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Abstract 

Reproductive physiology and behavior is mainly regulated by the hypothalamus-

pituitary-gonad (HPG) axis. Interestingly, abnormal levels of thyroid hormone (TH) 

results in the delayed onset of puberty and affects gonadal function of adults by altering 

HPG axis activity. Seasonally breeding animals undergo drastic hormonal and behavioral 

changes between breeding and non-breeding seasons. Green anole lizards (Anolis 

carolinensis), similar to other seasonally breeding animals, have increased sex steroid 

hormones, larger gonads, upregulated gonadal steroidogenic acute regulatory protein 

(StAR) mRNA and increased reproductive behavior during the breeding compared to 

non-breeding seasons. Relatively less is known regarding the regulation of gonadal TH in 

seasonal reproduction in reptiles. We examined whether the gonadal expression of 

enzymes involved in TH activation are altered in concert with seasonal regulation. Type 2 

deiodinase (Dio2) mRNA, the TH activating enzyme, was upregulated in breeding male 

anole gonads compared to non-breeding males, while type 3 deiodinase (Dio3) mRNA, 

the TH deactivating enzyme, was upregulated in breeding female anole gonads. To study 

the association between the HPG axis and local activation of TH in regulating 

reproductive physiology, we manipulated the HPG axis during the non-breeding season 

by subcutaneously injecting luteinizing hormone (LH) and follicular stimulating hormone 

(FSH) in male and female green anoles. We examined mRNA expression of Dio2, Dio3 

and StAR in gonads and measured plasma sex steroid hormone levels. LH and FSH 

injected males had significantly increased testes weight, StAR mRNA expression and 

testosterone levels, which indicates that gonadotropin injections were able to activate the 

HPG axis even during the non-breeding season. Surprisingly, Dio3 was upregulated in the 



 

testes after LH and FSH injections, while Dio2 mRNA levels were unchanged compared 

to the vehicle injected group. This result suggests that there might be different roles of 

local TH activation in developing and maintaining fully grown gonads. Additionally, as 

determined through a mirror test, gonadotropin injections did not induce aggressive 

behavior in males despite their increased testosterone levels. Our findings support the 

role for thyroid hormone in regulating reproduction and contribute to a growing body of 

work examining the evolution of puberty and reproductive development.
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Introduction 

The hypothalamus – pituitary – gonad (HPG) axis is the main regulator of 

gamete production and steroidogenesis in many species, including humans. The 

hypothalamus releases gonadotropin releasing hormone (GnRH) to the anterior pituitary, 

which activates the secretion of luteinizing hormone (LH) and follicle stimulating 

hormone (FSH). Circulating LH enters gonadal tissue and triggers the production of 

steroidogenic acute regulatory protein (StAR), the rate-limiting step in steroidogenesis 

(Clark et al. 1994). Through increased StAR expression, sex steroid hormones, such as 

testosterone (T) and estradiol (E2), are produced from male and female gonads 

respectively. 

Dysfunction of the HPG axis can result in reproductive disorders in both males 

and females and thyroid gland disorders seem to be associated with altering the HPG 

axis, impacting gonadal maturation as well as normal reproduction (Krassas et al. 2010). 

A recent study suggested that thyroid hormone (TH) disorders induced in adulthood 

affect spermatic function and testicular gene expression in male rats (Romano et al. 

2017). Some clinical cases also reported that hypothyroid (abnormally low levels of TH) 

adult women tend to have menstrual irregularities and a lack of ovulation (Krassas et al. 

1999). The production of thyroid hormone is regulated by thyrotropin-releasing hormone 

(TRH) secreted from the hypothalamic paraventricular nucleus (PVN) which stimulates 

the anterior pituitary gland (pars distalis) to synthesize thyroid-stimulating hormone 

(TSH) (Segerson et al. 1987). TSH is delivered to the thyroid gland where TH is 

produced and secreted (Haisenleder et al. 1992). TH is mainly secreted as thyroxine (T4), 

the prohormone, whereas triiodothyronine (T3) is the biologically active hormone 
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(Braverman et al. 1970). Activation and inactivation of TH is mediated by peroxidase 

enzymes called deiodinases that cleave specific iodines from TH (Kuiper et al. 2005). 

Type 2 deiodinases (Dio2) convert T4 to the active form, T3, while type 3 deiodinase 

(Dio3) convert T4 to an inactive isoform, reverse triiodothyronine (rT3) (Figure 1). Dio3 

and Dio2 can also cleave one additional iodine from T3 and rT3 respectively, which 

produces diiodothyronine (T2) (Figure 1). 

Local activation of T3 by deiodinases in the brain and gonads is likely related to 

reproduction in many species, particularly in birds and mammals (Yoshimura 2013). 

However, the relationship between seasonal regulation of TH-related gene expression and 

gonadal development is still unclear and TH regulation in the gonads of other groups is 

less studied. 

Thyroid hormone and reproduction 

It is known that TH is essential for normal growth and sexual maturation in both 

males and females in many species including humans (Weber 2003). Especially in rodent 

models, altered TH levels during development exert a significant impact on gonadal 

morphology and function while gonadal function is mainly affected by abnormal TH 

levels in adults. Neonatal hypothyroidism in rats and mice results in increased testicular 

size and increased sperm production, while Sertoli cell maturation was delayed (Cooke et 

al. 1991; Hess et al. 1993; Joyce et al. 1993; De França et al. 1995). In contrast, neonatal 

hyperthyroidism induced by exogenous TH administration reduced testes size (Van 

Haaster et al. 1993). In female rats, prepubertal hypothyroidism results in reduced 

ovarian weight and disrupted folliculogenesis (Dijkstra et al. 1996). Hypothyroidism 

diagnosed later in the prepubertal period delayed the onset of puberty and sexual 
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maturation in girls (Pantsiouou et al. 1991). Furthermore, rats with adult-onset 

hypothyroidism had disrupted spermatic production and quality in males and irregular 

estrous cycle with decreased ovarian weight in females (Tohei et al. 1998; Romano et al. 

2017). In addition, there is some evidence that indicates TH influences steroidogenesis in 

both sexes of rats and humans, such that hypothyroid adults have decreased levels of 

steroid hormones (Krassas et al. 2010; Romano et al. 2013) and increased T3 levels 

resulted in higher steroid hormone levels in mice (Manna et al. 1999; Liu et al. 2017).   

TH action in tissue is regulated by deiodinases that modulate local TH 

availability. In rats, both types of deiodinases (Dio2 and Dio3) are expressed in the 

gonads throughout development and adulthood, although with different levels in 

activities (Bates et al. 1999). In ovaries and testes, Dio3 activity predominates during the 

developmental period and declines to adult levels while Dio2 activity is upregulated only 

during testicular development in males (Bates et al. 1999). Dio3 deficiency-induced 

hyperthyroidism results in cell proliferation arrest of neonatal mice testes and a 75% 

reduction in testes weight (Martinez et al. 2016). Changes in serum TH levels likely 

impacts deiodinase activity and gene expression in prepubertal and adult gonads, 

especially in males. In adult hypothyroid male mice, upregulated Dio2 activity in testes 

can compensate for low T3 levels (Wagner et al. 2003). Hypothyroidism induced by 

thyroidectomy in adult rats leads to downregulated Dio3 mRNA expression in testes with 

compromised spermatogenesis (Romano et al. 2017). These results imply that T3 

signaling by deiodinases is associated with gonadal function during both development 

and adulthood. However, it is still unclear how deiodinase gene expression is regulated 

and how local activation of TH is related to gonadal function in adults. 
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TH and seasonal breeding 

Seasonally breeding animals are excellent models to examine the regulation of 

reproduction, as these animals reproduce only under appropriate environmental 

conditions and halt reproduction when environmental conditions are no longer conducive 

to successful breeding. These behavioral changes have been associated with changes in 

the regulation of the HPG axis (Yoshimura 2013). The HPG axis is activated during the 

breeding season which results in a dramatic increase in gonadal weight, particularly in 

birds and reptiles (Dawson 1998; Wade 2011). In contrast, during the non-breeding 

season, gonads become inactive due to regression in size and weight. This change in 

gonadal size between the BS and NBS might be associated with TH activation or 

inactivation by deiodinase enzymes. 

