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Abstract 

A leading cause for mortality in the pine forests of western North America, the 

mountain pine beetle, has impacted over 400,000 acres of ponderosa pine forest in the 

Black Hills of South Dakota since 1996. Methods aimed at earlier detection, prior to 

visual manifestation of a mountain pine beetle damage in the tree crown, have not been 

successful because of the overlap and variability of spectral response between the initial 

stages of attack (green-attacked) and non-attacked tree crowns. Needle-level reflectance 

spectra was measured from green-attack and non-attack ponderosa pine trees in early 

spring following an infestation and analyzed using a multi-statistical approach to 

determine which spectral features best discriminate green-attack needles. Green-attack 

reflectance was significantly higher than non-attack from 424-717 nm and 1151-2400 

nm. Bands in the shortwave-infrared had increased measures of separation between 

classes compared to visible and near-infrared bands. Peaks in separation related to 

moisture absorption features, from 1451-1540 nm and 1973-2103 nm, and pigment 

absorption features from 462-520 nm and 663-689 nm, were consistently observed over 

multiple statistical analyses. While these features show promise for operational canopy-

level detection, it is unknown if they can be scaled up due to large within-class variability 

and spectral overlap between classes.  

To examine the potential for canopy-level detection, in-situ training data was 

collected for green-attack and non-attack trees from known locations within the Black 

Hills at a similar time a WorldView-2 image was acquired of the study area. Along with 

eight WV-2 bands, all possible normalized two-band indices were calculated to examine 
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the suitability of WV-2 data for detecting green-attack damage. The performance of three 

different classifiers, logistic regression, linear discriminant analysis, Random Forest, was 

evaluated. Normalized two-band indices using a combination of a near-infrared band and 

visible band increased separation compared to single WV-2 bands. Random Forest 

classifiers using the eight WV-2 bands as predictors yielded an independently validated 

accuracy of 70.6%. Compared to non-attack, green-attack class accuracies were lower, 

likely due to the high within-class variance and spectral overlap between classes 

observed. Even with these limitations, the methods presented offer improvements over 

existing green-attack detection methods. 
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1. Introduction 

1.1 Problem Statement 

The mountain pine beetle (Dendroctonus ponderosae) is a leading cause of tree 

mortality in pine forests in western North America. Epidemics in South Dakota’s Black 

Hills region have infested over 400,000 acres of ponderosa pine forest since 1996, which 

accounts for almost one-third of the Black Hills forested area (Graham et al. 2016). The 

catalyst for the current outbreak has been warmer winter conditions related to climate 

change and favorable forest stocking conditions due to historic forest management 

strategies (Raffa et al. 2008). At epidemic infestation levels, the mountain pine beetle 

(MPB), can devastate large amounts of forest resources in a single outbreak. Visible 

damage in tree crowns, known as red-attack (RA) damage, has been mapped using 

various remote sensing platforms such as Landsat, SPOT, IKONOS, and QuickBird 

(Rencz and Nemeth 1985; Franklin et al. 2003; Skakun et al. 2003; Coops et al. 2006; 

White et al. 2006; Dennison et al. 2010). However, visible clues of damage in tree 

crowns do not onset until after the new brood has emerged and taken flight (Wulder et al. 

2006). Early detection of mountain pine beetle (MPB) non-visual damage, referred to as 

green-attack (GA) damage, would potentially allow forest managers to more effectively 

reduce the extent of infestations and save resources and valuable timber stands.  

Early research focused on GA stage examined spectral bands in the visible and 

near infrared (NIR) regions of the spectrum and found significant differences between 

reflectance of GA and non-attacked (NA) trees in the green, red, red edge, and (NIR) 
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bands (Ahern 1988; Murtha and Wiart 1989; Heath 2001). Even though narrow 

wavelengths have been identified as sensitive to biophysical changes in GA needles, 

methods for detecting GA damage have been unsuccessful due to overlap and high 

variability in spectral signals between GA and NA trees and technological limitations of 

available sensors (Heath 2001; Sharma 2007; Cheng et al. 2010; Fassnacht et al. 2014; 

Niemann et al. 2015). An additional hindrance to accurate GA detection is that GA trees 

usually occur in small patches or as single trees increasing the chance that background 

elements will occur within the same pixel as GA trees causing their spectral response to 

be suppressed, especially in higher spatial resolution datasets (Wulder et al. 2009). To 

date, GA research has relied on data acquisition dates in the late summer to fall following 

the initial attack, to provide ample time for implementing mitigation strategies. However, 

the onset of MPB damage between initial attacks and late summer/early fall image 

acquisition dates may limit the ability to spectrally seperate GA from NA trees and 

reduce classification accuracies. Later acquisition dates would allow for the onset of 

more severe stress in attacked trees and accentuate spectral differences between damage 

classes, thus potentially leading to more accurate detection.  

Recent advancements in remote sensing technology may provide the means to 

overcome problems associated with GA detection. As sensors improve, there is a need to 

better understand how to utilize their unique spectral characteristics in the detection of 

GA beetle damage. For example, airborne or satellite spectral measurements have been 

traditionally limited to the visible and NIR spectral regions, but some of the newer 

sensing systems provide the means to measure a much broader range spectrum, including 
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channels in the shortwave infrared region (SWIR), which shows promise in the detection 

of GA moisture damage (Chang et al. 2010; Fassnacht et al 2014; Niemann et al 2015). In 

addition, analysis of needle-level hyperspectral datasets can be used to determine which 

spectral regions are most sensitive to biophysical changes in GA damage foliage and 

potentially provide insight as to which: (1) remote sensing systems are most suitable for 

GA mapping, and (2) which bands can be utilized to achieve more accurate results. 

Recent generations of satellite platforms have been fitted with sensors with multiple 

infrared bands, which could provide useful information for detecting moisture stress of 

attacked trees. One of these sensors occurs with the WorldView-2 (WV-2) satellite 

operated by Digital Globe® and offers high spatial and unique spectral capabilities that 

may successfully detect GA trees. Immtizer and Atzberger (2014) used WV-2 images to 

detect early stages of damage due to bark beetles in Norway spruce, classifying GA 

damage with a 76% overall accuracy. Currently, there is no known research utilizing 

WV-2 data to detect and map GA trees associated with MPB attacks in North America 

(Carter 1994). 

This research aims to determine which spectral bands that best differentiate GA 

and non-attacked (NA) trees during the late winter/early spring following the initial 

attack and develop methods to improve GA detection. If successful, the results will 

provide insight in the management of remote sensing technologies specific to the GA 

problem and potentially a novel method for earlier detection of infestations. This will 

allow forest managers to more accurately target mitigation efforts in locations where GA 
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Figure 1.1. Mountain Pine Beetle damage in Black Hills. Side by Side comparison of damage due to 

MPB infestations near Harney Peak and the Black Elk Wilderness area in the Black Hills from 2004-

2014. Photo courtesy of Ken Marchand, GIS Coordinator, Black Hills National Forest. 

 

damage is more likely, saving both time and labor resources. Currently, research utilizing 

WV-2 imagery to detect and map GA trees within North America remains lacking.  

 

1.2 Research Objectives 

This study has three main research objectives: (1) Characterize the spectral 

response of NA and GA trees in the late winter/early spring following initial MPB attacks 

using field hyperspectral and WV-2 sensing systems; (2) Determine which spectral 

variables best separate GA and NA tree classes and; (3) Use GIS, statistical modeling, 

and spatial modeling to predict and map GA trees.  

 

1.3 Study Site Selection 

 The Black Hills area provides a unique and ideal site for this study. Even though 

many areas in the Western U.S. have experienced MPB infestations, the Black Hills 

region is one of few that have a widespread MPB epidemic in progress. The current MPB 
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epidemic in this area initially manifested around 1996 and has since affected more than 

400,000 acres of National Forest Service land (Graham et al. 2016). During this epidemic 

MPB infestations have damaged or killed large patches of trees, many of which are in 

popular recreational areas (Figure 1.1).  

 The Black Hills area is primarily located in southwestern South Dakota with 

portions in eastern Wyoming (Figure 1.2) and encompasses about 6,000 square miles. 

Regional uplift during volcanic activity several millions years ago have given the Black 

Hills unique topographic characteristics that differentiate it from the plains in the 

surrounding regional area. Volcanic uplift has given the central regions of the Black Hills 

a granitic Crystalline Core, which is surrounded by steep sedimentary deposits that were 

uplifted during the mountain building event. Elevation ranges from 975-2207 m going 

from east to west. The uplift of the Black Hills also influences the temperatures which 

differ from the surrounding plains area, generally producing lower temperatures with 

increasing elevation. 

Summer mean high temperatures range from 24-26° C (75-79°F) and 29-32° C 

(84-90° F) and January mean lows range from -16 to -12° C (3-10°F) and -12 to -10°C 

(10-14°F) for the higher elevations to the lower plains respectfully. Due to orographic 

effects caused by the uplift, the Black Hills has greater precipitation than the surrounding 

plains, with an annual precipitation gradient of 77.5 cm (30.5 in) in the northwest hills 

(Lead, SD) to 44.7 cm (17.6 in) in the southeastern portion (Custer, SD). A majority of 

the precipitation falls in May through July. However, there is high inter-annual variability 

in precipitation during the wettest months, with coefficients of variation ranging from 
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Figure 1.2. Location of Black Hills National Forest. Pansharpened WV-2 image (5,3,2 RGB) of the study area with 

transparent administrative boundaries overlaid for reference.  Inserts provide WV-2 footprint and regional context of 

the study area. 
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0.51-0.58 and 0.57-0.70 for the southeastern (Custer) and northwestern (Lead) portions of 

the Black Hills (Dr. Martin Mitchell, personal communication, October 2016). 

Successions of multiple years below annual averages can accentuate tree stress due to 

competition in high density stands, which along with warmer winter temperatures, 

increases the susceptibility of the Black Hills to MPB epidemics (Dr. Martin Mitchell, 

personal communication, October 2016).  

The Black Hills forests have an extensive history of commercial use and nearly all 

of the forest has been cut at some point in its history (Graham et al. 2016). Early surveys 

in the late 1800’s by General Custer and Henry Graves noted the Black Hills possessed 

great potential as a timber resource (Ludlow 1875; Graves 1899). Until the passing of 

Forest Reserve Act of 1897, unregulated logging associated with gold mining booms, had 

removed a majority of the old-growth, high value timber (Freeman 2014). Since 1897, the 

forest has undergone intensive management practices to develop the Black Hills as a 

timber resource (Freeman 2014). Management strategies such as strict fire suppression 

and ponderosa pines prolific regeneration abilities following disturbances led to the high 

density stands that fostered favorable conditions for the current MPB epidemic (Graham 

et al. 2016). Within the Black Hills region there are multiple stakeholders and 

government entities that manage the MPB epidemic and employ different mitigation 

strategies including: United States National Forest Service, Wind Cave National Park, 

Black Elk Wilderness Area, Mt. Rushmore National Monument, Custer State Park, and 

private land owners. 
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 Figure 2.1. MPB Infestations in the United States 

by counties reporting damage. Image source: 

USDA Forest Service, Forest Health Protection 

and its partners (2016). 

2. Literature Review 

2.1 Introduction 

  The MPB is the most destructive of 

the bark beetles (Furniss and Carolin 1977) 

and is a native insect to forested regions of 

western North America, ranging from 

Mexico to British Columbia, Canada 

(Safranyik and Carroll 2006). In recent 

years, numerous epidemics have caused 

widespread forest damage (Figure 2.1). 

These outbreaks have been attributed to climate change, most notably warmer winters 

resulting in fewer days below beetle mortality thresholds, and past forest management 

policies resulting in high density stands that comprise favorable habitat for the MPB 

(Raffa et al. 2008; Graham et al. 2016). Mitigation measures are necessary to reduce 

populations below epidemic levels and prevent future outbreaks. Effective management 

strategies rely on the forest managers connecting proper mitigation strategies to the 

nature of an outbreak. Detection, mapping, and monitoring the spatial and temporal 

characteristics of an outbreak are critical for making these connections. Remote sensing 

offers potentially novel ways to detect MPB infestations earlier. However it is necessary 

to choose the appropriate remote sensing data, processing techniques, and analysis 

methods relative to MPB life cycles, epidemiology of an infestation, beetle-host 

interactions, and the variations of these variables due to local conditions. To better 
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understand the numerous factors that influence remote sensing detection this review will: 

(1) provide a biological context for MPB life history, beetle-host interactions, and MPB 

epidemiology, (2) look at factors effecting population dynamics, (3) provide a review of 

remote sensing and MPB detection, and (4) review the types of statistical approaches 

potentially useful for determining which predictor variables best separated and detect 

vegetation stress.  

 

2.2 Mountain Pine Beetle Epidemics 

2.1.1 MPB Epidemics in Western North America and the Black Hills 

Historically MPB epidemics have been a regular occurrence in the conifer forests 

of Western North America. The current epidemic started around the mid- to late ‘90s and 

is the largest recorded epidemic in terms of spatial extent, intensity, and its impacts to the 

environment and the economy, damaging approximately 50.5 million acres of forest in 

the Western U.S. since 1997 (USDA Forest Service Forest Health Protection 2016). In 

Canada the MPB has destroyed nearly 50% of all commercial lodgepole pine in British 

Columbia and has migrated far outside of its historic range into the boreal forest of 

North-Central Alberta (Natural Resources Canada 2016).  

While MPB epidemic in the Black Hills accounts for a relatively small portion of 

the total acres infested in the United States, it is noted for its intensity and damage 

relative to the size of the forest. As of 2012 the current MPB epidemic had infested over 

400,000 acres, which accounts for just over one-quarter of the entire ponderosa pine 

stock in the Black Hills. The current epidemic started from 1996-2000 with small 
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infestations in the northern portions of the Black Hills, south of Sturgis, South Dakota 

(Graham et al. 2016). By the peak year in 2012, infestations had reached nearly all parts 

of the Black Hills National Forest except the grassland southern regions, with the 

heaviest concentrations in the North-Central region and the slopes adjacent to Harney 

Peak (Graham et al. 2016). While the current infestation is concerning due to the severity, 

it is not the first occurrence of MPB epidemics in the Black Hills area. Some of the 

earliest anecdotal evidence of MPB damage in the Black Hills was noted during General 

Custer’s expedition of the area in 1874 (Ludlow 1875), however the first record of an 

epidemic in the areas was in 1895 (Blackman 1931 as cited by Graham et al. 2016). Since 

then there have been numerous cycles of endemic and epidemic MPB populations with 

major epidemic events from 1895-1908, 1968-1981, and the current outbreak and lesser 

epidemics from 1936-1944, 1946-1945, and 1963-1966 (Graham et al. 2016).  

 

2.1.2 Impacts of Infestations 

Negative commercial impacts of MPB infestations include losses in timber sales, 

manufacturing related to the timber industry, and government revenues from logging 

contracts and recreation (Abbot et al. 2008). Furthermore, beetle infestations change the 

management response of forest managers and force sometimes limited resources to be 

aliquoted away from other needs (Sims et al. 2010). A less obvious impact, but one that is 

of major concern to forest officials, is the safety hazard infested trees place on the public 

because extensive stands of dead trees (1) accentuate the fire hazard and (2) are prone to 

falling down during windy conditions. In some infested areas the US Forest Service 
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estimates that over a 100,000 trees killed by the MPB fell per day in the years following 

the peak epidemic (USDA Forest Service 2011). The Forest Service also estimates that 

around 14,000 miles of roads and trails and 1,400 recreations sites are at risk of falling 

trees in the Western US interior (USDA Forest Service 2011).  

Infestations can have numerous abiotic and biological impacts as well. As trees 

die off it reduces the amount of photosynthetic activity of a site and stands can go from 

being carbon sinks to carbon sources as dead litter following an attack decomposes or, as 

trees become incinerated during a wildfire (Hicke et al. 2012; Edburg et al. 2011; Hansen 

et al. 2015a). Infestations alter nitrogen cycling by increasing soil nitrogen and vegetation 

nitrogen in healthy vegetation (Edburg et al. 2011; Griffin et al. 2011; Keville et al. 

2013). Increases in moisture and litter depth around dead trees change the soil 

microclimate (Griffin et al. 2011). MPB infestations can significantly change fuel-

loadings and have been linked to increases in wildfire severity and frequency (Page and 

Jenkins 2007; Jenkins et al. 2014). Drop in moisture content of attacked needles and 

changes in needle chemistry increase the flammability of MPB attack stands and lower 

ignition temps (Jolly et al. 2011). The dry and still-attached needles of the red-attack 

stage provides more crown-fuel leading to hotter and more destructive crown type 

wildfires, while older infested stands have more ground-fuels (Page and Jenkins 2007; 

Klutsch et al. 2011; Jenkins et al. 2014;Hansen et al. 2015b).  

Reductions in evapotranspiration in infested stands and reduced water uptake 

from dead trees impacts water cycling of the watershed, leading to increased runoff thus 

magnifying spring and summer flooding  in localities with severe damage (Brown et al. 
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Figure 2.2. Mountain Pine Beetle 

Image. Actual size ranges from 1/8 

to 1/3 inches (Leatherman et al. 

2007). 

2014; Mikkelson et al. 2013a; Bearup et al. 2014). Changes in mineral transportation, 

nutrient cycling, and flooding can negatively impact the habitat of vegetation and 

terrestrial, subterranean, aquatic, and/or human life. Infestations can impact wildlife both 

negatively and positively. Avian species and mammals that are cavity-nesting or forage 

on beetles see a positive response due to increased habitat, food, and refuge from 

predators (Saab et al. 2014). Meanwhile, canopy nesting and pine seed consuming 

wildlife are negatively affected following an attack (Saab et al. 2014). Infestations have 

been linked to localized contamination of drinking water supplies (Mikkelson et al. 

2013b). 

 

2.2 Mountain Pine Beetle Biology 

2.2.1 Life History 

The MPB (Figure 2.2) is commonly referred 

to as bark beetles because they spend a majority of 

the life under the bark of host trees (Safranyik and 

Carroll 2006; Gibson et al. 2009). The MPB emerges 

and flies only during the adult stage otherwise all 

development and activity take place in the 

subcortical tissues of their host. New broods emerge 

and take flight to select new host trees from July to mid-August, with some variance due 

to ambient temperatures (Leatherman et al. 2007; Safranyik and Carroll 2006). Attacks 

are initiated by the females, who seek out suitable host trees and release aggregation 
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pheromones which attract additional beetles. After mating, females construct vertical 

tunnels, called egg galleries, in the phloem of the host to lay eggs. Larvae feed on the 

nutrients within the phloem by constructing feeding tunnels perpendicular to the egg 

galleries. Larvae overwinter in these tunnels and then develop through four instar larval 

phases. Transition to the pupae stage takes place in the spring months and development to 

the adult stage usually happens a couple of weeks before emergence, with variation in 

emergence times being highly dependent on temperature (Bentz et al. 1991; Safranyik 

and Carroll 2006).  

Temperature plays an important role in beetle mortality, development, and 

ultimately the spread of infestations and onset of epidemics. Most commonly, the life 

cycle of the MPB is univoltine, a single generation per year, but life cycles in areas with 

colder ambient temperatures, higher latitudes and elevations, can become semivoltine, or 

two years per generation (Amman 1973; Safranyik 1978; Bentz et al. 1991). Bivoltinism, 

multiple generations per year, has been reported in a number of other bark beetle species 

(Hansen and Bentz 2003; Safranyik and Carroll 2006) and is a major concern due to 

climate change as beetles develop faster in warmer temperatures (Raffa et al. 2008; Bentz 

et al. 2010; Sambaraju et al. 2012). This could lead to larger populations and widespread 

epidemics.  
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2.2.2 MPB Infestation Epidemiology 

2.2.2.1 Factors Controlling Beetle Populations 

 Temperature, specifically the temperature of tree phloem, is an important 

regulator of MPB population dynamics (Amman 1984). Many of the other factors, which 

will be discussed later in the review, that are correlated with MPB outbreaks and 

population dynamics are also related to phloem temperature. High mortality rates are 

only reached when temperatures drop below mortality thresholds for extended periods, 

which are needed to keep populations at endemic levels (Amman 1984; Bentz et al. 1991; 

Cole 1981). Air temperature mortality thresholds range from approximately -18° to -40° 

C (~0° to -40° F); the lower temperatures of this range are needed to kill off  later MPB 

larvae stages which produce and accumulate glycerol that acts as “anti-freeze” (Safranyik 

and Carroll 2006). In the Black Hills, winter temperatures of approximately -29° C (-

20°F) result in significant overwinter kills of MPBs (Greg Brunduge, personal 

communication, July 2011).  In recent history, the number of December and January 

months with days below this threshold has declined in the Black Hills and is likely a 

contributor to the recent MPB epidemics (Appendix A). For example, in Custer, SD there 

has been zero January months with days below -29° C since 1985 compared to 22 from 

1943-1984. Data from four weather stations with long-term historical records in the 

Black Hills shows the number of years between December or January days with 

temperatures below -29° C has increased considerably since 1985 compared to previous 

years (Table 2.1).  
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While the number of years between February days below this threshold has actually 

decreased, the impact on MPB mortality is lower than early winter months because 

beetles have accumulated more glycerol to help them survive cold temps (Safranyik and 

Carroll 2006).  

In addition to mortality, temperature also controls the development rates of the 

MPB life stages. Bentz et al. (1991) examined the development of the MPB from egg to 

adult under various constant temperature conditions and found that the optimal 

temperature range for development was between 23°C (75°F ) and 25°C (77°F). 

However, the optimal developmental temperatures were different for each of the life 

stages. This life history trait provides a significant advantage for the MPB when faced 

with varying temperatures. During periods of colder or warmer temperatures, depending 

on the life stage observed, the beetle will slow or speed up development relative to other 

life stages. This “catch-up” mechanism synchronizes the emergence for MPB across a 

landscape regardless of localized differences in temperatures. This synchronized 

Location Years 
Years between Days Below -29°C (-20°F) 

December January February 

Custer Post-1985 7.8 NA 4.0 

1943 -1984 1.9 1.9 4.2 

Mt. Rushmore  

National Monument 
Post-1985 15.5 NA 16.0 

1962 -1984 7.7 11.5 23.0 

Lead Post-1985 10.3 16.0 8.0 

1910 -1984 5.8 3.8 8.3 

Pactola Dam Post-1985 5.2 10.5 1.9 

1956-1984 4.1 2.2 5.8 

Table 2.1. Average number of years between winter monthly lows below -29°C (-20°F). Not applicable 

(NA) indicate that there has been no days during those years in which the temperature was below the 

threshold. For example there have been zero days below -20°F in Custer since 1985. Data is from 

National Weather Service (NWS) stations at Custer, SD (NWS ID CUSS2), Mt. Rushmore National 

Monument (NWS ID RMNS2), Lead, SD (NWS ID LEAS2), and Pactola Dam (NWS ID RAPS2). 
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emergence during epidemics is important for the beetle to successfully carry out “mass-

attacks” on large diameter trees but also limits the ability of the MPB to develop 

bivoltinism (Bentz et al. 2013). Bentz et al. (2013) found that genetic variability across 

large landscapes shows some differences in developmental rates with MPB populations 

in warmer climates developing faster than those in colder climates. However, there was 

not enough genetic variation to develop multiple generations within a year within the 

current MPB range. 

 

2.2.2.2 Population Dynamics 

The MPB population exists in one of four population cycles: endemic, incipient-

epidemic, epidemic, and post epidemic (Safranyik and Carroll 2006). Characteristics of 

these cycles have important implications for the strategies chosen for monitoring and 

managing outbreaks. Transition between these populations cycles depend on factors such 

as availability of suitable host trees, stand susceptibility factors, and favorable weather 

conditions for development and beetle mortality.  

The endemic stage is characterized by low populations with attacks limited to 

small patches or single trees possessing smaller diameters than the stand average and/or 

large diameter trees that have been weakened by biotic or abiotic factors (Amman 1984; 

Wulder et al 2006; Safranyik and Carroll 2006). This results in low brood production, 

high mortality, and thus low populations. During this stage, MPB attacks can be 

beneficial and improve forest health through attacking and removing weakened unhealthy 

trees and decreasing inter-specific competition (Safranyik and Carroll 2006).  
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Populations can go from the endemic to the incipient-epidemic phase with 

multiple years of warmer winter temperatures and/or when host trees become more 

susceptible due to increased stress from drought, disease, and/or increased competition 

(Safranyik and Carroll 2006). The incipient-epidemic phase is defined by a population 

growth that allows for a successful mass-attack of large diameter, high quality host trees 

(Safranyik and Carroll 2006). Attacks are still limited to single trees or to clusters of trees 

within a stand, commonly in areas where moisture fluctuates greatly, disease is more 

common, and/or more solar radiation is reached (Wulder et al 2006; Safranyik and 

Carroll 2006). 

As these patches coalesce and population densities increase, a shift to an epidemic 

stage occurs. The epidemic phase is characterized by large populations that are resilient 

to high mortality rates, and 2- to 8-fold growth rates within a generation (Safranyik and 

Carroll 2006). During epidemics beetles have the ability to carry out mass attacks on 

large diameter trees and quickly deplete a stand of these large high vigor trees, causing 

large amounts of annual damage (Safranyik and Carroll 2006). Spatial characteristics of 

epidemics include large patches of trees, usually at the landscape level, with 

progressively large annual increases in the number of trees attacked (Wulder et al 2006; 

Safranyik and Carroll 2006). 

Populations enter a post-epidemic stage as population size decreases due to 

sustained temperatures below mortality thresholds, a reduction in suitable host trees, or 

abatement of other stress conditions such as drought (Amman 1984; Safranyik et al. 

2002; Safranyik and Carroll 2006). Spatial characteristics of newly attacked trees are 
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similar to those of the endemic stage, but there are landscape level patches of dead or 

grey-attack trees (Wulder et al. 2006). 

 

2.3 Pine Host and Beetle Interaction 

2.3.1 Host colonization and Interaction  

The MPB has been known to attack any type of pine tree in North American and 

some other species of conifers, but its most common hosts in the Western U.S are 

lodgepole, ponderosa, and whitebark pines (Gibson et al. 2009; Negron et al. 2008; 

Taylor et al. 2006). After emergence, dispersal of MPB tends to be short with a majority 

of new hosts selected within 30 m or less of the initial release point; however, there is a 

potential for long-range dispersal if beetles are caught in convection currents above the 

tree canopy (Safranyik et al. 1992). The initial attacking females’ select suitable hosts 

based on numerous factors including tree diameter, odor attraction, and visual cues or 

interactions between all of these factors in a way that is not fully understood at this time 

(Safranyik and Carroll 2006). The MPB prefers to select large diameter trees because 

they generally have a thicker phloem, which provides more nutritional resources and 

room for egg production (Amman and Cole 1980), and thicker bark, which provides 

additional protection from predators, such as woodpeckers, and cold temperatures. 

(Safranyik et al. 2002). 

 There is a trade off with selecting large diameter trees. These trees tend to be the 

most vigorous trees and are better suited to defend against attacks. At the site of attack, 

trees secrete resins that immobilize and push/pitch the MPB out of the tree (Raffa and 
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Figure 2.3. Ponderosa Pine  

trunk cross-section with blue-

staining.  

 

 

Berryman 1983). The resins released by the tree contain chemicals, called monoterpenes, 

which can be lethal to bark beetles (Raffa and Smalley 1995).  

 The MPB is able to overcome the tree’s defenses in two ways. First, the MPB 

simply overwhelms a tree’s defensive capabilities by coordinating “mass attacks” with 

the release of aggregation pheromones that attract thousands of beetles to a single tree 

(Raffa and Berryman 1983). This is only common during epidemic stages where 

population densities are high enough to successfully carry out mass attacks on multiple 

trees (Safranyik and Carroll 2006).  

