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Abstract

Filtering and estimation are two important tools of engineering. Whenever the state of the system
needs to be estimated from the noisy sensor measurements, some kind of state estimator is used. If
the dynamics of the system and observation model are linear under Gaussian conditions, the root
mean squared error can be computed using the Kalman Filter. But practically, noise frequently enters
the system as not strictly Gaussian. Therefore, the Kalman Filter does not necessarily provide the
better estimate. Hence the estimation of the nonlinear system under non-Gaussian or quasi-Gaussian
noise is of an acute interest. There are many versions of the Kalman filter such as the Extended
Kalman filter, the Unscented Kalman filter, the Ensemble Kalman filter, the Particle filter, etc., each
having their own disadvantages. In this thesis work | used a bridging strategy between the Ensemble
Kalman filter and Particle filter called an Ensemble Kalman Particle filter. This filter works well in
nonlinear system and non-Gaussian measurements as well. | analyzed this filter using MATLAB™
simulation and also applied Gaussian Noise, non-zero mean Gaussian Noise, quasi-Gaussian noise
(with drift), random walk and Laplacian Noise. | applied these noises and compared the
performances of the Particle filter and the Ensemble Kalman Particle filter in the presence of linear
and nonlinear observations which leads to the conclusion that the Ensemble Kalman Particle filter
yields the minimum error estimate. | also found the optimum value for the tuning parameter which is

used to bridge the two filters using Monte Carlo Simulation.



Chapter 1
Introduction

Estimation theory is mostly used in electronic signal processing systems like radar, sonar, image
analysis, biomedicine, communications, controls, seismology, speech etc. and also includes diverse
areas of science such as meteorology, biostatistics, econometrics, and geology as well as many
others. Problems such as target tracking, time series analysis, communication and satellite navigation
require the need to estimate values of the state or a group of parameters. For example, in radar and
sonar the desired parameter is the position of the aircraft and the position of a target such as a
submarine respectively. Estimation of the state of a stochastic system from a noisy measurements or
uncertainties is a main problem faced in the almost all fields. The main objective is to estimate the
signal from the noisy measurements. These problems come under the classification of Bayesian
Inference problems, a sub category of statistical inference where the likelihood of a hypothesis is
updated sequentially in the presence of observed data. These kinds of problems assume that the
present state of the system depends only on the state at the prior instant. The state and their
mathematical relations like mean, variance etc. may be known or may be hypothesized based on
experience. In both cases the state space model connecting the observation and the states of interest
is a probabilistic one, because of the presence of uncertainties and noises. Hence one needs a best
estimation approach for the optimum solution.

1.1 The Optimum Solution

The optimum solution of a model which is entirely linear and the noises/uncertainties involved are
Gaussian distributions with known parameters, is given by the Kalman filter [19]. The discrete
Kalman filter is very useful and has been found to solve a wide variety of problems encountered in
different fields of science and technology as discussed earlier. Kalman filtering can provide
minimum estimation errors. Also the performance of Kalman filtering is easy to verify and it is easy
to implement. The linear and Gaussian distribution model represents a small part of the Bayesian
Inference Problems. In most cases the dynamics of the system will not be linear with Gaussian noise
but nonlinear with non-Gaussian noice. Also higher dimensional systems add complexity to the

problems. In this regard Kalman filter cannot provide an optimum solution.



1.2 The Sub-optimal solutions

To solve problem of the nonlinearity involves linearizing the nonlinear system process and
measurement functions. Different Kalman filters linearize the system function in different ways.
Among these various filters the Extended Kalman Filter (EXKF) can be used when the problem
involves a nonlinear function. EXKF linearizes the nonlinear function locally by using the first term
of its Taylor series expansion. If the complexity of the system is large, EXKF uses higher order terms
of the expansion. In that case the linearization errors are not negligible which eventually leads to an
inconsistent estimate, and also increased computational complexity. In this filter it assumes the noise
has a Gaussian distribution and uses the Kalman Filter equations to obtain the estimate at each step
of estimation. The major drawback of this approach is that it assumes the noise is Gaussian so ExKF
does not give an optimum solution for the non-Gaussian distribution. The detailed algorithm is

provided in chapter 3.

Another approach is the approximate grid based methods in which discretizing a continuous state
space to get an optimal solution. In this method the continuous state domain is divided into a finite
number of states and probability density functions of the estimations are modified into probability
mass functions. The prediction step and update step equations are computed using the conditional
probability of the state with respect to observation. But the problem with this method is the original
space should be known and the area of high occurrence should be known. In most of the real time
problems this is not possible. Another drawback is the truncation error originating from certain part

of the state space.
1.3 Monte Carlo Methods

The Ensemble Kalman Filter and the particle filters are based on the Monte Carlo estimation
methods. First of all a region of possible input points should be defined, which is equivalent to
define the priori probability distribution in the Bayesian Estimation problem. Then a fixed number of
samples are generated from this distribution. With the use of these sample points, estimation of the
parameters are performed. Therefore these methods depend on the law of large numbers so they
replace integration involving probability terms with computed sums and averages. The advantage of
the Monte Carlo method is that it is easy to solve systems having complicated integrals as mentioned



earlier. The Ensemble Kalman filter and the Particle filter is used extensively in the Bayesian

Inference problems especially in case of high dimensional non-Gaussian and nonlinear models.

The Particle filter [20] is a recursive filter which generates the variables from a sample population,
collaborates a specific weight and then computes a weighted average to find the final estimate. Even
if the states are unknown it will draw from the approximate distribution of the samples. As the
sample size increases, the characterization of the Monte Carlo method leads to the true value and

also the filter tends to the optimal Bayesian estimate.

The Ensemble Kalman Filter [14] is an extension of the discrete Kalman filter (this filter uses the
Monte Carlo methods to generate the sample of model states) which is used for the nonlinear
Bayesian filtering. Using the samples, states, and observation it will estimate the final result. First of
all, predict the forecast ensemble estimates based on the estimates at the prior instant. Then the
forecast ensembles are adjusted using the ensemble Kalman gain along with the most recent
observation. The Ensemble Kalman filter will provide the best estimate for the Gaussian distribution.
It has been shown that these filters work well and optimal solutions will converge with the Kalman

filter solution under linear and Gaussian distribution [21 , 22].

The Ensemble Kalman filter (EnKF) and the Particle filter (PF) methods approximate the probability
density function in different ways. The EnKF only approximates the mean and covariance of the
state through a series of equally weighted ensemble members. The analysis of EnKF, which is a
weighted combination of the prediction and observation through Kalman gain, and also it updates
each ensemble member based on its distance from the observation in the state space. But in the case
of particle filter only updates the weight of each particle in the analysis step without updating the
particle itself. Because most particles may have small weights, a large number of particles are
required to prevent filter degeneracy, making the particle filter impractical for high-dimensional

models.

The Ensemble Kalman Particle filter (EnKPF) takes the advantages of both ensemble Kalman filter
and the Particle filter. This approach uses a combined analysis scheme including both the EnKF and
the Particle Filter by using a controllable index (i.e., tuning) parameter. This new analysis scheme of
the EnKPF is not only updates the particles but also considers its weights. Therefore this thesis

analyzes the Ensemble Kalman Particle filter and applied the non-Gaussian noise.



1.4 Problem Description

As many practical problems of Bayesian inference are nonlinear with non-Gaussian distribution, this
work assumes the observations are related nonlinearly to the states and also distributed under the
non-Gaussian support. For this type of model we compare the root mean squared error of the
Ensemble Kalman Filter, Particle filter and the new method of Ensemble Kalman Particle filter. It

will be shown that the Ensemble Kalman Particle filter yields minimum error.

The problem being considered is to determine or predict a parameter x at a given time step and a
noisy observation y. The variable x is assumed to follow a known probabilistic model that depends
on the prior state. The observed variable y is a function of x under the non-Gaussian noise. We then
consider various filtering approaches applied to both Gaussian and non-Gaussian noises and then
analyzed the performance by changing the tuning parameter gamma. The EnKPF is demonstrated
using MATLAB™ simulation. Then we briefly discuss the simulation results and the future work in
this regard. In order to understand this filter it is required to first understand the basic principle of the

classical discrete Kalman filter which yields the best estimate for the Bayesian estimation problem.



Chapter 2
Background
2.1 Introduction to state estimation

Estimation can apply to both static and dynamic systems. A dynamic system is a system in which the
output at any particular time is completely determined by input samples at the same time as well as
at other times including the past or the future. Since the output depends on past or future input
samples, this system needs a memory to store such samples. Hence, a dynamic system has a
memory. In this system there are system states and the evolution of the system state over time. The
system state at time t is an instantaneous description of the system which means it is sufficient to
predict the future states of the system without considering the prior states. The evolution of the
system state indicates sequence or continuous trajectory through the space of all possible system
states. This means that these types of states hold all the information about the past. Therefore there is
a need to know the states at a given point of time and the inputs from there on (it may contain all the
information of system from the beginning), which may require an infinite number of parameters to
describe the system. This is of course impossible. Therefore there is a need to model all the space of
possible system states. This is called the state space of the dynamical system. With the use of a state
space model the past is encoded in a finite number of terms, which is the advantage of this modeling
and also the state space model allows the description of the state, inputs, and the output.

