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Abstract 

Modern Portfolio Theory (MPT) is a framework for building a portfolio of risky assets 

such that the ratio of risk to return is minimized.  While this theory has been used in the field of 

financial economics for over sixty years, the method has not yet been applied to compensatory 

personnel selection.   A common method for personnel selection is multiple regression to 

maximize the predicted performance of the selected group given a cut-off score on the 

predictor(s).  Recognizing that maximizing the performance of the selected group is not the only 

consideration, and that, for many jobs and organizations, the outcomes of false positives and 

false negatives can be drastically different in terms of costs, is central to this study.  MPT is 

offered as an additional method for generating weights that produce fewer false positives than 

multiple regression. 

MPT generates a set of all possible combinations of predictors within the plane of risk 

and return and finds an optimal set of weights on the efficient frontier, the hyperbola that 

represents the best possible set of trade-offs between risk and return.  This study uses Monte 

Carlo simulations to estimate boundary conditions where MPT can outperform multiple 

regression.  Comparisons are drawn between MPT, multiple regression, and unit weighting, 

applying weights uniformly across all predictors.  Comparisons between the methods are drawn 

consistent with Signal Detection Theory, categorizing prediction-criterion pairs in terms of 

“correct selections,” “false positives,” “correct rejections,” and “false negatives.” Boundaries for 

suitability for initial sample size, applicant pool size, and cutoff score of the performance 

measure are explored.  Finally, an application of MPT for reducing adverse impact and 

promoting diversity by choosing combinations of variables that reduce the weight given to 

cognitive ability is explored. 
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Background 

Personnel selection is a systematic process for identifying and deciding which applicants 

to hire and which to reject.  For over 2000 years, instruments have been developed to determine 

which applicants will make the best employees (Bowman, 1989).  However, most familiar 

selection instruments and methods are products of the more recent past.  Over the last 100 years, 

employee selection has been systematically and scientifically studied producing measures of job-

related knowledge, skills, and abilities, and methods for assessing applicant suitability, ranging 

from interviews and online tests to numerous physical ability tests (Vinchur, 2007).  Rather than 

limit selection procedures to only one type of predictor, for many jobs, multiple predictors of job 

performance are often used to make employment decisions.  There a variety of ways multiple 

predictors can be combined to make personnel selection decisions.  This study explores an 

adaptation of Modern Portfolio Theory (MPT), a method of choosing proportions of assets for an 

investment portfolio, as a potential method for choosing how to differentially weight 

combinations of predictors for personnel selection. 

Combining Predictors 

There are many ways to combine multiple predictors for personnel selection.  Hurdles are 

often employed as a means of reducing cost.  A hurdle is a method used to eliminate some 

applicants early in the process.  This reduces the number of applicants who will require more 

costly methods further in the process.  A compensatory system works differently.  All predictors 

are assessed for each applicant, and then the predictors are combined for the purpose selection.  

In this way one or two predictors may compensate for a low score on a third.  The two methods 

can produce different results.  The hurdle method may eliminate an applicant early in the 

selection process while compensatory method might find that the applicant is qualified given a 
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full set of predictor scores.  Often these two methods are combined and there is somewhat of a 

range between a complete multiple hurdles system and a full compensatory system. 

Within a compensatory system there are several common options for combining predictor 

scores.  The first option is to use multiple regression.  Multiple regression returns weights for 

each predictor that can be used to estimate a criterion.  On face, weights produced from a 

regression are relatively straightforward.  Multiple regression seems to weight the best predictors 

the highest, and the worst predictors the lowest.  This is a bit of an oversimplification.  If 

predictors are correlated, the shared variance between predictors can obfuscate the relative 

importance of one or more predictors.  The primary attractions to multiple regression are that it 

maximizes the performance of the selected group, and that it has a large body of research and 

legal precedent supporting the method.   

A second option is to use unit weighting.  This means each predictor is given the same 

weight in the decision-making process.  Unit weighting has several advantages:  it is simple to 

perform, inexpensive, and easy to interpret.  Another major advantage is that unit weighting is 

not estimated from data from an initial sample.  In multiple regression, idiosyncrasies in the 

initial sample can have major effects on how well a model can predict a criterion, especially 

when the initial sample is small (Schmidt, 1971).  Additionally, unit weighting does not use up 

degrees of freedom, so adding more predictors does not make the model more dependent on the 

quality of the initial sample.  Unit weights also do not have any standard error, and they do not 

change how other variables predict.  Schmidt found, in a Monte Carlo simulation, that when 

initial samples were lower than 100, unit weighting outperforms multiple regression in 3 out of 5 

trials (1971).  Einhorn and Hogarth also found unit weighting to be comparable to multiple 

regression in many real-world situations (1975).  It is also easy to justify unit weighting 
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predictors if there is no evidence for a differential weighting method.  This is important if the 

legality of a selection system comes into question.  On the other hand, if several predictors are 

measuring essentially the same thing, that is they are highly correlated, unit weighting tends to 

exaggerate the influence of the related construct.  For example, if we have three separate 

measures of job knowledge that are all highly correlated and a fourth measure that is not related 

such as physical ability, job knowledge receives three times as much weight as physical ability.  

Unit weighting then performs best if the predictors are correlated to performance, but weakly 

correlated with each other.  So, for unit weighting, a priori knowledge of the relationship 

between predictors and between predictors and performance is needed, which generally requires 

some kind of regression analysis. 

Other than unit weighting and multiple regression, many other methods for mechanically 

weighting predictors have been used, and comparisons have been made between these methods 

to multiple regression and unit weighting (Trattner, 1963; Lawshe & Schucker, 1959).  The most 

common finding of studies comparing these methods yielded no significant advantage of one 

method over another.  Most legal cases surrounding employee selection, after the Civil Rights 

Act of 1964, defer to expert opinions in the matter of selection strategies, which are generally 

considered to be contained within three documents, the Uniform Guidelines on Employee 

Selection Procedures, SIOP Principles, and APA Standards for Educational and Psychological 

Testing (Uniform Guidelines on Employee Selection Procedures, 1979; Principles for the 

validation and use of personnel selection procedures, 2003; Standards for educational and 

psychological testing, 1999).  These documents generally suggest multiple regression, and 

mention unit weighting as an alternative, which may explain, to a large degree, why other 

methods of weighting predictors are seldom used. 
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Another popular method is to avoid mechanically combining predictors and instead defer 

to human judgement.  This method requires a person or persons to review the predictors and 

decide, using their own judgment rather than an algorithm.  In doing so, the person makes some 

combination of weights without a prescribed method.  The problem with this type of weighting is 

that people are not very good at it.  People tend to focus on one predictor too much and 

overestimate its relative importance.  Also, there is a great deal of inconsistency in how 

predictors are combined from one situation to the next (Meehl, 1954).  The result is consistently 

worse prediction than using mechanical combination, which holds true even for experts and 

across settings and situations (Grove, Zaid, Lebow, Snitz & Nelson, 2000).  Similar problems 

can occur in the case of rational weighting, which allows subject matter experts to determine the 

weights applied to predictors. 

An adaptation of MPT offers an additional method for generating weights for a set of 

predictors.  MPT weighting, like multiple regression, is sample dependent but employs a 

different methodology, as described in the next section.  As of the current research, it is unknown 

how MPT will compare to other methods, though based on comparisons between the 

effectiveness of other methods, some general patterns are expected to hold true.  The focus of 

this study is to compare MPT to unit weighting and multiple regression weighting to better 

understand the conditions where MPT may be a superior alternative to these methods. 

Modern Portfolio Theory  

MPT is based largely on the work of Harry Markowitz (1952; 1959).  The method laid 

out in his work, Portfolio Selection, chooses, from all combinations of available assets, those 

assets that will minimize the risk (volatility or variance), for a given rate of return.   
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The expected return of a portfolio, 𝐸[𝑟𝑝],  is defined as the sum of the expected returns for 

each of n assets, 𝐸[𝑟𝑖], multiplied by the respective weights, 𝑤𝑖, or proportions of each asset in 

the portfolio, where the sum of all weights equals 1. 

𝐸[𝑟𝑝] = ∑ 𝑤𝑖𝐸[𝑟𝑖]

𝑛

𝑖=1

;  

∑ 𝑤𝑖 = 1

𝑛

𝑖=1

 

The variance of a portfolio with n assets, 𝜎𝑝
2, is a function of the individual variances of 

the assets and the covariance between each combination of assets, where 𝜎𝑖𝑗 is the covariance 

between asset i and asset j.  The variance of an asset is calculated where i and j are equal. 

𝜎𝑝
2 = ∑ ∑ 𝑤𝑖𝜎𝑖𝑗𝑤𝑗

𝑛

𝑗=1

𝑛

𝑖=1

 

The Sharpe Ratio for a portfolio, 𝑆𝑝, is the expected return of the portfolio, 𝐸[𝑟𝑝], minus 

the expected return of a risk-free asset, 𝐸[𝑟𝑟𝑖𝑠𝑘 𝑓𝑟𝑒𝑒], divided by the standard deviation of the 

portfolio, 𝜎𝑝, (Sharpe, 1966; 1975).  A risk-free asset is usually considered to be a government 

issued T-bill, which carries virtually no risk.  The difference between the expected return of the 

risk-free portfolio and the expected return of the risk-free asset is called the risk premium.  The 

goal of MPT is to find the proportion of each asset that should be included in a portfolio that will 

maximize the Sharpe ratio.   

𝑆𝑝 =  
𝐸[𝑟𝑝] −  𝐸[𝑟𝑟𝑖𝑠𝑘 𝑓𝑟𝑒𝑒]

𝜎𝑝
 

 MPT approaches this problem as a minimization of the portfolio variance from Equation 

3, subject to the constraints of Equations 1 and 2.  One way to solve for local minima, subject to 

(1) 

(2) 

(3) 

(4) 
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equality constraints, is to use the method of Lagrange multipliers (Lagrange, 1788).  This 

method introduces two new constants called Lagrange multipliers, 𝜆1 and 𝜆2, and a function is 

created that is the sum of the first function, the first constraint multiplied by the first Lagrange 

multiplier, and the second constraint multiplied by the second Lagrange multiplier.  The partial 

derivative of the Lagrangian, with respect to the common variable, is taken, and the result is set 

equal to zero.  The extrema of the first function are then critical points of the Lagrangian, but 

may not be extrema of the Lagrangian if the constants, 𝜆1 and 𝜆2, are nonzero.  

To simplify the math later, Equation 3 is multiplied by ½.  This will not change the 

solution to the minimization problem.  For this problem, three equations are used to set up the 

Lagrangian: 

𝐿 =  
1

2
∑ ∑ 𝑤𝑖𝜎𝑖𝑗𝑤𝑗

𝑛

𝑗=1

𝑛

𝑖=1

−  𝜆1 (∑ 𝑤𝑖𝐸[𝑟𝑖]

𝑛

𝑖=1

− 𝐸[𝑟𝑝]) − 𝜆2 (∑ 𝑤𝑖 − 1

𝑛

𝑖=1

) 

We set 
𝜕𝐿

𝜕𝑤𝑖
= 0 for each wi in n cases.  These yields n equations of the form: 

∑ ∑ 𝜎𝑖𝑗𝑤𝑗

𝑛

𝑗=1

𝑛

𝑖=1

− 𝜆1𝐸[𝑟𝑖] − 𝜆2 = 0, 𝑖 ∈ {1, 2, . . . , 𝑛} 

We now have n + 2 unknowns, (w1, w2, . . ., wi, λ1, λ2), and n + 2 equations: 

∑ ∑ 𝜎𝑖𝑗𝑤𝑗

𝑛

𝑗=1

𝑛

𝑖=1

− 𝜆1𝐸[𝑟𝑖] − 𝜆2 = 0, 𝑖 ∈ {1, 2, . . . , 𝑛}; 

𝐸[𝑟𝑝] = ∑ 𝑤𝑖𝐸[𝑟𝑖]

𝑛

𝑖=1

; 

∑ 𝑤𝑖 = 1

𝑛

𝑖=1

 

(5) 

(6) 
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Our solutions to the equations are then, (w1, w2, . . ., wi, λ1, λ2).  The solutions will only 

exist for feasible pairs of expected return, E(r), and risk, σ, for portfolios weights (w1, w2, . . ., wi).  