 The second method used to overcome the host tree’s 

defenses stems from a synergistic relationship the beetle has 

with a blue stain fungus that is attached to the outside of the 

beetle (Ballard et al. 1984; Gibson et al. 2009). As the beetle 

bores into the tree, the fungus gets deposited and quickly 

penetrates the phloem and xylem (Figure 2.3). The fungus 

alters water flow and transpiration rates within the vascular 

tissues of the tree, which reduces the production and allocation 

of resin to the attack site and the trees’ ability “pitch-out” attackers (Ballard et al. 1984). 

The fungus inhibits water transport from the roots to the canopy of the tree. This 

interruption is rapid, within 10 days of an infestation there is a significant decrease in 

transpiration in trees that have been attacked and a 60% drop by 2 months. The following 

year, attacked trees no longer transport water and there is no new foliage growth. Until 

recently, it was believed that the feeding on the phloem by MPB was the ultimate reason 
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for tree mortality but recent research suggest otherwise. Hubbard et al. (2013) found that 

the blue stain fungus is the primary cause for tree mortality in MPB infestations.  

 

2.3.2 Pine Stand Susceptibility 

The probability of a MPB attack and tree mortality rates within tree stands has 

been significantly correlated with a number of different stand characteristics (Negron and 

Popp 2004; Taylor et al. 2006; Negron et al. 2008). High tree basal area, high stand 

densities, low growth rates, and low tree spacing within a stand influence the 

susceptibility of attack because they influence competition within a stand. Moisture 

availability decreases with higher competition, weakening the trees ability to produce the 

resins used to resist MPB attacks. Tree diameter at breast height (dbh), stand age, and 

growth rates have also been positively correlated with susceptibility. These factors 

represent the potential for trees to have thicker phloem tissue, which can support larger 

broods.  

These thresholds are determined from studies that have correlated stand 

characteristics with tree mortality rates cause by MPB attacks. In ponderosa pine stands 

basal area, average dbh of trees, stand densities, number of levels of canopies, and tree 

spacing have all been correlated with increased tree mortality rates (Stevens et al. 1980; 

Schmid and Mata 1992; Negron and Popp 2004; Negron et al. 2008). Diameter at breast 

height (dbh) is the diameter of trees at 4.5 ft above their base and basal area is the total 

area of cross sections of trees in a given area. Early studies have found that ponderosa 

pine stands with an average dbh of 25.4 cm (10 in) or higher and basal areas of 34.4 
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m
2
/ha (148.9 ft

2
/ac) have significant increases to susceptibility of MPB attack (Stevens et 

al. 1980). Schmid and Mata (1992) studied basal area and MPB attacks in even-aged 

ponderosa stands in Black Hills region of South Dakota. Their results indicated that the 

basal area threshold for highly susceptibility stands was 27.8 m
2
/ha (121.1 ft

2
/ac), which 

Schmid and Mata (2005) later suggested lowering the threshold to 23.0 m
2
/ha (101.2 

ft
2
/ac). They also found average spacing between trees was a more accurate indicator of 

susceptibility than basal area because spacing is a better indicator of inter-species 

competition. Using regression analysis, they determined what the average spacing of 

trees should be to create low, moderate, and high risk stands. This method provides a 

practical guide for managers by creating end points for thinning based on the desired 

susceptibility rating. Negron et al. (2008) researched stand susceptibility to MPB attack 

in uneven-aged ponderosa stands in the Black Hills forest and found significant 

differences between infested and non-infested stands. When comparing infested and non-

infested stands both with mean dbh >25.4 cm (10 in) the infested stands had significantly 

higher stand densities and higher basal areas. Their regression analysis indicated a basal 

area of 27.8 m
2
/ha (121.1 ft

2
/ac) in highly infested stands, which is similar to the results 

from Schmid and Mata (1992). These studies indicate that beetles will preferentially 

select larger diameter trees in stands and in the presence of similar diameter trees. 

Therefore, there is a positive relationship between stand density and susceptibility to 

MPB infestations.   

Topography of a landscape plays an important role stand susceptibility to MPB 

infestations, with elevation and slope being of particular importance. Both elevation and 
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slope aspect can influence the phloem temperature, which in turns influences the 

mortality and development of beetles. Generally beetles attack stands on south facing 

slopes that receive more solar radiation (Nelson et al. 2007; Honey-Marie et al. 2011), 

whereas high elevations tend to be a limiting factor due to colder temperatures (Amman 

1973; Safranyik and Carroll 2006). Amman (1973) found that mortality rates and 

declining populations increase with increasing elevations due to colder temperatures and 

development rates also slowed with semivoltinism (one generation/two years) developing 

at 2450 m (8038 ft) and strict semivoltinism at 2573 m (8441 ft). New infestations 

primarily occur in canyons and valleys before areas that are more open and lesser slope, 

specifically on southwestern aspects (facing the sun and windward) which are correlated 

with higher infestation rates (Nelson et al. 2007; Honey-Marie et al. 2011). Topographic 

features tend to be more influential in the initial phases of outbreaks when suitable stands 

are available, but not as significant later in epidemic when location of suitable host trees 

becomes more important in predicting infestation spreads (Chapman et al. 2012; Walter 

and Platt 2013). Relative to the Black Hills, the elevations mentioned by Amman (1973) 

are beyond the highest summit in the Black Hills, Harney Peak at 2207 m (7,242 ft), thus 

MPBs have one brood per year. The southwestern aspect argument by Nelson et al. 

(2007) and Honey-Marie et al. (2011) would occur on slopes with accentuated 

evapotranspiration rates in a region possessing strong fluctuations in inter-annual 

precipitation. During a dry period, southern exposures would magnify the stress on high 

density stands. Moreover, along the uppers slopes of the crystalline cores (above 1828 m 
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Figure 2.4. Typical development of damage stages in pine trees. 

Fading rates based on a stand composed of 15 MPB attacked 

lodgepole pines trees (Wulder, Dymond, White, Leckie, and Carroll 

2006). MPB attacked ponderosa pines undergo a similar temporal 

sequence of stages 

or 6000 ft) the more suitable host trees, ponderosa pines, are dominant on south facing 

slopes, whereas white spruces will be more abundant on the north facing slopes. 

 

2.3.3 Biophysical Response of Pine Crowns to MPB Attack  

The biophysical 

changes in foliage following 

a successful MPB attack fall 

into three stages. The initial 

stage is commonly referred 

to as green attack (GA) and 

is characterized by non-

visual stress, which last 

anywhere from about 6-10 

months (Wulder et al 2006). 

The fungus attack on the phloem of the tree causes a drop in the moisture content in the 

foliage but there is no visible damage in the color of the tree crown (Safranyik and 

Carroll 2006). After the initial attack, green chlorophyll pigments are lost, due to 

transpiration loss from the fungus infections, while simultaneously yellow carotones and 

red anthocyanins pigments increase in the leaves (Hill et al. as cited in Wulder et al. 

2006; Safranyik and Carroll 2006). This change is visible as attacked trees fade from 

green to yellow in the spring and is sometimes referred to as yellow attack or fading 

(Wulder et al. 2006). Yellow carotene pigments eventually begin to break down as well 
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and red anthocyanin concentrations increase in the leaves. This stage of attack, referred to 

as red-attack, reaches its peak approximately 12 months after the initial green-attack 

(Wulder et al. 2006). As plant stress continues due to the reduction in phloem 

functionality as a result of the fungal infection, needles start to desiccate and fall from the 

tree until host trees are completely defoliated, commonly called grey-attack, which 

occurs within three years after the initial attack (Wulder et al. 2006). Figure 2.4 illustrates 

a typical sequence of damage stages in lodgepole pine trees from initial infestation to the 

point that all attacked trees have lost needles (Grey Attack).  

 

2.4 Mitigation, Detection, and Remote Sensing of MPB Infestations 

2.4.1 Mitigation and Detection 

Mitigating and managing MPB populations are broken into three main phases. 

First, direct control measures are used to reduce beetle populations directly and include 

strategies such as physically removing infested trees, applying insecticides to kill the 

beetles, or applying pheromones to attract or detract beetles to specific trees (Carroll et al. 

2006; Gibson et al. 2009). Second, indirect controls are a type of preventative 

maintenance commonly applied during endemic MPB populations. These strategies aim 

to improve tree vigor by reducing stand susceptibility with the goal of reducing 

conditions that lead to outbreaks. An example would be pre-emptive thinning to reduce 

stand densities below the threshold of 23.0 m
2
/ha (101.2 ft

2
/ac). Lastly, detection and 

mapping includes all methods used to detect, map, and analyze the spread of MPB 

populations. This phase is important because it dictates how and where the control 
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measures are implemented, especially direct control measures. It can help forest 

managers coordinate ground labor efforts in a more cost effective and timely manner, 

choose appropriate control measures, and assess tree-mortality for timber supply 

forecasting and estimating stand susceptibility for future consideration (Wulder et al. 

2006; Coops et al. 2008; Coggins et al. 2011). Coggins et al. (2011) studied the efficacy 

of direct control methods and found detection rates of nearly 80% are needed to 

successfully maintain a static MPB population when the expansion rates are high. The 

ability to mitigate and stabilize a MPB population depends on accurate detection rates. 

Traditional methods for surveying MPB damage involved ground- and aerial-

based methods. Ground surveys provide the most accurate and reliable information, 

especially for detecting GA damage. However, ground surveys have high operational and 

time costs, are limited in the extent they cover by labor costs and traversing mountainous 

terrain, and require precise placement of ground crews in locations where damage is most 

likely (Wulder et al. 2006; Coops et al. 2008). Aerial survey methods generally include 

observer sketch-mapping damage from an aerial platform, helicopter-GPS surveys, and 

manually digitizing aerial photographs. These methods provide general estimates of the 

amounts and locations of MPB damage over large areas, but are too inaccurate for precise 

operational activities because they rely on the subjectivity of the observer, do not allow 

for accuracy assessments, and commonly suffer from positional inaccuracies on maps 

(Wulder et al. 2006).  

Furthermore, aerial based surveys are limited only to detection of visible RA 

damage from previous years MPB infestations. This does not allow forest managers to 



26 
 

mitigate the GA trees (current brood) and limits understanding about MPB patterns 

leading, which leads to less effective and more reactive mitigation instead of proactive 

strategies (Wulder et al. 2006).  

Remotely sensed data sources from airborne and satellite sensors have been used 

increasingly in MPB research in recent history and provide a number of significant 

advantages over traditional surveying methods. Numerous platforms provide different 

spatial, spectral, and temporal options that can meet the various informational needs and 

variability in MPB outbreaks. Since imagery has higher positional accuracy, it creates the 

ability to combine images over time and space in an objective repeatable way. Being able 

to accurately compare images from different time periods provides insight about the 

spread of outbreaks. Automated classification reduces error due to subjectivity in 

observers’ interpretations. Results can undergo accuracy assessments, which help with 

assessing the value of data for operational applications. Another advantage of remotely 

sensed data is the ability to combine it with ancillary data to provide more accurate 

detection results. This allows users to combine the spectral response of attacked trees 

with other data that might indicate stand susceptibility, such as forest inventories, digital 

elevation models, and precipitation maps, to create more accurate modeling and 

predictions of MPB attacks (Coops et al. 2006; White et al. 2006). Most importantly, 

remote sensing provides the ability for accurate detection and mapping across larger 

extents and inaccessible areas. 
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2.4.2 Factors Influencing Remote Sensing Approaches 

Successfully detecting and mapping MPB damaged trees relies on the user 

selecting an appropriate remotely sensed data source to match the spatial, temporal, and 

spectral characteristics of damaged trees. Endemic MPB populations are characterized by 

single or small clusters of damaged trees, which require higher spatial resolution data sets 

to separate the response of attacked trees from surrounding healthy trees (Wulder, et al 

2006). Likewise, if the MPB population occurs at an epidemic stage, moderate and low 

resolution might suffice to map widespread landscape level infestations where high 

resolution would be “over-kill”.  

 Temporal characteristics also play a role. The use of remote sensing to detect and 

map the later onset of RA damage has been the most researched and developed methods 

to date because the spectral response of red-attack trees is easily differentiated from the 

spectral response of healthy, non-attacked trees. Due to the difference in spectral 

responses between red-attack and healthy trees, moderate to low spectral resolution 

sensors can be effectively used for detection, mapping, and monitoring. The spatial 

distribution of RA trees also plays a role. Since the grey attack stage does not fully onset 

until year three following the initial attack, patches of RA trees may consist of multiple 

years of damage and are commonly found in larger patches which again make moderate 

spatial resolution imagery more appropriate.  

Detection of earlier GA damage is highly sought after because it would allow 

forest managers to apply direct and indirect controls to infested and adjoining non-

infested stands before a new brood emerges. However the spectral characteristics of GA 
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damage make it difficult to detect because attacked trees do not show any visual cues of 

attack and are spectrally similar to healthy trees (Wulder et al. 2006). Higher spectral 

resolution datasets are needed to detect the narrow regions within the spectrum that are 

responsive to pre-visual biophysical changes, such as reductions in moisture and 

chlorophyll concentrations, in the needles of MPB GA trees (Wulder et al. 2006). Narrow 

bands in the visible and infrared spectrum have been used previously to detect changes in 

moisture and chlorophyll content shortly after initial attack that could potentially 

maximize differences between GA trees and healthy trees (Ahern 1988, Cheng et al. 

2010, Fassnacht et al. 2014). However, normal variability in moisture and chlorophyll 

content in healthy trees often overlaps with changes in GA trees, thus making it difficult 

to obtain high classification accuracies (Wulder et al. 2006). Furthermore, the age of 

needles, their position on the tree, background elements, and environmental differences 

between stands can influence spectral responses (Ahern 1988, Wulder et al. 2006). The 

spatial distribution of GA trees also influences which datasets maybe most useful for 

detection and mapping, as newly attacked trees are usually along the leading edges of an 

infestation and commonly consists of single or small patches of trees. These patches 

would require high spatial resolution imagery to separate from surrounding healthy trees.  

 

2.4.3 Spectral Response of Stressed Vegetation 

The biophysical changes to pine trees following a MPB are similar to the stress 

responses observed in many species of plants, thus the changes in spectral response 

following a MPB attack are also similar. In the visible and red-edge range of the 
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spectrum vegetative spectral response to stress is primarily controlled by changes in plant 

pigments (Carter 1993; Filella and Penuelas 1994; Sims and Gamon 2002). The most 

important of these pigments is total chlorophyll (Chlorophyll a + Chlorophyll b) which 

primarily controls most of the solar absorption in the visible range (Sims and Gamon 

2002; Blackburn 2007). Reflectance changes due to plant stress are more consistent in the 

visible spectrum and manifest earlier than other regions of the spectrum, especially in 

green-peak region from 530-580 nm and the red edge rise from 680-720 nm (Filella and 

Penuelas 1994; Curran et al. 1990; Carter 1993; Carter and Miller 1994; Lin et al. 2015). 

The most common red edge response to stress is a shift to the shorter wavelengths (blue 

shift) caused by increased reflectance at the base of the red, a shortening of the 

chlorophyll absorption feature in the red region, and a suppression in reflectance in the 

top of the rise (NIR shoulder) around 750 nm (Curran et al. 1990; Filella and Penuelas 

1990). Correlations between reflectance and chlorophyll concentrations are greatest at 

approximately 700 nm-720 nm, followed by the green-peak around 550-600 nm (Carter 

1993, Carter and Knapp 2001). In the visible spectrum, sensitivity to chlorophyll changes 

is lowest at wavelengths associated with higher absorption, primarily in the violet-blue 

and red regions and does not become manifest in these regions until severe damage 

occurs (Carter 2003, Carter and Knapp 2003). The secondary pigments carotenoids and 

anthocyanins sensitivity are greatest in the blue and green regions respectfully (Gitleson 

et al. 2001, Gileson et al. 2002, Ustin et al. 2009). Significant relationships between 

moisture content and reflectance have been observed in the visible range, but these are 

relatively minor compared to chlorophyll changes and do not onset until more advanced 
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stages of dehydration (Carter 1993, Foley et al. 2006; Zygielbaum et al. 2009; Zhang et 

al. 2012; Cao 2015). The influence of chlorophyll is not significant above 750 nm (Carter 

1993).  

Internal leaf structure and leaf moisture content govern NIR reflectance, 

especially near the NIR shoulder and plateau (750-900 nm). As plants become stressed 

and dehydrated leaves shrink and intercellular cavities reduce, cell walls degrade in the 

spongy mesophyll, and/or there is a reduction air to water interfaces leading to reduced 

reflection in the NIR (Ceccato et al. 2001; Ustin et al. 2012). Ceccato et al. (2001) found 

that leaf structure had the greatest influence on variations in reflectance values in the NIR 

and lower SWIR from approximately 700-1300 nm. While single wavelength reflectance 

is influenced primarily by internal leave structure in the NIR, studies looking at water 

content and spectral derivative analysis have shown that moisture has the largest 

influence on changes in the slopes of absorption features at 970 nm and 1200 nm 

(Penuelas et al. 1993; Clevers et al. 2008; 2010). 

Decreasing leaf moisture augments reflectance throughout the spectrum but 

sensitivity is greatest in the SWIR (Hunt and Rock 1989; Carter 1993; Fourty and Baret 

1997; Sims and Gamon 2003; Foley et al. 2007; Zygielbaum et al. 2009; Clevers et al. 

2010; Zhang et al. 2012; Cao 2015). Carter (1993) found plants suffering from moisture 

loss had significantly higher reflectance from 1119-2500 nm. Similar results have been 

observed in the SWIR reflectance of vegetation’s under various stress conditions (Hunt 

and Rock 1989; Carter and Miller 1994; Foley et al. 2007; Cao et al. 2015). Attempts to 

estimate canopy moisture content have found the best spectral regions for detection are 
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weak absorption features in the SWIR (Fourty and Baret 1997; Sims and Gamon 2003). 

Others have noted that the SWIR alone is not enough for estimating moisture content in 

leaves because internal leaf structure changes can somewhat influence the SWIR 

reflectance as well and NIR measurements are needed to accurately estimate moisture 

(Aldakeheel and Danson 1997; Ceccato et al. 2001).  

 

2.4.4 Mountain Pine Beetle Detection and Mapping 

2.4.4.1 Red Attack Detection 

To date, research into the use of remote sensing to map MPB outbreaks has 

focused on the detection of RA damage because the spectral response of RA trees is 

easily differentiated from the spectral response of healthy, non-attacked trees. Commonly 

found in patches that are the accumulation of multiple generations of beetle infestations, 

RA trees create large clusters of trees compared to GA damage, making moderate 

resolution imagery (~5-30 m
2
), such as Landsat, sufficient for detection. Early work with 

Landsat imagery achieved accuracies above 90% but only for areas with very extensive 

and large clusters of red-attack trees, with much less accurate results in smaller patches 

(Rencz and Nemeth 1985). Franklin et al. (2003) further improved classification 

accuracies in smaller RA patches (73%) by stratifying single-date Landsat imagery based 

on forest composition and structure to obtain training data for a supervised classification 

method. Higher spatial resolution imagery, such as SPOT, achieved similar accuracies 

(71% RA producer’s accuracy) using logistic regression models to map large patches of 

moderate to high RA damage in lodgepole pines. When detecting areas of high level RA 
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damage, it appears that higher spectral resolution datasets such as Landsat TM provide 

slight advantages over higher spatial resolution datasets such as SPOT. However, this 

advantage is vice versa when MPB damage is limited to smaller numbers of trees during 

early stages of outbreaks or post-epidemic stages. Temporal studies using Landsat 

imagery find the lowest accuracies during the earliest years of an outbreak, with 

improvements as areas get larger during the later stages of epidemics (Goodwin et al. 

2008; Walter and Platt 2013). While a means for cataloging previous years MPB damage, 

moderate resolution imagery are not useful for mapping small clusters of RA trees or the 

current damage (GA trees), thus limiting them as a means for mitigating the problem.  

Higher resolution datasets show significant improvements in mapping smaller 

groups of trees. White et al. (2005) used 4-m pixel IKONOS imagery to detect RA 

damage at accuracies ranging from 54% to 93% for low density to high density damage 

areas respectfully. They also found that tree crowns smaller than 1.5 m were omitted 

from detection when co-located with other RA trees at distances greater than 11.3 m. This 

result has important implications towards GA detection. Since GA trees are more 

commonly found as small patches or single trees, datasets with higher spatial resolutions 

(< 4m) may be needed to avoid mixed pixel problems with smaller, isolated GA trees. 

Coops et al. (2006) used QuickBird imagery with four spectral bands (blue, green, red, 

NIR) and a 2.4m spatial resolution to map RA damage in lodgepole pines in British 

Columbia. They found that the green band provided the best separation between NA and 

RA trees followed by the NIR band. An intermediate fading stage was best discriminated 

using the blue band. A ratio of red to green bands provided the improved separation 
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between the NA and RA trees and the best classification accuracies using a binary 

classification methods based on thresholder values. Hicke and Logan (2009) also used 

Quickbird imagery and a maximum likelihood classification method to classify MPB RA 

damage in whitebark pines with low rates of commission and omission errors, 0.9% and 

6.5% respectfully.  

 

2.4.4.2 Green Attack Detection and Mapping 

Multiple studies have attempted to characterize the spectral response of GA trees 

and/or classify GA damage using ground based spectroradiometer, aerial, and space-

borne datasets (Murtha and Wiart 1989; Ahern 1989; Heath 2001; Sharma 2007; Cheng 

et al. 2010, Fassnacht et al. 2014; Niemann et al. 2015). Spectral overlap between healthy 

and GA trees, background elements, natural variance in reflectance, and variations in 

environmental conditions of stands have led to inconsistencies in results. Due to these 

limitations, classification and mapping of GA trees for directing pre-emptive mitigation 

efforts has not reached accuracies high enough to become operationally reliable. 

Historically GA detection research has focused on the visible and NIR portions of the 

spectra and the spectral responses driven by changes in leaf pigment concentrations. 

More recently sensors providing longer wavelengths bands have been used to examine 

the spectral response of damaged trees in the SWIR and moisture changes. 

Murtha and Wiert (1989) provide an example of an early attempt to use aerial 

photography to detect GA damage. Using 1:2000 color infrared aerial photographs they 

extracted green, red, and NIR digital numbers (DN), along with calculating the ratios of 
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these DNs, from GA and NA lodgepole pines. ANOVA tests showed the DNs of GA 

pines were significantly higher than NA trees in the green and red regions of the 

spectrum. They speculated that differences in the green and red regions of GA trees likely 

resulted from increased reflectance associated with moisture loss in the foliage. 

Meanwhile, the lack of difference in the NIR might be caused by competing influence of 

changes in leaf structure causing initial drops in NIR reflectance and subsequent rises as 

foliage continues to dry out. Even though differences were observed for single trees, the 

authors concluded that large standard deviations and overlaps in these values would make 

any attempts to map GA trees on spectral values alone unsuccessful.  

Several years later, Heath (2001) used visible-NIR hyperspectral imagery 

collected from a helicopter to examine GA and NA lodgepole pines. Bands that separated 

GA trees were primarily located in the blue and blue-green regions, with a couple 

additional bands in the red and NIR (Heath 2001). Heath used discriminant analysis to 

classify groups with an overall accuracy of 73%, but again noted considerable variability 

in heathy trees made detection problematic. Sharma (2007) used the satellite 

hyperspectral data to detect MPB GA damage in lodgepole pine in British Columbia. The 

researcher examined the spectral signatures of healthy and GA sites instead of individual 

trees. Using stepwise discriminant analysis Sharma identified that bands in the NIR (993-

1094) were most important for GA discrimination and was able to separate GA and NA 

sites with an overall accuracy of 81% (Sharma 2007). More recent studies have focused 

on the use of airborne hyperspectral imagery. Fassnacht et al. (2014) classified various 

stages of MPB damage with overall accuracies from 76%-85% using HyMap imagery 



35 
 

and support vector machine classification. However accuracies for the GA damage class 

proved much lower with producers and users accuracies of 57% and 65% respectfully, 

likely due to wide variances in the reflectance of healthy, GA, and fading tree crowns 

causing large overlaps in the spectral responses. In the same study these researchers used 

a genetic algorithm to identify spectral regions that best distinguished the damage classes 

and found the most frequent regions selected were in the green-peak (560 nm), red (680 

nm), and red edge (690) portions of the spectrum (Fassnacht et al. 2014). Niemann et al. 

(2015) used a similar hyperspectral dataset to separate healthy, GA, and RA lodgepole 

pines, with emphasis on chlorophyll absorption features from 550-710 nm and water 

absorption features from 900-1000 nm and 1050-1285 nm. They observed two narrow 

windows exhibiting the greatest differences between healthy and GA from 650-685 nm 

with a slight blue shift of the red edge and significant but lesser separation from 1145-

1210 nm. Using a spectral angle mapper classifier they achieved GA producers and users 

accuracies of 71.8%-95.0% and 63.4%-86.0%, respectfully. Bands in the longer SWIR 

regions had little separation between GA and healthy samples (Niemann et al. 2015). 

Attempts to use multispectral imagery have been limited. Immitzer and Atzberger (2014) 

used 8-band multispectral WorldView-2 imagery to survey early bark beetle damage in 

European spruce trees and were able to achieve a top overall accuracy of 76% with GA 

producer’s and user’s accuracies of 72.7% and 71.5% respectfully. They found that bands 

corresponding to the green, yellow, and red regions were most important for separating 

damage classes and bands in the violet, red edge, and NIR had large overlaps in variance. 
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Use of handheld spectroradiometer to measure the spectral response of healthy 

and GA trees either in the field or lab settings provides benefits that might allow it to 

better identify spectral regions sensitive to beetle induced stress. These instruments 

commonly measure the full spectrum, generally at narrower bandwidths than aerial or 

satellite based sensors, and decreases inconsistencies due to illumination angles, 

background interference, and atmospheric effects. While these benefits better capture 

subtle spectral changes, it has limitations in generalizing the results to operational use 

with existing remote sensing sensors. Ahern (1988) used lab spectroscopy to examine 

spectral changes in the visible and NIR driving by pigment changes in MPB attacked 

trees. He reported the greatest differences between GA and NA trees in the NIR shoulder 

from 730-760 nm with highly significant differences throughout the NIR plateau (730-

1050 nm). Ahern also noted significant differences in the green-peak and significant red 

shift of the red edge for attacked trees. He concluded that bands in the green-peak, red 

edge, and NIR shoulder have the most potential for GA detection, with bands in the blue 

and red being insensitive to early damage. Carter and Knapp (2001) measured needle 

reflectance from clipped GA and healthy needles of loblolly pines attacked by southern 

pine beetles and the largest differences in the red edge followed by the green-peak. 

However their results differ from Ahern (1988) in that they observed a blue shift of the 

red edge and no significant differences in the NIR plateau. Similar research aimed at 

discriminating conifer species have also found that visible bands were better at separating 

species than NIR bands (Gong et al. 1997). In a more recent study Cheng et al. (2010) 

used lab spectroscopy to examine spectral responses of GA and NA trees across the full 
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spectrum. Unlike other studies that indicated pigment driven features in the visible 

spectrum as most sensitive damage, using continuous wavelet analysis and correlation 

analysis these researchers found water absorption features from 953-1390 nm were most 

sensitive to GA damage.  
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3. Spectral Characteristics of Green-Attacked and Non-Attacked Ponderosa Pine 

Needles Using Needle-Level Hyperspectral Measurements 

3.1 Introduction 

Successful early detection of MPB damage in trees depends on being able to 

identify and utilized spectral features that are most sensitive to MPB induced tree stress. 

However it is difficult to differentiate within-species damage status because the spectral 

response differences between stressed and healthy plans can be subtle. The spectral 

resolution of a sensor must be very fine to capture these differences and classify disease 

stages at high enough accuracies to provide operationally useful information. 