A discrete state space model is of the following form,

X (k+1) =AX (k) +BU (k) (2.1)

Y (k) =CX (k) +DU (k) (2.2)
Where X (.) € R" is the state vector and n is the number of states, A is the system matrix, B is the
input matrix, U (.)€ R™ is the input vector and m is the number of inputs, and k is the discrete time
index. Matrices A and B are of appropriate dimension. The future state can be expressed in terms of
input and past state, so it has a finite description. Where Y (.) is the output vector, C is the output
matrix and D is the feed through / feed forward matrix. The output which is composed of system
measurements are actually related to the state and the input. Matrices C and D are also of appropriate

dimensions.
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The outputs are measured but states may not be measured directly. Some states may affect the
dynamics of the system, which may also affect the output of the system but may not be measured.
This problem actually demands estimation, if the states need to be determined.

Although not always necessary state estimation may still be useful. Such state estimates can be used
to construct a control mechanism, such as a rocket or a missile, which is supposed to hit another
missile or an aircraft. The reference signal that usually comes in a control system defines the desired
missile trajectory. This reference signal has a mixture of two properties. First of all it must follow
the reference faithfully, and then it must reject all disturbances. This is the desired property of all
tracking control systems. However if the problem is to compute the reference itself this problem is
known as guidance. To intercept a moving object all its motion parameters such as its present
position, its velocity, its acceleration, etc., are required. These are the states of the previously
mentioned system. The position is measured with the use of sensors and then velocity and
acceleration are estimated. But a non-trivial problem occurs when one tries to estimate the velocity
and acceleration in the absence of a measurement of the position. In such a situation one needs to
consider the various estimation methods such as a state observer via an estimation using Kalman

filtering and an extended estimation.

2.2 State space observation

State observation is used to estimate the parameters for ideal conditions. Linear systems lend
themselves to a simple model representation which can be used for state observation such as
X (k+1) =AX (k) +BU (k) (2.3)

Y (K) =CX (K) (2.4)

In this approach the input should be known without any disturbance (which is the ideal condition),
initial conditions of the state are unknown or assumed zero and also there are no measurement
noises. Hence a state observer is used to perfectly recreate the state dynamics. This situation is not

realistic.

Now consider that there is some noise in the measurement and also assume some uncertainty in the
inputs, which implies some input may be known but some other inputs are unknown. The other kinds
of inputs are called disturbance inputs, which are applied by the environment. Most disturbances are
immeasurable in real time. A common way to characterize the unknown or uncertain things is to

have a probabilistic distribution. Bayesian state estimation is used to solve these kinds of problems.

11



2.3 Bayesian state estimation

Bayesian theory is used to solve these kinds of problems. Bayesian theory was originally discovered
by the British researcher Thomas Bayes in a posthumous publication in 1763 [1]. The renowned
Bayes theorem specifies the fundamental probability law determining the process of logical
inference. Bayesian theory (e.g., [2]) is a branch of mathematical probability theory that allows
people to model the uncertainty about the world and the outcomes of interest by incorporating prior
knowledge and observations. In Bayesian analysis, the probability is described as a conditional
measure of uncertainty, is one of the popular methods used to solve the estimation problems [3].
Let’s introduce some fundamental Bayesian statistics. The state estimation problem has two
components. The first part is associated with an accurate prediction of the sensor measurements of
the state. For example a prediction of the position similar to the measured quantities of a position
sensor which in turn yields a prior estimate of state. The second part is associated with joining the
measured observation with the predicted one to form a posterior estimate of the state. (The equations

given below are obtained from [4]).

Consider two random variables, x and y. This x can take one of Ny values and y can take one of

Ny values, that is X € Nxy €Ny

The joint probability of observing when x = xjand y = y; is Pr(x=xi, y=Yi)

If x and y are statistically independent, this joint probability is just the product of the probabilities
Pr(x=xi) Pr(y=y) (2.5)

If x and y are statistically dependent, take the probability that x = X; conditioned on the event y=y;

This is the conditional probability Pr(x=xi| y=y;)

Bayes’s theorem is a result of the property that joint probability is commutative, i.e.

Pr(x=x;, y=yj) = Pr(y=y; , X=xi) (2.6)
Expanding both sides of with the equation for conditional probability will yield [3]

Pr(x=xi| y=y;) Pr(y=y;) = Pr(y=yj| x=x;) Pr(x=x;) (27)

Bayes theorem is then obtained by [3]

12



Pr(x=xi| y=y;) = Pr(y=y; | x=x)Pr(x=x;)/Pr(y=y;) (2.8)

This theorem is applicable not only for the probability values but also for the probability

distributions.

So if x and y are continuous random variables then according to Bayes theorem the relation between

the distribution is

P(XIY)= P) o 29)
P(y)
If the variable x represents the state of the dynamical system and y represents an observation (or
measured output from a sensor), P(y|x) is the likelihood of an observation given that the state
represents the true underlying model. P(x|y) yields the probability that the model is correct “after

the fact” given a collected an observation. Therefore it is called the posterior distribution [4].

P(x) is the probability distribution of the state independent of the observation or the prior x. P(y) is

the prior probability of observation.
There are three types of intractable problems inherently related to the Bayesian statistics: [3]

1. Normalization: To find the posterior P(x|y) with the given prior P(x) and the likelihood

P(yIx) [3]
P(xly) = PoIxP@x (2.10)
Jx P(y|x)Px)dx
2. Marginalization: Given the joint posterior (x,z),the marginal posterior[3]
P(Xly)=f, P(x, zly)dz (2.11)
3. Expectation for a given conditional probability distribution function [3]
Epwy)[f(X)]=] £ (x) P(x]y )dx. 2.12)

where f(X) is the system function

13



There are three major steps in Bayesian Analysis

1) Select the model with given data and assumed priors.
2) Estimate the parameters to fit the data and assumed priors.

3) Update the parameters of the prior.

Now consider the situation such that the observation changes with respect to time. Recursive
Bayesian estimation is a method to estimate the real value of an observed variable that changes with

time.

2.4 Recursive Bayesian Estimation

In this method there are two main assumptions. First of all the states follow the first order Markov
process. This process is a random process that undergoes transitions from one state to another on a
state space. But the probability distribution of the future state depends only on the current state from
[3]

P (XulXo, X1, X2, X3, .. .. X1) =P(Xi/Xi1 ) (2.13)
Second assumption is the observations are independent of the given states.
From Bayes rule the conditional probability [3]

P(x)

P(XklYi) = P(Y«IXk) PO) (2.14)

P(YioYi—11%)P(xp)
P(yrYi—1)
Py, Yk—11xk) P(xXi)P(Y 1, Yi—11xk) P(Yi—1 |Xk) P(xy) )
P(Yklyk-1) Pyk-1)
_ Py, Yk-1xK) P(Xk|Yk-1) P(Yk-1) P(xk)
P(Yrlyk-1) P(Yk-1) P(xk)

P(Xk [Yx)

_ P(yk|xx)P(Xk|yk-1) (2.15)

P(yrlyr-1)

14



Here P(Xk|Y«k-1) is the prior which defines the knowledge of the model [3]
PXdYk1)=J P(Xp|Xg—1)P(Xg—1|Yj_1)dXK =1 , (2.16)

and P(Xk|Yk-1) is the transition density of the state.

15



Chapter 3
Kalman Filter

3.1 Discrete Kalman Filter

The Kalman Filter is the special case in the recursive Bayesian state estimation. Now consider the
measurement error (practically the sensors have measurement error). Even though it is a linear
system, in these model equations the system matrix, input, and output matrices are time varying
since the Kalman filter formulation is done for the time varying case. Let’s assume that the system is
time invariant in order to reduce the complexity of estimation [5].

The system model where K is the time step

X (k+1)= AX(k)+B U(Kk) + w (3.1)
Y(K) = C X(k)+ DU(K)+ v (3.2)

Where w € R" is the system noise which is applied through the input like disturbances unknown
noise. And ve R™ is the measurement noise term.
The assumptions for the Kalman filter are as follows [5]

1) E(w) and E(v)is zero for all k.( E() is the expectation)
2) The correlation and covariance are same because the mean is zero.
3) E(ww')=Q is called process noise covariance and it should be positive definite.
4) E(vv)=R
5) The input noise and the observation noise are mutually uncorrelated that is
E(w v') = E(Xow") = E(XoVv')=0 for all k.

X} isthe a priori state estimate at step k given knowledge of the process prior to step k.

X IS the a posteriori state estimate at step k given measurement y,,

The priori and a posteriori estimate errors are as follows [5]
&k =X) -Xp (3.3)
ex= Xy - Xi, (3.4)

The priori estimate error covariance is Py = E[ee’']. The posteriori estimate error covariance is
Py = E[exex']. The a posteriori estimate is computed as

X =% +K(yx — Cxy ) (3.5)
where (y, — Cxy) is called the measurement innovation or the residual and
K is the Kalman gain which minimizes the posteriori error covariance.
In order to minimize the error,

er= X - X, substitute equation (3.5) in the error

16



X=x tK(yr — Cxy ) (3.6)
yielding gain K at each step
K,=P,C'(CP,C"+R)* (3.7)
When the measurement error covariance R approaches to zero
K,=C" so thegain weights the residual more heavily.