The feasible set is defined where: 

𝐸[𝑟𝑝] = ∑ 𝑤𝑖𝐸[𝑟𝑖]

𝑛

𝑖=1

; 

and 

𝜎𝑝
2 = ∑ ∑ 𝑤𝑖𝜎𝑖𝑗𝑤𝑗

𝑛

𝑗=1

𝑛

𝑖=1

 

The efficient frontier is a hyperbola consisting of all boundary points between the 

feasible set and points that are not feasible where allocations to the risk-free asset are equal to 

zero.  Figure 1 displays portfolios within a feasible set, and the upper portion of the efficient 

frontier.  For all portfolios on the lower half of the efficient frontier, there exists a corresponding 

point on the upper half with the same risk but higher return.  For this reason, we ignore the lower 

half of the hyperbola. All points within the hyperbola are considered feasible but not efficient.  

For any point within the upper half of the hyperbola, there exists some other point within the 

hyperbola with higher return and lower risk.  Points outside of the hyperbola are not feasible, 

meaning they are not possible portfolios. 

 Combining the risky assets with risk-free assets is the final step needed to obtain a 

complete portfolio.  Because the rate of return for a risk-free asset is fixed, with zero variance, 

the returns are uncorrelated with risky assets.  This results in a linear relationship between risk 

and return for changes in proportions of the risk-free asset.  The Capital Allocation Line, CAL, 

represents all possible combinations of risky and risk-free assets that an investor could make.  As 

seen in Figure 1, the line intercepts the zero-risk (zero-variance) proposition at the risk-free rate 

of return.  As less of the risk-free asset is selected, returns for portfolios increase (it is assumed 
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that risky assets have higher expected return) and risk also increases.  The CAL runs tangent to 

the efficient frontier at the tangency portfolio where 100% of the assets in the portfolio are risky 

assets. 

 

Figure 1 Risk and Return for 10,000 Randomly Generated Portfolios. Portfolios A, B, and C are 

all inefficient, meaning there are portfolios that have less risk and more reward.  Observe that B 

has an identical return to F, but F is less risky.  Portfolios D, E, and F are all on the boundary of 

the efficient frontier, but portfolio E is on the lower half of the hyperbola.  For any point on the 

lower half there is a point on the upper half with more return and identical risk (observe E and 

F).  The meaningful part of the efficient frontier is above the red line, and the relevant part of the 

efficient frontier is represented by the green curve.  G represents a portfolio that is not feasible, 

as it lies outside the efficient frontier.  The Capital Allocation Line (CAL) in purple represents 

possible combinations of risky and risk-free assets.  The CAL meets the efficient frontier at the 

tangency portfolio, F.  The tangency portfolio is the optimal portfolio given the data. 
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Adapting MPT to Personnel Selection 

The purpose of this study is to adapt MPT to generate weights for predictors for 

employee selection.  The method described above has been altered in a few important ways.  

Selection data must be organized in such a way that it conforms to the patterns of risky assets.  

First, the sample used to generate the weights is ordered in terms of performance rank. This has 

the effect of equating asset value over time with performance increase over ranks.  Presumably, 

performance measurements were taken by the organization in a forced, normal distribution.  The 

predictor scores, obtained from selection activities (tests, biodata, etc.), are arranged in the same 

order, as specified by the performance ranking.  Differences between the predictor scores 

between each of these performance ranks are synonymous with the returns for each asset (the 

change in asset value between each time period).  Because the predictors are arranged from 

smallest to largest in terms of performance, those predictors that are more highly correlated with 

performance will have smaller variance between ranks.  Lower variance is preferred by the 

model and will result in higher weights for that predictor.  If predictors in the model are similar 

they will tend to have higher positive covariance.  This is not preferred by the model, and will 

result in lower weights for those predictors.  In summary, instead of minimizing the total 

variance in price between days for each asset, the model now minimizes the total variance in 

predictor scores between ranks. 

As mentioned in the last section, the CAL is used in MPT to determine the one optimal 

portfolio.  In selection, there are no predictors analogous to risk-free assets.  Such a predictor 

would have zero variance and some guaranteed increase in performance for each additional unit 

of the predictor that is used for prediction.  It is possible to guarantee a zero increase in predicted 
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performance.  So, in this case, the risk-free rate is set to zero and the CAL intercepts at the zero 

variance, zero return proposition.  The Sharpe ratio is then reduced to:  

𝑆𝑝 =  
𝐸[𝑟𝑝]

𝜎𝑝
 

In this study, comparisons between methods are made through the lens of signal detection 

theory.  Signal detection theory offers a way to assess the quality of decisions for each method in 

terms of the outcomes of decisions and the accuracy of decisions (Peterson, Birdsall, and Fox, 

1954).  The decision in both signal detection and selection is a binary classification decision.  In 

terms of selection, the applicant scores at a certain level on a predictor, either above or below a 

chosen cutoff score, and then a decision is made whether to accept or reject the applicant based 

on the predictor score.   

The selection decision results in four possible outcomes.  Correct selections occur when 

the applicant scores above a cutoff score on the predictor and scores above a cutoff score on the 

criterion (performance).  Correct rejections occur when the applicant scores below the cutoff 

score on the predictor and would have scored below the cutoff score on the criterion.  False 

positives occur when the applicant scores above a cutoff score on the predictor but below a 

cutoff score on the criterion.  False negatives occur when the applicant scores below a cutoff 

score on a predictor but would have scored above the cutoff score on the criterion.   

In practice, it is impossible to know the number of correct rejections and false negatives 

because applicants in these categories are not actually hired.  The solution to this problem is to 

create a predictive study, where predictor scores are taken and all applicants are hired without 

using the predictor.  Later, the number of correct rejections and false negatives for applicants that 

would have been rejected can be determined.  Given that the organization must hire all applicants 

and suffer from the poor performance of many more applicants than if they had used a selection 
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method, predictive studies such as this are often very costly.  For this reason, predictive designs 

are rarely used.  Because this study involves simulated data, the true signal (whether the 

applicant will perform above the cutoff for the criterion) is known. 

The application of MPT to personnel selection has thus far been unexplored.  MPT has 

been applied to other decision making processes such as modeling a regional labor force 

(Conroy, 1974) and modeling a stable self-concept (Chandra & Shadel, 2007).  For most 

organizations, maximizing performance is not the only goal.   Just as maximizing return on 

investment is not the only goal for investors.   

According to the Gauss-Markov theorem, ordinary least squares (OLS) regression 

provides the best linear unbiased estimation of the coefficients (1823).  This means that any 

deviation from the regression line will only make prediction worse.  It is reasonable to expect 

that the same pattern should exist for MPT weighting as with other weighting methods that are 

not the best linear fit.  However, two favorable developments also can occur.  The number of 

false positives may decrease, and the number of correct rejections may increase.  Figure 2 below 

demonstrates how this might be represented graphically.  The result is identical to what one 

would see from a change in slope between different regression lines. 
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Figure 2: A Change in Validity.  The top image represents how a cutoff score, represented by the 

vertical black line, based on a regression line, represented by the red line, separates selected and 

rejected applicants into four categories, correct selections, correct rejections, false positives, and 

false negatives.  The bottom image shows how a change in slope can reduce false positives and 

correct selections, while increasing false negatives and correct rejections, by acting like a change 

in the cutoff score. 

Consistent with the Gauss-Markov theorem, a change from the multiple regression 

weighting may result in two favorable outcomes: 
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Hypothesis 1a:  MPT will produce fewer false positives than multiple regression. 

Hypothesis 1b:  MPT will produce more correct rejections than multiple regression. 

While confirming these hypotheses may be evidence that MPT is a weaker model than 

multiple regression, it is important to consider the utility of outcomes when making this type of 

determination.  For example, false positives may be extremely costly to an organization.  If the 

cost of a poorly performing worker greatly exceeds the added value of a superior worker, then 

false positives may prove to be the most important consideration.  For example, consider the job 

of automobile assembly.  Poor performance could slow down the entire assembly line or could 

result in serious accidents, fines, or lawsuits.  However, superior performance may be 

indistinguishable from just above average performance in terms of results.  False negatives, on 

the other hand, are not directly measurable by the organization and represent a loss in terms of 

opportunity cost.  The organization would have benefited by correctly hiring the applicants 

classified as false negatives. 

Correct selections, correct rejections, false positives, and false negatives can all be 

important outcomes.  But, because they do not represent the outcomes in terms of base rates, 

they cannot offer a clear-cur way to compare models in terms of accuracy.  If a method always 

chose all applicants, then it would be 100% successful in terms of correct selections, but it would 

also be 100% unsuccessful in in terms of correct rejections.  Likewise, it would produce no false 

negatives, but it would also produce the maximum number of false positives.  How well the 

method can differentiate the data is often called accuracy or discriminability.  This issue of 

accuracy should also be addressed.   Signal detection theory offers a way to address the issue of 

accuracy within the binary decision making framework of selection. 
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In this study, researchers address four measures of accuracy.  The false positive rate is 

the number of false positives divided by the sum of false positives and correct selections.  The 

false negative rate is the number of false negatives divided by the sum of false negative and 

correct rejections.  Specificity is defined as the number of correct rejections divided by the sum 

of correct rejections and false negatives, and Sensitivity is defined as the number of correct 

selections divided by the sum of correct selections and false positives.  Consistent with the 

findings of Trattner and with those of Lawshe and Schucker, it is expected that MPT will not 

differ greatly in terms of how the method performs in terms of rates of accuracy (1963; 1959). 

Hypothesis 2:  MPT will perform comparably to unit weighting and multiple 

regression in a simulated predictive study in terms of binary classification performance 

measures. 

The sample size of the initial group used to generate the weights should also play a 

critical role.  In the case of a small sample, violations of assumptions are more likely, and 

weights generated from the samples would vary more for sample dependent weighting, 

especially for multiple regression.  MPT weighting is also sample dependent, but is less reliant 

on a large sample than multiple regression, as the variance between ranks is expected to be more 

stable than the distance of data points to a regression line if the initial sample variance is 

normally distributed.  The smallest of the sample size where MPT weighting is expected to be 

superior to multiple regression, in terms of stability of weights and prediction, is likely to be 

somewhere between 30, where violations of assumptions for multiple regression begin to 

disappear, and 100, where Schmidt observed multiple regression beginning to dominate unit 

weighting in terms of prediction (1971). 
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  Hypothesis 3:  There exists a lower-bound threshold for the size of the initial 

sample for observing noticeable differences between weighting methods in terms of the 

stability of weights and the quality of prediction. 

It has long been established that the effectiveness of multiple regression in selection is 

affected by the selection ratio (Taylor & Russel, 1939).  The selection ratio is the number of 

chosen applicants divided by the total number of applicants.  If the cutoff score is raised, the 

selection ratio decreases.  At higher chosen cutoff scores, the proportion of correctly selected 

applicants also increases.  This is also true for MPT and unit weighting, or any combination of 

weighted predictors that are positively correlated with the criterion measure.  Reexamining 

Figure 2, using a method other than multiple regression can have an effect like artificially raising 

the cutoff score.  From this, it is unclear what the cumulative effect of both changing the cutoff 

score and choosing MPT or unit weighting over multiple regression will be.  We suspect that 

there are cutoff scores where one method will outperform another. 

  Hypothesis 4:  There exists a set of cutoff scores where each method will perform 

better than others in terms of binary classification measures and binary classification 

performance measures. 