Photoperiodic effects on brain and testicular expression of deiodinase genes have 

been examined in many species (Yoshimura 2013). In Japanese quail (Coturnix 

japonica), the light-stimulated anterior pituitary (pars tuberalis) secretes TSH to the 

mediobasal hypothalamus (MBH), an area which appears to regulate photoperiodic 

control of seasonal reproduction (Yoshimura et al. 2003). In male Japanese quail, a long-

day (LD) breeder, Dio2 mRNA is upregulated and Dio3 mRNA is downregulated in the 

MBH under LD conditions, with an opposite pattern of expression under short-day (SD) 

conditions (Ikegami et al. 2015). In contrast, in male European starlings (Sturnus 

vulgaris) there was no difference in hypothalamic Dio3 gene expression across the 

photoperiods, but Dio2 was highly expressed during a breeding photoperiod (Bentley et 

al. 2013). In mammals, LD-breeding Siberian hamsters had testicular growth with 

exogenous T3 under the SD condition, whereas SD-breeding male sheep had higher Dio2 
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expression under LD conditions (Hanon et al. 2008; Henson et al. 2013). These results 

support the idea of a dual role for TH to both begin and terminate seasonal breeding. TH 

levels regulated by seasonal changes in deiodinase expression appear to affect seasonal 

breeding in males, although this has been less studied in female seasonal breeders. 

Green anole lizards  

Many reptiles breed seasonally and exhibit distinct gonadal changes during 

various phases of the reproductive cycle (Gautam et al. 2013). Green anole lizards 

(Anolis carolinensis) breed seasonally and are known for distinctive seasonal changes in 

morphology, hormone levels, behavior and gene expression such as StAR (Rosen & 

Wade 2001; Peek & Cohen 2018). During the breeding season, which occurs from April 

through August, the gonads become larger and produce steroid hormones, and the lizards 

display reproductive and territorial behaviors (Winkler & Wade 1998; Lovern et al. 2001; 

Jenssen et al. 2006). However, when they enter the non-breeding season, the gonads 

regress, steroid hormone levels decrease, and the lizards no longer display reproductive 

or territorial behaviors (Wade 2011). Unlike mammals, which sexually mature during 

puberty, reptiles do not appear to undergo a complete pubertal stage (Ball & Wade 2013). 

Instead, gonadal hormone synthesis and gametogenesis occurs just before the 

reproduction phase. Previous work in green anoles revealed that hyperthyroidism reduces 

the stimulatory response of dormant testis to long photoperiod conditions, which implies 

that excess levels of thyroid hormone might inhibit testicular recrudescence (Turner 

1972), and suggests that thyroid hormone might play a role in seasonal changes of 

reproductive physiology and function. It is, however, not clear whether seasonal effects 

of TH and deiodinases contribute to seasonal changes in the gonads.  
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Experiment 

We hypothesized that seasonal reproduction is regulated by local changes to 

thyroid hormone levels through seasonal changes in deiodinase expression. We examined 

Dio2 and Dio3 mRNA levels in the gonads to determine whether the mRNA expression 

of these enzymes is sexually and/or seasonally dimorphic. In addition, we investigated 

how HPG axis activation in non-breeding animals alters Dio2 and Dio3 expression levels. 

We hypothesized that deiodinase mRNA expression can be regulated by LH and FSH 

signaling at the gonads, which could lead to increased gametogenesis as well as 

steroidogenesis. Thus, we will examine the effect of exogenous LH and FSH on gonadal 

weight, deiodinase gene expression and StAR expression in female and male gonads.  

Materials and Methods 

Experiment 1: Seasonal deiodinase expression in the gonads 

The gonads were collected from 6 female and 6 male lizards during the breeding 

and non-breeding seasons respectively. Dio2 and Dio3 mRNA expressions from gonads 

were quantified relative to β-actin and effects of season and sex were examined. 

Experiment 2: LH or FSH manipulation of non-breeding lizards 

Non-breeding female and male lizards were injected with a low dose of LH, FSH 

or vehicle (beginning January 2018) to examine which hormone is necessary for inducing 

seasonal gonadal changes. After injections (Figure 2), gonads were collected and the 

gonad mass was measured. Dio2, Dio3 and StAR mRNA expressions from gonads were 

quantified and compared across the injected groups. Steroid hormones levels were 

assayed (T in males and E2 in females) and male aggressive behavior was measured 
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using a mirror test before the tissue collection. 

Experiment 3: LH and FSH manipulation of non-breeding male lizards 

Male lizards were injected with a higher dose of LH+FSH or vehicle (mid-

January 2018) to examine whether both LH and FSH can induce breeding in an otherwise 

non-breeding animal. After injections (Figure 2), gonads were collected and the gonad 

mass was measured. Gonadal Dio2, Dio3 and StAR mRNA expression was quantified 

and compared across the injected groups. Plasma T levels were determined and 

aggressive behavior was measured using a mirror test before the tissue collection. 

Animals and tissue collection 

 For experiment 1, gonadal mRNA that was previously extracted for a different 

study was used (Peek & Cohen 2018). Briefly, female and male green anole lizards were 

ordered (Charles Sullivan) during the breeding (May 2015) and non-breeding seasons 

(October 2015). Lizards were dissected immediately upon arrival in the lab to collect the 

gonads and confirm breeding state. Breeding condition was confirmed by visual 

inspection of the reproductive system. Non-breeding females had small ovaries with no 

or small yoking follicles and small oviducts, whereas breeding females had enlarged 

ovaries with yoking follicles and large oviducts. Non-breeding males lizards had small 

testes, while breeding males had enlarged testes with a milky vas deferens.  

For experiment 2 and 3, non-breeding green anole lizards were ordered (Candy’s 

Quality Reptiles; end of November 2017) and housed in the lab for 43 days (experiment 

2) and 60 days (experiment 3) prior to the first injection. All males were separately 

housed in glass terraria (39.5x22x26 cm) and 4-5 females were co-housed in common 
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terraria (77.5x32.5x32.5 cm) by injection group. Each cage had peat moss and sticks bars 

for substrate. All males were kept in visual isolation from each other and each cage was 

misted daily. Ambient temperatures ranged from 24°C during the day to 13°C at night 

(10:14 light/dark cycle). Full spectrum bulbs and heat lamps were provided directly 

above the cages to allow basking temperatures of 10°C above ambient. Calcium-dusted 

crickets were provided twice per week. Three male lizards were dissected to confirm non-

breeding state (see above) before injection of gonadotropins (LH and FSH). On the day 

after the final injection (see below), all lizards were rapidly decapitated, and gonads and 

trunk blood were collected. Blood was collected using heparinized capillary tubes, then 

centrifuged to collect plasma, and stored at -20°C. Gonado-somatic index (GSI) was 

calculated [(gonadal weight) / (body weight) x 100%]. Gonads were frozen in cold 

methyl butane and stored at – 80°C.  