When the a priori estimate error covariance Py~ approaches to zero, the gain approaches to zero
i.e. K;=0. The gain weights the residual less heavily. Which means when R tends to zero the actual
measurement y, is accurate compare with the predicted measurement Cx,,. When the priori estimate
error covariance Py tends to zero then the predicted measurement Cx), is accurate than the actual
measurement. Probability of a priori estimate x; conditioned on all prior measurements y, (Bayes
Rule) yields

E[X,] =X, (this is the mean of the state distribution)

E[(xk-X3)(xx -X%)"]= P« (variance of the distribution.)

3.2 The Kalman filter Algorithm

The Kalman filter equations are categorized into two forms. First one is to predict (time update)
which is used to obtain the a priori estimates for the next time step. The other one is the
measurement update equations are used for the feedback that is incorporating the new measurement

into the predicted estimate to get the a posteriori estimate [5].

The predictor equations update equations
Xy =AXp_1 +Buyg K,=PCT(CP CT+R)*
Pk=APy_1AT+Q R=Ry +Kilyx — CRy )

P=(1-K C)Py (3.8)

After each prediction and updating step, the process is repeated with the use of previous a posteriori
estimates used to predict the new a priori estimates. This recursive nature makes the Kalman filter
practical. Kalman filters yields optimal solution for the linear systems given process noise and the
measurement noise have zero mean with Gaussian support. Now consider the system is nonlinear but
all other assumptions are the same including Gaussian noise. In that case linearization technique are

used in the approximation, i.e. the Extended Kalman Filter.
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(The complete derivation of the Kalman filter equations can be found at “Kalman Filtering Theory
and Practice using MATLAB” by Mohinder S.Grewal, Angus P. Andrews. In chapter 4, section 4.2
Kalman Filter)

3.3 Extended Kalman Filter

Extended Kalman Filtering provides the estimate by linearizing the nonlinear model of the system.
That is, it linearizes about the current mean and covariance. Taylor series is used to linearize the
model using the partial derivatives of the process and measurement functions to provide the

estimate.
Now assume the process is modeled by a nonlinear differential equation.
Xi= f(X.1,Uk,Wi1) , Where xeR" (3.9)
With measurement yeR™ ,
Yi=h (X Vi) (3.10)

The main difference from the Kalman filter algorithm is that one linearizes the process and
measurement functions using a Taylor series. Hence, the system matrix and output matrix of the

state space model are replaced with Jacobian matrixes by using the partial derivatives.

Using new equations to linearize an estimate about Kalman Filter equation yields

Xic = Xt A (X)) TWW 4 (3.11)
Yk = yk +H(Xk'ﬁfk)+VVk (312)

where X, and Y are the true state and measurement vectors,

X, andy, are the approximate state and measurement vectors,

Xy Is a posterior estimate of the state at step k, and

w1 and vy are the process and measurement noise.

For simplicity did not use the time step k for the Jacobians even if they change with respect to time.

The matrix A is the Jacobian matrix of the partial derivatives of f with respect to x. That is

ofli]

=] (Xp-1 U 0) (3.13)

where i, j is the number of state equations and the number of states respectively. uy is the input.
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W is the Jacobian matrix of f with respect to w

offi]
[i’”:_aw[j] (Xk-1 U 0) (3.14)
H is the Jacobian matrix of h with respect to x
[ij] ax[’-] (xl ) ( . )
V is the Jacobian matrix h with respect to v
hli] _
) _av[i] (*,0) (3.16)
3.4 Extended Kalman Filter Algorithm
Prediction equations [5] update equations [5]
% = f(Ry_q Uk O) K= PHI(HPCH VIRV
Pk = APiA + WiQia Wi Xi=x) +Ke(Y-h(xy ,0))
Pi=(1-Kx Hi)P\ (3.17)

Extended Kalman Filter is an improvised Kalman filter and simply an ad-hoc state estimator. Even
though this filter is used for the nonlinear estimation it has some disadvantage. Since it uses Taylor
series to linearize it can cause large truncation errors. Extended Kalman filtering gives the best
optimal solution for simple nonlinear models. There is no one to one mapping between the
measurements Yy and the state via h. H affects the Kalman Gain which only magnifies the residual
but does not affect the state. Therefore it has a chance to diverge. Hence, for a highly nonlinear

system one can apply a new approximation method called Unscented Kalman Filter.

3.5 Unscented Kalman Filter

The Unscented Kalman filter is also called Sigma-Point Kalman Filter or Linear regression Kalman
Filter which uses the statistical linearization technique [7, 8]. This method is used to linearize a
nonlinear function of the states through a linear regression between n points drawn from the prior
distribution of the states. This linearization technique is an improvement over Taylor series

linearization [9].

The state distribution of the Extended Kalman filter is analytically propagated through the first order

linearization of the nonlinear system, in which there is a chance of divergence in the posterior mean
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and covariance. The Unscented Kalman Filter overcomes this problem through a deterministic
sampling method called unscented transformation [10]. Consider the same nonlinear system as in the
Extended Kaman Filter

Xi= f(X.1,U,Wi1) , where X €R"

Y =h (X, Vi), with measurement yeR".

Now assume the initial state x, is a random vector with known mean x, = E(x,). The covariance
Po= E[(Xo- Xo)(Xo- Xo)'] where X =E(x,) is the mean of the state vector and Py =E[(X«- %) (X~ Xi)'] is the
covariance.

In the Unscented Transform,

1) Selection of Sigma Points (the sigma points are denoting by x). The number of sigma

points is 2n+1 where n is the dimension of the state [11]

x = X first sigma point is the mean. [i] =0 (3.18)
X =X+ (J(m + D)PE); for [i]=1,2,......n (3.19)
x" =X (V(n + D) Pk)in for [1]=n+1,.............. 2n (3.20)

Note: \/(n + )Pk - is a matrix square root there is two methods to compute the square
root, one is diagonalization and another method is Cholesky Matrix Square root.

2) Set the weights  (the weights are denoted by w) [12]

Yol =1 (3.21)
7=y wllyl! (3.22)
Pe=Y; 0 " - ® (XM - )T (3.23)

There is no unique solution to compute the sigma points and the weights.

3) Weighted sample mean and covariance [11,12]

[oj_ _4_

m 4 (3.24)
w£°] =w,[12] +(1-0°+p) where A, a, P are the scaling parameters (3.25)
w[i]: a)[i] =1 fori=1,2,...2n (n- is the number of states) (3.26)

¢ m o 2(n+d) S -

The parameter A can be computed by A= a(n+ «)-n

Where w[o], w,[,il] are needed in order to compute the mean and

m
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wEO] ’wEi]

are needed to compute the variance.
The values for a€(0,1], B=2, k=0and also these values depend
on how far the sigma points are from the mean [11, 12].

4) Transform these points through a nonlinear mapping
Yk = G(X,W)

where X Is the input, Y is the output, G(.) is the nonlinear map parameterized by the
vector w weights

5) Compute the mean and covariance from weighted transformed points
X =3 o G (x[i]) (3.27)

Pk =32 w6 (x[i] — %) 6(x[i] - X)T (3.28)

3.6 Unscented Kalman Filter Algorithm
Prediction [13]

~ -

=321 Wb Xtk
P =22 @l (i B )X ikieny R )+Q
Yk|k—1 =H(x (k|k-1))
Vi = lznow Yigk-1 (3.29)
Update [13]
PPV = X2% @l (Yigkn T ) Yigen) Vi ) +R
PR =07 @l ik i )Y igken) -Fi )T
Ki=Pxi Y PYedi )*
X =% KV

Px =Py - KiPy1 91 Ki" (3.30)
Where Q and R are process and measurement noises covariance respectively.

Even though Unscented estimation is accurate, this method is based on a small set of sigma points
therefore it is not a truly global approximation technique. Computation cost is greater because of the

Cholesky factorization on every step. This yields slower computation when compared with other
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techniques. And it is also applied to models driven by Gaussian noises. For these reasons this filter is
difficult to implement.

Another method which can be applied to the nonlinear state estimation is known as the Ensemble
Kalman filter. This filter can be used in the models of extremely higher order and nonlinear, if the

initial states are uncertain and have a large number of measurements.
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Chapter 4

Ensemble Kalman filter

This filter is derived from the basic Kalman filter which provides the best estimation in linear
Gaussian models. Also it provides sub optimal solutions for extremely high order and nonlinear
systems. This filter obtains an estimate by using the first and second moments of the error terms.
Basically this filter is consists of Monte Carlo approximations of the Kalman filter in which the

actual covariance is replaced by the ensembles covariance.

