
Minnesota State University, Mankato Minnesota State University, Mankato

Cornerstone: A Collection of Scholarly Cornerstone: A Collection of Scholarly

and Creative Works for Minnesota and Creative Works for Minnesota

State University, Mankato State University, Mankato

All Graduate Theses, Dissertations, and Other
Capstone Projects

Graduate Theses, Dissertations, and Other
Capstone Projects

2019

Optimization of Energy Harvesting Mobile Nodes Within Scalable Optimization of Energy Harvesting Mobile Nodes Within Scalable

Converter System Based on Reinforcement Learning Converter System Based on Reinforcement Learning

Chengtao Xu
Minnesota State University, Mankato

Follow this and additional works at: https://cornerstone.lib.mnsu.edu/etds

 Part of the Power and Energy Commons, and the Systems and Communications Commons

Recommended Citation Recommended Citation
Xu, C. (2019). Optimization of energy harvesting mobile nodes within scalable converter system based on
reinforcement learning [Master’s thesis, Minnesota State University, Mankato]. Cornerstone: A Collection
of Scholarly and Creative Works for Minnesota State University, Mankato.
https://cornerstone.lib.mnsu.edu/etds/938/

This Thesis is brought to you for free and open access by the Graduate Theses, Dissertations, and Other Capstone
Projects at Cornerstone: A Collection of Scholarly and Creative Works for Minnesota State University, Mankato. It
has been accepted for inclusion in All Graduate Theses, Dissertations, and Other Capstone Projects by an
authorized administrator of Cornerstone: A Collection of Scholarly and Creative Works for Minnesota State
University, Mankato.

http://cornerstone.lib.mnsu.edu/
http://cornerstone.lib.mnsu.edu/
https://cornerstone.lib.mnsu.edu/
https://cornerstone.lib.mnsu.edu/
https://cornerstone.lib.mnsu.edu/
https://cornerstone.lib.mnsu.edu/etds
https://cornerstone.lib.mnsu.edu/etds
https://cornerstone.lib.mnsu.edu/theses_dissertations-capstone
https://cornerstone.lib.mnsu.edu/theses_dissertations-capstone
https://cornerstone.lib.mnsu.edu/etds?utm_source=cornerstone.lib.mnsu.edu%2Fetds%2F938&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/274?utm_source=cornerstone.lib.mnsu.edu%2Fetds%2F938&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/276?utm_source=cornerstone.lib.mnsu.edu%2Fetds%2F938&utm_medium=PDF&utm_campaign=PDFCoverPages

Optimization of Energy Harvesting
Mobile Nodes Within Scalable Converter
System Based on Reinforcement Learning

By

Chengtao Xu

A Thesis Submitted in Partial Fulfillment of the

Requirements for the Degree of

Master of Science

In

Electrical Engineering

Minnesota State University, Mankato

Mankato, Minnesota

July 2019

07.2019

Optimization of Energy Harvesting Mobile Nodes Within
Scalable Converter System Based on Reinforcement
Learning

Chengtao Xu

This Thesis has been examined and approved by the following members of the
student’s committee.

Dr. Vincent J. Winstead

Dr. Xuanhui Wu

Dr. Jianwu Zeng

i

Acknowledgement

I would like to be indeed grateful for many people helped and guided me in the two years study

in graduate school at MNSU. The completion of this thesis could not have been possible without

the support and suggestions of so many people. Especially, I wish to express my sincere

gratitude to my advisor Dr. Vincent J. Winstead for providing me the chance to join the

renewable energy project and keep encouraging and guiding me in the process of research.

I also want to thank my committee members, Dr. Xuanhui Wu and Dr. Jianwu Zeng for the

suggestion on my thesis.

In addition, I would like to thank Dr. Han-way Huang for guiding my study in MNSU.

To my parents, fiancé, friends and others who in one way or another shared their support, either

morally, financially, and physically, thank you.

ii

Abstract

Microgrid monitoring focusing on power data, such as voltage and current, has become more

significant in the development of decentralized power supply system. The power data

transmission delay between distributed generator is vital for evaluating the stability and financial

outcome of overall grid performance. In this thesis, both hardware and simulation has been

discussed for optimizing the data packets transmission delay, energy consumption, and collision

rate. To minimize the transmission delay and collision rate, state-action-reward-state-action

(SARSA) and Q-learning method based on Markov decision process (MDP) model is used to

search the most efficient data transmission scheme for each agent device. A training process

comparison between SARSA and Q-learning is given out for representing the training speed of

these two methodologies in the scenario of source-relaying-destination model. To balance the

exploration and exploitation process involved in these two methods, a parameter  is introduced

to optimize the cost time of training process. Finally, the simulation result of average throughput

and data packets collision rate in the network with 20 agent nodes is presented to indicate the

application feasibility of reinforcement learning algorithm in the development of scalable

network. The results show that, the average throughput and collision rate stay on the expected

ideal performance level for the overall network when the number of nodes is not too large. Also,

the hardware development based on Bluetooth Low Energy (BLE) is used to reveal the process

of data packets transmission.

iii

Contents

1. Introduction………………………………………………….………………… 1

1.1 Background……………………………………………………………….. 1

1.2 Related works……………………………………………………………… 3

2. Bluetooth Low Energy (BLE) Mesh Network………………….……………... 6

2.1 BLE Mesh Network Configuration………………………………………. 6

 2.1.1 Comparation between wireless communication method……………. 6

 2.1.2 Hardware selection………………………………………….............. 8

 2.1.3 Energy Consumption Parameter of BLE…………………………... 11

 2.2 Embedded system Development………………………………………... 16

3. Reinforcement Learning in Energy Harvesting Mobile Network………….…. 18

 3.1 Reinforcement Learning……………………………………....……….... 18

 3.1.1 Markov Process…………………………………………….………. 18

 3.1.2 Markov Reward Process………………………….………………... 19

 3.1.3 Markov Decision Process…………………………….……………. 21

 3.2 MDP simulation………………………………………………………… 26

 3.3 greedy  Exploration Algorithm……...………………………….….….. 29

 4. Optimization of Energy Harvesting Mobile Nodes……………………...…... 30

 4.1 Energy Harvesting Node Model…………………………………........... 30

 4.1.1 MDP parameter setting and assumption……………………........... 30

 4.1.2 Channel random access model……………………………............. 33

 4.1.3 EH mobile node parameter setting………………………………... 34

 4.2 Analysis of training method…………………………………....………. 35

iv

 5. Simulation and Test Results…….…………………………………………… 40

 5.1 Scalable network analysis…………………………………………….... 40

 5.2 Test on embedded system……………………………………………… 43

6. Conclusion……………………………………………………………………. 45

Reference………………………………………………………………………... 46

Appendix ………………………...…………………………………………….... 49

v

List of Figures

Figure 1.1 Universal and scalable converter system…………………………….……………… 2

Figure 2.1 X-NUCLEO-IDB05A1……………………………………………………………… 8

Figure 2.2 NUCLEO-F401RE…………………………………………………….…………… 10

Figure 2.3 STM32F769I-DISCOVERY………………………………………….……………. 11

Figure 2.4 Energy consumption estimation tool of BLE………………………….…………… 12

Figure 2.5 Current consumption under connection-master mode in one period….…….……… 13

Figure 2.6 Current consumption under connection-slave mode in one period…….………….. 13

Figure 2.7 Current consumption under advertising mode in one period………….…….……… 14

Figure 2.8 Current consumption under scanning mode in one period…………….…………… 15

Figure 2.9 Sketch of BLE distribution system…………………………………….…………… 16

Figure 2.10 Slave device hardware configuration…………………………………….………. 16

Figure 2.11 Master device hardware configuration…………………………………….……… 17

Figure 3.1 Map of package transferring within the mesh network……………………..……… 26

Figure 3.2 State value and step direction choosing in each of the square……………...………. 27

Figure 3.3 Shortest route from starting point to destination……………………………………. 27

Figure 4.1 Source-Relay-Destination communication system model with finite battery space and
data buffer……………………………………………………………………………...……….. 30

Figure 4.2 Slotted system model in one unit of transmission ………………………..………… 31

Figure 4.3 Action value with SARSA training……………………………………….………… 35

Figure 4.4 Action value with SARSA training ( =0.04) …………………………….………… 36

Figure 4.5 Action value with SARSA training ( =1) ……………………………….………… 36

Figure 4.6 Action value with SARSA training ( =0.01) …………………………….………… 37

Figure 4.7 Action value with Q-learning training ( =0.04) ………………………….………... 38

Figure 4.8 Action value with Q-learning training ( =0.01) …………………………………… 39

vi

Figure 5.1 Average throughput dynamics……………………………………………………... 41

Figure 5.2 Average collision rate dynamics………………………………….……………….. 42

Figure 5.3 Information of data sending on client (slave) side………………………………… 43

Figure 5.4 Information of data receiving on the server (master) side………………………… 44

1

Chapter 1

Introduction

1.1 Background

Renewable energy, such as generated from solar energy and wind energy currently play an

important role under the theme of economical and sustainable development. The use of

renewable sources tends to reduce the discharge of greenhouse effect gas. For a standalone

source with the ability of bi-directional power supply with grid, an universal converter system is

designed to be configurable and capable of building the connection with a variety of power

generation and storage devices (i.e. renewable energy generators, battery systems, ultra-capacitor

systems, hybrid vehicle, etc.) and provide a universal interface to the grid in the future [1].