LH and FSH injection 

For experiment 2, each non-breeding female (n = 4-5) and male (n = 6) lizard 

was given a subcutaneous injection with saline (NaCl 0.99%, 1M NaOH; vehicle), LH 

(0.2 μg/g; Licht & Pearson 1969), or FSH (0.015 μg/g), using a 25 μl syringe (Hamilton 

Co.) (Figure 2). All lizards were given one injection every other day for 12 days (total of 

6 injections).  

For experiment 3, 6 non-breeding male lizards were given a subcutaneous 

injection of LH (2 μg/g) (Licht & Tsui 1975) and FSH (0.15 μg/g) (Licht & Papkoff 

1971) on alternate days, using a 25μl syringe (Hamilton Co.) (Figure 2). In addition to the 

6 males injected with saline from experiment 2, 3 additional males had subcutaneous 

injections with saline (NaCl 0.99%, 1M NaOH; vehicle) as a control group. 
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Aggressive behavior assay 

 On the 5th injection day, between 10 am and 12 pm (prior to receiving the 

injection), a mirror test was conducted for male lizards in all groups to determine 

aggressive behavior (Korzan et al. 2000). Each male was placed in the middle of a new 

terrarium with two wooden perches, and visually isolated from others. After a three-

minute equilibration period, a mirror was placed on one side of the cage. Aggressive 

displays were recorded by video camera for 15 minutes after placing the mirror. 

 An observer blind to treatment recorded all aggressive behavior that occurred 

during the 15 minute test period. Aggressive behaviors of male anoles include dewlap 

extension, push-ups, lateral compression, color change, and/or post-orbital eyespot 

formation (Yang & Wilczynski 2003). We defined dewlap extension as a single extension 

of the red throat fan and push-up displays as vertical movement of the front portion of the 

body. Lateral compression was defined as the formation of a sagittal crest from the back 

of the neck towards the tail. Also, we tracked changes in the postorbital eyespot, which is 

an indicator of acute stress responses, and body color change (Yang et al. 2001). As each 

individual male displayed different types of aggressive behavior (dewlap extension, 

lateral compression, etc.), we also measured the latency to the first display of aggressive 

behavior. 

Enzyme-linked immunosorbent assay (ELISA) 

 Plasma T and E2 levels were determined via a testosterone high sensitivity 

ELISA kit and 17β-estradiol high sensitivity ELISA kit (Enzo Life Sciences, Inc.). 

Samples from males were run using two T ELISA kits, with groups evenly distributed 

across plates. All female samples were run using one E2 ELISA kit. ELISAs were 
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performed according to manufacturer’s instructions. Additional plasma standards were 

prepared at high (470 pg/ml), medium (117.5 pg/ml), and low (29.4 pg/ml) 

concentrations of T diluted in anole plasma (pooled from several males) for the T 

ELISAs. Similarly, plasma standards were prepared for the E2 ELISA at high (250 

pg/ml), medium (125 pg/ml), and low (62.5 pg/ml) concentrations of E2 diluted in anole 

plasma (pooled from several females). Each plasma standard was run in duplicate and 

parallelism to the standard curve was demonstrated. Samples were also run in duplicate. 

Male average plasma volume was 55 µl ± 2.9 µl (range: 20 µl – 95 µl) and female 

average plasma volume was 36.5 µl ± 2.0 µl (range: 12 µl – 55 µl). Intra- and inter-assay 

coefficients of variance were determined using plasma standards, as appropriate. 

Primer design 

 Specific primer sets for β-actin, Dio2, Dio3 and StAR were designed from the 

predicted sequences in the green anole genome (National Center for Biotechnology 

Information, NCBI) and purchased from Integrated DNA Technology (Table 1). 

Polymerase chain reaction (PCR) was performed to determine optimal primer 

concentrations (Table 1) and check primer specificity using Quick-load Taq 2X Master 

Mix (New England Biolabs, NEB) with the following reaction conditions: 95°C for 30 s 

followed by 40 cycles of 95°C (30 s), 60°C (1 min) and 68°C (1 min). The PCR products 

were run on a 1.5 % agarose gel to confirm the amplicon size and the presence of a single 

band. Amplicons were sequenced (GeneWiz) and the sequences were confirmed using 

BLAST NCBI.  

RNA isolation and cDNA synthesis  

Gonads from the lizards were weighed, homogenized in QIAzol (Qiagen) and 
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incubated with chloroform. RNA was isolated using the RNeasy Lipid Tissue Mini Kit 

(Qiagen), as per manufacturer’s instructions. An additional on-column DNase I (Qiagen) 

treatment at room temperature for 15 minutes was used to remove genomic DNA. 

Isolated RNA was concentrated using ethanol precipitation and reconstituted with 20 μl 

of RNAse free water at 65°C. RNA purity and concentration was determined by 

NanoDrop. RNA was run on a 1.5% agarose gel with 1% bleach to visually confirm RNA 

quality (Aranda et al. 2012). All samples were of high quality with a 260/280 ratio close 

to 2.0. Isolated RNA was stored at -80°C and 1 μg of RNA was reverse transcribed to 

cDNA using the ProtoScript II First Strand cDNA Synthesis Kit (NEB). cDNA was stored 

at -20°C until use.  

qPCR 

Quantitative real-time polymerase chain reaction (qPCR) was conducted using 

the relative standard curve method. Standard curves were run for each gene using a 5-fold 

serial dilution of cDNA (100 to 0.8 ng/μl) to determine sample concentration and confirm 

primer efficiencies (Table 1).  

Each qPCR reaction contained 40 ng/μl total cDNA, PowerUp SYBR Green 

PCR master mix (ThermoScientific) and the optimal concentration of forward and 

reverse primers (Table 1). Each sample was run in duplicate and one gene (including the 

standard curve, water controls and samples) was assayed on each 96-well plate.  

The expression of target genes was analyzed using the StepOnePlus (Applied 

Biosystems) real-time PCR machine. The initial denaturation step was at 95°C (10 min) 

followed by 40 cycles of 95°C (15 sec) and a combined annealing and extension step of 

60°C (1 min). Then, a melt curve was conducted with steps at 95°C (15 sec), 60°C (1 
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min), and 95°C (15 sec) to confirm the presence of a single amplicon.  

Data analysis 

All data are presented as mean ± SEM. The qPCR efficiencies of individual 

genes (β-Actin, Dio2, Dio3 and StAR) were calculated using the equation, E = 

10��/���	
 (Pfaffl 2001). Ideal efficiencies are approximately 2.0, as DNA should be 

doubled at each cycle (Pfaffl 2001). The relative standard curve method was used to 

quantify the mRNA expression of each gene. mRNA expression was calculated by a 

logarithmic equation derived from the standard curve of each gene and normalized to β-

actin.  