4.1 Gaussian Linear observation

Much of the material summarized in this chapter is derived from Shen & Tang [17]. Consider an
ensemble of state estimates, which holds the initial probability distribution of the state. In order to
capture statistical information of the predicted states, the sample points are propagated to the true
nonlinear system and the probability density function of the actual state covariance of the prediction
error is approximated by the ensemble of the estimates [14]. In unscented Kalman filtering the
number of sample points is selected deterministically from a minimal set of points. But in Ensemble
Kalman filter the number of ensembles can vary and it is also assumed that the prediction
distribution is Gaussian. The application of Ensemble Kalman Filtering is given [14].

The prior ensembles are denoted by X'eR™™ where L is the number of states and N is the ensemble

size.
X=X X% X%, . X"\ ) these ensembles are returned as updated ensembles [14].
The parameters f and i denote the i forecast ensemble member.
The emperical mean and covariance are defined by
X5t K] @
PT=L 5 (X] X)X - X' @2
The Ensemble Kalman Filter performs the Kalman filter formula for each ensemble member, i.e.
x2 = XT+K(y-h(x") 4.3)

where K is the kalman gain and X7 is the updated ensembles for the linear measurement function

Fori=1,2,..... N.
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The measurement is

Yi=Yytv; (4.4)
where v; is a random variable with zero mean and covariance R.
If the measurement function is linear under the additive noise then y,=Hxy+<¢.

The Kalman gain is defined by

K=PfHT(HPfHT+R)" . (4.5)

4.2 Non Gaussian and nonlinear observation
For the nonlinear measurement function P/H” and HPHT can be calculted as [14]
PTHT=——3,(X] - XN)[h(X]) — h(X)]" (4.6)
HPTHT =—— S, (h(X!) — h(XT)[h(X]) — h(XT)]" @47)
where W):% o h(Xl.f). These equations work well under the following two conditions
1) R(XD=hX])
2) Norm(x/ — X7) is small for i= 1,2,. . .N

For a nonlinear model and nonlinear measurement function the ensemble kalman filter gain is

K=P,,Py; (4.8)

where P, is the cross covariance between the state and observation errors and P, is the error

covariance between the observation and the prediction.

The true value of the state and the observation can be defined as [14]

XU=E(X])+E=XT+¢ @9)
Y =h(Xf)+¢ (4.10)

where &, and ¢ are the process noise and the measurement noise. Now

1

o=y Ziea(X] — XD[R(X]) — hXD)]' (4.11)

P

—¥¥,(h(X]) — RXD)[R(X]) — h(XD)]™+ R (4.12)

Pyy=13
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x2 =xT+K(y;-h(x)) (4.13)
where X is the updated state for the nonlinear measurement function given the noise covariance R.

The algorithm is simulated using these equations based on the paper by Shen and Tang [17]. This
Ensemble Kalman Filter approach gives better estimates for very small ensemble size. Therefore this
filter is suitable for large models. When the ensemble size increases, the performance of the filter
also increases but in some extent the performance cannot improve even with the increase in

ensemble size. The disadvantage of the ensemble size is the inherent Gaussian assumption.
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Chapter 5
The Particle filter

A particle filter [20] based on the Monte Carlo method is used to solve a variety of problems
including nonlinearity and high dimensionality. In the literature different terms are used to describe
this filter. In this thesis we use [17] for the algorithm. The basic method of this filtering uses a set of
particles of probability densities and computes the posterior density function by combining the
particles with a set of weights. In some of the methods the same particles are used as trajectories
while in the other new particles are generated in each step. In this work we use the same particles.
Because this method is similar to Ensemble Kalman filtering so it yields a bridge between both the
filters to form the Ensemble Kalman Particle filter (which is considered as the optimum solution).

5.1 Particle filter algorithm

Consider the same nonlinear system as for the previous filter
Xi= F(Xie1,Uk, Wi 1), where Xy €R" (5.1)

Y =h(X,,vi)  with measurement Y,eR™ (5.2)

The purpose of the particle filter is to estimate recursively the posterior distribution of the state
P(X1.x1Y1.k) or the marginal distribution P(X;|Y1.,) and consequently some functions of the states
such as expectation of the sates. The assumption for the particle filter is that probability density

function is approximated with weighted particles, that is the likelihood for an ensemble

member ng)given the observation Y, to update its weight. The pdf of the analysis at time step k-1 is

assumed to be a linear combination of Dirac-Delta functions.
P(Xi-11Yk-1)=20 4 Wi218 (X — X)) (5.9
which is not necessarily Gaussian.
x9 is a particle at time a step k-1 with corre di ight WD
o1 p p sponding weig oy
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The new particle at step k has marginaldistribution
Pl i1 )=EMs Wies8 (Ko — X)) (54)

Based on Bayes’ rule the posterior pdf is

1 i )] i

POXlYi 1 )T, PV X W 8 (X, — X 65)
VN Wi) O] Wi) ) Vl}i)
=Xic1 Wi 8 (X — X,.”) where Wy~ o« P(Yy| X} 1 (5.6)

The estimated pdf of the updated state vectors X, is

X =y, WX, 5.7)
The mean (the first moment) f(x) =YY, I/l/,f)f(xff)) where f(x) is a function X,
The posterior state f(x)=X™ and the likelihood function P(Y| Xg)) = DYy h(Xg)), R)

Here observation and the likelihood functions are Gaussian.

P(Y[X)= D(;h(x),R)= A exp{-; [y — h(x)]"R™*[y — h(x)]} (58)

The problem of updating this process is that variance of the weights increases exponentially with
respect to time, which means after a few iterations, the distribution of importance weights becomes
more and more reduced. This is known as particle degeneracy. In order to measure the degeneracy

the effective ensemble size Neg  can be computed
Nerr =1/ { T, (W )%} (5.9

Nes Varies between 1 and N where N is the number of particles. If N is close to 1 which means the

filter is facing severe degeneracy.

To avoid the degeneracy problem one can increase the number of particles but a better solution is to
apply resampling. The resampling is used to eliminate the particles having small weights and focus
on the particles with significant weights. Hence the particles with large weights will be selected and
propagated to the next step.
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Chapter 6

The Ensemble Kalman Particle Filter

6.1 Bridging the Ensemble Kalman and the Particle Filter

This chapter is based on [17, 18]. First we introduce a tuning parameter y€ [0, 1]. This makes a
continuous transition between the Ensemble and the Particle Filter update. We used Monte Carlo
Simulations to find the optimum value of y for the minimum root mean square error. Besides Particle
filters, other Kalman filters as mentioned earlier work well under Gaussian noise. The updating
scheme of the Ensemble Kalman filter consists of Ensemble Kalman filter updates based on a
likelihood corrected by a Particle filter update. The advantage of the Ensemble Kalman Particle filter
is that it is easy to implement these two steps and also the particle weights do not depending on the
observation noise variables. By applying resampling, this filter avoids the particle ties. The
Ensemble Kalman Particle filter does not require any structure for the state dynamics. The system
can be stochastic or dynamic.

The tuning parameter ye [0, 1], which allows continous interpolation between the Ensemble
Kalman filter and the Particle filter. The parameter y controls the bias variance trade-off between a

correct update and keeping the diversity of the sample.

First, consider the analysis scheme at a single fixed time of Ensemble Kalman Particle Filter

(EnKPF) for the linear measurement function.

Assume the ensemble X5 = (X'y, X% . ... .. X", . . X'\) where i=1,2,.. .,N with N the number of

ensembles and Y, the observation data, is available.

6.2 Ensemble Kalman Particle Filter Algorithm
1) Compute the estimated prediction covariance [14]

Covariance of the ensembles can be calculated using the ensemble mean
<71
Xf:ﬁ IlV=1X{ (6.1)
— _ __
Pr=——y N (X - X\)(x] - X' (6.2)

2) Choose ye [0, 1] apply the EnKF, based on the observation error covariance R/ y
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Here H is used to represent the linear measurement function
Ki(y)= PPHT(HPTHT+R/y ) = yPfHT HPTHT+R )* (6.3)

v, =X +Ky(y ) (y-HXT) (6.4)

3) Compute Q as the process covariance
Q= “KiPRKs(y)' 65)
4) Compute weights as
Wi= 4s(y,-Hv,-,1%+HQHT) (6.6)
Normalize the weights by diving by the weights with weight sum
W, =WJ/EL W, (6.7)
5) Choose indices by sampling from the weights with some balanced sampling.
The resampling index S(i) is chosen for each member v; according to W, with

residual resampling

6) To compute the updated state generate €, ; in

Xi'= Vsiyt Ki(2)€1,/VYE1j (6.8)
Here €, ; is the random observation error drawn from the Gaussian N(O,R).

7) Compute Ka(1-y) = (1- Y)QHT((1-y) HQHT+R )* (6.9)

and generate €, ; from N(O,R) and apply the EnKF with inflated observation error

€ .
X{= X+ Ko(1 = V)ly+ 75 — HX{] (6.10)

For the nonlinear measurement function is represented as h
Ki(y)= (6.11)

=M (X = XD (X)) = RN B, (h(X]) — (XD [R(X]) — h(XD)]+RIy )"}
X=X+ K1~ Dy

Here matrix inversion is continuous therefore it is easy to check when y tends to zero.