Spectroradiometers collect reflectance data that is characterized by many narrow bands 

and can potentially increase the ability to identify subtle features that are most responsive 

to plant stress. Better understanding of these features can guide the use of current and 

future generations of airborne and space-borne sensors for specific applications. With the 

high diversity of sensors with unique spectral capabilities currently available or planned 

for the near future, along with the development of more customized spectral sensors for 

aerial and unmanned aerial systems, it is important that users correctly select the sensor 

or data that matches the target application at interests. 

A number of issues inherently arise with use of hyperspectral sensors. Large data 

volumes create problems with transferring, storing, and processing files. Moreover, many 

of the narrow wavebands contain the same information as other bands, thereby creating 

highly correlated variables that are problematic with statistical analysis. These issues 

create problems with discriminating between and classifying the GA and NA classes. 
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Research into the bands that are most sensitive to MPB damage and best separate classes 

may alleviate some of these issues by allowing an analyst to target specific bands that 

better distinguish groups and reduce the dimensionality of the data set, and consequently 

improve the processing time and classification accuracies.  

Selecting which bands best discriminate two classes can be problematic due to the 

previously mentioned multicollinearity between variables in hyperspectral datasets, 

having a high number of predictor variables relative to the sample size, and non-

parametric distributions of reflectance values. These characteristics can lower the 

robustness and reliability of statistical analysis. To obtain a more comprehensive 

understanding of which bands best discriminate the GA and NA groups in this research, a 

multifaceted statistical approach was utlized in this study. Due to the unique 

characteristics of hyperspectral dataset, no one statistical approach is completely 

appropriate. Using multiple statistical methods allows an analyst to utilize different 

advantages a particular method has to address some of these problematic characteristics. 

Moreover, redundancy in results between these methods can increase the confidence that 

a particular feature is important for discriminating the two classes.  

 

3.2. Methodology 

3.2.1 Needle Collection 

Needle samples were collected from GA and NA ponderosa pine trees in the 

Black Hills National Forest from March 6-11, 2015. Table 3.1 provides a locational 

description of sampled tree sites. Samples were collected using an extendable tree pruner  
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 (Figure 3.1) with a maximum reach of approximately 7 m (23 ft). Stems were pruned 

from sun-light branches both of GA and NA trees to give enough fascicles to produce an 

optically thick bed of needles that light could not pass through. Green-attack trees were 

selected if they had no signs of fading in the visible crown and showed signs of a 

successful MPB attack indicated by the presence of multiple brownish-red pitch tubes 

around the circumference of the tree trunk (Figure 3.2 and 3.3). When possible, samples 

Sample Site Name 
Approximate 

Lat/Long 

PLSS Descriptions (South Dakota, 

Black Hills Meridian) 

General Locational 

Description 

Glen Erin Creek 43.7365083, 
-103.5260811 

-NW ¼ and NE ¼ of NE ¼ of S4 T4S 

R5E 

4.25 mi SW of 

Custer, SD 

Norbeck Wildlife 

Preserve – Iron 

Creek Trailhead 

43.8339281,  
-103.4364705 
 

-NE ¼ and SW ¼ of NW 1/4 of S32 

T2S R6E 

-NW ¼ of SW ¼ of S32 T2S R6E 

3 mi SSE of Mt. 

Rushmore National 

Monument 

Norbeck Wildlife 

Preserve – Iron 

Mountain Trailhead 

43.8374118, 
-103.4414761 
 

-SE ¼ of SE ¼ of S30 T2S R6E 

-NE ¼ of NE ¼ of S31 T2S R6E 

 

2.7 mi SSE of Mt. 

Rushmore National 

Monument 

Black Elk 

Wilderness –

Centennial Trail 

43.8684450,  
-103.5183491 
 

-SE ¼ of S25 T2S R5E 

-SW ¼ and SE ¼ of NE ¼ of S25 

T2S R5E 

2.25 mi SSW of Mt. 

Rushmore National 

Monument 

Sheridan Lake – 

South Shore 

Campground  

43.9623061,  
-103.4886021 
 

-SE ¼ and SW ¼ of NE ¼ of S14 

T1S R5E 

-SE ¼ of S14 T1S R5E 

2.25 mi NE of Hill 

City, SD 

Sheridan Lake – 

Flume Trailhead 

43.9660055,  
-103.4603963 

-SE ¼ of NE ¼ of S13 T1S R5E 

-NE ¼ of NE ¼ of S13 T1S R5E 

3.5 mi NE of Hill 

City, SD 
Deerfield Lake – S 

Rochford Rd and N 

Shore Trailhead Rd 

44.0316916,  
-103.8250379 
 

-NW ¼ of S24 T1N R2E 

-NE ¼ and SE ¼ of SW ¼ of S24 

T1N R2E 

-NW ¼ and SW ¼ of SE ¼ of S24 

T1N R2E  

-NE ¼ of NW ¼ of S25 T1N R2E 

-NW ¼ of NE ¼ of S25 T1N R2E 

14.25 mi NW of Hill 

City, SD 

Deerfield Lake – 

National Forest Rd 

188.1C 

44.0316639,  
-103.7648683 
 

-NW ¼ and SW ¼ of NE ¼ of S21 

T1N R3E 

-SE ¼ of NW ¼ of S21 T1N R3E 

 

12.25 mi NW of Hill 

City, SD 

Deerfield Lake – S 

Rochford RD and 

National Forest Rd 

190 

44.0952739,  
-103.7775677 
 

-NE ¼ of NE ¼ of S32 T2N R3E 

 

3.5 mi SW of 

Rochford, SD 

Table 3.1. Descriptions of needle sampling locations. Samples were collected from GA and NA 

trees within the Black Hills National Forest, South Dakota from March 6-11, 2015.  
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were also collected from NA and GA trees within the same stand and/or vicinity. Needles 

were placed into labeled re-sealable polyethylene bags and packed into a cooler with ice 

to reduce dehydration after clipping and suppress changes in needle spectral reflectance 

(Foley et al. 2006). A total of 95 and 89 samples were collected for the GA and NA 

classes respectfully. Spectral measurements were taken from samples within 16 hours of 

the initial clipping.  

 

3.2.2 Spectral Measurements 

 To obtain GA and NA needle reflectance spectra over the visible and near-

infrared (VNIR) and shortwave-infrared spectral regions (325-2500nm), two 

spectroradiometers were used in this study. Reflectance spectra from 325 nm to 1002 nm 

were collected using Analytical Spectral Devices Inc (ASD) FieldSpec Pro® with a 1.4 

nm sampling interval and total range of 325-1050 nm. Reflectance spectra from 1003-

2500 nm were collected using an ASD SWIR1/SWIR2 QualitySpec Pro® with a 2nm 

sampling interval. In this study, data collected from the Fieldspec Pro® and QualitySpec 

Pro® will be referred to as the VNIR and SWIR datasets, respectfully. Measurements 

were collected using an ASD Plant Probe accessory with a built-in halogen light source 

and a spot size of 10 mm. The Plant Probe was placed in direct contact with an optically 

thick bed of needles to prevent light from passing completely through the sample and 

reduce impact of external light. Measurements were taken inside a box painted with flat 

black paint in a room with no ambient light sources to reduce the risk of interference. 

Prior to spectral measurements and approximately every 20 minutes during use, an  
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Figure 3.1. Needle collection using extendable 

extendable tree pruner. In the Norbeck 

Wildlife Reserve, Black Hills, SD, March 7, 

2015. 

Figure 3.2. Pitch tubes indicating a successful MPB 

attack. Reddish pitch tubes around more than one-

third the circumference of a ponderosa pine tree in 

the Black Hills, SD, March 7, 2015. 

 

  

 

Figure 3.3. Mountain Pine Beetle Infested Tree Identification on Ponderosa Pine Trees. Informational card 

published by the South Dakota Department of Agriculture illustrating the signs of a successful MPB attack 

on a ponderosa pine tree. 
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integration time optimization was performed to optimize the sensitivity of the instrument 

and a dark current measurement was taken to reduce the effects of instrument noise on 

sample measurements. Reflectance was standardized using a Spectralon® white reference 

panel prior to any measurements and after every 15-20 samples. Sample reflectance is 

determined using the following equation (Hatchell 1999): 

𝑆𝑎𝑚𝑝𝑙𝑒 𝑅𝑒𝑓𝑙𝑒𝑐𝑡𝑎𝑛𝑐𝑒 =  
𝑆𝑎𝑚𝑝𝑙𝑒 𝑆𝑖𝑔𝑛𝑎𝑙−𝐷𝑎𝑟𝑘 𝐶𝑢𝑟𝑟𝑒𝑛𝑡

𝑊ℎ𝑖𝑡𝑒 𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑆𝑖𝑔𝑛𝑎𝑙−𝐷𝑎𝑟𝑘 𝐶𝑢𝑟𝑟𝑒𝑛𝑡
 . 

A spectrum average was determined using 20 scans of each sample. 

Spectroradiometer data was processed using the RS
3
®

 
and Indico® software associated 

with each instrument and then was exported as ASCII text files for further use in other 

programs. 

 

3.2.3 Data Pre-Processing 

 The raw reflectance spectra (1.4 nm and 2.0 nm bandwidths) were interpolated to 

give a working dataset with a 1 nm bandwidth. Due to spectral inconsistencies from low 

signal-to-noise ratios bands from 325-399 nm and 2401-2500 nm were excluded from 

analysis, giving a final combined dataset of 2000 bands from 400-2400 nm.  

 High spectral resolution data can be sensitive to noise due to the channels 

collecting from a small region of energy. This noise creates unwanted fluctuations in the 

spectra of the sample and can cause errors in further analysis. Noise can be dampened by 

applying a smoothing filter that modifies a data point by aggregating all of the data points 

that fall within the filter window. In this study a Savitky-Golay (SG) filter was used to 

reduce noise. The Savitky-Golay filter smooths a data mid-point by applying a 
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polynomial equation to the adjacent data points within the filter using a linear least 

squares method (Savitzky 1964). When smoothing spectra derived from vegetation the 

SG smoothing method has been shown to preserve the original data better than mean 

filters, which average all the data points within the filter window, especially when the 

features or data points being filtered are smaller than the filter window size (Tsai and 

Philpot 1998; Vaiphasa 2006; Miglani et al. 2011).  

Larger filter windows provided increases smoothing effects; however, there is a 

trade-off between reducing noise and preserving the original data. Increased window 

sizes can potentially dampen features that best discriminate the GA and NA classes. 

Since the objective of this study was to identify regions of the spectra that best separate 

and classify these two classes, it was important to select an appropriate filter that smooths 

data but retains important features of the original data. Studies analyzing the effects of 

smoothing window size on vegetation spectra from hyperspectral data sets show that 

smoothing effects are negligible below a 7-point window size and that optimal window 

size for SG smoothing tends to be between 7- and 11-points wide (Miglani et al. 2011). 

To choose an appropriate smoothing filter size in this study, a Mann-Whitney U test was 

performed in SPSS® v. 22 to compare the number of significant differences between 7-, 

9-, and 11-point filter sizes. Figure 3.4 gives a visual representation of the smoothing 

effect for each filter type. The 7-pt window had smallest number of significant 

differences from the raw data (Figure 3.5) and smoothed some of the fluctuations of the 

raw data while maintaining some of the band- to-band fluctuations observed in the raw 

reflectance spectra curves (Figures 3.4). Based on these results, a SG filter with a 7-point 
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Figure 3.4. Effects of three smoothing filter sizes on spectral curves. Subset (400-425 nm) example of 

NA mean reflectance curve comparisons for the raw dataset and SG filter sizes. Mean reflectance 

curves are offset by 0.1% reflectance for each increase in filter size for visual comparison.  

window size was selected and is defined by: 

𝑌𝑗
∗ =

∑ 𝐶𝑖𝑌𝑗+1
𝑖=𝑚
𝑖=−𝑚

𝑁
 

where 𝑌𝑗
∗ is the data point to be smoothed, 𝑌 is the original data point, j is the running 

index of the ordinate data in the original table, m is the half-width of the window size, N 

is the total number of convoluting integers, and Ci is the coefficient for the i
th

 spectral 

value determined using quadriatic/cubic polynomial function tables published by 

Savitzky (1964). 

 

 

3.2.4 Spectral Reflectance Curves 

To provide a visual representation of separation between the GA and NA trees, 

mean reflectance values for each class were plotted for all 2000 bands. Additionally mean 

spectral reflectance curves plus/minus one standard deviation were plotted to provide a 

visual representation of variance in reflectance values between the two classes.
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Since the slopes of reflectance curves can make it difficult to visually assess differences 

between curves, the mean difference between GA and NA trees were calculated and 

plotted to provide a better representation of separation between the two groups.  

 

3.2.5 Statistical Analysis and Best 

Band Selection 

 Descriptive statistics such as 

mean, median, and standard deviation 

both for the GA and NA classes were 

calculated. Distribution normality was 

examined using a Shapiro-Wilk test. 

Since the high collinearity between 

spectral bands in hyperspectral 

datasets makes classification and 

modeling problematic, there is a need 

to identify the bands that best separate the target groups and reduce the dimensionality of 

the dataset to create a more parsimonious group of predictors. There are numerous 

methods for reducing data dimensionality and identifying spectral features that best 

discriminate groups, each with strengths and weaknesses relative to the characteristics of 

the dataset. Previous research into using hyperspectral datasets to discriminate species, 

disease stages, or other vegetation stress have included analysis of variance techniques 

(Ahern 1989, Carter and Knapp 2001; Wang and Sousa 2009; Prospere et al. 2014), 

Figure 3.5. Number of significant differences 

between smoothed spectra and raw data. Total 

number of channels (400-2400 nm) with 

significant differences (Mann-Whitney U; p<0.05) 

between raw data and SG filters window sizes 

analyzed. Totals combine differences for both the 

GA (n=96) and NA (n=89) classes.  
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discriminate analysis techniques (Heath 2001; Thenkabail et al. 2004; van Aardt and 

Wynne 2007; Pu and Liu 2011), correlation analysis (Thenkabail et al. 2004), principle 

component analysis (Thenkabail et al. 2004; Prospere et al. 2014;), random forest 

(Prospere et al. 2014), support vector machine (Prospere et al. 2014), wavelet analysis 

(Cheng et al. 2010), and Mann-Whitney U tests (Prospere et al. 2014).  

In this research, a multi-statistical method approach was undertaken in an attempt 

to utilize the benefits that different methods have relative to the dataset. The results of 

these methods are meant to complement each other and provide a higher level of 

confidence for predicting variable importance. Based on the results of the distribution 

normality tests the following parametric, non-parametric, and decision tree methods were 

used to analyze which bands were most sensitive to GA beetle damage.  

 

3.2.5.1 Group Separation and Effect Size 

A Mann-Whitney U-test was performed to examine significant differences 

between median reflectance values of individual bands of the GA and NA classes using 

the following equation: 

𝑈𝑖 =  𝑛1𝑛2 +
𝑛2(𝑛2 + 1)

2
− 𝑅𝑖 

where Ui is the U-statistic for band i, n1 is the sample size for group 1, n2 is the sample 

size for group 2, and Ri is the sum of the ranks for band i. Since the U statistic has a 

normal distribution, the significance can examined by calculated in a standardized score 

(z – score) for each band using the following equation: 
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𝑧 =  
𝑈𝑖 − 𝑚𝑢𝑖

𝜎𝑢𝑖

 

where Ui is the U-statistic for band i, 𝑚𝑢𝑖
 and 𝜎𝑢𝑖

 is the standard deviation of Ui. This 

non-parametric test was used for bands with a non-normal distribution of GA or NA 

reflectance values (400-717 nm and 1003-2400 nm; Shapiro-Wilk, p<0.05). To provide a 

meaningful measure of the magnitude of difference (effect size) between GA and NA 

median values a Pearson’s correlation coefficient r value was calculated using the 

following equation (Rosenthal 1991): 

𝑟 =
𝑧

√𝑁
 

where z is the z-statistic produced from the Mann-Whitney U-test and  N is the number of 

observations used to produce the z-statistic. For bands with a normal distribution of 

reflectance values (718-1002 nm; Shapiro-Wilk, p>0.05) a parametric Student’s t-test 

was used to analyze group differences. To measure the effect size of bands with 

parametric distributions a Pearson’s correlation coefficient r value was calculated using 

the following equation (Rosenthal 1991): 

                                                        𝑟 = √
𝑡2

𝑡2−𝑑𝑓
     

where t is the t-statistic produced from the student’s t-test and df is the degrees of 

freedom. Effect size provides a useful measure to analyze the magnitude of difference 

between GA and NA samples. In this context, r values range from zero (no effect) to 1 

(perfect effect). Since effect size measures the amount of variance in values explained by 

group membership (Cohen 1988), it is assumed that bands with a larger effect size will 

have greater discriminatory ability. Since the r value is normalized for sample size they 
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can be compared between the Mann-Whitney U-test and student’s t-test. Cohen (1988) 

interprets r-values greater than 0.5 to represent a large effect/difference between groups, 

accounting for 25% or greater of the total variance. Values less than 0.5 but greater than 

0.3 as a medium effect size, and lower than 0.3 as a low magnitude of difference between 

groups.  

 

3.2.5.2 Discriminant Analysis 

 Linear discriminate analysis (LDA) is a commonly used multivariate data mining 

and classification method used in hyperspectral studies (Heath 2001; Thenkabail et al. 

2004; van Aardt and Wynne 2007; Pu and Liu 2011). Linear discriminant analysis is a 

supervised method that looks for linear combinations of known predictor variables to 

maximize between group variance to produce a single discriminate score that can then be 

used to classify group membership (Pohar et al. 2004). LDA is a type of parametric test 

that uses a least square estimations to discriminate groups and under ideal conditions it is 

a very powerful technique, however hyperspectral datasets can present a number of 

characteristics that violate LDA assumptions and potentially lower the robustness this 

technique. Along with the assumption of normality in the data, LDA is also sensitive to 

extreme outliers, multicollinearity issues, and assumes that the covariance matrices are 

homogenous between groups.  

A variety of diagnostics were used to assess the data assumptions with respect to 

LDA. Mahalanobis distance provides information that can identify multivariate outliers 

(Atkinson 1994). For this dataset the Mahalanobis distance diagnostics (𝜒0.99
2 = 2105.07; 
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df=2000) indicated there were no samples that had a disproportionate influence on the 

analysis. Homogeneity between groups is problematic to fully analyze due to the sheer 

number of predictor variables (2000 bands), which makes it difficult to compare 

scatterplots between groups. A Box’s M test provides a statistical measure that examines 

the null hypothesis that covariance is equal between groups (IBM Knowledge Center 

2016). With this dataset a significant Box M test (p<0.001) indicated a violation of the 

homogenous covariance assumption. However, the Box M test itself is highly sensitive to 

non-parametric data and should be interpreted with skepticism. The biggest threat to 

LDA is multicollinearity between predictors. A colinearity tolerance test was performed 

to analyze the proportion of variance for each predictor variable that is not accounted for 

by other predictors (UCLA Statistical Consulting Group 2016). In this study all but 

eleven of the 2000 predictors had tolerance values that indicated problematic 

multicollinearity issues (t<0.10). Based on this, results from the LDA analysis should 

interpreted with skepticism, especially if they show discrepancies with other measures of 

importance that are more robust against this multicollinearity issues.  

One of the benefits of LDA is that it allows for a stepwise variable selection 

process in which the predictor variables are added or removed to the discriminate 

function based on the amount they can lower the overall Wilk’s Lambda, or minimize the 

unexplained variance (IMB Knowledge Center 2016). This stepwise process continues 

until no variables can be added or lowered to significantly lower the Wilk’s Lambda. In 

theory, this process should select variables that have the best discriminating ability and 

least redundant information. Another benefit of LDA is that it provides internal estimates 
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of variable importance. Correlation coefficients for each variable indicate the correlation 

between that variables and the latent variable (discriminate score) of the LDA function. 

Since the goal of LDA is to use a linear equation to reduce multiple predictor variables 

down to a single discriminate score that better separates the two groups, individual 

variables that are highly correlated with that score are assumed to have better 

discriminating ability themselves.  

In this study two LDA techniques were used. First, a stepwise selection method 

(SDA) was performed using the aforementioned Wilks’ Lambda criteria in SPSS® v. 

22.0 (IMB Corp. 2013). Individual variable performance was assessed using the 

correlation coefficients for each band. In addition to SDA, LDA was performed for each 

individual band and the performance of each band validated using a leave-one-out cross-

validation (LOOCV) accuracy, in which one sample is randomly left out of training to be 

used for accuracy assessment and the process is iterative to account for all samples. 

Individual LDA was performed using ‘R’ v.3.2.4 (R Core Team 2016) with R package 

‘MASS’ v.7.3 (Venables and Ripley 2002) in an iterative script.  

 

3.2.5.3 Logistic Regression 

 To account for non-normal distribution and multicollinearity between variables, 

statistical methods that are robust against violations of these assumptions were also 

examined to determine variable importance. Logistic regression (LR) is similar to LDA 

techniques in that it attempts to predict a binary outcome variable using a linear 

combination of multiple continuous predictor variables. Unlike LDA, logistic regression 
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is a non-parametric method that uses maximum likelihood estimations to create a linear 

function that produces a latent variable that can then be used estimate the probability that 

a sample belongs to particular groups. It has fewer assumptions than LDA, making it a 

potentially more robust method for hyperspectral datasets. Probability of belonging to the 

GA class was predicted using the following logistic regression equation:  

𝑃(GA) =  
1

1 +  𝑒−(𝑏0+𝑏1𝜆1)
 

Where 𝑃(GA) is the probability of a sample belonging to the GA class, 𝑒 is the base of 

the natural logarithms, 𝑏0 is the linear constant (Y intercept), and 𝑏1 is the coefficient for 

the band used as the predictor variable (𝜆1).  

While logistic regression is capable of handling multiple predicting variables, 

having fewer than 10 samples per predictor variable can create unreliable results and 

biased estimates of variable importance (Peduzzi et al. 1996). In this dataset there were 

0.09 samples per predictor (185 samples/2000 bands). Furthermore, even though LR is 

more robust against multicollinearity compared to LDA methods, severe multicollinearity 

issues can lead to inflated standard errors and unreliable estimations of variable 

importance. To avoid potential issues caused by sample size and multicollinearity, LR 

models were created for each individual band as a predictor. This analysis was performed 

using  ‘R’ v. 3.2.4 (R Core Team 2016) with R package ‘boot’ version 1.3-17 (Canty and 

Ripley 2015) and R package ‘pscl’ v. 1.4.9 (Jackman 2015) using a iterative script. 

Variable importance was examined using three different parameters. First, the prediction 

accuracies were determined using a LOOCV for each per-band LR model. Second, the 

Wald statistic was calculated to determine if the coefficients of a predictor variable were 
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significantly different from zero. Wald statistics have a chi-square (χ2) distribution and 

variables that make a significant contribution to group separation have Wald χ2 values 

greater than χ2 
critical values for the 0.05 probability level (df=1; N=185; Wald χ2

critical 

=3.84). Predictor variables with higher Wald statistics have a higher contribution to group 

separation. It should be noted that Wald statistics are highly sensitive to multicollinearity 

issues (Menard 2002) and should be interpreted with suspicion and validated in 

comparison to other measures of importance. Lastly, the odds ratio (OR) for each 

predictor variable was calculated using the following equation:  

OR =  𝑒𝑏1 

Where e is the base of the natural logarithm and 𝑏1 is the coefficient of the band (𝜆1) 

variable used in the LR equation. The OR represents the odds a sample belongs to the GA 

class based on a one unit increase in reflectance (+1%) for a particular band (Field 2009). 

This measures magnitude of the effect that changes in band reflectance has on 

determining GA or NA group membership, with a higher absolute OR value indicating 

that a change in a particular band would lead to a higher probabilities of belonging to a 

particular group. Values above one show that increases in reflectance increase the 

probability of belonging to the GA group, while values below one indicating an increased 

probability of belonging to the NA group with reflectance increase.  

 

3.2.5.4 Random Forest 

 The last method implemented was a Random Forest (RF) ensemble classification 

tree learner. A relatively new statistical method for classification, RF is becoming 
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Figure 3.6. Random Forest OOB estimation of error 

with increasing number of individual trees. The black 

line represents the OOB of the overall RF model, the 

green is the OOB estimation for the GA samples, and 

the red is the OOB estimation of the RA samples.  

increasingly popular in land-cover and vegetation mapping with both multi- and 

hyperspectral datasets (Ham et al. 2005; Pal 2005; Chan and Paelinckx 2008; Lawerence 

et al. 2006; Adam et al. 2012; Immitzer et al. 2012; Rodriquez-Galiano et al. 2012; 

Immitzer and Atzberger 2014). Random Forest is robust against issues such as low 

sample size-to-predictor variable ratios, non-parametric distributions, multicollinearity, 

and low signal-to-noise ratios which are characteristic of this dataset and hyperspectral 

datasets in general (Breiman 2001; Liaw and Weiner 2002). Another benefit of RF is that 

it is robust against overfitting models, provides an internal estimation of variable 

importance, and provides reliable measures of model error/accuracy without the need of a 

validation dataset (Brieman 2001; Liaw and Wiener 2002). Random Forest works by 

growing many small classification 

trees using random bootstrapped 

subsets of the training data and then 

aggregating the results of these smaller 

trees into a single “forest” 

classification system (Breiman 2001; 

Liaw and Weiner 2002). Model error is 

assessed by running the remaining 

samples not included in the 

bootstrapped training subset, termed 

the out-of-bag (OOB) sample, down its 
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respective smaller classification tree and aggregating these results to get an overall 

estimation of error (Breiman 2001; Liaw and Weiner 2002).

Variable importance is assessed by randomly permuted single predictor variables from 

the OOB sample and evaluating the decrease in accuracy of the permuted model relative 

to the complete OOB sample, then aggregating the results to achieve a mean decrease in 

accuracy (MDA) for each band if that predictor is left out of analysis. The OOB and 

MDA estimates have been shown to be reliable and comparable compared to more 

traditional accuracy assessment methods when applied to hyperspectral datasets 

(Lawrence et al. 2006). Random forest classification was done using the ‘R’ v. 3.2.4  (R 

Core Team 2016) with R package ‘randomForest’ v. 4.6 (Liaw and Wiener 2015) which 

is based on the original random forest procedures developed by Breiman and Culter 

(Breiman 2001) with all 2000 bands input as predictors. To maximize the accuracy of the 

RF model two parameters, the number of individual trees created (ntree) and the number 
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Figure 3.7. Random Forest OOB estimation of error for mtry settings from 1 through 100. Mtry 

represents the number of predictor variables used at each tree split. The lowest error rate was 

20.65% and was observed for five mtry settings; 7, 9, 11, 16, and 20. 
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of predictors used at each tree split (mtry), were optimized using the OOB estimate to 

evaluate the optimal setting for parameter. A tree of 1000 was used based on the error 

rate stabilizing around 800-900 trees (Figure 3.6). The default mtry is set as the square 

root of the total number of predictor variables. Along with the default value (mtry=44), 

mtry values ranging from 2-100 variables were examined (Figure 3.7). Adjusting the 

mtry parameter had minimal impact on the error rate of the RF model. Five different mtry 

values had the lowest error rate (mtry = 7, 9, 11, 16, 20; error rate = 20.65%) and an mtry 

of twenty was selected for analysis. 

 

3.3 Results 

3.3.1 Spectral Reflectance Curves 

The mean spectral reflectance curves (Figure 3.8) and difference in mean spectral 

reflectance (Figure 3.9) provides a visual representation of the spectral response of and 

differences between GA and NA tree samples. Except for portions of the NIR (727-919 

nm) and lower SWIR (1006-1121 nm) regions of the spectrum, the mean GA reflectance 

values are greater than NA means for all bands.  