Statistical analysis was conducted using SPSS software with α = 0.05. We first 

conducted t-tests to compare the two male vehicle groups from experiment 2 and 3, and 

we found that these two groups did not differ in testicular weight (t7 = 1.14, p = 0.293) or 

GSI (t7 = 2.12, p = 0.072). Therefore, we combined all vehicle individuals for subsequent 

analysis. Levene’s test was performed to confirm equal variance across groups. Two-way 

ANOVAs were used to examine the effects of sex, season effects on gene expression and 

a Tukey-b post hoc test was used to examine significant differences across groups. T-tests 

were conducted to compare hormone levels and behaviors of breeding with non-breeding 

seasons. One-way ANOVAs were used to determine the treatment effects on gene 

expression, hormone levels, GSI, and behaviors. T-tests were conducted to compare the 

LH+FSH injection group with the vehicle injection group. If the data had unequal 

variance (as detected by Levene’s test), we used Mann-Whitney U tests to compare 

groups. For all injection groups, we used Pearson’s correlations to examine the 

relationship between hormone levels, StAR mRNA expression and gonad size, with only 
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significant relationships reported. Grubb’s test was performed to detect outliers, which 

were subsequently removed from the data set.  

Results 

Experiment 1: Sexually and seasonally dimorphic expression in gonadal deiodinase 

expression 

Dio2 mRNA expression was significantly upregulated in breeding compared to 

non-breeding gonads (F(1, 18) = 13.41, p = 0.002; Figure 3A). There was also a significant 

sex difference such that males had higher gonadal expression of Dio2 mRNA than 

females (F(1, 18) = 5.88, p = 0.026). We also detected an interaction between sex and 

season in gonadal Dio2 mRNA expression (F(1, 18) = 6.37, p = 0.021). Tukey-b post hoc 

tests confirmed that breeding male gonads had highly upregulated Dio2 mRNA 

expression compared to other groups. 

We detected significantly upregulated Dio3 mRNA expression in breeding 

compared to non-breeding gonads (F(1, 16) = 24.55, p < 0.001; Figure 3B). Also, there was 

a sex difference such that female gonads had higher Dio3 mRNA expression compared to 

males (F(1, 16) = 10.55, p = 0.005). Lastly, there was an interaction between season and sex 

(F(1, 18) = 9.238, p = 0.008), with breeding female gonads having the highest Dio3 mRNA 

across groups.  

To confirm the validity of the T and E2 ELISAs, we examined T (in males) and 

E2 (in females) levels in breeding and non-breeding lizards. As has been shown 

previously (Lovern et al. 2001), breeding males had higher T levels compared to non-

breeding males (t10 = 3.670, p = 0.004; Figure 4A). We were unable to detect a difference 



14 

in E2 levels between breeding and non-breeding females (t9 = 0.283, p = 0.783; Figure 

4C). 

We examined aggressive behavior in breeding and non-breeding males to 

confirm the validity of the mirror test. As has been shown previously (Jenssen et al. 

2006), breeding males displayed higher levels of aggressive behavior compared to non-

breeding males (t8 = 3.059, p = 0.016; Figure 4B).  

Experiment 2: LH or FSH injections did not induce breeding in non-breeding lizards 

For males, LH or FSH injections did not induce testicular growth (F(2,17) = 0.03, p 

= 0.973; Figure 5A). We detected an effect of treatment on StAR mRNA expression 

(F(2,17) = 4.50, p = 0.027; Figure 5B) in the gonads, such that LH injections induced 

increased StAR mRNA expression in testes compared to FSH injections, although the 

effect of LH was not significantly different from the vehicle injection group. Additionally, 

there were no effects of treatment on T levels (F(2,16) = 1.77, p = 0.203; Figure 5C) and the 

latency to the first aggressive behavior (F(2,18) = 0.47, p = 0.631; Figure 5D).  

In females, there were no effects of LH or FSH treatments compared to the 

vehicle control on GSI (F(2,11) = 2.11, p = 0.167; Figure 6A), StAR mRNA expression 

(F(2,10) = 0.83, p = 0.464; Figure 6B), and E2 levels (F(2,11) = 0.71, p = 0.513; Figure 6C). 

Experiment 2: Upregulated Dio2 mRNA in testes in response to LH or FSH injections 

We detected an effect of treatment on Dio2 mRNA expression in the testes (F(2,17) 

= 6.67, p = 0.007; Figure 7A), with higher levels of Dio2 mRNA in testes after either LH 

or FSH injection compared to vehicle controls. There was no effect of treatment on Dio2 

mRNA levels in ovaries (F(2,10) = 1.01, p = 0.398; Figure 7B).  
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There were no effects of treatment on Dio3 mRNA expression in either the testes 

(F(2,17) = 2.40, p = 0.121; Figure 7C) or ovaries (F(2,10) = 3.04, p = 0.093; Figure 7D). 

There were no significant correlations between GSI, T levels, testicular StAR 

gene expression and aggressive behavior in males (all r2 ≤ 0.06, p ≥ 0.301; data not 

shown). In females, there were no significant correlations between GSI, E2 levels and 

ovarian StAR gene expression (all r2 ≤ 0.06, p ≥ 0.408; data not shown). 

Experiment 3: LH+FSH injections induced some breeding-like parameters in non-

breeding males 

Males injected with LH+FSH had a larger GSI compared to vehicle controls (t13 

= 2.46, p = 0.029; Figure 8A). There was also a significant increase in StAR mRNA 

expression in testes after LH+FSH injections compared to vehicles (U = 0, n1 = 9, n2 = 6, 

p < 0.001; Figure 8B). Systemic T levels were also significantly increased in the 

LH+FSH group compared to controls (t12 = 3.34, p = 0.006; Figure 8C). However, there 

was no effect of treatment on the latency to the first aggressive display (t13 = 0.32, p = 

0.758; Figure 8D). Plasma T concentration was highly correlated with gonadal StAR 

mRNA expression (r2 = 0.44, p = 0.010; Figure 9). All other comparisons were not 

significant (all r2 ≤ 0.15, p ≥ 0.164; data not shown). 

Experiment 3: Testicular Dio3 mRNA expression is upregulated in response to LH+FSH 

injections 

In the testes, we detected a significant increase in Dio3 mRNA levels in the 

LH+FSH injected group compared to the vehicle controls (t13 = 3.68, p = 0.003; Figure 

10B). In contrast, there was no significant difference detected in testicular Dio2 mRNA 
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expression between groups (t13 = 0.95, p = 0.359; Figure 10A).  

Discussion 

The present study was designed to test the hypothesis that deiodinase (Dio2 and 

Dio3) mRNA expression patterns vary with sex and season, and whether expression 

levels of these enzymes interact with seasonal changes in gonadotropin levels (LH and 

FSH) to impact seasonal breeding morphology, steroid hormone levels and behavior. We 

found that Dio2 and Dio3 mRNA expression patterns are seasonally and sexually 

dimorphic, which suggests that differential activation of thyroid hormone locally might 

play a role in seasonal breeding. Also, increased testes size, steroidogenic enzyme mRNA 

expression, and Dio3 mRNA expression were induced after LH+FSH injections in non-

breeding males. Our results suggest that local thyroid hormone may interact with 

gonadotropins to control seasonal changes in gonadal function.  

