

   end  

 

Random walk 
 

delta_x=0.1; %length of space step 

tau=0.01; %length of time step 

T=40; %number of time steps 

M=tau*T; %end time 

Nens=100; %number of particls 

pos=zeros(T,Nens); %all particles start at x=0 

p_l=.5; %probability of moving left 

p_r=.5; %probability of moving right 

t=0; %counts passage of time 

m1 = 10; % mean  of x 

m2 = 4; % variance of x 

m3 = 5; % target skewness. NB: m3 is equal to 0 for a gaussian variable 

m4 = 6 ; % target kurtosis. NB: m4 is equal to 3 for a gaussian variable 

%Simulate the random walk process 

while t <= M %do something until a specific condition is met 

    p= randn(1,T,Nens);%1xN array of random numbers between 0 and 1 

 for j=1:T 

    for i=1:Nens %loop through each particle to see if it moves 

        if p(j,i) < p_l 

            pos(j,i)=pos(j,i)-delta_x; %particle moves left 

        elseif p(j,i) < (1-p_r) 

            pos(j,i)=pos(j,i); %particle doesn't move 

        else 

            pos(j,i)=pos(j,i)+delta_x; %particle moves right 

        end 

    end 

    t=t+tau; %update time 

 end end 
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