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Abstract 

 

Microgrid monitoring focusing on power data, such as voltage and current, has become more 

significant in the development of decentralized power supply system. The power data 

transmission delay between distributed generator is vital for evaluating the stability and financial 

outcome of overall grid performance. In this thesis, both hardware and simulation has been 

discussed for optimizing the data packets transmission delay, energy consumption, and collision 

rate. To minimize the transmission delay and collision rate, state-action-reward-state-action 

(SARSA) and Q-learning method based on Markov decision process (MDP) model is used to 

search the most efficient data transmission scheme for each agent device. A training process 

comparison between SARSA and Q-learning is given out for representing the training speed of 

these two methodologies in the scenario of source-relaying-destination model. To balance the 

exploration and exploitation process involved in these two methods, a parameter   is introduced 

to optimize the cost time of training process. Finally, the simulation result of average throughput 

and data packets collision rate in the network with 20 agent nodes is presented to indicate the 

application feasibility of reinforcement learning algorithm in the development of scalable 

network. The results show that, the average throughput and collision rate stay on the expected 

ideal performance level for the overall network when the number of nodes is not too large. Also, 

the hardware development based on Bluetooth Low Energy (BLE) is used to reveal the process 

of data packets transmission.   
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Chapter 1 

Introduction 

1.1 Background 

Renewable energy, such as generated from solar energy and wind energy currently play an 

important role under the theme of economical and sustainable development. The use of 

renewable sources tends to reduce the discharge of greenhouse effect gas. For a standalone 

source with the ability of bi-directional power supply with grid, an universal converter system is 

designed to be configurable and capable of building the connection with a variety of power 

generation and storage devices (i.e. renewable energy generators, battery systems, ultra-capacitor 

systems, hybrid vehicle, etc.) and provide a universal interface to the grid in the future [1]. 

Meanwhile, to allow for grid stability, monitoring and electricity financial exchange anticipation 

with the emergence of smart grid power, data collection of all these distributed power generation 

devices and storage is essential.   

According to the configuration of a universal and scalable converter system described in [2], as 

the figure 1.1 shows, each universal converter transfers electricity back to the utility line through 

the power flow line. For the monitoring data collection between converters, each of them can be 

configured as a single node within this scalable network. Here, they are capable of sending, 

relaying, and receiving collected data packets. However, since the communication range of a 

single node is limited, the single hop between converter nodes cannot meet the wide range device 

deployment requirements [9]. Also, for single node connections between multiple nodes, this 

data collision would be the cause of losing of essential data in the transmission process when the 
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receiving node receives the packets from different resources. Meanwhile, the data packet traffic 

within the network could be unbalanced for each node due to the case where the potential 

difference of the data packet size, severe environmental interference (i.e. moisture, high 

temperature) and unexpected reduction in expected device life exists. In particular, the node 

connected to the utility communication devices (or power line communication devices) 

consumes its energy faster than the others since it relays all the other nodes’ data packets with 

longer receiving, buffering and sending times. The energy harvesting network could be applied 

to solve the energy imbalance problem.    

 

Figure 1.1 Universal and scalable converter system 

 

There are two models considering the process of optimal performance of the sending, relaying, 

and receiving process in this multi-hop wireless sensor network (WHWSNs), which can be an 

energy constrained (EC) network or energy harvesting network (EH), both with and without 



3 
 

relaying cooperation [3]. Existing methodologies concerning data packet transferring in EC 

networks have mainly focused on solving the delay optimization, data priority, and data 

collecting efficiency to represent the situation of wireless sensor networks [4][5][6][7]. With the 

emerging technique called energy harvesting that enables wireless devices to scavenge energy 

physically or chemically from natural or man-made phenomena [8], additional advantages (i.e. 

self-sustainable capability, nearly permanent network life) have been realized in energy 

harvesting networks. 

 

1.2 Related works 
The study of EH network wireless communication has been based on three different approaches, 

namely, offline, online, and learning [10]. The offline policy assumes the stationary knowledge 

in a specific pattern regarding the EH processes in a distributed network. Similar works have 

been done by assuming the transmitter has non-casual information on arrival time and data 

amount [11, 12, 13]. Although the offline policy will not be able to fit in most realistic 

applications, the ideal network performance results will be generated by it. The online policy 

requests associated knowledge from the transmitter representing the statistical information of the 

data packets arrival time, power harvested by a rechargeable battery, and channel collision or 

fading. Also, prior knowledge won’t be available at the beginning operating time or after 

topology changes in the EH process. Therefore, a learning policy has been considered to 

optimize the action execution when the packets need to be transmitted in an unknown operating 

environment. One approach we will apply to find the optimized action of package transferring in 

this thesis is called reinforcement learning.  
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In [12], a learning theoretical approach has been investigated which was applied to a point-to-

point wireless communication system with finite capacity rechargeable battery. A data packet 

arrives at the beginning of each time slot (TS) and gets lost in the following TS if it has not been 

sent out. One can assign a likelihood for this assuming the transmitter will be terminated under 

specific conditions to make this energy harvesting (EH) network more realistic. However, the 

only energy consumption we consider is strictly defined in the process of transmission while 

ignoring the relaying and receiving process energy consumption.   

In [3], both the EC network and EH network have been investigated. In this work, the authors 

provide the framework for finding the optimal policy by the proposed Markov decision process 

(MDP) under two different methods describing the data package transmission action, namely 

finite-horizon processes and infinite-horizon processes. Under the unified MDP framework and 

proposed dual linear programming based algorithm, the numerical result measuring network 

performance (i.e. energy harvesting rate, nonarrival package rate, battery capacity) is provided. 

However, the authors do not give out the convergence result by analyzing this general 

framework created to describe the data transmission process inside multi-hop wireless sensor 

network (MHWSN). 

The authors of [14][15] both investigate the learning policy for agents within a network to learn 

the optimal strategy to balance the traffic demand and harvested energy, battery level, the drop 

rate of data packets and energy efficiency.  The author in [14] proposed an approximated set of 

binary functions to approximate the expected throughput. In [15], the authors applied a Q-

learning algorithm thus finding the optimized system performance in terms of drop rate, 

throughput, and energy efficiency. The author in [16] provided a mean-field deep reinforcement 

learning approach to find the online control policy which only requires the local knowledge of 
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the state. They achieved performance comparable with a centralized network having an offline 

policy.  

In this thesis, based on the point-to-point EH wireless communication, the performance (i.e. data 

transferring latency, device node power consumption, channel collision and data packet dropping 

rate) of a scalable EH multi-agent wireless communication network will be investigated. The 

network model will be both formulized as a Markov process using historical statistical 

knowledge of state to find the best action of package transferring and MDP to find the optimal 

strategy with local knowledge of the state. Finally, I will compare simulation results of the 

system performance by taking Q-learning in an offline policy, state-action-rewards-state-action 

(SARSA) in an online policy, and greedy algorithm used in exploring the optimized policy. 

The rest of the thesis will be organized as follows. In chapter 2, the system hardware deployment 

is presented, which includes a Bluetooth low energy technique configured mesh network to 

realize the embedded system test of this reinforcement learning process. In chapter 3, the EH 

multi-agent power allocation, data package storage and relaying, and collision rate of packets 

will be formulated. In chapter 4, the reinforcement learning (RL) algorithm used for EH network 

scenario to achieve network performance optimization is presented. In chapter 5, the final 

simulation results will be demonstrated and tested via the algorithm code on a STM32 embedded 

system. Chapter 6 provides a summary and concluding remarks. 

 

 

 

 

 



6 
 

Chapter 2 

Bluetooth Low Energy Mesh Network 
2.1 BLE Mesh Network Configuration 

2.1.1 Comparation between wireless communication method 

To develop a device which is configurable (in firmware) and capable of connecting electrically 

to a variety of power generation and energy storage devices (i.e. renewable energy generator, 

ultra-capacitor systems, hybrid vehicles, etc.) and provide a universal interface to the grid of the 

future [2], it is necessary to develop a comprehensive data capture and communication capability 

for the flexible converter to allow converter-to-converter communication of energy transfer data 

via wireless protocols and to enable remote diagnostic/prognostics. 