Breeding testes may have higher TH activation by upregulating Dio2 

 Although neural Dio2 mRNA is known to be critical for reproduction in birds 

and mammals (Yoshimura et al. 2003; Yasuo et al. 2006, 2007; Ikegami et al. 2015), the 

role of Dio2 in the gonads has not been well studied. To our knowledge, this study is the 

first to examine Dio2 mRNA expression in reptilian gonads. We found that Dio2 mRNA 

expression in the testes was approximately three times higher in breeding compared to 

non-breeding male lizards, while females maintained low Dio2 mRNA expression levels 

in the ovaries across seasons (Figure 3). High Dio2 mRNA expression in breeding testes 

suggests that there might be higher gonadal activation of TH during the breeding season. 

Similarly, Dio2 mRNA was highly expressed, with high Dio2 activity in the germ cells of 
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adult rat testes (Wajner et al. 2007), with higher Dio2 protein expression during the 

breeding season in golden hamster (Mesocricetus auratus) testes (Verma & Haldar 2016). 

Furthermore, Dio2 knockout zebrafish (Danio rerio) had impaired fertilization and 

reduced T production (Houbrechts et al. 2019), suggesting that Dio2 (and TH signaling) 

might be important for adult testes function. These results imply that increased levels of 

gonadal T3 through Dio2 expression might play role in maintenance of normal testicular 

functions, steroidogenesis and gametogenesis. 

Breeding ovaries may restrict TH activation by upregulating Dio3 

 We found that Dio3 mRNA expression was about four times higher in breeding 

compared to non-breeding ovaries, with very low expression in the testes across seasons 

(Figure 3). High expression of Dio3 mRNA in breeding ovaries suggests that restricting 

gonadal TH activation may be important for ovarian function in green anoles. This was 

an unexpected result, as hypothyroidism is known to be associated with irregular estrus 

cycles and reduced E2 production in both rats and zebrafish (Tohei et al. 1998; 

Houbrechts et al. 2019). Furthermore, T3 is known to increase E2 production and 

follicular development from mouse granulosa cells in the presence of FSH (Liu et al. 

2017). However, work in seasonally breeding ewes (Ovis aries) reported that 

thyroidectomy at the end of the breeding season prevented the transition to anestrus (the 

period of sexual quiescence) and the suppression of the HPG axis, which suggests the 

necessity of TH in suppressing the HPG axis and inducing the transition to anestrus 

(Moenter et al. 1991). These results support the idea that breeding lizard ovaries might 

restrict thyroid hormone activation by increasing Dio3 expression in order to maintain 

reproduction and prevent the transition to non-breeding.  
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TH levels have been shown to fluctuate seasonally in a variety of seasonally 

breeding animals. For example, ewes have increased T4 and T3 levels during the non-

breeding compared to breeding season (Peeters et al. 1990), while female frog (Rana 

perezi) plasma T4 and T3 levels are increased during the breeding compared to non-

breeding season (Gancedo et al. 1995). Furthermore, exogenous T3 injections have been 

demonstrated to upregulate Dio3 mRNA expression in the gonads of another frog species 

(Silurana tropicalis), which may be a mechanism to maintain normal T3 levels in the 

gonads (Campbell & Langlois 2018). Although seasonal levels of TH have not been 

directly measured in green anoles, studies have shown that thyroid activity is increased in 

green anole and western fence (Sceloporus occidentalis) lizards in warmer compared to 

colder environmental temperatures (Lynn et al. 1965; Chiu et al. 2007), which suggests 

seasonal variation in TH levels in lizards. Thus, increased Dio3 expression in breeding 

green anole ovaries might function in a compensatory manner to counteract rising 

endogenous TH levels during the breeding season. Taken together, these data suggest 

that, during the breeding season, T3 production might be restricted to allow for 

appropriate ovarian reproductive function, although more work is needed to examine this 

possibility.   

Low levels of LH or FSH induce increased Dio2 mRNA 

We detected increased Dio2 mRNA expression in the LH or the FSH injected 

lizards, with no changes in GSI, StAR mRNA expression and plasma T levels compared 

to vehicle controls (Figures 5 and 7). Likely, the LH and FSH doses were too low to 

induce testicular recrudescence from a non-breeding to breeding state, but were enough 

to induce changes in Dio2 levels. Martinez et al. (2016) has suggested that Dio2 is not as 
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critical as Dio3 in testicular development, with Dio2 knockout mice rarely displaying 

deficits in fertility or testicular structure. Similarly, pubertal Japanese quail (Coturnix 

japonica) with regressed gonads maintain high levels of Dio2 mRNA until the gonad 

begins transitioning to breeding (Ikegami et al. 2015). Taken together, these data suggest 

that Dio2 might be important for maintaining gonadal state (i.e., breeding or non-

breeding). Additional studies will be needed to test this idea.   

LH+FSH injections induced a breeding-like testis 

 We observed that LH+FSH injections induced approximately 3 times higher T 

production compared to vehicle controls, which was coupled with increased testicular 

growth and StAR mRNA expression in testes in LH+FSH treated lizards (Figures 8 and 

9). Circulating LH is known to induce StAR expression in the gonads, which is the rate 

limiting step of steroidogenesis (Clark et al. 1994; Kallen et al. 1998). Thus, increased 

LH levels during the breeding season lead to an increased StAR response, which is 

followed by an increase in steroid hormone production in a variety of seasonally breeding 

animals such as horses (Equus caballus), tree swallows (Tachycineta bicolor), Japanese 

quail, European sea bass (Dicentrarchus labrax), and green anole lizards (Rocha et al. 

2009; Kozi et al. 2012; Ikegami et al. 2015; Peek & Cohen 2018; Bentz et al. 2019). 

Similarly, our data revealed that gonadotropins induced steroidogenesis in non-breeding 

green anole males. 

 Although LH+FSH injections induced a breeding-like testes with increased 

circulating T levels, male aggressive behavior was not enhanced (Figure 8). Our 

treatment paradigm was relatively short (two weeks), which may not have been long 

enough to induce neural changes necessary to alter aggressive behavior (e.g. dewlap 
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extensions, push ups, and lateral compression) (Kabelik et al. 2008). Additionally, there 

is evidence in a number of species, including green anoles, that aggression is not 

necessarily dependent on circulating T levels, but may be dependent on other parameters, 

such as social cues (Yang & Wilczynski 2003; Korzan & Summers 2004).  

LH+FSH injections induced increased Dio3 mRNA in testes 

  We found that LH+FSH injections induced significant upregulation of Dio3 

mRNA expression in non-breeding male testes compared to vehicles (Figure 10), 

suggesting that non-breeding males with acute HPG axis activation may be restricting TH 

activation in the testes by increasing Dio3 mRNA expression. This contrasts with our data 

from unmanipulated breeding males, with upregulated Dio2 mRNA expression. Unlike 

mammals, reptiles do not appear to undergo puberty and, instead, gonadal maturation 

occurs seasonally during the breeding season, with regression to a non-mature state in the 

non-breeding season in response to changes in photoperiod and HPG axis activity (Ball & 

Wade 2013). Thus, the transition to breeding from non-breeding gonads with upregulated 

HPG axis activity can be compared to the maturation of mammalian gonads (i.e., 

puberty). Thus, lizards treated with LH+FSH for short periods likely have developing 

testes instead of fully matured testes. High Dio3 mRNA levels in developing lizard testes 

are similar to high Dio3 activities detected in the developing testes of neonatal and 

weaned rats and mice (Bates et al. 1999; Hernandez et al. 2006). Similarly, Dio3 

knockout mice have impaired sperm production as well as reduced testicular weight, 

which implies that restriction of T3 signaling by Dio3 during development is essential for 

normal testis maturation and function (Martinez et al. 2016). Furthermore, Dio3 mRNA 

is highly expressed in Japanese quail testes during the early stage of testicular 
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recrudescence with increased activity of HPG axis, indicating the presence of low 

testicular T3 at the beginning of recrudescence (Ikegami et al. 2015). Together with 

previous studies, our data suggest that there may be a potential inhibitory effect of TH on 

testicular recrudescence, and maturing testes increase Dio3 expression in order to reduce 

TH signaling. Additional work is needed to test this idea. 