Meanwhile, to allow for grid stability, monitoring and electricity financial exchange anticipation

with the emergence of smart grid power, data collection of all these distributed power generation

devices and storage is essential.

According to the configuration of a universal and scalable converter system described in [2], as

the figure 1.1 shows, each universal converter transfers electricity back to the utility line through

the power flow line. For the monitoring data collection between converters, each of them can be

configured as a single node within this scalable network. Here, they are capable of sending,

relaying, and receiving collected data packets. However, since the communication range of a

single node is limited, the single hop between converter nodes cannot meet the wide range device

deployment requirements [9]. Also, for single node connections between multiple nodes, this

data collision would be the cause of losing of essential data in the transmission process when the

2

receiving node receives the packets from different resources. Meanwhile, the data packet traffic

within the network could be unbalanced for each node due to the case where the potential

difference of the data packet size, severe environmental interference (i.e. moisture, high

temperature) and unexpected reduction in expected device life exists. In particular, the node

connected to the utility communication devices (or power line communication devices)

consumes its energy faster than the others since it relays all the other nodes’ data packets with

longer receiving, buffering and sending times. The energy harvesting network could be applied

to solve the energy imbalance problem.

Figure 1.1 Universal and scalable converter system

There are two models considering the process of optimal performance of the sending, relaying,

and receiving process in this multi-hop wireless sensor network (WHWSNs), which can be an

energy constrained (EC) network or energy harvesting network (EH), both with and without

3

relaying cooperation [3]. Existing methodologies concerning data packet transferring in EC

networks have mainly focused on solving the delay optimization, data priority, and data

collecting efficiency to represent the situation of wireless sensor networks [4][5][6][7]. With the

emerging technique called energy harvesting that enables wireless devices to scavenge energy

physically or chemically from natural or man-made phenomena [8], additional advantages (i.e.

self-sustainable capability, nearly permanent network life) have been realized in energy

harvesting networks.

1.2 Related works
The study of EH network wireless communication has been based on three different approaches,

namely, offline, online, and learning [10]. The offline policy assumes the stationary knowledge

in a specific pattern regarding the EH processes in a distributed network. Similar works have

been done by assuming the transmitter has non-casual information on arrival time and data

amount [11, 12, 13]. Although the offline policy will not be able to fit in most realistic

applications, the ideal network performance results will be generated by it. The online policy

requests associated knowledge from the transmitter representing the statistical information of the

data packets arrival time, power harvested by a rechargeable battery, and channel collision or

fading. Also, prior knowledge won’t be available at the beginning operating time or after

topology changes in the EH process. Therefore, a learning policy has been considered to

optimize the action execution when the packets need to be transmitted in an unknown operating

environment. One approach we will apply to find the optimized action of package transferring in

this thesis is called reinforcement learning.

4

In [12], a learning theoretical approach has been investigated which was applied to a point-to-

point wireless communication system with finite capacity rechargeable battery. A data packet

arrives at the beginning of each time slot (TS) and gets lost in the following TS if it has not been

sent out. One can assign a likelihood for this assuming the transmitter will be terminated under

specific conditions to make this energy harvesting (EH) network more realistic. However, the

only energy consumption we consider is strictly defined in the process of transmission while

ignoring the relaying and receiving process energy consumption.

In [3], both the EC network and EH network have been investigated. In this work, the authors

provide the framework for finding the optimal policy by the proposed Markov decision process

(MDP) under two different methods describing the data package transmission action, namely

finite-horizon processes and infinite-horizon processes. Under the unified MDP framework and

proposed dual linear programming based algorithm, the numerical result measuring network

performance (i.e. energy harvesting rate, nonarrival package rate, battery capacity) is provided.

However, the authors do not give out the convergence result by analyzing this general

framework created to describe the data transmission process inside multi-hop wireless sensor

network (MHWSN).

The authors of [14][15] both investigate the learning policy for agents within a network to learn

the optimal strategy to balance the traffic demand and harvested energy, battery level, the drop

rate of data packets and energy efficiency. The author in [14] proposed an approximated set of

binary functions to approximate the expected throughput. In [15], the authors applied a Q-

learning algorithm thus finding the optimized system performance in terms of drop rate,

throughput, and energy efficiency. The author in [16] provided a mean-field deep reinforcement

learning approach to find the online control policy which only requires the local knowledge of

5

the state. They achieved performance comparable with a centralized network having an offline

policy.

In this thesis, based on the point-to-point EH wireless communication, the performance (i.e. data

transferring latency, device node power consumption, channel collision and data packet dropping

rate) of a scalable EH multi-agent wireless communication network will be investigated. The

network model will be both formulized as a Markov process using historical statistical

knowledge of state to find the best action of package transferring and MDP to find the optimal

strategy with local knowledge of the state. Finally, I will compare simulation results of the

system performance by taking Q-learning in an offline policy, state-action-rewards-state-action

(SARSA) in an online policy, and greedy algorithm used in exploring the optimized policy.

The rest of the thesis will be organized as follows. In chapter 2, the system hardware deployment

is presented, which includes a Bluetooth low energy technique configured mesh network to

realize the embedded system test of this reinforcement learning process. In chapter 3, the EH

multi-agent power allocation, data package storage and relaying, and collision rate of packets

will be formulated. In chapter 4, the reinforcement learning (RL) algorithm used for EH network

scenario to achieve network performance optimization is presented. In chapter 5, the final

simulation results will be demonstrated and tested via the algorithm code on a STM32 embedded

system. Chapter 6 provides a summary and concluding remarks.

6

Chapter 2

Bluetooth Low Energy Mesh Network
2.1 BLE Mesh Network Configuration

2.1.1 Comparation between wireless communication method

To develop a device which is configurable (in firmware) and capable of connecting electrically

to a variety of power generation and energy storage devices (i.e. renewable energy generator,

ultra-capacitor systems, hybrid vehicles, etc.) and provide a universal interface to the grid of the

future [2], it is necessary to develop a comprehensive data capture and communication capability

for the flexible converter to allow converter-to-converter communication of energy transfer data

via wireless protocols and to enable remote diagnostic/prognostics.

The options we have for wireless communication technologies include Infrared (IR), Cellular

connectivity, Near field communications (NFC), Bluetooth low energy (BLE), Zigbee, Wi-Fi,

and Bluetooth classic. IR has been prevelent in the era of flip phones given a desired line of sight

connection. However, the communication between two devices based on IR has some significant

flaws, such as low bandwidth, short range, and a requirement that the device be positioned within

line of sight of each other. This makes it impractical given the need to reposition the converter

device. Similarly, regarding the other two technologies, cellular is not feasible given the need for

a SIM card in devices and the costly subscription fees. Also, the NFC has a problem of short

range. Wi-Fi could be a potentially viable communication method between these converters

based on its high data throughput. The Wi-Fi network relies on TCP-IP protocol, which requires

all the connected devices obtain their own IP address and authenticate themselves on the

network. This is not suitable for the converter devices given the the extra requirement for a

converter, to include a physical user interface and entering a Wi-Fi password. Also, it results in

potential network and data security issues.

ZigBee is a mesh network protocol designed to realize medium range wireless transmissions

with a small amount of data. It transfers the message via an inner mesh topology network, which

7

sends meaningful information from a single node to the gateways across a group of nodes. This

explains why it is fairly limited for a high throughput local network, such as in industrial IoT

(Internet of Things) applications. Also, it could result in higher latency when ZigBee is applied

to high transmission node density networks because of its mesh topology. The comparison

between ZigBee and Bluetooth Low Energy is listed as follows.

Table 2.1 Network characteristic of ZigBee and Bluetooth Low Energy (BLE)

 BLE ZigBee

Network type
Personal area network (PAN), which

supports few nodes

Local area network (LAN), which

supports many nodes

Range* 77 meters 291 meters

Operation system Android, iOS, Windows 8, OS X Not current compatible

Topology Mesh and star Mesh only

Throughput 270 kbps 250 kbps

Modulation
Frequency-hopping speard spectrum

(FHSS)

Direct-sequence spread spectrum

(DSSS)

Transmit power 10 mW 100 mW

A few main characteristics can be seen from table 2.1. The ZigBee protocol could fit well in

medium range communication applications when the mesh node has low density network

density. However, a few advantages held by BLE makes it more suitable to build a scalable mesh

network in universal and scalable converter devices. First, its more flexible topology (i.e. star

topology, mesh topology) gives BLE more choices in building different structured wireless

connection networks. The combination of these two structures could potentially be capable of

8

reducing the communication latency since the synchronized scheme in star topology could

effectively cut down the possibility that the data packets collide leading to the retransmission of

the same packet. The frequency hopping spread spectrum modulation could also reduce the rate

of packet collision since two devices share the same channel. Also, the higher throughput of the

BLE is a more ideal choice for scalable converter device with higher data transmission

requirements. Furthermore, the lower transmission power of BLE with higher data throughput

could extend the life time of rechargeable batteries in an energy harvesting scalable network.

Therefore, the BLE based converter mesh network configuration will be discussed in this thesis.

 2.1.2 Hardware selection

The X-NUCELO-IDB05A1 is a Bluetooth Low Energy evaluation board based on the

STMicroelectronics SPBTLE-RF BlueNRG-MS RF module which is a shield for the STM32

NUCELO boards. It will be used in the embedded system development.

Figure 2.1 X-NUCLEO-IDB05A1

9

It also interfaces with the STM32 microcontroller via SPI serial communication. A few key

features are listed below.