The options we have for wireless communication technologies include Infrared (IR), Cellular 

connectivity, Near field communications (NFC), Bluetooth low energy (BLE), Zigbee, Wi-Fi, 

and Bluetooth classic. IR has been prevelent in the era of flip phones given a desired line of sight 

connection. However, the communication between two devices based on IR has some significant 

flaws, such as low bandwidth, short range, and a requirement that the device be positioned within 

line of sight of each other. This makes it impractical given the need to reposition the converter 

device. Similarly, regarding the other two technologies, cellular is not feasible given the need for 

a SIM card in devices and the costly subscription fees. Also, the NFC has a problem of short 

range. Wi-Fi could be a potentially viable communication method between these converters 

based on its high data throughput. The Wi-Fi network relies on TCP-IP protocol, which requires 

all the connected devices obtain their own IP address and authenticate themselves on the 

network. This is not suitable for the converter devices given the the extra requirement for a 

converter, to include a physical user interface and entering a Wi-Fi password. Also, it results in 

potential network and data security issues.      

ZigBee is a mesh network protocol designed to realize medium range wireless transmissions 

with a small amount of data. It transfers the message via an inner mesh topology network, which 
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sends meaningful information from a single node to the gateways across a group of nodes. This 

explains why it is fairly limited for a high throughput local network, such as in industrial IoT 

(Internet of Things) applications. Also, it could result in higher latency when ZigBee is applied 

to high transmission node density networks because of its mesh topology. The comparison 

between ZigBee and Bluetooth Low Energy is listed as follows.  

Table 2.1 Network characteristic of ZigBee and Bluetooth Low Energy (BLE) 

 BLE ZigBee 

Network type 
Personal area network (PAN), which 

supports few nodes 

Local area network (LAN), which 

supports many nodes 

Range* 77 meters 291 meters 

Operation system Android, iOS, Windows 8, OS X Not current compatible 

Topology Mesh and star Mesh only 

Throughput 270 kbps 250 kbps 

Modulation 
Frequency-hopping speard spectrum 

(FHSS) 

Direct-sequence spread spectrum 

(DSSS) 

Transmit power 10 mW 100 mW 

 

A few main characteristics can be seen from table 2.1. The ZigBee protocol could fit well in 

medium range communication applications when the mesh node has low density network 

density. However, a few advantages held by BLE makes it more suitable to build a scalable mesh 

network in universal and scalable converter devices. First, its more flexible topology (i.e. star 

topology, mesh topology) gives BLE more choices in building different structured wireless 

connection networks. The combination of these two structures could potentially be capable of 
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reducing the communication latency since the synchronized scheme in star topology could 

effectively cut down the possibility that the data packets collide leading to the retransmission of 

the same packet. The frequency hopping spread spectrum modulation could also reduce the rate 

of packet collision since two devices share the same channel. Also, the higher throughput of the 

BLE is a more ideal choice for scalable converter device with higher data transmission 

requirements. Furthermore, the lower transmission power of BLE with higher data throughput 

could extend the life time of rechargeable batteries in an energy harvesting scalable network. 

Therefore, the BLE based converter mesh network configuration will be discussed in this thesis.  

 

 2.1.2 Hardware selection  

The X-NUCELO-IDB05A1 is a Bluetooth Low Energy evaluation board based on the 

STMicroelectronics SPBTLE-RF BlueNRG-MS RF module which is a shield for the STM32 

NUCELO boards. It will be used in the embedded system development.  

 

Figure 2.1 X-NUCLEO-IDB05A1 
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It also interfaces with the STM32 microcontroller via SPI serial communication. A few key 

features are listed below.  

 STM32 expansion board based on the SPBTLE-RF module for SMT32 NUCLEO 

 X-NUCLEO-IDB05A1 contains FCC and IC certified module SPBTLE-RF (FCC ID: 

S9NSPBTLERF and IC: 8976C-SPBTLERF) 

 SPBTLE-RF 

 Bluetooth Low Energy FCC and IC certified module based on Bluetooth® 

SMART 4.1 network processor BlueNRG-MS 

 Integrated Balun (BALF-NRG-01D3) and chip antenna  

 It embeds 32 MHz and 32.768 kHz crystal oscillators for the BlueNRG-MS 

 Compatible with STM32 Nucleo boards 

 Equipped with Arduino UNO R3 connector 

 Scalable solution, capable of cascading multiple boards for larger systems 

 Free comprehensive development firmware library and example for BlueNRG-MS, 

compatible with STM32Cube firmware 

 M95640-R has 64-kbit serial SPI bus EEPROM with high-speed clock interface 

The mother board of the X-NUCLEO-IDB05A1 used in software development is the 

STMicroelectronics of NUCLEO-F401RE (Cortex4 Microprocessor). It provides the Arduino 

UNO R3 connector allowing for easy expansion of the functions of the STM32 Nucleo open 

development platform. The key features are listed as follows. 

 SMT32 32bit microprocessor 

 1 user and 1 reset push-button 

 32.768 kHz crystal oscillator 

 Board connectors: Arduino Un V3 expansion connector ST morpho extension pin 

headers for full access to all STM32 I/0s  
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Figure 2.2 NUCLEO-F401RE 

As the gateway will involve power converter transmission devices, the collecting data 

microprocessor requires more advanced data processing capability and larger data storage to 

lessen risk of receiving lost package or packets with data corruption. Therefore, the 

STMicroelectronics STM32F769I-DISCOVERY board will be used to collect the amount of data 

generated in the network. The key features of it are listed as follows. 

 STM32F769NIH6 microprocessor featuring 2 Mbytes of flash memory and 512+16+4 

Kbytes of RAM, in BGA216 package 

 Two push buttons (user and reset) 

 512-Mbit Quad-SPI Flash memory 
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Figure 2.3 STM32F769I-DISCOVERY 

 

2.1.3 Energy Consumption Parameter of BLE  

Regarding to the energy consumption associated with BLE communication under various 

package transmission modes, the BlueNRG current consumption estimation tool also available 

from STMicroelectronics will be used in the analysis. There are four behaviors of the BLE 

devices requiring quantized energy which includes advertising, scanning, connection-slave, and 

connection-master mode. These four working modes on a BLE chip could be used to transport 

data packets between points, and it’s not necessary for the user to specify the transmission 

protocol.  

The BlueNRG current consumption estimation tool v.1.4 is utilized to estimate the energy 

consumption under the four modes of operation of BLE. figure 2.4 shows the BLE setting of 

work mode, device type, power supply, master SCA, slave SCA, and the performance of average 

current and device life-time under a specified battery capacity. 
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Figure 2.4 Energy consumption estimation tool of BLE 

1. Connection-master mode   

The master mode set in the BLE module could initiate the connection with a connection-

slave mode device. Under this mode, the surrounding devices would start searching and 

connect with the device which needs to be connected. Figure 2.5 shows the energy cost of 

one period under master work mode.  The average current is 6.16 uA in one period, 

which helps devices with a 200 mAh battery survive 3 years, 8 months and 17 days. 
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Figure 2.5 Current consumption under connection-master mode in one period 

 

2. Connection-slave mode  

BLE allows slave work mode in devices, which includes a service of serial port sending 

and receiving, and the user could find it with the unique UUID. The user could operate 

the two functions of writing and reading under the service to achieve the data 

transmission. Figure 2.6 shows the current consumption estimation under slave mode of 

BLE operation. The average current is 7.54 uA in one period, which helps devices with a 

200 mAh battery survive 3 years, 0 months and 10 days. 

 

Figure 2.6 Current consumption under connection-slave mode in one period  
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3. Advertising mode  

Under advertising mode, the user can apply an AT command to setup the module to 

advertise data and the module could constantly keep advertising under low power mode 

in an ultra-low power, small amount of data, single transmission direction scenario. For 

example, wireless meter reading. Figure 2.7 shows the current consumption estimation 

under advertising mode. The average current is 15.84 uA in one period which helps 

devices with a 200 mAh battery survive 1 year, 5 months and 11 days. 

 

Figure 2.7 Current consumption under advertising mode in one period  

 

4. Scanning mode  
 
Under scanning mode, the BLE could scan the surrounding devices without establishing a 

connection with other devices under advertising mode. This mode applies to a few 

scenarios, such as, the remote control of BLE devices, receiving and retransmission of 

data to the server. The transmission speed under this mode could reach 1 mega bit per 

second. The transmission distance could span 100 meters in free space. Image 2.8 shows 

the current consumption estimation under scanning mode. The average current is 3615.85 
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uA in one period, which helps devices with a 200 mAh battery survive 0 years, 0 months 

and 2 days. 

