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ABSTRACT 

 

Unmanned Aerial Vehicles (UAVs) are remotely piloted aircraft with a range of varying 

applications. Though early adoption of UAVs focused on military applications, surveillance, 

photography, and agricultural applications are presently on the rise. This work aims to ascertain 

how UAVs may be employed to elicit deceased transportation times, increased power efficiency, 

and improved safety. Resulting in optimized end point delivery.  A combination of tools and 

techniques, involving a mathematical model, UAV simulations, redundant control systems, and 

custom designed electrical and mechanical components were used towards reaching the goal of a 

10-kilogram maximum payload delivered 10 miles under 30 minutes. Two UAV prototypes were 

developed, the second of which (V2) showed promising results. Velocities achieved in V2, in 

combination with a versatile payload connector and proper networking, allowed for 5-10 mile 

deliveries of goods less than 8-kilograms to be achieved within a metropolis faster than the 30-

minute benchmark.  

 

Keywords: Unmanned Aerial Vehicle (UAV), Supply Chain, Power Efficiency, Proportional 

Integral Derivative (PID),  
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CHAPTER 1: INTRODUCTION 

 

1.1 Need for optimized endpoint delivery 

 

The word “need” is too often employed when the word “want” would be more appropriate, as 

the latter is simply a desire while the former implies necessity. Indeed, with such convenient 

options as next day delivery readily available to many living in developed nations, at first glance 

the need to further optimize endpoint delivery beyond present day technology appears easily 

dismissible. However, energy efficiency improvements since 1990 drove savings of 2,200 

terawatt hours (TWh) in 2014 among International Energy Agency (IEA) member countries, 

equaling about 24% of total electricity demand [1]. In our global search for innovative ways to 

increase and improve both clean power generation and low power design solutions, the world 

grows ever more energy conscience. With this in mind, the necessity to optimize how efficiently 

we transport everyday goods is now certainly unquestionable.  

 

Further evidence for the global push towards greater energy efficiency can be observed from 

Figure 1.1, which approximately depicts the clear difference between actual total energy 

consumption (TFC) measured in millions of tons of oil equivalent (Mtoe), against hypothetical 

levels of energy usage without global IEA efforts towards efficiency. TFC depicted in Figure 1.1 

is impacted by several performance improving sectors including: residential space 

[heating/water/lighting], appliances and consumer electronics, passenger transport, freight 

transport, and improvements within industrial manufacturing. The passenger and freight 

transport sectors relate most directly with our subject matter. The energy intensity of a passenger 

kilometer (pkm), i.e. the energy used to move one passenger a distance of one kilometer, has 

improved globally, but most notably in countries like the United Kingdom, Japan, and Italy, 

where rail and bus transportation have been heavily promoted. Similarly, Figure 1.2 depicts the 

positive impact of many nations replacing cars with more efficient rail and bus transportation for 

freight delivery.  

 

Figure 1.1: Actual and hypothetical energy consumption in IEA-18 [1] 
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Figure 1.2: Freight TFC in IEA-18 decomposed by factor, 2002-12 [1] 

Greece’s 2007 financial meltdown had ripple effects worldwide and was caused my 

numerous factors. One of which was Greece’s energy intensity, defined as units of energy 

consumed per units of GDP (MJ/tkm), which serves to indicate the cost of converting energy into 

GDP (The lower the better). The apparent inevitability of Greece’s infamous 2007 economic 

downturn is further bolstered by evidence in figure 1.3 showing a sharp increase in Greece’s 

energy intensity from 2002-2012. Nations have learned from this historic lesson, avoiding 

mimicking the Greek calamity and advancing their efforts to decrease energy intensity by 

optimizing efficiency in all sectors, including endpoint delivery. 

 

Figure 1.3: Energy intensity of freight transport (MJ/tkm), 2002 and 2012 [1] 

 

1.1 Why Unmanned Aerial Vehicles (UAVs) 

The future ubiquity of drones in our skies becomes less of a prophesy and more a fact of life 

by each passing day. The industry of supply chain management may yet to have been disrupted 

by such technology, however, within this field new technology is continually being adopted. 

These innovations serve as catalysts which support the process of improving supply chain 

efficiency [2]. Perhaps nowhere is this truer than in the case of unmanned aerial vehicles. The 
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majority of the public may envision something akin to the GA MQ-1 Predator whenever they 

think of UAVs, however technological innovations from the early 1900’s up to present times has 

brought us a wide array of drones, with different topologies and characteristics. The timeline in 

figure 1.4 indicates a strong military interest in the design, development and use of UAVs. 

Indeed, for most of history, UAVs have been employed for military exercise. Yet the brand of 

commercial drones which threaten the disruption of multiple markets are not the heavy duty, 

combat ready, high speed, lethal weapons of war many envision, but instead are light weight 

(<10kg) [3], move at automobile speeds and carry no artillery.  

 

Figure 1.4: Technological Innovations leading up to present day UAVs [3] 

 When attempting to piece together which characteristics of UAVs permit them to benefit 

such a wide range of fields, we note 4 key characteristics which, when combined, stand out 

uniquely from other technologies: A renewable power supply, autonomous performance, agility, 

and payload options.  

First, the vast majority of non-military UAVs are driven via high power density 

rechargeable lithium polymer (LiPo) batteries. This feature alone accounts for much of the gains 

in efficiency reaped by various industries. LiPo batteries with specific energies ranging as high 

as 0.95 MJ/kg, a fifth the specific energy of dynamite, are also only improving with time. 

Researchers are continually testing different substances, such as graphite oxide, to use as 

electrodes and electrolytes in an effort to create more robust and energy dense devices for 

storage of electrical potential energy [4]. Advancements in this field have a multiplying 

beneficial impact on UAVs as much of their functionality is tied to clean power. 

 Secondly, when artificial intelligence (AI) is used on popular websites such as Google, 

Facebook, and YouTube to help users streamline their online queries, find lost friends or 

recommend a video they might like, a certain degree of convenience is positively achieved. 

When that same AI extends out of the virtual realm into autonomous UAVs acting within the 
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physical realm, that convenience is multiplied tenfold. Furthermore, advanced UAVs today do 

not often use recommender system AI like the aforementioned websites, but instead employ 

arguably more advanced unsupervised learning and reinforcement learning AIs [5]. In essence, 

UAVs with their armada of selectable tools for sensory feedback, superior to simple user 

recommendation style feedback, approach human-like awareness in some regards and surpass 

human sensory capability in other particular cases (i.e. location positioning, speed, vision).  

 Next, the agility in motion and distance UAVs can travel are advantageous 

characteristics. In a July 2013 famous presentation at TEDGlobal, Raffaello D’Andrea 

demonstrated his fleet of UAVs (quadcopters) that he stated “Think like athletes, solving 

physical problems with algorithms that help them learn” [6]. D’Andrea employed a self-designed 

indoor positioning system in accordance with the internal sensors within each of his four UAVs 

to conduct impressive feats. Working both individually and collectively, D’Andrea’s quadcopters 

were able to: balance water, throw and catch objects, simulate gravity on distance planets, 

assemble in varying flight formations, fly in predefined geometric and non-geometric 

formations, observe and follow cues from select objects, accommodate their flight algorithm to 

adjust for a broken/dysfunctional arm, and so much more. UAVs may yet to have reached the 

level of AI self-consciousness of George Lucas’s C-3PO and R2-D2 astromech droids, but most 

would agree that today’s UAVs have certainly caught up in terms of technical capability.  

 It’s worth noting that R2-D2 never carried much more than a Lightsaber™. Bringing us 

to our final important UAV characteristic, a vast range of payload options. This characteristic is 

doubly advantageous in respect to both what UAVs may carry as part of their design and how 

much (kg) of a payload they can deliver. The most obvious payload employed by hobbyist 

abound are digital cameras.  Hobbyists represent the early adopters of this technology, and as the 

technology matures this market will see further growth but is expected to be outpaced by other 

upcoming applications discussed later [3]. Aside from cameras, UAVs may easily sport a wide 

range of sensors including, sonar, IR, thermal and others. U.K. based Aerial Power Ltd. is 

already attaching wipers and cleaning solution onto UAVs in order to cut down maintenance cost 

of cleaning solar panels on large solar farms by 70%, whilst simultaneously increasing energy 

yield by 30% per month [7]. With ever increasing max payloads (10-20kg) [3] the possibilities 

are truly endless. When the previously mentioned characteristics are paired with the notion that 

UAVs can be adjusted for both indoor and outdoor use, and can indeed fly long distances at 

roughly 30-60 mph top speeds, we finally begin to grasps an understanding of the truly 

innovative technology now at our disposal.  

  

1.2 Industries possibly disrupted by UAVs 

As previously stated, the range of applications for UAVs is limited only by our collective 

imaginations, yet there are some sectors for which progress looks vividly bright and just beyond 

the horizon. The reader should keep in mind that a common theme within each of these sectors is 

that the UAVs are still being utilized at a fraction of their potential. Additionally, some sectors 

are newly emergent because prior to the rise of UAV technology they simply were not possible. 

These new junctions highlighted in [3] are sure to bring about new winners and losers as 
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individuals and businesses alike adapt to novel dynamic realities brought about by UAV 

technology. 

• Entertainment, Media and Mapping – Likely no industry has been given more 

exemptions by the Federal Aviation Administration (FAA) than Hollywood. Drone 

mounted cameras are used from the professional level down to the personal level. For 

millennials, taking selfies has never been so easy. Real estate companies are 

benefiting not only from improved mapping quality provided by UAVs but have also 

discovered how much home buyers appreciate an aerial view of properties they are 

interested in. It’s becoming increasingly common for property listings to be 

accompanied by a UAV tour [8]. 

• Service Sector – Companies such as EasyJet and Bristol Robotics Lab are partnering 

to bring to market UAVs intended to perform manual service inspections on bridges 

and other infrastructures, including aircraft. Sporting sensors far more capable than 

the human eyes, ears, or nose, and needing no sleep, these devices might pave new 

avenues for achieving unprecedented levels of civil monitoring. 

• Networking for remote areas – Both Facebook, with “Internet.org”, and Google’s 

“Project Loon” strive to make internet access a global element of life. Solar powered 

high altitude UAVs designed by Titan Aerospace, are sought to aid in this goal. 

• Disaster Management -  Natural disasters such as the tsunami’s earthquakes and 

hurricanes leave mass destruction and panic in their wake. UAVs can provide a safe 

means of reaching dangerous zones to either visually scan areas or provide 

individuals with items and support.  

• Law Enforcement – UAVs are found to be just as useful in domestic affairs as they 

are in foreign ones. Although typically armed with far less lethal or no artillery, law 

enforcement agencies across the united states have found this technology useful in 

dealing with hostage situations and surveillance. Over 40 law enforcement agencies 

have received authorization certificates from the FAA as of fall 2016.  

• Agriculture Monitoring & Treatment – Instead of spraying pesticide on an entire 

farm, UAVs can be fitted with robotics, sensors and algorithms which allow them to 

identify regions that require weeding and apply the pesticide at that location. Apart 

from crop health, UAVs can monitor harvests, livestock, irrigation and much more 

within a farm.  

• Oil & Gas – Similar to farms, monitoring of pipelines can be efficiently streamlined. 

Many of the labor-intensive tasks pose a high degree of danger to the laborers. This 

would be entirely alleviated by employing the use of UAVs working together in the 

same fashion as Raffaello D’Andrea has shown can be achieved.  

 

1.3 Parcel Delivery 

This work may have application to the above industries, however our focus for the remainder 

of this document will be on the industry of delivery UAVs, and for good reason. Radiant Insights 

predicts the “Commercial drones (UAVs) market to reach $4.8 Billion from 2015 to 2021” [9], 

with a significant bulk coming from parcel delivery UAV sales. This will result from a transition  
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mirroring the switch from automotive transport of freights to rail and bus. By virtue of a similar 

switch from delivery trucks to UAVs, parcel delivery might turnout as the largest benefactor of 

decreased energy intensity via UAV technology. With a simple 5 lbs. (2.27kg) payload capable 

UAV, items such as clothing, merchandise, nourishing food, lifesaving medicine and everything 

in-between can be affordably transported across varying distances.  Figure 1.5 [10] shows how a 

few drone startups are teaming up with large logistics companies and even larger retailers to 

make the dream of UAV endpoint (home) delivery a reality. 

 

Figure 1.5: Current players within delivery UAV market 

The dogma and general strategies for implementation of UAV delivery differ amongst the 

retailers (Amazon, Google, Walmart, and Pizza Hut) greatly in terms of target customer scope, 

however in terms of system design they appear somewhat identical. The general strategy of these 

players, to be later expanded on, is very important to this work as it provides a platform for 

comparing and contrasting differing novel systems and strategies.   

The first and clearly the most ubiquitous generalizable retailer system element lies in their 

collective projected cost savings. Aside from the electronic benefits previously mentioned by 

employing renewable power via LiPo batteries, there exist additional cost reducing factors. 

Matternet co-founders Paola Santana and Andreas Raptopoulos suggest UAV delivery employed 

in 3rd world (underdeveloped) countries could connect billions of people who today do not have 

access to all-season-roads, while saving millions in public infrastructure development projects. 

Keep in mind that The American Road and Transportation Builders Association estimates the 

cost of a “new 2-lane undivided road” at $2 million to $5 million per mile [11], Making the 

construction of western-like roads a costly affair for developing debt ridden nations. Even worse, 

dealing with underdeveloped countries the per mileage cost quoted may prove to be a gross 

underestimation, as government corruption must sadly be factored in. This leaves developing a 

network of privatized delivery UAVs as a significantly more affordable option (~<$1M).  The 

projected flat out cost per delivery, 24 cents for Matternet, and 88 cents for Amazon [12] appear 

impossibly low. However, an Ark Invest analysis on Amazon posited that with 6,000 operators 

making $50,000 in annual salary, and collectively managing 40,000 drones each delivering 30 

times daily, Amazon could charge $1 per UAV home delivery and recoup their initial investment 
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in less than a year [13]. This again is without factoring in any additional cost savings acquired by 

forgoing more expensive ground transport options.  

The second set of system characteristics uniting present key players in this field are the 

method and scale of delivery. Amazon, Walmart, Pizza Hut and the startups they are associated 

with each intend on landing their UAVs atop their target customers’ private property. In the case 

of Google’s Wing, the UAV does not land but instead descends the package to earth via a cable. 

Whereas in all other cases the UAV itself must land on earth to release and obtain packages. For 

these UAVs, landing is ultimately achieved via a pattern on the ground which the UAV uses 

internal sensors to identify and slowly approach [14]. Despite the diversity in physical design, 

each UAV in Figure 1.6 below executes its objective in a relatively similar fashion to the rest, 

and each one is designed for a similar maximum payload of roughly 2.5kg (~5.5 lbs.).  

 

Figure 1.6: Various commercial and private use UAVs 

Walmart spokesman Dan Toporek has been quoted saying “There is a Walmart within five 

miles of 70% of the U.S. population, which creates some unique and interesting possibilities for 

serving customers with drones.” [15], leading us into our last generalized retailer system 

element, proximity. Similarly to Walmart, Amazon exclaims individuals who live within 7.5 

miles from an Amazon warehouse can expect to “get packages in 30 minutes or less” [12]. 

What’s key to understand from this emphasis on proximity is that in all cases the direction of 

transportation is always from the retailer to the customer and never vice versa. It’s worth noting 

that this aspect of all the above proposed UAV delivery solutions does nothing to address 

customer returns (i.e. transportation from the customer to the retailer), which is assumed to be 

carried out via slower conventional methods (mail). Indeed, beyond the glittering promise of 

Jetsonian skies filled with  miraculous flying machines, are several challenges suppressing 
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UAVs and the corporations who design them which need to be addressed before releasing this 

technology for public consumption.    

1.4 Barriers, Challenges and Risks  

Several critical social, environmental, and engineering challenges remain persistent in keeping 

the delivery UAV market dormant. Considering the status quo of recent efforts to make 

advancements in this field, these hurdles should come as no surprise.  

• Privacy – Today a camera fitted quadcopter can be purchased for as low as $100-

$200, much to the delight of hobbyist everywhere yet the bane of others. Many fear 

skies filled with drones carrying high resolution imaging systems would pose a 

significant danger to individual privacy. When media outlets report an unknown DJI 

Phantom series quadcopter flying outside the Whitehouse grounds, the perception of 

privacy and security breaches is publicly exacerbated [16].  

• Safety – The risk of personal injury due to a crashed UAV is a reality. In the case of 

delivery UAVs, the package would certainly also be at risk of damage. The use of 

GPS blockers/jammers, and targeted Wi-Fi commands by hackers is a less prevalent 

but equally troublesome safety threat.  

• Power Management – Although sufficient, present powering systems and technology 

for delivery UAVs leave much to be desired. As depicted earlier, present retailers 

have no solution for allowing customers to return packages via UAV. A large 

challenge in adding this feature is the lack of sufficient power for the return journey 

as well as systems that simply are not designed for such functionality.   

Eclipsing all challenges mentioned above is the strict regulatory blockade posed by the U.S. 

