
Minnesota State University, Mankato Minnesota State University, Mankato 

Cornerstone: A Collection of Scholarly Cornerstone: A Collection of Scholarly 

and Creative Works for Minnesota and Creative Works for Minnesota 

State University, Mankato State University, Mankato 

All Graduate Theses, Dissertations, and Other 
Capstone Projects 

Graduate Theses, Dissertations, and Other 
Capstone Projects 

2020 

Discrete Morse Theory by Vector Fields: A Survey and New Discrete Morse Theory by Vector Fields: A Survey and New 

Directions Directions 

Matthew Nemitz 
Minnesota State University, Mankato 

Follow this and additional works at: https://cornerstone.lib.mnsu.edu/etds 

 Part of the Discrete Mathematics and Combinatorics Commons, and the Geometry and Topology 

Commons 

Recommended Citation Recommended Citation 
Nemitz, M. (2020). Discrete Morse theory by vector fields: A survey and new directions [Master’s 
alternative plan paper, Minnesota State University, Mankato]. Cornerstone: A Collection of Scholarly and 
Creative Works for Minnesota State University, Mankato. https://cornerstone.lib.mnsu.edu/etds/986/ 

This APP is brought to you for free and open access by the Graduate Theses, Dissertations, and Other Capstone 
Projects at Cornerstone: A Collection of Scholarly and Creative Works for Minnesota State University, Mankato. It 
has been accepted for inclusion in All Graduate Theses, Dissertations, and Other Capstone Projects by an 
authorized administrator of Cornerstone: A Collection of Scholarly and Creative Works for Minnesota State 
University, Mankato. 

http://cornerstone.lib.mnsu.edu/
http://cornerstone.lib.mnsu.edu/
https://cornerstone.lib.mnsu.edu/
https://cornerstone.lib.mnsu.edu/
https://cornerstone.lib.mnsu.edu/
https://cornerstone.lib.mnsu.edu/etds
https://cornerstone.lib.mnsu.edu/etds
https://cornerstone.lib.mnsu.edu/theses_dissertations-capstone
https://cornerstone.lib.mnsu.edu/theses_dissertations-capstone
https://cornerstone.lib.mnsu.edu/etds?utm_source=cornerstone.lib.mnsu.edu%2Fetds%2F986&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/178?utm_source=cornerstone.lib.mnsu.edu%2Fetds%2F986&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/180?utm_source=cornerstone.lib.mnsu.edu%2Fetds%2F986&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/180?utm_source=cornerstone.lib.mnsu.edu%2Fetds%2F986&utm_medium=PDF&utm_campaign=PDFCoverPages


Discrete Morse Theory by Vector Fields:

A Survey and New Directions

by

Matthew Nemitz

An Alternate Plan Paper Submitted in Partial Fulfillment

of the Requirements for the Degree of

Master of Science

In

Mathematics and Statistics Minnesota State University, Mankato

Mankato, Minnesota May 2020



Discrete Morse Theory by Vector Fields: A Survey and New Directions

Matthew Nemitz

This Alternate Plan Paper has been examined and approved by the following mem-

bers of the defense committee.

Dr. Brandon Rowekamp, Advisor

Dr. Wook Kim

Dr. Ke Zhu



i

Abstract

We synthesize some of the main tools in discrete Morse theory from various
sources. We do this in regards to abstract simplicial complexes with an empha-
sis on vector fields and use this as a building block to achieve our main result
which is to investigate the relationship between simplicial maps and homotopy.
We use the discrete vector field as a catalyst to build a chain homotopy between
chain maps induced by simplicial maps.



ii

Contents

1 Introduction 1

2 Abstract Simplicial Complexes 3

3 The Discrete Morse Function and Discrete Vector Fields 8

4 Discrete Flow 24

5 Simple Homotopy and Discrete Morse Theory 36

6 Pivot Induced Discrete Vector Fields 39

7 Vertex Pivots and Contiguous Maps 49

8 Bibliography 54



1

1 Introduction

We present a survey of the fundamental ideas of discrete Morse theory where

we combine the notions of discrete Morse theory on abstract simplicial complexes

which has not been discussed by many in detail. Forman [5] has provided the basics

and foundation to discrete Morse theory. The only known comprehensive published

treatments of discrete Morse theory on abstract simplicial complexes are from a new

text by Scoville [16] and work with combinatorial algebraic topology by Kozlov [12]

which were published in 2019 and 2008 respectively. We will discuss discrete Morse

theory in a way which synthesizes the original approach of Forman together with the

innovations of Kozlov and Scoville. This will be done with a focus on discrete vector

fields and their associated maps. After the survey we construct a chain homotopy

between chain maps induced by simplicial maps. The discrete vector field map will

be used to construct this chain homotopy. Our major innovation is to introduce

a restricted sense of homotopy induced by pivoting a vertex. We will prove that

functions differing by a vertex pivot induce chain homotopic maps and should be

thought of as natural analogues of a specific type of homotopic functions. However,

before we dive into the survey, we first discuss some historical development of discrete

Morse theory.

Morse Theory has been one of the most indispensable tools in mathematics. John

Milnor’s famous book Morse Theory [14], which is based off of [15], gives us the devel-

opment of the subject as well as applications. What Morse Theory allows us to do is

find the homology of a manifold by analyzing differentiable functions regarding that

manifold. Specifically, we can find CW-complexes which relate to the critical points

of the manifold which gives us information about the homology on that manifold.

The tools of classic Morse theory have not only been useful in differential topology,
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but in other areas of mathematics and have been used in other fields other than

mathematics.

Keeping this in mind, recently a discrete analogue of Morse Theory has been de-

veloped. Robin Forman laid the foundations of the subject with his development,

which we now call Discrete Morse Theory, in his paper Morse Theory for Cell Com-

plexes [5]. The goal of his paper was to develop such a theory in order to prove

the discrete analogs of the main theorems of Morse Theory. Just as classical Morse

theory is a tool to calculate homology on manifolds, discrete Morse theory has gained

popularity to calculate homology of cell complexes or discrete spaces. For an example

of the applications of this form of discrete Morse theory, one can look at chapter 5

of Scoville [16] which discusses the uses of discrete Morse theory in persistent homol-

ogy. Extending on this, Forman also wrote a survey paper on the matter as well as

extended the theory in general [6], [7], [8].

In the development of discrete Morse Theory, Forman’s main object of use was

CW-complexes with some mention of PL-manifolds and simplicial complexes (where

the simplicial complexes are primarily considered to be subsets of a topological space).

Though it is not how Forman developed discrete Morse theory, we will focus on a de-

velopment based on abstract simplicial complexes. An abstract simplicial complex

can be thought of as a set of points, lines, and triangles, but an abstract simplicial

complex is defined purely in terms of finite sets. (see figure 1).

v1 v1 v2 v1 v2

v3 v4

Figure 1: Examples of basic simplicial complexes



3

2 Abstract Simplicial Complexes

Abstract simplicial complexes will be the main objects which we work with and

we will discuss the operations and properties we need. One can consult Kozlov [12]

for a full treatment. Note that abstract simplicial complexes are not the same as what

Hatcher [10] refers to as ∆-complexes. That is, we are not worried about the vectors

formed from the vertices of the ∆-complex and whether the barycentric coordinates

sum to 1. Abstract simplicial complexes are a completely combinatorial analog of

this and as such there are no coordinates or vectors. As previously described, we can

think of abstract simplicial complexes as set of vertices, lines, triangles, tetrahedrons,

etc. Consider figure 2 for an example.

v1 v2

v3v4

v1 v2

v3v4

Figure 2: The diagram on the left is not a simplicial complex. The diagram on the
right is a simplicial complex

In figure 2 we see that the left diagram is a solid square. If we consider the all

possible sets which v1, v2, v3 and v4 make, we get

{{v1}, {v2}, {v3}, {v4}, {v1, v2}, {v1, v4}, {v2, v3}, {v3, v4}, {v1, v2, v3, v4}}.