 

Figure 2.8 Current consumption under scanning mode in one period  
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2.2 Embedded System Development 

The embedded system configuration includes two parts, slave devices and master devices. As 

shown in figure 2.9, slave devices collect the data from converter sensors and transmit it to the 

receiving devices or relaying devices in the middle between it and the destination. It is not 

necessary for the slave device to have a large amount of spare space for data storage or buffering 

and advanced data processing ability. However, the master device serves as gateway for the 

entire distributed network which requires more urgent needs of data buffering and storage.  

 
 

 

 

Figure 2.9 Sketch of BLE distribution system 

Therefore, as shown in figure 2.10, the slave devices use the STM32F401RE as the data buffer 

and storage processor and mother board which connects to STM32 BLE expand low energy 

board X-NUCLEO-IDB05A1, by utilizing the serial peripheral interface (SPI) bidirectional 

communication method to transfer collected data.   

 

Figure 2.10 Slave device hardware configuration 

Similarly, in figure 2.11, considering the requirement of high data processing ability, we added 

the SMT32F769I-DISCOVERY board as the medium device before the data collected in the 

𝑺𝟐 𝑺𝟏 𝑴 
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whole network was sent to PLC communication device, which is separated from the task of 

collecting the data in the SMT32F401RE board. The voltage data is buffered and processed in 

both two STM32 boards. This configuration reduces the risk of losing packets when larger 

amounts of power data is collected from distributed converters after more slave nodes have been 

added to the network. Especially, this issue would be more serious when it is the period of power 

data peak moment. Also, the bidirectional UART communication method is used in talk of 

STM32F401RE and STM32F769I-DISCOVERY board. 

 

Figure 2.11 Master device hardware configuration 
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Chapter 3 

Reinforcement Learning in Energy 
Harvesting Mobile Network 
In this chapter, to estimate the energy harvesting mobile network energy cost and communication 

optimal delay, the framework of reinforcement learning, especially Markov decision process, 

will be discussed. First, the fundamental idea of Markov processes and the derivation of a 

Markov decision process is explained. Second, following the idea we presented in chapter 2, the 

EH mobile network model will be described in a Markov decision process (MDP), State-action-

reward-state-action (SARSA), and using the Q-learning method. Finally, the exploration and 

exploitation iteration method to find the optimal value of performance in EH network will be 

discussed.    

 

3.1 Markov Decision Processes in Reinforcement 
Learning  
The Markov estimation method was presented by Russian mathematician Markov in the theory 

of stochastic process [21]. It estimates the state transition processes of an object in the system 

according to probability and statistical theory. 

In reinforcement learning, a Markov decision process (MDP) is used to describe an observable 

environment. A characteristic parameter of decision making depend on the observed state. 

Considering the universality of MDP, we can apply the MDP into the framework of energy 

harvesting communication networks in a scalable converter system. 
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3.1.1 Markov Process 
The term “Markov property” refers to the memoryless property of a stochastic process [22]. One 

can say a stochastic process has the Markov property if the conditional probability distribution 

depends on the present state, not on the historical event that preceded it [23]. It can be denoted as 

follows: 

'

'
1 [  ]t tss

S s S s  P                                   (3.1) 

where   is the probability function. 

The state transition matrix defines all the state transition probabilities: 

                                              

1

1 11 1

1

                     

 =

n

n

n n nn

s s

s a a

s a a

 
 
 
 
 




   


P  

In this case, n represents the number of states, and the sum of the elements in each row is 1. 

A Markov process is known as a Markov chain. It is a stochastic process without memory. It can 

be represented as a pair ,  S P  , in which S is a finite number of states, and P  is the state 

transition probability matrix. 

 

3.1.2 Markov Reward Process (MRP) 

Markov reward processes add reward R and discount factor   based on the Markov process. 

Therefore, the Markov reward process is comprised of a tuple with four elements <S, P, R,  >:  

S – state of agent, P – transition probability matrix, R – reward,   - discount factor. The reward 

of state S denotes the expectation of reward at time t+1 under state S at time t:  

                                     1s t tR E R S s                                                (3.2) 

Here  E  denotes the expectation function. 
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Discount factor  

The parameter  0,1   is the discount factor. We introduce the discount factor for describing the 

uncertainty of long terms benefits for this multi-agent system but not only focus on the 

immediate benefits. It effectively stops the process falling into an infinite loop when finding the 

best route. 

  

Return 

Definition: The sum of immediate rewards and rewards with discount from time t on the Markov 

reward chain. It can be denoted as the following, 

1 2 1
0

k
t t t t k

k

G R R R 


   


         (3.3) 

where the discount factor represents the present value scale on the future rewards. The rewards 

earned at time K+1 moment can be represented as value of k R at time t moment. When   = 0, it 

denotes the future rewards given the observed sequence has no influence on this return. When   

= 1, the future rewards give the same effects as the current rewards to the return. 

Value Function 

In MDP, the value function can be denoted as the long-term value of a state and an action. 

( ) [ ]t tv s E G S s       (3.4) 

Bellman Equation 

We substitute tG  from (3.3) into (3.4) yielding 

2
1 2 3

1 2 3

1 1

1 1

( ) [ ]

      [ ... ]

      [ ( ...) ]

      [ ]

       = [ ( ) ]        

t t

t t t t

t t t t

t t t

t t t

v s E G S s

E R R R S s

E R R R S s

E R G S s

E R v S S s

 

 





  

  

 

 

 
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    

  
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In the derivation we have 1 1( )t tG v S   since the expectation of the reward is the same as the 

expectation of the reward’s expectation. Then we have the bellman equation [19] as follows, 

1 1( ) [ ( ) ]t t tv s E R v S S s     

We know that ( )v s includes the expectation of instantaneous rewards and the expectation of the 

product of the rewards in the next moment and discount factor respectively. As for the 

expectation of next moment rewards, it is given by the transformation matrix of state and state 

value function associated with the next moment. Then, the Bellman equation yields: 

                   '
'

( ) ( ')s ss
s S

v s R v s


  P                           (3.5) 

Equation (3.5) can be written in matrix form as: 

'
1 1 111 1

'
1

( ) ( )

     

( ) ( )

n

n n n nn n

v s R v sP P

v s R P P v s


      
            

             


     


 

The Bellman equation is a linear equation, so it can be solved directly, 

1

             

(1 )

              = (1- )

v R v

v R

v R




 

 
 

P
P

P
 

The complexity of the computation of this form reaches 3( )O n , where n represents the number 

of states. Thus, the direct solution can only be applied to small MRPs scenarios. To solve a large 

scale MRP, we may use an iterative method such as dynamic programming or Monte-Carlo 

evaluations to find numerical solutions. 

 

3.1.3 Markov Decision Process (MDP) 
Generally, a MDP is used to describe the interaction between multi-agent systems and the 

environment [20].  For the energy harvesting network in this thesis, each device connected in the 

network is homogeneous, which means they have the same data buffer (queue), energy buffer 
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(queue), and channel jumping characteristic. Therefore, the following discussion of model 

parameters (i.e. state, action, state value function, action value function, policy) of the EH 

network would be the same.  

The parameters of MDP include the state of agent, action, transition probability, immediate 

reward, discount factor, and policy. Each parameter is represented as follows. 

1. State s of an agent belongs to a set of discrete states of the agent, which can be denoted as 

 1 2, ,...,
sNS s s s


, where Ns is the number of possible states. The state on time slot i 

denoted as is , in which  is S . 

2. A set of discrete actions A of the agent can be denoted as  1 2, ,...,
aNa a a  ,in which 

aN  is the number of possible actions for each of state is . At time slot i, the action is 

denoted as ia . 

3. Transition probabilities between states, where '( , , )P s a s  is the transition probability from 

state s to next state 's  with the action of a . 

4. The immediate reward '( , , )R s a s , which is the reward given when state s transfers to next 

state 's  with action of a . 

5. A discount factor  0,1  . It denotes the weight of immediate reward related to the 

future rewards. The cumulative reward is finite when the discount factor value is less 

than 1 given that the immediate reward is bounded [21]. 