One of the defining features of MPT as it applies to risky financial assets, is that 

combinations of assets that are negatively correlated can be combined to reduce the overall 

variance of the model.  In finance, it has long been noted that the prices of bonds rise when the 

prices of stocks fall and vice versa.  Bonds represent a guaranteed investment return, albeit lower 

than the typical returns for stocks.  So, investors fleeing stocks with falling prices will turn to 

bonds.  The increase in demand for bonds then raises the selling price of the bond.   Holding a 

combination of stocks and bonds can, therefore reduce the volatility of a portfolio, helping to 
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make sure the value of the total portfolio does not take large swings in value.  The presence of 

negatively correlated assets that are both positively correlated with returns is what makes MPT 

so useful for investors.  Mathematically, this can be explained by noting that the total variance of 

a portfolio is the sum of all asset variances and covariances.  When covariances are negative, the 

total variance of the portfolio is reduced.   

For an investor, the important result of the effect is the reduction of portfolio volatility, 

but for selection the most useful aspect may be something different.  A side effect of combining 

negatively correlated asset returns is that other assets in the model are weighed less heavily.  The 

model seeks to minimize volatility, so stocks and bonds with a strong negative correlation are 

preferred and given higher relative weights.  So, in a three-asset portfolio (ABC) where A and B 

are negatively correlated, but uncorrelated with C, and the assets have similar returns, MPT will 

select higher weights for A and B. 

In employee selection, there is a long-standing problem related to subgroup differences in 

cognitive ability tests.  Cognitive ability is a preferred measure because it is often the strongest 

predictor of performance.  Particularly, Blacks and Hispanics have typically scored lower on 

these kinds of tests.  If diversity is one of the goals of an organization, cognitive ability tests can 

often be a barrier to realizing that goal by helping to select fewer black and Hispanic applicants.  

This can also result in legal issues if the ratio of minority applicants hired to those that applied 

falls below four fifths of a similar ratio for the unprotected groups (“Disparate Impact and 

Reasonable Factors Other Than Age Under the Age Discrimination in Employment Act,” 2012). 

Measurement research as of now, has been able to reduce but not solve the problem.  

There has been a strong effort to create cognitive ability tests that produce smaller subgroup 

differences though differential item functioning, alternate delivery systems, reducing cultural 
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references, and a reduction in reliance on reading comprehension (Ployhart & Holtz, 2008).  So 

far, test makers have been unable to eliminate these problems completely.  With multiple 

regression weighting, a common-sense approach might be to simply add more predictors that are 

not related to adverse impact.  Unfortunately, this does not seem to solve the problem and, in 

some cases, makes the problem worse (Sackett & Ellingson, 1997).  Applying methods that alter 

the standard top-down selection approach, such as score banding which capitalizes on the 

unreliability of measurements, can be used to reduce adverse impact (Schmidt, 1988; Truxillo & 

Bauer 1999).  Similar problems with adverse impact can occur with other constructs and for 

other protected groups.  Ployhart and Holtz summarize the key findings in subgroup differences 

for 19 commonly used predictors for racioethnic and gender subgroups and describe 16 different 

approaches to reducing adverse impact (2008).  The variety of possible combinations of the 

presence of predictor-subgroup differences and adverse impact reduction strategies is 

astronomical, 36,893,488,147,419,103,232, making strategies for dealing with these problems, 

practically speaking, ad hoc. 

MPT offers a different approach to the problem.  If specific predictors are responsible for 

generating these subgroup differences in selection, adverse impact can be reduced by finding 

other predictors positively correlated to performance, but negatively correlated to each other.  

This is the same approach as using combinations of stocks and bonds in the financial application 

of the method.  For example, if the use of cognitive ability as a predictor is causing adverse 

impact, adding two more predictors, positively correlated with performance, negatively 

correlated with each other, can reduce the volatility of the selection portfolio and the weight 

given to cognitive ability as a predictor. 
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Hypothesis 5:  Introducing a new selection predictor that is uncorrelated with 

cognitive ability, correlated positively with performance, and negatively with a third 

predictor will preserve the predictive power of the model and reduce the weight given to a 

third predictor. 
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Methods 

Data was simulated in R, version 3.3.2 (The R Core Team, 2013).  The code used to 

generate the results is available on GitHub, https://github.com/EricLeingang/Thesis-Code, and is 

also available in the Appendix.  A Cholesky decomposition of a specified correlation matrix (see 

Table 1) was used to generate random correlated data for hypotheses 1-4.  Coefficients in the 

correlation matrix were reproduced from meta-analyses to represent common measures with 

typical values (Hunter & Hunter, 1984, Barrick & Mount, 1991; Tett, Jackson, & Rothstein, 

2006).  The decomposition was multiplied by a matrix of random normal numbers.  A normal 

distribution was chosen to represent a forced distribution performance rating system and 

normally distributed predictor scores.  The data was then rescaled to eliminate negative predictor 

scores and performance ratings.  A diagnostic check was made to ensure that the data were still 

correlated in the same way as the original matrix, after the transformations.  These data were 

considered to be an initial sample an organization would use to generate weights for predictors. 

Table 1: Correlation Matrix Used for Hypotheses 1-4. 

 Performance Conscientiousness Cognitive Ability Work Sample 

Performance 1.00 0.20 0.51 0.57 

Conscientiousness 0.20 1.00 0.01 0.09 

Cognitive Ability 0.51 0.01 1.00 0.34 

Work Sample 0.57 0.09 0.34 1.00 

  

Three sets of weights were generated from the simulated data.  For MPT weighting, the 

data was organized by performance rank to create an, overall, positive, increasing trend in 

predictor scores, analogous to the positive, increasing trend in risky asset prices in the stock 

market.  Each time period in the financial model was then analogous to one additional rank in the 

selection model.  The difference in performance between subsequent ranks is analogous to the 
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return in the financial model, or difference between the beginning and ending values during that 

time period.   These differences, in predictor scores between performance ranks, were calculated 

and used to form a matrix of returns.  MPT weights were calculated based on the point on the 

efficient frontier that maximized the Sharpe ratio, given a zero-return risk-free rate, Figure 3 

below, using modified code by Matuszak, (n.d.).  Quadratic programming, the quadprog 

package, was used to solve the system of equations that defined the optimal weights (version1.5-

5, Berwin, Turlach, and Weingessel, 2013).  Standardized multiple regression weights were 

calculated and rescaled so that the sum of weights would equal 1.  Unit weights were also 

generated and rescaled.  The weights for one trial, for each method, are summarized in Table 2, 

below. 

 
Figure 3: Efficient Frontier and Optimal Portfolio.  This figure represents the efficient frontier 

and the optimal portfolio for one trial. 

Table 2: Portfolio Weights Determined Through Different Weighting Methods.  This table 

displays weights generated by unit weighting, multiple regression weighting, and MPT 

weighting.   

Weighting Type Conscientiousness Cognitive Ability Work Sample 
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Unit Weightings 0.33 0.33 0.33 

Regression Weighting 0.14 0.38 0.48 

MPT Weighting 0.32 0.26 0.42 

 

An applicant pool was created using a process that was identical to that used to create the 

initial sample, but using a different seed.  The initial matrix of applicant performance and 

predictor scores was 100 times larger than the matrix of final applicant scores.  Final applicant 

scores were randomly chosen from the larger matrix of performance and predictor scores to 

generate the pool of applicant scores used in each trial using the plyr package (Wickham, 2011).  

This was done to create applicant pools that had more opportunity for outliers and other 

assumption violations that might occur naturally from sampling error.  For each method, 

predicted performance was calculated using a weighted sum of predictor scores from each 

simulated applicant.  Each simulated applicant’s true performance score, was compared to their 

predicted performance scores.  The effectiveness of each method was defined in terms of four 

basic categories, correct selections, correct rejections, false positives, and false negatives, and 

four composite categories, sensitivity, specificity, false positive rate, and false negative rate. 

For the first simulation, the size of the final applicant pool size was held constant at 100.  

Performance was measured on a 100-point scale and cutoff score was held constant at 60.  The 

initial sample size was held constant at 100.  To test hypotheses 1 and 2, 10,000 trials were 

conducted and the cumulative results for all trials were recorded for correct selections, correct 

rejections, false positives, false negatives, sensitivity, specificity, false positive rate, and false 

negative rate.  The average weights generated for each method were also recorded. 

Sample size, and cutoff score final applicant pool size was held constant at 100.  

Performance was measured on a 100-point scale and cutoff score was held constant at 60.  The 
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initial sample size was allowed to vary from 10 to 200.  For Hypothesis 4, the final applicant 

pool size was held constant at 100.  The initial sample size used to generate weights was held 

constant at 100.  Performance was measured on a 100-point scale.  Cutoff scores were allowed to 

vary from 1 to 100.  For hypotheses 3 and 4, the cumulative results of 1000 trials were recorded 

and summed at each level of applicant pool size and cutoff score, respectively, for each method 

to establish boundaries. 

For the fourth simulation, a new correlation matrix was needed.  Two predictors 

positively correlated with performance and negatively correlated with each other were needed to 

fulfill the conditions.  The following scenario was used to generate the correlation matrix in 

Table 3: 

Performance at a sales job was found to be related to several important predictor scores.  

Performance was highly correlated to cognitive ability, this was related to strategic 

thinking and decision making.  Performance was moderately correlated to 

conscientiousness; organization and being prepared helped to generate repeat sales.  

Risk taking was moderately correlated to performance.  Salespersons who were willing to 

try new methods and seek out new clients were more successful.  Risk takers tended to be 

less conscientious than those who were not risk takers. 

Table 3: Correlation Matrix Used for Hypothesis 5. 

 Performance Conscientiousness Cognitive Ability Risk Taking 

Performance 1.00 0.20 0.51 0.34 

Conscientiousness 0.20 1.00 0.01 -0.25 

Cognitive Ability 0.51 0.01 1.00 0.22 

Risk Taking 0.34 -0.25 0.22 1.00 
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The size of the final applicant pool was held constant at 100.  Performance was measured 

on a 100-point scale and cutoff score was held constant at 60.  The initial sample size was held 

constant at 100.  10,000 trials were conducted and the cumulative results for all trials were 

recorded for correct selections, correct rejections, false positives, false negatives, sensitivity, 

specificity, false positive rate, and false negative rate.  The average weights generated for each 

method were also recorded. 
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Results 

 The first simulation was conducted to test hypotheses 1a, 1b, and 2.  The results of the 

first simulation are summarized in Table 5, below:   

Table 4:  Results of Simulation 1.  For this simulation, the initial sample was held at 100, the 

number of applicants was held at 100, and the cutoff score was held at 60 on a 1-100 scale.  The 

data in the tables represents the cumulative results of 10,000 trials.  Under these conditions, false 

positives were higher for MPT weighting than multiple regression weighting.  Correct rejections 

were lower for MPT than multiple regression. Hypothesis 1 was not supported.  Unit Weighting, 

Multiple regression weighting, and MPT weighting performed about as well as each other in 

terms of binary decision performance measures, in support of Hypothesis 2. 

 Unit 

Weighting 

Multiple Regression 

Weighting 

MPT 

Weighting 

Binary Decision Measures 
   

     Correct Selections 321094 327790 322037 

     Correct Rejections 391075 393663 391030 

     False Positives 135666 133078 135711 

     False Negatives 152165 145469 151222 

Binary Decision Performance Measures    

     Sensitivity 0.68 0.69 0.68 

     Specificity 0.74 0.75 0.74 

     False Positive Rate 0.30 0.29 0.30 

     False Negative Rate 0.28 0.27 0.28 

Average Predictor Weights    

     Conscientiousness 0.33 0.18 0.36 

     Cognitive Ability 0.33 0.36 0.34 

     Work Sample 0.33 0.46 0.30 

 

For the given initial conditions of the simulated data, Hypothesis 1a and Hypothesis 1b 

were not supported.  MPT weighting produced more false positives and fewer correct rejections 

than multiple regression weighting, although the results were very close to equal.  False positives 
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differed by less than 2% and correct rejections differed by less than 1%.  Hypothesis 2 seemed 

well supported by the data, with only 1% differences between MPT and multiple regression 

weighting for specificity, sensitivity, false positive rate, and false negative rate. 

