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Abstract 

Seasonally breeding animals reproduce during certain times of the year and, 

subsequently, behaviors, steroid hormone levels, and brain morphology change. The green anole 

lizard (Anolis carolinensis) is an excellent model to study the regulation of steroid hormone 

production because they have distinct hormonal and behavioral differences between sexes and 

seasons. As in other vertebrates, steroidogenesis in anoles is under the control of the 

hypothalamus-pituitary-gonadal (HPG) axis. We tested the hypothesis that natural variations in 

steroid hormone levels between sexes and seasons are mediated within the brain and gonad by 

examining four genes involved in steroidogenesis: StAR, Cyp17α1, HSD17β3, and Cyp19α1. 

Adult male and female lizards were wild-caught during both the breeding (BS) and non-breeding 

(NBS) seasons. Gonads, brains, and blood were collected and stored at -80 °C. RNA from brain 

and gonad was extracted, reverse transcribed into cDNA and then gene expression was measured 

by qPCR (normalized to β actin). We found that whole brain mRNA expression of StAR, 

Cyp17α1, and HSD17β3 have no differences between sex or season. Cyp19α1 mRNA expression 

in the brain was increased during the NBS in females, potentially revealing the presence of 

regulatory signaling for aromatase expression in the brain. In the anole gonad, StAR mRNA 

expression levels were increased in both males and females during the BS, while the expression 

levels of many of the other steroidogenic enzymes are increased when StAR expression is 

decreased, suggesting that the enzymes in the steroidogenic pathway are, in fact, potentially 

regulated independently of StAR. This work expands knowledge on the seasonal regulation of 

steroidogenesis in both the brain and gonad of a reptilian species but more work is necessary to 

further determine the regulatory mechanisms. 
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Introduction 

Steroid hormones consist of many different classes such as progestogens, 

corticosteroids, androgens, and estrogens (Reviewed by Luu-The 2013). Steroid hormone 

synthesis is comprised of a cascade of oxidative enzymes that transform cholesterol into 

different steroids in a process known as steroidogenesis (Rocha et al. 2009) (Figure 1). 

These hormones are then delivered into circulation and perform their action away from 

the site where they were produced. It is reported that gonads and other tissues, including 

the brain, produce sex steroid hormones (Van, 2013 ; Reviewed by Luu-The et al., 2005). 

Steroidogenesis that occurs in the gonads resulting in sex steroid hormone production is 

under the control of the hypothalamic-pituitary-gonadal (HPG) axis system. 

The HPG axis is a biological pathway that results in the production of gonadal 

steroid hormones. The pathway starts with the hypothalamus of the brain, which releases 

gonadotropin releasing hormone (GnRH) to the anterior pituitary, which activates the 

release of luteinizing hormone (LH) and follicle stimulating hormone (FSH) into serum. 

LH then enters gonadal tissue to it trigger the production of steroidogenic acute 

regulatory protein (StAR), the rate-limiting step in steroidogenesis (Carr 1998; Reichlin 

1998). The sex steroids that are produced, negatively feedback to the hypothalamus 

resulting in a decrease in the amount of gonadotropins secreted. Without each key piece 

of the process the body would not be able to produce or regulate any steroid hormones 

(Meethal & Atwood 2005). Many of the steps of the HPG axis system have been 

thoroughly studied. However, the steroidogenesis rate-limiting step and many enzyme 

conversions within the steroidogenesis pathway are less studied, and might reveal how 

steroid hormone levels are regulated at the production level. 
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StAR 

A key step in steroidogenesis is getting cholesterol to the first steroidogenic 

enzyme; P450scc. P450scc is confined to the inner membrane of the mitochondria while 

cholesterol accumulates in the outer mitochondrial membrane. Cholesterol is 

hydrophobic, not allowing diffusion through the intermembrane space and, as a result, 

StAR is necessary to mediate the delivery of cholesterol to the inner mitochondrial 

membrane (Reviewed by Sierra 2004). Once StAR shuttles cholesterol to the inner 

mitochondrial membrane, P450scc cleaves the side chain of cholesterol, beginning 

steroid hormone synthesis (Kallen et al. 1998; Reviewed by Manna et al. 2009). The 

theca and granulosa cells in the ovary, leydig cells in the testes, and adrenal cortical cells 

of the adrenal glands have been found to contain StAR enzyme (Van, 2013). StAR 

mRNA has been also been detected by northern blot, southern blot, and PCR analysis in 

human ovaries, testis, and kidneys (Sugawara et al. 1995).  Several reports demonstrate 

the role of StAR in steroidogenesis. In mouse leydig tumor cells, hormone stimulation by 

LH induced the expression of StAR, ultimately resulting in an increased synthesis of 

pregnenolone(Clark et al. 1994). Pregnenolone synthesis has also been seen to be induced 

by StAR via radioimmunoassay in rhesus monkey kidney cells (Sugawara et al. 1995). 

Additionally, known StAR gene mutations cause lipoid congenital adrenal hyperplasia, 

which is characterized by the inability to metabolize cholesterol into steroid hormones 

(Reviewed by Miller 1997). 