6. A policy to define action under different states s. The is  determined policy, ( )s , can be 

defined as mapping from state to action. In reinforcement learning, policy used to find the 

best action of state is  to reach the optimal cumulative value of the agent. The expected 

cumulative reward is given by: 

    1
1

( , , ) ( )i i i i i
i

E R s a s a s 





 
  

                                (3.6) 
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7. The state value function v  is the expected reward given by the policy started from state 

s, 

       1
0

( ) k
j k

k

v s E R s  


 


 
   

                                       (3.7) 

Here, 1j kR   represents the reward received in the (j+k+1)-th step, given that j is the 

starting time step. 

8. The action value function, is the expected cumulative reward starting from state s with 

action a defined by policy  , 

                                              1
0

( , ) ,k
j k

k

q s a E R s a  


 


   
 
 .                                 (3.8) 

Therefore, the optimal state value function and optimal action value function could be 

given by,  

                                                   * ( ) max ( )          v s v s s S 
                                (3.9) 

                               * ( , ) max ( , )          ,  q s a q s a a A s S 
                         (3.10) 

             From (3.7) (3.8) (3.9) (3.10), we have,   

                                                             * *( ) max ( , )v s q s a
 

                                      (3.11) 

             The action value function has the recursive form of the Bellman equation, 

                                    
'

' ' '( , ) ( , , ) ( , , ) ( )
s S

q s a p s a s R s a s v s 


               (3.12) 

To estimate the action value function in the state-action pairs, the online policy action value 

function strategy and offline action value function updating strategy could be considered. The 

typical online strategy is called state-action-reward-state-action (SARSA) strategy, which 

evaluates the policy used to decide the action with a specific state. The classical offline policy is 
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called Q-learning strategy, which evaluates the process of action value updating without using the 

current policy. 

The algorithm of SARSA could be explained by the following, 

Initialze ( , ) arbitrarily

Repeat (for each step)

      Initialize 

      Choose a from s using the policy derived from  (i.e. )

      Repeat (for each step):

             Take action , observ

Q s a

s

Q greedy

a

 

'

' '

' '

' '

e ,  

             Choose  from  using the policy derived from  (i.e. -greedy)

             ( , )   ( , ) [ ( , ) - ( , )]

             ;

      Until  is terminal

     

r s

a s Q

Q s a Q s a r Q s a Q s a

s s a a

s



   

 

 

At this point, the action value function ( , )q s a  is updated via obtained experience. The updating 

equation is given by,  

             
1 ' 1 ' '( , ) ( , ) [ ( , , ) ( , ) ( , )]i i i iq s a q s a R s a s q s a q s a                        (3.13) 

where the selection of action a obeys the greedy   strategy described in detail in section 3.3. 

The computation of goal value Q follows the next step action a’, so it’s an online learning strategy. 

In (3.13),  represents the learning rate in this updating process, which also determines the 

contribution of newly acquired information for updating action value function. If 0  , the agent 

would not learn anything from the agent. If 1  , the agent would only consider the newly 

acquired information [22]. 

The Q-learning algorithm could be explained as following, 
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Initialize ( , ) aribitrarily

Repeat (for each step)

         Initialze 

         Repeat (for each step)

                Choose  from s using the policy derived from  (i.e. -greedy)

                Ta

Q s a

s

a Q 
'

'

'

ke action , observe ,  

                ( , ) ( , ) [ max ( , ) - ( , )]

                

         Until  is terminal

a r s

Q s a Q s a r Q s a Q s a

s s

s

   



 

At this point, the action value function ( , )q s a is not updated by the obtained knowledge. The 

action value function updating equation in Q-learning is given by, 

1 ' 1 '( , ) ( , ) [ ( , , ) max ( , ) ( , )]i i i iq s a q s a R s a s q s a q s a                          (3.14) 

where the action selection obeys the Q network and greedy   strategy. The target Q value 

computation follows the next step action which could generate biggest action value, but it’s not 

necessary to execute this optimal action. Therefore, it’s the offline policy that updates the action 

value. 

 

 

 

 

 

 

 

 

 



26 
 

3.2 MDP simulation 
To explain how a package can be transferred within the BLE mesh network, an experiment for 

transferring a single package within the network is conducted. In addition, an illustrative 

example provides the context to explain how the MDP could be used for helping the data packet 

find the lowest delay path in the mesh network.  

Figure 3.1 Map of package transferring within the mesh network 

As we can see from figure 3.1, the starting point denotes the source of the package generated 

within the network. Obstacles (“Obs” in the grid) represent the area without an available 

connection channel for transferring this package. The loss metric is set to indicate the scenario 

that the package was lost in the transfer process. The Winning point means the destination of this 

package transmission process. Therefore, we intend to find the shortest route in this packet’s 

transferring map with MDP methodology.  

The reward of getting in the winning point is +100 in the cumulative state value. Similarly, to 

avoid the obstacle and loss point in the grid, the reward for them is set -100 and 0. For each step 

of movement on this grid, the immediate reward is -1. The value iteration process time was set as 

10000 with convergence criteria 10-9. The discount factor of calculating the future reward return 
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is 1, which indicates the future steps state value has the same influence on the current action 

selection. We can see the simulation results from figure 3.2 and figure 3.3. 

 

Figure 3.2 State value and step direction choosing in each of the square 

Figure 3.3 Shortest route from starting point to destination 
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From (3.11) (3.12), the state value function could be calculated by the reverse direction value 

iteration. The state value function calculation starts from the starting point. What we can see 

from figure 3.2, figure 3.3 is, the state value for the chosen action choosing is larger when the 

grid (node) is closed to the destination winning point.  

We defined 4 cardinal movement directions in this action choosing, which includes N (north), 

S(south), W(west), E (east). Also, the action value for the selection of each direction would be 

different. The figure 3.2 shows the optimized action value choosing for single step c which 

intends to maximize the action and state cumulative value.  
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3.3 The exploration Algorithm 

The exploration algorithm plays an essential role in reinforcement learning. It is utilized to find 

the balance between exploration and exploitation and maximize the cumulative rewards. The 

exploitation mode can be defined as using the current available knowledge to select the best 

policy to be used. On the other hand, exploration is known as investigating new policies in the 

hope of getting a policy that is better than the current best one [22]. 

 The  -greedy algorithm 

This exploration algorithm uses the exploration probability   to find a balancing point 

between exploration and exploitation modes. This parameter changes the mode based on 

its value at each time slot. 

In this algorithm, the current best action is selected with probability 1-  . On the other 

hand, a random non-greedy action is selected with probability  . The   can be either 

fixed, or with adaptive value during the learning time [22]. In the case of adaptive  -

greedy,   takes values that change with time. For example,   is set to 1/i, where i is the 

time slot number. In this case, at the beginning of the session, the exploration probability  

  has larger value which increases the possibility of exploration. As time goes by, the 

probability of exploration decrease and the exploitation probability increases. However, 

most of the policies have been explored and it is referred to exploit the best current 

policy. In our single agent model, we applied fixed  value as 0.5 in the value iteration 

since the three nodes point-relay-point communication system does not need much 

exploration. 
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Chapter 4  

Optimization of Energy Harvesting 
Mobile Network 

4.1 Energy Harvesting Node Model 

4.1.1 MDP parameter setting and assumption 

In this chapter, a point to point communication system with a middle relaying agent will be 

discussed. The system consists of a source agent (SR), a relaying agent (RE) a destination agent 

(DE). As shown in image 4.1, agents SR, RE, and DE are equipped with infinite data buffers to 

store data. All three agents are capable of harvesting renewable energy and store it in a finite 

battery. A time-slotted system with time slots of equal length would be considered. Each time 

slot consists of two equal sub-slots. The first sub-slot is used to transmit data, receive packets 

from the other agents, or buffer the packets. The second sub-slot is used to harvest renewable 

energy. Image 4.2 illustrates how this process is accomplished.

 

Image 4.1 Source-Relay-Destination communication system model with finite battery space 

and data buffer 
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Figure 4.2 Slotted system model 

In this chapter, the energy consumption and storage mechanism, such as renewable energy 

harvesting, storage, and consumption of data transmission are guantized in an integer multiple of 

a fundamental energy unit. The renewable energy harvesting process will be triggered after 

initializing of a data sending or receiving process. Also, comparing the amount of energy cost for 

data transmission and reception with the data buffering and storage, we assume the data 

buffering and the stored process would not consume energy. The parameter in the node model 

description will be listed as follows. 