At shorter wavelength bands of the violet-blue region (400-450 nm) reflectance 

values for GA samples are relatively similar to NA samples, with GA trees being just 

slightly higher (<1% difference; Figure 3.8 & 3.9). Reflectance of GA trees increases 

relative to NA trees creating a small peak of mean differences above 1.25% from 474-

523 nm with a maximum difference of 1.47% at 504 nm. Mean reflectance differences 

between the two groups become more similar approaching the green-peak (1.03% 
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difference at 538 nm), with a slight blue shift of the green-peak. Differences between the 

two groups increase through the yellow and red regions with GA higher than NA. A peak 

in mean reflectance differences above 2% is observed from 588-707 nm, including a 

small subset of bands from 680-699 nm in which the mean GA reflectance has a small 

but sharp increase compared to NA, with a maximum difference of 2.83% at 692 nm. 

Increased GA reflectance at the base of the red edge creates a slight blue shift in the 

lower bands of the red edge. Differences between GA and NA samples decrease with the 

rise of the red edge up to 727 nm, after which NA reflectance is higher than GA. Green 

attack reflectance is suppressed at the shoulder of the NIR and marks a region of peak 

differences above an absolute value of 1% from 736-794 nm, with a the mean NA 

reflectance reaching a greater than mean GA reflectance maximum difference of an 

absolute value of 1.68% at 751 nm. Differences between groups decrease from 751 – 920 

nm followed by increasing GA reflectance relative to NA up to a peak value of 1.26% at 

987 nm and is associated with the absorption feature centered at ~975 nm. Although peak 

differences between GA and NA samples in the NIR are comparable to those observed in 

the green regions (~475-550 nm), the highest standard deviations and overlaps in 

variance were observed in the NIR (Figure 3.8). 

 A small discrepancy between the FieldSpec Pro (VNIR dataset) and QualitySpec 

Pro (SWIR dataset) occurs at the transition between the datasets at 1002 to 1003 nm, with 

the GA reflectance slightly higher than NA at 1002 nm but slightly lower at 1003 nm. 

Spectral reflectance measurements were taken following well established guidelines 

(Analytical Spectral Devices 1999) for calibrating dark currents optimization and 
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reflectance standardization using white reference and the reason for this discrepancy is 

unaccounted for.  

Within the SWIR dataset, deep absorption features are centered around bands at 

~1200, ~1450 nm, and~1930 nm, with a shallower absorption feature centered at ~ 1780 

nm (Figure 3.8). Reflectance for GA needles is higher than NA needles throughout a 

majority of the SWIR region. Mean GA reflectance was 3% or higher than NA from 1326 

– 1694 nm, 1753 – 1900 nm; and 1991 – 2038 nm (Figure 3.9). Within the 1326-1694 nm 

region there is a subset of bands with group differences above 4% from 1381-1420 nm 

with a maximum difference of 4.50% from 1398-1400 nm. Bands from 1753-1900 nm 

represents the second highest peak in mean reflectance difference with a maximum of 

3.98% from 1874-1876 nm. The last peak from 1991-2038 nm has a maximum difference 

of 3.17% at 2012 nm.  

 Standard deviation (SD) in reflectance values provides information about regions 

of the spectrum in which the two classes have the least amount of overlap. For each band 

GA SDs were greater than NA samples (Figure 3.8). Within the VNIR GA standard 

deviations increases with increasing wavelengths, whereas the NA sample standard 

deviations stay relatively low (±0.92-2.08%). Variance for both groups increases sharply 

with the rise of the red edge reaching maximums around ~ 765 nm and is relatively high 

for both samples throughout the NIR and lower SWIR. A notable decrease in the variance 

of NA values begins at approximately 1100 nm and with all of the bands from 1392-2400  

nm having SDs between 0.69-1.80%. The variance of GA samples have the same general 
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trend of becoming smaller with increasing wavelength from 1100-2400 nm but have 

much more fluctuations in variance with a majority of bands having SDs between ±3-6%.  

There are no bands in the reflectance spectra in which the range of values ±1 SD 

of the GA and NA means do not overlap (Figure 3.8). There are portions of the spectra in 

which the mean values for a particular group fall outside one SD of the other groups 

mean. Green-attack mean values are greater than plus one NA SD values from 464-521 

nm and 587-700 nm with a peaks in separation at 504 nm and 687 nm respectfully. These 

ranges are associated with the peaks in separation located in blue-green region and near 

an absorption feature in the red spectrum. In the SWIR, GA mean reflectance was higher 

than plus one SD of NA mean values from 1331 – 2400 nm with notable regions from 

1383-1561 nm (1405 nm peak), 1845-1905 (1881 nm peak), and 1976-2045 nm (2011 

nm peak). There are no bands in which the NA mean reflectance values are outside ±1 

SD of the GA values.  

 

3.3.2 Statistical Analysis and Best Band Selection 

3.3.2.1 Group Differences and Effect Size 

Data measuring wavelengths 718-1002 nm were normally distributed both for the 

GA data (Shapiro-Wilk, df = 95, p > 0.05) and NA data (Shapiro-Wilk, df = 89, p > 0.05). 

Wavelengths 400-717 nm and 1003-2400 nm had a non-normal distribution both for the 

GA data (Shapiro-Wilk, df = 95, p < 0.05) and/or NA data (Shapiro-Wilk, df = 89, p < 

0.05). Significant differences (Mann-Whitney-U; df =1; p<0.05) were observed between 

GA and NA reflectance values for bands located from 424-717 nm and 1151-2400 nm
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Figure 3.8 Mean reflectance spectra curves for GA and NA trees. Solid lines represent VNIR dataset (400-1002 nm) and dashed 

lines represent SWIR dataset (1003 -2400 nm). Dotted lines represent one standard deviation above and below the mean 

reflectance and are meant to give an estimation of the spectral similarities between the GA (n=95)  and NA (n=89) classes. 
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Figure 3.9 Reflectance value differences between the mean GA and NA trees.   Figure 3.9 Reflectance value differences between the mean GA and NA trees.  
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(Figure 3.10). Bands with a medium to high effect size (0.3<r<0.5) were located from 

457-519 nm, 575-698 nm, and 1328-2400 nm. Large magnitudes of differences (effect 

size r>0.5) were located at1451-1541 nm and 1994-2045 nm. Regions that were not 

significantly different and had the lowest effect sizes were located below 424 nm and 

from the red edge to lower SWIR regions (718-1150nm). Within the VNIR datasets, the 

peaks in effect size were centered at 486 nm and 673 nm, which are associated by the left 

edge of the green-peak and red absorption feature respectfully. Within the SWIR dataset, 

the most prominent effect size peaks are centered at 1491 nm, 1884 nm, and 2010 nm, 

which are associated the left rise of the absorption feature at ~1925 nm, and subtle rise of 

an absorption feature between 2000-2050 nm respectfully. Additional regions that 

showed a significant difference but a low magnitude of difference were located in the 

blue (424 nm-456 nm), the green-peak (520-574 nm), along the lower half of the rise of 

the red edge (699-17 nm), and the absorption feature and reflectance peak located in the 

lower SWIR (1150-1327 nm). 

 

3.3.2.2 Discrimination Analysis 

The stepwise discriminant analysis (SDA) underwent nine iterations and selected 

nine wavelengths before terminating the selection process. The final discriminate 

function had a canonical R
2 

of 0.61 and significantly differentiated the RA and GA trees 

(Wilks Lambda = 0.389; χ
2
=167.610; df=9; p<0.001). Table 3.2 lists the nine variable
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Figure 3.10. Pearson’s r effect size of differences between GA and NA reflectance values. Mean and median reflectance differences were analyzed 

using a Mann-Whitney-U test for wavebands 400-717nm and 1003-2400 nm; a t-test was performed for wavebands 718-1002 nm. Blue bars 

represent wavebands in which the mean or median reflectance differences were significant (d.f.=1; p<0.05) and light gray represent wavebands 

with no significant differences between groups (d.f.=1; p>0.05). Figure 12. Reflectance differences between the GA and NA classes for the VNIR 

dataset (400-1002 nm) and SWIR dataset (1003-2400 nm). Differences were determined as the mean GA reflectance values minus the mean NA 

reflectance values. 
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 selected along with their 

standardized canonical 

discriminant function 

coefficients, which indicates 

the variables contribution to 

the overall function 

coefficient, and correlation 

coefficients. The SDA 

function had a LOOCV 

overall accuracy of 89.7%. A 

majority of the best selected 

were located in the blue and green-peak rise regions of the spectrum (Table 3.2). As 

expected selected bands generally have high correlation coefficients but is not always the 

case as the band at 404 nm has a low correlation coefficient. Since the bands are selected 

based on whether they improve the overall function and not necessarily the best 

discriminating bands individually, it is possible that bands with low discriminating power 

selected for the final model. This is why the bands with the highest standardized 

canonical discriminant function coefficients do not have the highest correlation 

coefficients (Table 3.2) and why using stepwise selected bands as the sole indicator of 

which bands are most sensitive to damage. 

Structure coefficients provide information about the relative importance of each 

bands’ discriminatory ability thus which are more sensitive to MPB damage. Within the 

SDA Selected  

Wavebands (nm) 

Standardized Canonical 

Discriminant Function 

Coefficients 

Structure 

Coefficients 

463 15.92 0.31 

509 -12.25 0.32 

503 10.98 0.33 

467 -9.10 0.30 

1863 -5.19 0.39 

1509 5.68 0.42 

458 -4.99 0.29 

404 -1.16 0.02 

572 0.69 0.26 

Table 3.2. Wavebands selected by stepwise LDA method. 

Standardized canonical discriminant function coefficients indicate 

the relative contribution each waveband has within the function, 

with higher absolute values indicating more influence. The structure 

coefficients represent the correlation between each band and the 

discriminate function. This is an indication of discriminatory power 

for each band as a stand-alone variable.  
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VNIR dataset there are two prominent peaks in structure coefficients. The greater of the 

two peaks is centered at 675 nm, with most bands from 650-691 nm having coefficients 

above 0.4 (Figure 3.11). Another notably peak in the VNIR with values above 0.3 ranges 

from 462-516 nm and is centered at 496 nm. Structure coefficients drop steeply with the 

rise of the red edge and are lower throughout the NIR plateau. Compared to the VNIR 

bands, the SWIR bands had consistently higher structure coefficients (Figure 3.11), with 

most bands from approximately 1400-2400 nm having correlations higher or near 0.4, 

with two shallow sloped but distinct peaks in values. The first of these two peaks ranges 

from 1418-1672 nm, with a maximum coefficient at 1533 nm. The second peak ranges 

from 1982-2292 nm, with a maximum at 2089 nm. Most bands from 2293-2400 nm also 

have structure coefficients above 0.4; however, there tends to be greater fluctuations 

between bands and their neighbors, making it difficult to distinguish smaller regions of 

bands showing consistent sensitivities to damage. The last region of bands with values 

near or above 0.4 in the SWIR ranges is from 1747nm - 1821 nm.  

When using individual bands as single predictor variables in LDA the 

classification accuracies (Figure 3.12) show similar trends as the structure coefficients 

with few major discrepancies increasing confidence in the stability of the SDA 

correlation coefficients as estimates of variable importance. Within the VNIR dataset, 

these similarities include increased LDA accuracies from the blue region to the red edge 

(approximately 430-719 nm; Figure 3.12). Notable peaks in LDA accuracies above 65% 

include bands from 663-689 nm, with a peak accuracy of 66.85% from 667-669 and 683 

nm, and bands located from 521-527 nm, with a peak accuracy of 65.76% at 522-523 nm. 
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Another notable VNIR peak was observed for bands from 578-599 nm, which yielded 

accuracies above 64.5%. Similar to the SDA structure coefficient trends in the VNIR, the 

LDA classification accuracies were lower in the visible regions, with a sharp drop off in 

values with the rise of the red edge (at approximately 720 nm), and were relatively lower 

throughout the NIR portion. Again similar to the SDA structure coefficients, the LDA 

classification accuracies are generally higher for majority of the SWIR bands (~1350-

2400 nm) compared to the VNIR dataset (Figure 3.12). The lowest accuracies in the 

SWIR dataset were observed at lower wavelengths bands from 1003 nm to approximately 

1300 nm. Accuracies start to rise at ~ 1300 nm and reaching accuracies above 70% for 

individual bands at 1379 nm with accuracies consistently at or higher than 70% 

throughout the rest of the SWIR dataset with exception to some bands located from 

~2200-2400 nm. This consistency in values makes it more difficult to isolate notable 

regions that distinguish themselves from other SWIR bands. However, there are number 

of small regions that are notably higher.  

The highest accuracies attained for either datasets was 74.46% for bands at 1392 

nm and 1404-1409 nm. These are part of a group of bands with values above 73% from 

1389-1394 nm and 1400-1424 nm. Table 3.3 lists other notable regions of bands that 

yielded LDA classification accuracies that separate themselves from neighboring bands 

in the SWIR.  
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Figure 3.11. Discriminant analysis structure coefficients for each band. For display and easy comparison only on the absolute values are given 

on this figure, actual coefficients may have a negative correlation for a particular band however for illustrating the magnitude of importance of 

wavebands this was not deemed important information. Coefficients represent the correlation between each waveband and the SDA function 

discriminant scores. Higher coefficients indicate greater discrimination between the GA and NA groups at a particular ban. 
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Figure 3.12. Leave-one-out cross validation classification accuracies for per band linear discriminant analysis.  

 

40

45

50

55

60

65

70

75

80

400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 2200 2300 2400

A
cc

u
ra

cy
 (

%
) 

Wavebands (nm) 



69 
 

   

3.3.2.3 Logistic Regression 

 Based on per band logistic regression (LR) analysis, the following three statistical 

parameters, Wald statistics, LOOCV classification accuracies, and odds ratios (OR), were 

used to assess which wavelengths are most sensitive to MPB GA damage. A majority of 

the bands produced LR coefficients that significantly contributed to predicting GA and 

NA group membership (Figure 3.13). Bands from 431-707 nm and 1301-2000 nm had 

coefficients that were significant to p<0.001 threshold (df=1; N=185; Wald χ
2
> χ

2
10.83). 

Within the VNIR dataset there are two distinct peaks in Wald statistics. The higher of 

these two peaks includes bands in the yellow and red regions of the spectrum from 555-

707 nm with Wald statistics significant to the p<0.001 level ( df=1; N=185; Wald χ
2
> 

χ
2

10.83). This peak is centered around bands from approximately 650-675 nm, with the 

maximum at 662 nm (Figure 3.13). A similar spike in Wald statistics above the p<0.001 

threshold are associated with bands located in the blue and blue-green regions of the 

spectrum from 431-546 nm (df=1; N=185; Wald χ
2
> χ

2
10.83). This peak is centered around 

bands from approximately 486-507 nm, with the maximum value for this peak at 503 nm. 

Wald values begin to drop with bands associated with the rise of the red edge and are 

Bands (nm) Minimum Accuracies Max Accuracies  (peak band) 

1389-1424  72.28% 74.46% (1392;1404-1409 nm) 

1482-1501  73.37% 73.37% 

1586-1617  73.37% 73.91% (1586-1587;1593-1595 nm) 

1768-1778  73.37% 73.37% (1768-1778 nm) 

2062-2103  72.28% 73.91 (2065; 2069; 2080-2082; 2086; 2089-2094 nm) 

Table 3.3. Band ranges with notable SWIR peaks in LDA accuracies. The minimum and maximum 

accuracies indicate the lowest and highest accuracies recorded for the given region wavebands.  
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below the p<0.05 significance threshold (df=1; N=185; Wald χ
2
>χ

2
3,84) throughout the 

NIR regions of the spectrum (726-1152 nm). This indicates that bands in this region had 

LR coefficients that did not determine group membership different than a null value.  

SWIR bands have significant Wald statistics (p<0.05; df=1; N=185; Wald 

χ
2
>χ

2
3,84) from 1153-2400 nm and above the p<0.001 threshold from 1300-2400 nm 

(Figure 3.13). df=1; N=185; Wald χ
2
> χ

2
10.83). Compared to the VNIR region, Wald 

statistics for SWIR dataset bands are generally higher and have less pronounced peaks. 

The most notable increase in Wald values was located from 1451-1550 nm, with a 

maximum value at 1497 nm. Another prominent rise is from 1973-2114 nm and with a 

maximum Wald statistic at 2043 nm (Figure 3.13). Other less prominent peaks in values 

are centered around bands at 1782 nm and 1899 nm. 

The per-band LR LOOCV accuracies have the same general trends as the Wald 

statistics with peaks in LOOCV accuracies in similar parts of the spectrum as peaks in 

Wald statistics (Figure 3.14). Also similar to the Wald statistics, a majority of the SWIR 

bands have higher LOOCV classification accuracies than the VNIR bands. Within the 

VNIR dataset the highest accuracies were associated with the blue through red regions of 

the spectrum, with accuracies dropping with the rise of the red edge and consistently 

lower throughout the NIR and lower SWIR portions of the datasets (Figure 3.14). Within 

the blue, green, yellow, and red regions notable peaks in values are less discernable 

visually relative to the Wald statistics. There is a notable peak of classification accuracies 

greater than 63% from 670-697 nm, with a maximum accuracy of 66.00% at 693 nm. 

There is another rise in accuracies from 583-650 nm. These bands all have relatively
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Figure 3.13. Wald Chi-square values for per-band logistic regression analysis. Bands with values above significant thresholds indicate 

coefficients that predict GA and NA group membership significantly better than null values. Higher values indicate a greater degree 

of group separation 
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similar accuracies ranging from 63.09% to a maximum of 64.87% located at 617 nm. 

Slightly smaller increases in accuracies were observed from 519-526 nm with a peak 

accuracy of 63.61% at 520 nm and from 453-464 nm with a peak accuracy of 63.42% at 

464 nm.  

In the SWIR dataset LOOCV accuracies begin to rise around ~1300 nm, with a 

large number of bands from 1380-2083 nm and 2347-2400 nm producing LOOCV 

accuracies between 70% and 75% (Figure 3.14). Accuracies in these two regions have 

relatively consistent values, with only a few smaller regions of peaks that are 

distinguishable from neighboring bands. A visual assessment of the SWIR accuracies 

indicate six regions that show separation from neighboring bands that may be useful for 

other applications. The highest classification accuracy for the entire spectrum was 

75.25% and is associated with the band at 1891 nm, which centers a spike in accuracy 

values above 72% from 1883-1899 nm. The next highest peak in accuracies includes a 

group of bands from 1477-1553 nm with maximum accuracies between 74.0-74.5% from 

1493-1498 nm (Figure 3.14). Two groups of bands with accuracies above 72% were 

located from 1430-1472 nm and 1384-1399 nm with the maximum accuracies at 1447 nm 

and 1385 nm respectfully. The last two notable peaks in bands with accuracies above 

72% were from 1972-1976 nm, with a peak accuracy of 72.75% at 1975 nm, and 2023-

2047 nm, with a peak 72.89% at 2043 nm (Figure 3.14).  

 Consistent to the Wald statistics and LOOCV accuracies, the individual band OR 

values were higher in the SWIR spectrum compared to the VNIR with peak values at 

similar locations of the spectrum (Figure 3.15). In the VNIR the highest peak in ORs was 
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located in the blue spectrum instead of red, centered around the bands at 462 nm and 463 

nm with an OR of 1.68 (Figure 3.15). These bands are part of a larger group of bands 

with ORs over 1.5 from 430 nm to 520 nm and cover much of the blue to blue-green 

portions of the reflectance spectra. A second VNIR peak is located in the yellow to red 

regions of the reflectance spectra and has a maximum OR of 1.50 at 675 nm. This peak 

starts with a shallow rise in values at 555 nm before dropping back to similar OR values 

around 699 nm, and has a smaller subset of bands distinguished by a sharp rise from 

approximately 629-699 nm. Similar to the Wald and LOOCV parameters, ORs drop 

rapidly with the rise of the red edge and are consistently lower throughout the NIR and 

lower SWIR bands (~700-1300 nm). Most of the ORs in this range indicate that changes 

in the reflectance for these bands have very little difference in changing the probability of 

belonging to either class (OR value = 1).  

 In the SWIR dataset there are two notable peak regions that have OR values equal 

to or greater than 2.0. The greater of the two is located from 1892-2166 nm (Figure 3.15) 

with a smaller subset of bands with ORs greater than 2.5 from 1924-1951 nm and a 

maximum of 2.55 at 1941 nm. A second peak of OR values greater than 2.0 is located 

from 2260-2400 nm, with the maximum of 2.43 at 2399 nm. A third smaller peak in 

values above 1.5 range from 1399-1653 nm and is centered around a maximum of 1.90 at 

1464 nm.  
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Figure 3.14. LOOCV accuracies per waveband LR analysis. Blue bars represent wavebands that had significant Wald statistics (d.f.= 1, 

n=185, p<0.05). Light gray bars represent the LOOCV accuracies of wavebands that did not have significant Wald statistics (p>0.05).  
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Figure 3.15. Logistic regression per waveband odds ratio. Blue bars represent the odds ratios of wavebands that had significant contributed 

to group discrimination (d.f.= 1, n=185, p<0.05). Grey bars represent odds ratios or wavebands that did not significantly discriminate groups 

(p>0.05). Odds ratios represent the increased probability of a sample belonging to the GA group with a 1% increase in reflectance is 

observed. For example, an odds ratio of two indicates that a sample is two times more likely to belong to the GA group with an 1% increase 

in reflectance. For graphical simplicity only absolute OR values are shown.  
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3.3.2.4 Random Forest Results 

The RF OOB estimation of error for the overall model was 79.35% (Kappa 

=0.59). Producers and users accuracies for the GA class were 84.27% and 75.76% 

respectfully and for the NA class were 74.74% and 83.53% respectfully. Figure 3.16 

represents the overall MDA for each band. Since the MDAs vary more drastically band to 

band compared to the other statistical parameters of importance examined in this 

research, it is difficult to visually discern regions of importance. As such, an eleven-point 

moving average filter was applied to the MDA to create a trend line to better visually 

indicate and generalize regions of the spectrum that maybe important for discriminating 

the groups (Figure 3.16). The reasons for the inconsistencies between neighboring bands 

remains unknown, however the filtered trend line peaks and bands with the highest 

MDAs (Table 3.4) are consistently located in spectral regions with the largest mean 

reflectance differences, increasing the confidence in using an average filter to interpret 

the results. 

Table 3.4 lists the 25 bands with the highest overall MDA for both the VNIR and 

SWIR datasets. Within the VNIR dataset, the band at 627 nm has the highest MDA 

(3.25%). This band and three others with the high MDAs are part of peak region of bands 

with relatively higher MDAs from approximately 620-630 nm (Table 3.4; Figure 3.16). A 

second peak is observed from 653-687 nm, with a maximum MDA of 3.22% at 681 nm 

(Table 3.4; Figure 3.16). These two peaks account for a majority of the bands listed in  
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Figure 3.16. Random Forest out-of-bag estimation of mean decrease in accuracies. The black trend line represents an eleven point mean average 

filter and is used to visualize the general trends in values.  

Figure 3.16. Random Forest out-of-bag estimation of mean decrease in accuracies. The black trend line represents an eleven point mean average 

filter and is used to visualize the general trends in values.  
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VNIR Dataset SWIR Dataset 

Waveband 

(nm) 

NA 

MDA 

GA 

MDA 

Overall 

MDA 

Waveband 

(nm) 

NA 

MDA 

GA 

MDA 

Overall 

MDA 

627 2.274 1.572 3.251 1491 2.743 2.153 3.695 

681 3.244 2.068 3.216 1997 3.342 1.265 3.575 

675 3.230 0.175 3.160 1489 3.607 2.659 3.575 

623 2.518 1.422 3.155 1493 3.360 2.194 3.568 

471 3.249 -0.140 3.031 2012 2.229 2.890 3.561 

626 2.012 1.474 3.018 1475 1.928 3.082 3.553 

664 2.209 1.427 2.998 1511 2.273 2.678 3.535 

668 2.870 0.193 2.976 1507 3.320 2.489 3.529 

585 2.311 1.503 2.973 1503 3.141 2.578 3.488 

604 2.691 0.798 2.963 2011 1.864 2.945 3.447 

687 2.030 1.806 2.935 1509 3.270 1.489 3.417 

484 2.667 0.633 2.930 1492 2.457 2.389 3.389 

676 2.782 1.448 2.899 2015 2.252 2.954 3.386 

519 3.025 0.205 2.898 1504 3.063 1.606 3.359 

962 2.277 0.550 2.879 1495 2.259 2.522 3.358 

644 1.841 1.892 2.835 1417 2.605 2.530 3.340 

658 2.559 2.027 2.820 1514 2.660 2.041 3.269 

483 2.416 0.154 2.803 1505 3.094 1.818 3.256 

563 0.898 1.549 2.800 1537 2.547 1.317 3.191 

655 3.152 -0.244 2.797 1884 2.478 2.452 3.165 

489 2.134 1.497 2.794 1502 2.314 2.353 3.163 

610 2.327 1.431 2.753 1513 2.779 2.079 3.142 

497 2.365 0.116 2.752 1497 3.167 2.450 3.128 

514 2.096 2.076 2.750 1525 2.003 2.484 3.121 

625 2.279 1.195 2.739 1524 2.896 0.722 3.119 

Table 3.4 VNIR and SWIR bands with 25 highest overall mean decreases in accuracies. The GA and NA 

MDAs represent decreases in class accuracies for each band if permuted from the OOB sample RF 

classification. 
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Table 3.4. The last notable peak in the VNIR dataset was located from 465-521nm 

(Figure 3.6), with a maximum of 3.03% at 471 nm (Table 3.4). Similar to other statistical 

parameters, MDA drops with the rise of the red-edge at approximately 700 nm and is 

relatively low throughout the NIR and lower SWIR bands (Figure 19).  

There are three notable regions within SWIR dataset with MDAs that indicate 

greater discriminating ability. The highest peak begins with a rise in MDAs at 

approximately 1391 nm, with MDAs consistently near or above 2% until dropping at 

approximately 1540 nm. On a smaller scale, this peak is punctuated by bands with MDAs 

near or above 3% located from 1489-1527 nm (Figure 3.16). This narrower region 

contains the highest overall MDA value of 3.70% at 1491 nm, along with 18 of the 25 

highest MDA values in the SWIR dataset (Table 3.4; Figure 3.16). The second highest 

SWIR MDA peak is located from approximately 1980-2035 nm and is punctuated by a 

MDA of 3.58% at 1997 nm and includes four other MDAs above 3%. The third 

prominent increase in MDA was observed from 1869-1893 nm and has a maximum 

MDA of 3.17% at 1884 nm (Figure 3.16). The MDAs are relatively low for bands 

between ~1580-1850 nm and ~2070-2400 nm and are similar to the lower MDA values 

observed for the NIR and lower blue spectrum bands.  

 

3.4 Discussion 

Multiple studies have attempted to characterize early spectral responses in pine 

foliage following MPB infestations and identify which spectral regions maybe useful for 

discriminating GA from NA trees (Ahern 1988; Cheng et al. 2010; Niemann et al. 2015). 
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However these studies have generally used small sample sizes from homogenous stands, 

have been limited to the visible and NIR spectrum, and collected in the fall following the 

initial attack. This study attempts to determine which spectral bands to separate GA from 

NA trees by identifying narrow bands that are sensitive to the pre-visual changes using 

needle-level hyperspectral measurements. The benefits of capturing reflectance from 

direct contact with foliage include decreasing inconsistencies due to illumination angles, 

background interference, and atmospheric effects. Furthermore a large number of 

samples were collected from trees in various locations with different stand ages and 

attributes. 

 

3.4.1 Statistical Methods 

 Nearly all of the statistical parameters used in this study showed similarities and 

overlap in spectral regions that best discriminated damage classes (Figures 3.10 – 3.16). 