Hypothesis 3 posited that, for some lower bound threshold of initial sample size, MPT 

weighting would predict better and have more stable weights than multiple regression weighting.  

The following figures graphically represent the output of the second simulation.  In the first part 

of the simulation, 1,000 trials were conducted for the binary decision outcomes, for each initial 

sample size from 10 to 200.  Figure 4, below, displays the results for correct selections.  Figure 

5, below, displays the results for correct rejections.  Figure 6, below, displays the results for false 

positives.  Figure 7, below, displays the results for false negatives.   

 

Figure 4:  Correct Selections for Different Initial Sample Sizes.  This graph represents data 

generated from an applicant pool of 100 and a cutoff score of 60 accumulated over 1,000 trials 

for each applicant pool size from 10 to 200.  When the initial sample size is above ~30, multiple 

regression tends to produce more correct selections than unit or MPT weighting. 
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Figure 5:  Correct Rejections for Different Initial Sample Sizes.  This graph represents data 

generated from an applicant pool of 100 and a cutoff score of 60 accumulated over 1,000 trials 

for each applicant pool size from 10 to 200.  When the initial sample size is above ~30 multiple 

regression tends to produce more correct rejections than unit or MPT weighting. 

 

Figure 6:  False Positives for Different Initial Sample Sizes.  This graph represents data 

generated from an applicant pool of 100 and a cutoff score of 60 accumulated over 1,000 trials 

for each applicant pool size from 10 to 200.  When the initial sample size is above ~30, multiple 

regression tends to produce fewer false positives than unit or MPT weighting. 
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Figure 7:  False Negatives for Different Initial Sample Sizes.  This graph represents data 

generated from an applicant pool of 100 and a cutoff score of 60 accumulated over 1,000 trials 

for each applicant pool size from 10 to 200.  When the initial sample size is above ~30, multiple 

regression tends to produce fewer false negatives than unit or MPT weighting. 

Both MPT weighting and unit weighting appear to dominate multiple regression 

weighting when sample sizes are below 30, where violations of assumptions become problematic 

for multiple regression.  Unit weighting appears to perform best.  This offers partial support to 

Hypothesis 3.  Further support can be found by examining the binary decision performance 

measures. 

For the second part of the second simulation, the same data were used to produce binary 

decision performance measures.  The next four figures display the results of the binary decision 

performance measures for 1,000 trials at each sample size.  Figure 8, below, displays the results 

for sensitivity.  Figure 9, below, displays the results for specificity.  Figure 10, below, displays 

the results for the false positive rate, and Figure 11, below, displays the results for the false 

negative rate. 
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Figure 8:  Sensitivity for Different Initial Sample Sizes.  This graph represents data generated 

from an applicant pool of 100 and a cutoff score of 60 accumulated over 1,000 trials for each 

applicant pool size from 10 to 200.  When the initial sample size is above ~30, multiple 

regression tends to have higher sensitivity than unit or MPT weighting. 

 

Figure 9:  Specificity for Different Initial Sample Sizes.  This graph represents data generated 

from an applicant pool of 100 and a cutoff score of 60 accumulated over 1,000 trials for each 

applicant pool size from 10 to 200.  When the initial sample size is above ~30, multiple 

regression tends to have higher specificity than unit or MPT weighting. 
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Figure 10:  False Positive Rate for Different Initial Sample Sizes.  This graph represents data 

generated from an applicant pool of 100 and a cutoff score of 60 accumulated over 1,000 trials 

for each applicant pool size from 10 to 200.  When the initial sample size is above ~30, multiple 

regression tends to have a lower false positive rate than unit or MPT weighting. 

 

Figure 11:  False Negative Rate for Different Initial Sample Sizes.  This graph represents data 

generated from an applicant pool of 100 and a cutoff score of 60 accumulated over 1,000 trials 

for each applicant pool size from 10 to 200.  When the initial sample size is above ~30, multiple 

regression tends to have a lower false negative rate than unit or MPT weighting. 
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MPT weighting and unit weighting appear to dominate multiple regression weighting 

when sample sizes are below 30, and again, unit weighting appears to perform best.  This offers 

additional support to Hypothesis 3.  

The last part of the second simulation was designed to test the first part of Hypothesis 3 

which suggests that, below a certain sample size, multiple regression weights are less stable than 

MPT weights.  Figure 12, 13, and 14, below, display the weights generated by each method at 

each sample size. 

 

Figure 12:  Cognitive Ability Weights for Different Initial Sample Sizes.  This graph represents 

data generated from an applicant pool of 100 and a cutoff score of 60 accumulated over 1,000 

trials for each applicant pool size from 10 to 200.  Both MPT and multiple regression weights 

were less stable with smaller sample sizes, less than ~30.  Multiple regression weights are less 

stable than MPT weights. 
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Figure 13: Conscientiousness Weights for Different Initial Sample Sizes.  This graph represents 

data generated from an applicant pool of 100 and a cutoff score of 60 accumulated over 1,000 

trials for each applicant pool size from 10 to 200.  Both MPT and multiple regression weights are 

less stable with smaller sample sizes, less than ~30.  Multiple regression weights were less stable 

than MPT weights. 

 

Figure 14: Work Sample Weights for Different Initial Sample Sizes.  This graph represents data 

generated from an applicant pool of 100 and a cutoff score of 60 accumulated over 1,000 trials 

for each applicant pool size from 10 to 200.  Both MPT and multiple regression weights are less 

stable with smaller sample sizes, less than ~30.  Multiple regression weights were less stable 

than MPT weights. 
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The weights generated by the multiple regression have more variability when sample 

sizes are below ~30 than MPT weights.  The relative instability of the multiple regression 

weights supports the first part of Hypothesis 3. 

The third simulation allowed the cutoff score to vary in order to test Hypothesis 4.  

Hypothesis 4 states there is a set of cutoff scores such that MPT performs better than multiple 

regression in terms of binary classification measures and binary classification performance 

measures.  In the following four figures the cumulative results of 1,000 trials are displyed for 

binary classifications at each cutoff score from 1 to 100.  Figure 15, below, displays correct 

selections.  Figure 16 displays correct rejections.  Figure 17 displays false positives, and Figure 

18 displays false negatives. 

 

Figure 15: Correct Selections for Different Cutoff Scores.  This graph represents data generated 

from an applicant pool of 100 and an initial sample size of 100 accumulated over 1,000 trials for 

cutoff scores ranging from 1 to 100.  For cutoff scores above 50, multiple regression weighting 

produced more correct selections. 
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Figure 16: Correct Rejections for Different Cutoff Scores.  This graph represents data generated 

from an applicant pool of 100 and an initial sample size of 100 accumulated over 1,000 trials for 

cutoff scores ranging from 1 to 100.  For cutoff scores above 60, multiple regression weighting 

produced fewer correct rejections. 

 

Figure 17: False Positives for Different Cutoff Scores.  This graph represents data generated 

from an applicant pool of 100 and an initial sample size of 100 accumulated over 1,000 trials for 

cutoff scores ranging from 1 to 100. For cutoff scores above 60, multiple regression weighting 

produced more false positives. 
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Figure 18: False Negatives for Different Cutoff Scores.  This graph represents data generated 

from an applicant pool of 100 and an initial sample size of 100 accumulated over 1,000 trials for 

cutoff scores ranging from 1 to 100.  For cutoff scores above 50, multiple regression weighting 

produced fewer false negatives. 

 To test how binary clasification performance measues may differ by cutoff score, the 

outcomes of each decision were recorded for each cutoff score, ranging from 1 to 100.  The 

results were plotted in the figures below.  Figure 19 displays sensitivity.  Figure 20 displays 

specificity.  Figure 21 displays false positive rate, and Figure 22 displays false negative rate.   
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Figure 19: Sensitivity for Different Cutoff Scores.  This graph represents data generated from an 

applicant pool of 100 and an initial sample size of 100 accumulated over 1,000 trials for cutoff 

scores ranging from 1 to 100.  For cutoff scores above 50, multiple regression weighting 

produced a higher sensitivity. 

 

Figure 20: Specificity for Different Cutoff Scores.  This graph represents data generated from an 

applicant pool of 100 and an initial sample size of 100 accumulated over 1,000 trials for cutoff 

scores ranging from 1 to 100.  For cutoff scores above 60, multiple regression weighting 

produced a lower specificity. 
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Figure 21: False Positive Rate for Different Cutoff Scores.  This graph represents data generated 

from an applicant pool of 100 and an initial sample size of 100 accumulated over 1,000 trials for 

cutoff scores ranging from 1 to 100.  For cutoff scores above 60, multiple regression weighting 

produced a higher false positive rate. 

 

Figure 22: False Negative Rate for Different Cutoff Scores.  This graph represents data 

generated from an applicant pool of 100 and an initial sample size of 100 accumulated over 

1,000 trials for cutoff scores ranging from 1 to 100.  For cutoff scores above 50, multiple 

regression weighting produced a lower false negative rate. 
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For each of the binary classification and binary classification performance measures, 

there appeared to be a cutoff score, between 50 and 60, where one method would begin to 

consistently have better results than another, albeit a very small advantage.  A summary of which 

sets of cutoff scores are better for MPT weighting is presented in Table 5, below. 

Table 5: Set of Approximate Cutoff Scores Where MPT was Observed to Produce More of Each 

Outcome or Performance Measure.   The second column shows which set of cutoff scores 

produce more of the outcomes or performance measures for MPT weighting above that of 

multiple regression weighting.  The third column shows which set of cutoff scores produces 

desirable outcomes. 

Measure Condition Where MPT 

Weighting Produced More 

Outcomes or Higher 

Performance Measures  

Condition Where 

MPT is the 

Preferred Method 

Binary Decision Measures   

     Correct Selections < 50 < 50 

     Correct Rejections > 60 > 60 

     False Positives < 60 > 60 

     False Negatives > 50 < 50 

Binary Decision Performance Measures   

     Sensitivity < 50 < 50 

     Specificity > 60 > 60 

     False Positive Rate < 60 > 60 

     False Negative Rate > 50 < 50 

 

These data have implications for hypotheses 1 and 4.  Overall, these data support 

Hypothesis 4.  There are observed cutoff scores where one method will consistently outperform 

the others.  In addition, Hypothesis 1a and Hypothesis 1b become partially supported, but only 

when the cutoff score is above ~60.  About this cutoff score MPT weighting will produce more 

correct rejections and fewer false positives than multiple regression weighting. 
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The fourth simulation involved using a second correlations matrix, specified in the 

methods section, to test Hypothesis 5.  Binary decision classifications, binary classification 

performance measures, and the weights produced by each weighting method are summarized in 

Table 6, below.   

Table 6:  Results of Simulation 4.  For this simulation, the initial sample was held at 100, the 

number of applicants was held at 100, and the cutoff score was held at 60 on a 1-100 scale.  The 

data in the tables represents the cumulative results of 10,000 trials.  Unit Weighting, Multiple 

regression weighting, and MPT weighting performed about as well as each other in terms of 

binary decision classification measures and binary decision performance measures.  MPT 

generated smaller weights for cognitive ability in this condition, supporting hypothesis 5. 