Where the singleton sets are the vertices, the sets with two elements are the line

segments, and the set with four elements represents the solid square. Why this fails
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to be a simplicial complex is because we are not accounting for the set {v1, v3} which

would divide that solid square into two solid triangles {v1, v3, v4} and {v1, v2, v3}. If

we do this division of the solid square we get the diagram to the right which is a

simplicial complex. To make this more precise, consider the following definition.

Definition 2.1. An abstract simplicial complex K on a finite set

V (K) := {v0, ..., vn} where n ≥ 0 is an integer, is a collection of subsets of V (K),

not including the empty set, such that

1. If set σ ∈ K and γ ⊆ σ, then γ ∈ K.

2. {vi} ∈ K for all vi ∈ V (K)

Definition 2.2. Consider a cell σ of an abstract simplicial complex K. The dimen-

sion of σ is given by one less than its cardinality.

dim(σ) = |σ| − 1

If a cell has dimension p, we denote this as σ(p).

The elements of V (K), the vertex set of K, are vertices of K. In the same vein as

vertices, the sets σ in K are called cells of K. This allows us to talk about an abstract

simplicial complex as a set of its vertices. Therefore, each cell can be talked about

in terms of the vertices of which it is composed of. For simplicity we can regard the

abstract simplicial complex as a set of its cells. We will talk about the cells in terms

of their vertices if such an occasion does arise. That is, when a set of vertices are in

our abstract simplicial complex, we can think of the cell which is defined by those

vertices is also in the complex as well as all of the nonempty subsets defined by the set

of vertices. For those cells not contained in any other cell in K we call maximal. A
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subcomplex L of K, where L ⊆ K, is a subset of K such that L is also an abstract

simplicial complex. An important type of simplex is the m-simplex ∆m. One may

think of an m-simplex as the convex hull of the m-dimensional region formed by m+1

vertices. That is, we defined the m-simplex to be the abstract simplicial complex

with a vertex set of m+ 1 vertices and the cells consisting of all nonempty subsets.

Example 2.3. Consider the collection of sets

{{v1}, {v2}, {v3}, {v1, v2}, {v1, v3}, {v2, v3}}

This collection of sets is, indeed, an abstract simplicial complex. This can be viewed

as a hollow triangle. We have the sets of vertices as well as the sets of line segments

the vertices create but not the middle portion. That is, if we wanted to fill in the

triangle we would also need the set {v1, v2, v3} which would give us the 2-simplex ∆2.

v1 v2

v3

v1 v2

v3

Figure 3: The diagram on the left is the simplicial complex given in the example and
the diagram on the right is if we added the set {v1, v2, v3} to the set given in the
example.

For two cells σ and τ in an abstract simplicial complex K with σ ⊆ τ , we say

that σ is a face of τ . A special case of this, which we will use often, is given in the

following definition.

Definition 2.4. Let σ and τ be cells where τ = σ ∪ {v}. Then we say that σ is a

co-dimension one face of τ . We denote this by σ <1 τ

Definition 2.5. A d-skeleton of K, denoted by K(d), is the abstract simplicial

complex formed by the collection {σ ∈ K| dim(σ) ≤ d}



6

For example the 0-skeleton K(0) is the set of vertices of K. Note that the 0-skeleton

is not the vertex set of K but the set of the vertices as singleton sets. The 1-skeleton

K(1) of K is the set of vertices and edges, and the 2-skeleton K(2) is the set of vertices,

edges, and triangles.

We will make use of the following discussion in later sections. We have discussed

properties of abstract simplicial complexes so the next natural step would be to

consider functions between abstract simplicial complexes.

Definition 2.6. Let K and L be two abstract simplicial complexes. A simplicial

map from K to L is a set map f : V (K)→ V (L) on the vertex sets of K and L with

the property that if σ is a cell of K, then f(σ) is a cell of L. We will write f : K → L

to refer to the simplicial map between K and L.

Let f : K → L be a simplicial map. Consider a cell σ of an abstract sim-

plicial complex K where σ = v0v1 · · · vi. A simplicial map has the property that

f(σ) = f(v0)f(v1) · · · f(vi) is a cell in L. That is, we essentially have that vertices get

mapped to vertices. Therefore, simplicial maps can be determined by their “effects”

on vertices. Consider the following example.

Example 2.7. We illustrate a simplicial map by a simple example. Let K be the

1-simplex ∆1 = {{v0}, {v1}, {v0, v1}} and L = {{a}, {b}} be the abstract simplicial

complex defined by two disconnected vertices. Consider the following two mappings:

1. f(v0) = a and f(v1) = a

2. f(v0) = a and f(v1) = b

We can see that the first mapping is a constant map to the vertex a. Therefore,

f(v0)f(v1) is indeed a cell in L, it is just {a} and hence is a simplicial map. The
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second mapping on the other hand is not a simplicial map as f(v0)f(v1) is not a cell

in L because {a} and {b} are disconnected vertices.

Now that we have a seen an example of a simplicial map, we wonder if compositions

of simplicial maps are also simplicial maps. They are indeed, consider the following

proposition.

Proposition 2.8. The composition of two simplicial maps is simplicial map.

Proof. Let K1, K2, K3 be abstract simplicial complexes and f : K1 → K2, g : K2 →

K3 be simplicial maps. We will prove that (g ◦ f) : K1 → K3 is also a simplicial map.

Since f is a simplicial map, for any cell σ ∈ K1, we have f(σ) = σf as a cell in K2.

Since g is a simplicial map, for any cell σ′ ∈ K2, we have g(σ′) as a cell in K3. Hence

(g ◦ f)(σ) = g(f(σ)) = g(σf ). Therefore, since σf ∈ K2 we have g(σf ) ∈ K3. Hence,

composition of simplicial maps is simplicial.

These basic properties of definitions of abstract simplicial complexes will serve as

the foundation for our development of discrete Morse theory.
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3 The Discrete Morse Function and Discrete

Vector Fields

We now introduce the main definitions of discrete Morse theory. For a full treat-

ment of discrete Morse theory on simplicial complexes see Scoville [16]. Though, we

follow the development of Forman [5] we emphasize the development of the discrete

vector fields which is stressed more by Scoville [16] and Kozlov [12]. As before, assume

that K is an abstract simplicial complex.

Definition 3.1. A discrete Morse function f on K is a function

f : K → R

which satisfies, for all σ(p) in K

(i) |{τ (p+1) > σ(p)|f(τ) ≤ f(σ)}| ≤ 1

and

(ii) |{γ(p−1) < σ(p)|f(γ) ≥ f(σ)}| ≤ 1

Example 3.2. We illustrate a simple example. Consider the hollow triangle and the

following value assignments to each cell.

2 4

0

5

31

Figure 4: A discrete Morse function on the hollow triangle.

That is, a discrete Morse function locally assigns higher values to higher dimen-

sional simplicies with at most one exception. By locally, we can think of codimension-
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one cells. So, for some p-dimensional cell σ in K we want to compare the values of

σ to its codimension-one simplicies γ(p−1) and τ (p+1). We check to see if the value

assignment agrees with the above definition.

Our next main definition is about critical points of a discrete Morse function.

Definition 3.3. A cell σ(p) of K is a critical point if both of the following hold.