 STM32 expansion board based on the SPBTLE-RF module for SMT32 NUCLEO

 X-NUCLEO-IDB05A1 contains FCC and IC certified module SPBTLE-RF (FCC ID:

S9NSPBTLERF and IC: 8976C-SPBTLERF)

 SPBTLE-RF

 Bluetooth Low Energy FCC and IC certified module based on Bluetooth®

SMART 4.1 network processor BlueNRG-MS

 Integrated Balun (BALF-NRG-01D3) and chip antenna

 It embeds 32 MHz and 32.768 kHz crystal oscillators for the BlueNRG-MS

 Compatible with STM32 Nucleo boards

 Equipped with Arduino UNO R3 connector

 Scalable solution, capable of cascading multiple boards for larger systems

 Free comprehensive development firmware library and example for BlueNRG-MS,

compatible with STM32Cube firmware

 M95640-R has 64-kbit serial SPI bus EEPROM with high-speed clock interface

The mother board of the X-NUCLEO-IDB05A1 used in software development is the

STMicroelectronics of NUCLEO-F401RE (Cortex4 Microprocessor). It provides the Arduino

UNO R3 connector allowing for easy expansion of the functions of the STM32 Nucleo open

development platform. The key features are listed as follows.

 SMT32 32bit microprocessor

 1 user and 1 reset push-button

 32.768 kHz crystal oscillator

 Board connectors: Arduino Un V3 expansion connector ST morpho extension pin

headers for full access to all STM32 I/0s

10

Figure 2.2 NUCLEO-F401RE

As the gateway will involve power converter transmission devices, the collecting data

microprocessor requires more advanced data processing capability and larger data storage to

lessen risk of receiving lost package or packets with data corruption. Therefore, the

STMicroelectronics STM32F769I-DISCOVERY board will be used to collect the amount of data

generated in the network. The key features of it are listed as follows.

 STM32F769NIH6 microprocessor featuring 2 Mbytes of flash memory and 512+16+4

Kbytes of RAM, in BGA216 package

 Two push buttons (user and reset)

 512-Mbit Quad-SPI Flash memory

11

Figure 2.3 STM32F769I-DISCOVERY

2.1.3 Energy Consumption Parameter of BLE

Regarding to the energy consumption associated with BLE communication under various

package transmission modes, the BlueNRG current consumption estimation tool also available

from STMicroelectronics will be used in the analysis. There are four behaviors of the BLE

devices requiring quantized energy which includes advertising, scanning, connection-slave, and

connection-master mode. These four working modes on a BLE chip could be used to transport

data packets between points, and it’s not necessary for the user to specify the transmission

protocol.

The BlueNRG current consumption estimation tool v.1.4 is utilized to estimate the energy

consumption under the four modes of operation of BLE. figure 2.4 shows the BLE setting of

work mode, device type, power supply, master SCA, slave SCA, and the performance of average

current and device life-time under a specified battery capacity.

12

Figure 2.4 Energy consumption estimation tool of BLE

1. Connection-master mode

The master mode set in the BLE module could initiate the connection with a connection-

slave mode device. Under this mode, the surrounding devices would start searching and

connect with the device which needs to be connected. Figure 2.5 shows the energy cost of

one period under master work mode. The average current is 6.16 uA in one period,

which helps devices with a 200 mAh battery survive 3 years, 8 months and 17 days.

13

Figure 2.5 Current consumption under connection-master mode in one period

2. Connection-slave mode

BLE allows slave work mode in devices, which includes a service of serial port sending

and receiving, and the user could find it with the unique UUID. The user could operate

the two functions of writing and reading under the service to achieve the data

transmission. Figure 2.6 shows the current consumption estimation under slave mode of

BLE operation. The average current is 7.54 uA in one period, which helps devices with a

200 mAh battery survive 3 years, 0 months and 10 days.

Figure 2.6 Current consumption under connection-slave mode in one period

14

3. Advertising mode

Under advertising mode, the user can apply an AT command to setup the module to

advertise data and the module could constantly keep advertising under low power mode

in an ultra-low power, small amount of data, single transmission direction scenario. For

example, wireless meter reading. Figure 2.7 shows the current consumption estimation

under advertising mode. The average current is 15.84 uA in one period which helps

devices with a 200 mAh battery survive 1 year, 5 months and 11 days.

Figure 2.7 Current consumption under advertising mode in one period

4. Scanning mode

Under scanning mode, the BLE could scan the surrounding devices without establishing a

connection with other devices under advertising mode. This mode applies to a few

scenarios, such as, the remote control of BLE devices, receiving and retransmission of

data to the server. The transmission speed under this mode could reach 1 mega bit per

second. The transmission distance could span 100 meters in free space. Image 2.8 shows

the current consumption estimation under scanning mode. The average current is 3615.85

15

uA in one period, which helps devices with a 200 mAh battery survive 0 years, 0 months

and 2 days.

Figure 2.8 Current consumption under scanning mode in one period

16

2.2 Embedded System Development

The embedded system configuration includes two parts, slave devices and master devices. As

shown in figure 2.9, slave devices collect the data from converter sensors and transmit it to the

receiving devices or relaying devices in the middle between it and the destination. It is not

necessary for the slave device to have a large amount of spare space for data storage or buffering

and advanced data processing ability. However, the master device serves as gateway for the

entire distributed network which requires more urgent needs of data buffering and storage.

Figure 2.9 Sketch of BLE distribution system

Therefore, as shown in figure 2.10, the slave devices use the STM32F401RE as the data buffer

and storage processor and mother board which connects to STM32 BLE expand low energy

board X-NUCLEO-IDB05A1, by utilizing the serial peripheral interface (SPI) bidirectional

communication method to transfer collected data.

Figure 2.10 Slave device hardware configuration

Similarly, in figure 2.11, considering the requirement of high data processing ability, we added

the SMT32F769I-DISCOVERY board as the medium device before the data collected in the

𝑺𝟐 𝑺𝟏 𝑴

17

whole network was sent to PLC communication device, which is separated from the task of

collecting the data in the SMT32F401RE board. The voltage data is buffered and processed in

both two STM32 boards. This configuration reduces the risk of losing packets when larger

amounts of power data is collected from distributed converters after more slave nodes have been

added to the network. Especially, this issue would be more serious when it is the period of power

data peak moment. Also, the bidirectional UART communication method is used in talk of

STM32F401RE and STM32F769I-DISCOVERY board.

Figure 2.11 Master device hardware configuration

18

Chapter 3

Reinforcement Learning in Energy
Harvesting Mobile Network
In this chapter, to estimate the energy harvesting mobile network energy cost and communication

optimal delay, the framework of reinforcement learning, especially Markov decision process,

will be discussed. First, the fundamental idea of Markov processes and the derivation of a

Markov decision process is explained. Second, following the idea we presented in chapter 2, the

EH mobile network model will be described in a Markov decision process (MDP), State-action-

reward-state-action (SARSA), and using the Q-learning method. Finally, the exploration and

exploitation iteration method to find the optimal value of performance in EH network will be

discussed.

3.1 Markov Decision Processes in Reinforcement
Learning
The Markov estimation method was presented by Russian mathematician Markov in the theory

of stochastic process [21]. It estimates the state transition processes of an object in the system

according to probability and statistical theory.

In reinforcement learning, a Markov decision process (MDP) is used to describe an observable

environment. A characteristic parameter of decision making depend on the observed state.

Considering the universality of MDP, we can apply the MDP into the framework of energy

harvesting communication networks in a scalable converter system.

19

3.1.1 Markov Process
The term “Markov property” refers to the memoryless property of a stochastic process [22]. One

can say a stochastic process has the Markov property if the conditional probability distribution

depends on the present state, not on the historical event that preceded it [23]. It can be denoted as

follows:

'

'
1 []t tss

S s S s  P  (3.1)

where   is the probability function.

The state transition matrix defines all the state transition probabilities:

1

1 11 1

1

 =

n

n

n n nn

s s

s a a

s a a

 
 
 
 
 




   


P

In this case, n represents the number of states, and the sum of the elements in each row is 1.

A Markov process is known as a Markov chain. It is a stochastic process without memory. It can

be represented as a pair , S P  , in which S is a finite number of states, and P is the state

transition probability matrix.

3.1.2 Markov Reward Process (MRP)

Markov reward processes add reward R and discount factor  based on the Markov process.

Therefore, the Markov reward process is comprised of a tuple with four elements <S, P, R,  >:

S – state of agent, P – transition probability matrix, R – reward,  - discount factor. The reward

of state S denotes the expectation of reward at time t+1 under state S at time t:

 1s t tR E R S s     (3.2)

Here  E  denotes the expectation function.

20

Discount factor

The parameter  0,1  is the discount factor. We introduce the discount factor for describing the

uncertainty of long terms benefits for this multi-agent system but not only focus on the

immediate benefits. It effectively stops the process falling into an infinite loop when finding the

best route.

Return

Definition: The sum of immediate rewards and rewards with discount from time t on the Markov

reward chain. It can be denoted as the following,

1 2 1
0

k
t t t t k

k

G R R R 


   


    (3.3)

where the discount factor represents the present value scale on the future rewards. The rewards

earned at time K+1 moment can be represented as value of k R at time t moment. When  = 0, it

denotes the future rewards given the observed sequence has no influence on this return. When 

= 1, the future rewards give the same effects as the current rewards to the return.