The brain has been found to be an independent steroidogenic tissue, both by 

expressing StAR and the other necessary enzymes needed to convert cholesterol into 

steroid hormones (Reviewed by Sierra 2004) and by regulating the amount of cholesterol 
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present through de novo synthesis (Barres & Smith 2001). In the brain, the most active 

steroidogenic cells are astrocytes which produce neuroprogesterone (Zwain & Yen 1999) 

and StAR has been localized in these cells; therefore studying StAR expression may be a 

useful indicator of active neurosteriodogenesis (Karri et al. 2007). StAR has also been 

found to be widely distributed in the adult rat brain as seen by RNase protection assay, 

while selectively restricted to particular cell populations like glial cells, neurons, and 

proliferating precursors (Furukawa et al. 2002). The mechanism used by the brain during 

the rate-limiting step of steroidogenesis remains unknown, but since StAR is an essential 

protein in steroidogenesis, this widespread presence suggests a mechanism that can 

control local steroid supply in a spatio-temporal manner, potentially influencing brain 

functions such as neuronal survival, neurogenesis, myelination, and synaptic plasticity  

Cyp171 

Cyp17α1 is a gene that codes for cytochrome P450 17α-hydroxylase/C17-20lyase, 

an enzyme that plays an important role in the steroidogenesis pathway by catalyzing the 

synthesis of androgenic precursors (George et al. 2008). This enzyme converts 

progesterone (P) into 17-hydroxyprogesterone, as well as pregnalone into 17-

hydroxypregnenolone and further converts it into dehydrepiandrosterone (DHEA) (Figure 

1). These hormone precursors are further processed into sex hormones and 

glucocorticoids (Spatz 2004). In the human adrenal glands Cyp17α1 activity is found 

both in the fasciculata and reticularis zones of the cortex showing consistency with its 

role to catalyze both cortisol and DHEA (Reviewed by Rainey et al. 2002). In the gonads 

of the sea bass (Dicentarchus labrax), Cyp17α1 activity levels were was found to be 

sexually dimorphic, with males having higher levels than females (Blanco et al. 2016). 
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There is very little research available that examined Cyp17α1 expression in the brain. 

The only research I have found claims that in Sprague-Dawley rats, Hartley guinea-pigs 

adrenal glands and brain by immunohistochemistry (Le Goascogne et al. 1991), and 

through in vivo experiments in the adult mouse brain Cyp17α1 expression and activity are 

undetectable (Liu et al. 2009). 

HSD17β3 

 17 beta-hydroxysteroid dehydrogenases (17β-HSD) are a group of enzymes that 

have many functions including moderating concentrations of steroids, bile and fatty 

acids. These enzymes are found in many vertebrates, invertebrates, and microorganisms. 

There are multiple forms of 17β-HSDs that exist, with very different roles. For example, 

type 1 catalyzes the reduction of estrone into estradiol (E2) while type 3 (HSD17β3) 

helps convert androstenedione to testosterone (T) (Reviewed by Mindnich et al. 2004). 

HSD17β3 specifically plays an important role in the conversion of precursor hormones 

into T (Figure 1). It is primarily expressed in the testes (Mindnich et al. 2004) detected by 

a pCMV expression vector (Andersson et al. 1995), however, it has also been found 

through RT-PCR in human adipose tissue (Corbould et al. 1998), the brain temporal lobe 

(Stoffel-Wagner et al. 1999), and primary osteoblast-like cells (Feix et al. 2001). 

HSD17β3’s main function is to convert androstenedione into T within the testes 

(Reviewed by Mindnich et al. 2004) but it has also been shown that androstenedione can 

be converted into T within the human temporal lobe of the brain (Watzka et al. 1999). A 

dysfunction in this enzyme in humans results in neuronal diseases and reproduction 

disorders (Reviewed by Mindnich et al. 2004). 
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Cyp191 

Cyp19α1 is another cytochrome P450 enzyme, better known as aromatase. It 

converts androstenedione into estrone and T into E2, the most active estrogen (Figure 1) 

(George et al. 2008). Cyp19α1 has been identified in the brains of many different 

vertebrate species. Aromatase appears to play a major role in controlling reproductive 

functions, especially male sexual behavior. For example, in Japanese quail (Coturnix 

japonica), male copulatory behavior is activated when T has been aromatized into E2 

(Balthazart & Foidart 1993). In the male quail, behavioral effects of T can be simulated 

by administration of natural or synthetic estrogens but not by non-aromatizable 

androgens suggesting that aromatase does indeed play a crucial role in causing male 

reproductive behaviors (Balthazart 1997). Aromatase has also been found to facilitate 

female receptivity. For example, aromatizable androgens trigger female copulatory 

behavior in female musk shrews (Suncus murinus) (Rissman 1991). In the Atlantic 

croaker (Micropogonias undulates), Cyp19α1 expression has been seen to change with 

gonad function, in females increased levels are seen in developing gonads while 

decreased levels are noted at the end of vitellogenesis, supporting that estrogen plays a 

role in promoting and sustaining oocyte growth (Nunez & Applebaum 2006). In  males 