(i) |{τ (p+1) > σ(p)|f(τ) ≤ f(σ)}| = 0

and

(ii) |{γ(p−1) < σ(p)|f(γ) ≥ f(σ)}| = 0

We then say that σ is a critical point of index p (its dimension). We also say that

f(σ) is the critical value.

Again, we are looking at the cells of codimension-one of σ. Interestingly, by

definition 3.1 and definition 3.3 the minimum value of a discrete Morse function on

an abstract simplicial complex must occur on a 0-cell (vertex); however, this may not

be true when given a classic Morse function the geometric realization of the abstract

simplicial complex. Furthermore, definition 3.3 gives us the following lemma.

Lemma 3.4. For a non-critical cell σ(p) only one of the following conditions can be

true:

(i) There exists τ (p+1) > σ(p) such that f(τ) ≤ f(σ).

(ii) There exists γ(p−1) < σ(p) such that f(γ) ≥ f(σ).

Proof. Assume p > 1 and, by way of contradiction, that conditions (i) and (ii) are both

true. So we have σ <1 τ and γ <1 σ such that f(τ) ≤ f(σ) ≤ f(γ). Furthermore,

from definition 3.1 there is another p-cell σ̄(p) such that γ <1 σ̄ <1 τ such that
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f(γ) < f(σ̄) since γ <1 σ̄ with f(γ) ≥ f(σ). Similarly, we have f(σ̄) < f(τ).

Therefore,

f(τ) ≤ f(σ) ≤ f(γ) < f(σ̄) < f(τ)

which is a contradiction. Hence, only one of the conditions may hold.

Given an abstract simplicial complex, how would one assign values to each cell

in the abstract simplicial complex? We could arbitrarily assign numbers to each cell

and check to make sure the conditions are satisfied; however, this can turn into an

extremely tedious task. To do so we specify the function in terms of its gradient. In

the classic sense this not efficient; however, discrete vector fields are defined in a way

so that they are determined by relatively few arrows.

Definition 3.5. A discrete vector field V is a collection of ordered sets of cells

called arrows (σ(p), τ (p+1)) such that

(i) The arrow (σ, τ) ∈ V means σ <1 τ .

(ii) Each σ ∈ K belongs to at most one arrow in V .

The cell σ is the tail of the arrow while τ is the head.

The notion of a discrete gradient vector field is what allows us to implicitly keep

track of the heights of cells.

Definition 3.6. A discrete Morse function f induces a discrete gradient vector

field Vf which is defined by

Vf := {(σ(p), τ (p+1))|σ <1 τ , f(σ) ≥ f(τ)}

We will refer to discrete gradient vector field as gradient vector field from now on.
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Remark 3.7. By lemma 3.4 and we see that each cell has an assignment by the

gradient vector field. That is, each cell is the tail of an arrow, the head of an arrow,

or is not in the gradient vector field. If a cell is not in the gradient vector field, then it

is a critical cell. More precisely, let σ be a cell of K and f a discrete Morse function

on K. Then only one of the following holds:

(i) σ is the tail of exactly one arrow.

(ii) σ is the head of exactly one arrow.

(iii) σ is neither the head nor the tail of an arrow. That is, σ is a critical cell.

Naturally, we could ask when does the converse of the above statement grant us a

gradient vector field? The partition of the cells of K given in the three conditions

leads to the definition of discrete vector field.

Example 3.8. We draw the corresponding gradient vector field of the discrete Morse

function given in example 3.2.

2 4

0

5

31

• •

•

Figure 5: A discrete Morse function on the hollow triangle and its corresponding
gradient vector field.

In the illustration above, the critical cells are f−1(0) and f−1(5). As such, they are

not on an arrow. The other cells, however; are on arrows because the vertex f−1(2)

has a higher value than the edge f−1(1) so f−1(2) is the tail of an arrow and f−1(1) is

the head of that arrow. Similarly with the case of cells f−1(4) and f−1(3). Note that
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we usually will not refer to cells as the inverse of their value assignment. In more

complicated simplicial complexes, we could have many cells with the same value and

as such it would be difficult to refer to cells in this manner.

Note that in a discrete vector field, the arrows are “pointing” downward; however,

we know that a gradient vector field in terms of a differential gradient will “point”

up. It is common for one to keep track of the negative gradient so that we have a flow

pushing downwards. In our development we do not have a differential, so we define

the gradient to point down.

Remark 3.9. We illustrate that not every discrete vector field comes from a gradient

of a discrete Morse function. Consider the following figure.

• •

•

Figure 6: A discrete vector field on ∆2

If the above did, in-fact, come from a discrete Morse function, then as we follow

the arrows the heights of the cells would need to decrease. However, there is an

immediate issue with this. We would have a contradiction of the cell having a smaller

height than itself. So we see that this discrete vector field did not come from a discrete

Morse function.

Gradient vector fields keep track of the pairs (arrows) of cells of higher dimension

which would be assigned lower values than one of its faces of one dimension less. If

a cell is not in a pair then it is a critical cell. Later, we wish to seamlessly change

from discussions about discrete Morse functions to gradient vector fields and vice

versa. We will prove that there is an equivalence between discrete Morse functions
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and gradient vector fields which will allow us to do so. We will; however, need some

more tools to prove this equivalence.

We see that discrete vector fields differ from gradient vector fields. Discrete vector

fields is a collection of arrows without the property of the discrete Morse function that

the gradient vector fields follow. Given a collection of arrows, from a discrete vector

field or gradient vector filed, we can follow these arrows as a path along K. This can

be described as follows.

Definition 3.10. Let V be a discrete vector field on K. A p+1 dimensional V-path

is a sequence of cells

σ
(p)
0 , τ

(p+1)
0 , σ

(p)
1 , τ

(p+1)
1 , σ

(p)
2 , τ

(p+1)
2 , ..., σ(p)

r , τ (p+1)
r , σ

(p)
r+1

Where for each i = 0, ..., r such that (σ
(p)
i , τ

(p+1)
i ) ∈ V and τi > σ

(p)
i+1 6= σ

(p)
i .

We say the V-path is a non-trivial closed path if r ≥ 0 and σ0 = σr+1. Note that

if the path is not closed, σr+1 need not be in a pair. The length of the path is r + 1,

which refers to the number of arrows on the V-path.

Suppose that we are given a discrete Morse function on an abstract simplicial

complex K. We know how to obtain the gradient vector field Vf which the discrete

Morse function induces. The V-paths of a gradient vector field will each give a

sequence of cells in K where the values of the cells given by f , as we go along the

path, will decrease. This discussion comes from the following result.

Lemma 3.11. Let Vf be a gradient vector field for a discrete Morse function f on

K. A sequence of cells

σ
(p)
0 , τ

(p+1)
0 , σ

(p)
1 , τ

(p+1)
1 , σ

(p)
2 , τ

(p+1)
2 , ..., σ(p)

r , τ (p+1)
r , σ

(p)
r+1
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is a V-path if and only if

f(σ0) ≥ f(τ0) > f(σ1) ≥ f(τ1) > f(σ2) ≥ f(τ2) > ... > f(σr) ≥ f(τr) > f(σr+1)

Proof. First, assume that the sequence of cells given is a V-path. Recall that the

definition of a V-path says the following pairs (σ
(p)
i , τ

(p+1)
i ) are in the gradient vector

field Vf as well as σi+1 <1 τi. Therefore the pairs of cells follow f(σi) ≥ f(τi).