Conclusion 

Relatively little is known about thyroid activation or inactivation in the gonads 

and how this might play a role in seasonal changes of reproductive functions. Dio2 

mRNA was upregulated in breeding lizard testes, which suggests that breeding testes may 

have increased TH activation, while Dio3 mRNA was upregulated in breeding ovaries, 

potentially restricting TH signaling. However, acute HPG axis activation by LH+FSH 

injections induced increased Dio3 mRNA levels, which was accompanied by early 

testicular recrudescence as determined by increased testicular growth, StAR mRNA and 

plasma T. This suggests different roles of locally activated TH in the gonads, where TH 

might inhibit testicular recrudescence, but is important for the maintenance of breeding 

testes. Future work is needed to elucidate how HPG axis activation alters deiodinase gene 

expression in both males and females and what role locally produced TH has in seasonal 

breeding. 
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Figures and Tables 

 

Figure 1. TH activation and inactivation is controlled by deiodinase enzymes. With 
specific iodine removal, Dio2 activates TH by converting T4 to T3 and Dio3 inactivates 
TH by converting T4 to rT3. Dio3 and Dio2 convert T3 and rT3, respectively, to T2. 
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Experiment Group Injection Dose N 

1 
BS No injection ♂: 6, ♀: 6 

NBS No injection ♂: 6, ♀: 6 

2 

Vehicle - ♂: 6, ♀: 4 

LH 0.2μg/g ♂: 6, ♀: 5 

FSH 0.015μg/g ♂: 6, ♀: 5 

3 
Vehicle - ♂: 3 

LH + FSH 2μg/g LH + 0.15μg/g FSH ♂: 6 

 

Figure 2. Experimental design. Lizards in experiment 1 were unmanipulated. For 
experiments 2 and 3, lizards were injected once every two days (total of 6 injections) with 
vehicle, LH, FSH, or LH+FSH. 
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Table 1. Target genes with primer sequences, amplicon size, primer concentration and 
qPCR efficiencies. 
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Figure 3. Deiodinase mRNA expression (arbitrary units) in breeding and non-breeding 
gonads. (A) Dio2 expression in the breeding male gonads was significantly upregulated 
compared to other groups. (B) Dio3 expression in the gonads was increased in breeding 
female gonads compared to other groups. n = 5-6 per group. Letters above bars denote 
statistical differences between groups. Two-way ANOVAs, p ≤ 0.05 
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Figure 4. Steroid hormone ELISAs and aggressive behavior tests were validated in this 
species. (A) T levels were higher in breeding compared to non-breeding males (B) 
Breeding males had a shorter latency to the first aggressive behavior display compared to 
non-breeding males. (C) E2 levels were not different between breeding and non-breeding 
females. Numbers in the bars denote the sample size. T-test, *p ≤ 0.05 
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Figure 5. Testicular response to LH or FSH injections. (A) LH or FSH injections did not 
induce changes in the gonado-somatic index (GSI) of testes. (B) StAR mRNA levels 
(arbitrary units) in testes were higher in the LH injected group compared to the FSH 
injected group, but these did not differ from the vehicle injected group. (C,D) LH or FSH 
injections did not induce changes in T levels or aggressive behavior. Numbers in the bars 
denote the sample size. Letters above bars denote statistical differences between groups. 
One-way ANOVAs, p ≤ 0.05 
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Figure 6. Ovarian response to LH or FSH injections. LH or FSH injections in females did 
not induce changes in (A) GSI, (B) StAR mRNA expression (arbitrary units) or (C) E2 
levels. Numbers in the bars denote the sample size. One-way ANOVAs, p ≥ 0.167 
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Figure 7. Deiodinase mRNA expression (arbitrary units) in testes and ovaries in response 
to LH or FSH injections. (A, B) Dio2 mRNA expression was upregulated in the testes of 
animals injected with LH or FSH compared to vehicle controls, with no difference in 
females. (C, D) Relative Dio3 mRNA expression did not differ across injection groups in 
both testes and ovaries. Numbers in the bars denote the sample size. Letters above bars 
denote statistical differences across groups. One-way ANOVAs, p ≤ 0.05 
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Figure 8. Testicular response to LH+FSH injections. (A) LH+FSH injections increased the 
GSI compared to vehicle controls. LH+FSH injections increased (B) StAR mRNA 
expression (arbitrary units) and (C) plasma T levels compared to vehicle controls. (D) The 
latency to the first aggressive behavior did not differ between groups. Numbers in the bars 
denote the sample size. T-test, *p ≤ 0.05 
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Figure 9. Correlation between testicular responses after LH+FSH injections. Plasma T 
concentration was highly correlated with StAR mRNA expression (arbitrary units). p ≤ 
0.05 
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Figure 10. Testicular deiodinase mRNA expression (arbitrary units) after LH+FSH 
injections. (A) Dio2 mRNA expression was not different between vehicle and LH+FSH 
groups. (B) Dio3 mRNA expression was significantly increased in LH+FSH injected 
lizards compared to vehicle controls. Numbers in the bars denote the sample size. T-test, 
*p ≤ 0.05 

 

 

 

  



33 

References 

Aranda PS, Lajoie DM & Jorcyk CL 2012 Bleach gel: A simple agarose gel for analyzing 
RNA quality. Electrophoresis 33 366–369. 

Ball GF & Wade J 2013 The value of comparative approaches to our understanding of 
puberty as illustrated by investigations in birds and reptiles. Hormones and Behavior 
64 211–214. 

Bates JM, St. Germain DL & Galton VA 1999 Expression profiles of the three 
iodothyronine deiodinases, D1, D2, and D3, in the developing rat. Endocrinology 140 
844–851. 

Bentley GE, Tucker S, Chou H, Hau M & Perfito N 2013 Testicular growth and regression 
are not correlated With Dio2 expression in a wild male songbird, sturnus vulgaris, 
exposed to natural changes in photoperiod. Endocrinology 154 1813–1819. 

Bentz AB, Dossey EK & Rosvall KA 2019 Tissue-specific gene regulation corresponds 
with seasonal plasticity in female testosterone. General and Comparative 

Endocrinology 270 26–34. 

Braverman LE, Ingbar SH & Sterling K 1970 Conversion of thyroxine (T4) to 
triiodothyronine (T3) in athyreotic human subjects. Journal of Clinical Investigation 
49 855–864. 

Campbell DEK & Langlois VS 2018 Thyroid hormones and androgens differentially 
regulate gene expression in testes and ovaries of sexually mature Silurana tropicalis. 
General and Comparative Endocrinology 267 172–182. 

Chiu KW, Lynn WG & Leichner JP 2007 Environmental temperature and thyroid activity 
in the lizards, Sceloporus occidentalis. The Biological Bulletin 139 107–114. 