Value Function

In MDP, the value function can be denoted as the long-term value of a state and an action.

() []t tv s E G S s  (3.4)

Bellman Equation

We substitute tG from (3.3) into (3.4) yielding

2
1 2 3

1 2 3

1 1

1 1

() []

 [...]

 [(...)]

 []

 = [()]

t t

t t t t

t t t t

t t t

t t t

v s E G S s

E R R R S s

E R R R S s

E R G S s

E R v S S s

 

 





  

  

 

 

 

    

    

  

 

21

In the derivation we have 1 1()t tG v S  since the expectation of the reward is the same as the

expectation of the reward’s expectation. Then we have the bellman equation [19] as follows,

1 1() [()]t t tv s E R v S S s   

We know that ()v s includes the expectation of instantaneous rewards and the expectation of the

product of the rewards in the next moment and discount factor respectively. As for the

expectation of next moment rewards, it is given by the transformation matrix of state and state

value function associated with the next moment. Then, the Bellman equation yields:

 '
'

() (')s ss
s S

v s R v s


  P (3.5)

Equation (3.5) can be written in matrix form as:

'
1 1 111 1

'
1

() ()

() ()

n

n n n nn n

v s R v sP P

v s R P P v s


      
            

             


     



The Bellman equation is a linear equation, so it can be solved directly,

1

(1)

 = (1-)

v R v

v R

v R




 

 
 

P
P

P

The complexity of the computation of this form reaches 3()O n , where n represents the number

of states. Thus, the direct solution can only be applied to small MRPs scenarios. To solve a large

scale MRP, we may use an iterative method such as dynamic programming or Monte-Carlo

evaluations to find numerical solutions.

3.1.3 Markov Decision Process (MDP)
Generally, a MDP is used to describe the interaction between multi-agent systems and the

environment [20]. For the energy harvesting network in this thesis, each device connected in the

network is homogeneous, which means they have the same data buffer (queue), energy buffer

22

(queue), and channel jumping characteristic. Therefore, the following discussion of model

parameters (i.e. state, action, state value function, action value function, policy) of the EH

network would be the same.

The parameters of MDP include the state of agent, action, transition probability, immediate

reward, discount factor, and policy. Each parameter is represented as follows.

1. State s of an agent belongs to a set of discrete states of the agent, which can be denoted as

 1 2, ,...,
sNS s s s


, where Ns is the number of possible states. The state on time slot i

denoted as is , in which is S .

2. A set of discrete actions A of the agent can be denoted as  1 2, ,...,
aNa a a  ,in which

aN is the number of possible actions for each of state is . At time slot i, the action is

denoted as ia .

3. Transition probabilities between states, where '(, ,)P s a s is the transition probability from

state s to next state 's with the action of a .

4. The immediate reward '(, ,)R s a s , which is the reward given when state s transfers to next

state 's with action of a .

5. A discount factor  0,1  . It denotes the weight of immediate reward related to the

future rewards. The cumulative reward is finite when the discount factor value is less

than 1 given that the immediate reward is bounded [21].

6. A policy to define action under different states s. The is determined policy, ()s , can be

defined as mapping from state to action. In reinforcement learning, policy used to find the

best action of state is to reach the optimal cumulative value of the agent. The expected

cumulative reward is given by:

 1
1

(, ,) ()i i i i i
i

E R s a s a s 





 
  

 (3.6)

23

7. The state value function v is the expected reward given by the policy started from state

s,

 1
0

() k
j k

k

v s E R s  


 


 
   

 (3.7)

Here, 1j kR   represents the reward received in the (j+k+1)-th step, given that j is the

starting time step.

8. The action value function, is the expected cumulative reward starting from state s with

action a defined by policy  ,

 1
0

(,) ,k
j k

k

q s a E R s a  


 


   
 
 . (3.8)

Therefore, the optimal state value function and optimal action value function could be

given by,

 * () max () v s v s s S 
   (3.9)

 * (,) max (,) , q s a q s a a A s S 
     (3.10)

 From (3.7) (3.8) (3.9) (3.10), we have,

 * *() max (,)v s q s a
 

 (3.11)

 The action value function has the recursive form of the Bellman equation,

'

' ' '(,) (, ,) (, ,) ()
s S

q s a p s a s R s a s v s 


    (3.12)

To estimate the action value function in the state-action pairs, the online policy action value

function strategy and offline action value function updating strategy could be considered. The

typical online strategy is called state-action-reward-state-action (SARSA) strategy, which

evaluates the policy used to decide the action with a specific state. The classical offline policy is

24

called Q-learning strategy, which evaluates the process of action value updating without using the

current policy.

The algorithm of SARSA could be explained by the following,

Initialze (,) arbitrarily

Repeat (for each step)

 Initialize

 Choose a from s using the policy derived from (i.e.)

 Repeat (for each step):

 Take action , observ

Q s a

s

Q greedy

a

 

'

' '

' '

' '

e ,

 Choose from using the policy derived from (i.e. -greedy)

 (,) (,) [(,) - (,)]

 ;

 Until is terminal

r s

a s Q

Q s a Q s a r Q s a Q s a

s s a a

s



   

 

At this point, the action value function (,)q s a is updated via obtained experience. The updating

equation is given by,

1 ' 1 ' '(,) (,) [(, ,) (,) (,)]i i i iq s a q s a R s a s q s a q s a        (3.13)

where the selection of action a obeys the greedy  strategy described in detail in section 3.3.

The computation of goal value Q follows the next step action a’, so it’s an online learning strategy.

In (3.13),  represents the learning rate in this updating process, which also determines the

contribution of newly acquired information for updating action value function. If 0  , the agent

would not learn anything from the agent. If 1  , the agent would only consider the newly

acquired information [22].

The Q-learning algorithm could be explained as following,

25

Initialize (,) aribitrarily

Repeat (for each step)

 Initialze

 Repeat (for each step)

 Choose from s using the policy derived from (i.e. -greedy)

 Ta

Q s a

s

a Q 
'

'

'

ke action , observe ,

 (,) (,) [max (,) - (,)]

 Until is terminal

a r s

Q s a Q s a r Q s a Q s a

s s

s

   



At this point, the action value function (,)q s a is not updated by the obtained knowledge. The

action value function updating equation in Q-learning is given by,

1 ' 1 '(,) (,) [(, ,) max (,) (,)]i i i iq s a q s a R s a s q s a q s a        (3.14)

where the action selection obeys the Q network and greedy  strategy. The target Q value

computation follows the next step action which could generate biggest action value, but it’s not

necessary to execute this optimal action. Therefore, it’s the offline policy that updates the action

value.

26

3.2 MDP simulation
To explain how a package can be transferred within the BLE mesh network, an experiment for

transferring a single package within the network is conducted. In addition, an illustrative

example provides the context to explain how the MDP could be used for helping the data packet

find the lowest delay path in the mesh network.

Figure 3.1 Map of package transferring within the mesh network

As we can see from figure 3.1, the starting point denotes the source of the package generated

within the network. Obstacles (“Obs” in the grid) represent the area without an available

connection channel for transferring this package. The loss metric is set to indicate the scenario

that the package was lost in the transfer process. The Winning point means the destination of this

package transmission process. Therefore, we intend to find the shortest route in this packet’s

transferring map with MDP methodology.

The reward of getting in the winning point is +100 in the cumulative state value. Similarly, to

avoid the obstacle and loss point in the grid, the reward for them is set -100 and 0. For each step

of movement on this grid, the immediate reward is -1. The value iteration process time was set as

10000 with convergence criteria 10-9. The discount factor of calculating the future reward return

Mobile nodes spatial distribution on X axis (m)

M
ob

il
e

no
de

s
sp

at
ia

l d
is

tr
ib

ut
io

n
on

 Y
 a

xi
s

(m
)

27

is 1, which indicates the future steps state value has the same influence on the current action

selection. We can see the simulation results from figure 3.2 and figure 3.3.

Figure 3.2 State value and step direction choosing in each of the square

Figure 3.3 Shortest route from starting point to destination

Mobile node spatial distribution on X axis (m)

M
ob

il
e

no
de

 s
pa

ti
al

 d
is

tr
ib

ut
io

n
on

 Y
 a

xi
s

(m
)

Mobile nodes spatial distribution on X axis (m)

M
ob

il
e

no
de

s
sp

at
ia

l d
is

tr
ib

ut
io

n
on

 Y
 a

xi
s

(m
)

28

From (3.11) (3.12), the state value function could be calculated by the reverse direction value

iteration. The state value function calculation starts from the starting point. What we can see

from figure 3.2, figure 3.3 is, the state value for the chosen action choosing is larger when the

grid (node) is closed to the destination winning point.

We defined 4 cardinal movement directions in this action choosing, which includes N (north),

S(south), W(west), E (east). Also, the action value for the selection of each direction would be

different. The figure 3.2 shows the optimized action value choosing for single step c which

intends to maximize the action and state cumulative value.

29

3.3 The exploration Algorithm

The exploration algorithm plays an essential role in reinforcement learning. It is utilized to find

the balance between exploration and exploitation and maximize the cumulative rewards. The

exploitation mode can be defined as using the current available knowledge to select the best

policy to be used. On the other hand, exploration is known as investigating new policies in the

hope of getting a policy that is better than the current best one [22].

 The  -greedy algorithm

This exploration algorithm uses the exploration probability  to find a balancing point

between exploration and exploitation modes. This parameter changes the mode based on

its value at each time slot.