Cyp19α1 expression does appear to have an overall increase in spawning animals 

(Reviewed by Abney 1999). Estrogens are known to interrupt cell development and 

function of the mammalian testis, therefore low Cyp19α1 expression in the Atlantic 

croaker developing testes minimizes the estrogen-dependent inhibition of androgen 

synthesis needed for germ development (Reviewed by Hess 2003).  
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HPG axis regulation 

The expression of the components of the HPG axis (GnRH, LH, etc.) can be 

altered due to seasonal changes or sex differences, leading to changes in reproductive 

activity as well as circulating steroid hormones. In amphibians, such as the green frog (P. 

esculentus), males have higher brain mRNA expression levels of StAR, HSD17β3, and 

Cyp19α1 during their reproductive period compared to their non-reproductive period, 

while females only showed seasonal differences of HSD17β3 and Cyp19α1 mRNA 

expression in the brain using real-time quantitative RT-PCR (Santillo et al. 2017). In 

green frogs it has also been observed that enzymes of neurosteroidogenesis correlates 

with the seasonal changes in the circulating sex hormone levels, and as hormone levels 

rise so does enzyme activity (Rastogi et al. 2005). It has been well established that 

domesticated sheep are seasonally breeding, it has also been seen that their steroid 

hormones fluctuate seasonally (Martinet et al. 1993; Reviewed by Lincoln 2002). During 

their breeding season elevated levels of P and E2 cause the expression of female estrus 

behavior and have a positive feedback on production of T by the testis, in turn triggering 

libido expression in males (Tulley et al. 1983; Tilbrook & Cameron 1990). Within the 

central nervous system of rams it has been seen that T is converted to E2 by aromatase 

(Perkins & Roselli 2007). There is further evidence that DHT, a metabolite of T, is 

responsible for sexual behavior maintenance in rams. The brain regions of rams where 

male reproductive behaviors are controlled are seen to be enriched with aromatase noting 

that aromatase is present with the brain as well as the gonads  (Roselli et al. 1998, 2000). 

Reptiles are interesting to study as they are ancestors to both birds and mammals 

(Fountaine et al. 2005). Most lizards are seasonally breeding and are known for their 
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periodic cycles of active and inactive gonads (Gautam et al. 2013). These seasonally 

breeding lizards are a great model for studying seasonal expression levels of genes 

involved in steroidogenesis, meiosis and many other reproductive processes which are 

not as easily detected in other species and are desperately lacking in previous research 

information. 

Green anole lizards 

 Green anole lizards (Anolis carolinensis) are reptiles known for seasonal 

behavioral and hormonal level changes (Jones et al. 1983; Rosen & Wade 2001). They 

are found in southeastern United States with their reproductive season occurring from 

April through July (Lovern et al. 2004). The green anole has a very distinct breeding 

season (BS) and non-breeding season (NBS) and because of this it is one of the main 

reptilian species of endocrine and behavioral research (Wade 2005).  

Males are larger in body size than females and have a large red throat fan called a 

dewlap that extends as part of their ritualized courtship or aggressive displays. These 

behaviors are only performed during the BS (Lovern et al. 2004). Adult males have high 

T concentrations in the BS when territorial and courtship behaviors are high, and they 

have low T concentrations in the NBS when territorial and courtship behaviors are low or 

nonexistent (Lovern et al. 2001; Neal & Wade 2007); suggesting that T (or its 

metabolites) may be activating male reproductive behaviors during the BS. In general the 

adult female anole lizards have plasma T levels that are 20 to 45 fold lower then adult 

males (Lovern et al. 2001).  Adult female lizards also have seasonally dimorphic 

behaviors with increased receptivity during the BS (Reviewed by Wade 2012). A 
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receptive female once mated with a male will become unreceptive within minutes and 

will stay this way until the next ovulatory cycle (Jones et al. 1983). A ratio of low 

circulating levels of E2 to P have been seen to play a role in female receptivity and the 

mating-induced receptivity termination while an even E2/P ratio correlates with non-

receptivity behavior (Jones et al. 1983). In the male brain it has been seen that 

administering E2 and having it be present is associated with increased motivation for 

male copulation behaviors (Latham & Wade 2010).  Therefore, due to the highly 

seasonally and sexually dimorphic behaviors and hormone levels green anoles are an 

excellent model organism to study seasonal regulation of steroid hormone production.   

Aromatase and E2 have been characterized within the brain of the green anole 

lizard. In whole brains from BS males and females there was higher aromatase activity in 

males, and in NBS animals the enzyme activity was equivalent between sexes. 

Comparing BS to NBS males there was significantly higher aromatase activity in the BS 

males (Rosen & Wade 2001). As seen in green anoles, seasonal and/or sex variances in 

neuronal aromatase activity has been documented in many species that range from 

mammals to telosts (Reddy et al. 1973; Callard et al. 1977, 1981, 1983; Roselli et al. 