FAA, who have dashed the hopes or corporations eager to employ UAVs for delivery. Many 

companies lobbied, Amazon most notably [17] led the push to relax FAA regulations since late 

2015, but seemingly to no avail. Including a 55-pound maximum all up weight, 87 knots 

maximum speeds and 400 feet maximum altitude, the list of regulatory restrictions from the FAA 

latest ruling flatly pronounce the industry of UAV delivery an illegal venture within United 

States skies [18]. Regarding the present restriction, FAA administrator Michael Huerta stated to 

reporters “What we need is to ensure that it can be safely done”. He continued “If they 

[corporations] can demonstrate capability and safety, we would consider waiving that 

[restriction]” [19]. Huerta’s words accent the pivotal significance of optimizing the “capability 

and safety” of delivery via UAV, the theme of this work.   

 

1.5 Objective 

In this thesis, we strive to optimize delivery via UAV by finding solutions to some of the 

challenges persistent in the field. A design project at heart, the bulk of this work will be 

aimed towards the development of a UAV with optimized characteristics for delivery. In 

doing so we will employ a mathematical model to simulate desired outcomes. Additionally, 

physical UAV models will undergo test flights to compare and contrast with our simulation 

results. For reasons later elaborated in Chapter 5, an X8 octa quad (8 motor quadcopter) 
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UAV layout has been selected serving as the basis of all subsequent mathematical models, 

simulations and designs. Despite a heavy emphasis on UAV design, the definitive goal of this 

work is towards recommending an overall system level design in an effort to better meet 

commercial, societal and regulatory requirements. Our progress measuring metric is three-

fold. First, the system should decrease delivery times below the proclaimed 30-minute 

benchmark of set by industry leaders.  Secondly, the system should support payloads larger 

than 2.26 kg. Lastly, the system should employ justifiably safer delivery methods capable of 

customer-to-retailer return traffic.  

 

1.6 Document Organization 

 

Following this chapter: 

• Chapter 2: Provides information on previous works 

• Chapter 3: Offers a simplified mathematical model  

• Chapter 4: Reviews simulation options 

• Chapter 5: Documents the prototyping and simulation of system components 

• Chapter 6: Reviews results from field testing 

• Chapter 7: Provides conclusions and suggestions on future work 

• Chapter 8: Cites all references worked  

This work relies heavily on previous work for content in Chapters 3 and 4, and makes some 

contributes as well.  In chapter 3 a comparison between mathematical models for an octa-quad 

and quadrotor are made, providing insight into how one may be generalized into the other and 

the consequences of doing so. Additionally, weaknesses of the simulations methods of chapter 4 

are taken into account prior to being used in our design process.  Chapters 5, 6, and 7 use the 

earlier chapters as a foundation but are largely novel in nature. 
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CHAPTER 2: BACKGROUND 

2.1 Early Pioneers  

The genesis of modern UAVs owes much of its success to the pioneers of the early 20th century 

who took on the challenge of manned flight. Following the historic first manned flights by 

Orville and Wilbur Wright in 1903, the first quadrotors were built by the Breguet Brothers in 

1907. The flights of the Gyroplane No. 1 are considered to be the first manned flight of a 

helicopter, however the aircraft in these flights were tethered to the ground. A lack of stability 

and proper control mechanism made it such that the Gyroplane could never fly completely free. 

Untethered free flight would require an optimization in design. 

Enter the father of modern power generation and distribution, Nikola Tesla, who initially was not 

fond of airplanes and once predicted that airplanes would "never fly as fast as a dirigible 

balloon". Ironically Tesla would later criticize airplanes for being too fast to take off and land, 

requiring an "indispensable high velocity, imperiling life and property." By 1908 the "helicopter" 

had already been proposed in theory. Tesla, calculating that a helicopter would prove "incapable 

of proceeding horizontally along a straight line" paradoxically took on a helicopter optimization 

project of his own resulting in a US Patent (1,655,113).  

Tesla’s vertical takeoff and landing (VTOL) design is show in figure 2.1. His design is that of a 

machine that would take off with the propeller pointed upwards, like a helicopter, and then 

transition to horizontal winged flight, resolving his aforementioned grunts concerning high speed 

landing. Unfortunately, by the time Tesla conceded that airplanes might be useful, he was 

uncharacteristically behind the times. Four years prior, Albert Zahm, a versatile inventor with the 

Curtiss Aeroplane and Motor Corp., had come up with essentially the same idea. With the only 

distinguishable difference being a hinged seat allowing the pilot to always sit normal to the 

ground in Tesla’s design, a considerably minor innovation.  

 

Figure 2.1: Zahm’s VTOL design        Tesla’s preceding VTOL Design  

Following Gyroplane No. 1, other attempts were made on manned quadrotors, such as Georges 

de Bothezat’s Flying Octopus in 1922, and Etienne Oemichen’s Oemichen No.2 that same year. 

Later, designs such as Convert Wings Model A in 1922 by Oemichen and de Bothezat, the 

Curtiss X-19 in 1963 by Curtiss-Wright corporation, the Bell X-22A in 1966 by Bell Aircraft 

corporation, and the Fly Vehicles of the Moller company [30] pushed the envelope even further 

(Figure 2.2).  

Convert Wings Model A effectively revived concepts attempted in 1922 by Oemichen and de 

Bothezat, only with more modern technology. A first prototype flew in 1956. Despite successful 

testing and development, military support for the quadrotor ceased after cutbacks in defense  
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spending. However, the design, particularly its control system, was a precursor of current UAVs and experimental vertical-rising 

aircraft designs that incorporate tandem wings or a square configuration of four fans, ducts, or jets. 

 

 

Figure 2.2: Early Quadrotor Designs [20] 
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2.2 Modern Research 

The early pioneers laid the foundation for the rise of modern UAVs, however removing the “manned” and ” piloted” portion would 

not occur for several more decades. Continued advancements in this field would be closely tied to advancements in modern control 

systems and the microprocessors which powered them.  After initially manned attempts, advancements in the knowledge of control 

theory and technology allowed the development of unmanned quadrotors. Following those improvements, several research 

laboratories, universities and private enterprises began projects involving quadrotors. Though the development of full autonomous 

flight in varying environmental conditions and tasks is still a challenge today, Table 2.1 shows how far the technology has come. 

 

Table 2.1:UAV Research Projects [20] 

 
University/ 

Organization/  
Project  Year  Early studies Recent studies 

  
Dragan flyer  V Ti [21] 1998  Commercial product  Commercial product  

  

Stanford  

Mesicopter-I., Kroo 

[22]  

2000-

2012  

-Feasibility and capability of the 

vehicle  

-Design and Manufacturing 

Techniques [22] 

Control of Multiple UAVs for 

Persistent Surveillance [23]  

  

  
ANU  

P. Pounds’s thesis 

[24]  2002-

2014  

Dynamic modelling based on 

Newton-Euler Method Control 

attempt [24] 

-Triangular Quadrotor [25] 

- Output tracking for quadrotor-

based aerial manipulators [26] 

    
FEIT, ANU  

X-4 Flyer, P., 

Pounds [24]  

     -Improving disturbance rejection 

and robustness of 

  

Uni. 

Pennsylvania  

E. Altug [27] 2002-

2012  

Yaw and height control using 

Visual feedback control 

techniques [27] 

the vehicle using Fuzzy logic 

controller [28] 

-Obstacle avoidance using 

Catadioptric cameras [29] 

     Precise measurement and prediction of 

position and orientation of the vehicle in 

the presence of external  
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Uni. Compiègne  P. Castillo’s thesis, 

A. Dzul [30] 

2003- 015  -Dynamic modelling using 

Lagrange approach -Linear 

trajectory tracking [30] 

perturbation (out- door control of the 

quadrotor) [30], [31]  

-Quaternion control scheme [32]  

-Velocity regulation of the quadrotor [33]  

  
Uni. Aalborg  X 3D [34] 2004  ---  ---  

  

Stanford  Starmac I [35]  

2004-

2011  

Altitude and attitudes control in 

presence of wind [35] 

Collision avoidance and control of 

the vehicle in aggressive maneuver 

utilizing combination of hybrid 

decomposition and reachable set 

theory [36] 
   

  

Stanford  Starmac II [35]    

  

EPFL  
Bouabdallah & 

Siegwart [37] 

2004-

2011  

Autonomous control of the 

vehicle in indoor environment 

[37] 

Robust control of quadrotor in 

presence of model uncertainties and 

external disturbances [38] 

  

Cornell 

University  

Eryk Brian Nice’s 

thesi and  R. 

D'Andrea,   [39]  

2004- 

2015  

Nonlinear dynamic modelling 

and hover control [39] 

-Iterative learning controller for 

improving the performance of the 

vehicle in highly dynamic open-

loop maneuver  [40] 

  

Middle East 

Technical 

University, 

Turkey  

F.B. Çamlica’s 

thesis, C Özgen  [41]  

2004-

2014  
Hover control [41]  

Trajectory tracking in presence of 

disturbance [39]  

  

Technology 

university of 

Malaysia  

Weng and Shukri 

[42]  
2006  ---  ---  

  

Uni. Oldenburg  
M. Kemper’s thesis 

[43]  

2006-

2009  

Robust control of quadrotor 

respect to variable center of 

gravities [43] 

Way point navigation and trajectory 

optimization [44], [45]  

--  
Cranfield 

university  

I.D. Cowling and J.F. 

Whidborne  

2007-

2010  

Optimal trajectory generation 

around obstacle  [46]  

Trajectory generation and tracking 

in presence of gust and control of 

the vehicle in chimney mission [47]  

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.D%27Andrea,%20R..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.D%27Andrea,%20R..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.D%27Andrea,%20R..QT.&newsearch=true
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MIT  
P. Tournier and J.P. 

How [48]  

2007- 

2015  

Autonomous control of quadrotor 

by using visual servo-ing method 

[48] 

Maneuver  learning from 

demonstration (communication with 

human) [49]  

-Control of variable-pitch quadrotor 

[50]  

  
Uni. TUDelft  

Menno Wierema and 

Ir. C. de Wagter [51]  
2007  Autonomous indoor navigation  ----  

  

IARC Team -

Virginia Tech. 

Uni.   

IARC Team 

Quadrotor  [52] 
2009  Autonomous mission execution -----  

  

Univ. Maryland  

AVL’s Micro Quad 

(J. Sean Humbert) 

[53]  

2009-

2015  
Robust visual navigation [53] 

Robust stabilization and command 

tracking behavior in obstacle-laden 

environments [54]  

  

Azad University 

of Ghazvin   

Farshid Jafari 

Harandi [55]  
2010  Outdoor navigation  -----  

  

CrazyFlie  CrazyFlie [56] 2011  Commercial product  Commercial product  

  

Commercial 

product   

Ascending 

Technologies 

Hummingbird [65]  

-----  Commercial product  Commercial product  

  

Silverlit  X-UFO [57] ------  Commercial product  Commercial product  

  

microDrones 

GmbH  
MD4-200® [58]  -----  Commercial product  Commercial product  

 
DJI  Phantom Series 

2013-

2016 
Commercial product Commercial product 
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2.3 Key Projects 

 

At Stanford University, the Mesicopter project was conducted between 1999 and 2001 

[22], and focused on the feasibility of a centimeter scaled quadrotor to use in massive quantities 

to investigate large areas or possibly even distant planets. The aerodynamics effects of 

quadrotors were studied extensively. Eventually, the Stanford Testbed of Autonomous Rotorcraft 

for Multi-Agent Control (STARMAC) became a multi-vehicle test bench used to demonstrate 

new concepts in multi agent control on a real-world platform. STARMAC consisted of multiple 

quadrotor vehicles that autonomously tracked a given waypoint trajectory. To begin, the vehicles 

and test bench required a design for proof-of-concept flights. This design was completed in the 

fall of 2004 with the development of STARMAC I. Later STARMAC II would require a 

complete vehicle and testbed redesign to create a fully functioning test bench allowing for multi 

agent control to be demonstrated.  

 

Interestingly, an off-the-shelf Draganflyer III acted as the base vehicle for STARMAC I. 

Draganflyer III had a total of 1 kg of thrust and could sustain hover for about ten minutes. 

STARMAC I replaced the onboard electronics with customized printed circuit boards and 

components so as to obtain complete control over motor commands, power supply and sensor 

measurements. Employing larger lithium-polymer batteries than those that came standard on the 

Draganflyer III also increased both payload and flight duration, enhancing the abilities of the 

system. The Microstrain 3DM-G motion sensor was used for attitude measurements, this module 

included accelerometer, magnometer, and 3-axis gyro data which could be polled in real time. 

Trimble Lassen Low Power GPS receiver provided position and velocity measurement while the 

Devantech SRFO8 sonic detection and ranging (SONAR) module was used to optimize the 

resolution of low altitude data acquisition for more critical tasks like take-off and landing. Dual 

Microchip 40 MHz microcontrollers coordinate all of the onboard sensors. STARMAC I 

performed position estimation via an Extended Kalman Filter to update the position and velocity 

estimates at 10 Hz. And attitude stabilization is performed on board at 50 Hz. Communication 

for each unit was relayed to a central base station on the ground via a 150 ft. range Bluetooth 

class II devices. This works final design borrows from STARMAC I’s base stations differential 

GPS and waypoint tracking. The ground station tracks tasks for all air units, transmitting attitude 

values to the air units for position control. Manual flight and waypoint control is performed via 

the ground station laptop using LabVIEW, another testing setup style which this work builds on. 

Note that for STARMAC I, a Linear-Quadratic Regulator (LQR) closed loop control technique 

determine attitude. This method has its own strengths in correction of pitch roll and yaw, but was 

weak in other respects such as angle deviation and resolution. Integral sliding mode, 

reinforcement learning, and other control systems would be tested within STARMAC I platform 

as well, paving the way for comparative advantages and disadvantages to be discerned between 

them.  

 

Stanford University’s second generation of experimental quadrotors, STARMAC II, 

would see improvements in thrust capability, on-board computation resources, communication 

reliability bandwidth, and position measurement accuracy. More powerful brushless motors, 

rigid plastic propellers, an improved Atmega 128 processor, advanced digital logic ADL855 

PC104, and a transition from Bluetooth to a 2.4 GHz Wi-Fi network are components of the 

improved second generation design. Among these upgrades, a major improvement in the 
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STARMAC II’s design employed a Proportional-Integral-Derivative (PID) controller for 

altitude, attitude and position control. This controller’s performance was found to be superior to 

the LQR, data supported by the widespread use if PID controllers in multirotors today.  

 

At the Ecole Polytechnique F`ed`erale de Lausanne, Samir Bouabdallah executed an 

extensive PhD. quadrotor UAV project. Bouabdallah utilized a quadrotor-like test bench with 

off-board data processing and power supply to safely and easily test control strategies. For 

practical testing the Omnidirectional Stationary Flying Outstretched Robot (OS4) was designed. 

OS4 had all the necessary sensors for autonomous operation with a unique method of 

determining position using an on-board down-looking CCD camera and a simple pattern on the 

ground. The camera provided an image of 320x240 at up to 25 fps fed into an algorithm which 

detects the pattern, estimates the pose and provides the camera position and yaw angle relative to 

the ground. Most pertinent to this work, Bouabdallah’s project tested several control theories, 

including Lyapunov theory for applied for attitude control, back stepping, sliding-mode 

concepts, PID, and LQR techniques for attitude control [37]. Bouabdallah developed dynamic 

models to simulate the quadrotor evolving from a simple set of equations, valid only for 

hovering, to a complex mathematical model with more realistic aerodynamic coefficients and 

sensor and actuator models. 

 

In 2009 Virginia Tech arranged a team of mechanical and aerospace engineering students 

to submit an entry for the International Aerial Robotics Competition (IARC). IARC charged 

competitors with navigating a UAV of their own throughout an indoor competition area with 

specific mission objectives and restrictions broadly elaborated in [52]. In brief, the mission 

would include navigating the UAV through obstacles from point A to point B, collecting data 

once at point B, and returning it to point A where  the mission began. Use of GPS, GLONASS, 

Galileo, or other satellite navigation systems was also strictly prohibited. Another critical rule of 

the competition was an all up mass limitation of 1.5 kg for all competing vehicles. This posed a 

challenge to Virginia Tech’s IARC team’s design since a critical sensor module weighing 536.1 

grams assumed an overwhelming portion of their legalized mass. A solution was found in 

implementing lightweight yet strong carbon fiber with basswood frame in a quadrotor layout. 

Additionally, the team discovered benefits in placing the bulk mass right under the geometric 

center of the quadrotor as seen in Figure 2.3. Namely, improved flight stability along with a 360° 
sensor range of view were achieved. Further supporting this research, many subsequent image 

capture centered UAV platforms (DJI Series, Yuneec Q500)   would go on to adopt layouts of 

this fashion. 

  

Figure  2.3: Virginia Tech’s IARC team simulation via Autodesk Inventor and prototype [52] 
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CHAPTER 3: MATHEMATICAL MODEL 

A mathematical model of our intended quadcopter design is required in order to fully equip 

ourselves with the tool necessary for analysis. Menno Wierema’s 2008 study on indoor 

navigation control of UAVs [51] provides an excellent organization of dynamic equations on 

attitude and positions of a quadrotor. This summation draws heavily on researched conducted by 

[59], [60] , [61],  and others, to be reviewed in brief. Since our selected UAV design is an octa-

quad and not a typical quadcopter, we begin by making some required assumptions which allow 

us to assimilate the proposed model for our X8 design.  