In this algorithm, the current best action is selected with probability 1-  . On the other

hand, a random non-greedy action is selected with probability  . The  can be either

fixed, or with adaptive value during the learning time [22]. In the case of adaptive  -

greedy,  takes values that change with time. For example,  is set to 1/i, where i is the

time slot number. In this case, at the beginning of the session, the exploration probability

 has larger value which increases the possibility of exploration. As time goes by, the

probability of exploration decrease and the exploitation probability increases. However,

most of the policies have been explored and it is referred to exploit the best current

policy. In our single agent model, we applied fixed  value as 0.5 in the value iteration

since the three nodes point-relay-point communication system does not need much

exploration.

30

Chapter 4

Optimization of Energy Harvesting
Mobile Network

4.1 Energy Harvesting Node Model

4.1.1 MDP parameter setting and assumption

In this chapter, a point to point communication system with a middle relaying agent will be

discussed. The system consists of a source agent (SR), a relaying agent (RE) a destination agent

(DE). As shown in image 4.1, agents SR, RE, and DE are equipped with infinite data buffers to

store data. All three agents are capable of harvesting renewable energy and store it in a finite

battery. A time-slotted system with time slots of equal length would be considered. Each time

slot consists of two equal sub-slots. The first sub-slot is used to transmit data, receive packets

from the other agents, or buffer the packets. The second sub-slot is used to harvest renewable

energy. Image 4.2 illustrates how this process is accomplished.

Image 4.1 Source-Relay-Destination communication system model with finite battery space

and data buffer

31

Figure 4.2 Slotted system model

In this chapter, the energy consumption and storage mechanism, such as renewable energy

harvesting, storage, and consumption of data transmission are guantized in an integer multiple of

a fundamental energy unit. The renewable energy harvesting process will be triggered after

initializing of a data sending or receiving process. Also, comparing the amount of energy cost for

data transmission and reception with the data buffering and storage, we assume the data

buffering and the stored process would not consume energy. The parameter in the node model

description will be listed as follows.

1) The battery has a limited storage capacity of Bmax. Let iB denote the battery charge level

of SR, RE, and DE at the beginning of time slot i, where

 1 2 max, ,..., ,
B Bi N NB b b b b B 


, and BN is the number of elements in  .

2) During time slot i, the amount of package receiving is denoted by Rei , where

 1 2Re , ,...,
Ei NRE Re Re Re 


, and EN represents the number of elements in RE. For the

received data packets, the transmission probability from state Rei to Re j during time slot

i is given by (Re ,Re)RE i jP .

3) The agent buffer state during time slot i is given by iBu , where

 1 2, ,...,
Bi NBu BU bu bu bu 


, and BN denotes the number of elements in BU . The

32

buffer state transmission probability from state ibu to state jbu during one time slot is

given by (,)BU i jP bu bu .

4) The harvested energy of the agent during time slot i, is denoted by iE , where

 1 2, ,...,
Ei NE e e e


, and EN represents the number of elements in E. For harvested

energy, the transmission probability from state ie to state je during one time slot is given

by (,)i jP e e .

5) The transmission and receiving channel state of the agent at time slot i is given by iH ,

where  1 2, ,...,
Hi NH h h h


, and HN denotes the number of elements in H .The

channel transmission probability from state ih to state jh is given by (,)i jP h h .

Let the data transmission and receiving power during time slot i be denoted by T
iP , where

 1 2, ,...,
Pi NP p p p


, and pN is the number of elements in P . Let cT be the transmission and

reception duration, which is the fixed value of 1 sec during all time slots.

For the harvested energy node model, each state js of the node consists of 3 elements, which

include battery level of agent, data buffer level, and channel gain. It can be represented as

 , ,j j j js b bu h . In this context, the state satisfies the Markov property, where the future state

depends only on the current state, which is independent of the previous state in the other time

slots.

Based on the current battery level, the agent could select the action, include receiving, sending,

or caching, that maximizes the sum rate (throughput) and channel gain of a single agent, and

minimizes the level of variation in the battery. Therefore, the immediate reward for the agent

state transforming during time slot i is given by

2

2log (1)i i
i

i

h b
R

bu
  (4.1)

33

In this model, energy consumption is considered only in connection with data transmission and

receiving, and it does not take into account any other energy consumption, such as processing,

circuitry, storage, etc.

4.1.2 Channel random access model

As we defined in the previous chapter about the MDP model for a single agent, we need to

consider the case of multiple channel access of a single node, which means that channel collision

would happen when multiple devices are intended to access one node for receiving messages.

Assume the converter system includes a wireless access point (master node) and N slave devices,

where each device has finite energy and infinite data storage, as shown in image 4.3. Time is

slotted and the duration of each time slot is T.

Random channel access model

Define is as the state of device i at time t, which includes the level data buffer, battery

level, and channel gain. At each slot, each device makes the access decision according to

its state. The device is able to access the network if there is enough energy.

The successful connection between devices does not only depend on the action of the

sender and receiver, but also on the other available nodes within the transmission range,

especially when more than one device is eager to access the master node simultaneously.

The probability of successful access can be formulated as follows

(1)
N

s i j
j i

P a a


  (4.2)

where ia is the successfully access probability of device i. According to (4.2), the device can

only access successfully if all other devices are denied access by the master device. In the

scenerio of one channel, the other devices would possibly lose the data packets. At each time

slot, the access attempt of these devices may fail, but would still consume the energy. In the

random access model we defined here, all the devices are not cooperative, so they should adopt

the corresponding strategy based on considering its state and the influence of other devices,

which intends to maximize the power consumption of all nodes in the network [21].

34

4.1.3 Parameter Setting

In this section, the setting of the parameter would be investigated for the greedy  exploration

algorithm in SARSA method and Q-learning. In the numerical experiment, it is assumed that

each time slot consists of two equal sub-slots, each of the lasting 1 sec duration. During the first

sub-slot, the agent transmits its package to the other receivers or receives the package from the

other agents. The available bandwidth for BLE is 2.4GHz for signal and noise. The discount

factor  is 0.5, which indicates the returning rate of rewards is 0.25 of the original rewards. The

learning rate is set to 0.1. All results are derived from 1000 iteration cycles to find the

convergent value of the agent state.

In the experiment, SR, RE, DE are all equipped with solar panels with an area of 100 cm2 with

10% harvesting efficiency. Where an outdoor solar panel can get benefits of 10 mW/cm2, solar

irradiance under standard environments with harvesting efficiency is between 5%-30%, which

depends on the used material in the panel [22]. Therefore, we assume the fundamental energy

cost unit for energy harvesting, stored, and consumption is 30 mJ.

In the simulations, the energy harvesting state is  0,1E  . This means the harvested energy in

half of the time slot time would only be able to transmit the fundamental energy unit with

probabilities (,) 0.8i jP e e  . Assume the interval of channel gain of agent be

 7 70.02*10 ,6.0*10H   with transition probabilities  , 0.95H i jP h h  . The equipped battery

size accommodates a maximum capacity of 2 units.

35

4.2 Analysis of training method
In this part, the evaluation for the performance of point-relay-point wireless communication

system model will be discussed under the SARSA learning algorithm and Q-learning algorithm

using greedy  based exploration algorithm, where it would be compared with the optimal

scenario. The optimal policy is using the trained optimal policy in the chosen action with a

specific state. This yields the upper bond of performance of the agent. However, this scenario

requires prior statistical knowledge of the environment, which is not applicable for the agent

used in this example.

In the SARSA experiment, the fixed  value is adopted in greedy  algorithm. In this

algorithm, a different fixed  value is applied. Image 4.3 explained the training process of a

point-relay-point communication system. The stopping criteria for training is that the cumulative

value reaches the set averaging reward value. The episode reward denotes the action value

cumulative value with the increasing of simulation step. The training process involves 200

episodes, which includes 50 steps in per episode.

Figure 4.3 Action value with SARSA training

36

Figure 4.4 Action value with SARSA training ( =0.04)

Figure 4.5 Action value with SARSA training ( =1)

37

Figure 4.6 Action value with SARSA training ( =0.01)

As shown in figure 4.4, figure 4.5, figure 4.6, the action value reward with different  parameter

value settings for the  -greedy algorithm has different training convergence speed. At the

beginning of the session, it can be noticed that the episode reward value reaches -50 with all

three different  settings. This indicates that the agent is currently under the exploration for an

optimized iteration policy. After that, the episode reward with  =0.04 reaches the constant

rewards value in 13 episodes training. Reward value with  = 1 reaches a constant value in

almost 30 episodes training. Reward value with  = 0.01 reaches a constant value in 10 episodes

of training. We can see from this that the  parameter decides the probability of exploration in

the SARSA  -greedy algorithm. When  =1, the agent has larger probability values in exploring

the optimal policy to execute the action under the current state. This could have the more

benefits in a complex system when it’s not easy to find a balanced and optimized strategy.

However, in our point-relay-point wireless communication system, we would choose the small

 value to reach faster action value reward convergence.

38

Figure 4.7 Action value with Q-learning training ( =0.04)

In the Q-learning experiment, the fixed  value is adopted in the greedy  algorithm. In this

algorithm, a different fixed  value is applied. The training process set has 200 episodes, which

includes 50 steps per episode. The stopping criteria for stop training is that the cumulative value

reaches the set averaging reward value of 11.