 Unit 

Weighting 

Multiple 

Regression 

Weighting 

MPT 

Weighting 

Binary Decision Measures    

     Correct Selections 309069 310681 305614 

     Correct Rejections 385314 383752 381598 

     False Positives 141427 142989 145143 

     False Negatives 164190 162578 167645 

Binary Decision Performance Measures    

     Sensitivity 0.68 0.69 0.68 

     Specificity 0.74 0.75 0.74 

     False Positive Rate 0.30 0.29 0.30 

     False Negative Rate 0.28 0.27 0.28 

Predictor Weights    

     Conscientiousness 0.33 0.28 0.41 

     Cognitive Ability 0.33 0.40 0.29 

     Risk Taking 0.33 0.32 0.29 

The data in Table 6 supports Hypothesis 5.  The weight given to cognitive ability is 

reduced below both multiple regression weighting and unit weighting.  Binary decision outcomes 
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are similar, with differences between methods, for all categories, at less than 2% of the totals, 

and binary classification performance measures are all within 1% of each other. 
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Discussion 

Hypothesis 1a and 1b were supported for cases where the cutoff score was above ~60, or 

when the cutoff selects 45% of the applicants or less.  MPT will produce fewer false positives 

and more correct rejections than multiple regression weighting.  If these two outcomes are of 

concern, and the selection ratio is lower than 45%, the case can be made to use MPT weighting.  

The decision to use MPT weighting must then be coupled with a utility analysis that compares 

the relative utility of all four binary classification outcomes.  When false positives and correct 

rejections are sufficiently costly, and false negatives and correct selections are less costly and 

beneficial, respectively, MPT weighting should be used. 

Hypothesis 2 was also supported, making the case that MPT weighting did not differ 

greatly from multiple regression weighting in terms of accuracy.  In fact, specificity and the false 

positive rate were slightly better for MPT weighting when the cutoff score was above ~60.  

Again, the discussion is incomplete without attaching utility to these performance measures.  In 

practice, the utility of these outcomes would be specific to the job and organization.  In general, 

and for almost all cutoff scores, MPT and multiple regression weighting were very close on these 

measures.  Accuracy, in this case, is not a major differentiator between any of the three methods. 

Hypothesis 3 specifically observed how a smaller initial sample to generate weights can 

reduce the quality of prediction for the two sample dependent models.  Unit weighting was the 

best method in this circumstance, but choosing the predictors used for unit weighting will still 

require an a priori sample dependent approach.  MPT weighting appeared to be a more robust 

method when sample size was below ~30, and it outperformed multiple regression on all 

outcome and performance measures.  Unit weighting appear to be more successful when sample 

size was below ~30 as well.  This is inconsistent with Schmidt’s findings that place the threshold 
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for differences at ~100 (1971).  It is consistent with the evidence which points to another 

condition where MPT would be justified to generate predictor weights over multiple regression. 

Hypothesis 4 was concerned with establishing a cutoff score where MPT would 

outperform multiple regression.  This hypothesis was partially supported in that cutoff scores for 

individual outcome measures and performance measures each have an associated cutoff.  

Unfortunately, there was no distinct set of cutoff scores where all of these measures were better 

for MPT weighting than for multiple regression weighting.  An organization must be able to 

prioritize outcome measures based on the utility of those outcomes to decide which method is 

most appropriate.  The classification outcome measures and performance measures had two 

different cutoff scores where the dominance of one method over another changed.  For false 

positives, correct rejections, specificity, and false positive rate, MPT performed better when the 

cutoff score was above ~60.  For correct selections, false negatives, sensitivity, and false 

negative rate, MPT performed better when the cutoff was below ~60.  It is unknown why the 

cutoff scores are different for these two categories. 

Hypothesis 5 involved a new hypothetical set of predictors.  Like combinations of stocks 

and bond in the financial application of MPT, negative covariance between the predictors helps 

to reduce the total variance of the model.  Greater weights are given to the predictors that are 

negatively correlated with each other to balance the return to risk minimization problem.  This 

has a side-effect of reducing the weight given to a third, unrelated predictor.  The specific case of 

choosing cognitive ability, and two negatively correlated predictors, conscientiousness and risk-

taking, produced the same patterns of output as the first three simulations, with little difference 

between methods in outcome measures or performance.  However, the weight given to cognitive 

ability was much less in MPT weighting, below both multiple regression weighting and unit 



MODERN PORTFOLIO THEORY FOR PERSONNEL SELECTION Leingang 46 

 

weighting.  Using cognitive ability has been shown to lead to adverse impact for Blacks and 

Hispanics (Ployhart and Holtz 2008).  Reducing the weight given to cognitive ability while 

maintaining the quality of prediction is extremely useful to promote diversity and reduce the risk 

of an adverse impact lawsuit.   

Applications 

These findings provide evidence that MPT weighting can be used to address issues of 

diversity with respect to protected groups, but other factors must also be considered.  Much of 

the research regarding alternate weighting methods predates the civil rights act of 1964.  Before 

that time, the rational approach, choosing weights based on expert opinions was much more 

widespread.  After the act and a series of court cases, employers needed to be able to justify and 

validate their selection methods, and, for good reason, alternate methods for choosing predictor 

weights were riskier and much less popular.  Additionally, prior to the Civil Rights Act of 1991, 

many other methods were available to address issues of diversity, making alternate weighting 

methods even less attractive to employers (1991).  Making the argument for using MPT in the 

way described by Hypothesis 5 requires that the method meet criteria that fit the language and 

spirit of both the Civil Rights Act of 1964, Title VII, and the Civil Rights Act of 1991. 

There are several strong utility-based justifications for choosing MTP related to the 

findings of Hypotheses 1-4.  If MPT fits one or more of the criteria mentioned in these 

hypotheses, the procedure would be business justified.  This is an important distinction, because 

many other methods for addressing diversity cannot satisfy this condition. 

Given that is method is a mechanical combination, it avoids two major problems of the 

human judgement used in rational weighting.  First, it is based on an algorithm that cannot be 

changed or influenced by prejudice or discrimination.  Second, it does not suffer from overt or 
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hidden biases that can hurt the quality of prediction.  The only judgement involved is which 

predictors to include.  Multiple regression can also use certain predictors for increasing the 

relative weight of a predictor in a model.  These are called suppressor variables.  Suppressor 

variables are correlated to the predictor, but not to the criterion.  These variables are difficult to 

isolate but have the potential to produce similar effects as those described in simulation 4.  The 

difficulty with recommending suppressor variables, is that they are unrelated to the criterion, 

meaning the predictor is not job-related.  This is not the case for the MPT weighted predictors. 

Limitations 

 The limitations of this research are mostly concerned with the fidelity of the simulated 

data. Of primary concern is the assumption of normality.  It may be too simple to assume that 

performance is normally distributed, although we can impose a forced normal distribution. For 

the sake of argument, normality is also an assumption of multiple regression.  In financial 

markets, returns are, most definitely, not normally distributed.  Alternate methods that account 

for this have been developed to work around this problem.  One of the most popular methods is 

Mean Absolute Deviation (MAD) portfolio optimization (Konno and Yamazaki, 1991).   

 Another limitation is that MPT weighting requires clearly and correctly established 

performance ranks.  In some jobs performance can be much more objectively determined than 

others.  Getting all employees correctly rated is very important to the structure of the model.  

This requires performance evaluations to be reliable and valid, which is difficult to put into 

practice.  Again, these issues are also present with multiple regression weighting as well. 

 Real data may not act in ways that work as well for MPT.  Until the method can be tested 

against a real data set, it is unknown what the actual differences between methods will look like.  

Real data has far more inconsistencies, outliers and anomalies than simulated data.  Sampling 
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from a large pool of simulated applicants helps to address this, but a real sample would be more 

telling.   

Future Research 

Future research for this topic falls within three basic categories.  First is addressing 

limitations.  The issues of normality can be addressed through using a forced distribution or by 

switching to a method like MAD portfolio optimization.  Replacing the efficient frontier function 

in this simulation with a MAD function and changing the properties of the performance 

distribution would accomplish this effectively.  Using real data rather than simulated data, is 

another avenue to explore.  Because companies want to protect against the possibility of 

litigation, an archival study would be most appropriate.  A researcher would need a data set 

where they could theoretically apply a higher cutoff than the original for the applicants to 

observe outcomes at and around that theoretical higher cutoff level. 

The second recommendation for future research is an expansion of the questions that this 

model can address through simulation.  How does MPT weighting perform with larger numbers 

of predictors?  How does it perform with multiple pairings of negatively correlated predictors?  

Both questions can be immediately answered by changing the correlation matrix in the code 

found in the Appendix.  How is MPT affected by range restriction at the predictor and/or 

criterion levels?  This would require a simple subsetting of data in the performance and applicant 

functions.  How much is adverse impact changed by the inclusion of negatively correlated 

predictors?  This would require assigning a new variable indicating minority status and counting 

the outcomes for both groups, which would require more extensive reprogramming for this 

simulation. 
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The third area of future research regards what kinds of questions MPT can be used to 

address.  Consider the issue of team performance.  Can we use combinations of employees, to 

predict team performance?  Can use MPT to address where to invest training time and money? 

Can we use MPT to budget HR resources toward the most effective combination of strategies?  

These questions can each be viewed through an MPT lens, and perhaps provide objective insight 

into these complex questions. 

Summary 

Overall, the results of the four simulations were favorable for recommending the use of 

MPT weighting.  Together, the evidence supporting the hypotheses makes a case for using MPT 

weighting over multiple regression and unit weighting, in certain situations.  The definitive 

answer as to which method is best, is deeply related to the utility of the decision-making 

outcomes that each method recommends.  These decisions are job and organization-specific, and 

should be considered on a case-by case basis. 

Findings from this study indicate that dependence on a measure that produces adverse 

impact can be reduced through a combination of careful predictor choice and MPT weighting.  

MPT weighting is suggested as a possible solution to adverse impact issues, although further 

research is needed, particularly studies involving real data.  research is also needed to address 

additional questions regarding the robustness of the method given range restriction and the 

inclusion of additional predictors.   
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Appendix 

library(ggplot2) # Used to graph efficient frontier, optional 

library(quadprog) # Needed for solve.QP 

library(plyr) 

eff.frontier = function (returns, short = "no", max.allocation = NULL, 

                          risk.premium.up=.5, risk.increment=.001, dimx = NULL,  

                          dimlength = NULL) 

{   

  covariance = cov(returns) 

  #print(covariance) 

  n = ncol(covariance) 

  Amat = matrix (1, nrow=n) 

  bvec = 1 

  meq = 1 

  if(short == "no"){ 

    Amat = cbind(1, diag(n)) 

    bvec = c(bvec, rep(0, n)) 

  } 

  if(!is.null(max.allocation)){ 

    if(max.allocation > 1 | max.allocation <0){ 

      stop("max.allocation must be greater than 0 and less than 1") 

    } 

    if(max.allocation * n < 1){ 

      stop("Need to set max.allocation higher; not enough assets to add to 1") 

    } 

    Amat = cbind(Amat, -diag(n)) 

    bvec = c(bvec, rep(-max.allocation, n)) 

  } 
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  loops = risk.premium.up / risk.increment + 1 

  loop = 1 

  eff = matrix(nrow=loops, ncol=n+3) 

  colnames(eff) = c(dimx[2:dimlength], "Std.Dev", "Exp.Return", "sharpe") 

  # Loop through the quadratic program solver 

  for (i in seq(from=0, to=risk.premium.up, by=risk.increment)){ 

    dvec = colMeans(returns) * i # This moves the solution along the EF 

    sol = solve.QP(covariance, dvec=dvec, Amat=Amat, bvec=bvec, meq=meq) 

    eff[loop,"Std.Dev"] = sqrt(sum(sol$solution*colSums((covariance*sol$solution)))) 

    eff[loop,"Exp.Return"] = as.numeric(sol$solution %*% colMeans(returns)) 

    eff[loop,"sharpe"] = eff[loop,"Exp.Return"] / eff[loop,"Std.Dev"] 

    eff[loop,1:n] = sol$solution 

    loop = loop+1 

  } 

  return(as.data.frame(eff)) 

} 

regression.model = function(dimx = NULL,dimlength = NULL, newX = NULL) 

{ 

  regmodelpred = dimx[2] 

  for(i in 3:dimlength)  