1) The battery has a limited storage capacity of Bmax. Let iB  denote the battery charge level 

of SR, RE, and DE at the beginning of time slot i, where 

 1 2 max, ,..., ,
B Bi N NB b b b b B 


, and BN  is the number of elements in  . 

2) During time slot i, the amount of package receiving is denoted by Rei , where 

 1 2Re , ,...,
Ei NRE Re Re Re 


, and EN  represents the number of elements in RE. For the 

received data packets, the transmission probability from state Rei to Re j  during time slot 

i is given by (Re ,Re )RE i jP . 

3) The agent buffer state during time slot i is given by iBu , where 

 1 2, ,...,
Bi NBu BU bu bu bu 


, and BN denotes the number of elements in BU . The 
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buffer state transmission probability from state ibu  to state jbu  during one time slot is 

given by ( , )BU i jP bu bu . 

4) The harvested energy of the agent  during time slot i, is denoted by iE , where 

 1 2, ,...,
Ei NE e e e


, and EN represents the number of elements in E. For harvested 

energy, the transmission probability from state ie to state je  during one time slot is given 

by ( , )i jP e e . 

5) The transmission and receiving channel state of the agent at time slot i is given by iH , 

where  1 2, ,...,
Hi NH h h h


, and HN  denotes the number of elements in H .The 

channel transmission probability from state ih  to state jh  is given by ( , )i jP h h . 

Let the data transmission and receiving power during time slot i be denoted by T
iP , where 

 1 2, ,...,
Pi NP p p p


, and pN is the number of elements in P . Let cT be the transmission and 

reception duration, which is the fixed value of 1 sec during all time slots. 

For the harvested energy node model, each state js  of the node consists of 3 elements, which 

include battery level of agent, data buffer level, and channel gain. It can be represented as 

 , ,j j j js b bu h . In this context, the state satisfies the Markov property, where the future state 

depends only on the current state, which is independent of the previous state in the other time 

slots. 

Based on the current battery level, the agent could select the action, include receiving, sending, 

or caching, that maximizes the sum rate (throughput) and channel gain of a single agent, and 

minimizes the level of variation in the battery. Therefore, the immediate reward for the agent 

state transforming during time slot i is given by  

2

2log (1 )i i
i

i

h b
R

bu
                                                        (4.1) 
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In this model, energy consumption is considered only in connection with data transmission and 

receiving, and it does not take into account any other energy consumption, such as processing, 

circuitry, storage, etc. 

 

4.1.2 Channel random access model 

As we defined in the previous chapter about the MDP model for a single agent, we need to 

consider the case of multiple channel access of a single node, which means that channel collision 

would happen when multiple devices are intended to access one node for receiving messages.  

Assume the converter system includes a wireless access point (master node) and N slave devices, 

where each device has finite energy and infinite data storage, as shown in image 4.3. Time is 

slotted and the duration of each time slot is T. 

Random channel access model 

Define is as the state of device i at time t, which includes the level data buffer, battery 

level, and channel gain. At each slot, each device makes the access decision according to 

its state. The device is able to access the network if there is enough energy. 

The successful connection between devices does not only depend on the action of the 

sender and receiver, but also on the other available nodes within the transmission range, 

especially when more than one device is eager to access the master node simultaneously. 

The probability of successful access can be formulated as follows 

(1 )
N

s i j
j i

P a a


                                                 (4.2) 

where ia is the successfully access probability of device i. According to (4.2), the device can 

only access successfully if all other devices are denied access by the master device. In the 

scenerio of one channel, the other devices would possibly lose the data packets. At each time 

slot, the access attempt of these devices may fail, but would still consume the energy. In the 

random access model we defined here, all the devices are not cooperative, so they should adopt 

the corresponding strategy based on considering its state and the influence of other devices, 

which intends to maximize the power consumption of all nodes in the network [21]. 
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4.1.3 Parameter Setting 

In this section, the setting of the parameter would be investigated for the greedy   exploration 

algorithm in SARSA method and Q-learning. In the numerical experiment, it is assumed that 

each time slot consists of two equal sub-slots, each of the lasting 1 sec duration. During the first 

sub-slot, the agent transmits its package to the other receivers or receives the package from the 

other agents. The available bandwidth for BLE is 2.4GHz for signal and noise. The discount 

factor   is 0.5, which indicates the returning rate of rewards is 0.25 of the original rewards. The 

learning rate is set to 0.1. All results are derived from 1000 iteration cycles to find the 

convergent value of the agent state. 

In the experiment, SR, RE, DE are all equipped with solar panels with an area of 100 cm2 with 

10% harvesting efficiency. Where an outdoor solar panel can get benefits of 10 mW/cm2, solar 

irradiance under standard environments with harvesting efficiency is between 5%-30%, which 

depends on the used material in the panel [22]. Therefore, we assume the fundamental energy 

cost unit for energy harvesting, stored, and consumption is 30 mJ. 

In the simulations, the energy harvesting state is  0,1E  . This means the harvested energy in 

half of the time slot time would only be able to transmit the fundamental energy unit with 

probabilities ( , ) 0.8i jP e e  . Assume the interval of channel gain of agent be

 7 70.02*10 ,6.0*10H    with transition probabilities  , 0.95H i jP h h  . The equipped battery 

size accommodates a maximum capacity of 2 units. 
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4.2 Analysis of training method  
In this part, the evaluation for the performance of point-relay-point wireless communication 

system model will be discussed under the SARSA learning algorithm and Q-learning algorithm 

using greedy  based exploration algorithm, where it would be compared with the optimal 

scenario. The optimal policy is using the trained optimal policy in the chosen action with a 

specific state. This yields the upper bond of performance of the agent. However, this scenario 

requires prior statistical knowledge of the environment, which is not applicable for the agent 

used in this example.  

In the SARSA experiment, the fixed  value is adopted in greedy  algorithm. In this 

algorithm, a different fixed  value is applied. Image 4.3 explained the training process of a 

point-relay-point communication system. The stopping criteria for training is that the cumulative 

value reaches the set averaging reward value. The episode reward denotes the action value 

cumulative value with the increasing of simulation step. The training process involves 200 

episodes, which includes 50 steps in per episode. 

 

Figure 4.3 Action value with SARSA training 
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Figure 4.4 Action value with SARSA training (  =0.04) 

 

Figure 4.5 Action value with SARSA training (  =1) 
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Figure 4.6 Action value with SARSA training (  =0.01) 

As shown in figure 4.4, figure 4.5, figure 4.6, the action value reward with different  parameter 

value settings for the  -greedy algorithm has different training convergence speed. At the 

beginning of the session, it can be noticed that the episode reward value reaches -50 with all 

three different  settings. This indicates that the agent is currently under the exploration for an 

optimized iteration policy. After that, the episode reward with  =0.04 reaches the constant 

rewards value in 13 episodes training. Reward value with  = 1 reaches a constant value in 

almost 30 episodes training. Reward value with  = 0.01 reaches a constant value in 10 episodes 

of training. We can see from this that the  parameter decides the probability of exploration in 

the SARSA  -greedy algorithm. When  =1, the agent has larger probability values in exploring 

the optimal policy to execute the action under the current state. This could have the more 

benefits in a complex system when it’s not easy to find a balanced and optimized strategy. 

However, in our point-relay-point wireless communication system, we would choose the small 

 value to reach faster action value reward convergence. 
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Figure 4.7 Action value with Q-learning training ( =0.04) 

In the Q-learning experiment, the fixed  value is adopted in the greedy  algorithm. In this 

algorithm, a different fixed  value is applied. The training process set has 200 episodes, which 

includes 50 steps per episode. The stopping criteria for stop training is that the cumulative value 

reaches the set averaging reward value of 11.  

We can see from figure 4.7 and figure 4.3, the SARSA and Q-learning method both reach the 

constant action value in 13 episodes, which indicates the same speed of convergence with same I

  value setting. However, the Q-learning training takes more episodes to reach the stop training 

criteria average reward, which suggests the SARSA could finish the training process faster. 