These regions also correspond to the spectral regions with the greatest mean differences 

and least amount of overlap in variance between the classes (Figures 3.9). Only the SDA 

selected bands showed inconsistencies with other parameters. A majority of SDA 

selected bands (Table 3.2) were not selected from the spectral regions with the best 

indicators of separation between the groups based on the other parameters examined 

(Table 3.5; Figures 3.9 – 3.16). Even though a commonly used method in hyperspectral 

studies, research has shown that stepwise selection methods can give inconsistent results 

(Thompson 1995). Based on this the SDA selected bands were not considered in 

discussion.  
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3.4.2 Spectral Regions Separation for GA and NA Classes 

Table 3.5 provides a summary of the notable regions that showed the best 

discriminating ability for each parameter and the peak band(s) for each of those regions. 

Compared to VNIR, bands in the SWIR generally had greater differences between groups 

and/or contributed more to discrimination. SWIR reflectance has been significantly 

correlated with moisture content in leaves in numerous studies (Fourty and Baret 1997; 

Ceccato et al. 2001; Sims and Gamon 2003; Kim et al. 2015), thus the changes in SWIR 

reflectance found in this study are expected as needle moisture content of needles 

decreases in attacked trees. The observed increase of GA reflectance over a large portion 

of the SWIR spectrum (~1200-2500 nm) is consistent with SWIR response in other GA 

research (Sharma 2007; Cheng et al. 2010; Fasnacht et al. 2014; Niemann et al. 2015) and 

with research examining vegetative dehydration due to various stress agents as well 

(Carter 1993; Cao et al. 2015; Kim et al. 2015).  

In this study, the spectral regions that best discriminated groups are associated 

with moisture absorption features centered at approximately 1450 nm and 1920 nm 

(Table 3.5). The most consistent bands are located along the right edge of the 1450 nm 

absorption feature with overlaps in peaks of each statistical parameter from 1482-1501 

nm. These bands are part of a larger region from 1451-1533 nm that overlapped in at 

least six parameters and from 1534-1540 nm with at least overlap in five parameters. 

Additional bands associated with this absorption feature and showing consistent 

discrimination over multiple parameters are located from 1418-1424 nm and 1586-1617 

nm. The right edge of the moisture absorption feature at 1450 nm has been noted by other 
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moisture stress and GA studies. Fassnacht et al. (2014) noted a band at 1532 nm was 

stable for separating damage classes. Kim et al (2015) found the highest sensitivities to 

moisture stress at 1470 nm. This region has been correlated to moisture content of leaves 

in numerous studies as well (Carter 1993; Fourty and Baret 1997; Sims and Gamon 2003; 

Cao et al. 2015). However other GA studies show lack of separation with the 1450-1540 

nm spectral range selected in this study (Cheng et al. 2010; Niemann et al 2015). Cheng 

et al. (2010) found bands located along the upper left edge (1318-1322 nm) of the 1450 

nm absorption feature best separated GA and NA trees. The authors also noted that trees 

which had been girdled (bark cut through around the circumference) to simulate MPB 

damage had more pronounced water stress than GA trees and features that best correlated 

with moisture changes shifted to the right edge (~1550-1600 nm) of the 1450 nm feature. 

Given the later acquisition date, it is likely GA needles collected in this study are similar 

to the girdled trees dataset used by Cheng et al. (2010), which potentially explains the 

importance of the bands along the right edge of the 1450 nm moisture absorption feature. 

When tree water content is higher, reflectance sensitivity to moisture stress is greater at 

wavelengths with lower moisture absorption, but is vice versa for low moisture content 

(Sims and Gamon 2003; Kokalay et al. 2009; Ustin et al. 2012). Since the right edge of 

the 1450 nm absorption feature has higher absorption coefficients compared to the left 

edge (Gao and Goetz 1990; Sims and Gamon 2003), the observed importance of bands in 

this region is expected with that of plants with more severe water stress. This relationship 

between SWIR wavelength sensitivity and severity of water stress potentially explains 

research looking at earlier GA damage  
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Analysis 
Statistical 

Parameter 

Reference 

Figure/Table 

Notable regions of importance – listed in order of relative importance 

VNIR (Peak Values) SWIR (Peak Values) 

Group 

Differences 

Mean 

Differences 
Figure 11 

588-707 nm with 680-699 nm subset 

(692 nm); 

474-523 nm (504);  

736-794 nm (751 nm) 

1326-1694 nm with 1381-1420 

subset (1398-1400 nm); 

1753-1900 nm (1874-1876 nm);  

1991-2038 nm (2012 nm) 

Variance 

Overlap 
Figure 10 

587-700 nm (687 nm); 

464-521 nm (504 nm) 

1383-1561 nm (1405 nm);  

1845-1905 (1881 nm); 

1976-2045 nm (2011 nm) 

Effect size – 

Pearson’s r 
Figure 13 

575-698 nm (673 nm) 

457-519 nm (486 nm) 

1451-1541 nm (1491 nm) 

1994-2045 nm (2010 nm) 

Stepwise Linear 

Discriminant 

Analysis 

Structure 

Coefficients 
Figure 14 

650-691 (675 nm); 

462-516 (496 nm) 

1418-1672 (1533 nm); 

1982-2292 (2089 nm); 

2293 – 2400 nm (no distinct 

peak); 

1747-1821 nm (1761 nm) 

LOOCV 

classification 

accuracies 

Figure 15 

663-689 nm (667-669;683 nm); 

521-527 nm (522-523 nm) 

1389-1424 nm (1392;1404-1409 

nm); 1586-1617 nm (1586-

1587nm, 1593-1595 nm); 

2062-2103 nm (2065; 2069; 2080-

2082; 2086; 2089-2094 nm); 

1482-1501 nm (no peak); 

1768-1778 nm (no peak) 

Per waveband 

Linear 

Discriminant 

Analysis 

Wald  χ
2
 Figure 16 

650-675 nm (662 nm); 

486-507 nm (503 nm) 

1451-1550 nm (1497 nm);  

1973-2114 nm (2043 nm) 

 

 

Table 3.5. Summary of statistical analysis results. Notable regions of importance for each statistical parameter examined including peak 

wavelengths in parentheses. Notable overlaps in these regions are aggregated and reported at the bottom of the table.  
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Logistic 

Regression 

Per Waveband 

LOOCV 

classification 

accuracies 

Figure 17 

670-697 nm (693 nm);  

583-650 nm (617 nm); 

519-526 nm (520 nm); 

453-464 nm (464 nm) 

1883-1899 nm (1891 nm); 

1477-1553 nm (1493-1498 nm); 

1430-1476 nm (1447 nm); 

1384-1399 nm (1385 nm); 

1972-1976 nm (1975 nm);  

2023-2047 nm (2043 nm) 

Odds Ratio Figure 18 

430-520 nm (462-463 nm); 

629-699 nm (675 nm) 

1924-1951 (1941); 

1892-1923 nm and 1952-2166; 

1399-1653 nm (1464) 

Random Forest 
Mean Decrease 

in Accuracy 
Figure 19 

620-630 nm (627 nm); 

653-687 nm (681 nm); 

465-521 nm (471 nm) 

1391-1540 nm with 1489-1527 

nm subset (1491, 1489, 1493 nm); 

1980-2035 nm (1997 nm); 

1869-1893 nm (1884 nm) 

Overlaps in wavebands – aggregate results 

670-675 nm; 

663-669 and 676-687 nm; 

653-662, 688, 689 nm; 

486-507 nm; 

462-487 and 508-520 nm 

1482-1501 nm; 

1451-1481 and 1502-1533 nm; 

1534-1540 nm; 

1994-2045 nm; 

2062-2103 nm; 

1973-1993 nm 

1418-1424 nm; 

1586-1617 nm; 

1885-1893 nm 

 

 

 

Table 3.5. Summary of statistical analysis results cont.  
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(Cheng et al. 2010; Niemann et al. 2015) found better separation at shorter wavelengths 

in the SWIR than those in this study. In the Black Hills early spring precipitation is low 

and soils are still semi- to fully frozen, which could further induce water stress on trees 

and influence bands in this region as well. Although not examined in this study, it is 

assumed that environmental related water stress in trees would impact both the GA and 

NA trees similarly
1
. 

 After the 1451-1540 nm bands, the second most consistent spectral region with 

high discriminating ability was located along the right edge of an absorption feature at 

approximately 1900 nm. Bands from 1994-2045 nm had overlap in peak regions of five 

different statistical parameters (Table 3.5). These bands are a part of larger regions from 

1973-1993 nm and 2062-2103 nm with overlap in peak regions of four parameters. 

Additionally bands on the left edge of this absorption feature, from 1885-1893 nm, also 

showed consistency in discrimination. While research indicates bands near the 1920 nm 

absorption feature are sensitive to moisture stress and GA damage (Carter 1993), they 

have not been as commonly identified as important for detecting GA damage (Sharma 

2007; Cheng et al. 2010; Niemann et al 2015). As previously discussed, this is again 

likely due to the relationship between wavelength sensitivity and severity of moisture 

stress. In studies using earlier acquisition dates (Sharma 2007; Cheng et al. 2010; 

Niemann et al 2015), bands from 1900-2100 nm would be less likely to discriminate 

damage as they have higher water absorption coefficients thus are less effected by small 

                                                           
1
Tree water stress induced by early spring precipitation minimums would occur in different seasons in 

other ponderosa pine forests in the U.S. Further west in the Cascades and Sierra Nevada precipitations 
minimums would be in the late summer/early fall and in the summer months in the Southern Rockies. 
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reductions in needle moisture (Kokalay et al. 2009; Ustin et al. 2012). The results 

consistently indicating discriminating ability of the 1900-2100 nm region observed in this 

study further confirms a more severe level of GA damage in this dataset. Cheng et al. 

(2010) also found correlations between bands in this region and girdled trees that had 

more severe moisture stress. Consequently, the utility of SWIR bands for remote 

detection of GA damage will be largely influenced by the progression of the water stress 

following an attack, based on the location of peak regions of discrimination observed in 

this study compared to those observed in GA research with earlier acquisition dates.  

 The GA sensitive bands from 1973-2103 nm also overlap with or are in close 

proximity to absorption features sensitive to leaf proteins, waxes, lignin and/or cellulose 

structures (Elvidge 1990; Curran 1989; Kokaly 2001; Kokaly et al. 2007; Wang et al. 

2015). It is possible that changes in dry matter structures, due to water stress and tissue 

injuries caused by MPB infestations (Moura et al. 2010), could influence the spectral 

response of bands along the right side of the absorption feature at 1900 nm. Research has 

shown the influence of dry plant matter, such as lignin and cellulose, on reflectance from 

2000-2500 nm is relatively weak in healthy green vegetation, but become increasingly 

more evident with plant desiccation (Elvidge 1990; Kokaly et al. 2007). In this study, the 

subtle absorption in the GA spectra at approximately 2100 nm (Figure 10) may indicate 

increased absorption due to increased concentrations of dry-matter structures (Elvidge 

1990; Kokaly 2001; Kokaly et al. 2007) and would be consistent with the hypothesis that 

the spectral response of GA needles in this dataset is indicative of a more advanced GA 

damage compared to previous GA studies.  
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 Although SWIR bands showed the best indications of discriminating ability, 

broad regions of the visible spectrum also indicated consistent differences between 

groups and may provide forest managers more flexibility since many currently available 

sensors have multiple bands in this range. Analysis of the VNIR dataset shows that GA 

reflectance is significantly higher than NA crowns from 424-717 nm (Figure 3.9 & 3.10). 

Increased reflectance in the visible bands is a consistent response in vegetation across 

numerous types of stress agents (Carter 1993; Carter and Miller 1994; Carter and Knapp 

2001) and is primarily due to reductions in plant pigments following an attack (Carter and 

Knapp 2001; Sims and Gamon 2002).  

In this study, VNIR peaks in discrimination were most consistently associated 

with bands in the blue and red regions of the spectrum. The bands that showed the most 

consistent discrimination are located from 670-675 nm, with overlap in the peak regions 

of discrimination for each of the statistical parameters examined (Table 3.5). This narrow 

region of bands is part of a larger group from 663-687 nm that overlap in at least six peak 

regions and from 653-689 nm with overlap in at least five peak regions. These bands are 

associated with a major chlorophyll absorption feature centered at approximately 675 nm. 

Similar consistencies in discrimination, with slightly smaller magnitudes of separation, 

were observed for bands associated with chlorophyll absorption in the blue to green-peak 

regions, with overlaps in five statistical parameters from 486-507 nm and for at least four 

statistical parameters from 462-520 nm (Table 5). The selection of bands associated with 

chlorophyll absorption maxima is inconsistent with most results from other hyperspectral 

GA studies. While some have observed bands in the blue and red spectra that 
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discriminate GA trees (Health 2001; Sharma 2007; Fassnacht et al. 2014; Niemann 

2015), most previous research indicates bands that best isolate GA damage are located in 

the red-edge from approximately 690-750 nm and green-peak at approximately 550 nm 

(Murtha and Wiart 1989; Ahern 1988; Health 2001; Carter and Knapp 2001; Sharma 

2007; Fassnacht et al. 2014; Niemann et al. 2015). Ahern (1988) even noted that bands in 

the red absorption maximum (667-686 nm) could be used as reference bands to eliminate 

confounding variables due to indifference between GA and NA trees.  

Research examining vegetative stress generally finds peak differences and 

spectral sensitivities to various stress agents in the red-edge and green-peak regions as 

well (Carter 1993; Carter and Miller 1994). While significant discrimination was 

observed in the green-peak area and lower wavelengths of the red-edge in this study, it 

was consistently lower than discrimination in the blue and red regions. These results 

might explained by the later collection date of this study compared to other GA research, 

thus differences in the severity of the GA damage. The blue and red spectrum have high 

pigment absorption coefficients and similar to moisture features in the SWIR, the spectral 

regions that have high pigment absorption coefficients are generally insensitive to 

changes because lower concentrations in pigments have strong enough absorption to still 

saturate the regions (Blackburn 1998; Carter and Knapp 2001; Blackburn 2007). Thus 

increases in the severity of chlorophyll loss must happen for reflectance changes to 

manifest in the blue and red wavelengths (Carter and Knapp 2001).  

Peak discrimination in the blue and red wavelengths observed in this study are 

consistent with reflectance changes following severe chlorophyll reductions. Cheng et al. 
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(2010) also observed correlations in the blue and red regions for a more severely 

damaged girdled tree dataset. A further indication of more developed GA damage might 

be the dip in discrimination at the green-peak. Lower separation in the green-peak bands 

relative to blue and red bands might indicate increased concentrations of anthocyanin 

pigments which have absorption maximums near the green-peak (Gitelson et al. 2001). 

Anthocyanin pigments generally do not become dominant until more advanced stages of 

damage when chlorophyll and carotenoid pigments are severely degraded (Safranyik and 

Carroll 2006). Non-pigment factors such as moisture content (Carter 1993; Cao et al. 

2015) and foliar nitrogen content (Kokalay et al. 2009) could influence reflectance in the 

visible spectrum as well but it is difficult to indicate importance of these using spectral 

response alone because they overlap with regions more heavily influenced by pigment 

absorption (Carter and Knapp 2001).  

As previously mentioned, wavelengths along the red-edge have been consistently 

correlated with chlorophyll concentrations and are used to detect plant stress (Carter 

1993; Carter and Miller 1994; Filella and Penuelas 1994; Blackburn 1998; Carter and 

Knapp 2001). Increased reflectance at the base of the red-edge because of decreased 

chlorophyll content shifts the red-edge of stressed plants to shorter wavelengths, 

commonly called a blue-shift (Carter 1993; Filella and Penuelas 1994; Blackburn 1998; 

Carter and Knapp 2001). While most GA research has observed a blue-shift in GA trees 

(Carter and Knapp 2001; Niemann et al. 2015), other research has noted red-shifts for GA 

trees (Ahern 1988). In this study GA trees had significantly higher reflectance at the base 

of the red-edge indicating a blue-shift in the red-edge. However, the usefulness of the 



90 
 

red-edge bands for remote detection is likely low based on these results. Differences 

between groups at the base of the red-edge are relatively small compared to other regions 

and become insignificant along the center of the red-edge (Figure 3.9). As the red-edge 

rises into the NIR shoulder, the influence of chlorophyll becomes negligible around 750 

nm, and leaves internal structure and moisture content become the main drivers of 

reflectance sensitivity (Carter and Knapp 2001; Foley et al. 2006). Further analysis using 

reflectance derivatives may help to better understand the significance of red-edge 

changes in GA trees. 

None of the bands in the NIR plateau showed indications of discrimination and 

had similar mean reflectance values for both groups with large amounts of overlap in 

variance (Figure 3.8). The similarities in NIR reflectance maybe due to the inverse nature 

of NIR spectral response associated with changes in internal leaf structure and moisture 

content following a MPB attack. As stress develops internal structures degrade reducing 

refractory surfaces in the form of intercellular spaces and air-water interfaces causing a 

reduction in reflectance (Foley et al. 2006). Conversely, increased dehydration in plants 

lowers moisture absorption and potentially increases NIR reflectance (Foley et al. 2006). 

Given the indications of more severe GA stress observed in the SWIR and visible bands, 

it is possible that increases in NIR reflectance due to moisture loss in GA trees is negated 

by decreases related more pronounced changes in internal leaf structure changes. Murtha 

and Wiart (1989) came to similar conclusions to explain spectral overlap between GA 

and NA trees in the NIR plateau.  
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This situation might also explain why some GA research with earlier collection 

dates observed significant increases in the NIR reflectance of GA trees (Ahern 1989; 

Niemann et al. 2015). These confounding effects could also explain why moisture 

absorption features in the NIR plateau and lower portions SWIR dataset did not show 

strong discrimination in this study but have shown sensitivity to GA damage in studies 

with earlier acquisition dates (Cheng et al. 2010; Fassnacht et al. 2014; Niemann et al. 

2015). Research attempting to estimate vegetation moisture have also noted the 

confounding effects of moisture and internal structures in the NIR and lower wavelength 

SWIR bands (Aldakeheel and Danson 1997; Ceccato et al. 2001). 

 

3.5 Implications for Remote Sensing and Management 

 The results of this study possess numerous implications relative to detecting GA 

damage using aerial or satellite platforms. Compared to GA research with fall 

measurements, sensitivity to damage was observed over wider portion of the visible and 

SWIR spectrum. This potentially widens the scope of sensors and platforms available for 

detection and might allow managers more flexibility in selecting sensors with temporal, 

spatial, and spectral resolution that better match the characteristics of an infestation. 

Furthermore, information provided by this study provides a foundation for the 

development of spectral indices to further enhance operational remote detection of GA 

damage by combining information from damage sensitive bands in the visible or SWIR 

range with insensitive bands in the NIR.  
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 The results of this study indicate that wavelengths in the SWIR offer the best 

potential to discriminate GA and NA damage classes. This opens up the potential for use 

of many contemporary airborne hyperspectral sensors (HyMap, AVIRIS) and satellite 

sensors (WorldView-3, Landsat-8, ASTER) that have bands located in the SWIR 

spectrum. With respect to the SWIR bands, when interpreting results for canopy level 

detection methods, atmospheric water vapor absorption needs to be considered. 

Atmospheric scattering due to water vapor strongly influences wavelengths from 

approximately 1350-1450 nm, 1800-2000 nm and 2400-2500 nm (Gao and Goetz 1990; 

Sims and Gamon 2003; Thenkabail et al. 2004). Using bands located within or near these 

wavelengths can increase noise in the spectral response of the tree crowns. Therefore, 

obtaining data when clear skies prevail and dew points are low is strongly recommended. 

The utility of bands along the right edge of the 1450 nm and 1900 nm absorption features 

could be negatively impacted by atmospheric scattering. When accounting wavelengths 

with high atmospheric absorption coefficients (Gao and Goetz 1990), the SWIR bands 

that maybe most useful for GA detection are located from approximately 1486-1540 nm 

and 2000-2103 nm. Within the Black Hills, late winter/early spring collection dates 

would have a benefit of drier atmospheres as dew points and humidity are low. While not 

specifically discussed due to falling outside the peak values, additional SWIR bands from 

1541-1799 nm and 2104-2400 nm also showed consistently high separation between 

groups and are located in windows with low atmospheric absorption (Gao and Goetz 

1990; Sims and Gamon 2003) making them potential candidates to be utilized to detect 

GA damage as well. Additionally, localized differences in atmospheric aerosols can 
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negatively impact the generalization of results from leaf-level studies to the canopy and 

make atmospheric correction a necessity (Gao and Goetz 1990; Kokaly et al. 2009).  

 It is unknown if separation between GA and NA observed at the needle level can 

be scaled-up to effective canopy-level detection. Regions with good separation have large 

variance in GA reflectance values and overlap with NA needles (Figure 10), which would 

make accurate classification difficult. Previous GA detection attempts have also observed 

high GA variance and overlap with healthy trees as the main cause for low classification 

accuracies (Murtha and Wiart 1989; Heath 2001; Fassnacht et al. 2014). Optically thick 

needle stacks used in this study better to represent canopy structure, but have also been 

shown to exaggerate reflectance (Kokaley et al. 2009), could be a source of uncertainty 

when generalizing results from this study. Sims and Gamon (2003) found that moisture 

content is more accurately estimated at the canopy-level compared to needle-level 

measurements. Based on their results, the SWIR bands that best discriminated damage 

classes in this study could potentially be more sensitive to damage at the canopy-level 

and improve detection accuracies. A certain degree of uncertainty in scaling results to 

canopy-level is also expected due to the inclusion of background elements within a pixel 

which would reduce the signal of tree crowns. 

 There are temporal related issues that may limit the effectiveness of remote 

detection of GA damage in the late winter/early spring. Relative to late summer/early fall 

collections, late winter/early spring acquisition dates will have lower solar zenith angles 

which can: (1) alter the spectral response of vegetative (Kollenkark et al. 1981), (2) 

increase shadows in an image, and (3) increase atmospheric scattering as solar radiation 
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has to pass through a greater portion of the atmosphere. Early detection dates increases 

the chances of snow cover, especially in mountainous regions, which can contaminate 

pixels. In western North American cloud cover fractions are greater in the early spring 

compared to the summer dates (NASA Earth Observation 2016), reducing the likelihood 

of acquiring cloud free images.  

Within the Black Hills, late winter/early spring GA detection faces a narrow but 

attainable acquisition window. Images must be acquired late enough that snow cover is 

minimal but early enough to allow for images to be processed and analyzed in a timely 

manner for mitigation of infected trees to take place before the broods take flight. In the 

Black Hills methods such as cut-and-chunk, in which attacked trees are felled and cut 

into small chunks to dry out, need to be completed by March 1
st
 to be effective and 

chemical spraying of NA trees usually needs to be completed by June 1
st 

(USDA Forest 

Service 2010). Given these deadlines, remote sensing of GA damage in the late 

winter/early spring is well suited for implementing proactive mitigation such as forest 

thinning along leading edges of infestations in later spring/early summer.  

 

3.6 Summation 

 Green-attack reflectance was significantly higher than NA trees from 424-717 nm 

and 1151-2400 nm. Increases in GA reflectance are likely due to decreased pigment 

absorption following chlorophyll degradation in the visible bands and water absorption in 

the SWIR bands. No notable separation was observed for bands along the upper red-edge 

and NIR plateau. In general, bands located in the SWIR spectrum (~1390-2400 nm) 
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showed increased discrimination of GA from NA trees compared to bands in the visible 

and NIR spectrum. 

Within the SWIR spectrum, this study identified two regions of bands, from 

approximately 1451-1540 nm and 1973-2103 nm, that show the most promise for 

detection of GA damage with remotely sensed imagery. Spectral response of GA trees in 

these regions is consistent with those following severe moisture losses in vegetation. 

Bands in the visible spectrum also showed consistent separation and are likely useful for 

remote sensing of GA damage as well. Bands associated with chlorophyll absorption 

features in the blue –green (462-520 nm) and red (663-689 nm) provided greater 

measures of discrimination than other visible bands.  

It is unknown if these results can be scaled up to canopy level detection at rates 

that are operationally viable. Large within-class spectral variability, spectra; overlap 

between groups, and canopy variability can negatively impact classification using 

imagery datasets. The regions in the SWIR showing the most promise are located near 

wavelengths affected by atmospheric water vapor scattering. Later winter/spring 

collection dates have increased technical obstacles for quality imagery and shorten the 

time between collection and deadlines for mitigation. However, later collection allows for 

greater stress development and greater separation between groups, which will likely 

provide more reliable detection of GA trees.  
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4. Early Detection of Mountain Pine Beetle Attacked Trees using WorldView-2 

Imagery and Field Data 

 

4.1 Introduction 

To effectively inventory the spatial extent of MPB green-attack damage and apply 

mitigation strategies, forestry officials need to detect tree stress with high accuracies at 

large spatial scales before next seasons broods take flight. Ground-based assessments 

provide the most reliable results of GA detection. However, ground-based assessments 

are not well suited for large scale mapping and fail to provide enough coverage to 

mitigate the problem. Remote sensing data sources can provide information that meets 

the temporal and spatial needs of early MPB damage detection. This chapter focuses on 

the use of high spatial resolution multispectral imagery to detect MPB GA trees. While 

the narrow bandwidths of hyperspectral data examined in the previous chapter may better 

characterize spectral response of GA tree crowns, it is unknown if that information can be 

scaled to canopy level detection using satellite platform sensors. The availability of 

hyperspectral satellite sensors is limited and those available do not have the spatial 

resolution needed to capture the spectral response of individual tree crowns. Aerial based 

hyperspectral sensors have high acquisition costs and require a large number of images to 

capture comparable scene coverage to satellite sensors, increasing the amount of image 

processing needed. Alternatively, numerous multispectral satellite sensors provide spatial 

resolutions that can distinguish single tree crowns. However, they generally have coarser 
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spectral resolutions increasing the likelihood that a subtle spectral response will be 

masked out of the signal.  

Recently developed multispectral satellite sensors provide forest officials with 

options that have the spatial and potentially the spectral resolutions needed to detect GA 

damage with high accuracies. The WorldView-2 (WV-2) operated by Digital Globe® has 

a sub two-meter spatial resolution and has a unique spectral resolution. Traditional visual 

broad bands are located in the blue, green, red, and NIR portions of the spectrum. The 

WV-2 sensor has additional bands in the lower blue, yellow, and red-edge regions along 

with an additional NIR band. Previous GA and vegetation stress research has indicated 

the importance of some of these bands, especially the red-edge, in detecting stress related 

changes such as pigment degradation (Ahern 1989; Carter 1993; Carter and Miller 1994; 

Carter and Knapp 2001).  

Since its launch in 2009 the WV-2 platform has been used in numerous studies 

looking at detecting forest disturbances (Filchev 2012; Penuel and Mutanga 2013; 

Immitzer and Atzberger 2014; Waser et al. 2014; Murfitt et al. 2016). Immitzer and 

Atzberger (2014) were able to detect GA damage due to spruce bark beetles in Norway 

spruce trees with an overall accuracy of 73.7%. These accuracies are slightly better than 

achieved using aerial (Health 2001; Fassnacht et al. 2014) and satellite (Sharma 2007) 

hyperspectral sensors to detect MPB GA damage. In a review of GA detection research, 

Wulder et al. (2009) noted two of the biggest obstacles to successful GA detection have 

been spectral similarities between GA and NA trees and the inclusion of background 

elements within a single pixel diminishing the response of tree crowns.  
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The very high spatial resolution of WV-2 imagery can help alleviate the latter of 

these problems. The former maybe due to data acquisition dates of GA research being in 

the summer/early fall following the initial attack (Ahern 1988; Murtha and Wiart 1989; 

Carter and Knapp 2001; Cheng et al. 2010; Fassnacht et al. 2014; Immitzer and Atzberger 

2014; Niemann et al. 2015). If the onset of biophysical stress within attacked trees is too 

subtle, the spectral differences between GA and NA trees may not allow for accurate 

discrimination between the two classes in the fall, which can lead to high rates of GA 

omission. Late winter/early spring acquisition dates would allow more time for stress and 

subsequent spectral changes to develop. However there are disadvantages to late 

winter/early spring acquisitions due to risk of snow cover, shorter days, and increased 

cloud cover which could reduce collection windows. These problems can be alleviated as 

the WV-2 satellite has a temporal resolution of 1.1 days, increasing the opportunities for 

acquiring desirable imagery. 