1985; Schlinger & Callard 1987; Schlinger et al. 1989; Silverin & Deviche 1991; 

Gobbetti et al. 1994; Soma et al. 1999). The regulation of aromatase is mostly due to T 

sensitivity where females are less sensitive to the effects of T than males as seen in 

studies on birds (Schumacher & Balthazart 1986; Steimer & Hutchison 1990), and on 

mammals (Reddy et al. 1973; Roselli et al. 1984, 1985; Steimer & Hutchison 1990; 

Hutchison et al. 1991; Romeo et al. 1999) which suggests T upregulates aromatase 
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protein activity in the brain regions associated with male reproductive behaviors (Rosen 

& Wade 2001). 

Aromatase-positive cells have been documented by in situ hybridization 

techniques in specific regions of the green anole brain important for reproductive 

behavior, such that males have a greater total number of cells expressing aromatase 

mRNA in the preoptic area (POA) of the brain when compared to females (Cohen & 

Wade 2011). The density of these aromatase mRNA-expressing cells was also found to 

be higher during the BS when compared to the NBS. The regional synthesis of E2 from T 

may play a role in controlling sex-specific reproductive behaviors (Rosen & Wade 2001). 

It has been seen that E2 levels are associated with male motivation to copulate and 

reproduce (Latham & Wade 2010). Most other male sexual behaviors, including 

courtship displays, are found to be androgen dependent and copulation with a female will 

follow if that female is receptive (Winkler & Wade 1998; Rosen & Wade 2001). Little to 

nothing is known about the expression of aromatase within the reptilian gonads. 

Interestingly in this species and all other reptile species, to our knowledge there is no 

current research available examining Cyp17α1, HSD17β3, and StAR seasonal 

expression.  

Experiment 

The present study was designed to test the hypothesis that natural variations in 

steroid hormone levels between sexes and seasons are mediated within the brain and 

gonad by these four different genes: StAR, Cyp17α1, HSD17β3, and Cyp19α1, which we 

predicted to be upregulated during the BS compared to the NBS. To our knowledge, this 
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is the first study to quantify StAR, Cyp17α1, HSD17β3, and Cyp19α1 mRNA expression 

levels within green anole lizard brains and gonads. We investigated mRNA expression 

levels within whole brain and whole gonads in both BS and NBS males and females to 

determine whether the known hormonal differences that occur between these time points 

may be a result of an upregulation of one or more of these genes. StAR, Cyp17α1, 

HSD17β3, and Cyp19α1 genes play major roles within the steroidogenesis pathway and 

by looking at their expression levels in the green anole we can begin to examine seasonal 

regulation. The opportunity to study expression level differences occurring in the 

steroidogenesis pathway enzymes between seasons and sexes of green anole lizards may 

help determine the specific regulation factors involved with changes in steroid hormone 

levels.  

Materials & Methods 

Animals and tissue collection 

 Wild-caught adult green anole lizards were shipped from Charles Sullivan 

Company (TN) once during the BS in May 2015 and once during the NBS in October 

2015 to Minnesota State University Mankato MN. They were sacrificed upon arrival and 

were dissected to obtain whole brain and gonads, which were frozen in cold methyl 

butane and stored at -80°C. Breeding state was confirmed by a visual inspection of each 

lizard’s reproductive system. As follows, BS females were confirmed by checking the 

ovaries for large yoking follicles. NBS females were confirmed by ensuring the ovaries 

were small with no follicle enlargement. BS males were confirmed by checking for 

enlarged testes and NBS males were determined by a lack of testes enlargement.   
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Primer Design 

Specific primer sets for β-Actin, StAR, Cy17α1, HSD17β3, and Cyp19α1 were 

designed from the annotated sequences in the anole genome using the National Center for 

Biotechnology Information (NCBI) and Ensembl software and ordered from Integrated 

DNA technologies (Table 1). To confirm primer specificity, PCR reactions were 

performed using Quick-Load Taq 2X Master Mix (New England Biolabs, NEB) and run 

on a 1.5% agarose gel to confirm band size and quality. Amplicon sequences were 

confirmed to match the anole gene sequences (GeneWiz). Primer concentrations were 

optimized for all genes (Table 1) using PCR.  

RNA isolation and cDNA synthesis 

 Gonads from each lizard were weighed and the gonads and brains were 

homogenized in QIAzol and chloroform (Qiagen). RNA was extracted using the RNeasy 

Lipid Tissue Mini Kit (Qiagen) as per manufacturer’s instruction, with an on-column 

DNase I (Qiagen) treatment at 25°C for 15 minutes to eliminate genomic DNA. The total 

RNA integrity and purity were determined by gel electrophoresis and spectrophotometry 

measures taken at 260/280 nm. Isolated RNA was stored at -80 °C, and 0.05 µg/µl RNA 

was reverse transcribed into cDNA using the ProtoScript 2 First-Strand cDNA Synthesis 

Kit (NEB), as per manufacturer’s instructions. cDNA and was stored at -20 °C until use. 

qPCR 

 qPCR was conducted using PowerUp SYBR Green PCR master mix (Thermo 

Scientific) per manufacturer’s instructions. RNA control gels were run to confirm the 

absence of genomic DNA. PCR efficiency curves were run for each gene, using 10-fold 
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dilutions of cDNA (100 to 0.001 ng/µl). Expression for each gene was normalized to β-

actin mRNA to determine expression level changes. 