 

3.1 Generalizations and assumptions 

• The X8 structure is rigid 

• The X8 structure is symmetrical 

• The X8 propellers are considered rigid 

• The dual coaxial counter-torqued motors on each arm of the X8’s 4 arms have additive 

Thrusts, mass, and torques which can be summed into an equivalent motor representation 

for a 4-motor quadcopter: 

 

 

𝑀𝑎𝑠𝑠𝑄𝑢𝑎𝑑𝑐𝑜𝑝𝑡𝑒𝑟 𝑀𝑜𝑡𝑜𝑟 = 𝑀𝑎𝑠𝑠𝑋8 𝑀𝑜𝑡𝑜𝑟 1𝐶𝑊 + 𝑀𝑎𝑠𝑠𝑋8 𝑀𝑜𝑡𝑜𝑟 2𝐶𝐶𝑊 ……  

𝑇ℎ𝑟𝑢𝑠𝑡𝑄𝑢𝑎𝑑𝑐𝑜𝑝𝑡𝑒𝑟 𝑀𝑜𝑡𝑜𝑟 = 𝑇ℎ𝑟𝑢𝑠𝑡𝑋8 𝑀𝑜𝑡𝑜𝑟 1𝐶𝑊 + 𝑇ℎ𝑟𝑢𝑠𝑡𝑋8 𝑀𝑜𝑡𝑜𝑟 2𝐶𝐶𝑊  

𝑇𝑜𝑟𝑞𝑢𝑒𝑄𝑢𝑎𝑑𝑐𝑜𝑝𝑡𝑒𝑟 𝑀𝑜𝑡𝑜𝑟 = 𝑇𝑜𝑟𝑞𝑢𝑒𝑋8 𝑀𝑜𝑡𝑜𝑟 1𝐶𝑊 − 𝑇𝑜𝑟𝑞𝑢𝑒𝑋8 𝑀𝑜𝑡𝑜𝑟 2𝐶𝐶𝑊  

 

 

 

  
 

 

 

 

 

 

 

 

 

 

Figure 2.4: Equivalent motor assumption 
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3.2 Reference Frames 

 

Figure 3.1: Earth fixed and body fixed reference frames used throughout our model [51] 

With respect to the earth reference frame, the absolute position of the quadrotor is described by 

the three coordinates (𝑥, 𝑦, 𝑧) of the center of mass. 

 

Absolute attitude is described by the three Euler’s angles (𝜓, 𝜃, 𝜙). We refer to these three 

angles as yaw, pitch, and roll respectively. For general stable operation, we expect the following 

to hold: 

−𝜋 ≤  𝜓 < 𝜋 

−
𝜋

2
<  𝜙 <

𝜋

2
 

−
𝜋

2
<  𝜃 <

𝜋

2
 

3.3 Advanced Kinematic Relations 

[
𝑑𝜓

𝑑𝑡
 ,
𝑑𝜃

𝑑𝑡
 ,
𝑑𝜙

𝑑𝑡
 ]

𝑇

= 𝑁 (𝜓 , 𝜃 , 𝜙)𝜔 
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The derivatives of (𝜓, 𝜃, 𝜙) can be expressed by the above equation which the angular velocities, 

𝜔 = [𝑝 𝑞 𝑟]𝑇, are expressed with respect to the body frame of reference. Then, 𝑁 (𝜓 , 𝜃 , 𝜙) 

results in a 3x3 matrix: 

𝑁 (𝜓 , 𝜃 , 𝜙) = [

0 𝑠𝑖𝑛𝜙 𝑠𝑒𝑐𝜃 𝑐𝑜𝑠𝜙 𝑠𝑒𝑐𝜃
0 𝑐𝑜𝑠𝜙 −𝑠𝑖𝑛𝜃
1 𝑠𝑖𝑛𝜙 𝑡𝑎𝑛𝜃 𝑐𝑜𝑠𝜙 𝑡𝑎𝑛𝜃

] 

 Let V =[𝑢 𝑣 𝑤]𝑇 be the absolute velocity of a quadcopter expressed in a body-fixed reference 

frame. The rate of change in positions (𝑥, 𝑦, 𝑧) is then given by: 

[
𝑑𝑥

𝑑𝑡
 ,
𝑑𝑦

𝑑𝑡
 ,
𝑑𝑧

𝑑𝑡
]
𝑇

= 𝑅(𝜓, 𝜃, 𝜙)𝑉 

where 𝑅(𝜓, 𝜃, 𝜙) is the rotation matrix given by:  

𝑅(𝜓, 𝜃, 𝜙) = [

𝑐𝑜𝑠𝜃 𝑐𝑜𝑠𝜓 (𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜓 − 𝑐𝑜𝑠𝜙𝑠𝑖𝑛𝜓) (𝑐𝑜𝑠𝜙𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜓 + 𝑠𝑖𝑛𝜙𝑠𝑖𝑛𝜓)
𝑐𝑜𝑠𝜃 𝑐𝑠𝑖𝑛𝜓 (𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜓 + 𝑐𝑜𝑠𝜙𝑐𝑜𝑠𝜓) (𝑐𝑜𝑠𝜙𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜓 − 𝑠𝑖𝑛𝜙𝑐𝑜𝑠𝜓)

−𝑠𝑖𝑛𝜃 𝑠𝑖𝑛𝜙𝑐𝑜𝑠𝜃 𝑐𝑜𝑠𝜙𝑐𝑜𝑠𝜃
] 

 

3.4 Rotor Forces and Moments 

 

Figure 3.2: forces and moments acting on a rotor [62] 

 

The resultant of all forces acting on all blade elements perpendicular to the rotor shaft, thrust 

force is represented as: 

𝑇 =  𝐶𝑇𝜌𝐴(Ω𝑅)2 

The thrust coefficient 𝐶𝑇 is directly related to the aerodynamic efficiency, indirectly shows how 

much the energy extraction device (the propeller) affects air flow and thrust by extension.  

Similarly, the hub coefficient 𝐶𝐻can be replaced with 𝐶𝑇 in the equation above to yield the hub 

force: 

𝐻 = 𝐶𝐻𝜌𝐴(Ω𝑅)2 

The resultant moment of all horizontal forces acting about the center of the rotor is the torque 

that determines power required from the motor to keep the rotor spinning, and is represented by 
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the drag moment 𝑀𝑄 . It’s important to note that the rolling moment, 𝑀𝑅, which occurs in a 

quadcopter due to differing forces within the rotors advancing and retracting blades should be 

more negligible in an X8 design due to a countering rolling moment which occurs on the 

mirroring motor for each arm. We add it to the model for consistency.   

  

𝑀𝑄 = 𝐶𝑀𝑄
𝜌𝐴(Ω𝑅)2𝑅 

𝑀𝑅 = 𝐶𝑀𝑅
𝜌𝐴(Ω𝑅)2𝑅 

3.5 Dynamic Equations 

Using general equations of motion from [62]: 

𝐹𝑥 = −𝑊𝑠𝑖𝑛𝜃 + 𝑋 = 𝑚 (
𝑑𝑢

𝑑𝑡
 + 𝑞𝑤 − 𝑟𝑣) 

𝐹𝑦 = 𝑊𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜓 + 𝑌 = 𝑚 (
𝑑𝑣

𝑑𝑡
 + 𝑞𝑢 − 𝑟𝑤) 

𝐹𝑧 = 𝑊𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜓 + 𝑍 = 𝑚 (
𝑑𝑤

𝑑𝑡
 + 𝑞𝑣 − 𝑟𝑢) 

Complete dynamic equations of a quadrotor accounting for all external forces in body 

fixed frame (Hub forces, friction, and thrust) and internal forces in body fixed frame (propeller 

gyro effect, pitch actuators action, hub forces due to sideward and forward flight, pitch moments, 

Inertial counter-torque, and counter-torque unbalance) both dalong each axis (𝑢, 𝑣, 𝑤) can be 

written as: 

𝑚
𝑑𝑢

𝑑𝑡
=  −𝑚(𝑔𝑠𝑖𝑛𝜃 − 𝑞𝑤 + 𝑟𝑣) − ∑𝐻𝑢𝑖

−
1

2

4

1

𝐶𝑢𝐴𝑢𝜌𝑢|𝑢| 

𝑚
𝑑𝑣

𝑑𝑡
=  𝑚(𝑔𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜙 − 𝑟𝑢 + 𝑝𝑤) − ∑𝐻𝑣𝑖

−
1

2

4

1

𝐶𝑣𝐴𝑣𝜌𝑣|𝑣| 

𝑚
𝑑𝑤

𝑑𝑡
=  𝑚(𝑔𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜙 − 𝑝𝑤 + 𝑞𝑢) − ∑𝑇𝑖 −

1

2

4

1

𝐶𝑤𝐴𝑤𝜌𝑤|𝑤| 

3.6 Ground Effect 

When the quadcopter is within heights about 0.5 to 1.0 times the diameter of a rotor [63] 

a ground effect occurs. To the time while the UAV is within this distance to ground it will 

experience heightened rotor efficiency due to the rotors airflow impacting with the ground and 

causing a buildup of air pressure below the UAV. The result is that less power is required for the 

UAV to maintain a constant altitude in the air when close to ground than when out of ground 

effect zone. Additional equations are available which would use a ground effect thrust coefficient 
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𝐶𝑇𝑔𝑟𝑜𝑢𝑛𝑑
to factor into our mathematical model, however, the time spent by the UAV in this zone 

is negligible and thus 𝐶𝑇𝑔𝑟𝑜𝑢𝑛𝑑
is omitted. 

3.7 Simplified Mathematical Model 

The above model framework is important to review in understanding the range of variables 

involved in modeling a UAV. Continuing with this framework may provide precision in 

calculations, but accounting for every variable when attempting to simulate becomes a difficult 

task with diminishing marginal reward. This is further highlighted by the scope of this work, for 

which the UAV shall perform no flips or advanced maneuvers and requires only general “a to b” 

style flight simulations. For this reason, with minor parameter adjustments, Drexel University’s 

MEM design Team 37’s excellent open source quadcopter dynamic modeling and simulation 

tool will more than suffice [64]. This method of simulation via MATHLAB-Simulink employs a 

slightly simplified mathematical model.  

The following simplifying assumptions will be made in addition to those previous mentioned in 

section 3.1: 

• The ground effect is to be neglected 

• UAV center of mass is located at its geometric center, allowing for the cross product of 

the inertia matrix to be neglected 

• Blade flapping effects are accounted for within lumped parameters 

• frame aerodynamic drag is accounted for within lumped parameters 

 

𝐽𝑏 =

𝐽𝑥 0 0
0 𝐽𝑦 0

0 0 𝐽𝑧

 

Akin to the importance of the UAVs mass in describing translational motion, parameters for the 

UAVs rotational motion require us to mathematically describe its mass moment of inertia, 𝐽𝑏. 

However, unlike the property of mass, 𝐽𝑏 is a kind of mass made relative to the objects center of 

mass and not simply attained by weighing the UAV. This requires a piecewise analysis of the 

UAVs design. It’s worth noting that due to our assumption of symmetry we take it that 𝐽𝑦= 

𝐽𝑥.The approach prescribed by [64] breaks apart components of 𝐽𝑏 in each case (𝐽𝑥, 𝐽𝑦, 𝐽𝑧 ) into 

smaller additive sections. These simplified sections are to be measured and weighed, and 

Huygens–Steiner’s parallel axis theorem will be utilized to determine the moment of inertia 

contribution of each component about the x, y, and z axes of the UAV. The UAV is thus 

decomposed into 4 segments.  
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Motors:  

 

Figure 3.3: Moment calculation 1 

𝐽𝑥,𝑀 = 𝐽𝑦,𝑀 = 2 [
1

4
𝑚𝑟2 +

1

3
𝑚ℎ2] + 2 [

1

4
𝑚𝑟2 +

1

3
𝑚ℎ2 + 𝑚 𝑑𝑚

2 ]  

𝐽𝑧,𝑀 = 4 [
1

2
𝑚𝑟2 +  𝑚 𝑑𝑚

2 ] 

 

Electronic Speed Controllers (ESC): 

 

Figure 3.4Moment calculation 2 
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𝐽𝑥,𝑆 = 𝐽𝑦,𝑆 = 2 [
1

12
𝑚𝑎2] + 2 [

1

12
𝑚𝑏2 + 𝑚 𝑑𝑠

2] 

𝐽𝑧,𝑆 = 4 [
1

12
𝑚 (𝑎2 + 𝑏2) + 𝑚 𝑑𝑠

2] 

 

Central HUB: 

 

Figure 3.0.5: Moment calculation 3 

𝐽𝑥,𝐻 = 𝐽𝑦,𝐻 = [
1

4
𝑚𝑟2 +

1

12
𝑚𝐻2] 

𝐽𝑧,𝐻 = [
1

2
𝑚𝑟2] 

Arms: 

 

Figure 3.0.6: Moment calculation 5 
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𝐽𝑥,𝐴 = 𝐽𝑦,𝐴 = 2 [
1

2
𝑚𝑟2] + 2 [

1

4
𝑚𝑟2 +

1

3
𝑚𝐿2 + 𝑚 𝑑𝐴

2] 

𝐽𝑧,𝐴 = 4 [
1

4
𝑚𝑟2 +

1

3
𝑚𝐿2 + 𝑚 𝑑𝐴

2] 

 

 𝐽𝑖 = 𝐽𝑖,𝑀 + 𝐽𝑖,𝑆 + 𝐽𝑖,𝐻 + 𝐽𝑖,𝐴   𝑓𝑜𝑟 𝑖 = 𝑥, 𝑦, 𝑧 

 

The sole internal driving force behind our UAVs movement lies within the thrusts generated by 

the motors and propellers perpendicular to the 𝑋𝑏-𝑌𝑏 plane of the body frame of reference (+𝑍𝑏 

direction). The thrust T, provided by a single motor/propeller setup is defined by: 

𝑇 = 𝐶𝑇𝜌𝐴𝑟𝑟
2�̅�2 

Here 𝐶𝑇 is the thrust coefficient for a specific rotor, 𝜌 is the density of air, 𝐴𝑟  is the cross-

sectional area of the propeller's rotation, r is the radius of the rotor, and �̅� is the angular velocity 

of the rotor. In order to further simplify the characterization process, we lump 𝜌𝐴𝑟𝑟
2 parameters 

into 𝐶𝑇 to obtain the thrust coefficient relation:  

𝑇 =  𝐶𝑇�̅�2 

The torque force of the motor/prop system can be determined in a similar fashion to that of the 

thrust tests. The torque Coefficient relations is: 

  

𝑄 = 𝐶𝑞�̅�
2 

In this case, 𝑄 is the torque created by the motor and 𝐶𝑞 is the torque coefficient for the 

motor/prop system.  

We can now create a matrix which describes the thrusts and torques on the system: 

𝑑+ = 𝐴𝑟𝑚 𝐿𝑒𝑛𝑔𝑡ℎ 𝑓𝑟𝑜𝑚 𝑞𝑢𝑎𝑑𝑐𝑜𝑝𝑡𝑒𝑟 ℎ𝑢𝑏 𝑐𝑒𝑛𝑡𝑒𝑟 𝑡𝑜 𝑚𝑜𝑡𝑜𝑟  𝑐𝑒𝑛𝑡𝑒𝑟 

𝑑𝑥 = 𝑑+ sin(45°) 

[
 
 
 
 ∑𝑇

𝜏𝜙

𝜏𝜃

𝜏𝜓 ]
 
 
 
 

= [

𝐶𝑇 𝐶𝑇 𝐶𝑇 𝐶𝑇

−𝑑𝑥𝐶𝑇 𝑑𝑥𝐶𝑇 𝑑𝑥𝐶𝑇 −𝑑𝑥𝐶𝑇

−𝑑𝑥𝐶𝑇 −𝑑𝑥𝐶𝑇 𝑑𝑥𝐶𝑇 𝑑𝑥𝐶𝑇

−𝐶𝑞 𝐶𝑞 −𝐶𝑞 𝐶𝑞

]

[
 
 
 
 
�̅�1

2

�̅�2
2

�̅�3
2

�̅�4
2]
 
 
 
 

 

For control purposes a linear regression is needed that will translate throttle command values (as 

percent throttle) to RPM values.  

�̅�𝑠𝑠 = (𝑇ℎ𝑟𝑜𝑡𝑡𝑙𝑒% ∗ 𝐶𝑟)  + 𝑏 
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Here �̅�𝑠𝑠 is the expected steady-state motor RPM, 𝑇ℎ𝑟𝑜𝑡𝑡𝑙𝑒% is the throttle percentage 

command, 𝐶𝑟 is the throttle % to RPM conversion coefficient, and 𝑏 is the y-intercept of the 

linear regression relationship.  