39 
 

 

Figure 4.8 Action value with Q-learning training ( =0.01) 

Similarly, since the Q-learning method takes  -greedy algorithm to balance the exploration and 

exploitation process in finding the optimal policy for action choosing, bigger  value could help 

the agent reach the constant reward faster, which suggests that the policy could be further 

optimized. 
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 Chapter 5  

Simulation results 
5.1 Scalable network analysis 

In this section, we set up two simulations to test the throughput and collision rate of the EH 

mobile node within distributed converter network. In here, we assume the estimated ideal 

throughput of device node is 450 data packets per second, in which each packet contains 8 bits of 

power data. In here, the throughput of the mobile node suggests the average throughput of the 

whole network. The average throughput calculated by computing the variance of data buffer state 

in the source-relaying-destination model, which represents the average data package throughput 

of a single node within the network.  

The channel sharing for two or multiple competitive node uses channel random access model in 

section 4.2. The packets transmission collision rate in the simulation suggests the probability of 

sharing channel collision when multi-client nodes are intended to access the single channel, 

which cause the package lost in the process of data transmission. To calculate the collision rate, 

we use the channel as the tool. The low channel gain set as the channel sharing happen in the 

same time, which cause the package transmission collision or package lost. The high channel 

gain set as the channel sharing of multi-client devices happen in different time interval during the 

transmission process. In the following simulation, the product of the collision rate and the 

number of nodes denotes packets dropping unit in the 100 packets transferring process. 

In the test of average throughput and collision rate, the Q-learning parameter learning rate   set 

as 0.1 with discount value   0.95, and the   value in greedy algorithm is 0.04, which balance 

the exploration and exploitation of the learning process.  

As shown in figure 5.1, the average throughput keeps the value nearly ideal throughput of single 

node under optimized policy when the number of mobile device node is less than 8. However, 

the throughput drops instantaneously when the number of node exceeds 8 nodes and it holds the 

throughput around 50 packets in the rest of node increasing process. A few possible reasons to 
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explain this situation are the low value of    constrains the ability of the network node to 

explore new policy for data buffering and transmission, especially in the end of training process 

with the adding of new nodes into the network.   

 

Figure 5.1 Average throughput dynamics 

 

As we can see from figure 5.2, the collision rate drops when the number of nodes is 2, which also 

reaches the lowest value in the whole process of node increasing since there is no collision exists 

for two node transmission (sender and receiver pair). In the following, with the increasing of 

network nodes, the collision rate remains around 0.05. However, since of the increasing of 

mobile nodes number, the number of packets dropping is increased. The collision rate of the first 

20 nodes shows the increasing collision rate tendency. Therefore, we can estimate that the 

number of packets dropping is increasing with the adding of the mobile nodes within the 

network.    
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Figure 5.2 Average collision rate dynamics 
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5.2 Test on embedded system 

In this session, the BLE communication hardware development testing results will be discussed. 

Figure 5.3 and figure 5.4 demonstrates the process and functions of the client(slave) and 

server(master) board from BLE network configuring process to data packages exchanging 

process. 

From figure 5.3, we can see that BlueNRG version of the Bluetooth shield board on client side, 

and the connected board information when the client board established the connection 

successfully. After that, the client board starts to execute a transmission function on the 

EVT_BLUE_GATT_DISC_READ_CHAR_BY_UUID_RESP profile and then start receiving 

data packages from another board. This process repeats until 500 packages are transferred. 

 

 

Figure 5.3 Information of data sending on client (slave) side 

From the server(master) side, we can check the throughput of this application and the data 

exactly transmitted from the client side. We can also calculate the transmission speed in this 

procedure by quantifying throughput and elapsed transmission time. Specially, the data received 

here is not the original message received in the 500 packages. The separated receiving data is 

used for showing the random number generated by STM32F7 board. 
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Figure 5.4 Information of data receiving on the server (master) side 
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Chapter 6  

Conclusion  

 
In this thesis, for designing a scalable distributed converter network with the device nodes having 

renewable harvesting ability, a Markov decision process (MDP) model using greedy   based 

SARSA and Q-learning method is developed and simulated. To explore the relation between 

Markov decision process and energy harvesting scalable network, Markov property and Markov 

rewards property has been introduced for the memoryless and policy iteration characteristic of 

MDP. A single package transmission process in the network with obstacles has been simulated. 

Then a online learning SARSA and offline learning Q-learning method has been introduced and 

applied to the following training process analysis of energy harvesting node. In the end, a 

simulation based on Q-learning approach has been conducted. The results show the Q learning 

method could improve the performance of the distributed network when the number of nodes is 

less than 10. In addition, the STM32 hardware development has been conducted to realize the 

point-relaying-point communication system, where the test results from the serial port show 

applicable results.   
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Appendix 
1. Single package transmission within a network with obstacles 

%DEFINE THE 2-D R ARRAY 
MAX_X=10; 
MAX_Y=10; 
  
Ra = -3; %reward in non-terminal states (used to initialise 
r[][]) 
  
%This array stores the coordinates of the R and the  
%Objects in each coordinate 
R=Ra*ones(MAX_X,MAX_Y); 
Pi=ones(MAX_X,MAX_Y); 
  
% Obtain Obstacle, Target and Robot Position 
% Initialize the R 
% Obstacle=-1,Target = 0,Robot=1,Space=2 
axis([0 MAX_X 0 MAX_Y])    
%set(gca,'color', [1 1 0]); 
%set(gca,'color','b'); 
  
set(gca,'XTick',[1:MAX_X])   
set(gca,'YTick',[1:MAX_Y])  
  
grid on; 
hold on; 
  
% Determine Terminals, Obstacles, Start Locations 
  
%Terminals 
%Winning point 
xWin=5;%X Coordinate of the Winning point 
yWin=10;%Y Coordinate of the Winning point 
R(xWin,yWin)=100;%Reward = 100 
Pi(xWin,yWin)='+';%Policy 
plot(xWin-.5,yWin-.5,'gd'); 
text(xWin-.9,yWin-.3,'Winning +100') 
  
%Loss point 
xLos=4;%X Coordinate of the Loss point 
yLos=2;%Y Coordinate of the Loss point 
R(xLos,yLos)=-100;%Reward = -100 
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Pi(xLos,yLos)='-';%Policy 
%plot(xLos-.5,yLos-.5,'rd'); 
text(xLos-.8,yLos-.4,'Loss -100') 
  
%Obstacles 
xObs=8;%X Coordinate of the First Obstacle 
yObs=5;%Y Coordinate of the First Obstacle 
R(xObs,yObs)=0;%Reward = 0 
Pi(xObs,yObs)='#';%Policy 
%plot(xObs-.5,yObs-.5,'ro'); 
text(xObs-.8,yObs-.4,'Obs') 
  
%Obstacles 
xObs=3;%X Coordinate of the First Obstacle 
yObs=3;%Y Coordinate of the First Obstacle 
R(xObs,yObs)=0;%Reward = 0 
Pi(xObs,yObs)='#';%Policy 
%plot(xObs-.5,yObs-.5,'ro'); 
text(xObs-.8,yObs-.4,'Obs') 
  
%Obstacles 
xObs=4;%X Coordinate of the First Obstacle 
yObs=5;%Y Coordinate of the First Obstacle 
R(xObs,yObs)=0;%Reward = 0 
Pi(xObs,yObs)='#';%Policy 
%plot(xObs-.5,yObs-.5,'ro'); 
text(xObs-.8,yObs-.4,'Obs') 
  
%Obstacles 
xObs=3;%X Coordinate of the First Obstacle 
yObs=5;%Y Coordinate of the First Obstacle 
R(xObs,yObs)=0;%Reward = 0 
Pi(xObs,yObs)='#';%Policy 
%plot(xObs-.5,yObs-.5,'ro'); 
text(xObs-.8,yObs-.4,'Obs') 
  
%Obstacles 
xObs=2;%X Coordinate of the First Obstacle 
yObs=7;%Y Coordinate of the First Obstacle 
R(xObs,yObs)=0;%Reward = 0 
Pi(xObs,yObs)='#';%Policy 
%plot(xObs-.5,yObs-.5,'ro'); 
text(xObs-.8,yObs-.4,'Obs') 
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%Obstacles 
xObs=1;%X Coordinate of the First Obstacle 
yObs=4;%Y Coordinate of the First Obstacle 
R(xObs,yObs)=0;%Reward = 0 
Pi(xObs,yObs)='#';%Policy 
%plot(xObs-.5,yObs-.5,'ro'); 
text(xObs-.8,yObs-.4,'Obs') 
  