Each qPCR experiment contained 0.5 ng/µL total cDNA, SYBR green master 

mix, and the appropriate concentration of forward and reverse primers (Table 1). Each 

sample was run in triplicate, and two genes (one target gene and -actin) were run on 

each plate. Each plate also contained three replicates of a negative template control 

(RNase-free water instead of cDNA template) for both the gene of interest and 

housekeeping gene (-actin). Two plates per gene were run for each tissue type and, in 

order to normalize between plate runs (as appropriate), one sample was run on both 

plates.  

The expression of individual gene targets was analyzed using the Step One Plus 

(Applied Biosystems) real-time PCR machine. The thermocycler program included an 

initial denaturation step at 95 °C (10 min) followed by 40 cycles of 95 °C (15 sec) and a 

combined annealing/extension step of 65 °C (1 min). An additional annealing step of 60 

°C (30 sec) was added to each cycle for HSD17β3. A melt curve was also conducted for 

every run with steps at 95 °C (15 sec), 65 °C (1 min), and 95 °C (15 sec).   

Data analysis 

The qPCR efficiencies were calculated by using the critical threshold values (CT) 

and the linearly correlated logarithmic value of the amount of cDNA. The slope of this 

line was used to calculate the PCR efficiency for each gene, E = 10[-1/slope] (Rasmussen 

2001) (Table 1). The PCR efficiencies of each gene should be approximately 2.0 for a 

consistent doubling of DNA at each cycle (Pfaffl 2001).  
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We used the Step One Plus system software (Applied Biosystems) to calculate the 

CT values and reaction efficiencies from individual well fluorescence readings during the 

reaction. We calculated the expression of each target gene of interest relative to β-actin 

using the equation: relative target gene expression = 100 × [(Eβ-Actin
CTβ-actin)/(Etarget

CTtarget)] 

(Burmeister et al. 2007). All statistical analysis was conducted using SPSS software. The 

data was analyzed using two-way ANOVAs to examine the effects of run, sex and season 

on gene expression, and Tukey B post hoc analysis was used to examine differences 

across groups. The data was also tested for an effect of run (due to samples being run in 

two separate experiments per gene) using t-tests. If an effect of run was detected (i.e. the 

two experiments were systematically different), then each plate was normalized to an 

internal control sample (run on both plates) by subtracting the value for that sample from 

each sample on the plate. Then the normalized data was used to recalculate relative 

expression prior to further statistical analysis. We detected an effect of run for both 

Cyp19α1 and HSD17β3 results from the brain and used this normalization procedure to 

compare samples across runs. 

Results 

Breeding state confirmation 

Breeding state was confirmed visually, as well as by weighing the gonads. There was a 

statistically significant difference in gonad weight between BS and NBS in both male and 

female anoles (F1,20  = 10.99, p = 0.003) (Figure 2). Gonad weight was significantly 

correlated with StAR mRNA expression (p = 0.003). 
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β-Actin CT values  

CT values for β-actin were not different across sex, season, or tissue (all F1,20 < 

3.54, p > 0.075), therefore, the transcript expression level data are normalized to β-actin.  

StAR expression 

 In the gonad, we detected a significant increase in StAR mRNA expression levels 

in the BS compared to the NBS (F1,12  = 7.828, p = 0.016; Figure 3). There was also a sex 

difference in expression levels such that males had higher expression than females (F1,12  

= 5.704, p = 0.034; Figure 3). There was no interaction detected in the gonad (F1,12  = 

1.178, p = 0.299; Figure 3).  There were no differences detected in StAR mRNA 

expression levels in the green anole brains brain between seasons and sex, and no 

interaction (F1,16  < 0.756, p > 0.398; Figure 3).  

Cyp17α1 expression 

There was a significant seasonal difference in gonad Cyp17α1 relative expression 

levels with increased expression during the NBS (F1,16  = 10.590, p = 0.005; Figure 4). In 

addition, there was also a significant difference in Cyp17α1 expression levels between 

males and females (F1,16  = 9.581, p = 0.007; Figure 4) with males displaying higher 

expression levels. There was no interaction in the gonads (F1,16  = 0.002, p = 0.963; 

Figure 4). Cyp17α1 expression in the brain showed no significant difference in 

expression levels between season or sex, and no interaction (F1,16  < 1.699, p > 0.211; 

Figure 4). 
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HSD17β3 expression 

There was a significant difference in HSD17β3 relative expression in anole 

gonads between BS and NBS animals, with increased expression during the NBS (F1,16  = 

12.537, p = 0.003; Figure 5). Similarly, between sexes, males had higher expression 

levels than females (F1,16  = 28.562, p > 0.001; Figure 5). There was also an interaction 

(F1,16  = 6.197, p = 0.024; Figure 5) such that, during both the BS (t(5) = - 4.612, p = 

0.006) and NBS (t(5) = - 6.221, p = 0.002), males had higher expression in the gonads 

than females.  