The phenomenon of gyroscopic precession occurs when the axis of rotation of a rotating body is 

changed, and must be accounted for in our model. The gyroscopic forces resulting on the body 

are governed by the inertia of each motor’s rotating components ( 𝐽𝑚), the rolling and pitching 

rates (P,Q), as well as the speed of each motor/prop system (�̅�𝑖 ). The gyroscopic torques for 

pitch and roll action are: 

𝜏𝜙𝑔𝑦𝑟𝑜 = 𝐽𝑚𝑄 (
𝜋

30
) (�̅�1 − �̅�2 + �̅�3 − �̅�4)  

𝜏𝜃𝑔𝑦𝑟𝑜 = 𝐽𝑚𝑃 (
𝜋

30
) (−�̅�1 + �̅�2 − �̅�3 + �̅�4) 

(Note: The 
𝜋

30
 term corresponds to the transition from RPM to radians)  

Our new resulting matrix will account for the mentioned gyroscopic, and thrust moments created 

by the motor/prop systems on our UAV: 

𝑀𝐴,𝑇
𝑏 = 

[
 
 
 
 𝑑+𝐶𝑇�̅�2

2 − 𝑑+𝐶𝑇�̅�4
2 + 𝐽𝑚𝑄 (

𝜋

30
) (�̅�1 − �̅�2 + �̅�3 − �̅�4)

−𝑑+𝐶𝑇�̅�1
2 + 𝑑+𝐶𝑇�̅�3

2 + 𝐽𝑚𝑃 (
𝜋

30
) (−�̅�1 + �̅�2 − �̅�3 + �̅�4)

−𝐶𝑞�̅�1 + 𝐶𝑞�̅�2 − 𝐶𝑞�̅�3 + 𝐶𝑞�̅�4 ]
 
 
 
 

 

 

𝑀𝐴,𝑇
𝑏  refers to the moments present in the body frame resulting from the thrusts, and torques on 

the system. The lift force can be expressed: 

𝐹𝐴,𝑇
𝑏 = [

0
0

𝐶𝑇(�̅�1 + �̅�2 + �̅�3 + �̅�4)
] 

𝐹𝐴,𝑇
𝑏  refers to the forces acting in the body frame on the quadcopter due to thrust.  

 

State equations that define this simplified dynamic model need to be defined. The first is the 

Angular Velocity state equation: 

�̇�𝑏|𝑖
𝑏

 
𝑏 = (𝐽𝑏)−1[𝑀𝐴,𝑇

𝑏 − Ω𝑏|𝑖
𝑏 𝐽𝑏ω𝑏|𝑖

𝑏 ] =  [
�̇�
�̇�

�̇�

] 
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This equation describes the change in roll (P ), pitch ( Q), and yaw (R) rates of the quadcopter by 

taking into account the inertia, angular velocity, and the moments applied by the motor/prop 

systems. �̇�𝑏|𝑖
𝑏

 
𝑏  is the angular acceleration across each axis in the body frame with respect to the 

inertial frame, and is simplified to: 

�̇�𝑏|𝑖
𝑏

 
𝑏 = [

�̇�
�̇�

�̇�

] 

The cross-product matrix for rotational velocity, Ω𝑏|𝑖
𝑏 , and the rotational velocity of the 

quadcopter body within the body frame with respect to inertial frame (earth frame), ω𝑏|𝑖
𝑏 , are 

defined as: 

 Ω𝑏|𝑖
𝑏 = [

0 −𝑅 𝑄
𝑅 0 −𝑃

−𝑄 𝑃 0
] 

ω𝑏|𝑖
𝑏 = [

𝑃
𝑄
𝑅
] 

The Euler Kinematic Equation, which allows us to determine the rate of change of the Euler 

angles in the inertial frame is: 

Φ̇ = 𝐻(Φ)ω𝑏|𝑖
𝑏 = [

�̇�

�̇�
�̇�

] 

Using yaw, pitch, and roll rotations a composite rotation matrix can be created which can 

transform the motion of the UAV from the body frame to a new reference frame. The resulting 

rotation matrix transforms rotations from the body frame with respect to the inertial frame and 

can be found using matrix multiplication. 

𝑢𝑏 = [

1 0 0
0 cos (𝜙) sin (𝜙)
0 −sin (𝜙) cos (𝜙)

] [
cos (𝜃) 0 −sin (𝜃)

0 1 0
sin (𝜃) 0 cos (𝜃)

] [
cos (𝜓) sin (𝜓) 0
−sin (𝜓) cos (𝜓) 0

0 0 1

] 𝑢𝑖 

The resulting matrix multiplication yields the rotation matrix from the inertial to the body frame 

using the rotation sequence: 

𝐶𝑏|𝑖 = [

cos (𝜃)cos (𝜓) cos (𝜃)sin(𝜓) −sin (𝜃)

(− cos(𝜙) sin(𝜓) + sin(𝜙) sin(𝜃) cos(𝜓)) (cos(𝜙) sin(𝜓) + sin(𝜙) sin(𝜃) sin(𝜓)) sin(𝜙) cos(𝜃)

(sin(𝜙) sin(𝜓) + cos(𝜙) sin(𝜃) cos(𝜓)) (− sin(𝜙) cos(𝜓) + cos(𝜙) sin(𝜃) sin(𝜓)) cos(𝜙) cos(𝜃)
] 

This rotation matrix is integral to solving the velocity and position state equations, however that 

derivation is beyond the scope of this work. Continuing, the angular velocity of the aircraft in the 

body frame can be related to the changes in angle rotation as shown below, where the C matrices 

of 𝜙 and 𝜃 are those from 𝑢𝑏. 
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ω𝑏|𝑖
𝑏 = [

�̇�
0
0

] + 𝐶𝜙 ([
0
�̇�
0
] + 𝐶𝜃 [

0
0
�̇�

]) 

The resulting Euler Kinematic Equation is [61]: 

Φ̇ = [

�̇�

�̇�
�̇�

] = [

1 tan(𝜃) sin(𝜙) tan(𝜃) cos(𝜙)

0 cos (𝜙) −sin (𝜙)
0 sin (𝜙)/cos (𝜃) cos (𝜙)/cos (𝜃) 

] [
𝑃
𝑄
𝑅
] = 𝐻(Φ)ω𝑏|𝑖

𝑏  

The velocity state equation describes the acceleration of the center of mass of the rigid body 

UAV model based on the forces and accelerations acting on the body. 

�̇�𝐶𝑀|𝑖
𝑏 = (

1

𝑚
)𝐹𝐴,𝑇

𝑏 + 𝑔𝑏 − 
𝑏 Ω𝑏|𝑖

𝑏 ω𝐶𝑀|𝑖
𝑏 = [

�̇�
�̇�
�̇�

] 

�̇�𝐶𝑀|𝑖
𝑏   

𝑏 is the linear acceleration of the center of mass in the body frame with respect to the 

inertial frame. Here 𝑚 is the total mass of the UAV, and 𝑔𝑏 is the acceleration of gravity 

translated to act in the body frame by the rotation matrix 𝐶𝑏|𝑖. 

𝑔𝑏 = 𝐶𝑏|𝑖𝑔
𝑖 

The position state equation, describes the linear velocity of the center of mass of the UAV in the 

inertial frame. 

�̇�𝐶𝑀|𝑖
𝑖

 
𝑖 = 𝐶𝑖|𝑏V𝐶𝑀|𝑖

𝑏 = [
�̇�
�̇�
�̇�

] 

𝐶𝑖|𝑏 = [𝐶𝑏|𝑖]
𝑇
 

Here [𝐶𝑏|𝑖]
𝑇
represents the transpose of [𝐶𝑏|𝑖]. �̇�𝐶𝑀|𝑖

𝑖
 
𝑖  is the velocity of the UAV in the body 

frame that is rotated into the inertial frame. This equation is crucial, and allows us to determine 

the velocity of the quadcopter in the X, Y, and Z directions of the inertial frame (earth frame of 

reference) within our mathematical model and further simulations. Armed with both velocity and 

position state equations we can continue on to make use of powerful tools like MATLAB and 

Simulink, which enable us to seamlessly introduce a virtual PID control similar to that of a flight 

controller, further maturing our overall model.  
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CHAPTER 4: MATLAB-SIMULINK CONTROL MODELING & SIMULATION 

4.1 PID Controller Theory 

Our proposed X8 octa-quad UAV design is inherently unstable, naturally trending towards 

unstable values of torque in ω𝑏|𝑖
𝑏 , and requiring continuous motor thrust control to function 

properly. All destabilizing external or internal inputs can be represented as a step input 

disturbance which our control system must counteract to achieve steady state stability (steady 

flight). Fortunately, this sort of control problem is so universal that PID control has become a 

commonplace and heavily utilized technique. Basic PID control structure in its complete form 

consists of Proportional, Integral and Derivative parts (PID). In this section the separate parts are 

described with their respective characteristics, beginning with proportional control, (𝐾𝑃), which 

acts to reduce the rise time of the system. Observe that with pure proportional control, it is 

typical for UAV plant model steady state errors occur in response to a step input. 

If an integral controller (𝐾𝐼)  is added, then the steady state error can be reduced, as the error 

over time will be summed and taken into consideration. Note that integral action, while removing 

the offset or steady-state error, may lead to oscillatory response of slowly decreasing or 

increasing amplitude, both of which are usually undesirable. Additionally, when control 

saturation occurs integrator windup may occur. This should be avoided as overshooting in the 

plant response creates a progressively unstable system. 

 

When we finally add derivative control (𝐾𝐷) to the mix, we provide a means of obtaining a 

controller with high sensitivity, in other words, it improves the transient response. For a step 

input, this means that the overshoot is reduced. An advantage if using derivative control is that it 

responds to the rate of change of the actuating error and can produce a significant correction 

before the magnitude of the actuating error becomes too large, thus improving the overall 

stability of the system. Although derivative control does not affect the steady-state error directly, 

it adds damping to the system and permits the use of a larger value of the proportional gain with 

lowered risk of oscillation, which will result in an improvement in the steady-state accuracy. 

Table 4.1 below summarizes the impact of combining the Proportional Integral and Derivative 

control. This can be applied to concurrently reduce rise time, reduce maximum overshoot and 

remove the steady state error in many systems. The continuous time PID control law as described 

by the transfer function: 

𝐾(𝑠) = 𝐾𝑃 +
𝐾𝐼

𝑠
+ 𝐾𝐷 𝑠  

 

Figure 4.1: General PID Control Structure 
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Table 4.1: The effects of increasing each of the controller parameters 

PID Parameter ∆ Rise Time Overshoot Settling Time Steady State Error 

𝐾𝑃  Decrease Increase Non-Definitive Decrease 

𝐾𝐼  Decrease Increase Increase Eliminates 

𝐾𝐷  Non-Definitive Decrease Decrease Non-Definitive 

 

4.2 Tuning PID 

Figure 4.2 below depicts different open loop responses for a system which was introduced to step 

impulse similar to the impulse that would throw a UAV out of balance if uncorrected over time. 

Here, 1 is the desired steady state value representing level UAV attitude, and we judge the 

performance of a system by how quickly it converges to that value (𝑒𝑆𝑆 = 0 ), without further 

oscillation ( 𝑡𝑆𝑆). In some cases, the maximum overshoot ( 𝑀𝑃 ) and rise time (𝑡𝑟) are viewed as 

critical parameters. For this work these parameters are observed but not optimized, as stability 

problems were adequately resolved once 𝑡𝑆𝑆 was sufficiently minimized.  

 

Figure 4.2: Example of typical response to a unit step input of a system 

 

Achieving the optimum values for each control parameter is a field of study on its own, and 

beyond the scope of this work. However, using modern optimization techniques, it is possible to 

tune PID control parameters 𝐾𝑃, 𝐾𝐼, and 𝐾𝐷 if the transfer function of the plant is known, to 

optimize the closed-loop performance. For example, The Ziegler-Nichols tuning rule is often 

used as a basis for which iterative increasing or decreasing of control parameters is dependent on 

error based performance indices. It’s worth remarking that different control performance indices 

(methods) certainly generate different control parameters which each are superior to Ziegler-

Nichols at different degrees. This further accents the breath of this study, since one method of 

“optimization” gives superior step responses than another.   
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Figure 4.3: Different performances for different parameters in response to the same impulse [66] 

Each of the trails were run under different integral control performance indices [65]. 

The Integral of Squared Error (ISE): 

𝐼1 = ∫ 𝑒2(𝑡)𝑑𝑡
∞

0

 

The Integral of Absolute Error (IAE) 

𝐼2 = ∫ |𝑒(𝑡)|𝑑𝑡
∞

0

 

The Integral of Time Multiply Squared Error (ITSE) 

𝐼3 = ∫ 𝑡𝑒2(𝑡)𝑑𝑡
∞

0

 

The Integral of Time multiply Absolute Error (ITAE) 

𝐼4 = ∫ 𝑡𝑒2(𝑡)𝑑𝑡
∞

0

 

Though all methods improve on the Ziegler-Nichols tuning rule, ITSE method performed the 

best. This again highlights how different values of   𝐾𝑃, 𝐾𝐼, and 𝐾𝐷 may result in different 

combinations of 𝑡𝑆𝑆, 𝑀𝑃 , and 𝑡𝑟. Several tuning algorithms have been developed for tuning PID 

controllers. Ziegler-Nichols and Lambda tuning may be most famous but, as seen above, can 

certainly be improved upon. Many previous projects ( [66]), have successfully made use of an 
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iterative tuning method employing elements from Table 4.1 above with the following 

progressive algorithm, employed in this work:  

1. Investigate step response  

2. If rise time 𝑡𝑟 needs to be reduced, increase the value of 𝐾𝑃 

3. If maximum overshoot 𝑀𝑃 needs to be reduced, increase the value of 𝐾𝐷 

4. If steady state error 𝑒𝑆𝑆 is persistent, increase the value of 𝐾𝐼 

5. Repeat gains adjustment until desired response time (𝑡𝑆𝑆) is obtained 

A drawback of this method is that it lacks the ability to determine when the initially selected 

conditions for gain parameters 𝐾𝑃, 𝐾𝐼, and 𝐾𝐷 might be too large, a problem seen later to plague 

the first prototype described in later chapters. For example, elongated oscillations just prior to 

achieving steady state can be caused by excessive integral gain (𝐾𝐼). This can be remedied by 

either decreasing 𝐾𝐼 or increasing 𝐾𝐷, whereas the above approach gives sole preferences to 

always increasing 𝐾𝐷, possibly resulting in increased 𝑡𝑆𝑆 . 

 

4.3 Simulink Control Model 

The UAVs attitude is at all times determined by the values of Roll (𝜙), Pitch (𝜃) and 

Yaw (𝜓) with respect to earth (inertial frame). In order to maintain balance and achieve useful 

flight, these parameters must be continuously adjusted. Both our Simulink model and physical 

microcontrollers employ the aforementioned PID control method to steer these variables as 

desired. Figure 4.4 shows is a Simulink object oriented example of PID. First, note that the 

feedback element is derived from the desired Z state variable (generated elsewhere), and that the 

case of altitude is unique as it requires a +Z gravity offset to account for the constant force of 

gravity in the -Z direction. Such an offset is not required for the Roll, Pitch and Yaw PID 

controllers, which are otherwise identical in structure.  

 

Figure 4.4: Example Elevation PID controller 
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Figure 4.5: Complete Attitude Controller 

 

 

We obtain a complete attitude controler as shown in figure 4.5 above by replicating the PID 

control for for altitude (Z) acrosss 𝜙, 𝜃,  and 𝜓 as well. In this manner, we have acquired 

correction parameters scaled to match the degree of error within each desired value of  𝜙, 𝜃,  𝜓, 

and Z. If we now translate these correction parameters into specific motor toques for each motor, 

we can achieve stabilized controlled flight in both virtual and physical realms.  

 

4.4 Simulink Simulation 

Figure 4.6 below depicts how specific motions are achieved by a Quadcopter UAV. We 

must again invoke the assumtion equalant motor attributes transferable from an arm on our X8 

Octaquad to an arm on a Quadcopter UAV. If we again assume symmetry and that the center of 

gravity of the UAV is also the geometric center, stable (hover) flight is achieved when all four 

motors have exactly the same RPM and generate equal thrusts and torques. In this situation, the 

torques created by each of the motors will cancel out, holding the direction of the aircraft fixed. 

If the downward thrust generated is enough to counteract the force of gravity acting on the UAV 
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it may hover or increase in elevation, otherwise it will descend at a rate relative to the difference 

in gravitational force and the total thrust downward. For forwards/backwards, or left/right flight 

in the inertial frame (Roll and Pitch), the relative  RPM (and proportianally relative thrust) of 

two motors normal two each other on the XY plane (Body frame) must be greater than the RPM 

of the other opposing motors. This teporarily creates an imbalance in the thrust which begins to 

rotate the UAV about the 𝜙-axis or 𝜃-axis as desired. Similarly turning (yawing) in the inertial 

frame is achieved by having two motors on oposing arms sustain higher relative RPM than the 

motors they are normal to in the X-Y plane of the body frame of reference. The direction the 

UAV turns in depends on which set of motors has the relative boost in RPM.  

 

Figure 4.6: Quad UAV execution of Roll, Pitch, Yaw and Hover [69] 

Combining the control systems generated by the attitude control block is imparitve to our 

simulation. This must be done in a fashion shown in Figure 4.7, such that when the prevously 

metioned relative RPM scenarios occur for a given input command into the attitude controler. 

The mixing terms for motor controllers 1-4, 𝑀𝑐1, 𝑀𝑐2, 𝑀𝑐3, and 𝑀𝑐4  are used within our model 

to set the RPM for each motor. It may not be entirely intuitive, but each 𝑀𝑐−𝑖𝑡ℎ  summation of 

correction varriables does indeed produce the desired effect. A simple check on this can be 

reached by analysing the altitude correction term. Note that this term is added to and is directly 

proportional to the overal value of each motor. As we would expect, when the desired altitude is 

lower than requested from the Desired Z varriable in our PID control, the Altitude correction 

term will be positive. This in turn will equally increase the values for all 𝑀𝑐−𝑖𝑡ℎ , resulting in a 

net increase in RPM and downward thrust produced by all motors, bringing the UAV closer to 

the desired hight. A similar check can be performed on the effects of increase or decreasing 𝜙-

correction, 𝜃-correction, or 𝜓-correction terms. 
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Figure 4.7: Control mixing of correction commands to UAV motors 

In order to properly simulate how the UAV will respond to attitude commands, a position 

controller block which generates attitude commands is required. Figures 4.8, 4.9 and 4.10 depict 

the block level, component level and PID structures of the position controller respectively. Note 

that this block is given inputs of typical inputs of heading (𝜓), altitude (Z), and speed in 

component terms of X-velocity and Y-velocity in the earth frame of reference. 𝜙 and 𝜃 are 

derived trigonometry and are combined with the 𝜓 and Z to serve as inputs into the attitude 

controller block. Note that the path commands themselves exist in a pre-generated MATLAB file 

containing all command values for each instance of a clock iteration within our simulation (for 

each cycle).  