We can see from figure 4.7 and figure 4.3, the SARSA and Q-learning method both reach the

constant action value in 13 episodes, which indicates the same speed of convergence with same I

 value setting. However, the Q-learning training takes more episodes to reach the stop training

criteria average reward, which suggests the SARSA could finish the training process faster.

39

Figure 4.8 Action value with Q-learning training ( =0.01)

Similarly, since the Q-learning method takes  -greedy algorithm to balance the exploration and

exploitation process in finding the optimal policy for action choosing, bigger  value could help

the agent reach the constant reward faster, which suggests that the policy could be further

optimized.

40

 Chapter 5

Simulation results
5.1 Scalable network analysis

In this section, we set up two simulations to test the throughput and collision rate of the EH

mobile node within distributed converter network. In here, we assume the estimated ideal

throughput of device node is 450 data packets per second, in which each packet contains 8 bits of

power data. In here, the throughput of the mobile node suggests the average throughput of the

whole network. The average throughput calculated by computing the variance of data buffer state

in the source-relaying-destination model, which represents the average data package throughput

of a single node within the network.

The channel sharing for two or multiple competitive node uses channel random access model in

section 4.2. The packets transmission collision rate in the simulation suggests the probability of

sharing channel collision when multi-client nodes are intended to access the single channel,

which cause the package lost in the process of data transmission. To calculate the collision rate,

we use the channel as the tool. The low channel gain set as the channel sharing happen in the

same time, which cause the package transmission collision or package lost. The high channel

gain set as the channel sharing of multi-client devices happen in different time interval during the

transmission process. In the following simulation, the product of the collision rate and the

number of nodes denotes packets dropping unit in the 100 packets transferring process.

In the test of average throughput and collision rate, the Q-learning parameter learning rate  set

as 0.1 with discount value  0.95, and the  value in greedy algorithm is 0.04, which balance

the exploration and exploitation of the learning process.

As shown in figure 5.1, the average throughput keeps the value nearly ideal throughput of single

node under optimized policy when the number of mobile device node is less than 8. However,

the throughput drops instantaneously when the number of node exceeds 8 nodes and it holds the

throughput around 50 packets in the rest of node increasing process. A few possible reasons to

41

explain this situation are the low value of  constrains the ability of the network node to

explore new policy for data buffering and transmission, especially in the end of training process

with the adding of new nodes into the network.

Figure 5.1 Average throughput dynamics

As we can see from figure 5.2, the collision rate drops when the number of nodes is 2, which also

reaches the lowest value in the whole process of node increasing since there is no collision exists

for two node transmission (sender and receiver pair). In the following, with the increasing of

network nodes, the collision rate remains around 0.05. However, since of the increasing of

mobile nodes number, the number of packets dropping is increased. The collision rate of the first

20 nodes shows the increasing collision rate tendency. Therefore, we can estimate that the

number of packets dropping is increasing with the adding of the mobile nodes within the

network.

42

Figure 5.2 Average collision rate dynamics

43

5.2 Test on embedded system

In this session, the BLE communication hardware development testing results will be discussed.

Figure 5.3 and figure 5.4 demonstrates the process and functions of the client(slave) and

server(master) board from BLE network configuring process to data packages exchanging

process.

From figure 5.3, we can see that BlueNRG version of the Bluetooth shield board on client side,

and the connected board information when the client board established the connection

successfully. After that, the client board starts to execute a transmission function on the

EVT_BLUE_GATT_DISC_READ_CHAR_BY_UUID_RESP profile and then start receiving

data packages from another board. This process repeats until 500 packages are transferred.

Figure 5.3 Information of data sending on client (slave) side

From the server(master) side, we can check the throughput of this application and the data

exactly transmitted from the client side. We can also calculate the transmission speed in this

procedure by quantifying throughput and elapsed transmission time. Specially, the data received

here is not the original message received in the 500 packages. The separated receiving data is

used for showing the random number generated by STM32F7 board.

44

Figure 5.4 Information of data receiving on the server (master) side

45

Chapter 6

Conclusion

In this thesis, for designing a scalable distributed converter network with the device nodes having

renewable harvesting ability, a Markov decision process (MDP) model using greedy  based

SARSA and Q-learning method is developed and simulated. To explore the relation between

Markov decision process and energy harvesting scalable network, Markov property and Markov

rewards property has been introduced for the memoryless and policy iteration characteristic of

MDP. A single package transmission process in the network with obstacles has been simulated.

Then a online learning SARSA and offline learning Q-learning method has been introduced and

applied to the following training process analysis of energy harvesting node. In the end, a

simulation based on Q-learning approach has been conducted. The results show the Q learning

method could improve the performance of the distributed network when the number of nodes is

less than 10. In addition, the STM32 hardware development has been conducted to realize the

point-relaying-point communication system, where the test results from the serial port show

applicable results.

46

Reference
[1] M. L. Littman, “Markov games as a framework for multi-agent reinforcement learning,” in

Proc. Int. Conf. Machine Learning, New Brunswick, July 1994, pp. 157-163

[2] Vincent J. Winstead, “Universal and Scalable Smart Grid Power Converter”, Jun. 2016.

[3] Y. Xiao, M. Peng, J. Gibson, G. G. Xie, D. Du and A. V. Vasilakos, "Tight Performance

Bounds of Multihop Fair Access for MAC Protocols in Wireless Sensor Networks and

Underwater Sensor Networks," in IEEE Transactions on Mobile Computing, vol. 11, no. 10, pp.

1538-1554, Oct. 2012.

[4] P. Deshpande and M. S. Madankar, "Techniques improving throughput of wireless sensor

network: A survey," 2015 International Conference on Circuits, Power and Computing

Technologies [ICCPCT-2015], Nagercoil, 2015, pp. 1-5.

[5] Jian Li and P. Mohapatra, "An analytical model for the energy hole problem in many-to-one

sensor networks," VTC-2005-Fall. 2005 IEEE 62nd Vehicular Technology Conference, 2005.,

Dallas, TX, USA, 2005, pp. 2721-2725.

[6] J. Lin and M. A. Ingram, "SCT-MAC: A scheduling duty cycle MAC protocol for

cooperative wireless sensor network," 2012 IEEE International Conference on Communications

(ICC), Ottawa, ON, 2012, pp. 345-349.

[7] V. Sharma, U. Mukherji, V. Joseph and S. Gupta, "Optimal energy management policies for

energy harvesting sensor nodes," in IEEE Transactions on Wireless Communications, vol. 9, no.

4, pp. 1326-1336, April 2010.

[8] Ahmad Almadhor, 2018. "Feedback-Oriented Intelligent Monitoring of a Storage-Based

Solar Photovoltaic (PV)-Powered Microgrid with Mesh Networks," Energies, MDPI, Open

Access Journal, vol. 11(6), pages 1-18, June.

[9] Ortiz, Andrea & Al-Shatri, Hussein & Weber, Tobias & Klein, Anja. (2017). Multi-Agent

Reinforcement Learning for Energy Harvesting Two-Hop Communications with Full

Cooperation.

47

[10] S. Luo, R. Zhang and T. J. Lim, "Optimal Save-Then-Transmit Protocol for Energy

Harvesting Wireless Transmitters," in IEEE Transactions on Wireless Communications, vol. 12,

no. 3, pp. 1196-1207, March 2013.

[11] J. Yang and S. Ulukus, "Optimal Packet Scheduling in an Energy Harvesting

Communication System," in IEEE Transactions on Communications, vol. 60, no. 1, pp. 220-230,

January 2012.

[12] P. Blasco, D. Gunduz and M. Dohler, "A Learning Theoretic Approach to Energy

Harvesting Communication System Optimization," in IEEE Transactions on Wireless

Communications, vol. 12, no. 4, pp. 1872-1882, April 2013.

[13] B. Devillers and D. Gündüz, "A general framework for the optimization of energy

harvesting communication systems with battery imperfections," in Journal of Communications

and Networks, vol. 14, no. 2, pp. 130-139, April 2012.

[14] M. Miozzo, L. Giupponi, M. Rossi and P. Dini, "Distributed Q-learning for energy

harvesting Heterogeneous Networks," 2015 IEEE International Conference on Communication

Workshop (ICCW), London, 2015, pp. 2006-2011.

 [15] M. Miozzo, L. Giupponi, M. Rossi and P. Dini, "Distributed Q-learning for energy

harvesting Heterogeneous Networks," 2015 IEEE International Conference on Communication

Workshop (ICCW), London, 2015, pp. 2006-2011.

[16] A. Ortiz, H. Al-Shatri, X. Li, T. Weber and A. Klein, "Reinforcement learning for energy

harvesting point-to-point communications," 2016 IEEE International Conference on

Communications (ICC), Kuala Lumpur, 2016, pp. 1-6.

[17] A. Masadeh, Z. Wang and A. E. Kamal, "Reinforcement Learning Exploration Algorithms

for Energy Harvesting Communications Systems," 2018 IEEE International Conference on

Communications (ICC), Kansas City, MO, 2018, pp.

[18] A. Ortiz, H. Al-Shatri, Xiang Li, T. Weber and A. Klein, "Throughput maximization in two-

hop energy harvesting communications," 2015 International Symposium on Wireless

Communication Systems (ISWCS), Brussels, 2015, pp. 291-295.

48

[19] A. Ortiz, H. Al-Shatri, X. Li, T. Weber and A. Klein, "Reinforcement Learning for Energy

Harvesting Decode-and-Forward Two-Hop Communications," in IEEE Transactions on Green

Communications and Networking, vol. 1, no. 3, pp. 309-319, Sept. 2017.