— h(X{)] (6.12)

Given K3(1 — vy) is non zero, the particle filter update is obtained. When y tends to 1

then K;(y) exists so the Ensemble Kalman Filter is obtained [14].
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Chapter 7

Noise

As discussed in the introduction the noises are uncertainties. There are many ways to model these
uncertainties. In this thesis uncertainties are modeled probabilistically. Because the observation or
measurements are impure and also contaminated by the unknown effects, these effects are known as
noise. Even the best model may not perfectly predict the new measurements which are known as
modeling errors bias. In Kalman filtering one of the important assumptions is that noise is modeled

using a Gaussian distribution.

7.1 Gaussian Noise

Sensors are commonly used for signal measurement. Imperfect sensors have noise characteristics.
This sensor noise is modeled as an additive Gaussian random variable. The Gaussian noise
component having the pdf equal to the normal distribution, (also called Gaussian distribution). Let P

of a Gaussian random variable of x be defined by [23]

1 _(x=w?
e 202 (7.0)

P(X) =

oV2lm
where U is the mean value and o is the standard deviation.

N2
The exponential function — (Xz—”) is a quadratic function of the variable x, hence the parabola points

o2

downwards depending on the coefficient of the negative quadratic term. The term a;\/ﬁ is

independent of x, therefore assumed as a normalization factor [23].

1
o2

© (x=> 4, —
f—oo exp(— ?)dx =1 (7.2)

L
£ -5 -4 -¥ -2 -1 1] 1 =+ = | -4

Figure 1: simulation result of generated zero mean Gaussian noise distribution p=0, o =1
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7.2 Multivariate Gaussian distribution
7.2.1 Non zero mean Gaussian

A vector of random variable x = [X1, X2, Xa. . .X]" is said to have Multivariate Gaussian distribution
with mean p, and covariance X. Its probability density function is defined by [23].

1 1 -
PO) =omrpgire &P (-5 (x = W' (x = W) (7.3)
This can be represented as X ~ N (u, X).
In the case of non-zero mean or multivariate Gaussian, the argument of exponential function

- %(x — u)T s x— W) is a quadratic form of the variable x. Since X is positive definite matrix, y1

also a positive definite matrix [23]. For any vector x# p; (x — )" =*(x — p)>0 hence
1 -
- (x= )" T (x - <.

The coefficient term which is independent of x is then considered as normalization factor

2nn/2|2|1/2
[23]
L Saep 3 o T )t e = 1 74
2m2|Z|2

Noise destribution Neo 2er0 mean distnbution

= =1 =
a = a3 = -
[ Lk L - oy
T T T

=
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=
s

Figure 2: simulation result for the nonzero mean Gaussian
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7.2.2 Gaussian with non-zero mean and Bias offset

As discussed earlier the inertial sensors like accelerometers and gyroscopes have errors due to the
bias. Also, MEMS inertial sensors are affected by any change in physical properties like pressure,
temperature or height leading to sensor bias. The bias can change the output value and providing
additional error to the noise. The total bias of a sensor is defined as the average output signal which
has no correlation with input signal related to acceleration or rotation. This means the bias offset can
be defined as the value of output when the input is zero. This can be considered for an accelerometer
by finding the acceleration when the object is not moving. Similarly for the Gyroscope the bias can

be calculated by finding the angular rotation when the senor is not in rotation [24].

Simulation of Gaussian noise with mean = 5 and with bias of 10. The MATLAB code is given

below.
nonzen mean with bias/ ofset Non zero mean with basiofset
035 T -
03 {
f
025k H
- I o
-4 | ¥
o i €
£ o2 | &
E bl
E | £
3 | =2
Bl [ £
- a
= ! |
aif | |
| |
|
005 ¢ |
0 EAP d S o=+
5 0 5 10 15 20 2 5 5

Figure 3: simulation result for Gaussian with non-zero mean and Bias offset
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7.2.3 Gaussian with Non zero mean and drift
By considering the inertial sensors the input signals are time integrated therefore a constant bias of €

. . . . . . 1
causes an error which is growing linearly with time. For example an accelerometer x (t) = EStZ.

This means for 10 micro g bias in accelerometer the error in position results in 0.005m after10
seconds and 50m after 1000 seconds. This kind of accumulation of small bias over time is called
drift [24].

Simulation of non- zero mean with drift

fish Fard s with &t

Fuah T3 Miden with dell

=
=
—

E_2 8

=
=
(=]

bhpasuiement nome

Doy

%:':' L} 200 i 00 iy 1200 13

Figure 4: simulation result for Non zero mean with drift

7.3 Non Gaussian noise

Noise is an extra signal which interferes with the observation or output signal from the sensor. These
noises are unknown and may be from another sensor or from the other sensor itself but noise is
present in every sensor is often difficult to characterize. Therefore in this thesis work Gaussian noise
is modified and transformed to non-Gaussian. MEMS sensors typically consist of angular random
walk, rate random walk, velocity random walk, acceleration random walk etc. The position random

walk is used to reduce the complexity in this work.

7.3.1 The transformation of Gaussian to non- Gaussian

With mean = 10 variance = 4 and added skewness = 0.5 (for a Gaussian noise it will be 0). The
skewness is a measure of symmetry. If a distribution is symmetric it looks the same to the both sides
of the center point. Finally the kurtosis = 4 (which is equal to 3 for purely Gaussian). Kurtosis is
similar to skewness. If is a measure of “tailedness” of the probability distribution [27].
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nen Gaussian peobabilty

Figure 5: the transformation of Gaussian to non-Gaussian distribution

7.3.2 The simple Random walk

Suppose that X= (X1, Xz, Xs.....) is a sequence of independent random variables, and each variables
having values 1 and -1 with probabilities pe [0,1] and 1-p respectively. Let Y= (Yo, Y1, Y2, ..) be

partial sum processes associated with X so that
Yn: ?=1XL', (75)
Where n € N and N is the number of particles [25].

The sequence Y is the simple random walk with parameter p. Consider a particle on an axis at each
discrete time step the particle either one unit to the left (with probability p) or to the right(with
probability 1-p), independently step to step. In this thesis work it is assumed that each step occurs
with equal probability, i.e. p = 0.5.
The expected value and standard deviation of sequence X are
E(X) =2p-1 (7.6)
Var(X) = 4p(1-p) (7.7)

Y has probability density function [25]

n - n-
POER) = (1 4 1y /2) P (1) ™92 ke fnonv2, . n-2,n, (7:8)

The mean and variance of Y, are [25]
E(Yn) = n(2p-1)
Var (Yn) = 4np(1-p),
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In this work simulation of random walk considered length of step space 0.1, length of time step 0.01,
number of time step 40, number of particles 100, and probability to move left and to move right as
0.5.

7.3.3 Simulation of simple Random Walk

Noise distribution of the random walk

The Probability distribution of a Random walk is generated with Gaussian distribution and with
added mean = 10 variance 4 and added skewnes 0.5 (for a purely Gaussian noise it will be 0) and
finally with the kurtosis 4 (which is equal to 3 for Gaussian) to get non-Gaussian noise.

Random walk for 100 paticles

15} J ] ol

u.sgﬁ w

156

—
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Figure 6: simulation result for the simple random walk
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7.3.4 Simulation of the probability density of transformed Gaussian Random Walk

-I?Ii. -1 A5 -] 0.5 1 15
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Figure 7: Simulation of the probability density of transformed Gaussian random walk

7.4 Laplacian noise

Due to the unknown noise in the environment the simplest approach to add noise is Laplacian noise.

This is also called noise with bi-exponential distribution which means that two exponential functions

are utilized back to back, one is positive and one is negative. Therefore it has two parameters. One is

M (the position) and b which is the scale (the spread). [26]

f(x| 1) =5 exp

—(Ix=uD (7.9)

Generating of Laplacian noise requires transforming the Gaussian noise using a nonlinear memory-

less transformation. Use the transformation of x as x= F*(w) where F is the cumulative distribution

of the Laplacian pdf and w is the uniform random variable of the interval [0, 1]. The MATLAB code

for generating Laplacian noise is given in the appendix.
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7.4.1 Simulation results of the Laplacian noise

Figure 8: Laplacian noise

Figure 9.1: Laplacian noise distribution

Figure 9.2: Laplacian noise distribution
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Chapter 8

Simulation Results

This chapter describes a few simulation results where the states of the aforementioned system were
estimated by the Particle filter, Ensemble Kalman filter and the Ensemble Kalman Particle fiter.
Consider a system where the state variable Xgis one dimensional andits nonlinearly connects the

observation vector Ywhichis also one dimensional. The state variable of the system under the noise

IS given by
Xic= = Xica +sin(1.2%k) + Ui 8.1)
Y= XP +Vg (8.2)

The state is initialized to X, = [1,2]
In order to compare the Ensemble Kalman Particle Filter with Ensemble Kalman Filter and Particle

filter the norm of RMSE was computed.

The number of ensembles and number of steps are set as 100 and 40 respectively for all the filters

in this thesis.