  { 

    regmodelpred = paste(regmodelpred,"+",dimx[i]) 

    next 

  } 

  regmodelpred = paste(regmodelpred,"-1") 

  RegModel = lm(as.formula(paste(dimx[1],"~",regmodelpred)), data = newX) 

  Regression.Weighting =  

    as.matrix(coefficients(RegModel))/(sum(coefficients(RegModel))) 
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  RegWeights = as.data.frame(t(Regression.Weighting),  

                             row.names = "Regression.Weighting") 

  return(RegWeights) 

} 

unit.model = function(dimlength = NULL, dimx = NULL) 

{ 

  Unit.Weighting = as.matrix(rep((1/(dimlength-1)),(dimlength-1))) 

  UnitWeights = t(data.frame(Unit.Weighting, row.names = dimx[2:dimlength])) 

  return(UnitWeights) 

} 

applicants = function(PerfMin = NULL, PerfMax = NULL, dimx = NULL, dimlength = NULL,                        

                      R = NULL, numapps = NULL, SEED = NULL) 

{ 

  U = t(chol(R)) #Creates the Cholesky decomposition of the correlation matrix 

  #This next section creates a random data set 

  nvars = dim(U)[1]  #number of variables 

  set.seed(SEED+1)  #Choose a seed to generate random numbers 

  random.normal = matrix(rnorm(nvars*numapps*100,0,1), nrow=nvars, ncol=numapps*100); 

  j = sample(1:100*numapps, numapps) 

  random.normal = random.normal[,j] 

  X = U %*% random.normal  

  newX = as.data.frame(t(X))  

  Xranked = newX[order(newX$Performance),]  

  #rescale the predictors 

  Xrescaled = (apply(Xranked, MARGIN = 2,  

                     FUN = function(X) (X - min(X))/diff(range(X))))*(PerfMax-PerfMin)+ 

                    (matrix(rep(9,numapps*dimlength),ncol = dimlength)) 

  apps.mat = c(Xrescaled, newX) 
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  return(apps.mat) 

  ### Plot the correlations 

  # raw = as.data.frame(newX) 

  # names(raw) = dimx 

  # cor(raw) 

  # plot(head(raw, 100)) #plot the corelations  

} 

performance = function(PerfMin = NULL, PerfMax = NULL, dimx = NULL,  

                       dimlength = NULL, R = NULL, numobs = NULL, SEED = NULL) 

{ 

  U = t(chol(R)) #Creates the Cholesky decomposition of the correlation matrix 

  #This next section creates a a random data set 

  nvars = dim(U)[1]  #number of variables 

  set.seed(SEED)  #Choose a seed to generate random numbers 

  random.normal = matrix(rnorm(nvars*numobs,0,1), nrow=nvars, ncol=numobs);  

  X = U %*% random.normal  

  newX = as.data.frame(t(X)) #transpose the result 

  Xranked = newX[order(newX$Performance),] #rank orders the results by performance 

  #rescale the predictors 

  Xrescaled = (apply(Xranked, MARGIN = 2,  

                     FUN = function(X) (X - min(X))/diff(range(X))))*(PerfMax-PerfMin)+ 

                    (matrix(rep(9,numobs*dimlength),ncol = dimlength)) 

  performance.mat = c(Xrescaled, newX) 

  return(performance.mat) 

  ### Plot the correlations 

  # raw = as.data.frame(newX) 

  # names(raw) = dimx 

  # cor(raw) 
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  # plot(head(raw, 100)) #plot the corelations  

} 

get.returns = function(Xrescaled = NULL, dimlength = NULL) 

{ 

  Xpred = Xrescaled[,2:dimlength] #Removes the performance variable 

  returns = (tail(Xpred,-1) - head(Xpred,-1)) 

  return(returns) 

  #hist(returns) 

} 

## Diagnostic/Graphic 

# graph.eff = function(eff = NULL) 

# { 

#   # Find the optimal portfolio 

#   eff.optimal.point = eff[eff$sharpe==max(eff$sharpe),] 

#   # graph efficient frontier 

#   # Start with color scheme 

#   ealred = "#7D110C" 

#   ealtan = "#CDC4B6" 

#   eallighttan = "#F7F6F0" 

#   ealdark = "#423C30"  

#   eff.plot = ggplot(eff, aes(x=Std.Dev, y=Exp.Return)) + geom_point(alpha=.1,  

#     color=ealdark) + 

#     geom_point(data=eff.optimal.point, aes(x=Std.Dev, y=Exp.Return, label=sharpe), 

#                color=ealred, size=5) + 

#     annotate(geom="text", x=eff.optimal.point$Std.Dev, 

#              y=eff.optimal.point$Exp.Return, 

#              label=paste("Risk: ", 

#                          round(eff.optimal.point$Std.Dev*100, digits=3),"\nReturn: ", 
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#                          round(eff.optimal.point$Exp.Return*100, digits=4),"%\nSharpe: ", 

#                          round(eff.optimal.point$sharpe*100, digits=2), "%", sep=""),  

#              hjust=1.5, vjust=2) + 

#     ggtitle("Efficient Frontier\nand Optimal Portfolio") + 

#     labs(x="Risk (standard deviation of portfolio)", y="Return") + 

#     theme(panel.background=element_rect(fill=eallighttan), 

#           text=element_text(color=ealdark), 

#           plot.title=element_text(size=24, color=ealred)) 

#   ggsave("Efficient Frontier.png") 

#   return(eff.plot) 

# }  

MPT.model = function(eff = NULL, dimx = NULL, dimlength = NULL) 

{ 

  EFFSolutionsHead = head(eff) 

  MPTWeights = EFFSolutionsHead[1,1:(dimlength -1)] 

  rownames(MPTWeights) = "MPT.Weighting" 

  #MPTRetAndSD = (EFFSolutionsHead[1, dimlength:(dimlength+1)]) 

  # print(MPTRetAndSD) 

  return(MPTWeights) 

} 

SignalDetection = function(dimx = NULL, Perf = NULL, PerfMin = NULL, PerfMax = NULL,  

                           Signal = NULL, Cutoff = NULL, numapps = NULL) 

{ 

  Serf = Perf 

  for(i in 1:numapps) 

  { 

    for(x in 2:4) 

      { 
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        if((Perf[i,x] > Cutoff) & (Perf[i,1] > Cutoff)) Serf[i,x] = 1 

        if((Perf[i,x] < Cutoff) & (Perf[i,1] < Cutoff)) Serf[i,x] = 2 

        if((Perf[i,x] > Cutoff) & (Perf[i,1] < Cutoff)) Serf[i,x] = 3 

        if((Perf[i,x] < Cutoff) & (Perf[i,1] > Cutoff)) Serf[i,x] = 4 

      } 

  } 

  Signal = (Serf[,2:4]) 

  return(Signal) 

} 

#########Simulation 1########################################################## 

Main = function(SEED = NULL, PerfMin = NULL, PerfMax = NULL, Cutoff = NULL,  

                Weighting = NULL, dimx = NULL, dimlength = NULL, 

                R = NULL, numobs = NULL, numapps = NULL, Trials = NULL,  

                SigBox = NULL, Results = NULL, varylab = NULL) 

{ 

for(j in (PerfMin+dimlength):PerfMax) 

{   

assign(varylab,j) 

for(i in 1:Trials) 

{ 

SEED = SEED + 1 

performance.mat = performance(PerfMin = PerfMin,PerfMax = PerfMax, dimx = dimx,  

                    dimlength = dimlength, R = R, numobs = numobs, SEED = SEED) 

eff = eff.frontier(returns = get.returns(Xrescaled =  

                    matrix(as.numeric(performance.mat[1:(numobs*dimlength)]), 

                    byrow = FALSE, nrow = numobs, ncol = dimlength, dimnames =  

                    list(c(1:numobs),dimx=dimx)), 

                    dimlength = dimlength),dimx = dimx, dimlength = dimlength) 



MODERN PORTFOLIO THEORY FOR PERSONNEL SELECTION Leingang 61 

 

# print(graph.eff(eff = eff)) #diagnostic/graphic 

apps.mat = applicants(PerfMin= PerfMin, PerfMax =PerfMax, dimx = dimx, dimlength =  

                      dimlength, R = R, numapps = numapps, SEED = SEED) 

if(is.null(Weighting) == TRUE) Weighting = rbind(UnitWeights =  

                  as.data.frame(unit.model(dimlength = dimlength, dimx = dimx)),  

                  RegWeights = regression.model(dimx = dimx, dimlength = dimlength,  

                  newX = as.data.frame(do.call(cbind, performance.mat[ 

                  (dimlength*numobs + 1):(numobs*dimlength +dimlength)]))),  

                  MPT.model(eff = eff, dimx = dimx, dimlength = dimlength)) 

if(is.null(Weighting) == FALSE) Weighting = rbind(Weighting,(rbind(UnitWeights =  

                  as.data.frame(unit.model(dimlength = dimlength, dimx = dimx)),  

                  RegWeights = regression.model(dimx = dimx, dimlength = dimlength,  

                  newX = as.data.frame(do.call(cbind, performance.mat[ 

                  (dimlength*numobs + 1):(numobs*dimlength +dimlength)]))),  

                  MPT.model(eff = eff, dimlength = dimlength, dimx = dimx)))) 

#print(Weighting) #diagnostic 

Signal = SignalDetection(Perf = cbind(matrix(as.numeric(apps.mat[1:(numapps*dimlength)]), 

                  byrow = FALSE, nrow = numapps, ncol = dimlength, dimnames =  

                  list(c(1:numapps), dimx))[,1],t(as.matrix(Weighting[ 

                  (3*(i-1)+1):(3*(i-1)+3),])%*%t(as.matrix(matrix(as.numeric(apps.mat[ 

                  1:(numapps*dimlength)]), byrow = FALSE, nrow = numapps, ncol =  

                  dimlength, dimnames = list(c(1:numapps),dimx))[,2:dimlength])))), 

                  PerfMin = PerfMin, PerfMax = PerfMax, Signal = NULL, Cutoff =  

                  Cutoff, numapps = numapps) 

# print(Signal) 

SigTot = cbind(table(factor(Signal[,1],lev = 1:4)),table(factor(Signal[,2],lev = 1:4)), 

                  table(factor(Signal[,3],lev = 1:4))) 

colnames(SigTot) = c("Unit Weighting","Multiple Regression Weighting", "MPT Weighting") 
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if(is.null(SigBox) == FALSE) SigBox = rbind(SigBox, SigTot) 

if(is.null(SigBox) == TRUE) SigBox = SigTot 

options("scipen"= 100, "digits"= 2) 

} 

CorrectSelections = colSums(SigBox[seq(1, nrow(SigBox), 4),]) 

CorrectRejections = colSums(SigBox[seq(2, nrow(SigBox), 4),]) 

FalsePositives = colSums(SigBox[seq(3, nrow(SigBox), 4),]) 

FalseNegatives = colSums(SigBox[seq(4, nrow(SigBox), 4),]) 

SigBox = rbind(CorrectSelections, CorrectRejections, FalsePositives, FalseNegatives) 

rownames(SigBox) = c("Correct Selections","Correct Rejections","False Positives", 

                     "False Negatives") 

Sensitivity = SigBox[1,]/(SigBox[1,]+SigBox[4,]) 

Specificity = SigBox[2,]/(SigBox[2,]+SigBox[3,]) 

FalsePositiveRate = SigBox[3,]/(SigBox[1,]+SigBox[3,]) 

FalseNegativeRate = SigBox[4,]/(SigBox[4,]+SigBox[2,]) 

WeightingAVG = rbind(colMeans(Weighting[seq(1,ncol(Weighting),3),]),colMeans(Weighting[ 

                    seq(2,ncol(Weighting),3),]), colMeans(Weighting[ 

                    seq(3,ncol(Weighting),3),])) 