Furthermore, since cells σi+1 and τi are not paired but σi+1 <1 τi we must have

f(τi) > f(σi+1). Hence, we obtain

f(σ0) ≥ f(τ0) > f(σ1) ≥ f(τ1) > f(σ2) ≥ f(τ2) > ... > f(σr) ≥ f(τr) > f(σr+1)

Now assume that we have a sequence of cells such that

f(σ0) ≥ f(τ0) > f(σ1) ≥ f(τ1) > f(σ2) ≥ f(τ2) > ... > f(σr) ≥ f(τr) > f(σr+1).

Since f is a discrete Morse function, we have for each f(σi) > f(τi), in the above string

of inequalities, (σi, τi) ∈ Vf . Recall that if we are given a discrete Morse function,

we pair cells in this manner to obtain the gradient vector field. Since f is a discrete

Morse function, τi is the unique cell for which σi <1 τi we have f(σi) > f(τi). Thus,

each σi and τi will occur in only one pair. Hence, the cells being evaluated by f form

a V-path.

We are in a good place to prove the equivalence of the gradient vector field and

discrete Morse function. This equivalence comes from the gradient (V-path) not

having any closed paths. Note that V-paths are the discrete analog to integral curves

for discrete vector fields. Furthermore, lemma 3.11 is the analog of integral curves
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having no loops. The following theorem says that heights along V-paths of a discrete

Morse function decrease. Note that the first part of the theorem follows directly

from lemma 3.11. The second part of the theorem is a bit more involved. We create a

discrete Morse function for the discrete vector field with no closed V-paths by defining

heights of cells such that they decrease along V-paths. We do this by starting at lower

dimensions and working our way up.

Theorem 3.12. A discrete vector field is a gradient vector field of a discrete Morse

function if and only if the discrete vector field contains no non-trivial closed V-paths.

Proof. Let K be an abstract simplicial complex of dimension n. First we will prove

the necessary condition. Assume a discrete vector field on K is a gradient vector field

Vf of a discrete Morse function f on K. Then each cell σ of K is either a tail of an

arrow, head of an arrow, or not on an arrow based on f . Let the following be an

arbitrary V-path in K

σ
(p)
0 , τ

(p+1)
0 , σ

(p)
1 , τ

(p+1)
1 , σ

(p)
2 , τ

(p+1)
2 , ..., σ(p)

r , τ (p+1)
r , σ

(p)
r+1

Then, for each pair (σ
(p)
i , τ

(p+1)
i ) ∈ Vf where σ <1 τ , we have f(σi) ≥ f(τi). By

lemma 3.11 we obtain the following string of inequalities

f(σ0) ≥ f(τ0) > f(σ1) ≥ f(τ1) > · · · > f(σr) ≥ f(τr) > f(σr+1).

Thus, the V-path is not closed. If it were closed we would have the following

contradiction f(σ1) > f(σr+1) = f(σ1). Hence, because the choice of V-path was

arbitrary, there are no non-trivial closed V-paths.

Now we will prove the sufficient condition. We will prove this by building a discrete

Morse function inductively on the d-skeletons of K. That is, we build functions
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fd : K(d) → R such that

• The function fd is a discrete Morse function on K(d).

• If V d is the collection of all arrows that only include cells on K(d), then V d is a

gradient vector field for fd.

• The image of fd is contained in the interval (−1, d]

We will prove that each function has these properties inductively on d. To do so,

consider the following. Define f0 to be the constant function which sends all cells to

0. Given a definition for fd−1, define fd as follows

• If σ is of dimension less than d− 1, or if σ is of dimension d− 1 and is either a

critical cell or on a (d− 1) dimensional V-path, then we let

fd(σ) = fd−1(σ).

• If σ is of dimension d and is critical, we let fd(σ) = d.

• If σ is on a V-path of dimension d, we let:

fd(σ) = (d− 1) +
δσ + 1

η + 1
.

Where η is defined to be double the maximum length d−dimensional V-path and δσ

is defined to be the number of cells which occur after σ on the maximal V-path which

contains σ (not necessarily the maximum length V-path). We will demonstrate how

to calculate δσ and η via a quick example.

Consider the following simplicial complex with a given vector field.
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v0

v1

v2 v3
v4

v5

e1

e2

e3 e4

e5

Note that we are working with 1-dimensional V-paths. First observe that the

maximal length V-path is of length 8. Now we calculate δσ for v0. Note that v0 is

only contained in one V-path, which has 8 cells that are on arrows. Since 7 cells

appear on arrows after v0 in the V-path, δv0 = 7. Now, lets calculate f1(v0). Since

the highest dimensional cell is 1, d = 1. What we have is f1(v0) = 0 +
7 + 1

8 + 1
, so

f1(v0) =
8

9
. In a similar manner, f1(e1) =

7

9
, f1(v1) =

6

9
, and f1(e2) =

5

9
. Now we

want to evaluate v2. However, v2 is on multiple different V-paths. Recall that η takes

values from the V-path with maximum length. So f1(v2) =
4

9
. Recall that since v4 is

not on an arrow it is critical, so it will take a value of 0. The following figure shows

the finished calculations.

8
9

6
9

4
9

2
9

0

6
9

7
9

5
9

3
9

1
9

5
9

We can see that the algorithm leaves most of the heights from fd−1 alone; how-

ever, we need to define heights for all d-dimensional cells since they did not appear

in the (d − 1)-skeleton. Furthermore, the heights of the (d − 1)-dimensional cells
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which now appear on d-dimensional paths need to be updated to obtain the desired

discrete Morse function, otherwise they will have height (d − 1). However, if the

(d− 1)-dimensional cells now appear on a d-dimensional path, the cells earlier on the

path need to have greater height than the cells which appear later via lemma 3.11.

The constants η and δσ are chosen to do exactly that.

Before we prove that these functions have the desired properties, we need to show

that the constant δσ is well defined. Since η depends only on the dimension and there

is no cycles in our V-paths, it is well defined. On the other hand, since V-paths are

of finite length and there are no non-trivial closed paths, δσ is always defined as well.

However, it may be possible that σ is on multiple different V-paths all of the same

length. We will show that δσ is still defined in this case. We must show that the

number of cells appearing after σ in each V-path must always be the same.

Assume, by way of contradiction, that σ̃ is on two d-dimensional V-paths of max-

imal length and appears at a different position along both paths. Recall, that since a

cell can only be on one arrow that the V-paths may join into single V-path. Let the

first V-path V P1 be the following sequence of cells:

σ
(d−1)
0 , τ

(d)
0 , σ

(d−1)
1 , τ

(d)
1 , ...σ̃

(d−1)
i , τ̃

(d)
i , ...σ(d−1)

r , τ (d)r , σ
(d−1)
r+1

and the second V-path V P2 be the following sequence of cells

σ̂
(d−1)
0 , τ̂

(d)
0 , σ̂

(d−1)
1 , τ̂

(d)
1 , ...σ̃

(d−1)
j , τ̃

(d)
j , ..., σ̂(d−1)

r , τ̂ (d)r , σ̂
(d−1)
r+1 .

Not only is the cell σ̃ in a different position on both V-paths, but so is the arrow

it is on. That is, since σ̃ is in a different position on both V-paths, so it the cell it

is paired with which we denoted τ̃ . So, without loss of generality assume that i < j.

That is, σ̃ appears in an earlier position in V P1 than V P2 since they are of the same
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length. If this is the case, then there are more cells after σ̃ in V P1 than before it and

there are more cells before σ̃ in V P2 than there are after. With this we can piece

together another V-path from the cells before σ̃ in V P2 and the cells after σ̃ in V P1.