Clark BJ, Wells J, King SR & Stocco DM 1994 The purification, cloning, and expression 
of a novel luteinizing hormone- induced mitochondrial protein in MA-10 mouse 
Leydig tumor cells. Characterization of the Steroidogenic Acute Regulatory protein 
(StAR). Journal of Biological Chemistry 269 28314–28322. 

Cooke PS, Hess RA, Porcelli J & Meisami E 1991 Increased sperm production in adult rats 
after transient neonatal hypothyroidism. Endocrinology 129 244–248. 

Dawson  a 1998 Thyroidectomy of house sparrows (Passer domesticus) prevents photo-
induced testicular growth but not the increased hypothalamic gonadotrophin-releasing 
hormone. General and Comparative Endocrinology 110 196–200. 

Dijkstra G, De Rooij DG, De Jong FH & Van Den Hurk R 1996 Effect of hypothyroidism 
on ovarian follicular development, granulosa cell proliferation and peripheral 
hormone levels in the prepubertal rat. European Journal of Endocrinology 134 649–
654. 

De França LR, Hess RA, Cooke PS & Russell LD 1995 Neonatal hypothyroidism causes 
delayed sertoli cell maturation in rats treated with propylthiouracil: Evidence that the 
sertoli cell controls testis growth. The Anatomical Record 242 57–59. 



34 

Gancedo B, Alonso-Gómez AL, de Pedro N, Corpas I, Delgado MJ & Alonso-Bedate M 
1995 Seasonal Changes in Thyroid Activity in Male and Female Frog, Rana perezi. 
General and Comparative Endocrinology 97 66–75. 

Gautam M, Mathur A, Khan MA, Majumdar SS & Rai U 2013 Transcriptome Analysis of 
Spermatogenically Regressed, Recrudescent and Active Phase Testis of Seasonally 
Breeding Wall Lizards Hemidactylus flaviviridis. PLoS ONE 8 e58276. 

Van Haaster LH, De Jong FH, Docter R & De Rooij DG 1993 High neonatal 
triiodothyronine levels reduce the period of sertoli cell proliferation and accelerate 
tubular lumen formation in the rat testis, and increase serum inhibin levels. 
Endocrinology 133 755–760. 

Haisenleder DJ, Ortolano GA, Dalkin AC, Yasin M & Marshall JC 1992 Differential 
actions of thyrotropin (Tsh)-releasing hormone pulses in the expression of prolactin 
and tsh subunit messenger ribonucleic acid in rat pituitary cells in vitro. 
Endocrinology 130 2917–2923. 

Hanon EA, Lincoln GA, Fustin JM, Dardente H, Masson-Pévet M, Morgan PJ & Hazlerigg 
DG 2008 Ancestral TSH Mechanism Signals Summer in a Photoperiodic Mammal. 
Current Biology 18 1147–1152. 

Henson JR, Carter SN & Freeman DA 2013 Exogenous T 3 Elicits Long Day–Like 
Alterations in Testis Size and the RFamides Kisspeptin and Gonadotropin-Inhibitory 
Hormone in Short-Day Siberian Hamsters. Journal of Biological Rhythms 28 193–
200. 

Hernandez A, Martinez ME, Fiering S, Galton VA & St. Germain D 2006 Type 3 deiodinase 
is critical for the maturation and function of the thyroid axis. Journal of Clinical 

Investigation. 

Hess RA, Cooke PS, Bunick D & Kirby JD 1993 Adult testicular enlargement induced by 
neonatal hypothyroidism is accompanied by increased sertoliand germ cell numbers. 
Endocrinology 132 2607–2613. 

Houbrechts AM, Darras VM & Darras VM 2019 Disruption of deiodinase type 2 in 
zebrafish disturbs male and female reproduction. Journal of Endocrinology 241 111–
123. 

Ikegami K, Atsumi Y, Yorinaga E, Ono H, Murayama I, Nakane Y, Ota W, Arai N, Tega A, 
Iigo M et al. 2015 Low temperature-induced circulating triiodothyronine accelerates 
seasonal testicular regression. Endocrinology 156 647–659. 

Jenssen TA, Greenberg N & Hovde KA 2006 Behavioral Profile of Free-Ranging Male 
Lizards, Anolis carolinensis, across Breeding and Post-Breeding Seasons. 
Herpetological Monographs 9 41–62. 

Joyce KL, Porcelli J & Cooke PS 1993 Neonatal Goitrogen Treatment Increases Adult 
Testis Size and Sperm Production in the Mouse. Journal of Andrology 14 448–455. 

Kabelik D, Weiss SL & Moore MC 2008 Steroid hormones alter neuroanatomy and 
aggression independently in the tree lizard. Physiol Behav 93 492–501. 



35 

Kallen CB, Billheimer JT, Summers SA, Stayrook SE, Lewis M & Strauss JF 1998 
Steroidogenic acute regulatory protein (StAR) is a sterol transfer protein. Journal of 

Biological Chemistry 273 26285–26288. 

Korzan WJ & Summers CH 2004 Serotonergic response to social stress and artificial social 
sign stimuli during paired interactions between male Anolis carolinensis. 
Neuroscience 123 835–845. 

Korzan WJ, Summers TR & Summers CH 2000 Monoaminergic activities of limbic 
regions are elevated during aggression: Influence of sympathetic social signaling. 
Brain Research 870 170–178. 

Kozi K, Hojo T, Takahashi M, Acosta TJ, Nambo Y & Okuda K 2012 Seasonal Changes 
in Luteal Progesterone Concentration and mRNA Expressions of Progesterone 
Synthesis-related Proteins in the Corpus Luteum of Mares. Journal of Reproduction 

and Development 58 393–397. 

Krassas GE, Pontikides N, Kaltsas T, Papadopoulou P, Paunkovic J, Paunkovic N & Duntas 
LH 1999 Disturbances of menstruation in hypothyroidism. Clinical Endocrinology 50 
655–659. 

Krassas G, Poppe K & Glinoer D 2010 Thyroid Function and Human Reproductive Health. 
Endocrine Reviews 31 702–755. 

Kuiper GGJM, Kester MHA, Peeters RP & Visser TJ 2005 Biochemical Mechanisms of 
Thyroid Hormone Deiodination. Thyroid 15 787–798. 

Licht P & Papkoff H 1971 Gonadotropic and Activities LH in the of the Subunits Lizard 
Anolis of Ovine FSH carolinensis studies of ovine follicle stimulating hormone 
( FSHJ and luteinizing hormone ( LH , ICSH ) have recently demon- molecules is 
composed of a pair of chemi- 1970 ). General and Comparative Endocrinology 16 
586–593. 

Licht P & Pearson AK 1969 Effects of Mammalian Testes of the Gonadotropins Lizard 
LH ) on t Anolis Although the dependence of the testis on the anterior pituitary has 
been established in reptiles , there is litt , le information garding the specific actions 
of the gonado- tropins. General and Comparative Endocrinology 13 367–381. 

Licht P & Tsui HW 1975 Evidence for the and Intrinsic Ovarian Ovulation Activity 
Growth , of Ovine FSH on Steroidogenesis in Lizards. Biology of Reproduction 12 
346–350. 

Liu J, Tian Y, Ding Y, Heng D, Xu K, Liu W & Zhang C 2017 Role of CYP51 in the 
regulation of T3 and FSH-induced steroidogenesis in female mice. Endocrinology 158 
3974–3987. 