 

Figure 4.8: Simulation position controller block 

  

 



 

35 

M.Sc. Thesis  Fuad Gazal B.Sc. 

 

Figure 4.9: Path command error signal generation 

 

Figure 4.10: PD Control setup for Theta and Phi command control 

The state space equations which describe the dynamic behavior of the UAV generated in chapter 

3 are simulated in a level 2 S-Function written in the MATLAB language. The code for this 

block is found in the appendix. In addition, the simulating of earth ground, variables such as the 

UAV velocity, altitude and position are tracked, held, and refreshed within this block for both 

earth and body frames of reference. The Quadcopter Dynamics block outputs this data back into 

the position and attitude controller blocks, which generates the feedback required for PID 

control. Below, the complete simulation setup at the block level is shown.   
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Figure 4.11: Complete simulation setup 

However, this simulation still requires information describing the UAVs mass, and moment of 

inertia to plug into our mathematical model. The gross weight of the UAV (M), components of 

moment inertia (𝐽𝑥 , 𝐽𝑦, 𝐽𝑧  ), are calculated using data from table 4.2 and further used to generate  

𝐽𝑏 as depicted in the previous chapter.  

Table 4.2: Example Moment of Inertia Data 

Motors ESC’s Central Hub Arms 

Mass = 75 g Mass = 31 g Mass = 431 g Mass = 45 g 

dm = 21.225 cm a =2.54 cm r = 5.6388 cm r = 3.25374 

H = 3.175 cm b = 5.715 cm H = 4.28625 cm L = 18.5738 

r = 1.40335 cm ds = 8.255 cm  da = 5.08 

 

Additionally, motor test values are also key to simulating Thrusts (T), Torques (Q), and motor 

angular velocities (�̅�𝑠𝑠) and must be entered into the simulation with parameters shown in table 

4.3. These values can be generated via a test bench as described in [64], however this work used 

data from the supplier of our motors and propellers to attain the required constants. In some 

cases, a regression was needed to acquire greater precision, as will be shown later.  

Table 4.3: Example Test Data 

Thrust coefficient: 𝑪𝒕 1.4865e-07 N/RPM^2  

Torque coefficient: 𝑪𝒒 2.925e-09 n*m/RPM^2 

Throttle % to RPM: 𝑪𝒓 80.584 

Anglur Velocity RPM Offset: b 976.2 

Simulation Time Constant:  .076 

Minimum Throttle % 5% 
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4.5 Conclusion 

Simulation challenges and accuracy rest in the ability to adequately tune PID control 

parameters, as well as accurately measuring the attributes of our physical design. That being 

said, the great advantage from this simulation format is its flexibility in analyzing many different 

quadcopter setups. By simply modifying variable values in the above tables, we can transition 

from one type of theoretical UAV to another, without incurring any additional cost. This feature 

is critical to our quadcopter design and by the extension critical to the overall optimized system 

design which this work proposes.  
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CHAPTER 5: SYSTEM PROTOTYPE IMPLIMENTATION 

5.1 Simulink Modeling 

Before dedicating time and resources towards a specific design, we must first make use of 

available modeling and simulation tools. By doing so, we can narrow in on desired design 

parameters and characteristics that may otherwise remain nebulous. Throughout the simulation 

test trails, we strived to obtain a reasonable goal for the UAVs mass, as well as to generate a 

simulation variable set that would achieve stable flight below 50% throttle. This throttle percent 

objective takes into consideration that a payload will need to be added, requiring the UAV to 

increase its stable flight throttle by an additional 20-30%. Initially, parameters such as those in 

Table 5.1 were selected superfluously or at random. As motor testing and parts research was 

conducted, more realistic and precise simulation variables were acquired. Table 5.1 depicts the 

set of parameters used as a standard bearer for version 1 (V1) of our UAV prototype, totaling 8 

kg in mass.  

Table 5.1:  Simulation Input Data 

Motors ESC’s Central Hub Arms 

Mass = 150 g Mass = 250 g Mass = 6000 g Mass = 100 g 

dm = 50 cm a =2.54 cm r = 10.0 cm r = 1.27 cm 

H = 5.0 cm b = 5.0 cm H = 30.0 cm L = 42 cm 

r = 2.5 cm ds = 5.0 cm  da = 10 cm 

Thrust coefficient: 𝑪𝒕 2.0e-06 N/RPM^2  

Torque coefficient: 𝑪𝒒 2.2e-07 Nm/RPM^2 

Throttle % to RPM: 𝑪𝒓 46.48 

Anglur Velocity RPM Offset: b 1000 

Simulation Time Constant:  .076 

Minimum Throttle % 5% 

 

Flight simulation with a payload was not accurately simulated beyond increasing the mass of the 

central hub. This is because the physical makeup of how the payload would be attached to the 

UAV was far from inception at the beginning on this work, when much of our initial simulation 

took place. Though modifying the central hub’s mass assumes the payload is rigid, centered 

about the geometric center of the UAV, and evenly distributed. Without a specific physical 

design, arbitrarily modeling the eventual payload as a block of mass under then UAV can’t be 

guaranteed to be significantly more accurate than increasing the mass of the central hub, thus 

such modeling was evaded. 

It's at this point that an X8 octa-quad design was determined to be best suited for our UAV 

prototype. First, the addition of four downward facing motors will allow for double the total 

thrust of a quadrotor design, making it possible to maneuver a heavier UAV and carry heavier 

payloads. Secondly, the counteracting torques at each motor mount will be able to balance out, or 

at least be reduced relative to quadrotors, likely improving the UAVs stability. Lastly, the use of 

advanced CPU algorithms and circuit designs could be employed to use the upper and lower sets 

of motors independently. This could prove useful in the event of motor failure.  



 

39 

M.Sc. Thesis  Fuad Gazal B.Sc. 

 

Figure 5.1: Simulation attitude and position 3D views 

Figures 5.1 and 5.2 depict the dynamic diamond flight path selected for all simulations, and is 

specific to data from Table 5.1. This path was chosen for its inclusion of takeoff, midair decent, 

90-degree angle turns in the top view plane, straight line, and hover actions.  All of these actions 

are expected to also be testing on the prototype in the field. The flight path initiates at the base 

where the circles are dark blue, and terminates in the air where the circles are dark red. Each 

simulation was executed over a 45 second interval, logging all relevant variables (graphed in 

Figure 5.4) at each sampling node, with the number of samples dependent on the simulation time 

constant . Figure 5.3 shows the desired motor throttle command % and RPM for an 8kg UAV, 

which is fairly identical for all motors. We see that the initial takeoff required 52% throttle (4100 

RPM), and stable flight at a 10ft altitude was manageable around 46% throttle (3600 RPM). The 

low velocities are not a concern as attitude angles no larger than 3% were used for lateral motion, 

and the desired liftoff velocity is more or less user defined.  

 

Figure 5.2: Top and side views of simulated flight path 
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Figure 5.3: Motor simulation results from Table 5.1 simulation 

 

Figure 5.4: UAV kinematic simulation results for PQR (X,Y,Z) 
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5.2 Version 1 

 

-Motor selection 

Selecting an appropriate motor is key to any multirotor design. Since manufacturing of this 

component required resources that were not readily available (metal CNC machine), commercial 

brushless DC motors were purchased and tested. The onset of this project sought the acquisition 

of a quick response, efficient, thrust maximizing motor. The requirements highlighted in the 

previous chapter required that the sum of thrusts produced by all motors be able to support a 

UAV with an 8kg all up weight, which can simultaneously manage an 8kg payload. From this we 

conclude that the desired UAV requires the ability to generate a minimum of 157 Newtons of 

downward thrust to simply hover. When this research began, few suppliers provided motor test 

data for their brushless DC motors, making it initially difficult to select appropriate motors for 

testing. Additionally, the public UAV market was at this point (and even still today) very 

unaccustomed to multirotors handling such payloads, indeed the search was an anomalous 

endeavor. The best results were found while researching a competition held by Hobby King, a 

U.S. based complete 3rd party supplier of commercial/hobby UAV products. The Hobby King 

Dead Lift competition challenged people across the country to use products they sold to design a 

UAV which could lift the heaviest payload for a set period of time. The competitors with the best 

results, including the winners of the competition, utilized the Turnigy G60 brushless DC motor 

within their respective designs. Unfortunately true to form, sufficient motor test data was 

nowhere to be found on the retailers website. Thus, this motor was selected, and immediately 

needed to undergo testing. 

 

 

Figure 5.5: Turnigy G60 motor testing apparatus 
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The G60 motor testing apparatus can be seen in Figure 5.5. The setup was designed to acquire 

data on motor current consumption at various throttle levels to be followed with thrust data 

acquisition. The system was powered by a Turnigy Nanotech 5000mAH 25-50C battery, with a 

nominal charge of 22 volts, and capable of safely deliver 125-250 Amperes.  Unseen in figure 

5.5 is the Mystery Fire Dragon brand 100-amp electronic speed controller (ESC), along with 

internal electronics which allowed for control of the throttle level via an external potentiometer 

controlled pulse width modulated (PWM) signal fed into the Mystery Fire Dragon ESC. This 

100-amp rated ESC was chosen because the motor manufacturer specified a maximum current of 

65A, although this appears to have been a steady state calculation which may have disregarded 

transient pulses and peaks. Evidence of this was found during the first test runs for the motor. At 

the onset of testing the G60, no propeller was mounted primary for safety. During this period, 

only the slightest changes in throttle were made from one output level to another (5-10% throttle 

deviations), and the G60 responded with the kind of rapid changes in RPM we would expect 

from a motor rated at 500KV. Next, we added a hefty and rigid 16x2 APC propeller (Model 

LP16012) in attempt to begin measuring thrust output levels. The combination of increasing the 

rotational moment by adding the propeller, while also testing motor response to more drastic 

throttle deviations (30-40% throttle deviations) somehow resulted in the overheating and 

eventual combustion of the electronic speed controller. This was the first of what would 

undoubtedly be many setbacks, disasters, and testing failures throughout the tenure of this work, 

to be elaborated in the following chapter. The ESC’s heat sync shown in Figure 5.6 was a hefty 

one and functioned suitably in earlier test trials. The meltdown occurred during a rapid transition 

from a throttle of roughly 60% to over 90% as well. Though the exact current was not being 

measured at the time, the available data points to a high transient current as the culprit.    

 

 

Figure 5.6: Post combustion initial motor testing 

Though undesired, the results from testing of the G60 foreshadowed possible dangers of working 

with such high current loading motors, giving rise to much needed additional research into an 

alternative brushless DC motor. Indeed, when the X8 octa-quad design of our desired UAV is 

taken into consideration, we arrive at the frightening conclusion that by virtue of a single G60 

pulling 65-100 amps of instantaneous current, our 8-motor design would in turn require a power 

supply capable of safely delivering 520-800 amps at full speed! A daunting requirement. Though 
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certainly attainable, for magnetic field suppression and security reasons later expanded on, this 

was simply unacceptable. The motor explorative research period concluded with a transition 

from the Turnigy G60 to the premium built, and more expensive T-Motor 5008 340KV.  

 

 

Figure 5.7: On the left: Turnigy G60 Motor | On the Right: T-Motor 5008 340KV 

Improved electrical efficiency summarizes the primary reason for this verdict. The flatter profile 

of the T-motor distributes a greater ratio of motors mass towards its external perimeter than the 

G60 does. Intuitively, this increases the motors rotational moment and acts to retain more 

rotational kinetic energy while in operation. The T-Motors maximum current draw is rated at < 

22 amps at 3 kg of static thrust. Not only does this mean that our octa-quad design will have a 

maximum static lifting thrust of 24kg (well above what we desired), but also that the maximum 

current draw from all 8 motors at full speed is down from 800 amps to 176 amps. In addition to 

improved efficiency, The T-Motor’s manufacturer surprisingly provided detailed motor test 

results (Figure 5.9), allowing for the streamline derivation of thrust and torque coefficients 

covered in Chapter 4 (𝐶𝑇  𝑎𝑛𝑑 𝐶𝑞) seen in figures 5.10 and-5.11 below, which further allowed for 

subsequent simulations to be more accurate. It’s worth noting that we forfeit the freedom to 

select a propeller, and are forced to employ the same Falcon 1855CF carbon fiber prop which 

Tarot acquired their motor test data with, in order for this data to directly correlate with our 

motor setup. With an 85% throttle efficiency of 6.48 grams/watt, the T-Motor 5008 and Falcon 

1855CF setup surpasses the G60’s, however this motor-propeller setup is far from the most 

efficient. Many other motor-propeller combinations (also from T-Motor) have max 85% throttle 

efficiency ratings as high 11.19 grams/watt (T-Motor U12 100KV), while even delivering greater 

thrust (4kg). However, the 5008 340KV model price point was the best available for the budget 

of this project, since unit motor cost increased exponentially with a matched increase in 

efficiency and thrust.  
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Figure 5.8: Tarot 5008KV motor test data as provided by the manufacturer 

 

 

Figure 5.9: T-Motor Current vs. Static Thrust 
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Figure 5.10: T-Motor Static Thrust vs. Throttle % 

 

Figure 5.11: T-Motor Thrust vs. RPM^2 
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since the Simulink simulation is a quadrotor layout, we must double our 𝐶𝑡 value in order to 
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account for the additional motor per arm. With the motor rotating at 4648 RPM while receiving a 

throttle signal of 100%, throttle the coefficient of rotation 𝐶𝑟= 46.46%. 

 

-Electronic speed controller (ESC) 

The combustion of the Mystery Fire Dragon brand ESC prompted the search for an ESC with 

less mysterious fire, and better performance. In conducting this search the issue of mass also 

became a critical variable, as we now recognize the inverse relationship between the total (all up) 

mass of the UAV and its eventual payload capacity. HobbyKing’s “red brick” brand of ESC’s 

was eventually settled on due to a 100-amp steady state rating, a 140-amp burst current rating, 

and their ubiquity within the UAV community. Additionally, these ESC’s included a convenient 

battery eliminator circuit (BEC) capable of supplying 5.5 volts at a maximum of 4 amps. The 

sizable heatsink on this brand in combination with the reduced current requirements of the T-

motor, resulted with infrequent inflammation throughout this work. Indeed, of the multiple 

Hobbyking ESC’s purchased, only one failed due to human error in the lab.  

 

Figure 5.12: Transition from one brand of ECS to another 

There are three undesirable aspects found with the HobyKing brand, the first two being it’s 

geomotry and mass. This ESC is bulky to say the least, and is typically used in single motor 

Hilicopters or 4-motor quadcopter designs. Fitting 8 of them within our X8 octa-quad UAV 

would prove to be difficult, yet not as difficult as spreading their mass evenly about the UAVs 

center of gravity. With a unit mass of 99-gram the ESC’s would already consume 10% of our 

8kg goal. Lastly, the PWM signal required by this ESC wasn’t the standard 50-60 Hz, but was 

instead rated at 8khz or 16khz. Though this does not directly appear to be of concern, it impacts 

the signal resoltion of the PWM generating microcontroller (discussed later). In general, ESC’s 

controlled by lower frequencies allow a microprocessor to have greater percision of PWM duty 

cycle, which in turn allows for greater pricision in controling the individual motor speeds on 

each arm of the UAV. This last setback would eventually be circumvented  by employing 

powerful microcontrollers.  
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-Power Supply 

 

Figure 5.13: Chain of Nano-Tech LiPo Batteries being charged 

The significant drop in current requirements gained from using the T-Motors instead of the 

G60’s could have been a basis for similarly reducing design requirements for our power supplies 

current capacity, yet early experiences took this work in the opposite direction. This design 

feature was one of the earliest to be specified, and thus future planning was considered. At the 

onset, it was difficult to determine what sort of additional components would be needed to 

complete our system, and what sort of current demands those components would require. Thus, a 

maximalist approach was taken to designing the power supply, striving to design one capable of 

supplying as much current as possible. Figure 5.13 above shows the Turnigy Nano-tech lithium 

polymer batteries selected. These batteries each holds 5000 mA-Hours of charge, and are capable 

of safely delivering 125 amps of steady state current and (350 amps of impulse current).  
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Figure 5.14: Discharge curves for various battery technologies  [70] 

 

As previously eluded to, the power density found in lithium ion batteries surpasses that of lead 

acid and others. Additionally, as seen in figure 5.14, LiPo batteries share the common 

characteristic of maintaining fairly constant voltage between 20% and 85% discharge levels. 

However, an unavoidable drawback found in each lithium ion battery reviewed for purchase was 

their significant mass, with the final selected brand adding 450 grams per six-celled block 

(totaling ~2kg). A heavily debated design characteristic was the issue of series verses parallel 

configuration. Most of the alternative work presented in chapter 2 used either a single battery 

(similar to our Turnigy Nano-tech brand), or paired two batteries in series. This likely resulted 

from the relatively short flight times (<12 minutes for DJI) and low current demands of their 

respective designs.  