The new V-path is of the form

σ̂
(d−1)
0 , τ̂

(d)
0 , σ̂

(d−1)
1 , τ̂

(d)
1 , ...σ̃(d−1)

m , τ̃ (d)m , ..., σ(d−1)
r , τ (d)r , σ

(d−1)
r+1

What we have is the first j arrows from V P2 and added r − i arrows from V P1. So

the new V-path has j − i + r arrows. Since i < j we have more arrows in the new

V-path than we have in the previous two. Therefore, the length of the new V-path is

larger than V P1 and V P2 which is a contradiction. Hence, the same number of cells

must come after σ in both V-paths.

Now that we have proven η and δσ are well defined, we now prove that the quantity

δσ + 1

η + 1
∈ (0, 1). We wish to do this because when we calculate heights for cells on a

d-dimensional V-path, we want their values to be strictly between d− 1 and d. This

will also give us the desired range of (−1, d] for each fd. By definition of δσ and η,

δσ + 1 and η + 1 are both positive. Furthermore, δσ < η Hence,
δσ + 1

η + 1
∈ (0, 1).

Now we use induction to prove that the functions fd have the desired properties,

i.e. they are discrete Morse functions on the d-skeletons, that they induce the arrows

on cells of dimension d or less for their gradient vector field, and that their heights

are contained in the interval (−1, d].

When d = 0 we assign all cells a value of 0. Note that any functions on a collection

of disjoint 0-cells will automatically be a discrete Morse function with every cell being

critical. Since there are no arrows only on dimension 0, the function has the correct

gradient vector field. We also see that since all cells have a height of 0, this is in the

range (−1, 0].
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Now suppose that fd−1 has the desired properties and consider fd. We will break

this down into cases based on the properties of the cells. That is, we want to prove the

following: the heights of cells fall in the range (-1, d], and heights decrease along d−

dimensional V-paths on the d-skeleton. First we show the heights fall in the interval

(−1, d].

• If σ is of dimension less than d−1, then fd(σ) = fd−1(σ). So, fd(σ) ∈ (−1, d−1]

and the desired property for heights would come from fd−1 already having these

properties.

• If σ is a d − 1 dimensional cell and not on a d-dimensional V-path. Then we

wont change the height, that is fd(σ) = fd−1(σ), so we know that fd ∈ (−1, d).

Now we verify that fd(σ) < fd(τ) whenever σ <1 τ . By our previous results

of δσ and η, we know that if τ is on a d-dimensional V-path, then its height is

strictly between d − 1 and d. If τ is critical, it attains a height of d. Since we

know that f(σ) ≤ d− 1, the result follows.

• If σ is a critical d-cell, or a d-cell on an arrow with a (d+1)-cell on the d + 1-

skeleton (which is still critical on the d-skeleton), then its height is exactly d.

Which is in the range (−1, d]. Since we have chosen heights for cells of lower

dimension to be strictly less than d, we have the desired properties.

• We can consider both cells of dimension d−1 and d which are on a d-dimensional

path. Since the quantity
δσ + 1

η + 1
is strictly between 0 and 1, the heights of these

cells are strictly between d− 1 and d. Thus the heights of these cells are in the

range (−1, d].

With the discussion above we can say that the height of each cell is contained in

the interval (−1, d]. Therefore, the range of fd is (−1, d]. What we have so far is that
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fd is almost a discrete Morse function. What we need to show now is that heights

decrease along V-paths.

Claim: Cells of dimension d and d− 1 which are on a d-dimensional V-path have

their heights decrease as we go along the V-path. We will have to check the following

4 cases: multiple V-paths of different length join together, a single V-path splitting

into multiple different V-paths of different length, multiple V-paths of different length

joining and then splitting where the V-paths could be of different length, and a single

V-path which does not split nor joins other V-paths.

• We start with the case of a single V-path which does not split nor join other

V-paths. This one is the simplest case as this follows from the construction of

fd.

• Consider multiple V-paths of different length joining into one V-path. We

proved earlier that the number of cells appearing after σ is the same in each V-

path. That is, σ is the cell which comes right after the joining of these V-paths.

We know that σ will attain its height from the V-path of largest length. What

we need to show is that fd(σ) is less than the heights of all adjacent cells which

come before σ on these V-paths. Note, what we need to focus on is
δσ + 1

η + 1
since

the constant d − 1 is being added to each. The quantity δσ + 1 will be just

one less than δτ + 1. With the above information,
δσ + 1

η + 1
<
δτ + 1

η + 1
. Hence, the

heights decrease along these V-paths.

• Suppose we have a single V-path splitting into multiple V-paths of different

length. In a similar fashion of V-paths joining, one can prove that the number

of cells before the V-path splits are the same for each V-path. However, we will

continue with our proof. Let τ be the cell on the V-path before the split. What

we need to show is that fd(τ) is greater than the heights of the cells σ after the
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splitting of the V-path which are not on the longest path. Note that since the

denominator η+ 1 is always the same and we know that δτ > δσ + 1. The result

follows: fd(τ) > fd(σ).

• We could have a case where there is a joining and splitting. One can prove that

the cells between the join and splitting. Therefore, we can combine the two

arguments above and obtain our result.

With critical d−1 dimensional cells taking a height of d−1, critical d-dimensional

cells taking a height of d, and the heights of cells on V-paths, which include the

possibility of the V-path just being a single arrow, are strictly between d− 1 and d.

Hence, we see that fd is a discrete Morse function. We now need to check that fd

induces the arrows on cells of dimension d or less for their gradient vector field. So,

we will show the following: when σ <1 τ then fd(σ) > fd(τ) if and only if there is an

arrow from σ to τ .

First, let σ be a d− 1 dimensional cell and τ be a d-dimensional cell. Assume, by

way of contradiction, that when σ <1 τ we have fd(σ) > fd(τ) and that there is no

arrow from σ to τ . We will proceed by cases.

• If σ and τ are not on any arrow, then by construction of fd we have d− 1 > d

which is a contradiction.

• If σ is a head of an arrow with a d−2 dimensional cell γ. By fd−1 already having

the desired properties and that fd(γ) = fd−1(γ), we have that fd(γ) > fd(σ) >

fd(τ). Whether τ be a critical d cell or on a d-dimensional V-path, since the

value of fd(τ) > d− 1 and fd(γ) = fd−1(γ) < d− 1 we have a contradiction.

• If σ the tail on an arrow with another d-dimensional cell τ̃ . We have that fd(σ) >

f(τ̃) by our construction. Therefore we have fd(σ) > f(τ̃) and fd(σ) > f(τ).
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Since we proved that fd was a discrete Morse function, this is a contradiction.

• We have a similar argument for the case when τ is the head of an arrow with

another d − 1 dimensional cell σ̃. That is, fd(τ) < fd(σ̃) and fd(τ) < fd(σ)

which gives us a contradiction of fd being a discrete Morse function.

Hence, there must be an arrow from σ to τ .

Conversely, when there is an arrow from σ to τ we have σ <1 τ by definition of

arrow. Furthermore, by construction of fd we have fd(σ) > fd(τ) which comes from

fd−1 already having that property along with the constants δσ and η. Therefore, fd

maintains the desired gradient vector field. Therefore, by induction each fd satisfies

the desired properties. In particular, if K is an n-dimensional abstract simplicial

complex, then fn : K → R is a discrete Morse function which induces V as a gradient

vector field.