SigBox = rbind(SigBox,Sensitivity, Specificity, FalsePositiveRate,  

                    FalseNegativeRate,t(WeightingAVG)) 

if(is.null(Results) == FALSE) Results = rbind(Results, SigBox) 

if(is.null(Results) == TRUE) Results = SigBox 

SigBox = NULL 

Weighting = NULL 

} 

return(Results) 

} 

Results = Main(SEED = 8675309, PerfMin = 1, PerfMax = 100, Cutoff = 60,  
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               Weighting = NULL, dimx = c("Performance", "Conscientiousness",  

              "Cognitive.Ability","Work.Sample"), dimlength = 4, 

               R = matrix(cbind(  1,  .20,  .51, .57, 

                                  .20,  1,  .01, .09, 

                                  .51,  .01,  1, .34, 

                                  .57,  .09,  .34, 1), nrow = 4, 

              dimnames = list(c("Performance", "Conscientiousness",  

              "Cognitive.Ability","Work.Sample"), c("Performance", "Conscientiousness",  

              "Cognitive.Ability","Work.Sample"))), 

               numobs = 100,   # number of observations 

               numapps = 100,  #number of applicants 

               Trials = 10000,  # number of times to test each level 

               SigBox = NULL, Results = NULL, varylab = "Cutoff") 

varylab = "Cutoff" 

matplot(Results[seq(1,nrow(Results),11),], type ="l", xlab = varylab, ylab =  

          "Correct Selections", main = "Correct Selections") 

matplot(Results[seq(2,nrow(Results),11),], type ="l", xlab = varylab, ylab =  

          "Correct Rejections", main = "Correct Rejections") 

matplot(Results[seq(3,nrow(Results),11),], type ="l", xlab = varylab, ylab =  

          "False Positives", main = "False Positives") 

matplot(Results[seq(4,nrow(Results),11),], type ="l", xlab = varylab, ylab =  

          "False Negatives", main = "False Negatives") 

matplot(Results[seq(5,nrow(Results),11),], type ="l", xlab = varylab, ylab =  

          "Sensitivity", main = "Sensitivity") 

matplot(Results[seq(6,nrow(Results),11),], type ="l", xlab = varylab, ylab =  

          "Specificity", main = "Specificity") 

matplot(Results[seq(7,nrow(Results),11),], type ="l", xlab = varylab, ylab =  

          "False Positive Rate", main = "False Positive Rate") 
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matplot(Results[seq(8,nrow(Results),11),], type ="l", xlab = varylab, ylab =  

          "False Negative Rate", main = "False Negative Rate") 

matplot(Results[seq(9,nrow(Results),11),], type ="l", xlab = varylab, ylab =  

          "Weights", main = "Conscientiousness") 

matplot(Results[seq(10,nrow(Results),11),], type ="l", xlab = varylab, ylab =  

          "Weights", main = "Cognitive Ability") 

matplot(Results[seq(11,nrow(Results),11),], type ="l", xlab = varylab, ylab =  

          "Weights", main = "Work Sample") 

##############Simulation 

2########################################################### 

Main = function(SEED = NULL, PerfMin = NULL, PerfMax = NULL, Cutoff = NULL,  

                Weighting = NULL, dimx = NULL, dimlength = NULL, 

                R = NULL,numobsmax = NULL,numobs = NULL, numapps = NULL,  

                Trials = NULL, SigBox = NULL, Results = NULL, varylab = NULL) 

{ 

  for(j in 10:numobsmax) 

  {   

    numobs = j 

    for(i in 1:Trials) 

    { 

      SEED = SEED + 1 

      performance.mat = performance(PerfMin = PerfMin,PerfMax = PerfMax, dimx = dimx,  

                                    dimlength = dimlength, R = R, numobs = numobs,  

                                    SEED = SEED) 

      eff = eff.frontier(returns = get.returns(Xrescaled =  

                                    matrix(as.numeric(performance.mat[1:(numobs*dimlength)]), 

                                    byrow = FALSE, nrow = numobs, ncol = dimlength,  

                                    dimnames = list(c(1:numobs),dimx=dimx)), dimlength =  

                                    dimlength),dimx = dimx, dimlength = dimlength) 
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      # print(graph.eff(eff = eff)) #diagnostic/graphic 

      apps.mat = applicants(PerfMin= PerfMin, PerfMax =PerfMax, dimx = dimx,  

                            dimlength = dimlength, R, numapps, SEED) 

      if(is.null(Weighting) == TRUE) Weighting =  

        rbind(UnitWeights = as.data.frame(unit.model(dimlength = dimlength, dimx = dimx)),  

        RegWeights = regression.model(dimx = dimx, dimlength = dimlength,  

        newX = as.data.frame(do.call(cbind,  

        performance.mat[(dimlength*numobs + 1):(numobs*dimlength +dimlength)]))),  

        MPT.model(eff = eff, dimx = dimx, dimlength = dimlength)) 

      if(is.null(Weighting) == FALSE) Weighting = rbind(Weighting,(rbind(UnitWeights =  

        as.data.frame(unit.model(dimlength = dimlength, dimx = dimx)),  

        RegWeights = regression.model(dimx = dimx, dimlength = dimlength,  

        newX = as.data.frame(do.call(cbind,  

        performance.mat[(dimlength*numobs + 1):(numobs*dimlength +dimlength)]))),  

        MPT.model(eff = eff, dimlength = dimlength, dimx = dimx)))) 

      #print(Weighting) #diagnostic 

      Signal = SignalDetection(Perf =  

        cbind(matrix(as.numeric(apps.mat[1:(numapps*dimlength)]), 

        byrow = FALSE, nrow = numapps, ncol = dimlength, dimnames = list(c(1:numapps), 

        dimx))[,1],t(as.matrix(Weighting[(3*(i-1)+1):(3*(i-1)+3),])%*% 

        t(as.matrix(matrix(as.numeric(apps.mat[1:(numapps*dimlength)]),                                                                                                                                                                                                  

        byrow = FALSE, nrow = numapps, ncol = dimlength,  

        dimnames = list(c(1:numapps),dimx))[,2:dimlength])))), 

        PerfMin = PerfMin, PerfMax = PerfMax, Signal = NULL, Cutoff = Cutoff,  

        numapps = numapps) 

      # print(Signal) 

      SigTot = cbind(table(factor(Signal[,1],lev = 1:4)),table(factor(Signal[,2], 

                           lev = 1:4)),table(factor(Signal[,3],lev = 1:4))) 
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      colnames(SigTot) = c("Unit Weighting","Multiple Regression Weighting",  

                           "MPT Weighting") 

      if(is.null(SigBox) == FALSE) SigBox = rbind(SigBox, SigTot) 

      if(is.null(SigBox) == TRUE) SigBox = SigTot 

      options("scipen"= 100, "digits"= 2) 

    } 

    CorrectSelections = colSums(SigBox[seq(1, nrow(SigBox), 4),]) 

    CorrectRejections = colSums(SigBox[seq(2, nrow(SigBox), 4),]) 

    FalsePositives = colSums(SigBox[seq(3, nrow(SigBox), 4),]) 

    FalseNegatives = colSums(SigBox[seq(4, nrow(SigBox), 4),]) 

    SigBox = rbind(CorrectSelections, CorrectRejections, FalsePositives,  

                   FalseNegatives) 

    rownames(SigBox) = c("Correct Selections","Correct Rejections","False Positives", 

                         "False Negatives") 

    Sensitivity = SigBox[1,]/(SigBox[1,]+SigBox[4,]) 

    Specificity = SigBox[2,]/(SigBox[2,]+SigBox[3,]) 

    FalsePositiveRate = SigBox[3,]/(SigBox[1,]+SigBox[3,]) 

    FalseNegativeRate = SigBox[4,]/(SigBox[4,]+SigBox[2,]) 

    WeightingAVG = rbind(colMeans(Weighting[seq(1,ncol(Weighting),3),]), 

                         colMeans(Weighting[seq(2,ncol(Weighting),3),]), 

                         colMeans(Weighting[seq(3,ncol(Weighting),3),])) 

    SigBox = rbind(SigBox,Sensitivity, Specificity, FalsePositiveRate,  

                   FalseNegativeRate,t(WeightingAVG)) 

    if(is.null(Results) == FALSE) Results = rbind(Results, SigBox) 

    if(is.null(Results) == TRUE) Results = SigBox 

    SigBox = NULL 

    Weighting = NULL 

  } 
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  return(Results) 

} 

Results2 = Main(SEED = 8675309, PerfMin = 1, PerfMax = 100, Cutoff = 60,  

               Weighting = NULL, dimx = c("Performance", "Conscientiousness",  

               "Cognitive.Ability","Work.Sample"), dimlength = 4, 

               R = matrix(cbind(  1,  .20,  .51, .57, 

                                  .20,  1,  .01, .09, 

                                  .51,  .01,  1, .34, 

                                  .57,  .09,  .34, 1), nrow = 4, 

               dimnames = list(c("Performance", "Conscientiousness",  

               "Cognitive.Ability","Work.Sample"), c("Performance", "Conscientiousness",  

               "Cognitive.Ability","Work.Sample"))), 

               numobs = 100,   # number of observations 

               numapps = 100,  #number of applicants 

               Trials = 1000,  # number of times to test each level 

               SigBox = NULL, Results = NULL, varylab = "numobs", numobsmax = 200) 

# print(SigBox) 

# print(Weighting) 

 

varylab = "Number of Cases Used to Generate Weights" 

matplot(Results3[seq(1,nrow(Results3),11),], type ="l", xlab = varylab, ylab =  

          "Correct Selections", main = "Correct Selections") 

matplot(Results3[seq(2,nrow(Results3),11),], type ="l", xlab = varylab, ylab =  

          "Correct Rejections", main = "Correct Rejections") 

matplot(Results3[seq(3,nrow(Results3),11),], type ="l", xlab = varylab, ylab =  

          "False Positives", main = "False Positives") 

matplot(Results3[seq(4,nrow(Results3),11),], type ="l", xlab = varylab, ylab =  

          "False Negatives", main = "False Negatives") 
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matplot(Results3[seq(5,nrow(Results3),11),], type ="l", xlab = varylab, ylab =  

          "Sensitivity", main = "Sensitivity") 

matplot(Results3[seq(6,nrow(Results3),11),], type ="l", xlab = varylab, ylab =  

          "Specificity", main = "Specificity") 

matplot(Results3[seq(7,nrow(Results3),11),], type ="l", xlab = varylab, ylab =  

          "False Positive Rate", main = "False Positive Rate") 

matplot(Results3[seq(8,nrow(Results3),11),], type ="l", xlab = varylab, ylab =  

          "False Negative Rate", main = "False Negative Rate") 

matplot(Results3[seq(9,nrow(Results3),11),], type ="l", xlab = varylab, ylab =  

          "Weights", main = "Conscientiousness") 

matplot(Results3[seq(10,nrow(Results3),11),], type ="l", xlab = varylab, ylab =  

          "Weights", main = "Cognitive Ability") 

matplot(Results3[seq(11,nrow(Results3),11),], type ="l", xlab = varylab, ylab =  

          "Weights", main = "Work Sample") 

############Simulation 

3########################################################### 

Main = function(SEED = NULL, PerfMin = NULL, PerfMax = NULL, Cutoff = NULL,  

                Weighting = NULL, dimx = NULL, dimlength = NULL, 

                R = NULL,numobsmax = NULL,numobs = NULL, numapps = NULL, Trials = 

NULL,  

                SigBox = NULL, Results = NULL, varylab = NULL) 

{ 

    for(i in 1:Trials) 

    { 

      SEED = SEED + 1 

      performance.mat = performance(PerfMin = PerfMin,PerfMax = PerfMax, dimx = dimx,  

                        dimlength = dimlength,  

                        R = R, numobs = numobs, SEED = SEED) 

      eff = eff.frontier(returns = get.returns(Xrescaled =  
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                        matrix(as.numeric(performance.mat[1:(numobs*dimlength)]), 