 

49 

M.Sc. Thesis  Fuad Gazal B.Sc. 

 

Figure 5.15: Turnigy Nano-Tech LiPo battery discharge tests at various discharge rates [71] 

 

Series combination of two batteries would result in a maximum system voltage of <50.4 Volts, 

providing both LiPo batteries contained six cells or less. Though this voltage can easily be 

regulated down to more standard levels (5.5V, 5V, 3.3V....), there is a conversion penalty which 

usually manifests in the form of hot voltage regulators requiring hefty heat dissipating sinks. To 

maximize flight time, our design employs four six-celled LiPo batteries, which would result in a 

combined maximum voltage of 104.8 volts if connected in series. This voltage exceeds the 

absolute maximum rating of many regulators within our mass specification. Even the switch 

mode regulators capable of down converting such high voltages would need to be accompanied 

by sizable heatsinks, further cutting into our 8kg design parameter. The parallel connection of 

our 4 LiPo batteries clearly became less of a choice and more of a necessity.  

Regardless, there is a significant benefit to parallel connection, an artificial increase in capacity. 

When each cell is connected in parallel, the rate of discharge per cell is reduced. Figure 5.15 

above shows different discharge curves (different rates) for our Turnigy Nano-tech batteries. 

Observe that the cell represented by the green uppermost curve is discharged the slowest at 1C, 

and achieves the highest amp-hour output. Indeed, discharge rate vs capacity has been heavily 

researched in [67] and elsewhere, supporting the above data. To be clear, the battery capacity is a 

fixed quantity regardless of discharge rate, which is why the increase is intentionally labeled as 

artificial. The appearance of increased capacity is simply a result of the cells decreased internal 

impedance when discharging at slower rates, allowing us to safely access more of the cells fixed 

amp-hour capacity. Additionally, each 6-celled LiPo block has additive current characteristics 

when wired in parallel, meaning our power supply can safely deliver a steady 500 amps, far 

exceeding any foreseeable future needs for any added components. 
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-Electronics 

 

Figure 5.16: Depiction of Design Method 

Figure 5.16 is a graphical depiction of the prototyping methodology adopted throughout the 

UAV design conducted in this work. The onset of this work began with the goal of creating a 

custom designed UAV entirely from scratch, with the belief that this would create the best 

testing platform. However, the acquisition of both greater knowledge and humility transitioned 

the final design methodology to a more hybrid one. The system is designed such that control of 

the UAV can switch hands, from a 3rd party flight controller, or a custom-built motherboard, or a 

ground station. The UAVs motherboard will have the highest permissions and will delegate 

control. The drawbacks of this methodology are increased cost, increased complexity, and the 

addition of an ownership management scheme. However, this design provides the advantages of 

increased safety via redundant systems, parallel data comparison capabilities from each system, 

and the use of a tried and tested platform while simultaneously testing custom features unique to 

our design.  
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Figure 5.17: KK 2.1 Flight Controller 

Powered by a common Atmel 6448 microprocessor, the KK 2.1 flight controller was selected to 

optimize for cost. Additional features such as an onboard battery voltage sensor and an in-system 

programing (ISP) header were a bonus. Product reviews reported precision auto-leveling and 

high resolution yawing angles provided by the IvenSense 6-Axis accelerometer and gyroscope 

module. This, in combination with the device being capable of managing our X8 octa-quad 

layout, made it sufficient. Of concern, was the lack of differential control, which raised the 

question of settling time duration. How responsive would the system be? With only proportional 

and integral control offered, percent overshoot and settling time might both prove to be high. It’s 

suspected that derivative control was omitted due to the cost involved in removing noise 

sensitivity in the process signal. The unorthodox weight of our UAV also made setting the 

proportional and integral gain constants, 𝐾𝑃 and 𝐾𝐼, a challenging endeavor. 

 

Figure 5.18: Adafruit Inc. GPS Breakout Board 
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Our selected flight controller would be enough to simply get our UAV airborne, however, 

navigation would require location data provided by a global positioning system (GPS). Adafruit 

Inc.’s GPS (MTK3339) was selected for its user-friendly breakout board. Being such a critical 

feature, proper operation could not be risked by faulty soldiering of a difficult surface mount 

component, thus a preinstalled package had much appeal. Features of this GPS include a 10 Hz 

update rate, position accuracy down to 3 meter (universal), 0.1 meters per second velocity 

accuracy, searching of 66 and tracking of up to 22 satellites including GLONASS (the Russian 

ones ☺). A backup coin cell battery found below the device allows for faster startups and low 

powered data logging. The universal asynchronous receiver/transmitter (UART) commination 

lines on this GPS connect directly to the motherboards central microcontroller (MCU), discussed 

below. The most important feature of this GPS model is the packet command sets it receives 

(PMTK commands), allowing the MCU to dynamically dictate the input frequency, and to 

specify what kind of data is desired (position, date time, velocity). The importance of this feature 

was made clear when troubleshooting input buffer overflow problems within the main MCU. 

 

Figure 5.19: Digit International  XBee-Pro 2.4GHz modules 

  

V1 uses the XBee-Pro 2.5Ghz modules to establish a communication link between the ground 

station and the UAV. Specifically, the ground station and the motherboards central MCU both 

sent and received, location, manual attitude commands, and other custom commands through 

wireless communication. This models was chosen as a balance between cost and power, landing 

at 63mW (+18dBm) for roughly $50. At this transmitting power, outdoor communication just 

under two miles could be achieved, per the product specifications. As discussed further, this 

range was never fully test or verified. The software provided by Digi International which 

accompanied these modules (XCTU) was useful in selecting unique channels when interference 

became a concern.  Similar to the GPS, the serial data interface UART option, along with a 

through-hole compatible breakout board increased the modules appeal. Additionally, the famed 

robustness of XBee modules was further strengthened throughout this project. The initial 
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purchased units were still fully functional at the time of the completion of this work. As the 

reader continues onto chapter 6 they will hopefully gain an understanding as to why this is truly 

amazing.    

 

Figure 5.20: Texas Instruments Stellaris Launchpad 

 

Texas Instruments LM4F120H5QR MCU is part of a broader family of 32 and 64-bit processors 

based on the reduced instruction set computer (RISC) architecture developed by Advanced RISC 

Machines (ARM), and acted as the UAVs central MCU. The ARM architecture is presently the 

most widely used instruction set architecture with tens of billion manufactured as of 2016. The 

modified Harvard architecture of AVR MCU’s, though more readily compatible for UAV 

development (as seen by the KK 2.1), lacked the enhanced power-saving design and hardware 

visualization support found within the ARM architecture. Programing of the MCU occurred 

within the IAR embedded workbench development environment. This workbench was excellent 

for code generation, organization, troubleshooting, and in system programing. Atop the 

aforementioned reasons the TI- LM4F120H5QR was selected is the availability of low-priced 

TI-Stallaris Launchpad development boards, displayed in Figure 5.20 above, which conveniently 
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house the central MCU. The development board includes multiple switches, many pre-soldered 

multi-purpose pins, and a programable RGB LED.  In addition, the Stellaris in-circuit debug 

interface included in the top section of development board, also powered by a separate TI- 

LM4F120H5QR, proved to be priceless. 

 

 

 

 

 

 

 

 

 

 

 

 

Top level system control transpires within the motherboards central MCU, this required a strict 

ownership protocol to be programmed into the embedded system.  Although the KK 2.1 acquires 

linear and angular acceleration data from its onboard IvenSense chip, the flight controller 

provides no means of real time communication towards extracting such data. Thus, the TI-Boost 

XL expansion pack was added to the overall design, and is attached to the Stallaris Launchpad 

development kit to compensate for the KK 2.1’s communication shortcomings. The central 

MCU’s UAV attitude data was derived from the Boost XL Senshub’s 9 axis motion sensor 

(MPU9150), however the two-wire serial interface (𝐼2𝐶) employed allowed data from the 

Senshub’s various sensors including, pressure (BMP160), humidity (SHT21), temperature 

(TMP006), and light (ISL29023) sensing modules seen in Figure 5.22 below. Many of these 

peripheral sensors may not have an immediate application to this work, but were certainly be 

considered in applications for future work on this platform. 

By now the reader may have recognized the immense redundancy purposely built into our 

design. Attitude control, for example, can be directed by the ground station, central MCU, or the 

flight controller. Also, spatial orientation in the reference frame is acquired from both the flight 

controller and the Senshub, while being displayed within the ground station interface. Even the 

UAVs temperature is acquired four different ways, Twice within the KK 2.1 and the Senshub, 

twice on Stellaris Launchpad’s internal and external sensors. The intention was to leverage the 

cost of powering these redundant modules for gains in UAV security and overall reliability. This 

is most exemplified by the redundant analog to digital converters which read the voltage levels 

Motherboard Central MCU

Multiple sensory 
inputs, 

commands 
highest level of 
system control

Outputs to Flight 
controller and 

ground station, 
or directly to 

motors 

Flight Controller

Armed/Disarmed 
by central MCU, 
which also sets 
the flight mode 

Outputs to 
motors

Ground Station
Takes inputs from Central MCU 

via Xbee and from user via 
Flight Hotas X

Outputs custom commands 
directly to UAV MCU and 

Figure 5.21: Visualization of UAV ownership protocol 
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of the power supply. The central MCU was programed such that a low voltage alert from either 

internal or external (KK 2.1) battery capacity indications would result in an alert to the ground 

station at a marginally critical capacity level, and a force land at a more critical level. In general, 

V1 was designed to require both the KK 2.1 and the central MSU to constantly be in desirable 

states for the UAV to remain unalarmed, otherwise the use of user alerts, and/or autonomously 

programmed safety directives would take place.   

 

Figure 5.22: Texas Instruments Boost XL SensHub for Stellaris Launchpad 

  

 

Figure 6.23: Motherboard Circuit design via National instruments Multisim & Ultiboard Suits 
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The schematic and printed circuit board (PCB) for the motherboard  (Figures 5.24) is the result 

of  an effort to join all aforementioned electronics onto a single platform. Both were designed 

using National Instruments circuit design suite (Multisim & Ultiboard 12.0). The schematic’s 

basic design drew influence from components with standardized footprints. The most difficult 

component being the Launchpad itself, since this footprint was a TI custom one, and proved 

difficult to replicate exactly. PCB dimension were limited by the available space within the 

UAVs internal cavity, in addition to the absolute requirements of both the flight controller and 

Senshub to be positioned in the center of the UAV in order to achieve stable flight. Some 

components not yet discussed yet included in the final schematic are the Speakjet text to speech 

IC ®, and the bilateral switch. The Speakjet IC was originally intended to serve as an alert 

mechanism while in the field, but quickly proved ineffective under the noise generated by fast 

turning propellers. The bilateral switch is discussed in detail later. Notable is the exclusion of a 

fuse, initially intended to be part of the design. This resulted from the assessment that a current 

overage event should NOT be handled by total system shutdown when avoidable, which would 

certainly result in a disastrous crash if the UAV is mid-flight. Instead, thorough design rules and 

real time voltage monitoring (internal to TI’s Launchpad) was employed to programmatically 

react to instantaneous spikes in current. The fuse was shorted with a wire and the practice of 

excluding fuses from our design continued onto version 2 (V2) as well.   

 

Figure 5.24: V1, fully populated Motherboard 
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-Ground Station 

 

Figure 5.25: Typical 5 Channel UAV Transmitter 

Five channel transmitters similar to the one depicted in figure 5.25 above are a staple for 

quadrotor UAVs. Many are used in some reviewed previous work as well as in the RC hobbyist 

community. Their design allows for easy mechanical control of four throttle, aileron, elevator, 

and rudder channels, with a fifth channel reserved for toggling a custom option (mode select, 

landing gear…). Unfortunately, these off the shelf brand transmitters would not suffice to 

achieve our desired objectives. The most problematic aspect being the strict limitation of 

communication channels imposed by available models. Considering the number of customized 

commands and the amount data (for analysis) required to be transferred between UAV and 

ground station, the typical five channels store-bought transmitter was practically useless. 

Additionally, pairing an off-the-shelf transmitter to our unorthodox customized UAV would 

prove very challenging and overall disadvantageous. However, designing a fully functional 

transmitter from scratch is an equally problematic project in its own, well beyond the scope of 

this work. An intermediate approach utilizing both purchasable components and a customizable 

communication scheme was required.   
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Figure 5.26: Thrustmaster Flight Hotas X Joystick 

Having already purchased the XBee Pro 2.4Ghz communication modules as a communication 

medium between the ground station and the UAVs central MCU, it seemed only natural to port 

attitude commands through these modules as well. The challenge here was the topic of USB 

communication (COM) port ownership. The ground station was designed with NI LabVIEW 

2013 (Student Edition), an international platform for quick prototyping and system testing. When 

one end of the XBee link is connected to the computer acting as our ground station, it’s made 

accessible via a single USB COM port, accessed solely by LabVIEW’s runtime environment 

while the ground station is running. Meaning any attitude commands sent via the XBee link must 

also be sent via LabVIEW. The Flight Hotas X joystick was purchased for its multiple inputs and 

LabVIEW compatibility. As seen in Figure 5.26 in stark contrast from Figure 5.25, the Flight 

Hotas X has far more input options and is more open for customization. The interpretation of 

many inputs on the flight Hotas X changed numerous times during this work, most especially 

when transitioning to V2.  
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Figure 5.27: Ground Station settings page 

 

Figure 5.28: Ground Station Diagnostics and Control Page 

-3D Modeling and Printing 

Attitude 

Display 
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Figure 5.29: UAV Prototype V1 

PTC Creo Parametric 2.0 was the sole 3D CAD software employed for modeling of V1 and V2 

prototypes. Though on the verge of being out of the scope of this project it was determined 

acquiring 3D modeling skills would be too paramount a task to set aside, regardless of the steep 

learning curve. This choice, made at the inception of this work, has proved beneficial beyond any 

doubt, and will continue to aid in future work. The original physical design was geared towards 

meeting three basic criteria: 

• Attaining a structurally sound Octa-Quad UAV structure    

• Housing of all electronics safely from the outside environment 

• An evenly distributed center of mass, and external dissipation of heat from ESC’s 

Supplementary features of the design include a bottom container rotational mating arm, ground 

supports, and a rear slide-on slide-off toggle. All criteria were attained with varying levels of 

accuracy. However, the On-Off toggling switch feature encountered challenges (See chapter 7).   

 

Figure 5.30: Cross sectional side and top views of UAV prototype V1 
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Figure 5.31: Stratasys® Dimensions 1200es (left) and Fortus 250mc (Right) 

Once the 3D modeling is completed and tested, 3D printing can begin. Fuse deposition modeling 

technology (FDM), thermal practice parts via file pre-processing, part production and support 

removal. Dimensions 1200es and Fortus 250mc high resolution 3D printers were used to 

manufacture the majority of parts printed for this work. Stratasys’ Insight preprocessing software 

was used for developing build parameters that determine the look, strength, and precision of 

parts post 3D modeling. The printing process involves thermoplastic filament being fed into an 

extrusion header in a liquefied state, and depositing it in a precise tool path to create the shape of 

each layer of the desired object, one layer at a time. These specific dual extrusion systems utilize 

both acrylonitrile butadiene styrene (ABS plus) for the build material and soluble support 

material to build parts from the bottom up. The dark brown soluble support structures in figure 

5.32 below are used to uphold overhangs, and are eventually dissolved away in a chemical bath 

which is neutral to the ABS plus modeling material, leaving only the desired part. This method 

allowed for printing of more advanced parts, with a consistently clean finish.  

 

Figure 5.32: Left: Freshly printed part | Right: Heated chemical bath to remove soluble support structures 
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V1 of our UAV prototype is seen in figure 5.33. The final weight,  just under 10kg, was 2kg 

higher than our objective, but was not disqualifying as it simply cuts into the payload capacity. 

This increase in mass was due to excessive thickness in UAV body, intended to improve its 

structural integrity. Some nonprinted components such as copper plates, screws, nuts, bolts, 

fabric, and hot glue also contributed to higher than expected mess. The arm end to end length 

was 685.8 mm across, with a height of 412mm (without antennas).  

 

Figure 5.33: UAV Porotype V1 in the field and on display 

  

 

5.3 Version 2 

Results from tests flights of V1 gave awareness to many issues elaborated on in Chapter 6. V2 of 

our UAV design came about due to the inability to further modify V1 post testing. What has 

remained constant in both versions are the motor-propeller system, design methodology, and the 

weight. V1 was a success in most aspects, making the initial singular enhancement goal for V2 

focused at improving structural integrity of the very critically defective motor arms. However, as 

the new design took root, additional opportunities for enhancement became emergent. Though 

certainly more expensive, the result became a vastly superior UAV, drawing from both 

experiences gained while developing V1, as well as the addition of several powerful and 

advanced components.    
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-Electronics 

 

Figure 5.34: ArduPilotMega 2.8 Flight Controller [68] 

In designing V2, the KK 2.1 flight controller truly illustrated the definition of “geting what you 

pay for” and was immediately thrown out with the bathwater. ArduPilot’s ArduPilotMega 

(APM) 2.X series flight controllers are a complete open-source autopilot solution for multi-rotors 

vehicles, offering enhanced remote control flight in numerous intelligent flight modes and 

execution of autonomous missions. APM 2.X is no doubt on the cutting edge of aerial robotics, 

benefiting from a larger family of ArduPilot software platforms such as Mission Planner. As 

seen in Figure 5.34 APM adds two-way radio telemetry, external GPS, and data flash logging 

options not found in the KK 2.1. APM’s open source nature and excellent online documentation 

has simplified the process of integrating with the central MCU. Mission Planner would also 

prove to effectively work in parallel with the custom LabVIEW ground station created during 

V2. Addition diagnostic tools found in Mission Planner would prove very useful in 

troubleshooting test flights. Most notable was the real-time logging feature Mission Planner 

provided. The custom LabVIEW ground station’s data was sampled at a lower rate (2-4 Hz), and 

received only kinematic and GPS data from the central MCU. Mission Planner allowed for 

greater sampling frequency (~10 Hz) of a wider range of variables. Signal strength was one 

variable in particular that remained blind to us during test flights of V1, now made available 

through a received signal strength indicator (RSSI) variable tracked in mission planner. In truth, 

each and every in-lab or in-field UAV test conducted while using the APM 2.6 automatically 

logs over 50 variables, storing them on the local PC for later review, a simply priceless feature. 