The goal of this study is to examine the potential for WV-2 data collected in the 

late winter/early spring to detect and classify GA damage. To reach this goal, research 

focused on two objectives: 1) comparing the spectral responses of GA to NA trees and 2) 

identify which WV-2 bands or indices reliably discriminate GA trees using multiple 

statistical methods. Identifying spectral variables important in detection can potentially 

cut down on data redundancy, processing times, and costs. To address the second 

objective, the performances of three different classifiers (logistic regression, linear 

discriminant analysis, and Random Forest) were examined using various groupings of 

predictor variables. These groupings of predictor variables are selected using stepwise 
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selection methods and examination of correlation tables. If successful, these methods 

could provide forest officials with an operational method for accurately detecting GA 

damage and improve the effectiveness of mitigation and assessments of current damage 

impacts.  

 

4.1.1 Study Site 

Located in the east-central portion of the Black Hills region in Southwestern, SD 

(Figure 4.1) and covering 34,225 acres, the Norbeck Wildlife Preserve (43° 50' 53'' N, 

103° 27' 39'' W) area was chosen based on discussion with USFS officials located at the 

Forest Supervisor’s Office in Custer, SD. The study site is located along the leading 

edges of two large infestations and was accessible by roads and trails at the time of the 

field visit. The reserve was set aside in 1920 to be managed as habitat for game animals, 

with the Black Elk Wilderness area designated in 1980 under the Wilderness Act of 1964 

(Continuing Education in Ecosystem Management Group 2006). The preserve boundary 

includes portions of Custer State Park to the south, Mt. Rushmore National Monument to 

the Northeast, and Black Elk Wilderness area located in the central area of the preserve. 

Elevations within the preserve range from 4,360-7,242 feet, with the topography 

dominated by narrow ridges and valley bottoms with steep slopes and granite outcrops 

(Continuing Education in Ecosystem Management Group 2006). Field data were 

collected in the east-central portion of the preserve along the southeastern border of the 

Black Elk Wilderness area approximately 2.5 miles south of Mt. Rushmore National 

Monument. 
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4.2 Methods 

4.2.1 Field Data Collection 

Figure 4.2 provides a flowchart that 

outlines the methodology used in this 

study. Field data were collected on 

March 7-8 and March 11, 2015 

between 8:00 and 17:00. GPS 

locations for NA and GA trees were 

collected using a Trimble GeoXH with 

Terrasync connected to an external 

antenna. Differential corrections were 

done in real-time using an integrated 

space-based augmentation system. GA 

trees were selected if they showed 

signs of a successful beetle attack 

(Figure 3.2 & 3.3) and had no visual signs of fading in the tree crown. NA trees were 

selected if they did not show signs of the attack and also had no fading in the tree crowns. 

To increase the likelihood that multiple image pixels align and overlay each sample 

location and reduce the inclusion of incorrect classes in the training data, tree locations 

were collected only from clusters of GA or NA trees (approximately >10 trees) that were 

mutually exclusive to one of the two damage classes.  

Figure 4.2. Flowchart outlining methodology. 
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4.2.2 WorldView-2 Image Processing and Segmentation 

 To provide coverage encompassing the field collection area, two WV-2 images 

were collected on April 9, 2015 under cloud-less conditions. In addition to covering the 

field data collection area, the image provides approximately 24,710 acres of coverage 

over large portions of the Norbeck Wildlife Preserved, including sections of the Black 

Elk Wilderness Area and much of the Mt. Rushmore National Monument area. The 

acquisition specifications of the two images are detailed in Table 4.1. The WV-2 satellite 

imagery has a high spatial resolution, 1.85 m for the multispectral bands and 0.5 m for 

the panchromatic band at nadir, and a unique combination of spectral bands. For 

example, in addition to the traditional blue, green, red, and NIR bands the WV-2 data has 

four bands located in the coastal, yellow, red edge, and NIR-2 regions (Table 4.2). These 

additional bands may be beneficial for the detection of beetle related tree stress as they 

are located in regions of the spectrum previously shown to be sensitive to MPB induced 

tree stress (Ahern 1989; Carter and Knapp 2001; Fassnacht et al. 2014; Niemann et al. 

2015).  

Both images were converted to at-sensor radiance values before atmospheric 

correction. In order to obtain spectral reflectance values that produce meaningful and 

transferable results to other data sets atmospheric correction was performed using the 

FLAASH 5.3 module with ENVI 5.3 software. The atmospheric correction module 

produced some saturation artifacts. To remove these from further analysis, pixels with 

values below 0% and above 100% reflectance were masked out of both images. The two 
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Figure 4.1. Study area and WorldView-2 image footprint. Pan-sharpened WorldView-2 image (5,3,2, RGB) and location of the study area with 

transparent administrative boundaries overlaid for reference. Inserts provide regional context of the study area.  
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Table 4.2. Spectral resolution of WV-2 bands.  

Table 4.1. WV-2 image acquisition specifications   images were mosaicked using with the 

MosaicPro module in Erdas Imagine 

2015 using histogram matching to 

account any differences in color, 

shading, and illumination between the 

two images. The multispectral WV-2 

image was fused with the panchromatic 

image using Hyperspherical Color 

Space (HCS) algorithm. The pan-

sharpened image served as a visual aid 

and as the input for green tree image segmentation. Pixel values on pan-sharpened WV-2 

images have been showed to be highly correlated with the original multispectral image 

pixel values (Cho et al. 2015) and the HCS algorithm specifically maintains good spectral 

quality (Padwick et al. 2010). However, since the contextual features were not used in the 

variable selection, classification, or mapping methods to preserve the spectral quality of 

tree crowns, only the original multispectral image was used as for analysis and 

classification. 

 To automatically extract green tree crowns (both GA and NA trees) from the WV-

2 image, an object based classifier was chosen. When used with high spatial resolution 

datasets, object based classifiers yield higher accuracies than traditional pixel-based 

methods when classifying vegetation (Yu et al. 2006). This process can be particularly 

useful when trying to segment large numbers of small features such as pine tree crowns. 

 Image 1 Image 2 

Acquisition Time 17:56:16 17:26:55 

Scan Direction Forward Reverse 

Mean Sun Elevation 51.8° 51.8° 

Mean Sun Azimuth 155.8° 156.0° 

Mean Satellite Elevation 76.3° 73.4° 

Mean Satellite Azimuth 142.6° 156.8° 

Mean off nadir view angle 12.0° 14.6° 

WorldView-2 Band Spectral Resolutions 

Coastal: 400-450 nm Red: 630-690 nm 

Blue: 450-510 nm Red-edge:705-745 nm 

Green: 510-580 nm NIR-1: 770-895 nm 

Yellow: 585-625 nm NIR-2: 860-1040 nm 



104 
 

Segmentation was performed using the Feature Analyst 5.1 extension for ArcMap 10.3. 

Training polygons were created using tree crowns from both the GA and NA classes to 

minimize the between class variance of the two classes. Tree crowns were digitized on 

the panchromatic image if they showed no signs of fading in the multispectral image. 

After multiple iterations using different settings, a Natural Feature selector using a three 

pixel wide bull’s eye pattern as the input representation yielded the best results. A vector 

shapefile representing green trees was exported and later used as a mask to eliminate 

unneeded landcover types from classification and mapping. The green tree segmentation 

had an overall accuracy of 85% and a user’s accuracy of 100%, indicating all of the 

extracted pixels represent green tree crowns.  

 

4.2.3 Sample Dataset 

 GA and NA tree locations collected during the field visit were overlaid on the 

WV-2 multispectral and panchromatic images to delineate the GA and NA tree crowns. 

Since there was approximately a one month time lapse between the field visit and the 

WV-2 image acquisition, attention was given to make sure no noticeable yellow fading 

was apparent in tree crowns within the polygons on the multispectral image. Individual 

sunlit tree crowns are readily discernable on the 0.5 cm resolution panchromatic image. 

As such, the panchromatic image was used to manually digitize sunlight crowns from 

both GA and NA trees if they were located within each class’s respective field collected 

polygons and had no visual fading in the multispectral or pan-sharpened images.  
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 To further verify GA status of tree crowns, Google Earth imagery (Map Data: 

Google, DigitalGlobe) from the fall following WV-2 image acquisition was used to 

inspect whether GA trees had faded. Only sunlight portions of crowns were selected to 

mask-out and reduce the effect of tree shadows in analysis. Within some polygons 

spacing between tree crowns was compact enough that the sunlight crowns of multiple 

trees overlapped and were included within a single reference tree crown. Figure 4.3 gives 

an example of this process. 

 A total of 291 GA and 414 NA tree crowns were delineated and converted to 

shapefiles in ArcMap 10.3. These delineated tree crown shapefiles were used to extract 

the reflectance values from the multispectral image and averaged together for each tree 

crown polygon. This object based approach has been shown to yield better classification 

results compared to using per pixel reflectance values alone (Immitzer et al. 2012). A 

total of 4,697 pixels representing GA crown damage were extracted with each GA crown 

polygon representing a median value of 12 pixels. A total of 2,626 pixels representing 

NA tree crowns were extracted with each crown encompassing a median value of six 

pixels. The discrepancy between the number of pixels for GA and NA tree crowns is 

likely due to GA damage in stands characterized by high tree densities, which provide 

favorable conditions for beetle infestations, thus increases the probability that multiple 

sunlight tree crowns are included in a single reference polygon. 
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Figure 4.3. Example of manual delineation of tree crowns. Still green GA tree crowns (arrow) within field data polygons (red) 

identified on the pan-sharpened image (A) and sunlit crowns were delineated (yellow) on the panchromatic image (B). Pixel values 

were then be extracted from the multispectral image (C). Google earth imagery was examined to confirm GA trees (D). Map data: 

Google, Digital Globe.  
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4.2.4 Spectral Predictor Variables  

 Reflectance values were extracted for all eight WV-2 spectral bands using the 

reference polygons. The mean value of pixels within each individual tree crown polygon 

was calculated and normality was assessed using a Shapiro-Wilk test (Appendix B). 

Spectral reflectance signatures were created using the mean reflectance values of all GA 

and NA tree crowns for each WV-2 band. Within- and between-class variability was 

assessed using the reflectance signatures and median reflectance box-plots.  

In addition to the WV-2 bands, normalized two-band indices were also used as 

predictor variables. Normalized two-band indices were created using all possible WV-2 

band combinations with following equation: (Ry–Rx)/(Ry+Rx), where Ry is reflectance in 

band y and Rx is reflectance in band x. Numerous vegetation indices (VIs) have been 

developed and correlated with different phenological stages and levels of tree stress. 

Indices can be better indicators of damage stress compared to single band reflectance 

alone because they combine information from multiple bands and emphasize differences 

between GA and NA classes. For example one of the most widely used VIs, the 

normalized difference vegetation index (NDVI), uses NIR bands sensitive to chlorophyll 

changes and red bands that are insensitive to changes to maximize vegetation response. 

Immitzer and Atzberger (2015) found that normalized two-band ratios improved 

classification accuracies compared to single bands when mapping insect disturbances in 

spruce stands with a WV-2 dataset. For simplicity in reporting, normalized 2-band 

combinations will be referenced as Band Y-Band X to indicate the combination of bands 
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used in a particular normalized index. The eight spectral bands plus normalized two-band 

indices gave a total of 36 spectral variables that served as potential predictor variables.  

 

4.2.5 Variable Importance and Data Mining  

To compare the spectral responses of GA to NA tree crowns and identify which 

spectral variables are most important for separating classes, this study used four statistical 

approaches. A Mann-Whitney-U test was used to examine the null hypothesis that there 

were no significant differences between the GA and NA crowns. This non-parametric test 

was chosen because only one spectral variable had a normal distribution for both the GA 

and NA damage classes and all but eight spectral variables had non-normal distribution 

for either damage class (Shapiro-Wilk, p< 0.05, Appendix B). A Pearson’s correlation 

coefficient r value was calculated for each spectral variable to determine the effect size of 

differences between the classes (Rosenthal 1991). For interpretation, effect sizes with r-

values above 0.1 are considered small, above 0.3 are moderate, and above 0.5 are large 

effects (Cohen 1988).  

The discriminatory power of each spectral variable was examined using logistic 

regression (LR) analysis with individual spectral variables iteratively used as predictors 

and assessed using the leave-one-out cross validation (LOOCV) classification accuracies 

for each spectral variable. LR was chosen because it is a parametric classification 

method, allows for a categorical binary dependent variable, is robust against violations of 

assumptions, and allows for single variables to be used as inputs to the model. The 

remaining two approaches use internal estimates of importance for classification models 
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using all 36 predictor variables as inputs. First of these internal estimates are the factor 

structure coefficients between each predictor variable. These coefficients are the 

correlation between a particular variable and the discriminant function. High correlations 

with the discriminant function indicate a spectral variable has greater ability to 

discriminate classes. The second statistic is the mean decrease in accuracy (MDA) if a 

variable is left out of Random Forest (RF) classification. Higher MDAs indicate a greater 

importance a particular spectral variable has in RF classification.  

Data mining and variable reduction can potentially yield more parsimonious 

classification models without sacrificing accuracy. Reducing data redundancy can lessen 

multicollinearity between variables used as model inputs, which possibly improves 

accuracies and transferability of models. Furthermore, it can cut down on the processing 

time and power needed to classify large datasets. In this study three data mining 

techniques were examined. The first method was a stepwise LR method, which adds or 

subtracts variables to minimize the models Akaike’s information criterion (AIC) until it 

can no longer be significantly minimized. Second, a stepwise linear discriminant analysis 

(SDA) which selects or removes variables based on minimizing the Wilk’s Lambda. 

Lastly, using the indicators of variables importance and examining a variable correlation 

matrix, predictor variables that best discriminant the two classes and had the lowest 

correlations with other important variables were selected. Stepwise LR was done using 

‘R’ v.3.2.4 (R Core Team 2016) with R package ‘caret’ v.6.0-64 (Kuhn 2016). SDA and 

correlation matrices were done in SPSS® v. 22. For both the data mining and variable 
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Table 4.3. Groupings of predictor variables used for classification. Groupings 3-5 represent the variables 

selected as part of the data reduction methods.  

importance statistical methods the entire sample dataset (GA= 291; NA=414) were used 

for analysis.  

 

4.2.6 Classification and Validation 

Two-thirds (GA=194; NA=276) of the sample dataset was split to serve as 

training data for the classification models and one-third (GA=97; NA=138) was used for 

validation purposes. Spectral variables were grouped into five different sets of predictor 

variables to serve as inputs for the classification models (Table 4.3). Groupings include 

one with all 36 predictor variables, another with only the eight WV-2 bands and three 

additional groupings based on the results of the data mining techniques. To separate tree 

crowns into GA or NA classes, LR, linear discriminant analysis (LDA), and RF 

classification algorithms were examined. LR was chosen to provide a linear model that 

handles non-parametric data. LDA classification is a powerful classifier, but is more 

susceptible to violations to data assumptions. It is a commonly applied method in remote 

sensing studies and was included in this study to see if it could handle the non-parametric  

 Description Predictor Variables 

Grouping 1 All WV-2 Extracted Variables 8 WV-2 bands + 28 normalized two-band ratios 

Grouping 2 WV-2 Bands 8 WV-2 bands 

Grouping 3 Selected by stepwise logistic 

regression 

Blue + Yellow + Red Edge + NIR 1 + Green-NIR 1 

+ Blue-NIR 1 + Green-Red + Red-NIR 2 

Grouping 4 Selected by stepwise 

discriminant analysis 

Yellow + NIR1 + Green-Red + Green-NIR 2 + 

Yellow-NIR 1 + Red-NIR 2 

Grouping 5 High variable importance and 

low correlations 

Red Edge-NIR 1 + Yellow + NIR 1 + Yellow-NIR 

1 + NIR2 + Coastal-NIR 1 
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data. RF classification was chosen because it has shown to be faster, more robust, and 

requires less analyst guidance compared to other popular classification algorithms, while 

providing comparable or better results (Ham et al. 2005; Gislason et al. 2006; Chand and 

Paelinckx 2008; Rodriguez-Galiano et al. 2012; Immitzer and Atzberger 2014).  

The RF classifiers were created using 1000 classification trees (ntree parameter) 

and two predictor variables at each tree split (mtry). Performance of these classifiers was 

compared using both cross-validated accuracies of the training data split and 

classification accuracies of the validation data split. Cross-validation of the training data 

was done using a LOOCV method for LR and LDA and the internal out-of-bag (OOB) 

method for RF. After model training, the validation data split was ran through each 

classifier and confusion matrices were created to compare model performance based on 

the  user’s accuracy, producer’s accuracy, overall accuracy, and Cohen’s kappa 

coefficient for each model. All classification was done in ‘R’ v. 3.2.4 (R Core Team 

2016) with the following R packages, ‘boot’ version 1.3-17 (Canty and Ripley 2015) , 

‘pscl’ v. 1.4.9 (Jackman 2015),  ‘MASS’ v.7.3 (Venables and Ripley 2002), and 

‘randomForest’ v. 4.6 (Liaw and Wiener 2015). The classifiers with the highest cross-

validated and independent dataset classification accuracies were applied to the entire 

WV-2 image masked with the green-tree segmentation shapefile to give a visualization of 

a final mapping product. 
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4.3 Results 

4.3.1 Spectral 

Reflectance Signatures 

 Both the median 

and mean reflectance 

values of GA trees was 

higher than NA trees in 

the visible bands and 

lower in the red-edge, 

NIR-1, and NIR-2 bands 

(Figures 4.4, 4.5, & 4.6). 

For each band, a majority of the within-class variances between classes overlap and all 

median values of GA and NA trees lie within the upper or lower quartiles of each other 

(Figure 4.6). In the visible 

bands the GA class have 

greater standard deviations (SD) compared to the NA class and both classes have similar 

within-class variances in the red-edge, NIR-1, and NIR-2 bands (Figure 4.6). A large 

majority of the classes had a non-parametric distribution for each spectral variable 

(Appendix B) and generally had more right skewed than left-skewed. 

 

 

 

Figure 4.4. Mean reflectance values of NA and GA trees in each 

WV-2 band. 
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4.3.2 Variable Importance 

The spectral 

responses of GA trees 

was significantly 

different than NA trees 

for all WV-2 bands 

(Figure 4.7; Mann 

Whitney-U: df=1; 

p<0.05). While 

significant, the effect 

sizes of these differences 

were small (0.1<r<0.3). 

Spectral differences between GA and NA trees were greatest in the NIR-1 band followed 

by the NIR-2 bands. All of the visible bands had similar magnitudes of differences 

between the two classes, with the red and coastal bands slightly higher than the green, 

yellow, and red-edge bands. A majority of the normalized two-band indices separate the 

GA and NA classes, differences observed for 17 of the 28 indices (Figure 4.7; Mann 

Whitney-U ; df=1; with significant p<0.05). The normalized two-band index using the 

red edge and NIR-1 band had the greatest magnitude of difference between the two 

classes, with a medium effect size (r>0.3). Relative to other indices, the normalized two-

band indices utilizing a combination of the NIR-1 band and a visible band had the highest 

effect sizes, followed by NIR-2 bands or red-edge bands paired with visible bands.  

Figure 4.5. Median reflectance values of NA and GA trees in each 

WV-2 band. 
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Normalized two-band indices using two visible bands had non-significant differences 

between the two classes. Other than the NIR-1 and NIR-2 bands, normalized two-band 

ratios had higher effect sizes compared to the WV-2 bands. 

LR classification models using single spectral variables ranged from 57.66% to 

65.54% accuracies (Figure 4.8). Of the WV-2 bands, the coastal band produces the 

highest LOOCV accuracy (63.15%). The other visible bands had slightly lower but 

comparable accuracies to the coastal band and the red-edge band produced the lowest 

accuracy. Unlike class differences in which the two NIR bands had the highest magnitude 

of difference between GA and NA of the WV-2 bands, the accuracies of the NIR-1 and 

NIR-2 bands were lower than the visible bands. Use of normalized two-band indices in 

the equation improved accuracies compared to single WV-2 bands, with a max accuracy 

of 65.54% for the normalized two-band index using the NIR-1 and green band. Indices 

using a combination of a NIR band and a visible band had higher accuracies than 

combinations using two visible bands or two NIR bands.  

Of the WV-2 bands, the NIR-1 band had the highest correlation with the LDA 

function using all spectral variables as inputs, followed by the coastal band (Figure 4.9). 

The correlation structure coefficient of the red-edge band has the lowest discriminatory 

power of the WV-2 bands. Several normalized two-band indices had higher correlations 

than the best WV-2 band (NIR-1). Similar to the effect size and LR accuracies, 

combinations utilizing one of the NIR bands and a visible band resulted in better 

discrimination.  
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Figure 4.6. GA and NA box-and-whisker plots for each WV-2 band. Center lines are median 

reflectance values.  The box is defined by the upper and lower quartiles of data.  Whiskers are 

defined by the upper quartile ±1.5x the interquartile range.  
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Figure 4.8. Per-variable logistic regression LOOCV accuracies.  

   

Figure 4.7. Pearson’s r effect size of differences between GA and NA for WV-2 spectral variables. Blue 

bars represent variables in which classes were significantly different (Mann-Whitney U, d.f.=1; p<0.05) 

and red bar represent variables with no significant differences between groups (d.f.=1; p>0.05).  
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Figure 4.10. MDA of spectral variables attributed by Random Forest classification of OOB sample.  

  

Figure 4.9. Linear discriminant analysis correlation structure coefficients for WV-2 spectral variables. 

Absolute values are displayed for visual purposes. Individual variables are correlated with a linear 

discriminant function with all spectral variables as predictors that significantly separate groups with a 

69.1% overall accuracy (Wilks Lambda = 0.768; χ2=184.041; df=29; p<0.001).  
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The WV-2 band with the highest influence on RF classification was the NIR-1 

band, dropping prediction accuracies by 22.83% if removed from RF classification 

models (Figure 4.10). Other WV-2 bands had MDAs ranging from 12.61% to 16.57%. 

The spectral variable with this highest overall MDA was the normalized two-band index

using the NIR-1 and red edge band (Figure 4.10). Indices using a combination of NIR 

bands and a visible band were relatively more important to RF classification compared to 

other combinations. Unlike the previous variable importance parameters inspected, the 

normalized two-band indices had comparable MDAs to the WV-2 bands, with exception 

to the red edge-NIR 1 index and NIR 1 band. It should be noted, unlike the other 

parameters which indicate variable importance relative to the other variables, the MDA 

of a single variable left out of a RF model will depend on its relationship with the 

variables left in the model. 

 

4.3.3 Data Mining

The stepwise LR model significantly separated GA and NA trees with an LOOCV 

overall accuracy of 72.34% (χ
2
= 125.30; df=8; p<0.001) and selected eight variables 

before terminating the selection process (Table 4.4). The stepwise LDA model 

significantly separated GA and NA trees with a LOOCV overall accuracy of 67.45% 

(Wilks lambda = 0.828; χ
2
=131.733; df=6; p<0.001) and selected six variables before 

terminating the selection process (Table. 4.5). The selection of high separation-low 

correlation variables data mining process started with the red-edge-NIR 1 normalized 

two-band index, which had low correlations with other variables (Appendix C) and high 
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Table 4.4. Predictor variables selected by the final stepwise LR final model separating GA and NA 

trees.  

Table 4.5. Predictor variables selected by stepwise LDA 

final model separating GA and NA trees. Standardized 

canonical discriminant function coefficients give the 

absolute relative importance of each variable within the final 

model.  

measures of separation. Spectral variables were then added to models with preference 

given to those with high and low correlations with other variables already in the models. 

Variables were added or subtracted in a trial and error manner based on improvements in 

 

cross-validated model accuracies 

until no further improvements 

could be practically ascertained by 

the author. Six spectral variables 

were selected by this method and 

make up model predictors 

Grouping 5 (Table 4.3).  

 

 

 

 

Predictor 

Variables 
B S.E. Wald df Sig. z-score Exp(B) 

NIR 1 -0.521 0.072 52.211 1 0.000 -7.226 0.594 

Blue 1.132 0.200 32.113 1 0.000 5.667 3.103 

Yellow 0.070 0.048 2.115 1 0.146 1.454 1.073 

Red Edge 0.102 0.053 3.736 1 0.053 1.933 1.107 

Green-Red -10.203 4.249 5.766 1 0.016 -2.401 0.000 

Blue-NIR 1 -21.651 3.889 30.995 1 0.000 -5.567 0.000 

Red-NIR 2 -10.755 5.329 4.073 1 0.044 -2.018 0.000 

Green-NIR 2 16.842 5.578 9.117 1 0.003 3.019 20624308.424 

Constant -7.180 2.161 11.036 1 0.001 -3.322 0.001 

Predictor 

Variables 

Standardized Canonical 

Discriminant Function 

Coefficients 

Yellow -1.896 

NIR 1 1.788 

Green-Red 1.796 

Green-NIR  2 -1.795 

Yellow-NIR 1 1.698 

Red-NIR 2 1.450 
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Figure 4.11. Cross-validated classification OA for each classifier and predictor 

variable grouping.  
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Figure 4.11. Cross-validated classification OA for each classifier and predictor 

variable grouping. Predictor variable groupings are defined as (1) all 36 spectral 

variables, (2) eight WV-2 bands, (3) Stepwise LR selected, (4) Stepwise LDA 

selected, and (5) high importance-low correlation variables.  

4.3.4 Classification Accuracies 

 Appendices E and F include additional tables showing all of the overall, user’s, 

and producer’s accuracies, along with Kappa statistics, for each classifier and grouping of 

predictors for both the cross-validated and independently tested results.  

 

4.3.4.1 Cross-Validated Accuracies 

 Normalized two-band indices offered some improvements in the detection of GA 

damage. Using all 36 predictor variables (Grouping 1) as inputs for classification yielded 

higher overall accuracies (OA) than models using just the WV-2 bands (Grouping 2; 

Figure 4.11), including the model with the  highest OA (LR classifier; 75.96%). LR 

classifiers yielded the highest OA in four of the five groupings, while the LDA models 

consistently had the lowest accuracies in all but one grouping. The data mining derived 

groupings used did not improve OAs compared to the models using all spectral variables 

(Grouping 1), but 

were comparable 

to models using 

only the WV-2 

bands as 

predictors. Manual 

selection of low 

correlation-high 
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Figure 4.12. Independent dataset classification OA for each classifier and 

predictor variable grouping. Predictor variable groupings are defined as (1) all 36 

spectral variables, (2) eight WV-2 bands, (3) Stepwise LR selected, (4) Stepwise 

LDA selected, and (5) high importance-low correlation variables. 

importance variables (Grouping 5) consistently outperformed input groupings based on 

stepwise selection methods (Groupings 3 & 4). The stepwise LDA selected grouping had 

the lowest OA for each classifier over all five groupings. The kappa coefficients of the 

classifiers indicate a range of probabilities from fair to moderate (Landis and Koch 1977) 

that the results achieved were above random chance (Κ = 0.300 – 0.494; Appendix D).  

4.3.4.2 Independent Validation Accuracies 

 When performance was assessed using an independent dataset the classifiers 

performed worse compared to the cross-validated accuracies (Figure 4.11 & 4.12). 