In the brain, we detected an effect of run (t(16.50) = 3.88, p = 0.001), and 

normalized the data before further statistical analysis. Normalized brain HSD17β3 

relative expression levels showed no difference between season or sex, and no interaction 

(F1,16  < 2.274, p > 0.151; Figure 5).  

Cyp19α1 expression 

 Gonad Cyp19α1 relative gene expression showed no difference between season or 

sex (F1,16  < 2.765, p > 0.116; Figure 6); however, there was a significant interaction 

detected (F1,16  = 12.192, p = 0.003; Figure 6) such that during the BS, males had higher 

expression than females (t(5) = -2.934, p = 0.032), with no difference in the NBS (t(5) = 

2.052, p = 0.095).  

In the brain, we detected an effect of run (t(11.80) = 2.85, p = 0.015), and 

normalized the data before further statistical analysis. Normalized brain Cyp19α1 relative 

expression levels show no significant differences between sexes and no interaction (F1,16  

< 2.056, p > 0.171; Figure 6). There was, however, a difference between seasons, with a 
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significant increase in expression levels during the NBS (F1,16  = 30.127, p = 0.001; 

Figure 6).  

Discussion 

The present study was designed to test the hypothesis that natural variations in 

steroid hormone levels between sexes and seasons are mediated within the brain and 

gonad by these four genes involved in steroidogenesis: StAR, Cyp17α1, HSD17β3, and 

Cyp19α1 and that they would be upregulated within the BS compared to the NBS. 

Steroidogenesis is a multistep process, which ultimately converts cholesterol into steroid 

hormones in a tissue specific matter (Hattangady et al. 2012; Li et al. 2017).  The entire 

steroidogenic process is under acute and chronic regulation controlled by each tissue-

specific tropic hormone (Lehoux et al. 1998). For example FSH controls P and E2 

synthesis in the granulosa cells of the ovary while LH regulates P synthesis in the 

granulosa-luteal cells of the ovary, androgen production in the theca-interstitial ovarian 

cells, and T synthesis in the Leydig cells of the testes (Hu et al. 2010). The steroid 

products have been seen to potentially contribute to a negative feedback effect on 

steroidogenesis (Li et al. 2017). Knowing changes occur in the steroidogenesis pathway, 

we are able to study the gene expression level differences between the seasons and sexes 

of green anole lizards potentially determining the specific regulation factors involved 

with these changes. We found sex and seasonal differences in the regulation of these 

genes in both the brain and gonads (summarized in Table 2). 

StAR 
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 StAR gene expression in the green anole gonad is seasonally and sexually 

dimorphic. We found that StAR mRNA expression levels in the gonad were higher 

during the BS compared to the NBS, showing it may be a potential cause in the major 

circulating hormonal changes that occur between the seasons. StAR production during 

the BS was highest in males. Similarly in lizards, human StAR mRNA has been found to 

be present and specifically expressed in the testis and ovaries (Sugawara et al. 1995). It is 

interesting to note that we found StAR expression in the gonads where it has also been 

seen in humans. Although we specifically looked at mRNA expression itself instead of 

protein expression, it is interesting to note that StAR protein expression has also been 

found in the adult mouse ovary, testis and adrenal glands (Clark et al. 1995) leading us to 

believe that StAR mRNA may also be present. This was in contrast to immunoblot 

analyses reported by (Clark et al. 1995), where the StAR protein levels were found to be 

higher in the adult mouse ovary and adrenal glands of which contain a higher number of 

steroidogenic cells when compared to the numbers of leydig cells of the testis.  

There was, overall, an increased expression of StAR during the BS in the gonads 

of both sexes, suggesting that steroidogenesis may be increased to produce higher 

circulating steroid hormone levels in breeding animals. To our knowledge there has been 

no previous work in any species, investigating StAR expression levels in the gonads, or 

expression differences between seasons. We also found expression levels to be higher in 

male lizard gonads than females suggesting that there may be a much larger increase in 

expression of StAR mRNA to compensate in general for the lower number of 

steroidogenic Leydig cells making up only 2% of the adult testis compared to the higher 

frequency of cells in the ovaries (Clark et al. 1995). Alternatively this increase in 
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expression could mean that males need more overall steroid hormone production in the 

breeding season than females.  