%Obstacles 
xObs=5;%X Coordinate of the First Obstacle 
yObs=5;%Y Coordinate of the First Obstacle 
R(xObs,yObs)=0;%Reward = 0 
Pi(xObs,yObs)='#';%Policy 
%plot(xObs-.5,yObs-.5,'ro'); 
text(xObs-.8,yObs-.4,'Obs') 
  
%Obstacles 
xObs=3;%X Coordinate of the First Obstacle 
yObs=6;%Y Coordinate of the First Obstacle 
R(xObs,yObs)=0;%Reward = 0 
Pi(xObs,yObs)='#';%Policy 
%plot(xObs-.5,yObs-.5,'ro'); 
text(xObs-.8,yObs-.4,'Obs') 
  
%Obstacles 
xObs=6;%X Coordinate of the First Obstacle 
yObs=6;%Y Coordinate of the First Obstacle 
R(xObs,yObs)=0;%Reward = 0 
Pi(xObs,yObs)='#';%Policy 
%plot(xObs-.5,yObs-.5,'ro'); 
text(xObs-.8,yObs-.4,'Obs') 
  
%Obstacles 
xObs=7;%X Coordinate of the First Obstacle 
yObs=7;%Y Coordinate of the First Obstacle 
R(xObs,yObs)=0;%Reward = 0 
Pi(xObs,yObs)='#';%Policy 
%plot(xObs-.5,yObs-.5,'ro'); 
text(xObs-.8,yObs-.4,'Obs') 
  
%Obstacles 
xObs=8;%X Coordinate of the First Obstacle 
yObs=8;%Y Coordinate of the First Obstacle 
R(xObs,yObs)=0;%Reward = 0 
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Pi(xObs,yObs)='#';%Policy 
%plot(xObs-.5,yObs-.5,'ro'); 
text(xObs-.8,yObs-.4,'Obs') 
  
%Obstacles 
xObs=9;%X Coordinate of the First Obstacle 
yObs=9;%Y Coordinate of the First Obstacle 
R(xObs,yObs)=0;%Reward = 0 
Pi(xObs,yObs)='#';%Policy 
%plot(xObs-.5,yObs-.5,'ro'); 
text(xObs-.8,yObs-.4,'Obs') 
  
%Start 
xStart=4;%X Coordinate of the Start 
yStart=3;%Y Coordinate of the Start 
plot(xStart-.5,yStart-.5,'bo'); 
text(xStart-.6,yStart-.4,'Start') 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%ALGORITHM 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
N = 10000; %max number of iterations of Value Iteration 
  
deltaMin = 1e-9; %convergence criterion for iteration 
delta = 0; 
  
POINTS_COUNT= MAX_X * MAX_Y; 
POINTS=[POINTS_COUNT,6]; 
  
%Put all the points in list with their rewards and initial 
UP and U 
%POINTS  
%LIST |X val |Y val |Reward |Uprime |Utility |Policy 
  
k=1;%Dummy counter 
for i=1:MAX_X 
    for j=1:MAX_Y 
          POINTS(k,1)=i; 
          POINTS(k,2)=j; 
          POINTS(k,3)=R(i,j); 
          POINTS(k,4)=0; 
          POINTS(k,5)=0; 
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          POINTS(k,6)=Pi(i,j); 
  
          k=k+1; 
    end 
end 
  
R=POINTS(:,3);%instantaneous reward 
Up=POINTS(:,4);%UPrime, used in updates 
U=POINTS(:,5);%long-term utility 
Pi=POINTS(:,6);%policy 
  
  
n=0; 
  
%while((delta < deltaMin) && (n < N)) 
while 1 
     
    POINTS(:,5)=POINTS(:,4);%U=Up 
    U=Up; 
     
    n=n+1; 
     
    delta = 0; 
     
    for i=1:MAX_X 
        for j=1:MAX_Y 
            upPi=updateUPrimePi(i,j,POINTS,Ra); 
            Up=upPi(:,1); 
            Pi=upPi(:,2); 
            POINTS(:,4)=Up; 
            POINTS(:,6)=Pi; 
             
            k=find(POINTS(:,1)==i & POINTS(:,2)==j); 
            %k=k(1); 
  
            diff=abs(Up(k)-U(k)); 
  
            if diff > delta 
                delta = diff; 
            end 
  
        end 
    end 
     
    if (delta < deltaMin || n > N) 



54 
 

        break; 
    end 
     
end 
  
charPi=char(Pi); 
  
for i=1:MAX_X 
    for j=1:MAX_Y 
        k=find(POINTS(:,1)==i & POINTS(:,2)==j); 
        text(i-.7,j-.2,num2str(U(k)),'color','g') 
        text(i-.5,j-.8,charPi(k),'color','b') 
    end 
end 
  
path=[]; 
  
i=1; 
path(1,1)=xStart; 
path(1,2)=yStart; 
  
newX=xStart; 
newY=yStart; 
  
while 1 
k=find(POINTS(:,1)==newX & POINTS(:,2)==newY); 
if (charPi(k)~='+' && charPi(k)~='-' && charPi(k)~='#') 
    i=i+1; 
    if charPi(k)=='N'         
        path(i,1)=newX; 
        path(i,2)=newY+1;         
        newX=newX; 
        newY=newY+1; 
    else if charPi(k)=='S' 
            path(i,1)=newX; 
            path(i,2)=newY-1; 
            newX=newX; 
            newY=newY-1; 
        else if charPi(k)=='W' 
                path(i,1)=newX-1; 
                path(i,2)=newY;     
                newX=newX-1; 
                newY=newY; 
            else %'E' 
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                path(i,1)=newX+1; 
                path(i,2)=newY; 
                newX=newX+1; 
                newY=newY; 
            end 
             
        end 
    end 
else 
    break; 
end 
  
i=size(path,1); 
 %Plot the Path! 
 p=plot(path(i,1)-.5,path(i,2)-.5,'bo'); 
 plot(R,n); 
  
for i=1:size(path,1) 
  pause(.25); 
  set(p,'XData',path(i,1)-.5,'YData',path(i,2)-.5); 
 drawnow ; 
 end; 
plot(path(:,1)-.5,path(:,2)-.5); 
end 
  

2.Q-learning for calculating average throughput 
  

a=zeros(1,10000);  
gamma=0.95;            
state_new=1; 
new=zeros(1,20); 
m=1; 
ibs = 0.04; 
s=zeros(1,5); 
afa=0.1;  %learning parameter 
    q=zeros(4,5);  
    s1=[0 0 1 1 1]; 
    s2=[0 0 0 1 1]; 
    s3=[0 0 1 0 1]; 
    s4=[0 0 1 1 0]; 
    s5=[s1;s2;s3;s4]; 
    state=1;   
    k=1;  
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for u=1:10000  
      
       max=q(state,1); 
     for i=2:5       
        if max<q(state,i) 
            max=q(state,i); 
            m=i; 
        end         
     end 
     if m==1        
         e=unidrnd (20); 
         if mod(e,6)==0 
             f=unidrnd(4); 
             switch f 
                 case 1 
                  s=s5(state,1:5)&[1 0 1 1 1]; 
                  
                 case 2 
                  s=s5(state,1:5)&[1 1 0 1 1]; 
                   
                 case 3 
                   s=s5(state,1:5)&[1 1 1 0 1]; 
                    
                 case 4 
                    s=s5(state,1:5)&[1 1 1 1 0]; 
                     
             end 
          else  
                   s=s5(state,1:5)&[0 1 1 1 1]; 
                   
         end 
     end 
                        
    if m==2 
             e=unidrnd (20); 
         if mod(e,6)==0 
             f=unidrnd(4); 
             switch f 
                 case 1 
                  s=s5(state,1:5)&[0 1 1 1 1]; 
                   
                 case 2 
                  s=s5(state,1:5)&[1 1 0 1 1]; 
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                 case 3 
                   s=s5(state,1:5)&[1 1 1 0 1]; 
                    
                 case 4 
                    s=s5(state,1:5)&[1 1 1 1 0]; 
                    
             end 
        
          else  
                   s=s5(state,1:5)&[1 0 1 1 1]; 
                    