Examining the 

transferability of 

models form the 

training dataset to 

the independent 

dataset, the LR 

models had the 

lowest 

generalization (i.e. 

more overfitting) 

with a mean accuracy decrease of 4.94%, followed by the RF models (mean 2.38% 

decrease) and LDA classifiers (mean 1.77% decrease). The RF classifiers outperformed 

the other classifiers in three of the five variable groupings and produced the two best 

performing models with an OA of 70.64% for grouping 2 and 70.21% for grouping 5 
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(Figure 4.12). The LR and LDA methods had comparable performance for each grouping 

of predictor variables. Compared to the cross-validated accuracies, the improvements 

gained through using normalized two-band indices are more difficult to distinguish in the 

independent classification results. Consistently high accuracies across all three models 

for grouping 1 and the RF model for grouping 5 indicate improved GA detection but had 

lower accuracies than the RF classifier using only the WV-2 bands. Similar to the cross-

validated training dataset, attempts to reduce model complexity by using subsets of 

predictor variables through data mining produced mixed results. Other than the RF 

classifier using the low correlation-high importance selected variables (Grouping 5), all 

three classifiers produced lower accuracies when using the data mined subsets of 

predictors (Groupings 3, 4, & 5) compared to the full model (Grouping 1). The stepwise 

LDA selected grouping (#4) underperformed compared to the two other data mining 

techniques, producing the lowest OA for two of the three classifiers. The kappa 

coefficients of all models indicate a fair probability (Landis and Koch 1977) that the 

results achieved are above random chance (Κ = 0.227 - 0.386; Appendix E). Based on the 

cross-validated and independent validation results, the LR classifier using grouping 1 and 

RF classifier using grouping 2 were used to classify the entire WV-2 image masked with 

the green-tree segmentation shapefile to serve as an example of a potential operational 

map product.  

 While the OA of the best performing models indicate good potential for 

separating the two classes, the variance of accuracies between the two classes indicate 

that detection of GA trees might be more problematic. The GA class accuracies, user’s 
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and producer’s accuracies, indicate that GA trees suffer from errors of omission and 

commission a larger percent of the time than NA trees. GA user’s and producer’s 

accuracies ranged from 44.33-66.25% and 45.63-67.12%, respectfully (Figures 4.13 & 

4.14), compared to the NA user’s and producer’s which ranged from 67.30-84.06% and 

62.76-80.43%, respectfully (Figures 4.15 & 4.16). The two best performing classification 

methods (RF Grouping 2 & 5) had OA above 70% but GA user’s and producer’s 

accuracies below 60% and 66%, respectfully. Lower GA user’s and producer’s were also 

observed in the results based on cross-validation using the training data (Appendix D). 

The LR classifiers yielded higher GA user’s accuracies across all variable groupings, 

with slightly lower but similar results observed for RF models using groupings 1, 2, & 5 

(Figure 4.13). The LDA classifier achieved the highest GA producer’s accuracies across 

four of the five groupings, with the RF models achieving similar results as well (Figure 

4.14).  

  

4.4 Discussion 

4.4.1 Spectral Response of GA and NA Trees 

 Increased reflectance of GA trees within the visible bands is likely due to 

decreased absorption as photosynthetically active pigments, primarily total chlorophyll 

(chloropyll a + chlorophyll b), which degrade following a successful MPB attack on a 

tree (Carter and Knapp 2001). Hyperspectral research examining MPB related GA 

damage and other plant stress agents have observed that spectral response is most 

sensitive in regions with lower chlorophyll absorption coefficients, such as the green 
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Figure 4.13. Independent dataset classification GA user's accuracies for each model and 

grouping of predictors. 
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Figure 4.14. Independent dataset classification GA producer's accuracies for each model 

and grouping of predictors 
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Figure 4.15. Independent dataset classification NA user's accuracies for each model and 

grouping of predictors. 

Figure 4.16. Independent dataset classification GA producer’s accuracies for each model 

and grouping of predictors. 
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peak and red-edge regions of the spectrum (Ahern 1988; Carter 1993; Carter and Miller 

1994; Carter and Knapp 2001; Fassnacht et al. 2014; Niemann et al. 2015). Spectral 

changes in the regions with higher chlorophyll absorption coefficients (blue and red 

spectrum) do not manifest until severe stress and chlorophyll loss has developed because 

absorption is strong enough saturate these regions even with some pigment degradation 

(Blackburn 1998; Carter and Knapp 2001; Blackburn 2007). The increased reflectance 

across all visible bands indicates a severe level of GA damage in this dataset, which is   

consistent with a late winter/ early spring collection date and a longer amount of time for 

stress to develop. Higher within-class variance in the visible bands of the GA samples is 

expected as the rates and timing of stress development within MPB attacked trees is 

highly variable from tree-to-tree and among localized environmental differences between 

stands (Wulder et al. 2009). 

 The red-edge region of the spectrum has been noted as important for 

discrimination of GA damage in previous studies (Ahern 1988; Carter and Knapp 2001; 

Niemann et al. 2015) and is consistently correlated with chlorophyll degradation and 

plant stress (Carter 1993; Carter and Miller 1994; Filella and Penuelas 1994; Blackburn 

1998; Carter and Knapp 2001). In this study, GA reflectance in the red-edge band was 

significantly lower than NA trees (Figure 4.7), which is supported by Ahern (1988) who 

also observed lower GA reflectance for MPB lodgepole pines in the red-edge using 

ground-based hyperspectral data. However, red-edge response has been more commonly 

observed to increase in GA trees (Carter and Knapp 2001; Niemann et al. 2015) with red-

edge reflectance being greater in stressed plants (Carter 1993; Filella and Penuelas 1994; 
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Blackburn 1998; Carter and Knapp 2001). Red-edge response observed in hyperspectral 

GA studies have noted shifts occur in a very narrow range of wavelengths (Carter and 

Knapp 2001; Niemann et al. 2015). The broader red-edge bands of the WV-2 sensor (705 

– 745 nm) could also be influenced by a number of factors such as changes in internal 

structure towards the upper range of the red-edge band and changes in chlorophyll 

absorption in the lower range of the red-edge band. Research presented in Chapter 3, 

noted decreases in reflectance of GA needles around 740 nm but increases around 705-

720 nm. This potentially explains why variance of the red-edge band was higher than 

visible bands, which are influenced primarily by pigment absorption.  

 In this study, reflectance in both NIR bands was significantly suppressed for GA 

trees (Figures 4.5 & 4.7). Lower NIR reflectance in GA trees is consistent with NIR 

response observed in previous hyperspectral GA research (Ahern 1988; Sharma 2007; 

Niemann et al. 2015) and other bark beetle research utilizing WV-2 imager (Immitzer and 

Atzberger 2015). As stress develops, there is a reduction in the number of refractory 

surfaces within the spongy mesophyll as leaves dehydrate and shrink, causing 

intercellular cavities and air-to-water interfaces to reduce (Ceccato et al. 2001). Since the 

NIR radiation penetrates deeper into leaves and primarily interacts with the spongy 

mesophyll, changes in these structures have stronger influence on bands in the NIR 

spectrum.  

 Reasons for spectral differences between classes cannot be isolated to changes in 

internal structures of GA needles alone. NIR reflectance is also influenced by other 

confounding factors. Aldakeheel and Danson (1997) noted confounding effects on 
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spectral response due to changes in moisture and internal structure are greatest in regions 

with low absorption, such as the NIR. In addition, age and positioning of needles on GA 

trees can influence the spectral response in the NIR (Ahern 1988); both of which were 

not accounted for in this study. Loss of foliage in pre-weakened GA trees could also 

increase NIR reflectance. The numerous factors influencing NIR reflectance may explain 

why NIR bands, along with the red-edge band, had the highest within-class variance. 

Inclusion of background elements and spectral mixing may also increase class variance, 

which is a greater problem in coniferous trees due to their conical shape creating less 

sunlit areas compared to broad-leaf trees. The object based method of extracting the 

values from entire tree crown and using average reflectance values should minimize this 

effects.  

 

4.4.2 Variable Importance and Discriminating Ability 

 All of the WV-2 bands had some relevancy in discriminating GA and NA classes, 

but it is difficult to discern which are relatively best for separating classes. Non-

parametric analysis (Mann-Whitney U and effect size) and the RF method, which is 

robust against multicollinearity and distribution problems, indicated the two NIR bands 

best discriminate between classes (Figure 4.7 & 4.10). The LR and LDA results indicated 

that WV-2 bands in the visible range either improved discrimination (LR LOOCV; 

Figure 4.8) or were similar (LDA; Figure 4.9) compared to the red-edge, NIR-1 & 2 

bands. Large variance and spectral similarities between classes in the red-edge, NIR-1, 
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and NIR-2 bands could account for decreased discrimination in models analyzing the 

importance of individual WV-2 bands.  

Normalized two-band indices utilizing a combination of a NIR band and visible 

band better separated classes compared to any individual WV-2 bands. This was expected 

as these regions have lower correlations (Appendix C) and combine unique information 

from visible regions, where GA reflectance is higher, and the NIR regions, where GA 

reflectance is suppressed (Figures 4.4, 4.5, & 4.6). Although not specifically compared in 

this study, normalized two-band indices may also provide comparable results to models 

using all eight WV-2 bands as well. The LR accuracies of the index using the green and 

NIR-1 bands achieved a similar overall accuracy (65.54%; Figure 4.8) to the LR model 

using all WV-2 bands (69.79%; Figure 4.12). Use of a single variable could cut down on 

the amount of analyst input and processing time for predictive models and produce more 

generalizable models that are less prone to overfitting. However, it should be noted these 

results may not be directly comparable because the per-spectral variable LR models were 

created using the entire extracted dataset while the LR models used to classify damage 

using all eight WV-2 bands (Grouping 1) were a trained with a split (2/3
rd

) of the 

extracted dataset and validated with the remaining split. 

 

4.4.3 Classification Accuracies and Model Performance 

 Despite substantial overlap in spectral response variability between the two 

damage classes, WV-2 imagery and the classifiers analyzed in this study show some 

promise towards the discrimination of GA damage. Cross-validated and independent 
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dataset classification results indicate that RF and LR classifiers outperform LDA 

classification (Figures 4.11 & 4.12). This was expected as LR and RF methods are more 

robust against non-normality and multicollinearity compared to the parametric LDA 

classifier. While LR models consistently yielded the highest accuracies when cross-

validated with the training data, the RF methods produced the highest accuracies when 

transferred to the independent dataset (Figures 4.11 & 4.12). Increased generalization of 

RF methods compared to others examined in this study support claims that RF 

classification models not only handle multicollinearity and non-parametric data well but 

are also less prone to overfitting models, especially with larger numbers of predictor 

variables (Brieman 2001; Liaw and Wiener 2002).  

 Since GA damage is the target class for mitigation, lower GA user’s and 

producer’s accuracies (Figures 4.13 & 4.14) diminish the potential of the presented 

methods to be reliably used for GA detection at a level needed for operational use. The 

ratios of GA to NA trees in natural settings, in which GA trees occur in smaller numbers 

and patches, could further complicate operational use of these methods. In this study, GA 

and NA trees were sampled at relatively similar numbers, increasing the likelihood that of 

GA trees being correctly classified by probability alone. When applied in a natural 

setting, underestimations of GA damage may be more severe due to lower GA to NA 

ratios. LR models generally yielded higher user’s accuracies for the GA class and LDA 

models generally had higher producer’s accuracies, with RF yielding slightly lower for 

both. If shown to be further consistent, this unanticipated result could potentially be 

beneficial as it would allow forest officials to select different types of classifiers based on 
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the goals of mitigation. If mitigation is focused on more accurately placing ground troops 

in locations where GA is likely and reductions in wasted man-hours is emphasized, a 

classifier that yields higher GA user’s accuracies, such as the LR classifiers, is more 

appropriate. If mitigation is focused more on a GA inventory or infestation spread, then 

classifiers that have higher producer’s accuracies, such as the LDA, are more appropriate. 

When time and resources are limited, RF methods could provide results applicable to 

both.  

Low user’s and producer’s accuracies for the GA class are likely due to large 

within-class variance and spectral confusion with healthy trees (Figure 4.6). Even with 

the unique spectral characteristics, the spectral resolution of the WV-2 bands is likely too 

broad to capture the subtle spectral differences of GA trees observed in previous 

hyperspectral research (See Chapter 3). For example, previous GA studies (Ahern 1988; 

Carter and Knapp 2001; Niemann et al. 2015) have commonly identified narrow shifts in 

the red-edge of GA trees as important regions for discrimination. These narrow shifts are 

less likely to be detectable with broader band sensors. In this study, the red-edge band 

was significantly different between GA and NA classes and consistently had lower 

indications of discriminatory power compared to the other spectral variables.  

Looking at the example maps produced (Figures 4.17 & 4.18) it is evident how 

low GA class accuracies can negatively impact the usefulness of the classification maps 

produced. Compared to the reference Google Earth image (Figure 4.19) from September 

following the image acquisition, the user can see a number of commission errors (user’s 

errors) within the yellow polygons and omission errors (producer’s) outside of it. Trends 
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in user’s and producer’s errors between classifier types are also illustrated by the 

classified images. The RF classified image (Figure 4.17) overestimates the amount of GA 

pixels on the entire image compared to the LR classified image (Figure 4.17), which 

mirrors the differences in user’s and producer’s accuracies between the two classifiers 

observed in the independent dataset results (Figures 4.13 & 4.14).  

 Inclusion of normalized two-band indices as input predictor variables generally 

improved classification results. Models using all 28 indices plus the WV-2 bands as 

predictors (Grouping 1) yielded the highest cross-validated results and had consistently 

high accuracies when classifying the independent dataset. However, the RF model using 

just the WV-2 bands (Grouping 2) as predictors yielded the highest OA classifying the 

independent dataset, possibly foregoing the need to generate normalized two-band 

indices. Reliable GA detection without further data transformations would cut down on 

the amount of processing time and power needed to include variables such as the indices 

examined herein. This could potentially shorten the amount of time between image 

acquisition and mitigation. Benefits of using normalized indices are that it reduces the 

effects of illumination and topographic effects within a scene. This may better allow 

models to be transferred across multiple scenes and time periods.  

 Reducing model complexity through the data mining methods examined in this 

study did not improve results over models using all eight WV-2 bands or all 36 spectral 

variables. The stepwise LDA methods consistently produced the lowest OA compared to 

the other data mining methods, further confirming the unsuitability of parametric 

methods. Overall, the variables selected by interpretation of the correlation matrix and 
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indicators of variable importance produced better results than the two stepwise selection 

methods, including the model with the 2
nd

 highest OA when classifying the independent 

dataset (RF – Grouping 5). While this method relies on the subjectivity of the analyst and 

more time consuming, it may be more appropriate and overcome the statistical 

shortcomings of stepwise selection methods that have been previously documented 

(Thompson 1995). Even though the RF model using Grouping 5 was a high performing 

model, there is a high likelihood that results could be improved if more time and focus is 

devoted to finding better combinations of predictor variables. It is unlikely that the six 

variables chosen in this study are the best possible combination as there are over 1.9 

million potential combinations that could be derived from the 36 spectral variables 

analyzed.  

 

4.4.4 Limitations 

 The methods used to validate the classification accuracy are reliable unless there 

are inherent biases within reference data. This is a potential limitation in this research 

since ground data was collected using convenience sampling methods and was not truly 

randomized due to the practical limitations of accessibility to all areas within the study 

area. Even though attention was giving to not include fading trees in the GA samples, 

given the month long period between the field visit and image acquisition, there is a 

possibility that GA trees observed as green during the field visit had experience some 

fading. Registration errors in GPS measurements could also bias the reference data, 

however careful analysis of the previous year Google Earth imagery was used to 
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Figure 4.17. GA tree crowns (red) classified with the RF classifier using only WV-2 bands as predictors. Classified layer overlaid on the 

panchromatic WV-2 image (top) and pansharpened WV-2 image (subset). Clusters of GA damage outlined in yellow for comparison to a 

reference image (Figure 4.19) 
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Figure 4.18. GA tree crowns (red) classified with the LR classifier using all 36 WV-2 spectral variables as predictors. Classified layer overlaid 

on the panchromatic WV-2 image (top) and pansharpened WV-2 image (subset). Clusters of GA damage outlined in yellow for comparison to a 

reference image (Figure 4.19) 
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Figure 4.19. Google Earth™ imagery acquired 09/12/2015 with similar coverage to Figure 4.17 & 

4.18 subsets. GA trees in the Figure 4.17 & 4.18 subsets will appear as red crowns in this image. 

Sunlit red tree crowns not classified as GA damage in the subset images likely represent examples 

of GA classification errors of commission. 

minimize any of these negative impacts. Another limitation to this study, and potentially 

to later winter/early spring collection dates in general, are the less than ideal acquisition 

dates. Later winter/early spring collection of imagery in the Northern latitudes suffers 

from cloudy conditions, lower sun angles, and possible snow. The image used in this 

study had some snow cover in the image. Snow interfered with the atmospheric 

correction algorithms, causing undesired contaminated pixels in the image that needed to 

be removed. Image segmentation prior to extraction and classification removed a large 

amount of the snow from the image and is a necessary processing step under these 

conditions.  
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4.5 Summation 

 In this study, the spectral response of healthy and GA ponderosa pine trees 

located in the Black Hills was examined using WV-2 imagery and ground-truth data to 

determine which spectral variables best discriminate damage. GA and NA spectral 

responses were significantly different in each WV-2 band. Normalized two-band indices 

using a NIR and visible band increased discrimination compared to single WV-2 bands 

alone.  

Classification using high separation-low correlated variables with a RF classifier 

yielded promising results, but otherwise data mining produced models with lower 

accuracies. Including normalized two-band indices as predictor variables produced 

models with relatively high and consistent accuracies. Classification using a RF classifier 

achieved the two highest independently validated accuracies (70.6% & 70.2%). While the 

overall accuracies achieved are comparable to previous research, the GA class user’s and 

producer’s accuracies were lower than the NA class. The likely reason for 

misclassifications of the GA class is due to high with-in class variances and spectral 

overlap with the NA class. Given the lower GA class accuracies, these methods are 

unlikely to be successful as a stand-alone detection method. However, consistencies in 

GA class user’s and producer’s accuracies could provide forest officials a means to 

customize methods to meet the needs of mitigation objectives. Given the benefits of the 

WV-2 datasets compared to aerial hyperspectral data, these methods offer a means to 

deploying ground crews to more likely GA areas where the crews can further assess the 

presence or lack thereof of GA trees.  
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5. Conclusions 

 Reliable early detection of MPB damage in coniferous forest would provide 

numerous advantages over traditional ground-based detection methods and improve the 

efficacy of mitigation. This research presented in this study aims to better understand the 

potential of remote sensing for MPB GA detection using ground-based spectroradiometer 

and satellite multispectral (WV-2) data.  

  Using hyperspectral data collected from needle stacks of GA and NA pine trees, 

this study identified several regions in the VNIR and SWIR spectrum that consistently 

separated the two classes and show promise for canopy level detection. Bands associated 

with the edges of water absorption features in the SWIR, from 1451-1540 nm and 1973-

2103 nm, consistently yielded the greatest measures of discrimination across multiple 

statistical methods. Bands associated with regions influenced by total chlorophyll 

absorption from 462-520 nm and 663-689 nm consistently had the best discrimination in 

the visible spectrum. The spectral response of GA damage trees observed in this study is 

consistent with moisture loss and chlorophyll degradation from plant stress. Results also 

indicated evidence of more developed plant stress compared to GA studies with earlier 

collection windows. Using a later winter/early spring collection window allows more 

time for stress to onset, thus greater spectral differentiation between GA and NA trees.  

 It is unknown if these results can be scaled up for classification at the canopy 

level. High within class variance and overlap between classes is potentially a source of 

confusion. The SWIR bands recommended for GA detection are located near regions 

influenced by atmospheric water vapor scattering, which could decrease signal-to-noise 
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ratios. A degree of uncertainty can also be expected when scaling up results as variability 

in canopy structures cannot be accounted for at the needle level.  

 The ground-based hyperspectral findings of this study can be used to guide the 

use of existing remote sensing data sources for GA detection along with the development 

of future satellite-based remote sensing methods. Given the numerous options in sensors 

available, examining the suitability by a case-by-case basis would not be feasible. The 

information presented here can be used to select appropriate data sources and reduce data 

complexity or redundancy, thus saving valuable time and resources and potentially 

improving classification accuracies. Further analysis examining continuum and scale-

based methods of normalizing the spectra and spectral derivative analysis can be used to 

remove unwanted noise and extract shape metrics from the spectra. These could be used 

to improve results and identify more subtle change features not identified in this study. 

Separation between classes may be improved through the use of vegetation and moisture 

indices. Future research can use the results here to guide the selection of these indices and 

help modify them by utilizing the damage sensitive and insensitive bands reported. 

Additionally, measurements of needle moisture and chlorophyll a and b content could be 

correlated with spectral differences observed in this study to better understand the 

biophysical changes in MPB attacked trees. This information could help explain the 

drivers of differences between GA and NA trees in the late winter/early spring following 

the initial MPB attacks.  

To further meet the study objectives, ground-truth data and WV-2 imagery were 

used to identify multispectral variables that best discriminate GA and NA classes using 
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multiple statistical measures and classification was implemented using LR, LDA, and RF 

classifiers to examine the potential for canopy-level GA detection. All eight WV-2 bands 

significantly discriminated the two classes. Normalized two-band indices using a NIR 

band and visible band increased the separation of GA and NA trees, however it was 

inconclusive where using normalized two-band indices as a predictor variables in 

classification improved detection compared to only the eight WV-2 bands. 

RF classifiers yielded models with the two best independently validated 

accuracies, with OA of 70.6% for the model using the eight WV-2 bands as predictors 

and 70.2% for the model using a grouping of spectral variables selected based on 

measures of importance and low correlations with each other. Furthermore, the RF 

classifiers showed the lowest degree of overfitting, required the least amount of user 

input, and had faster processing times.   

The best performing models yielded accuracies that are comparable to those 

achieved in previous studies attempting MPB GA detection using hyperspectral aerial 

imagery (Heath 2001; Fassnacht et al. 2014) and spruce beetle GA detection using WV-2 

data (Immitzer and Atzberger 2014). This is likely due to high spatial resolution of the 

WV-2 imagery. Furthermore, the WV-2 satellite offers a number of advantages over 

hyperspectral aerial imagery for GA detection. Hyperspectral data has a large number of 

variables that increase storage amount, decrease processing time, and reduce data 

dimensionality for most classification algorithms. The WV-2 image has multi-look 

capabilities which increases the temporal resolution and offers a larger coverage of the 
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landscape, where aerial imagery may require many flights and images to cover similar 

areas.   

While the overall accuracies achieved are relatively good compared to previous 

research, the low GA user’s and producer’s accuracy observed mean the methods 

presented here are unlikely to reach the detection rates needed to successfully mitigation 

beetle infestations as a stand-alone detection method. All three classifiers underestimated 

GA damage relative to NA damage. However, given the benefits of the WV-2 datasets, 

these methods offer improvements over the existing GA detection methods. When used 

in conjunction with more traditional strategies, these methods can augment GA detection 

and may provide the coverage needed to improve the effectiveness of mitigation efforts. 

Consistencies in GA class user’s and producer’s accuracies could provide forest officials 

a means to customize methods to meet the needs of mitigation objectives. Detection maps 

can be incorporated in to other GIS analysis, such as heat mapping or hot spot analysis, to 

improve the placement of ground mitigation. Furthermore, future studies could 

investigate feasibility of using higher NA class accuracies to estimate GA damage by 

calculating the difference between forested area and NA trees.  

 Given the possible number of combinations, it is unlikely that the subset of 

predictor variables selected by the author’s interpretation of variable importance results 

and correlation matrices produce the optimal grouping of predictors. Further data mining 

efforts will likely produce a more optimal grouping that yield higher accuracies while 

reducing model complexity. The indices examined in this research were relatively simple 

ratios based on the normalized difference vegetation index equation. Future research into 
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other vegetation indices using transformations of multiple bands could further improve 

detection accuracies. Given the separation between GA and NA observed for SWIR 

bands in the ground-based hyperspectral data, future detection and mapping using high 

spatial resolution satellite systems with SWIR bands, such as the WorldView-3 satellite, 

is recommended and will likely improve detection accuracies.  

 

5.1 Final Thoughts 

 Analysis of hyperspectral needle-level measurements identified multiple visible 

and SWIR regions of bands that discriminated GA damage from NA trees. This suggests 

that canopy level detection maybe possible and results can be used to guide the 

development of such methods. Attempts to accurately classify GA damage with WV-2 

imagery achieved overall accuracies similar to previous studies using hyperspectral data, 

but given the low GA class accuracies, operational use of these methods as a stand-alone 

detection method will require technological advances in sensing systems. However, given 

the advantages of satellite data over aerial data, it is the author’s opinion that the methods 

presented offer improvement over existing methods. Incorporating these methods with 

further research into different spectral variables and/or future improvements in the 

spectral and spatial resolutions of sensors may yield high enough accuracies to 

adequately supplement existing ground-based GA detection methods and improve 

effectiveness of GA detection.  
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Appendix A. Historic winter monthly lows for weather. National Weather Service 

stations located at Custer, SD (NWS ID CUSS2), Mt. Rushmore National Monument 

(NWS ID RMNS2), Lead, SD (NWS ID LEAS2), and Pactola Dam (NWS ID RAPS2). 