In the green anole brain we were able to detect StAR mRNA, however, there were 

no significant differences in expression levels between the sex or season. The first 

attempts of StAR localization in human and mouse tissues failed to detect a presence in 

the brain (Clark et al. 1995; Sugawara et al. 1995). It was then predicted that if StAR was 

found in the brain it would be present at lower levels, given the reduced nature of 

neurosteroid synthesis when compared to the adrenal glands and gonads (Stocco 2000). It 

has since been seen through RT-PCR and in situ hybridization techniques that StAR 

transcripts are indeed present in the rat brain at two to three orders of magnitude less than 

what was found in the adrenal gland (Furukawa et al. 2002). Similarly, we detected low 

expression of StAR in the lizard brain and found that anole whole brain StAR expression 

levels are relatively stable and unchanging when compared between sexes and different 

seasons. It is possible that steroidogenesis is not altered seasonally in the brain or, 

alternatively, that steroidogenesis may be regulated in a region-specific manner. It is 

possible as well that mRNA may not being translated within the brain, or any of the 

hormone level changes that are occurring are from gonadal hormone interactions with the 

brain. We used RNA extracted from whole brains for this study, which would make it 

difficult to detect subtle regional differences.  

Cyp17α1  

Cyp17α1 gene expression levels were the highest in the green anole male testis 

during the NBS. To our knowledge, there is little to no research on Cyp17α1 seasonal 
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expression levels in the gonads. Due to lower steroid hormone production in the NBS 

(possibly due to decreased StAR levels), it is possible that a lack of inhibition of 

Cyp17α1 could cause this increase expression in the NBS. We also found that anole 

testes had higher overall expression levels than ovaries, regardless of season. Similarly, 

male adult zebra fish (Danio rerio) and frog (Rana rugosa) gonads were found to have a 

higher amount of Cyp17α1 expression levels when compared to females when using a 

specific branched DNA assay (Hinfray et al. 2011; Suda et al. 2011). These results 

suggest that Cyp17α1 expression is seen to be more important for male reproduction in 

lizards.  

Our results revealed that Cyp17α1 mRNA was expressed in the brain of the green 

anole, with no difference in expression levels between the sexes or seasons. Similarly, 

Cyp17α1 relative mRNA expression levels in the brain of adult zebra fish were not 

different between males and females (Hinfray et al. 2011). In adult frogs Cyp17α1 

mRNA expression was not found in the brain at all (Suda et al. 2011). Our results suggest 

that Cyp17α1 mRNA is expressed in the brain, but is not regulated differently among the 

sexes in whole brains in this species. Little work is available on Cyp171 in the brain, 

and more work is needed to understand the role of this enzyme in neurosteroidogenesis.  

HSD17β3 

Our results showed that HSD17β3 mRNA expression levels in the gonads are 

higher in male compared to female lizards. Similarly, in humans, HSD17β3 appears to be 

more prevalently expressed in the testis (Geissler et al. 1994). This is in agreement with 

HSD17β3’s function to synthesize T and that T production in the gonads is more crucial 
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for males. Our results also revealed a seasonal effect such that HSD17β3 is much more 

prevalent in the testis during the NBS compared to the BS. Similar to Cyp171, it is 

possible that HSD173 expression maybe increased during the NBS due to a loss of 

negative feedback from very low T synthesis (again, possibly due to low StAR levels and 

the lack of precursors being synthesized). Furthermore we found a sex and season 

interaction, which revealed that, during the BS, females had relatively no HSD17β3 

expression while in the NBS they had a small amount of HSD17β3 expression. For both 

seasons the HSD17β3 expression was far higher in males than in females. The interaction 

suggests that HSD17β3 mRNA expression is much more prevalent for males.  

HSD17β3 expression levels in the green anole brain showed that this enzyme is 

expressed; however we did not detect differences in expression levels between groups. 

Similarly, in the human temporal lobe, HSD17β3 expression has been detected by real-

time quantitative RT-PCR throughout the different stages of life, with no differences 

found (Watzka et al. 1999). HSD17β3 is known to catalyze the ending stages of androgen 

and estrogen biosynthesis, therefore playing a crucial role in local steroid biosynthesis in 

the brain (Watzka et al. 1999). HSD17β3 expression levels may not be sex or seasonally 

dimorphic because it may play a role in moderating concentration levels of local steroid 

hormones in the brain. Alternatively, if there are subtle differences between various brain 

regions, we could not detect this with the methods used. More work is needed to 

investigate this possibility. 

Cyp19α1  
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Cyp19α1 gene expression levels in the gonad showed no main effects of season or 

sex, although an interaction showed female expression levels were higher in the NBS and 

male expression levels were higher in the BS. Similarly, Cyp19α1 expression levels in 

adult zebra fish gonads were higher in males than females when using a specific branched 

DNA assay (Hinfray et al. 2011), and, in the Atlantic croaker, high levels of aromatase 

expression were found using real-time quantitative RT-PCR in the testes during spawning 

(Nunez & Applebaum 2006), indicating a potential role of aromatase and E2 in male 

reproduction that should be investigated further. Although expression levels were higher 

during the NBS in females, it is unlikely that more E2 is synthesized, due to the lack of 

precursor hormones as a result of low StAR expression levels. Likely, the increase 

expression of Cyp191 during the NBS could be a result of a lack of inhibition due to 

low circulating steroid hormone levels.  