8.1 Norm. RMSE for different filters

Filters [11, 72 ] Norm. rmse

EnKPF [0.2,04] v=0.35 1.8532
[0.4,0.6] y=0.5 0.8819
[0.6,0.8] y=0.5 0.9009

EnKF 3.276

PF 1.4815

Tablel: Norm.rmse for EnKF, PF and EnKPF under non zero mean Gaussian

T €[t 12 ] IS a key factor to select the gamma value, which is the tuning parameter to bridge the
Ensemble Kalman Filter and Particle Filter as mentioned in chapter 6. The constrained diversity
interval [11 , T2 ] for different values the norm of rmse is less than EnKF and PF for all the
simulations. From the table 1 the optimal performance of the EnKPF y is 0.5the optimal gamma

value under quasi-Gaussian with drift
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Filters [11, 12 ] Norm. rmse

EnKPF [0.2,0.4] vy=0.35 0.8909
[0.4,0.6] v=0.5 0.90844
[0.6,0.8] y=0.55 0.9104

EnKF 2.262

PF 1.7393

Table 2 :Norm.rmse for EnKF, PF and EnKPF under quasi-Gaussian with drift

From the above table when vy is close to zero this filter will work as Particle filter and 7y is close to

one it works as Ensemble Kalman Filter. From the tables the optimum value for y is 0.5 for quasi-

Gaussian noise.

8.2 Monte Carlo Simulation results

8.2.1 The optimal value gamma under Gaussian noise

Number of samples Gamma value
10 0.6538

100 0.87003

500 0.88017

1000 0.51082

Table 3 : The value of gamma under Gaussian noise

8.2.2 The optimal value of gamma under Quasi-Gaussian noise

Number of samples Gamma value
10 0.60669

100 0.5409

500 0.52248

1000 0.36328

Table 4: The value of Gamma under Quasi-Gaussian noise
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8.2.3 The optimal value of gamma under drift

Number of samples Gamma value
10 0.20659

100 0.21999

500 0.32898

1000 0.298857

Table 5: The value of gamma under drift

8.2.4 The optimal value of gamma under quasi-Gaussian Noise with random walk

Number of samples Gamma value
10 0.28504
100 0.25032
500 0.27327
1000 0.31694

Table 6: The value of gamma under random walk

From these simulation result it is evident that under Gaussian noise EnKPF works as an Ensemble
Kalman filter and under the quasi-Gaussian with drift it works similar to the Particle filter. The
tuning parameter can take any value in the interval [0,1]. But from these table for quasi-Gaussian

with drift or random walk y value is close to O therefore it shows resembles a Particle Filter.
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8.3 Simulation under different noise conditions

The simulation results of the Ensemble Kalman Filter, the Particle filter and the Ensemble Kalman
Particle filter under Gaussian and quasi-Gaussian noise conditions are given below. The generated
noise is added to the measurements of the model and simulated on MATLAB for 100 number of

ensembles or particles and 40 iterations.
8.3.1 Under zero mean Gaussian noise

The zero mean noise is discussed in the chapter 7 in section 7.1. The Matlab source code is provided

in the appendix.

Hoiss distribution of the rerc s OO s mamn

Figure 10. The Gaussian distribution of the measurement noise

The estimated state is computed using updated equations of the algorithm which is aforementioned

in the previous chapters. The Matlab source code is included in the appendix.
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8.3.2 State and estimated state of the system for EnKF,PF,EnKPF under Gaussian noise
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Figure 11.1: State and estimated state of EnKF under Gaussian
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Figurell.3 : state and estimated state of EnKPF under Gaussian
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8.3.3 Observation and filtered observation for EnKF,PF,EnKPF under Gaussian noise

The below shown simulation results of observation of the model and the filtered observation, which

is computed using the estimated state.
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Figure 12.1: observations for EnKF under Gaussian
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Figure 12.2 : observations for the PF under Gaussian
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Figure 12.3 : the observation for the EnKPF under Gaussian
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8.3.4 Root mean square error for the Filters under Gaussian

Filters EnKF PF EnKPF

Norm.rmse 0.43577 4.7021 0.93193

Table 7 :Rmse for the filters under Gaussian condition.

From the table 7 it is evident that the Ensemble Kalman filter provides optimal solution under
Gaussian noise.

8.4 Multivariate Gaussian Distribution
In this simulation the measurement noise generated with mean =5 and the variance is 10
8.4.1.The multivarate Gaussian Distribution of the measurement noise

The multivariate Gaussian is discussed in the chapter 7 in section 7.2.1. The Matlab source code is

provided in the appendix.
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Figure 13: the multivariate Gaussian Distribution
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8.4.2. State
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Figure 14.1: State and estimated state of EnKF under multivariate Gaussian
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Figure 14.3: state and estimated state of EnKPF under multivariate Gaussian
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8.4.3. The obseravation and filtered observation for EnKF, PF and EnKPF
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Figure 15.1: observations for EnKF under multivariate Gaussian
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Figure 15.3: the observations for the EnKPF under multivariate Gaussian
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8.4.4. Root mean square error for the Filters under Multivariate Gaussian

Filters

EnKF

PF

EnKPF

Norm.rmse

2.8164

1.4815

0.8782

Table 8 :Rmse for the filters under Multivariate Gaussian

The Ensemble Kalman Particle Filter is comparatively gives the optimum solution because of the

less norm rmse.
8.5 Simulations of filters under Gaussian with non-zero mean and Bias offset

The measurement noise is generated as Gaussian with mean 5 and variance 10 and added a bias
offset 10

8.5.1.The Gaussian with non-zero mean and Bias offset distribution

The Gaussian with non-zero mean and bias offset is discussed in the chapter 7 in section 7.2.2. The

Matlab source code is provided in the appendix.
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Figure 16: The Gaussian with non-zero mean and Bias offset distribution
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8.5.2. State and estimated state for EnKF, PF, and EnKPF under quasi-Gaussian with bias

The state and estimated state under quasi-Gaussian noise with bias offset
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Figure 17.1: State and estimated state for EnKF under quasi-Gaussian noise with bias offset

18 =

— N

— R el mEmt e

L=} 1I5 ‘Ilﬂ 1IE E‘ﬂ E-ﬂ- :Jll? :!IE -ﬂlﬂ
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8.5.2. The observation and the filtered observation
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Figure 18.1: Observation for EnKF Figure under quasi-Gaussian noise with bias offset

b= ]
o e e an b
I LT e e e A T
E -
160 |- _
e /\ /\ \,
o I & 10 6 ET ET ET:) ET3 a0
Figure 18.2: Observation for PF under quasi-Gaussian noise with bias offset
Enmasmble Falrman FParticle Piltsr
180 ' ' .
00 I e e P R Y
AGE0 - Filteread oibhs H
140 |-
120 | '
100 |- |
aa | A " | | .
ao |- _
'a
A0 1
WX
=0
(4] B L. [ . A _a B
[ 3 0 i6 20 25 a0 3k F1:]

Figure 18.3: Observation for EnKPF under quasi-Gaussian noise with bias offset
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8.5.3 Root mean square error for the Filters under quasi-Gassian with bias

Filters EnKF PF EnKPF

Norm.rmse 2.5662 1.7393 0.87211
Table 9 : Filters under quasi-Gassian with bias

8.6 Simulations of filters under quasi-Gaussian with drift
The measurement noise is generated as Gaussian with mean = 5 and variance = 10 with drift =10t

The quasi-Gaussian noise with drift is discussed in the chapter 7 in section 7.2.3. The Matlab source

code is provided in the appendix.
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Figure 19: The Quasi-Gaussian with drift
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8.6.1 The state and estimated state under Quasi-Gaussian with drift
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Figure 20.1 : State and estimated state for EnNKF under Quasi-Gaussian with drift
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Figure 20.3 : State and estimated state for EnKPF under Quasi-Gaussian with drift
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8.6 .2 The observation and filtered observation under Quasi-Gaussian with drift
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Figure 21.1: Observations for EnKF under Quasi-Gaussian with drift
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Figure 21.3 : Observations for EnNKPF under Quasi-Gaussian with drift
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8.6 .3 Root mean square error for the Filters under quasi-Gaussian with drift

Filters EnKF PF EnKPF

Norm.rmse 3.1916 2.4096 0.91985

Table 10 : Filters under quasi-Gassian with drift

8.7 Random walk

The Random Walk is discussed in the chapter 7 in section 7.3.2. The Matlab source code is provided

in the appendix.
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Figure 22 : Random walk distribution
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8.7.1. State and estimated states under random walk
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Figure 23.3 : State and estimated state for EnKPF under random walk
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8.7.2 Observation and filtered observation under random walk
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Figure 23.3: Observations for EnKPF under random walk
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8.7.3. Root mean square error for the Filters under quasi-Gaussian with random walk

Filters EnKF PF EnKPF

Norm.rmse 3.3245 3.0175 0.84663

Table 11 : Filters under quasi-Gaussian with random walk

8.8 Simulations of filters under quasi-Gaussian with Laplacian Noise

The quasi-Gaussian with Laplacian noise is discussed in the chapter 7 in section 7.4. The Matlab

source code is provided in the appendix.
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Figure 25: Quasi-Gaussian with Laplacian Noise
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8.8.1 State and estimated state of the filters under Laplacian noise
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Figure 26.3 : State and estimated state for EnKPF under Laplacian noise
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8.8.2.0bservation and filtered observation under Laplacian Noise
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Figure 27.3: Observation for EnKPF under Laplacian Noise
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8.8.3. Root mean square error for the Filters under quasi-Gaussian with Laplacian noise