We see that a discrete vector field and gradient vector fields are similar but the

gradient gradient vector field has a differing property. The discrete vector field is

just a collection of arrows on K, where as the gradient vector field is also a collection

of arrows on K with the additional condition that the arrows follow the decreasing

values of the discrete Morse function on K as we go up dimensions. That is, we

are referring to the negative of the gradient vector field in the smooth sense. We

investigate the differences of the discrete and gradient vector fields in the following

section.
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4 Discrete Flow

Now we start our development of relating the vector field to the notion of ho-

motopy. To do this we will develop a discrete notion of gradient flow by using the

vector field map as a chain homotopy. We follow Forman’s [5] approach and develop

the discrete analog of gradient flow. We than see how this discrete flow relates to

homotopy more generally. For the following discussion, let f be a fixed discrete Morse

function on an abstract simplicial complex K. The discrete gradient flow is defined

in terms of chains groups, so we remind the reader of the notion of simplicial chain

group with integer coefficients as well as the usual boundary operator.

Definition 4.1. The chain group Cn(K) consists of formal sums of oriented cells

of K of dimension n. An ordered cell can be listed in the form [w0, w1, ..., wn] where

w0, w1, ..., wn are the vertices of the cell. The cells are oriented so that

[w0, w1, ..., wn] = (−1)k[wi0 , wi1 , ..., win ] where where i0, i1, . . . , in is a permutation of

0, 1, . . . , n and k is 0 if this permutation is even, otherwise k is 1.

Definition 4.2. The boundary operator ∂ : Cn(K) → Cn−1(K) is homomorphism

defined by

∂([v0, v1, v2, ..., vn]) =
n∑
k=0

(−1)k[v0, v1, ..., v̂k, ..., vn−1, vn]

Where theˆover the vertex vk means we remove that vertex from the sequence.

We define an equivalent boundary map in terms of incidence numbers. The previ-

ous definition is beneficial for calculation where as the following will be more beneficial

for our theory. Fix an orientation on K by fixing an ordering on the vertices of K

and two orderings of the vertices on a cell will have the same orientation if and only
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if they differ by an even permutation. Let σ be a p-cell in K. Then we have

∂σ =
∑
γ(p−1)

ε(σ, γ)γ

where ε(σ, γ) is the incidence number of γ in the boundary of σ. That is, an incidence

number ε(σ, γ) is defined as follows;

1. ε(σ, γ) = 0 if γ is not in the boundary of σ.

2. ε(σ, γ) = 1 if γ has a positive orientation in the boundary of σ.

3. ε(σ, γ) = −1 if γ has a negative orientation in the boundary of σ.

Making this more convenient, define an inner product 〈, 〉 on C∗ by setting the posi-

tively oriented cells of K to be an orthonormal basis. Now we can write

∂σ =
∑
γ(p−1)

〈∂σ, γ〉γ.

We can now define the map for the vector field V as follows.

Definition 4.3. Let σ be a p-cell of K with a fixed orientation. If there is a (p+1)-cell

τ such that σ <1 τ where the arrow (σ, τ) ∈ V , then set

V (σ) = −〈∂τ, σ〉τ.

If there is no such τ then we set V (σ) = 0. Extending V linearly to a map for each

p, we obtain the vector field map

V : Cp(K)→ Cp+1(K)
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With the extra condition that f(τ) ≤ f(σ), where the arrow (σ, τ) ∈ Vf we have the

gradient vector field map

Vf : Cp(K)→ Cp+1(K)

We see that the vector field map is adding an additional vertex to the p-dimensional

cells that are on arrows. We can write this out as follows. Let σ = [v0, ..., vp] be on

the tail of an arrow. We write

V (σ) = (−1)[w, v0, ..., vp]

for the cell which is the head of the arrow.

The difference between the maps V and Vf will be given by context and we will

refer to the vector field and gradient vector field maps as V . Furthermore, we when we

add a vertex to a cell via V , we multiply by negative one because this guarantees that

when we take the boundary of V (σ) we will receive σ with the opposite orientation

which agrees with the V (σ) = −〈∂τ, σ〉τ formula. We are now in a position to see how

the gradient flow φ should be defined. Forman [5] gives us the following discussion for

motivation of the defining the gradient flow. Consider the vertices of K. For the first

case, if a vertex v is a critical vertex then it should remain fixed under the gradient

flow. That is, for a critical vertex v we have V (v) = 0 and φ(v) = v. If the vertex is

not critical and V (v) = ±e, for some edge e, then v should flow to the other vertex

adjacent to e. That is φ(v) = v + ∂(V (v)). Defining φ for any cell in K we obtain

the following.
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Definition 4.4. For any oriented p-cell σ we define the gradient flow as follows

φ(σ) = σ + ∂V (σ) + V (∂σ)

which extends linearly to the following map for each p

φ : Cp(K)→ Cp(K)

Note that we can also write the gradient flow function as

φ = 1 + ∂V + V ∂

Thus, we see that the gradient vector field V is a chain homotopy between the gradient

flow φ and the identity map 1. We will prove main properties of V and φ. First we

prove the following properties of V .

Proposition 4.5. 1. V ◦ V = 0.

2. If σ is and oriented p-cell of K, then

|{γ(p−1)|V (γ) = ±σ}| ≤ 1.

3. If σ is a oriented p-cell of K, then

σ is critical ⇐⇒ σ 6∈ im(V ) and V (σ) = 0

Proof. 1. If V (γ(p−1)) = ±σ(p), then γ <1 σ and f(σ) < f(γ). So by lemma 3.4 there



28

cannot exist a (p+1)-cell τ such that σ <1 τ where f(τ) ≤ f(σ). Therefore,

V ◦ V (γ) = V (V (γ))

= V (σ)

= 0

We can make a similar argument using our facts regarding arrows. Since a cell can

not be on more than on arrow, we have V ◦ V = 0.

2. Let σ be an oriented p-cell. In a similar style as the previous proof, if V (γ(p−1)) =

±σ(p) where γ <1 σ and f(σ) ≤ f(γ) then, by the first condition of definition 3.1, γ

must be the only cell which satisfies said condition. Again, we could make a similar

argument using what we know about arrows in the gradient vector field. Because

each cell can only be on one arrow, the cells γ(p−1) and σ(p) can only be in one arrow

(γ, σ) ∈ Vf .

3. Let σ be an oriented p-cell. Definition 3.3 states that σ is critical if and only if

(i) |{τ (p+1) > σ(p)|f(τ) ≤ f(σ)}| = 0 and

(ii) |{γ(p−1) < σ(p)|f(γ) ≥ f(σ)}| = 0

Condition (i) is equivalent to saying that there is no τ (p+1) where V (σ) = ±τ .

Therefore, V (σ) = 0. Condition (ii) is equivalent to saying that there is no γ(p−1)

with V (γ) = ±σ. Therefore, σ 6∈ im(V ). Equivalently, if σ is not on an arrow we

consider two cases. There is no (p-1)-cell γ such that γ <1 σ where (γ, σ) ∈ Vf . That

is, since σ is not a head of an arrow σ 6∈ im(V ). The other case us that there is no

(p+1)-cell τ such that σ <1 τ where (σ, τ) ∈ Vf . That is, since σ is not a tail of an

arrow V (σ) = 0.

Now we prove properties of the gradient flow map φ.
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Proposition 4.6. The gradient flow map commutes with the boundary operator, that

is ∂φ = φ∂. Furthermore, if σ1, ..., σr are oriented p-cells of K, write

φ(σi) =
∑
j

aijσj.

1. For every i, aii = 0 or 1, and aii = 1 if and only if σi is critical.

2. If i 6= j and aij 6= 0, then f(σj) < f(σi)

Proof. First we prove that the boundary operator commutes with the gradient flow

map.