Though not initially intended, the adoption of an APM platform was easily one of wisest 

decision made in developing V2.  
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Figure 5.35: Left:  XBee PRO 900HP S3B RPSMA 250mW, Right: 3DR’s RFD 900+MHz  1MW Ultra Long Range Radio 

Upon properly timing the transmission and reception data between the central MCU and 

LabVIEW ground station, the 2.4Ghz XBee pro modules functioned perfectly in V1. However, 

adoption of the APM platform, now capable of performing long range missions, as well as a 

minor upgrade from 5 Amp-Hour LiPo batteries to 6 Amp-Hour ones, gave rise to the desire to 

be able to communicate along further distances. Additionally, the APM flight controller would 

needs its own telemetry communication channel. The XBee PRO 900HP and RFD 900+ modules 

were eventually selected, as their price and range were found to be appropriate. The PRO 900HP 

has a range of 14 km when transmitting at 10 Kbps and replaced the 2.4Ghz XBee modules for 

communication between the ground station and central MCU. Mission planner to APM telemetry 

is conducted through the RFD 900+ modules, which have a range over > 40km at the same bit 

rate, however consuming four times the power as the PRO 900HP modules. The longer-range 

channel was placed between mission planner and the APM for two reasons. The first is very 

practical in that the user will never need to manually operate UAV at a distance further than 9 

miles, indeed the UAV would appear to be little more than a barely visible spec in the distance. 

Secondly, return to launch and other failsafe features managed by Mission Planner could (and 

have) benefit from a 40km range, especially in the event of a flyaway.  

 

Figure 5.36: ESC’s used in V2 

 A drop from 100 to 40-Amp ESC’s was made possible by the efficiency of the T-Motors lead to 

a far lighter cheaper, and even smaller replacement for the Hobbyking Red Brick ESC’s. These 

ESC’s weigh in at 22.7g, and were dimensioned so small (60x17x7.2 mm) they could fit inside a 

22mm tube. Additionally, the signal frequency was the desired standardized at 50Hz- 60Hz.
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Figure 5.37: Texas instruments DK-TM4C123G 

Paralleling the transition from the KK 2.1 to the APM platform in terms of both cost and capability, was the transition from the TI’s 

Stallaris Launchpad to the DK-TM4123G development board. Not only does the DK-TM4123G combine  elements of the Launchpad 

and Boost XL Senshub onto a single board,  but also includes: An improved 9-axis  motion sensor, 4 analog inputs (0-20V), a 

microSD card, improved internal and external temperature sensors,  user navigation buttons, a 96 x64 color OLED display, precision 

3.0 V reference, a coin cell backup battery for hibernation, over double the number of programable pinouts, a detailed function library, 

and most notably the Tiva™ TM4C123GH6PM microcontroller with a 32-bit ARM Cortex-M4F Core Processor. The loss of the 



66 

Fuad Gazal B.Sc.  M.Sc. Thesis 

SensHub’s pressure and humidity sensors was offset by peripheral components included in the V2’s full schematic found in the 

appendix. Virtually every feature of this new central MCU was exploited in the new design at some capacity. 

The TM4C123GH6PM’s 12 general-purpose timer modules (GPTM) would each be used in PWM mode to control the 8 Electronic 

speed controllers, in addition to the throttle, aileron, rudder, and elevator control inputs of the APM. Multiplexing schemes would be 

employed to allow for flight mode selection and various servo motor controls (for landing gear and other items). The significance of 

this new capability should not be underestimated, as it meant that this new powerful central MCU can now act as a flight controller on 

its own, a feat unattainable by the Launchpad.  Thus, the APM flight controller (still controlled by the central MCU) could be used to 

assist fight, or in comparing and contrasting the performance of our custom PID control on the exact same system.  

Features such as the OLED display, though not critical, allowed for greater ease in both development and troubleshooting. Multiple 

analog to digital converters allow for more than just checking the battery voltage. As stated earlier, our design strictly excludes the use 

of fuses, and relies on system processes to track irregularities. The central MCU now monitors the voltage levels of the 

communication module, and APM flight controller to ensure proper operation. Additionally, among the many failsafe precautions 

already provided by the APM flight controller, a bilateral failsafe also exists between the central MCU and the APM flight controller. 

For the UAV to function, the APM requires a normally high IO signal from the central MCU to remain low, if this pin should go high 

it will trigger something similar to a battery failsafe on the APM, forcing the APM to take control of the motors and land. Similarly, if 

the central MCU reads a low voltage from the APM in a state where it has given APM control of the UAV, it will immediately reclaim 

control. Essentially, the APM and central MCU would have to fail simultaneously in order for the UAV to be completely lost, a 

possible but less likely occurrence, thus improving overall safety.  
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Carbon Fiber Frame 

 

Figure 5.38: Tarot X4 Frame 

The structural problems which plagued the motor mounts of V1 were in dire need of a solution. 

Following recursive model designs, the ABS plus material used in printing custom parts was 

deemed too weak, requiring thickened and thus heavier layers to remain structurally sound 

during flight.  The modulus of elasticity (Young’s Modulus) for ABS plastic is on the order of 

1.4x109 N/m2 to 3.1x109 N/m2 (GPa), making it several times more susceptible to motor 

generated micro vibrations than other metals (~207 MPa). In deliberation, we experience a 

dichotomy between being able to customize the design to meet our specific objectives, and 

creating a UAV with sound structural integrity. The solution: A hybrid design utilizing the Tarot 

X4 carbon fiber frame as a skeleton for which we may attach customize printed parts onto.  

 

Figure 5.39: Left: plastic Tarot motor mounts | Right: Generic aluminum motor mount 

   

Tarot’s frames are widely known in the field of profession photography, as they provide rigid 

frames capable of carrying the relatively heavy payloads of high end cameras. The carbon fiber 

material used in each frame has the distinct characteristic of being strong yet light weight. 

Though made for lifting heavier payloads, these frames were certainly not designed to support a 

over 8kg, as is evident by the single sided plastic motor mount. These motors mounts were 

proven to break under loads as heavy as 10kg-12kg and were immediately replaced with dual 
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sided aluminum ones. Though quite expensive (~$450 in total), features such as retractable arms 

and landing gear were a welcome addition. 

-Modular 3D Design 

 

Figure 5.40: V2 modules separated by function 

V1’s design was centered around a singular core part as depicted in Figure 5.40 above, which 

was necessitated by the need for rigidity. In that phase, the idea of connecting multiple parts 
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together was viewed to likely only weaken the UAVs overall rigidity and add unwanted 

vibrations. With the adoption of the Tarot X4 skeletal frame this concern could be largely 

disregarded, making way for more modular design. Developing V2 in sections as depicted in 

Figure 5.40 above streamlined the design process, and made completing any repairs a timely and 

less costly affair. 

 

Figure 5.41: Power Hub Simulation (left) and photograph (right) 

Working somehwat from the bottom up, the power hub was the first section to be designed. The 

goal here was simple, maxmimze for space. UAV flight time being directly proportianal to the 

combined maximum Amp-Hour capacity of the carried LiPo batteries, which in turn is also 

directly proportional to the amount of space available in the power hub cavity. As seen in Figure 

5.41, with dimensons of 200x150x140 𝑚𝑚3 there is plently of overhead space available for 

larger batteries to be used in the future, as intended. The power hub has secondary purposes 

which include the housing of proxiy/optical flow sensors, RGB LEDs, and an expandable 

multiple purpose DB-50 connector. Also inherent in the design is excternal eccess to anode and 

canthode of the LiPo cells connected connected in parallel. This is an initial attempt to enabled 

the UAV to receive power to a separate device, or to possibly even deliver power to that device.  

 

Figure 5.42: Electronics Hub Simulation (left) and photograph (right) 
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Some immediate necessecities dirrived from difficulties in V1 include imrpoving mass 

distribution, distancing the UAV from high current wires (for magnetic field), and creating a 

specious region for the motherboard. Housing the electronic speed controls in the central hub 

well underneat the electronics hub resolved the first two goals, while creating a tripple layered 

electronics hub forfulled the third. Accessing the motherboard in V1 was also a painstaking task, 

requiring virtually the entire UAV to be disabled. V2 saw that specific problem remidied by use 

of a hynge and lock mechanism, greatly improving developmental and troubleshooting speeds.   

 

Figure 5.43: Interior of Electronics Hub Simulation (left) and photograph (right) 

Instead of a PCB, two small breadboards were placed atop the middle layer of the electronics 

hub, acting as motherboard for various components and as a bride between compnents placed in 

the opppermost and lowermost levels of the electronics hub. The desire to push this component 

to the top layer, furthest from electric fiends in the central hub, was offset by the decreased 

regidity of the top layer. Thus the APM flight controler is centrally suspended on the lowest 

layer of the electrnics hub. The topmost layer was repleat with cavities and extrusions specific to, 

GPS, communication modules, and the DK-TM4123G development board geomtries.   

 

Figure 5.44: UAV Prototype V2 in lab 
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V2 of our UAV prototype is seen in figure 5.44 above. Despite the use of a carbon fiber frame 

additional features made it slightly heavier than V1 at just over 10kg. The end to end arm length 

is 980mm across, with a height of 609mm. Though considerably more complicated, this upgrade 

was significantly more durable and technological more capable than V1, exceeding initial design 

criteria. Figure 5.45 below shows the general layout of a field test. The UAV has been moved 

closer for the sake of photography and would usually safely be several more meters away from 

everyone at the site. From this distance the aforementioned RF trigger (resembling a car key seen 

next to the ground station) would safely bring the central MCU out of hibernation and power the 

device on.  

 

Figure 5.45: General setup for conducting test flights 

5.4 Payload Deposit and Acquisition  

 

 

Figure 5.46: V1 payload connectors 3D model 
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In developing a system for payload deposition and acquisition, the primary design objective was 

to achieve delivery without the need for an external power sources. Though there we serval 

(patented) techniques for UAV acquisition and deposition of payloads, all of them were either 

externally powered or the required the aid of some sort of vision system. A vision system would 

indeed ease the difficulty, yet the added complexity involved created a yearning for a simpler 

method. One early morning in January of 2015, after consuming a delicious bottle of Snapple’s 

all natural apple juice, an idea presented itself. Note that of all possible kinematic motions the 

UAV can perform, the one performed with the best precision is a yawing action. So why not 

attach the cap of a bottle of Snapple juice to the bottom of our UAV, fill the bottle with whatever 

payload we desire (juice or otherwise), and have the UAV twist the cap on to lift the entire bottle 

away, or twist the cap off to deposit it at any destination? This was the muse for what turned into 

the payload connector design for V1 seen in Figure 4.46 above.  

 

Figure 5.47: V2 Payload connector 3D Model 

However, instead of a bottle cap, our UAV would twist itself onto and off of a rectangular 

lockable payload holding prism. Of course, when using our hands to twist on or twist off a bottle 

cap, we use one had to keep the bottle steady and the other to revolve the cap (or vice versa). 

Likewise, a mating platform would be necessary which would lock the rectangular prism in 

place. The platform would simply need to contain a cavity wide enough to allow the rectangular 

prism sink into it, yet thin enough to prevent 360 degrees of free rotation about an axis normal to 

the earth.   

 

Figure 5.48: 3D model of V2 payload connector within the Payload Hub 

In V2, the creation of the power hub provided an avenue for our UAV to power external devices, 

such as servo motors and scissor lifts. This attribute helped in loosening the strict design criteria 

of the payload connector set for V1. Though the root concept of twisting the payload on and off 
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the UAV still remained, the roles were reversed with the twisting action now meant to occur on 

the ground while the UAV remained stationary. This method has the advantage of being less 

susceptible to interference (wind), as well as allowing for a more compact payload connector 

design as seen in figure 5.47 above.     

 

Figure 5.49: Images of the field testing payload compartment connection scheme 

 

5.5 Docking Station 

 

Figure 5.50: Docking Station 3D Model 

Time, safety concerns, and finical restrictions arrested the majority of prototyping for the 

docking station to the virtual realm. Models seen in the Figure 5.59 depict only the beginning of 

what is certain to be an expansive area of research. Intended to soar 3 meters or more above 

ground, docking stations can be designed to provide a relief from the ground effects that make 

landing a risky affair. This is achieved by structuring the docking station with air ducts that 

redirect thrust forces away from, as oppose to reflecting them towards, the UAV.  If V2’s 

payload connection scheme is employed, a rotating platform atop a scissor lift within the docking 

station can be used to both deposit and acquire packages. End user safety is further enhanced by 

recognizing that the UAV should never closer than 10 feet to the ground, maintaining a safe 

vertical distance from the end user. For additional safety, users may be advised to maintain a safe 
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distance from the docking station during UAV takeoff and landing.  To truly grasp the effect of 

using docking stations, consider a scenario in which a small city of <100,000 residents covering 

a radius of ~ 5-7 miles is littered with docking stations at every retailer and residential 

community and public destination. In this scenario, anyone can send or receive goods, making 

customer returns a possibility. Since every docking station would have a fixed location, UAVs 

would similarly only land at fixed predetermined locations that can be reviewed ahead of time to 

ensure security. Lastly, any combination of the docking station being capable of recharging the 

UAV, or the UAV supplying power to an off-grid docking station (or both), leads to truly 

limitless possibilities.   

  

 

Figure 5.51: Assisted landing concept simulation 

An issue surrounding the use of docking stations is the positional accuracy of the UAV while 

landing. The best GPS will still only provide >3 meters of resolution, so directing the UAV to 

land at the docking stations specific longitude and latitude will not guarantee a safe landing. 

Again, we strive for a simple solution powered entirely by the UAV. Figure 5.51 depicts a 

specific platform design, and a UAV-like object. This is a Creo Mechanism® simulation used to 

study the auto centering of a UAV. In this simulation, the red surfaces of the platform are given 

coefficients of kinetic and static friction (𝜇𝑘 and 𝜇𝑠) low enough to induce high slippage. Thus, 

when the UAV is not centered and touches any of the red surfaces while landing, the counter 

force effectively tilts the UAV, making it no longer normal to the earth. This, in combination 

with the UAVs flight controller’s self-balancing tendencies, leads the UAV to self-center about 

the platform while lading. Though not enough to compensation for the 3-meter possible 

overshoot, if used in combination with other tools system (likely a vision system) capable if 

positioning the UAV within 250-500mm of accuracy, this simulated model will close the gap to 

achieve precision landing every time.  
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CHAPTER 6: CHALLENGES, RESULTS, AND ANALYSIS 

 

6.1 Key Challenges 

 

-V1 center of mass 

Although many elements of V1’s design worked well, a definitive failure 

was the miscalculation of space required to house all electronics. The 8 

ESC’s were originally intended to have their heat sinks facing downward 

towards the external perimeter of the UAV to better dissipate heat, 

however this was unsuccessful. The rectangular structure of each ESC 

simply did not join properly with the curvature of the UAVs bottom, 

despite attempts to accommodate their structure while designing in Creo 

Parametric. The image to the left shows the resulting disorganized cluster 

required for there to be any room to attach PCB above. Though completely 

functional, the randomly distributed heavy ESCs caused a noticeable shift 

in the UAVs center of mass, which was now biased in the forward 

direction (front nose).  Subsequent test flights would no doubt suffer from 

this design flaw. Even though the flight controller’s self-balancing PI 

control should make up for the imbalance, an immediate response occurs 

only in theoretically ideal conditions. The reality is that each test flight 

take-off involved a noticeable forward dip down before the KK 2.1’s integral errors were large 

enough to begin compensating.  The solution for this problem and many others came in the new 

design for V2 which made sure to provide ample space for UAV electronics, placed evenly so as 

to make the center of mass as close to the UAVs geometric center as possible.  

-V1 Power Switch

 

Figure 6.2: Attempt at generating a high current manual switch 

While still considering motors that would consume current in the range of 500-800 Amps, the 

reality of needing a means to connect and disconnect the power supply from UAV electronics 

Figure 6.1: Congested 

cavity for V2 
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arose. Many switches were available which were rated for such high currents, however each of 

them would impose a heavy weight tax on our design and often simply wouldn’t fit inside the 

UAV. Eventually, the structure shown in the far-right side of Figure 6.2 was added to the 3D 

model, and was intended to be a large manual switch. The copper plates each had a thickness of 

roughly 2.5 mm, so it was estimated that an overlapping layer of 160 square mm might provide 

enough of a conductive plane to supply the desired current. The doom of this design was in 

underestimating the amount of friction within the mechanism that held the copper plates in place. 