Filters EnKF PF EnKPF

Norm.rmse 3.0448 1.3075 0.9422

Table 12 : Filters under quasi-Gaussian with Laplacian noise

By analyzing the result from tables 8,9,10,11,12 its shown that under all the quasi-Gaussian conditions the

Ensemble Kalman Particle filter provides minimum root mean square error than the other filters.
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Chapter 9

Conclusion and Future work

A lot of progress has been made in the field of estimation in recent years. Still, it is very difficult to
address the nonlinear and non-Gaussian observations. These days the Kalman-based filters use
Gaussian distribution to approximate the non-Gaussian distribution. This approach is not efficient
because it can result in non-trivial estimation errors. In this thesis, the two filters the Ensemble
Kalman filter and the Particle filter are described. For the linear model under Gaussian noise
conditions the Ensemble Kalman Filter works well and also the root mean square error is less
compared with other filters. The main disadvantage of the EnKF is the inability to handle the non-
Gaussian posterior distributions. The Particle filter is used but the estimates depend on the finite
samples with weights updated by the likelihoods so it gives the impression that the Particle filter can
handle all possible noise statistics of the model. The main disadvantage is high cost for the
computations used to prevent the filter degeneracy. And also the sample size grows exponentially
with the dimension of the system. Hence, the Particle filter is not useful for high dimensional
models. In order to handle these kinds of problems the Ensemble Kalman Particle Filter was
developed using a bridging strategy to combine both filters (EnKF and PF).

Initially, EnKPF is used for the linear measurement functions and now this filter is extended to
nonlinear measurement functions. Therefore this thesis analyzed the filter under different noise
conditions and compared it with other filters. While considering the norm of the root mean square
error, it is comparatively less for Ensemble Kalman Particle filter for quasi-Gaussian measurements.
From these simulation results, the optimum value for gamma which is the tuning parameter to bridge
the Ensemble Kalman Filter and Particle filter is 0.2 for the quasi-Gaussian distribution and 0.6 for
the Gaussian distribution. When vy close to zero it will work as a Particle Filter and if it is close to 1 it

works similar to the Ensemble Kalman Filter.

This work also considered the generation of a quasi-Gaussian noise in order to analyze the
Ensemble Kalman Particle filter. To test this filter under non-Gaussian measurement noise, further
studies are required such as the study of various non-Gaussian measurement noises in the sensors,
resampling methods, formulation of weights, etc. The main concern is the efficiency and

performance of this filter when applied to a realistic model.
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APPENDIX

The MATLAB™ source code used for the simulation has been presented in this thesis.
For the comparison purpose the system and observation model are same.

The Ensemble Kalman Particle Filter

clear all;
close all;

Nens=100; % number of ensemble
T=40; % number of steps

% system and observation

nx = 1; %number of states
sys = @(j, Xjm1, Uj) Xjm1/2 + sin(1.2*j) + Uj; %Process equation x[k] = sys(k, x[k-1], w[K]);
where xkm1 is the previous state

ny=1; % number of observed state

obs = @(j, Xj, Vj) Xj*2 + Vj; % Observation equation y[k] = obs(k, X[k], V[K]) similar to h
% generation of noise

nu=1; % size of the vector of process noise

m=3;% non zero mean

sigma_u = sqrt(10);

gen_sys_noise= @(u) normrnd(m, sigma_u);

nv=1;% size of the vector of observation noise

mean=0.3;

R=0.6;

r_chol=chol(R);

sigma_v = sqrt(1);

gen_obs_noise = @(v) normrnd(mean, sigma_v);

% seperate memry space

X = zeros(nx,T,Nens); Y = zeros(ny,T,Nens); h_vi=zeros(ny,T,Nens);
U = zeros(nu,T,Nens); V = zeros(nv,T,Nens); Xm=zeros(T,nx);Ym=zeros(T,ny);
E_X=zeros(nx,Nens); wipl=zeros(T,Nens);

E_Y=zeros(ny,Nens);

E_h_om=zeros(1,Nens);E_om=zeros(1,Nens);

Vi=zeros(1,T,Nens);

el=zeros(1,T,Nens);

Om=zeros(T,Nens);

h_om=zeros(1,T,Nens);

%P_xy=zeors(nx,ny);

0=0.5;

y=zeros(ny, T,Nens);

whil=1;

% Simulate system

while(whil)

for j=1:Nens

X(1,1)) = 12; % initial state
U(1,1,)) =0; % initial process noise
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V(1,1,)) = gen_obs_noise(sigma_v); % initial observation noise
Y(1,1,j) = obs(1, X(1,1,)), V(;,1));
end
%Prediction/Forecast of ensemble members for the state and the
%observations for the next instant
for j=1:T-1

for k = 1:Nens
U(1,J,k) = gen_sys_noise();
V(1,j,k) =gen_obs_noise()+10*k ;
X(1,j+1,k) = sys(j, X(L,j,k), U(1,j,k));
Y(1,j,K) = obs(j, X(1,j,k), V(Lj.K);
y(1,j,k)=0bs(j,X(1,j+1,k),V(1,j.K));
end
end
for j=1:T-1
for k=1:Nens
Xm= (1/Nens)*sum(X(1,j+1,:));
E_X(:,k)=X(:,J,k)-Xm;
Ym= (1/Nens)*sum(Y(1,j+1,:));
E Y(.K=Y(,}.k)-Ym;
end
end
P_xy=(1/(Nens-1))*E_X*E_Y";
P_yy=(1/(Nens-1))*(E_Y*(E_Y")+(R/9));
K1_g=P_xy*(inv(P_yy));
for j=1.T
for k=1:Nens
Vi, K)=XC0 k) +KL_g*(y(.0.K)-Y (2,.K));
end
end
for j=1:T
el=randn(1,Nens)*r_chol;
Oom(j,:)=K1_g*el/(sqrt(g));
for i=1:Nens
OM=0m*Om,
Q=(1/(Nens-1))*sum(OM(1,,:));
Om_m=(1/Nens)*sum(0Om(j,:));
h_om(1,j,i)=0bs(j,0Om(j,i),V(1,j,i));
hm_om=(1/Nens)*sum(h_om(:,j,:));
E_h_om(:,i)=h_om(:,j,i)-hm_om;
E_om(;,i)=0m(j,i)-Om_m;
end
end
HQHt=(1/(Nens-1))*E_h_om*(E_h_om);
for j=1.T
for k=1:Nens
h_vi(1,j,k)=0bs(j,Vi(1,j,k),V(1,j,K));
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end
end
for j=1.T
for k= 1:Nens
wip1(j,K)=y(:.j.k)-h_vi(:,j.K);
end
end
wim=(1/Nens)*ones(Nens,Nens);
wi=expm(-(1/2)*(wipl")*(inv(HQHt+(R/(1-9))))*wipl);
%wi=(1/(sqrt((2*pi)"4)*abs(R/(1-9))))*wi;
for i=1:Nens
for j=1:Nens
wim(i,j)=wi(i,j)/sum(wi(i,:));
end

end
wim=(1/Nens)*wim;
wk= wi*(inv(wim));
wk_=(1/Nens)*wk;
diff=zeros(Nens,1);
for i=1:Nens
diff(i,1)=(wi(i,1)-(1/Nens))"2;
end
sumd=sum(diff(:,1));
Neff=(Nens/(1+(Nens*sumd)))*30;
X_iu=zeros(1,T,Nens);
Tau=Neff/Nens;
taul=0.8;
tau2=0.9;
if(Tau> taul)
if(Tau<tau2)
fori=1.T
indx = randsample(1:Nens,Nens);
for j=1:Nens
X_iu(:,i,))=Vi,i,indx(j))+Om(i,j);
end
end
whil=0;
else
0=0-0.05;
whil=1;
end
else
0=0g+0.05;
whil=1;
end
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h_Xiu=zeros(1,T,Nens);
for j=1:T

for k=1:Nens
h_Xiu(1,j,k)=obs(j,X__iu(1,j,k),V(1,},K));
end
end
K2gp1=(1/(Nens-1))*(E_om*(E_h_om));
K2gp2=(1/(Nens-1))*((E_h_om*(E_h_om)")+(R/(1-9)));
K2g=K2gp1*(inv(K2gp2));
X_est=zeros(1,T,Nens);
fori=1:T
e2=randn(1,Nens)*r_chol;
for j=1:Nens
X_est(:,1,))=X_iu(,i,j)+K2g*(y(:,i,j)+(€2(:,j)*(1/sqrt(1-g)))-h_Xiu(:,i,j));
end
end
end % end for the while loop
y_Xest=zeros(1,T,Nens);
for j=1.T

for k=1:Nens
y_Xest(1,j,k)=0bs(j,X_est(1,j,k),V(1,j,k));
end
end
X_diff=zeros(1,T,Nens);
% Xtrue=squeeze(X(:,:,Nens));
% X_es=squeeze(X_est(:,:,Nens));

for j=1:T
for k=1:Nens
X_diff(:,j,k)= X_est(:,j,k)-X(:,j,K);
end
end
X_dif=squeeze(X_diff(1,:,:));
rms_X=chol((X_dif)*X_dif";
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The Ensemble Kalman Filter
The system and observation model are same as the EnKPF