φ∂ = (1 + ∂V + V ∂)∂ = ∂ + ∂V ∂ + V ∂2 = ∂ + ∂V ∂

∂φ = ∂(1 + ∂V + V ∂) = ∂ + ∂2V + ∂V ∂ = ∂ + ∂V ∂.

We now prove 1 and 2. Recall from proposition 4.5 that a p-cell σ satisfies exactly

one of the following: (i) σ is critical, (ii) ±σ ∈ im(V ), or (iii) V (σ) 6= 0. We will

consider each of these cases.

(i) First, suppose that σ is critical. Since σ is critical we have that V (σ) = 0 and

for any (p-1)-cell γ where γ <1 σ we have f(γ) < f(σ). Note that for each of these

(p-1)-cells we have either V (γ) = 0 or V (γ) = ±σ̃ where f(σ̃) ≤ f(γ) < f(σ). With

this discussion in mind, observe the following.

φ(σ) = σ + 0 + V (∂σ)

= σ +
∑
γ<1σ

〈∂σ, γ〉V (γ)

= σ +
∑
σ̃(p)

aσ̃σ̃
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Where all values aσ̃σ̃ with aσ̃ 6= 0 satisfy f(σ̃) < f(σ).

(ii) Next, suppose that σ ∈ im(V ). Then there exists a (p-1)-cell κ such that

V (κ) = σ. Recall that V ◦ V = 0. Therefore,

φ(σ) = σ + ∂V (σ) + V (∂σ)

= σ + ∂V (V (κ)) + V (∂σ)

= σ + V (∂σ)

= σ +
∑
γ<1σ

〈∂σ, γ〉V (γ)

Where γ <1 σ. Recall from proposition 4.5, that κ is a unique face of σ such that

V (κ) = ±σ and 〈∂σ, κ〉V (κ) = −σ. It follows that

φ(σ) = σ +
∑
γ<1σ

〈∂σ, γ〉V (γ)

= σ + 〈∂σ, κ〉V (κ) +
∑

κ6=γ<1σ

〈∂σ, γ〉V (γ)

=
∑

κ6=γ<1σ

〈∂σ, γ〉V (γ)

Moreover, for any other face γ of σ, V (γ) = 0 or V (γ) = σ̃ where f(σ̃) ≤ f(γ) < f(σ).

Therefore,

φ(σ) =
∑
σ̃(p)

aσ̃σ̃.

(iii) Now, suppose that V (σ) 6= 0, that is V (σ) = −〈∂τ, σ〉τ where σ <1 τ . Recall

that σ 6∈ im(V ). So, for any face γ of σ where γ <1 σ we have V (γ) = 0 or V (γ) = ±σ̃

where f(σ̃) ≤ f(γ) ≤ f(σ). We have φ(σ) = σ + ∂V (σ) + V (∂σ). Note that,

V (∂σ) =
∑
σ̃(p)

aσ̃σ̃
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and

∂V (σ) = −〈∂τ, σ〉∂τ

= −〈∂τ, σ〉2σ +
∑
σ̃(p)

bσ̃σ̃

= −σ +
∑
σ̃(p)

bσ̃σ̃.

Therefore,

φ(σ) = σ + ∂V (σ) + V (∂σ)

= σ − σ +
∑
σ̃(p)

bσ̃σ̃ +
∑
σ̃(p)

aσ̃σ̃

=
∑
σ̃(p)

dσ̃σ̃

where dσ̃ 6= 0 implies f(σ̃) < f(σ). Note that the only time in the three cases when

aii = 1 was when σ was critical.

In the above proposition the gradient flow map is a chain map since it com-

mutes with the boundary operator. Furthermore, 2. from the above proposition says

that the gradient flow traverses decreasing heights. Note that the gradient flow and

V-paths are note the same. Recall that V-paths is a sequence of cells/arrows of de-

creasing height within two dimensions p and p+1 where as the gradient flow can take

into account arrows in many different dimensions.

Example 4.7. We will illustrate how the gradient flow works with an example. This

will show us how the gradient flow works algebraically as well as geometrically. We

will need a simplicial complex with some orientation and a vector field on it as well.

Note that the vector field need not be a gradient vector field. Consider the following
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simplicial complex with the given orientation and then the following figure will be the

vector field we place on it. Note that the orientation of the cells and the arrows on

the vector field will determine the incidence number.

v1
v0

v2

v3

v4

v5

t1

t2

t3

e1

e2e3

e4

e5

e6

e7 e8

e9
v1

v0

v2

v3

v4

v5e1

e2e3

e4

e5

e6

e7 e8

e9

t1

t2

t3

Figure 7: Left: Simplicial complex with a given orientation. Right: the same simpli-
cial complex with a given vector field.

Consider the edge e4. We will find φ(e4). Observe that

φ(e4) = e4 + ∂V (e4) + V (∂e4)

= e4 + ∂(−〈∂t2, e4〉t2) + V (v3 − v2)

= e4 − ∂t2 + V (v3)− V (v2)

= e4 − e6 + e5 − e4 + (−〈∂e6, v3〉e6)− (−〈∂e2, v2〉e2)

= e4 − e6 + e5 − e4 + e6 + e2

= e2 + e5

This is what is happening on the simplicial complex itself.
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v1
v0

v2

v3

v4

v5

e4

(a) Orientation of e4.

v1
v0

v2

v3

v4

v5

e4

e5

e6

(b) ∂V (e4)

v1
v0

v2

v3

v4

v5

e2

e6

(c) V (∂e4)

What we have shown above is what is happening at each part of

φ(e4) = e4 + ∂V (e4) + V (∂e4)

on the simplicial complex. Combining these figures together, we see what the gradient

flow of e4 is.

v1
v0

v2

v3

v4

v5

e2

e5

Figure 9: The gradient flow of e4: φ(e4)

A quick observation based on the example above that is also true in general is

that V (∂σ) is the portion of φ which is tangent to σ and ∂V (σ) is the portion of φ

which can be though of as transversal to σ.

Now that we have seen an example of the gradient flow of a gradient vector field,

consider the following example of the gradient flow of a non-gradient discrete vector

field.



34

Example 4.8. We bring back the discrete vector field on ∆2 from before.

v0 v1

v2

e1

e2e3

• •

•

(a) A DVF on ∆2

v0 v1

v2

• •

•

t1

e1

e2e3

(b) The orientation on ∆2.

Observe the following two calculations.

φ(v1) = v1 + ∂V (v1) + V (∂v1)

= v0

and

φ(e1) = e1 + ∂V (e1) + V (∂e1)

= e3.

We see from the above calculations in our example that if there is a cycle in our

discrete vector field, the flow will simply take a cell to the next same dimensional cell

in the cycle.

These are the main properties of the vector field and gradient flow maps. One can

take these ideas further and talk about the Morse complex of an abstract simplicial

complex as [5] and [16] do. Delving even deeper is Forman in [9].

We now change gears to discuss simple homotopy type; however, we will bring the

discussion back around to discrete Morse theory. That is, we will show how simple

homotopy type and discrete Morse theory behave together. Doing this will put us

in a place where we can go into our final results. That is, we will show how simple
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homotopy works within Morse theory and for our finale we will show how to construct

a homotopy using discrete Morse theory.
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5 Simple Homotopy and Discrete Morse Theory

Here, we introduce one way homotopy and discrete Morse theory intermingle. By

introducing simple homotopy type, we may discuss some familiar results from classical

Morse theory in our discrete setting. We do this so we can discuss homotopy in terms

of homotopies between functions as well as homotopy equivalence between abstract

simplicial complexes. First we discuss the notion of simple homotopy and then we see

an example of the relationship between simple homotopy and discrete Morse theory.