This made it tremendously difficult to slide one plate over the other. Until V2, test flights were 

performed with the power supplying being connected by manually plugging in multiple bullet 

connectors of 10-guage wire.  

 

-V1 Motor Mount 

 

Figure 6.3: Creo 2.0 Simulation showing dynamic displacement (in mm) attributable to load created by motor force on the first 

version. Maximum displacement was 0.97844 mm 

V1 prompted the design of a new motor arm after each test flight, because the motor mount 

section never failed to break off. Figure 6.3 uses color coding to show the regions of the initial 

motor arm design that bended the most when motor forces are applied. Not surprisingly, the dark 

red and dark blue regions on opposing sides indicate twisting in the thinnest section. Subsequent 

designs worked to better reinforce this region (See appendix), but to no avail. No matter the 

design, the tip of the motor arm would always need to flatten out in order to mount the dual 

motors, and this tended to always generate a region exposed to strain under certain forces. 

Interestingly, the motor arms would always remain intact while the UAV was in flight, but 
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immediately ruptured after every crash, implying large impulse forces acted on the heavy motors 

and propellers. As previously mentioned, the ABS Plus plastic was deemed inefficient for 

handling the required load. Carbon fiber motor arms and aluminum motor mounts implemented 

in V2 would finally resolve this issue.   

 

-RF Communication  

This work introduced a variety of communication problems. SPI and I2C communication 

protocols proved robust, however, in V1 the singular UART lines of the Stallaris Launchpad 

made communication with both the XBee RF modules and the Adafruit GPS impossible without 

additional circuitry. To resolve this issue, the MAX 4518 analog multiplexer was employed. This 

allowed for transmitted and received lines to be individually selected. The only drawback to this 

was that the timing algorithm coded into the central MCU was not able to precisely time the GPS 

receive line’s activation, resulting in frequent data loss effetely slowing the update frequency. 

V2 saw communication problems of a different nature. Now using two sets of RF modules, 

operating within the same band, care was taken at the onset to program each onto separate 

channels. Issues arose mainly while working in the lab, as power levels were often so high, 

signals would collide or reflect, increasing the error rate. The core communication issue in V2 

was in multiplexing the APM’s receive line between Missions planner, and the central MCU. 

This was desired because it would allow the central MCU to send MAV-Commands directly to 

the APM, exercising even more control over specific functions (such as setting missions). While 

testing, concerns rose about how to determine an appropriate interval of time to switch received 

data from Mission Planner to the central MCU without aliasing or losing data. A solution to this 

problem is still in progress and may involve polling other areas of the APM (voltage levels) that 

could indicate non-communication periods.  

 

-Power efficiency 

A slightly dangerous aspect of V1 was the failed On-Off toggle switch design. This meant that 

the UAV was always fully powered (though unarmed) immediately after the user connected the 

positive and negative terminals of the battery to the motherboard. Note that in V2 the 

motherboard components and ESC’s draw a combined total of 700mA even while the UAV is 

disarmed.  Also, since the power supply had to be installed in the lab, 5% battery capacity would 

typically be lost in commuting from the lab to the testing site. Subsequent elements of our 

optimized system design required a UAV to remain idle for several days without losing battery 

capacity.  
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Figure 6.4: MCU powering circuitry 

Figure 6.4 shows a portion of the circuitry used to remotely power V2 of our UAV design. 

Drawing from a suggestion provided by a friend and former colleague Ryan Jensen over some 

Chinese food, this design allows the motherboard to be semi-powered until the user remotely 

triggers an RF relay connected to R2 (our modification). The true genius of this design (Ryan’s) 

is found in the G3 pin of the central MCU which acts as a virtual switch allowing the entire 

system to turn itself off! Not in a virtual sense, but to truly take advantage of the threshold 

voltages within the bipolar junction transistor (Q2) to physically disconnect it from power until 

the user activates the RF relay again. Power efficiency is finally maximized by giving the central 

MCU the ability to toggle power to each major component. With these improvements, we were 

able to drop idle current from 700mA to <100mA. Assuming a 20Amp-Hour capacity and 30% 

degradation, this increases docking station idle time from 20 hours to 140 (5.8 days). 

 

6.2 Version 1 Results and Analysis  

 

-Field test day 1 

This test was unsuccessful for three reasons. First, the quadcopter design had appeared to not 

have equivalent center of mass and geometric center. During takeoff, the front blades tilted 

towards the earth immediately breaking the two front wings. Secondly, the top and bottom set 

blades were spinning in the wrong direction (an assembly error), causing the UAV to spin 

uncontrollably. Lastly, the motor arms had a very apparent weakness, breaking in the same 

location for multiple arms. To fix the balance issues supports were added in the regions marked 

by red ovals in Figure 6.5. The orientation of the wings was also corrected, along with a new 

motor arm design.  
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Figure 6.5: V1 Test flight 1 

-Field test day 2 

 

Figure 6.6: Sequential images of test flight 2 

This second test flight failed due to a combination of improper balance and inadequate 

proportional gain in the PI controller. As seen in the time-lapse reel of images above, the 

quadcopter was front heavy, and nosedived upon takeoff. To resolve this issue greater care was 

taken in placing the ESC’s (which caused the misbalance), and weights were added to counter 

the forward biased center of mass.  

-Field test day 3 

 

Figure 6.7: Sequential images of test flight 3 
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Semi successful, this was the final day of field testing for V1. Though the UAV crashed again, 

unlike previous attempts, it managed to gain significant altitude. Helping matters was the table 

which elevated the UAV 1 meter above ground at takeoff, reducing ground effects. Also, the 

operator raised the throttle very quickly compared to previous attempts, in hopes that this would 

help the UAV respond quicker to any initial imbalance. Causes for the eventual crash are not as 

apparent as previous attempts. Care was taken to ensure the best balance, and proper placement 

of propellers. A most likely cause is improper gain settings for the KK 2.1’s proportional and 

integral controllers. Though the proportional gain was increased (50%) from the default to 

increase the UAVs responsiveness, there was no means of gauging the effect prior to test flying 

the UAV. The challenges behind the iterative PID tuning theory highlighted in Chapter 4 came to 

fruition during practice. Every available guide and even the “auto-leveling” function of the KK 

2.1 required the UAV to be able to sustain flight or withstand crashes as an initial condition, this 

was a key motive for upgrading. 

 

6.3 Version 2 Results and Analysis 

-Field test day 1 

 

Figure 6.8: Testing ground and flight path of V2 

For safety, all field test for V2 were performed on open fiends during hours when the pitch was 

baron. The first field tests for V2 was largely a success, and a long awaited one at that. Among 

items tested include: manual flight control, autonomous takeoff, autonomous landing, central 

MSU mode switching, ground station connectivity, and battery level sensing. The string of test 

flights executed showed an agile UAV, which achieved a velocity of   11 m/s ( 24.6 miles/hour). 

An error in the embedded code was revealed when it was noticed that lapses in communication 

between the ground station and central MCU forced the central MSU to prematurely place the 

UAV in return to launch mode, creating an awkward oscillation as the UAV would ascend and 

descend continually for a few seconds. This bug was quickly fixed. The most exciting result 

from this field test session is shown in Figure 6.9, where we see all the UAVs motions for the 

first flight achieved at under 65% full power! Meaning there is ample power reserved for 

carrying a payload. Indeed <45% throttle is required for the UAV to hover.  
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Figure 6.9: V2 first flight, throttle vs. time 

Note: For all V2 charts a combination of varying random processes within the UAVs MCU and 

random delays in RF communication result in each data point being polled at slightly varying 

time intervals. Meaning data logging is variant and not precisely linear with time. However, this 

random process is assumed to have a normal Gaussian distribution with constant mean and 

standard deviation. The data points are each approximately a 10th of a second apart (𝜇 =
1

10
𝑠𝑒𝑐𝑜𝑛𝑑𝑠), with 𝜎 < 50 𝑚𝑖𝑙𝑖𝑠𝑒𝑐𝑜𝑛𝑑𝑠. Implying that over large time intervals we may treat the 

time axis as though it were linear.  

 

The starred region in Figure 6.10 from V2’s first field test raises an interesting point. Note that 

here, the throttle level increase occurs before the spike in ground speed, and is not necessarily 

maintained during the spike. This makes sense as the only forces acting against horizontal 

motion are wind and air drag. What this means is that the UAV should be able to achieve high 

ground speeds by increasing thrust and attaining a certain attitude relative to the ground, but 

should then be able to maintain that velocity a lowered throttle only needed to counteract wind 

and drag forces.   
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Figure 6.10: V2 Second flight, throttle & ground velocity vs time 

 

-Remaining field tests days (2-6)  

All subsequent field tests were geared towards testing flight with different payloads and varying 

autonomous missions. For safety and legal reasons, the maximum payload, (<8kg/ 17lbs), has to 

be derived from the remaining available motor thrust (leave 15% throttle for maneuvering). 

However, the payload hub, payload connecter, and payload container were testing inflight and 

perform appropriately. An initial concern with designing these sections was how well they would 

hold under more violent motions. To our delight, even test flights involving a crash failed to 

dislodge the connected payload.  

 

Figure 6.11: V2 Flyaway flight path 
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V2 field testing generated a single flyaway event early on, caused by a combination of magnets 

placed within the electronics hub and fling too close to a tower located where the red star is in 

Figure 6.11 above. As luck would have it, this event generated some of the most useful data 

acquired in early field testing for V2. The remaining graphs of this chapter are all with reference 

to this flyaway event. 

 

Figure 6.12: V2 Graph of maximum achieved velocity 

In all controlled field testing, the UAV was purposely kept within line of sight, and all velocity 

readings were generally less than 13m/s. The graph above indicates a top speed of 11 m/s (38 

miles/hour) during the flyaway event, the fastest velocity achieved yet. Figure 6.13 below shows 

a sharp climb achieving a vertical velocity of 6 m/s. The sharp spike in vertical velocities implies 

great acceleration as well. This feat means the UAV can rise to the legal altitude of 400 feet in 

less than 21 seconds (no payload).  

 

Figure 6.13: V2 Flight 6 Altitude and Climb vs Time 
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Figure 6.14: V2 battery consumption data 

Figure 6.14 serves to verify the tables provided by the T-Motor manufactures, showing current 

battery capacity dropping represented as a voltage drop. Furthermore, we see the power gating 

work of the central MCU in action as the idle regions maintain fairly constant voltage while the 

UAV is grounded. A voltage drop of roughly .6 volts occurs over an ~3-minute flight. In 

combination with the hovering throttle data obtain from first flight of V2, a 24 Amp-Hour power 

supply should allow the UAV to hover for a maximum of 24 minutes on its own. Figure 6.15 

alludes to the UAVs robustness. Despite heavy magnetic field interferences, the UAV was able 

to safely land itself (although into trees). Additionally, in Figure 6.16 we see that even as the 

UAV drifted a quarter mile away from the ground station, RF communication remained. The 

signal strength was strong at all times, despite the many objects between the UAV and ground 

station. RSSI only dropped below 100% as the UAV descended below the horizon. As the UAV 

was completely out of sight long before it landed, this communication link was key to locating it 

to make repairs and continue further testing. 
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Figure 6.15: V2 Magnet interference (uT) during flyaway 

 

Figure 6.16: V2 Flyaway, distance from ground station (meters) & RSSI vs time  

Lost 
Found 
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CHAPTER 7: CONCLUSION 

7.1 Conclusion 

In this thesis, we investigated various options for optimizing delivery via UAV. From a variety 

of simulations, calculations and field tests, we are able to come to a few conclusions. The 

development of special light weight yet strong materials such as carbon fiber is integral to 

improving flight efficiency. Deceasing the mass of the UAV by any means will always see an 

increase in flight efficiency as they are negatively correlated. The multiple control systems 

designed in V1 and V2 proved their robustness several times, with lab and field tests showing 

compensation by one control unit in the event a separate control unit failed. All predicted 

advantages of an octa-quad design were proven during field testing of V2. This layout not only 

showed unparalleled stability, but was able to support a 10kg UAV with less than 50% maximum 

thrust. The velocities achieved in V2, in combination with a versatile payload connector and 

multiple docking stations, would certainly allow 5-10 mile deliveries of goods <8kg to be 

achieved within a metropolis faster than the 30-minute benchmark. Strategic placement of 

docking stations at local retailers and residential communities completes our system design. By 

doing this, everyday goods can not only be delivered in a safer fashion, but return deliveries 

would also be optimized.  

 

7.2 Future Work 

• Central MCU switching motor failure emergency action 

• Addition of Pixycam® vision system to aid in landing procedure   

• Addition of Skycat® parachute system 

• Continued docking station design and field testing 

• Addition of an independent powered standalone failsafe IC 

• Replacement of motors with more efficient T-Motor U12 100KV model 
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function Derivatives(block) 

% Name all the states and motor inputs  % Load model data selected in parameter block 

%which('model')  

quad = block.DialogPrm(1).Data;  

% P Q R in units of rad/sec 

P = block.ContStates.Data(1); 

Q = block.ContStates.Data(2); 

R = block.ContStates.Data(3); 

% Phi The Psi in radians 

Phi = block.ContStates.Data(4); 

The = block.ContStates.Data(5); 

Psi = block.ContStates.Data(6); 

% U V W in units of m/s 

U = block.ContStates.Data(7); 

V = block.ContStates.Data(8); 

W = block.ContStates.Data(9); 

% X Y Z in units of m 

X = block.ContStates.Data(10); 

Y = block.ContStates.Data(11); 

Z = block.ContStates.Data(12); 

% w values in rev/min! NOT radians/s!!!! 

w1 = block.InputPort(1).Data; 

w2 = block.InputPort(2).Data; 

w3 = block.InputPort(3).Data; 

w4 = block.InputPort(4).Data; 

w  = [w1; w2; w3; w4]; 

%------ 

Dist_tau = block.InputPort(5).Data(1:3); 

Dist_F   = block.InputPort(5).Data(4:6); 

%------ 

% CALCULATE MOMENT AND THRUST FORCES 

% Total Moment due to motor speeds 

% Moment should be in units of N*m 

% The experimental determination of Ct and Cq should be adjusted to 

% model using kg instead of ounces or lb 

% Mb = (quad.dctcq*(w.^2)) + (Dist_tau);  %(dctcq*(w.^2)); % Mb = [tau1 tau2 tau3]' 

 tau_motorGyro = [Q*quad.Jm*2*pi/60*(-w1-w3+w2+w4); P*quad.Jm*2*pi/60*(w1+w3-w2-w4); 

0];  

% Note: 2*pi/60 required to convert from RPM to radians/s 

 Mb = (quad.dctcq*(w.^2))+ tau_motorGyro + (Dist_tau);  % Mb = [tau1 tau2 tau3]' 

% Thrust due to motor speed 

% Force should be in units of Newtons for simplicity in calculating 

% the acceleration in the angular velocity state equation 

Fb = [0; 0; sum(quad.ct*(w.^2))];   %[0, 0, sum(ct*w.^2)]' 

% Obtain dP dQ dR 

omb_bi = [P; Q; R]; 

OMb_bi = [ 0,-R, Q; 

           R, 0,-P; 

          -Q, P, 0];  

b_omdotb_bi = quad.Jbinv*(Mb-OMb_bi*quad.Jb*omb_bi); 

H_Phi = [1,tan(The)*sin(Phi), tan(The)*cos(Phi); 

         0,         cos(Phi),         -sin(Phi); 

         0,sin(Phi)/cos(The),cos(Phi)/cos(The)];    

Phidot = H_Phi*omb_bi; 

% Compute Rotation Matrix 

% We use a Z-Y-X rotation 

Rib = [cos(Psi)*cos(The) cos(Psi)*sin(The)*sin(Phi)-sin(Psi)*cos(Phi) 

cos(Psi)*sin(The)*cos(Phi)+sin(Psi)*sin(Phi); 

       sin(Psi)*cos(The) sin(Psi)*sin(The)*sin(Phi)+cos(Psi)*cos(Phi) 

sin(Psi)*sin(The)*cos(Phi)-cos(Psi)*sin(Phi); 

       -sin(The)         cos(The)*sin(Phi)                            

cos(The)*cos(Phi)]; 

Rbi = Rib'; 

ge = [0; 0; -quad.g]; 

gb = Rbi*ge; 

Dist_Fb = Rbi*Dist_F; 

% Compute Velocity and Position derivatives of body frame 

vb = [U;V;W]; 

b_dv = (1/quad.mass)*Fb+gb+Dist_Fb-OMb_bi*vb; % Acceleration in body frame (FOR 

VELOCITY) 

i_dp = Rib*vb; % Units OK SI: Velocity of body frame w.r.t inertia frame (FOR 

POSITION) 

dP = b_omdotb_bi(1); 

dQ = b_omdotb_bi(2); 

dR = b_omdotb_bi(3); 

dPhi = Phidot(1); 

dTheta = Phidot(2); 

dPsi = Phidot(3); 

dU = b_dv(1); 

dV = b_dv(2); 

dW = b_dv(3); 

dX = i_dp(1); 

dY = i_dp(2); 

dZ = i_dp(3); 

% Rough rule to impose a "ground" boundary...could easily be improved... 

if ((Z<=0) && (dZ<=0)) % better  version then before? 

    dZ = 0; 

    block.ContStates.Data(12) = 0; 

end 

f = [dP dQ dR dPhi dTheta dPsi dU dV dW dX dY dZ].'; 

Quadcopter 

dynamics 

block main 

code for 

state space 

simulation 

[64] 
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