[20] M. Miozzo, L. Giupponi, M. Rossi and P. Dini, "Switch-On/Off Policies for Energy

Harvesting Small Cells through Distributed Q-Learning," 2017 IEEE Wireless Communications

and Networking Conference Workshops (WCNCW), San Francisco, CA, 2017, pp. 1-6.

[21] M. Chu, H. Li, X. Liao and S. Cui, "Reinforcement Learning-Based Multiaccess Control

and Battery Prediction With Energy Harvesting in IoT Systems," in IEEE Internet of Things

Journal, vol. 6, no. 2, pp. 2009-2020, April 2019.

[22] L. Huang, "Fast-convergent learning-aided control in energy harvesting networks," 2015

54th IEEE Conference on Decision and Control (CDC), Osaka, 2015, pp. 5518-5525.

49

Appendix
1. Single package transmission within a network with obstacles

%DEFINE THE 2-D R ARRAY
MAX_X=10;
MAX_Y=10;

Ra = -3; %reward in non-terminal states (used to initialise
r[][])

%This array stores the coordinates of the R and the
%Objects in each coordinate
R=Ra*ones(MAX_X,MAX_Y);
Pi=ones(MAX_X,MAX_Y);

% Obtain Obstacle, Target and Robot Position
% Initialize the R
% Obstacle=-1,Target = 0,Robot=1,Space=2
axis([0 MAX_X 0 MAX_Y])
%set(gca,'color', [1 1 0]);
%set(gca,'color','b');

set(gca,'XTick',[1:MAX_X])
set(gca,'YTick',[1:MAX_Y])

grid on;
hold on;

% Determine Terminals, Obstacles, Start Locations

%Terminals
%Winning point
xWin=5;%X Coordinate of the Winning point
yWin=10;%Y Coordinate of the Winning point
R(xWin,yWin)=100;%Reward = 100
Pi(xWin,yWin)='+';%Policy
plot(xWin-.5,yWin-.5,'gd');
text(xWin-.9,yWin-.3,'Winning +100')

%Loss point
xLos=4;%X Coordinate of the Loss point
yLos=2;%Y Coordinate of the Loss point
R(xLos,yLos)=-100;%Reward = -100

50

Pi(xLos,yLos)='-';%Policy
%plot(xLos-.5,yLos-.5,'rd');
text(xLos-.8,yLos-.4,'Loss -100')

%Obstacles
xObs=8;%X Coordinate of the First Obstacle
yObs=5;%Y Coordinate of the First Obstacle
R(xObs,yObs)=0;%Reward = 0
Pi(xObs,yObs)='#';%Policy
%plot(xObs-.5,yObs-.5,'ro');
text(xObs-.8,yObs-.4,'Obs')

%Obstacles
xObs=3;%X Coordinate of the First Obstacle
yObs=3;%Y Coordinate of the First Obstacle
R(xObs,yObs)=0;%Reward = 0
Pi(xObs,yObs)='#';%Policy
%plot(xObs-.5,yObs-.5,'ro');
text(xObs-.8,yObs-.4,'Obs')

%Obstacles
xObs=4;%X Coordinate of the First Obstacle
yObs=5;%Y Coordinate of the First Obstacle
R(xObs,yObs)=0;%Reward = 0
Pi(xObs,yObs)='#';%Policy
%plot(xObs-.5,yObs-.5,'ro');
text(xObs-.8,yObs-.4,'Obs')

%Obstacles
xObs=3;%X Coordinate of the First Obstacle
yObs=5;%Y Coordinate of the First Obstacle
R(xObs,yObs)=0;%Reward = 0
Pi(xObs,yObs)='#';%Policy
%plot(xObs-.5,yObs-.5,'ro');
text(xObs-.8,yObs-.4,'Obs')

%Obstacles
xObs=2;%X Coordinate of the First Obstacle
yObs=7;%Y Coordinate of the First Obstacle
R(xObs,yObs)=0;%Reward = 0
Pi(xObs,yObs)='#';%Policy
%plot(xObs-.5,yObs-.5,'ro');
text(xObs-.8,yObs-.4,'Obs')

51

%Obstacles
xObs=1;%X Coordinate of the First Obstacle
yObs=4;%Y Coordinate of the First Obstacle
R(xObs,yObs)=0;%Reward = 0
Pi(xObs,yObs)='#';%Policy
%plot(xObs-.5,yObs-.5,'ro');
text(xObs-.8,yObs-.4,'Obs')

%Obstacles
xObs=5;%X Coordinate of the First Obstacle
yObs=5;%Y Coordinate of the First Obstacle
R(xObs,yObs)=0;%Reward = 0
Pi(xObs,yObs)='#';%Policy
%plot(xObs-.5,yObs-.5,'ro');
text(xObs-.8,yObs-.4,'Obs')

%Obstacles
xObs=3;%X Coordinate of the First Obstacle
yObs=6;%Y Coordinate of the First Obstacle
R(xObs,yObs)=0;%Reward = 0
Pi(xObs,yObs)='#';%Policy
%plot(xObs-.5,yObs-.5,'ro');
text(xObs-.8,yObs-.4,'Obs')

%Obstacles
xObs=6;%X Coordinate of the First Obstacle
yObs=6;%Y Coordinate of the First Obstacle
R(xObs,yObs)=0;%Reward = 0
Pi(xObs,yObs)='#';%Policy
%plot(xObs-.5,yObs-.5,'ro');
text(xObs-.8,yObs-.4,'Obs')

%Obstacles
xObs=7;%X Coordinate of the First Obstacle
yObs=7;%Y Coordinate of the First Obstacle
R(xObs,yObs)=0;%Reward = 0
Pi(xObs,yObs)='#';%Policy
%plot(xObs-.5,yObs-.5,'ro');
text(xObs-.8,yObs-.4,'Obs')

%Obstacles
xObs=8;%X Coordinate of the First Obstacle
yObs=8;%Y Coordinate of the First Obstacle
R(xObs,yObs)=0;%Reward = 0

52

Pi(xObs,yObs)='#';%Policy
%plot(xObs-.5,yObs-.5,'ro');
text(xObs-.8,yObs-.4,'Obs')

%Obstacles
xObs=9;%X Coordinate of the First Obstacle
yObs=9;%Y Coordinate of the First Obstacle
R(xObs,yObs)=0;%Reward = 0
Pi(xObs,yObs)='#';%Policy
%plot(xObs-.5,yObs-.5,'ro');
text(xObs-.8,yObs-.4,'Obs')

%Start
xStart=4;%X Coordinate of the Start
yStart=3;%Y Coordinate of the Start
plot(xStart-.5,yStart-.5,'bo');
text(xStart-.6,yStart-.4,'Start')

%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%ALGORITHM
%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
N = 10000; %max number of iterations of Value Iteration

deltaMin = 1e-9; %convergence criterion for iteration
delta = 0;

POINTS_COUNT= MAX_X * MAX_Y;
POINTS=[POINTS_COUNT,6];

%Put all the points in list with their rewards and initial
UP and U
%POINTS
%LIST |X val |Y val |Reward |Uprime |Utility |Policy

k=1;%Dummy counter
for i=1:MAX_X
 for j=1:MAX_Y
 POINTS(k,1)=i;
 POINTS(k,2)=j;
 POINTS(k,3)=R(i,j);
 POINTS(k,4)=0;
 POINTS(k,5)=0;

53

 POINTS(k,6)=Pi(i,j);

 k=k+1;
 end
end

R=POINTS(:,3);%instantaneous reward
Up=POINTS(:,4);%UPrime, used in updates
U=POINTS(:,5);%long-term utility
Pi=POINTS(:,6);%policy

n=0;

%while((delta < deltaMin) && (n < N))
while 1

 POINTS(:,5)=POINTS(:,4);%U=Up
 U=Up;

 n=n+1;

 delta = 0;

 for i=1:MAX_X
 for j=1:MAX_Y
 upPi=updateUPrimePi(i,j,POINTS,Ra);
 Up=upPi(:,1);
 Pi=upPi(:,2);
 POINTS(:,4)=Up;
 POINTS(:,6)=Pi;

 k=find(POINTS(:,1)==i & POINTS(:,2)==j);
 %k=k(1);

 diff=abs(Up(k)-U(k));

 if diff > delta
 delta = diff;
 end

 end
 end

 if (delta < deltaMin || n > N)

54

 break;
 end

end

charPi=char(Pi);

for i=1:MAX_X
 for j=1:MAX_Y
 k=find(POINTS(:,1)==i & POINTS(:,2)==j);
 text(i-.7,j-.2,num2str(U(k)),'color','g')
 text(i-.5,j-.8,charPi(k),'color','b')
 end
end

path=[];

i=1;
path(1,1)=xStart;
path(1,2)=yStart;

newX=xStart;
newY=yStart;

while 1
k=find(POINTS(:,1)==newX & POINTS(:,2)==newY);
if (charPi(k)~='+' && charPi(k)~='-' && charPi(k)~='#')
 i=i+1;
 if charPi(k)=='N'
 path(i,1)=newX;
 path(i,2)=newY+1;
 newX=newX;
 newY=newY+1;
 else if charPi(k)=='S'
 path(i,1)=newX;
 path(i,2)=newY-1;
 newX=newX;
 newY=newY-1;
 else if charPi(k)=='W'
 path(i,1)=newX-1;
 path(i,2)=newY;
 newX=newX-1;
 newY=newY;
 else %'E'