         end 
    end 
    if m==3 
            e=unidrnd (20); 
         if mod(e,6)==0 
             f=unidrnd(4); 
             switch f 
                 case 1 
                  s=s5(state,1:5)&[0 1 1 1 1]; 
                   
                 case 2 
                  s=s5(state,1:5)&[1 0 1 1 1]; 
                  
                 case 3 
                   s=s5(state,1:5)&[1 1 1 0 1]; 
                    
                 case 4 
                    s=s5(state,1:5)&[1 1 1 1 0]; 
                     
             end 
    
          else  
                   s=s5(state,1:5)&[1 1 0 1 1]; 
                    
         end 
    end 
  
    if m==4 
             e=unidrnd (20); 
         if mod(e,6)==0 
             f=unidrnd(4); 
             switch f 
                 case 1 
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                  s=s5(state,1:5)&[0 1 1 1 1]; 
                  
                 case 2 
                  s=s5(state,1:5)&[1 0 1 1 1]; 
                  
                 case 3 
                   s=s5(state,1:5)&[1 1 0 1 1]; 
                    
                 case 4 
                    s=s5(state,1:5)&[1 1 1 1 0]; 
                     
             end 
          
          else  
                   s=s5(state,1:5)&[1 1 1 0 1]; 
                    
         end 
    end 
   
    if m==5 
             e=unidrnd (20); 
         if mod(e,6)==0 
             f=unidrnd(4); 
             switch f 
                 case 1 
                  s=s5(state,1:5)&[0 1 1 1 1]; 
                  
                 case 2 
                  s=s5(state,1:5)&[1 0 1 1 1]; 
                   
                 case 3 
                   s=s5(state,1:5)&[1 1 0 1 1]; 
                   
                 case 4 
                    s=s5(state,1:5)&[1 1 1 0 1]; 
                     
             end 
          
          else  
                  s=s5(state,1:5)&[1 1 1 1 0];  
                    
         end 
    end 
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     if s== s5(1,1:5) 
         state_new = 1; 
     elseif s==s5(2,1:5) 
          state_new = 2; 
     elseif s==s5(3,1:5) 
         state_new = 3; 
     elseif s==s5(4,1:5) 
          state_new = 4; 
     else 
         state_new = 1; 
     end 
 if state_new == state 
     a(k)=1; 
     r=-5; 
 else 
     a(k)=0; 
     r=1; 
 end 
 new(k)=state_new; 
 k=k+1; 
  
 max_2=q(state_new,1); 
   for i=2:5         
        if max_2<q(state_new,i) 
            max_2=q(state_new,i); 
        end         
   end 
    q(state,m)=(1-afa)*q(state,m)+afa*(r+gamma*max_2);  
       state=state_new; 
end 
  
  
sum=0; 
b=zeros(1,20); 
for n=1:20 
for i=((n-1)*500+1):n*500 
   sum=sum+a(i);  
end 
b(n)=sum;  
sum=0; 
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end 
n=1:20;  
plot(n,b(n)); 
axis([1 20 0 500]); 
  
   
         

3. Q-learning for generating the average collision rate 
 
   
format short 
format compact 
a=zeros(1,10000);  
gamma=0.95;            
state_new=1; 
new=zeros(1,20); 
m=1; 
s=zeros(1,5); 
afa=0.1;  %learning parameter 
   q=rand(7,5);  
    s1=[0 0 1 1 1]; 
    s2=[0 0 0 1 1]; 
    s3=[0 0 1 0 1]; 
    s4=[0 0 1 1 0]; 
    s5=[0 0 0 0 1]; 
    s6=[0 0 0 1 0]; 
    s7=[0 0 1 0 0]; 
    s8=[s1;s2;s3;s4;s5;s6;s7]; 
    state=1;   
    k=1; 
     
for u=1:10000  
      
     
       max=q(state,1); 
     for i=2:5        
        if max<q(state,i) 
            max=q(state,i); 
            m=i; 
        end         
     end 
     if m==1         
         e=unidrnd (10); 
         if mod(e,6)==0 
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             f=unidrnd(4); 
             switch f 
                 case 1 
                  s=s8(state,1:5)&[1 0 1 1 1]; 
                  
                 case 2 
                  s=s8(state,1:5)&[1 1 0 1 1]; 
                   
                 case 3 
                   s=s8(state,1:5)&[1 1 1 0 1]; 
                    
                 case 4 
                    s=s8(state,1:5)&[1 1 1 1 0]; 
                     
             end 
          else  
                   s=s8(state,1:5)&[0 1 1 1 1]; 
                   
         end 
     end 
                        
    if m==2 
             e=unidrnd (10); 
         if mod(e,6)==0 
             f=unidrnd(4); 
             switch f 
                 case 1 
                  s=s8(state,1:5)&[0 1 1 1 1]; 
                   
                 case 2 
                  s=s8(state,1:5)&[1 1 0 1 1]; 
                   
                 case 3 
                   s=s8(state,1:5)&[1 1 1 0 1]; 
                    
                 case 4 
                    s=s8(state,1:5)&[1 1 1 1 0]; 
                    
             end 
        
          else  
                   s=s8(state,1:5)&[1 0 1 1 1]; 
                    
         end 
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    end 
    if m==3 
            e=unidrnd (10); 
         if mod(e,6)==0 
             f=unidrnd(4); 
             switch f 
                 case 1 
                  s=s8(state,1:5)&[0 1 1 1 1]; 
                   
                 case 2 
                  s=s8(state,1:5)&[1 0 1 1 1]; 
                  
                 case 3 
                   s=s8(state,1:5)&[1 1 1 0 1]; 
                    
                 case 4 
                    s=s8(state,1:5)&[1 1 1 1 0]; 
                     
             end 
    
          else  
                   s=s8(state,1:5)&[1 1 0 1 1]; 
                    
         end 
    end 
  
    if m==4 
             e=unidrnd (10); 
         if mod(e,6)==0 
             f=unidrnd(4); 
             switch f 
                 case 1 
                  s=s8(state,1:5)&[0 1 1 1 1]; 
                  
                 case 2 
                  s=s8(state,1:5)&[1 0 1 1 1]; 
                  
                 case 3 
                   s=s8(state,1:5)&[1 1 0 1 1]; 
                    
                 case 4 
                    s=s8(state,1:5)&[1 1 1 1 0]; 
                     
             end 
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          else  
                   s=s8(state,1:5)&[1 1 1 0 1]; 
                    
         end 
    end 
   
    if m==5 
             e=unidrnd (10); 
         if mod(e,6)==0 
             f=unidrnd(4); 
             switch f 
                 case 1 
                  s=s8(state,1:5)&[0 1 1 1 1]; 
                  
                 case 2 
                  s=s8(state,1:5)&[1 0 1 1 1]; 
                   
                 case 3 
                   s=s8(state,1:5)&[1 1 0 1 1]; 
                   
                 case 4 
                    s=s8(state,1:5)&[1 1 1 0 1]; 
                     
             end 
          
          else  
                  s=s8(state,1:5)&[1 1 1 1 0]; 
                    
         end 
    end 
     
     
  
     if s== s8(1,1:5) 
         state_new = 1; 
     elseif s==s8(2,1:5) 
          state_new = 2; 
     elseif s==s8(3,1:5) 
         state_new = 3; 
     elseif s==s8(4,1:5) 
          state_new = 4; 
     elseif s==s8(5,1:5) 
          state_new = 5; 
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     elseif s==s8(6,1:5) 
         state_new = 6; 
     elseif s==s8(7,1:5) 
          state_new = 7; 
     else 
         state_new = 1; 
     end 
 if state_new == state 
     a(k)=1; 
     r=-5; 
 else 
     a(k)=0; 
     r=1; 
 end 
 new(k)=state_new; 
 k=k+1; 
  
 max_2=q(state_new,1); 
   for i=2:5         
        if max_2<q(state_new,i) 
            max_2=q(state_new,i); 
        end         
   end 
    q(state,m)=(1-afa)*q(state,m)+afa*(r+gamma*max_2); 
       state=state_new;  
end 
  
  
sum=0; 
b=zeros(1,20); 
for n=1:20 
for i=((n-1)*500+1):n*500 
   sum=(sum+a(i))/10;  
end 
b(n)=sum;  
sum=0; 
end 
n=1:20;  
plot(n,b(n)) 
axis([1 20 0 1]) 
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