Cyp19α1 gene expression in the brain was higher during the NBS, with no 

difference in expression levels between the sexes. In adult zebra fish brains, Cyp19α1 

expression also showed no sexual dimorphism (Hinfray et al. 2011). Looking at brain 

aromatase protein activity in BS anole lizards levels were greater in males than females 

and, between males, it was shown to be increased during the BS compared to the NBS 

(Rosen & Wade 2001). In contrast, our mRNA expression levels revealed that Cyp19α1 

mRNA expression levels in the brain were significantly higher during the NBS compared 

to the BS (Table 2). As there are not precursor hormones for this enzyme to act on, this 

data suggests that this enzyme might have an absence of an inhibitory signal during the 

NBS. Our results could also be a result of the fact that aromatase expressing cells have 
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been found to vary per brain region (Cohen & Wade 2011), and we may not have been 

able to detect these subtle changes as we examined expression at the whole brain level.  

Conclusions  

 Our experiment examined the seasonal regulation of steroidogenesis at the 

enzyme level in the green anole lizard .We found that whole brain mRNA expression of 

StAR, Cyp17α1, and HSD17β3 have no differences between sex or season. Therefore, 

the machinery for steroidogenesis is expressed within the brain at a similar rate between 

sexes and seasons in the green anole lizard. Cyp19α1 brain mRNA expression was 

increased during the NBS in females, potentially revealing the presence of regulatory 

signaling for aromatase expression in the brain.  

In the anole gonad, as expected, StAR mRNA expression levels were increased in 

both males and females during the BS, suggesting that this is the main regulatory control 

step for gonadal steroidogenesis of those tested. However, we also found that the 

expression levels of many of the other steroidogenic enzymes are increased when StAR 

expression is decreased, suggesting that the enzymes in the steroidogenic pathway are, in 

fact, regulated independently of StAR, although the mechanism for this regulation has not 

yet been determined. Future work is needed to determine the type and level of this 

regulation, as well as what role, if any, it has in regulating steroidogenesis. 
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Figures and Tables 

Table 1. Target genes specified with their NCBI identification numbers, primer 

sequences, amplicon size, primer concentrations, and qPCR efficiencies. 
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Table 2. Summary of the relative expression results of StAR, Cyp171, HSD173, and 

Cyp191 in the anole brain and gonad. 
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Figure 1. The abbreviated steroidogenesis pathway. Cyp11α1, cholesterol (cytochrome 

P450scc)- side-chain cleavage enzyme; Cyp17α1, cytochrome P450 17A1, also known as 

steroid 17α-monooxygenase and 17α-hydroxylase; Cyp19α1, cytochrome P450 19A1, 

also known as aromatase and estrogen synthase; DHEA, Dehydroepiandrosterone, also 

known as androstenolone is an endogenous steroid hormone; DHT, Dihydrotestosterone, 

also known as 5α-dihydrotestostreone is an endogenous androgen steroid hormone; 

Hsd3β, 3β-Hydroxysteroid dehydrogenase; HSD17β3, 17β-Hydroxysteroid 

dehydrogenase 3; StAR, Steroidogenic acute regulatory protein, also known as STARD1 

a transport protein 
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Figure 2. Average whole gonad weight of male and female green anole lizards. Breeding 

animals are depicted in black bars and non-breeding animals are depicted in white bars. 

Gonads were higher in the BS compared to the NBS. n = 6. Letters above bars denote 

statistical differences. 
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Figure 3. Relative StAR gene expression in the green anole lizard brain and gonads 

normalized to β-Actin. Breeding animals are depicted in black bars and non-breeding 

animals are depicted in white bars. (a) StAR expression in the brain was not different 

between sex or season. (b) StAR expression in the gonad was increased in males 

compared to females and it was increased in BS compared to NBS. n = 6. Letters above 

bars denote statistical differences. 
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Figure 4. Relative Cyp17α1 gene expression in the green anole lizard brain and gonads 

normalized to β-Actin. Breeding animals are depicted in black bars and non-breeding 

animals are depicted in white bars. (a) Cyp17α1 expression in the brain was not different 

between sexes or season. (b) Cyp17α1 expression in the gonad has increased expression 

in males compared to females and it has increased expression in NBS compared to BS. n 

= 6. Letters above bars denote statistical differences. 
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Figure 5. Relative HSD17β3 gene expression in the green anole lizard brain and gonads 

normalized to β-Actin. Breeding animals are depicted in black bars and non-breeding 

animals are depicted in white bars. (a) HSD17β3 expression in the brain was not different 

between sex or season. (b) HSD17β3 expression is increased in males compared to 

females, NBS compared to the BS, and there was also an interaction between sex and 

season. n = 6. Letters above bars denote statistical differences. 
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Figure 6. Relative Cyp19α1 gene expression in the green anole lizard brain and gonads 

normalized to β-Actin. Breeding animals are depicted in black bars and non-breeding 

animals are depicted in white bars. (a) Cyp19α1 expression in the brain was not different 

between sexes, but there was increased expression in the NBS compared to the BS. (b) 

Cyp19α1 expression in the gonad was not different between sex and season, but there 

was an interaction. n = 6. Letters above bars denote statistical differences. 
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