% seperate memry space

X = zeros(nx,T,Nens); Y = zeros(ny,T,Nens); h_vi=zeros(ny,T,Nens);
U = zeros(nu,T,Nens); V = zeros(nv,T,Nens); Xm=zeros(T,nx);Ym=zeros(T,ny);
E_X=zeros(nx,Nens); wipl=zeros(T,Nens);

E_Y=zeros(ny,Nens);

E_h_om=zeros(1,Nens);E_om=zeros(1,Nens);

Vi=zeros(1,T,Nens);

el=zeros(1,T,Nens);

Om=zeros(T,Nens);

h_om=zeros(1,T,Nens);

%P_xy=zeors(nx,ny);

g=0.5;

y=zeros(ny, T,Nens);

Y _fil=zeros(1,T,Nens);

% Simulate system

for j=1:Nens
X(1,1)) =12; % initial state
U(1,1,)) =0; % initial process noise
V(1,1,)) = gen_obs_noise(sigma_v); % initial observation noise
Y(1,1,j) = obs(1, X(1,1,)), V(:,1));
end

%Prediction/Forecast of ensemble members for the state and the
%observations for the next instant
for j=1:T-1

for k = 1:Nens
U(1,j,k) = gen_sys_noise();
V(1,j,k) =gen_obs_noise() ;
X(1,j+1,K) = sys(j, X(1,j,k), U(1,j,k));
Y (1,j,k) = obs(j, X(1,j,K), V(1,,K));
y(1,j,k)=0bs(j,X(1,j+1,k),V(1,j,K));
end
end
f=squeeze(V(1,:,?));
R_v=cov(f');

r=[2,5];
mu=rand(1,T)*range(r)+min(r);
vi=mvnrnd(mu,R_v,Nens);
Yi=(squeeze(Y(1,:,)))+vi";
h_xm=zeros(T,1);
for j=1:T-1

for k=1:Nens
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Xm(j,1)= (1/Nens)*sum(X(1,j+1,:));
h_xm(j,1)=obs(j,Xm(j,1),V(1,},k));
E_X(,k)=X(:,j,k)-Xm(j,1);
Ym= (1/Nens)*sum(Y(1,j+1,:));
E_Y(:,k)=Y(:,},k)-h_xm(j,1);
pxyL=sum((X(:.j.K)-Xm(@ 1))*(Y(:j.K)-h_xm( 1)));
g_wl=sum((Y(:,J,k)-h_xm(J,l))*(Y(:,J,k)-h_xm(J,l))');
en
end

P_xy=(1/(Nens-1))*p_xy1;
P_yy=((1/(Nens-1))*p_yyl1)+R_v;
K=P_xy*(inv(P_yy));
X_up=[squeeze(X(1,:,:)]+[K*(Yi-(squeeze(Y(1,:;)))];
X_tr=zeros(T,Nens);
Y _tr=zeros(T,Nens);
fori=1: T
for j= 1:Nens
X_tr(i,:))=Xm(i,1)+U(:,i,));
Y_tr(i,-)=h_xm(i,1)+V(,i,j);

end
end
fori=1.T
for j= 1:Nens
Y _fil(1,i,j)=obs(j, X_up(i,j),V(1,i,)));
end
end
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The particle filter

clear, clc, close all;

nx=1;

sys = @(k, xkm1, uk) xkm1/2 + sin(1.2*k) + uk;
ny =1;

obs = @(K, xk, vk) xk"2 + vk;

nu=1,;

sigma_u = sqrt(10);

p_sys_noise = @(u) normpdf(u, 0, sigma_u);
gen_sys_noise = @(u) normrnd(0, sigma_u);
nv=1;

sigma_v = sqrt(1);

p_obs_noise = @(v) normpdf(v, 0, sigma_v);
gen_obs_noise = @(v) normrnd(0, sigma_v);
gen_x0 = @(x) normrnd(0, sqrt(10));
p_yk_given_xk = @(k, yk, xk) p_obs_noise(yk - obs(k, xk, 0));
T = 40;

x = zeros(nx,T); y = zeros(ny,T);

u = zeros(nu,T); v = zeros(nv,T);

xh0 = 0;

u(:,1) =0;

v(:,1) = gen_obs_noise(sigma_v);

X(:,1) = xh0;

y(:,1) = obs(1, xh0, v(:,1));

fork=2.T

u(:,k) = gen_sys_noise();
v(:,k) = gen_obs_noise();
X(:,K) = sys(k, x(:,k-1), u(:,k));
y(;,k) = obs(k, x(:,k), Vv(;,Kk));
end
xh = zeros(nx, T); xh(:,1) = xh0;
yh = zeros(ny, T); yh(:,1) = obs(1, xh0, 0);

pf.k =1;

pf.Ns = 200;

pf.w = zeros(pf.Ns, T);
pf.particles = zeros(nx, pf.Ns, T);
pf.gen_x0 = gen_x0;

pf.p_yk given_xk =p_yk given xk;
pf.gen_sys_noise =gen_sys noise;
fork=2:T
%fprintf(‘lteration = %d/%d\n',k,T);
pf.k =k;
[xh(:,k), pf] = particle_filter(sys, y(:,k), pf, 'systematic_resampling’);
% filtered observation
yh(:,k) = obs(k, xh(:,k), 0);
end
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function [xhk, pf] = particle_filter(sys, yk, pf, resampling_strategy)
k = pfk;

Ns = pf.Ns; % number of particles
nx = size(pf.particles,1); % number of states
wkm1l = pf.w(:, k-1); % weights of last iteration
ifk==2

fori=1:Ns % simulate initial particles

pf.particles(:,i,1) = pf.gen_x0(); % at time k=1

end

wkm1 = repmat(1/Ns, Ns, 1); % all particles have the same weight
end

xkml = pf.particles(:,:,k-1); % extract particles from last iteration;
Xk = zeros(size(xkm1)); % = zeros(nx,Ns);
wk = zeros(size(wkm1)); % = zeros(Ns,1);
fori=1:Ns
xk(:,i) = sys(k, xkm1(:,i), pf.gen_sys_noise());
wk(i) = wkm1(i) * pf.p_yk_given_xKk(k, yk, xk(:,i));
end;
wk = wk./sum(wk);
Neff = 1/sum(wk."2);
resample_percentaje = 0.50;
Nt = resample_percentaje*Ns;
if Neff < Nt
[xk, wk] = resample(xk, wk, resampling_strategy);
end
xhk = zeros(nx,1);
fori=1:Ns;
xhk = xhk + wk(i)*xk(:,i);
end
pf.w(;,K) = wk;
pf.particles(:,:,K) = xk;

return;

function [xk, wk, idx] = resample(xk, wk, resampling_strategy)

Ns = length(wk);

edges = min([O0 cumsum(wk)],1); % protect against accumulated round-off

edges(end) =1, % get the upper edge exact
ul =rand/Ns;
[~, idx] = histc(ul:1/Ns:1, edges);

xk = xk(:,idx);

wk = repmat(1/Ns, 1, Ns);

return;
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Laplacian noise

Nens=100;
T=40;
x=zeros(1,Nens);
m1=5;
varx=10;
u=rand(1,Nens);
for j=1.T
for i=1:Nens
ifu(1,i)>0.5
X(1,j,i)=ml+sgrt(varx).*(1/sqrt(2))*log(1/(2*(1-u(1,j,1))));
else
X(1,j,i)=msqrt(varx)*(1/sqrt(2))*log(2*u(1,1));
end
end
end

Random walk

delta_x=0.1; %length of space step
tau=0.01; %length of time step
T=40; %number of time steps
M=tau*T; %end time
Nens=100; %number of particls
pos=zeros(T,Nens); %all particles start at x=0
p_I=.5; %probability of moving left
p_r=.5; %probability of moving right
t=0; %counts passage of time
m1l = 10; % mean of X
m2 = 4; % variance of x
m3 = 5; % target skewness. NB: m3 is equal to O for a gaussian variable
m4 = 6 ; % target kurtosis. NB: m4 is equal to 3 for a gaussian variable
%Simulate the random walk process
while t <= M %do something until a specific condition is met
p=randn(1,T,Nens);%1xN array of random numbers between 0 and 1
for j=1.T
for i=1:Nens %loop through each particle to see if it moves
if p(j,i) <p_lI
pos(j,i)=pos(j,i)-delta_x; %particle moves left
elseif p(j,i) < (1-p_r)
pos(j,i)=pos(j,i); Y%particle doesn't move
else
pos(j,i)=pos(j,i)+delta_x; %particle moves right
end
end
t=t+tau; %update time
end end
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