 Custer, SD Mt. Rushmore 

National Monument 

Lead, SD Pactola Dam, SD 

Year Jan. Feb. Dec. Jan. Feb. Dec. Jan. Feb. Dec. Jan Feb. Dec 

2016 3 5 NR -2 14 NR -3 14 NR -8 6 NR 

2015 -11 -12 1 -4 -5 3 -6 -5 0 -8 -12 -6 

2014 -18 -21 -13 -12 -16 -9 -15 -14 -14 -16 -26 -12 

2013 -4 4 -18 -2 4 -18 -4 2 -17 -6 -9 -21 

2012 -6 -11 -3 -11 -5 1 -8 -8 -4 -11 -15 -7 

2011 -9 -19 -9 -17 -17 0 -18 -24 -4 -17 -21 -7 

2010 -19 -9 -4 -10 -2 -2 -13 -7 -9 -17 -15 -5 

2009 -10 1 -17 -7 -2 -10 -8 1 -12 -17 -2 -16 

2008 -8 NR -23 -8 -9 -18 -9 -10 -22 -15 -7 -21 

2007 -11 -18 2 -14 -9 6 -13 -12 2 -13 -20 -6 

2006 9 -26 0 20 -20 5 15 -22 3 10 -30 -5 

2005 -8 7 -16 -13 4 -8 -11 8 -12 -13 4 -16 

2004 -14 -8 -14 -14 0 -9 -16 -7 -13 -17 -12 -14 

2003 -6 -26 2 -7 -17 8 -7 -16 7 -12 -23 0 

2002 -3 -10 7 0 -5 10 -1 -10 9 -9 -6 0 

2001 0 -17 -5 7 -3 3 5 -10 1 -5 -22 -8 

2000 1 9 -16 10 5 -7 5 7 -13 -4 0 -17 

1999 -14 9 -2 -3 12 4 -7 9 1 -11 9 1 

1998 -10 13 -25 -11 15 -17 -12 11 -18 -13 8 -23 

1997 -18 -2 -3 -14 3 10 -20 -6 6 -22 -6 -2 

1996 -18 -31 -15 -19 -21 -10 -21 -24 -12 -23 -34 -20 

1995 -15 -8 -13 -4 -8 -7 -6 -12 -8 -10 -11 -9 

1994 -9 -24 5 -8 -17 2 -11 -19 0 -10 -24 -6 

1993 -16 -23 5 -4 -15 10 -8 -14 8 -15 -24 2 

1992 -8 9 -9 -4 4 -14 -9 7 -15 -15 2 -15 

1991 -15 4 9 -10 14 8 -13 7 7 -20 -1 -2 

1990 5 -6 -30 14 -4 -27 7 -7 -29 4 -11 -28 

1989 -14 -27 -28 -5 -29 -23 -9 -32 -24 -9 -29 -34 

1988 -13 -11 -5 -10 -12 -5 -9 -13 -9 -19 -14 -6 

1987 -6 9 -14 0 12 0 -5 10 -4 -6 6 -11 

1986 3 -20 -8 0 -9 0 9 -12 -2 7 -21 -4 

1985 -19 -21 -10 -15 -15 -12 -23 -15 -15 -18 -23 -24 
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1984 -24 -1 -12 -15 7 -9 -14 2 -9 -18 -7 -16 

1983 NR NR -34 10 6 -31 10 5 -33 5 1 -35 

1982 -23 -30 NR -19 -17 3 -22 -20 1 -23 -28 -5 

1981 -5 -21 -8 9 -18 -3 8 -23 3 -1 -19 -5 

1980 -22 -13 -9 -18 -4 -6 -19 -5 -10 -26 -18 -6 

1979 -22 -16 -17 -20 -15 -6 -16 -16 -10 -28 -17 -17 

1978 -15 -12 -28 -8 -5 -17 -11 -8 -19 NR NR -28 

1977 -17 10 -25 -14 11 -17 -14 14 -20 NR 4 NR 

1976 -20 -22 -10 -16 -8 -10 -13 -9 -12 -21 -21 NR 

1975 -14 -16 -12 -12 -11 -6 -17 -12 -2 -13 -15 -8 

1974 -24 -8 -4 -17 -1 0 -21 -3 -5 -28 -11 -9 

1973 -23 -8 -8 -15 0 -8 -16 0 -12 -24 -8 4 

1972 -26 -12 -27 -23 -4 -20 -23 -12 -22 -24 -14 -27 

1971 -22 -20 -6 -12 -14 -4 -11 -15 -7 -15 -23 -6 

1970 -24 -2 -16 -14 -1 -6 -14 -1 -3 -20 -4 -12 

1969 -11 -5 -18 -14 10 7 -15 7 5 -17 -1 -7 

1968 -26 -7 -22 -20 0 -25 -20 -6 -27 -25 -7 -26 

1967 -9 -11 -16 -10 -2 -15 -10 -2 -12 -12 -9 -23 

1966 -27 -15 -15 -15 -8 0 -14 -3 -2 -22 -12 -6 

1965 NR -16 -9 0 -13 0 3 -20 1 -3 -20 -3 

1964 -26 -2 -37 -1 3 -24 -3 -1 -25 -18 -7 -24 

1963 -43 -15 -15 -38 -8 -7 -25 -5 -11 -34 -15 -18 

1962 -32 -34 -22 NR -15 -2 -18 -15 -3 -27 -23 -7 

1961 -12 -3 -21 NR NR NR -6 9 -12 -13 2 -21 

1960 -20 -28 -19 NR NR NR -4 -12 -1 -12 -24 -9 

1959 -31 -15 1 NR NR NR -20 -2 11 -26 -10 2 

1958 -8 -19 -15 NR NR NR 12 -7 -10 -2 -17 -16 

1957 -30 -17 -9 NR NR NR -19 -14 10 -27 -18 2 

1956 -9 -22 -15 NR NR NR -6 -14 -12 -12 -18 -13 

1955 -11 -22 -11 NR NR NR -5 -15 -10 NR NR NR 

1954 -18 2 -18 NR NR NR -19 7 6 NR NR NR 

1953 NR -5 -4 NR NR NR -11 -2 -3 NR NR NR 

1952 -24 -8 -7 NR NR NR -19 3 8 NR NR NR 

1951 -36 -24 -25 NR NR NR -23 -14 -20 NR NR NR 

1950 -24 -14 -18 NR NR NR -27 -6 -10 NR NR NR 

1949 NR -17 -8 NR NR NR -21 -19 -11 NR NR NR 

1948 -26 -24 -8 NR NR NR -12 -15 2 NR NR NR 

1947 -22 -16 -6 NR NR NR -7 NR -1 NR NR NR 
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1946 -20 -5 -24 NR NR NR -8 3 -13 NR NR NR 

1945 -16 -9 -25 NR NR NR 1 -3 -10 NR NR NR 

1944 -16 -27 -26 NR NR NR 7 -9 -9 NR NR NR 

1943 -31 -1 -7 NR NR NR -30 -8 0 NR NR NR 

1942 NR NR NR NR NR NR -18 -19 -1 NR NR NR 

1941 NR NR NR NR NR NR -4 3 -11 NR NR NR 

1940 NR NR NR NR NR NR -25 0 -2 NR NR NR 

1939 NR NR NR NR NR NR 0 -26 7 NR NR NR 

1938 NR NR NR NR NR NR -19 -11 -8 NR NR NR 

1937 NR NR NR NR NR NR -21 -7 -13 NR NR NR 

1936 NR NR NR NR NR NR -7 -40 -14 NR NR NR 

1935 NR NR NR NR NR NR -32 -8 -12 NR NR NR 

1934 NR NR NR NR NR NR 5 -13 -16 NR NR NR 

1933 NR NR NR NR NR NR -10 -34 -16 NR NR NR 

1932 NR NR NR NR NR NR -18 -10 -25 NR NR NR 

1931 NR NR NR NR NR NR -5 14 6 NR NR NR 

1930 NR NR NR NR NR NR -32 1 15 NR NR NR 

1929 NR NR NR NR NR NR -18 -15 -9 NR NR NR 

1928 NR NR NR NR NR NR -25 -12 -2 NR NR NR 

1927 NR NR NR NR NR NR -22 -12 -27 NR NR NR 

1926 NR NR NR NR NR NR -4 5 -22 NR NR NR 

1925 NR NR NR NR NR NR -5 0 -16 NR NR NR 

1924 NR NR NR NR NR NR -19 -12 -29 NR NR NR 

1923 NR NR NR NR NR NR 0 -25 -25 NR NR NR 

1922 NR NR NR NR NR NR -19 -20 -14 NR NR NR 

1921 NR NR NR NR NR NR 2 -1 -14 NR NR NR 

1920 NR NR NR NR NR NR -15 -2 -9 NR NR NR 

1919 NR NR NR NR NR NR -19 -20 -29 NR NR NR 

1918 NR NR NR NR NR NR -30 -24 -16 NR NR NR 

1917 NR NR NR NR NR NR -25 -29 -27 NR NR NR 

1916 NR NR NR NR NR NR -29 -12 -22 NR NR NR 

1915 NR NR NR NR NR NR -18 3 -10 NR NR NR 

1914 NR NR NR NR NR NR 2 -29 -11 NR NR NR 

1913 NR NR NR NR NR NR -23 -19 2 NR NR NR 

1912 NR NR NR NR NR NR -22 -20 3 NR NR NR 

1911 NR NR NR NR NR NR -25 -4 -21 NR NR NR 

1910 NR NR NR NR NR NR -13 -26 10 NR NR NR 
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Appendix B. Shapiro-Wilk test of normality for each WV-2 spectral variable.  

WV-2 Variable Group 
Shapiro-Wilk Test 

Statistic df Sig. 

Coastal NA 0.945 414 0.000 

GA 0.892 291 0.000 

Blue NA 0.933 414 0.000 

GA 0.908 291 0.000 

Green NA 0.984 414 0.000 

GA 0.942 291 0.000 

Yellow NA 0.953 414 0.000 

GA 0.957 291 0.000 

Red NA 0.95 414 0.000 

GA 0.94 291 0.000 

Red - Edge NA 0.979 414 0.000 

GA 0.994 291 0.248 

NIR1 NA 0.983 414 0.000 

GA 0.991 291 0.086 

NIR2 NA 0.985 414 0.000 

GA 0.986 291 0.006 

Coastal-Blue NA 0.997 414 0.573 

GA 0.985 291 0.005 

Coastal -Green NA 0.951 414 0.000 

GA 0.99 291 0.039 

Coastal/Yellow NA 0.986 414 0.001 

GA 0.983 291 0.001 

Coastal/Red NA 0.993 414 0.038 

GA 0.975 291 0.000 

Coastal/Red Edge NA 0.962 414 0.000 

GA 0.954 291 0.000 

Coastal/NIR 1 NA 0.953 414 0.000 

GA 0.94 291 0.000 

Coastal/NIR 2 NA 0.952 414 0.000 

GA 0.949 291 0.000 

Blue/Green NA 0.988 414 0.002 

GA 0.996 291 0.628 

Blue/Yellow NA 0.96 414 0.000 

GA 0.977 291 0.000 

Blue/Red NA 0.994 414 0.109 
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GA 0.988 291 0.019 

Blue/Red Edge NA 0.941 414 0.000 

GA 0.974 291 0.000 

Blue/NIR 1 NA 0.951 414 0.000 

GA 0.956 291 0.000 

Blue/NIR 2 NA 0.939 414 0.000 

GA 0.959 291 0.000 

Green/Yellow NA 0.989 414 0.004 

GA 0.995 291 0.397 

Green/Red NA 0.988 414 0.002 

GA 0.962 291 0.000 

Green/Red Edge NA 0.988 414 0.002 

GA 0.962 291 0.000 

Green/NIR 1 NA 0.981 414 0.000 

GA 0.978 291 0.000 

Green/NIR 2 NA 0.99 414 0.005 

GA 0.971 291 0.000 

Yellow/Red NA 0.995 414 0.162 

GA 0.996 291 0.588 

Yellow/Red Edge NA 0.96 414 0.000 

GA 0.977 291 0.000 

Yellow/NIR 1 NA 0.97 414 0.000 

GA 0.974 291 0.000 

Yellow/NIR 2 NA 0.938 414 0.000 

GA 0.987 291 0.009 

Red/Red Edge NA 0.946 414 0.000 

GA 0.982 291 0.001 

Red/NIR 1 NA 0.952 414 0.000 

GA 0.981 291 0.001 

Red/NIR 2 NA 0.958 414 0.000 

GA 0.975 291 0.000 

Red Edge/NIR 1 NA 0.763 414 0.000 

GA 0.978 291 0.000 

Red Edge/NIR 2 NA 0.975 414 0.000 

GA 0.985 291 0.004 

NIR 1/NIR 2 NA 0.976 414 0.000 

GA 0.989 291 0.026 
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Appendix C. Correlation coefficients between all 36 WV-2 spectral variables.  

  
Coastal Blue Green Yellow Red 

Red 

Edge 
NIR 1 NIR 2 

Coastal 1.000 0.360 0.824 0.385 0.361 0.227 0.112 0.173 

Blue 0.360 1.000 0.368 0.669 0.289 0.285 0.160 0.057 

Green 0.824 0.368 1.000 0.362 0.347 0.222 0.163 0.367 

Yellow 0.385 0.669 0.362 1.000 0.302 0.393 0.232 0.071 

Red 0.361 0.289 0.347 0.302 1.000 0.171 0.092 0.097 

Red Edge 0.227 0.285 0.222 0.393 0.171 1.000 0.824 0.223 

NIR 1 0.112 0.160 0.163 0.232 0.092 0.824 1.000 0.302 

NIR 2 0.173 0.057 0.367 0.071 0.097 0.223 0.302 1.000 

Coastal-

Blue 
0.691 0.358 0.503 0.124 0.101 0.006 0.021 0.127 

Coastal-

Green 
0.715 0.169 0.250 0.212 0.179 0.147 0.038 0.077 

Coastal-

Yellow 
0.763 0.050 0.584 0.238 0.147 0.032 0.037 0.141 

Coastal-

Red 
0.743 0.157 0.571 0.165 0.303 0.091 0.057 0.124 

Coastal-

Red Edge 
0.856 0.207 0.687 0.172 0.248 0.253 0.264 0.087 

Coastal-

NIR 1 
0.881 0.250 0.695 0.238 0.288 0.153 0.318 0.056 

Coastal-

NIR 2 
0.898 0.318 0.635 0.342 0.304 0.136 0.004 0.229 

Blue-

Green 
0.280 0.630 0.441 0.348 0.019 0.123 0.045 0.249 

Blue-

Yellow 
0.071 0.575 0.100 0.183 0.068 0.040 0.024 0.015 

Blue-Red 0.057 0.644 0.074 0.356 0.497 0.120 0.090 0.017 

Blue-Red 

Edge 
0.205 0.787 0.219 0.407 0.180 0.328 0.318 0.058 

Blue-NIR 

1 
0.263 0.824 0.243 0.483 0.225 0.194 0.389 0.097 

Blue-NIR 

2 
0.213 0.843 0.116 0.559 0.207 0.153 0.013 0.451 

Green-

Yellow 
0.366 0.234 0.564 0.529 0.032 0.166 0.069 0.280 

Green-

Red 
0.359 0.058 0.538 0.031 0.575 0.011 0.054 0.236 

Green-

Red Edge 
0.359 0.058 0.538 0.031 0.575 0.011 0.054 0.236 

Green-

NIR 1 
0.621 0.193 0.750 0.141 0.231 0.358 0.499 0.163 
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Green-

NIR 2 
0.704 0.331 0.761 0.319 0.278 0.080 0.019 0.296 

Yellow-

Red 
0.011 0.281 0.004 0.537 0.607 0.167 0.119 0.030 

Yellow-

Red Edge 
0.190 0.430 0.177 0.681 0.166 0.373 0.381 0.083 

Yellow-

NIR 1 
0.252 0.473 0.201 0.731 0.207 0.210 0.461 0.130 

Yellow-

NIR 2 
0.190 0.502 0.050 0.779 0.183 0.205 0.031 0.539 

Red-Red 

Edge 
0.147 0.062 0.142 0.007 0.756 0.484 0.440 0.042 

Red-NIR 

1 
0.211 0.124 0.170 0.094 0.776 0.361 0.524 0.088 

Red-NIR 

2 
0.186 0.205 0.055 0.219 0.796 0.031 0.085 0.492 

Red Edge-

NIR 1 
0.173 0.174 0.079 0.244 0.122 0.308 0.270 0.131 

Red Edge-

NIR 2 
0.034 0.169 0.123 0.255 0.050 0.640 0.438 0.586 

NIR 1-

NIR 2 
0.049 0.096 0.165 0.151 0.006 0.537 0.613 0.550 

 

 Coastal-

Blue 

Coastal-

Green 

Coastal-

Yellow 

Coastal-

Red 

Coastal-

Red 

Edge 

Coastal-

NIR 1 

Coastal-

NIR 2 

Blue-

Green 

Coastal 0.691 0.715 0.763 0.743 0.856 0.881 0.898 0.280 

Blue 0.358 0.169 0.050 0.157 0.207 0.250 0.318 0.630 

Green 0.503 0.250 0.584 0.571 0.687 0.695 0.635 0.441 

Yellow 0.124 0.212 0.238 0.165 0.172 0.238 0.342 0.348 

Red 0.101 0.179 0.147 0.303 0.248 0.288 0.304 0.019 

Red 

Edge 

0.006 0.147 0.032 0.091 0.253 0.153 0.136 0.123 

NIR 1 0.021 0.038 0.037 0.057 0.264 0.318 0.004 0.045 

NIR 2 0.127 0.077 0.141 0.124 0.087 0.056 0.229 0.249 

Coastal-

Blue 

1.000 0.647 0.838 0.666 0.715 0.695 0.654 0.746 

Coastal-

Green 

0.647 1.000 0.677 0.656 0.676 0.691 0.783 0.015 

Coastal-

Yellow 

0.838 0.677 1.000 0.711 0.803 0.770 0.717 0.506 

Coastal-

Red 

0.666 0.656 0.711 1.000 0.723 0.701 0.703 0.298 

Coastal- 0.715 0.676 0.803 0.723 1.000 0.959 0.818 0.342 
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Red 

Edge 

Coastal-

NIR 1 

0.695 0.691 0.770 0.701 0.959 1.000 0.847 0.303 

Coastal-

NIR 2 

0.654 0.783 0.717 0.703 0.818 0.847 1.000 0.175 

Blue-

Green 

0.746 0.015 0.506 0.298 0.342 0.303 0.175 1.000 

Blue-

Yellow 

0.349 0.012 0.212 0.036 0.099 0.078 0.060 0.477 

Blue-

Red 

0.407 0.020 0.152 0.402 0.008 0.006 0.060 0.562 

Blue-

Red 

Edge 

0.361 0.082 0.032 0.099 0.372 0.336 0.218 0.563 

Blue-

NIR 1 

0.333 0.140 0.031 0.108 0.349 0.415 0.286 0.577 

Blue-

NIR 2 

0.405 0.194 0.136 0.064 0.121 0.172 0.395 0.718 

Green-

Yellow 

0.545 0.000 0.728 0.359 0.456 0.398 0.244 0.716 

Green-

Red 

0.331 0.024 0.364 0.761 0.366 0.326 0.254 0.410 

Green-

Red 

Edge 

0.331 0.024 0.364 0.761 0.366 0.326 0.254 0.410 

Green-

NIR 1 

0.468 0.188 0.545 0.461 0.788 0.822 0.528 0.442 

Green-

NIR 2 

0.433 0.302 0.503 0.505 0.639 0.662 0.811 0.298 

Yellow-

Red 

0.189 0.018 0.330 0.420 0.067 0.052 0.022 0.267 

Yellow-

Red 

Edge 

0.129 0.095 0.236 0.085 0.370 0.347 0.216 0.261 

Yellow-

NIR 1 

0.103 0.161 0.212 0.099 0.337 0.433 0.290 0.285 

Yellow-

NIR 2 

0.196 0.223 0.311 0.048 0.064 0.138 0.412 0.460 

Red-Red 

Edge 

0.088 0.059 0.141 0.349 0.377 0.343 0.157 0.061 

Red-

NIR 1 

0.100 0.126 0.144 0.314 0.369 0.433 0.233 0.018 

Red-

NIR 2 

0.004 0.207 0.028 0.358 0.141 0.194 0.388 0.178 

Red 

Edge-

NIR 1 

0.031 0.175 0.001 0.044 0.013 0.259 0.207 0.115 
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Red 

Edge-

NIR 2 

0.111 0.176 0.150 0.029 0.302 0.191 0.280 0.299 

NIR 1-

NIR 2 

0.135 0.098 0.160 0.053 0.320 0.338 0.191 0.260 

 

 Green-

NIR 1 

Green-

NIR 2 

Yellow-

Red 

Yellow-Red 

Edge 

Yellow-

NIR 1 

Yellow-

NIR 2 

Coastal 0.621 0.704 0.011 0.190 0.252 0.190 

Blue 0.193 0.331 0.281 0.430 0.473 0.502 

Green 0.750 0.761 0.004 0.177 0.201 0.050 

Yellow 0.141 0.319 0.537 0.681 0.731 0.779 

Red 0.231 0.278 0.607 0.166 0.207 0.183 

Red Edge 0.358 0.080 0.167 0.373 0.210 0.205 

NIR 1 0.499 0.019 0.119 0.381 0.461 0.031 

NIR 2 0.163 0.296 0.030 0.083 0.130 0.539 

Coastal-Blue 0.468 0.433 0.189 0.129 0.103 0.196 

Coastal-

Green 

0.188 0.302 0.018 0.095 0.161 0.223 

Coastal-

Yellow 

0.545 0.503 0.330 0.236 0.212 0.311 

Coastal-Red 0.461 0.505 0.420 0.085 0.099 0.048 

Coastal-Red 

Edge 

0.788 0.639 0.067 0.370 0.337 0.064 

Coastal-NIR 

1 

0.822 0.662 0.052 0.347 0.433 0.138 

Coastal-NIR 

2 

0.528 0.811 0.022 0.216 0.290 0.412 

Blue-Green 0.442 0.298 0.267 0.261 0.285 0.460 

Blue-Yellow 0.097 0.089 0.221 0.173 0.176 0.181 

Blue-Red 0.010 0.088 0.747 0.262 0.252 0.307 

Blue-Red 

Edge 

0.401 0.258 0.178 0.672 0.590 0.358 

Blue-NIR 1 0.460 0.304 0.193 0.629 0.707 0.444 

Blue-NIR 2 0.055 0.433 0.275 0.425 0.481 0.747 

Green-

Yellow 

0.562 0.401 0.470 0.426 0.455 0.646 

Green-Red 0.443 0.404 0.549 0.013 0.020 0.138 

Green-Red 

Edge 

0.443 0.404 0.549 0.013 0.020 0.138 

Green-NIR 1 1.000 0.652 0.088 0.410 0.471 0.017 
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Green-NIR 2 0.652 1.000 0.028 0.233 0.283 0.427 

Yellow-Red 0.088 0.028 1.000 0.422 0.415 0.481 

Yellow-Red 

Edge 

0.410 0.233 0.422 1.000 0.903 0.614 

Yellow-NIR 1 0.471 0.283 0.415 0.903 1.000 0.684 

Yellow-NIR 2 0.017 0.427 0.481 0.614 0.684 1.000 

Red-Red 

Edge 

0.432 0.167 0.661 0.396 0.321 0.016 

Red-NIR 1 0.500 0.220 0.610 0.374 0.457 0.117 

Red-NIR 2 0.075 0.395 0.517 0.186 0.254 0.492 

Red Edge-

NIR 1 

0.212 0.150 0.073 0.028 0.401 0.283 

Red Edge-

NIR 2 

0.447 0.283 0.168 0.260 0.083 0.596 

NIR 1-NIR 2 0.587 0.224 0.143 0.271 0.296 0.487 

 

 Red-Red 

Edge 

Red-

NIR 1 

Red-

NIR 2 

Red Edge-

NIR 1 

Red Edge-

NIR 2 

NIR 1-

NIR 2 

Coastal 0.147 0.211 0.186 0.173 0.034 0.049 

Blue 0.062 0.124 0.205 0.174 0.169 0.096 

Green 0.142 0.170 0.055 0.079 0.123 0.165 

Yellow 0.007 0.094 0.219 0.244 0.255 0.151 

Red 0.756 0.776 0.796 0.122 0.050 0.006 

Red Edge 0.484 0.361 0.031 0.308 0.640 0.537 

NIR 1 0.440 0.524 0.085 0.270 0.438 0.613 

NIR 2 0.042 0.088 0.492 0.131 0.586 0.550 

Coastal-Blue 0.088 0.100 0.004 0.031 0.111 0.135 

Coastal-

Green 

0.059 0.126 0.207 0.175 0.176 0.098 

Coastal-

Yellow 

0.141 0.144 0.028 0.001 0.150 0.160 

Coastal-Red 0.349 0.314 0.358 0.044 0.029 0.053 

Coastal-Red 

Edge 

0.377 0.369 0.141 0.013 0.302 0.320 

Coastal-NIR 

1 

0.343 0.433 0.194 0.259 0.191 0.338 

Coastal-NIR 

2 

0.157 0.233 0.388 0.207 0.280 0.191 

Blue-Green 0.061 0.018 0.178 0.115 0.299 0.260 

Blue-Yellow 0.078 0.062 0.038 0.051 0.056 0.032 
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Blue-Red 0.537 0.505 0.438 0.027 0.110 0.105 

Blue-Red 

Edge 

0.372 0.340 0.175 0.067 0.248 0.236 

Blue-NIR 1 0.321 0.422 0.240 0.295 0.103 0.262 

Blue-NIR 2 0.068 0.144 0.450 0.210 0.475 0.396 

Green-Yellow 0.128 0.068 0.162 0.165 0.367 0.307 

Green-Red 0.539 0.545 0.671 0.082 0.182 0.150 

Green-Red 

Edge 

0.539 0.545 0.671 0.082 0.182 0.150 

Green-NIR 1 0.432 0.500 0.075 0.212 0.447 0.587 

Green-NIR 2 0.167 0.220 0.395 0.150 0.283 0.224 

Yellow-Red 0.661 0.610 0.517 0.073 0.168 0.143 

Yellow-Red 

Edge 

0.396 0.374 0.186 0.028 0.260 0.271 

Yellow-NIR 1 0.321 0.457 0.254 0.401 0.083 0.296 

Yellow-NIR 2 0.016 0.117 0.492 0.283 0.596 0.487 

Red-Red 

Edge 

1.000 0.932 0.677 0.098 0.387 0.370 

Red-NIR 1 0.932 1.000 0.725 0.263 0.246 0.400 

Red-NIR 2 0.677 0.725 1.000 0.192 0.408 0.333 

Red Edge-

NIR 1 

0.098 0.263 0.192 1.000 0.364 0.112 

Red Edge-

NIR 2 

0.387 0.246 0.408 0.364 1.000 0.884 

NIR 1-NIR 2 0.370 0.400 0.333 0.112 0.884 1.000 
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Appendix D. Cross-Validated classification accuracies for each classifier and predictor variable grouping. 

Variable 

Grouping 

Classifier Overall 

Accuracy (%) 

Kappa GA User's 

Accuracy (%) 

NA User's 

Accuracy (%) 

GA Producer's 

Accuracy (%) 

NA Producer's 

Accuracy (%) 

Grouping 1 LR 75.96 0.494 74.25 76.9 63.92 84.42 

LDA 68.94 0.3462 55.67 78.26 64.29 78.26 

RF 73.19 0.434 59.79 82.61 70.73 74.51 

Grouping 2 LR 69.79 0.353 67.81 70.68 51.03 82.97 

LDA 67.45 0.3001 46.91 81.88 64.54 68.69 

RF 72.13 0.412 58.76 81.52 69.09 73.77 

Grouping 3 LR 72.34 0.416 69.51 73.86 58.76 81.88 

LDA 69.57 0.35 51.55 82.25 67.11 70.72 

RF 70 0.3681 56.7 79.35 65.87 72.28 

Grouping 4 LR 69.15 0.345 65.61 70.93 53.09 80.43 

LDA 67.45 0.3056 49.48 80.07 63.58 69.28 

RF 65.32 0.2695 51.03 75.36 59.28 68.65 

Grouping 5 LR 72.34 0.4095 71.33 72.81 55.15 84.42 

LDA 71.28 0.3824 51.55 85.14 70.92 71.43 

RF 72.13 0.4138 59.79 80.8 68.64 74.09 
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Appendix E. Classification accuracies tested using an independent dataset for each classifier and predictor variable grouping.  

Variable 

Grouping 

Classifier Overall 

Accuracy (%) 

Kappa GA User's 

Accuracy (%) 

NA User's 

Accuracy (%) 

GA Producer's 

Accuracy (%) 

NA Producer's 

Accuracy (%) 

Grouping 1 LR 69.79 0.3601 66.25 71.61 54.64 80.43 

LDA 69.36 0.3439 50.52 82.61 67.12 70.37 

RF 68.51 0.3464 59.79 74.64 62.37 72.54 

Grouping 2 LR 66.38 0.2766 62.86 67.88 45.36 81.16 

LDA 67.76 0.2985 44.33 84.06 66.15 68.24 

RF 70.64 0.3859 59.79 78.26 65.91 73.47 

Grouping 3 LR 67.23 0.3125 61.63 70.47 54.64 76.09 

LDA 67.66 0.3118 50.52 79.71 63.64 69.62 

RF 65.53 0.2654 47.42 78.26 60.53 67.92 

Grouping 4 LR 64.68 0.2472 59.21 67.3 46.39 77.54 

LDA 63.83 0.2266 44.33 77.54 58.11 66.46 

RF 65.96 0.2756 48.45 78.26 61.04 68.35 

Grouping 5 LR 66.81 0.2915 62.67 68.75 48.45 62.67 

LDA 67.23 0.295 46.39 81.88 64.29 68.48 

RF 70.21 0.376 58.76 78.26 65.52 72.97 
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