                        byrow = FALSE, nrow = numobs, ncol = dimlength, dimnames =  

                        list(c(1:numobs),dimx=dimx)), dimlength = dimlength),dimx =  

                        dimx, dimlength = dimlength) 

      # print(graph.eff(eff = eff)) #diagnostic/graphic 

      apps.mat = applicants(PerfMin= PerfMin, PerfMax =PerfMax, dimx = dimx, dimlength =  

                        dimlength, R, numapps, SEED) 

      if(is.null(Weighting) == TRUE) Weighting = rbind(UnitWeights =  

                  as.data.frame(unit.model(dimlength = dimlength, dimx = dimx)),  

                  RegWeights = regression.model(dimx = dimx, dimlength = dimlength,  

                  newX = as.data.frame(do.call(cbind,  

                  performance.mat[(dimlength*numobs + 1):(numobs*dimlength +dimlength)]))),  

                  MPT.model(eff = eff, dimx = dimx, dimlength = dimlength)) 

      if(is.null(Weighting) == FALSE) Weighting = rbind(Weighting,(rbind(UnitWeights =  

                  as.data.frame(unit.model(dimlength = dimlength, dimx = dimx)),  

                  RegWeights = regression.model(dimx = dimx, dimlength = dimlength,  

                  newX = as.data.frame(do.call(cbind, performance.mat[ 

                  (dimlength*numobs + 1):(numobs*dimlength +dimlength)]))),  

                  MPT.model(eff = eff, dimlength = dimlength, dimx = dimx)))) 

      #print(Weighting) #diagnostic 

      Signal = SignalDetection(Perf = cbind(matrix(as.numeric(apps.mat[ 

                  1:(numapps*dimlength)]), byrow = FALSE, nrow = numapps,  

                  ncol = dimlength, dimnames = list(c(1:numapps), dimx))[,1], 

                  t(as.matrix(Weighting[(3*(i-1)+1):(3*(i-1)+3),])%*% 

                  t(as.matrix(matrix(as.numeric(apps.mat[1:(numapps*dimlength)]),                                                                                                                                                                                                  

                  byrow = FALSE, nrow = numapps, ncol = dimlength, dimnames =  

                  list(c(1:numapps),dimx))[,2:dimlength])))), 

                  PerfMin = PerfMin, PerfMax = PerfMax, Signal = NULL, Cutoff =  
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                  Cutoff, numapps = numapps) 

      # print(Signal) 

      SigTot = cbind(table(factor(Signal[,1],lev = 1:4)),table(factor(Signal[,2], 

                  lev = 1:4)), table(factor(Signal[,3],lev = 1:4))) 

      colnames(SigTot) = c("Unit Weighting","Multiple Regression Weighting",  

                  "MPT Weighting") 

      if(is.null(SigBox) == FALSE) SigBox = rbind(SigBox, SigTot) 

      if(is.null(SigBox) == TRUE) SigBox = SigTot 

      options("scipen"= 100, "digits"= 2) 

    } 

    CorrectSelections = colSums(SigBox[seq(1, nrow(SigBox), 4),]) 

    CorrectRejections = colSums(SigBox[seq(2, nrow(SigBox), 4),]) 

    FalsePositives = colSums(SigBox[seq(3, nrow(SigBox), 4),]) 

    FalseNegatives = colSums(SigBox[seq(4, nrow(SigBox), 4),]) 

    SigBox = rbind(CorrectSelections, CorrectRejections, FalsePositives,  

                   FalseNegatives) 

    rownames(SigBox) = c("Correct Selections","Correct Rejections","False Positives", 

                         "False Negatives") 

    Sensitivity = SigBox[1,]/(SigBox[1,]+SigBox[4,]) 

    Specificity = SigBox[2,]/(SigBox[2,]+SigBox[3,]) 

    FalsePositiveRate = SigBox[3,]/(SigBox[1,]+SigBox[3,]) 

    FalseNegativeRate = SigBox[4,]/(SigBox[4,]+SigBox[2,]) 

    WeightingAVG = rbind(colMeans(Weighting[seq(1,ncol(Weighting),3),]), 

                         colMeans(Weighting[seq(2,ncol(Weighting),3),]), 

                         colMeans(Weighting[seq(3,ncol(Weighting),3),])) 

    SigBox = rbind(SigBox,Sensitivity, Specificity, FalsePositiveRate,  

                   FalseNegativeRate,t(WeightingAVG)) 

    if(is.null(Results) == FALSE) Results = rbind(Results, SigBox) 
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    if(is.null(Results) == TRUE) Results = SigBox 

    SigBox = NULL 

    Weighting = NULL 

  return(Results) 

} 

Results3 = Main(SEED = 8675309, PerfMin = 1, PerfMax = 100, Cutoff = 60,  

                Weighting = NULL, dimx = c("Performance", "Conscientiousness",  

                "Cognitive.Ability","Work.Sample"), dimlength = 4, 

                R = matrix(cbind(  1,  .20,  .51, .57, 

                                   .20,  1,  .01, .09, 

                                   .51,  .01,  1, .34, 

                                   .57,  .09,  .34, 1), nrow = 4, 

                dimnames = list(c("Performance", "Conscientiousness", "Cognitive.Ability", 

                "Work.Sample"), c("Performance", "Conscientiousness", "Cognitive.Ability", 

                "Work.Sample"))), numobs = 100,   # number of observations 

                numapps = 100,  #number of applicants 

                Trials = 1000,  # number of times to test each level 

                SigBox = NULL, Results = NULL, varylab = "numobs", numobsmax = 300) 

print(Results3) 

################Simulation 

4####################################################### 

Main = function(SEED = NULL, PerfMin = NULL, PerfMax = NULL, Cutoff = NULL,  

                Weighting = NULL, dimx = NULL, dimlength = NULL, R = NULL, 

                numobsmax = NULL, numobs = NULL, numapps = NULL, Trials = NULL,  

                SigBox = NULL, Results = NULL, varylab = NULL) 

{ 

  for(i in 1:Trials) 

  { 

    SEED = SEED + 1 
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    performance.mat = performance(PerfMin = PerfMin,PerfMax = PerfMax, dimx = dimx,  

                                  dimlength = dimlength,  

                                  R = R, numobs = numobs, SEED = SEED) 

    eff = eff.frontier(returns = get.returns(Xrescaled =  

                                  matrix(as.numeric(performance.mat[1:(numobs*dimlength)]), 

                                  byrow = FALSE, nrow = numobs, ncol = dimlength,  

                                  dimnames = list(c(1:numobs),dimx=dimx)), 

                                  dimlength = dimlength),dimx = dimx, dimlength = dimlength) 

    # print(graph.eff(eff = eff)) #diagnostic/graphic 

    apps.mat = applicants(PerfMin= PerfMin, PerfMax =PerfMax, dimx = dimx,  

                          dimlength = dimlength, R, numapps, SEED) 

    if(is.null(Weighting) == TRUE) Weighting = rbind(UnitWeights =  

                          as.data.frame(unit.model(dimlength = dimlength, dimx = dimx)),  

                          RegWeights = regression.model(dimx = dimx, dimlength = dimlength,  

                          newX = as.data.frame(do.call(cbind, performance.mat[ 

                          (dimlength*numobs + 1):(numobs*dimlength +dimlength)]))),  

                          MPT.model(eff = eff, dimx = dimx, dimlength = dimlength)) 

    if(is.null(Weighting) == FALSE) Weighting = rbind(Weighting,(rbind(UnitWeights =  

                          as.data.frame(unit.model(dimlength = dimlength, dimx = dimx)),  

                          RegWeights = regression.model(dimx = dimx, dimlength = dimlength,  

                          newX = as.data.frame(do.call(cbind, performance.mat[ 

                          (dimlength*numobs + 1):(numobs*dimlength +dimlength)]))),  

                          MPT.model(eff = eff, dimlength = dimlength, dimx = dimx)))) 

    #print(Weighting) #diagnostic 

    Signal = SignalDetection(Perf = cbind(matrix(as.numeric(apps.mat[1:(numapps*dimlength)]), 

                          byrow = FALSE, nrow = numapps, ncol = dimlength,  

                          dimnames = list(c(1:numapps),dimx))[,1], 

                          t(as.matrix(Weighting[(3*(i-1)+1):(3*(i-1)+3),])%*% 
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                          t(as.matrix(matrix(as.numeric(apps.mat[1:(numapps*dimlength)]),                                                                                                                                                                                                  

                          byrow = FALSE, nrow = numapps, ncol = dimlength, dimnames =  

                          list(c(1:numapps),dimx))[,2:dimlength])))), 

                          PerfMin = PerfMin, PerfMax = PerfMax,  

                          Signal = NULL, Cutoff = Cutoff, numapps = numapps) 

    # print(Signal) 

    SigTot = cbind(table(factor(Signal[,1],lev = 1:4)),table(factor(Signal[,2],lev = 1:4)), 

                          table(factor(Signal[,3],lev = 1:4))) 

    colnames(SigTot) = c("Unit Weighting","Multiple Regression Weighting", "MPT Weighting") 

    if(is.null(SigBox) == FALSE) SigBox = rbind(SigBox, SigTot) 

    if(is.null(SigBox) == TRUE) SigBox = SigTot 

    options("scipen"= 100, "digits"= 2) 

  } 

  CorrectSelections = colSums(SigBox[seq(1, nrow(SigBox), 4),]) 

  CorrectRejections = colSums(SigBox[seq(2, nrow(SigBox), 4),]) 

  FalsePositives = colSums(SigBox[seq(3, nrow(SigBox), 4),]) 

  FalseNegatives = colSums(SigBox[seq(4, nrow(SigBox), 4),]) 

  SigBox = rbind(CorrectSelections, CorrectRejections, FalsePositives, FalseNegatives) 

  rownames(SigBox) = c("Correct Selections","Correct Rejections","False Positives", 

                       "False Negatives") 

  Sensitivity = SigBox[1,]/(SigBox[1,]+SigBox[4,]) 

  Specificity = SigBox[2,]/(SigBox[2,]+SigBox[3,]) 

  FalsePositiveRate = SigBox[3,]/(SigBox[1,]+SigBox[3,]) 

  FalseNegativeRate = SigBox[4,]/(SigBox[4,]+SigBox[2,]) 

  WeightingAVG = rbind(colMeans(Weighting[seq(1,ncol(Weighting),3),]), 

                       colMeans(Weighting[seq(2,ncol(Weighting),3),]), 

                       colMeans(Weighting[seq(3,ncol(Weighting),3),])) 

  SigBox = rbind(SigBox,Sensitivity, Specificity, FalsePositiveRate,  
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                 FalseNegativeRate,t(WeightingAVG)) 

  if(is.null(Results) == FALSE) Results = rbind(Results, SigBox) 

  if(is.null(Results) == TRUE) Results = SigBox 

  SigBox = NULL 

  Weighting = NULL 

  return(Results) 

} 

Results4 = Main(SEED = 8675309, PerfMin = 1, PerfMax = 100, Cutoff = 60,  

                Weighting = NULL, dimx = c("Performance", "Conscientiousness",  

                "Cognitive.Ability","Work.Sample"), dimlength = 4, 

                R = matrix(cbind(  1,  .20,  .51, .34,  

                                 .20,    1,  .01,-.25,  

                                 .51,  .01,    1, .22, 

                                 .34, -.25,  .22,   1), nrow=4, 

                dimnames = list(c("Performance", "Conscientiousness",  

                "Cognitive.Ability","Risk.Taking"), c("Performance", "Conscientiousness",  

                "Cognitive.Ability","Risk.Taking"))), 

                numobs = 100,   # number of observations 

                numapps = 100,  #number of applicants 

                Trials = 10000,  # number of times to test each level 

                SigBox = NULL, Results = NULL, varylab = "numobs", numobsmax = 300) 

print(Results4) 
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