55

 path(i,1)=newX+1;
 path(i,2)=newY;
 newX=newX+1;
 newY=newY;
 end

 end
 end
else
 break;
end

i=size(path,1);
 %Plot the Path!
 p=plot(path(i,1)-.5,path(i,2)-.5,'bo');
 plot(R,n);

for i=1:size(path,1)
 pause(.25);
 set(p,'XData',path(i,1)-.5,'YData',path(i,2)-.5);
 drawnow ;
 end;
plot(path(:,1)-.5,path(:,2)-.5);
end

2.Q-learning for calculating average throughput

a=zeros(1,10000);
gamma=0.95;
state_new=1;
new=zeros(1,20);
m=1;
ibs = 0.04;
s=zeros(1,5);
afa=0.1; %learning parameter
 q=zeros(4,5);
 s1=[0 0 1 1 1];
 s2=[0 0 0 1 1];
 s3=[0 0 1 0 1];
 s4=[0 0 1 1 0];
 s5=[s1;s2;s3;s4];
 state=1;
 k=1;

56

for u=1:10000

 max=q(state,1);
 for i=2:5
 if max<q(state,i)
 max=q(state,i);
 m=i;
 end
 end
 if m==1
 e=unidrnd (20);
 if mod(e,6)==0
 f=unidrnd(4);
 switch f
 case 1
 s=s5(state,1:5)&[1 0 1 1 1];

 case 2
 s=s5(state,1:5)&[1 1 0 1 1];

 case 3
 s=s5(state,1:5)&[1 1 1 0 1];

 case 4
 s=s5(state,1:5)&[1 1 1 1 0];

 end
 else
 s=s5(state,1:5)&[0 1 1 1 1];

 end
 end

 if m==2
 e=unidrnd (20);
 if mod(e,6)==0
 f=unidrnd(4);
 switch f
 case 1
 s=s5(state,1:5)&[0 1 1 1 1];

 case 2
 s=s5(state,1:5)&[1 1 0 1 1];

57

 case 3
 s=s5(state,1:5)&[1 1 1 0 1];

 case 4
 s=s5(state,1:5)&[1 1 1 1 0];

 end

 else
 s=s5(state,1:5)&[1 0 1 1 1];

 end
 end
 if m==3
 e=unidrnd (20);
 if mod(e,6)==0
 f=unidrnd(4);
 switch f
 case 1
 s=s5(state,1:5)&[0 1 1 1 1];

 case 2
 s=s5(state,1:5)&[1 0 1 1 1];

 case 3
 s=s5(state,1:5)&[1 1 1 0 1];

 case 4
 s=s5(state,1:5)&[1 1 1 1 0];

 end

 else
 s=s5(state,1:5)&[1 1 0 1 1];

 end
 end

 if m==4
 e=unidrnd (20);
 if mod(e,6)==0
 f=unidrnd(4);
 switch f
 case 1

58

 s=s5(state,1:5)&[0 1 1 1 1];

 case 2
 s=s5(state,1:5)&[1 0 1 1 1];

 case 3
 s=s5(state,1:5)&[1 1 0 1 1];

 case 4
 s=s5(state,1:5)&[1 1 1 1 0];

 end

 else
 s=s5(state,1:5)&[1 1 1 0 1];

 end
 end

 if m==5
 e=unidrnd (20);
 if mod(e,6)==0
 f=unidrnd(4);
 switch f
 case 1
 s=s5(state,1:5)&[0 1 1 1 1];

 case 2
 s=s5(state,1:5)&[1 0 1 1 1];

 case 3
 s=s5(state,1:5)&[1 1 0 1 1];

 case 4
 s=s5(state,1:5)&[1 1 1 0 1];

 end

 else
 s=s5(state,1:5)&[1 1 1 1 0];

 end
 end

59

 if s== s5(1,1:5)
 state_new = 1;
 elseif s==s5(2,1:5)
 state_new = 2;
 elseif s==s5(3,1:5)
 state_new = 3;
 elseif s==s5(4,1:5)
 state_new = 4;
 else
 state_new = 1;
 end
 if state_new == state
 a(k)=1;
 r=-5;
 else
 a(k)=0;
 r=1;
 end
 new(k)=state_new;
 k=k+1;

 max_2=q(state_new,1);
 for i=2:5
 if max_2<q(state_new,i)
 max_2=q(state_new,i);
 end
 end
 q(state,m)=(1-afa)*q(state,m)+afa*(r+gamma*max_2);
 state=state_new;
end

sum=0;
b=zeros(1,20);
for n=1:20
for i=((n-1)*500+1):n*500
 sum=sum+a(i);
end
b(n)=sum;
sum=0;

60

end
n=1:20;
plot(n,b(n));
axis([1 20 0 500]);

3. Q-learning for generating the average collision rate

format short
format compact
a=zeros(1,10000);
gamma=0.95;
state_new=1;
new=zeros(1,20);
m=1;
s=zeros(1,5);
afa=0.1; %learning parameter
 q=rand(7,5);
 s1=[0 0 1 1 1];
 s2=[0 0 0 1 1];
 s3=[0 0 1 0 1];
 s4=[0 0 1 1 0];
 s5=[0 0 0 0 1];
 s6=[0 0 0 1 0];
 s7=[0 0 1 0 0];
 s8=[s1;s2;s3;s4;s5;s6;s7];
 state=1;
 k=1;

for u=1:10000

 max=q(state,1);
 for i=2:5
 if max<q(state,i)
 max=q(state,i);
 m=i;
 end
 end
 if m==1
 e=unidrnd (10);
 if mod(e,6)==0

61

 f=unidrnd(4);
 switch f
 case 1
 s=s8(state,1:5)&[1 0 1 1 1];

 case 2
 s=s8(state,1:5)&[1 1 0 1 1];

 case 3
 s=s8(state,1:5)&[1 1 1 0 1];

 case 4
 s=s8(state,1:5)&[1 1 1 1 0];

 end
 else
 s=s8(state,1:5)&[0 1 1 1 1];

 end
 end

 if m==2
 e=unidrnd (10);
 if mod(e,6)==0
 f=unidrnd(4);
 switch f
 case 1
 s=s8(state,1:5)&[0 1 1 1 1];

 case 2
 s=s8(state,1:5)&[1 1 0 1 1];

 case 3
 s=s8(state,1:5)&[1 1 1 0 1];

 case 4
 s=s8(state,1:5)&[1 1 1 1 0];

 end

 else
 s=s8(state,1:5)&[1 0 1 1 1];

 end

62

 end
 if m==3
 e=unidrnd (10);
 if mod(e,6)==0
 f=unidrnd(4);
 switch f
 case 1
 s=s8(state,1:5)&[0 1 1 1 1];

 case 2
 s=s8(state,1:5)&[1 0 1 1 1];

 case 3
 s=s8(state,1:5)&[1 1 1 0 1];

 case 4
 s=s8(state,1:5)&[1 1 1 1 0];

 end

 else
 s=s8(state,1:5)&[1 1 0 1 1];

 end
 end

 if m==4
 e=unidrnd (10);
 if mod(e,6)==0
 f=unidrnd(4);
 switch f
 case 1
 s=s8(state,1:5)&[0 1 1 1 1];

 case 2
 s=s8(state,1:5)&[1 0 1 1 1];

 case 3
 s=s8(state,1:5)&[1 1 0 1 1];

 case 4
 s=s8(state,1:5)&[1 1 1 1 0];

 end

63

 else
 s=s8(state,1:5)&[1 1 1 0 1];

 end
 end

 if m==5
 e=unidrnd (10);
 if mod(e,6)==0
 f=unidrnd(4);
 switch f
 case 1
 s=s8(state,1:5)&[0 1 1 1 1];

 case 2
 s=s8(state,1:5)&[1 0 1 1 1];

 case 3
 s=s8(state,1:5)&[1 1 0 1 1];

 case 4
 s=s8(state,1:5)&[1 1 1 0 1];

 end

 else
 s=s8(state,1:5)&[1 1 1 1 0];

 end
 end

 if s== s8(1,1:5)
 state_new = 1;
 elseif s==s8(2,1:5)
 state_new = 2;
 elseif s==s8(3,1:5)
 state_new = 3;
 elseif s==s8(4,1:5)
 state_new = 4;
 elseif s==s8(5,1:5)
 state_new = 5;

64

 elseif s==s8(6,1:5)
 state_new = 6;
 elseif s==s8(7,1:5)
 state_new = 7;
 else
 state_new = 1;
 end
 if state_new == state
 a(k)=1;
 r=-5;
 else
 a(k)=0;
 r=1;
 end
 new(k)=state_new;
 k=k+1;

 max_2=q(state_new,1);
 for i=2:5
 if max_2<q(state_new,i)
 max_2=q(state_new,i);
 end
 end
 q(state,m)=(1-afa)*q(state,m)+afa*(r+gamma*max_2);
 state=state_new;
end

sum=0;
b=zeros(1,20);
for n=1:20
for i=((n-1)*500+1):n*500
 sum=(sum+a(i))/10;
end
b(n)=sum;
sum=0;
end
n=1:20;
plot(n,b(n))
axis([1 20 0 1])

	Optimization of Energy Harvesting Mobile Nodes Within Scalable Converter System Based on Reinforcement Learning
	Recommended Citation

	Microsoft Word - Thesis Draft