Lovern MB, McNabb FMA & Jenssen TA 2001 Developmental effects of testosterone on 
behavior in male and female green anoles (Anolis carolinensis). Hormones and 

Behavior 39 131–143. 

Lynn WG, McCormick JJ & Joseph CG 1965 Environmental temperature and thyroid 
function in the lizard, Anolis carolinensis. General and Comparative Endocrinology 



36 

5 587–595. 

Manna PR, Tena-Sempere M & Huhtaniemi IT 1999 Molecular mechanisms of thyroid 
hormone-stimulated steroidogenesis in mouse leydig tumor cells: Involvement of the 
steroidogenic acute regulatory (StAR) protein. Journal of Biological Chemistry 274 
5909–5918. 

Martinez ME, Karaczyn A, Stohn JP, Donnelly WT, Croteau W, Peeters RP, Galton VA, 
Forrest D, Germain DS & Hernandez A 2016 The type 3 deiodinase is a critical 
determinant of appropriate thyroid hormone action in the developing testis. 
Endocrinology 157 1276–1288. 

Moenter SM, Woodfill CJI & Karsch FJ 1991 Role of the thyroid gland in seasonal 
reproduction: Thyroidectomy blocks seasonal suppression of reproductive 
neuroendocrine activity in ewes. Endocrinology 128 1337–1344. 

Pantsiouou S, Stanhope R, Uruena M, Preece MA & Grant DB 1991 Growth prognosis and 
growth after menarche in primary hypothyroidism. Archives of Disease in Childhood 
66 838–840. 

Peek CE & Cohen RE 2018 Seasonal regulation of steroidogenic enzyme expression within 
the green anole lizard (Anolis carolinensis) brain and gonad. General and 

Comparative Endocrinology 268 88–95. 

Peeters R, Kuhn ER, De Clerck B, Buys N, Van Isterdael J & Decuypere E 1990 Seasonal 
variations in prolactin, growth hormone and thyroid hormones and the prolactin surge 
at ovulation do not affect litter size of ewes during pregnancy in the oestrous or the 
anoestrous season. Journal of Reproduction and Fertility 90 47–53. 

Pfaffl MW 2001 A new mathematical model for relative quantification in real-time RT-
PCR. Nucleic Acids Research 29 e45–e45. 

Rocha A, Zanuy S, Carrillo M & Gómez A 2009 Seasonal changes in gonadal expression 
of gonadotropin receptors, steroidogenic acute regulatory protein and steroidogenic 
enzymes in the European sea bass. General and Comparative Endocrinology 162 
265–275. 

Romano RM, Bargi-Souza P, Brunetto EL, Goulart-Silva F, Avellar MC, Oliveira CA & 
Nunes MT 2013 Hypothyroidism in adult male rats alters posttranscriptional 
mechanisms of luteinizing hormone biosynthesis. Thyroid 23 497–505. 

Romano RM, Gomes SN, Cardoso NCS, Schiessl L, Romano MA & Oliveira CA 2017 
New insights for male infertility revealed by alterations in spermatic function and 
differential testicular expression of thyroid-related genes. Endocrine 55 607–617. 

Rosen GJ & Wade J 2001 Androgen metabolism in the brain of the green anole lizard 
(Anolis carolinensis): effects of sex and season. General and Comparative 

Endocrinology 122 40–47. 

Segerson TP, Kauer J, Wolfe HC, Mobtaker H, Wu P, Jackson IM & Lechan RM 1987 
Thyroid hormone regulates TRH biosynthesis in the paraventricular nucleus of the rat 
hypothalamus. Science (New York, N.Y.) 238 78–80. 



37 

Tohei A, Imai A, Watanabe G & Taya K 1998 Influence of thiouracil-induced 
hypothyroidism on adrenal and gonadal functions in adult female rats. The Journal of 

Veterinary Medical Science 60 439–446. 

Turner JE 1972 The Effect of Hyperthyroidism on the Photoperiodic Stimulation of 
Testicular Recrudescence in the Lizard, Anolis carolinensis. General and 

Comparative Endocrinology 18 394–396. 

Verma R & Haldar C 2016 Photoperiodic modulation of thyroid hormone receptor (TR-α), 
deiodinase-2 (Dio-2) and glucose transporters (GLUT 1 and GLUT 4) expression in 
testis of adult golden hamster, Mesocricetus auratus. Journal of Photochemistry and 

Photobiology B: Biology 165 351–358. 

Wade J 2011 Relationships among hormones, brain and motivated behaviors in lizards. 
Hormones and Behavior 59 637–644. 

Wagner MS, Morimoto R, Dora JM, Benneman A, Pavan R & Maia AL 2003 
Hypothyroidism induces type 2 iodothyronine deiodinase expression in mouse heart 
and testis. Journal of Molecular Endocrinology 31 541–550. 

Wajner SM, dos Santos Wagner M, Melo RCN, Parreira GG, Chiarini-Garcia H, Bianco 
AC, Fekete C, Sanchez E, Lechan RM & Maia AL 2007 Type 2 iodothyronine 
deiodinase is highly expressed in germ cells of adult rat testis. Journal of 

Endocrinology 194 47–54. 

Weber G 2003 Thyroid function and puberty. Journal of Pediatric Endocrinology 16 253–
257. 

Winkler SM & Wade J 1998 Aromatase activity and regulation of sexual behaviors in the 
green anole lizard. Physiology and Behavior 64 723–731. 

Yang EJ & Wilczynski W 2003 Interaction effects of corticosterone and experience on 
aggressive behavior in the green anole lizard. Hormones and Behavior 44 281–292. 

Yang EJ, Phelps SM, Crews D & Wilczynski W 2001 The effects of social experience on 
aggressive behavior in the green anole lizard (Anolis carolinensis). Ethology 107 777–
793. 

Yasuo S, Nakao N, Ohkura S, Iigo M, Hagiwara S, Goto A, Ando H, Yamamura T, 
Watanabe M, Watanabe T et al. 2006 Long-day suppressed expression of type 2 
deiodinase gene in the mediobasal hypothalamus of the Saanen goat, a short-day 
breeder: Implication for seasonal window of thyroid hormone action on reproductive 
neuroendocrine axis. Endocrinology 147 432–440. 

Yasuo S, Watanabe M, Iigo M, Nakamura TJ, Watanabe T, Takagi T, Ono H, Ebihara S & 
Yoshimura T 2007 Differential response of type 2 deiodinase gene expression to 
photoperiod between photoperiodic Fischer 344 and nonphotoperiodic Wistar rats. Am 

J Physiol Regulatory Integrative Comp Physiol 292 R1315–R1319. 

Yoshimura T 2013 Thyroid hormone and seasonal regulation of reproduction. Frontiers in 

Neuroendocrinology 34 157–166. 



38 

Yoshimura T, Yasuo S, Watanabe M, Iigo M, Yamamura T, Hirunagi K & Ebihara S 2003 
Light-induced hormone conversion of T4 to T3 regulates photoperiodic response of 
gonads in birds. Nature 426 178–181. 

 

 

 

 

 

 

  

 


	The Relationship Between Seasonal Breeding and Deiodinase Expression in the Green Anole Lizard
	Recommended Citation

	Microsoft Word - 648709_pdfconv_747426_7B0B7376-5D51-11E9-B693-F34B59571AF4.docx