A full treatment of simple homotopy is given by Cohen [3].

Definition 5.1. Let K be an abstract simplicial complex. Let σ, τ ∈ K be cells such

that

1. σ <1 τ .

2. τ is maximal and no other maximal cell contains σ.

An elementary collapse of K is the removal of the set σ, τ from K and denoted by

K ↘ K − {σ, τ}. Suppose {σ(p), τ (p+1)} is a pair of cells not in K where σ <1 τ and

the rest of the faces of τ are in K, then K ∪ {σ(p), τ (p+1)} is called an elementary

expansion of K, denoted K ↗ K ∪ {σ(p), τ (p+1)}.

That is, first find a cell which is maximal in K, say σm (not necessarily the only

one, this is just a choice). Find all cells contained in σm which are not contained in

another cell. These faces are called free faces and we remove these cells contained in

σm. On the other hand, if we have a pair of cells such that σ <1 τ and σ is contained

in no other face we call this a free pair. This is what we collapse for elementary

collapses or expand to for elementary expansions.
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Definition 5.2. Let K1 and K2 be two abstract simplicial complexes. If we can per-

form a sequence of elementary collapses and expansions on K1 which leads to K2,

we say that K1 and K2 have the same simple homotopy type. The sequence of

elementary collapses and expansions from K1 to K2 is called a formal deforma-

tion. We say that if K has a formal deformation to a vertex v, then we say K is

collapsible.

K = K0 ↘ K1 ↘ · · · ↘ Kn−1 ↘ Kn = {v}

So how does simple homotopy type relate to discrete Morse theory? Recall from

classical Morse theory that homotopy type is discussed in terms of critical points.

Consider, for example, theorems 3.1 and 3.2 from Milnor’s text [14]. Though, we will

only focus on the discrete version of the former theorem mentioned. In classical Morse

theory we talk about sublevel sets, where as in discrete Morse theory we consider the

sublevel complex.

Definition 5.3. Let K be an abstract simplicial complex and f : K → R be a discrete

Morse function. For any c ∈ R, the sublevel complex K(c) is the subcomplex of K

consisting of all cells σ with f(σ) ≤ c as well as their faces. That is,

K(c) =
⋃

f(σ)≤c

⋃
γ<1σ

γ

The following theorem is the discrete analog, in regards to simplicial complexes,

of theorem 3.1 from Milnor [14]. The theorem will be stated without proof; however,

one may find the proof in Scoville [16].

Theorem 5.4. Let K be an abstract simplicial complex and f : K → R a discrete

Morse function. If [a, b] ⊆ R is an interval which contains no critical values, then

K(b) and K(a) differ by a sequence of elementary collapses.
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In fact, the gradient vector field gives us an outline of such collapses. What this

theorem tells us is that the two sublevel complexes K(b) and K(a) have the same

simple homotopy type. Therefore, one may only want consider the sublevel complexes

which are induced by the critical values.

As revealed at the beginning of this section, we wish to take a different look at this

relationship between homotopy and discrete Morse theory. This will be our finale.

We now construct the chain homotopy between chain maps which were induced by

simplicial maps.
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6 Pivot Induced Discrete Vector Fields

As mentioned previously, the survey work before this section was set up for our

final results. Here we will build a chain homotopy between chain maps which are

induced by simplicial maps together with arrows. We will prove that these arrows,

which are generated by these simplicial maps, form a discrete vector field in the sense

of Forman. That is, we are using our previous discussion of discrete Morse theory

to build this chain homotopy. First we will briefly introduce the notion of simplicial

homology as a reminder to the reader since this is where we base our discussion;

consult Hatcher [10] for details.

Recall that a sequence of homomorphisms of chain groups is called a chain com-

plex.

· · · −→ Cn
∂n−→ Cn−1

∂n−1−−−→ Cn−2 −→ · · ·
∂1−→ C0

∂0−→ 0

Given the boundary operator from definition 4.2 we know that ∂n∂n−1 = 0 so we

obtain im∂n ⊂ ker ∂n−1. We define the nth homology group to be the quotient

group Hn = ker ∂n/im∂n+1. The results of chain homotopies are what we are after.

Recall that a chain map is a map f] : Cn(X) → Cn(Y ) which is induced from a

map f : X → Y and satisfies ∂f] = f]∂. That is, a chain map sends boundaries to

boundaries and cycles to cycles. We are mainly interested in the following results of

homology.

Theorem 6.1. If two maps f, g : X → Y are homotopic, then they induce the same

homomorphism on homology groups, that is, f∗ = g∗ : Hn(X)→ Hn(Y ).

For a proof of the above theorem, one can consult Hatcher [10]. Recall that a

chain homotopy between chain maps is defined to be a map, say, H which satisfies

∂H+H∂ = g]−f]. Recall from section 4 that Forman constructed a chain homotopy
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from the gradient flow map to the identity map using the vector field map as the

chain homotopy, i.e. φ = 1 + ∂V +V ∂. Forman was interested in the following result

from algebraic topology as he used it in his construction of the Morse complex, for

more information on his construction one can consult [5]. We are also interested in

the following result for our construction as it will show we can induce the same homo-

morphism on the homology groups of abstract simplicial complexes using simplicial

maps, which is the goal of this section.

Proposition 6.2. Chain homotopic chain maps induce the same homomorphism on

homology.

Proof. Let H be a chain homotopy between g] and f]. Let α ∈ Hn(C∗). Recall that

elements of Hn are cosets of im∂n+1 and ∂α = 0. Therefore,

g](α)− f] = ∂H(α) +H∂(α)

= ∂H(α) + 0

Therefore, g](α)− f](α) = ∂H(α) ∈ im∂n+1. Hence, g] = f].

We will follow this development of chain maps and chain homotopies in the fol-

lowing discussion. Recall that the objective is to construct a chain homotopy between

chain maps which are induced by simplicial maps and not continuous maps as in the

development found in Hatcher.

Let K and L be abstract simplicial complexes and f : K → L be a simplicial

map. Let f] : Cn(K)→ Cn(L) be a function defined by

f]([v0, ..., vn]) =


[f(v0), , ..., f(vn)] if f(v0), ..., f(vn) are all distinct

0 otherwise
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We will prove that this function is a chain map induced by the simplicial map f .

Proposition 6.3. f] defined above is a chain map induced by f .

Proof. What we must show is that f] ◦ ∂ = ∂ ◦ f]. We will need to consider some

cases.

• First, consider when the image of all vertices under f are distinct. Observe that

f] ◦ ∂([v0, v1, ..., vn]) = f]

(∑
k

(−1)k[v0, v1, ..., v̂k, ..., vn]

)

=
∑
k

(−1)kf]([v0, v1, ..., v̂k, ..., vn])

=
∑
k

(−1)k[f(v0), f(v1), ..., ˆf(vk), ..., f(vn)]

= ∂ ◦ f]([v0, v1, ..., vn])

• Now consider the case when two vertices have the same image. That is, f(vj) =

f(vi). We know that we will have ∂ ◦ f] = 0. Now we need to show that

f] ◦ ∂([v0, v1, ..., vn]) = 0. Observe that

f] ◦ ∂([v0, v1, ..., vn]) =
∑
k

(−1)kf][v0, ..., v̂k, ...., vn]

= (−1)j[f(v0), ..., f(vj−1), f(vj+1), ..., f(vi), ..., f(vn)]

+ (−1)i[f(v0), ..., f(vj), ..., f(vi−1), f(vi+1), ..., f(vn)]

= (−1)j[f(v0), ..., f(vj−1), f(vj), f(vj+1), ..., f(vn)]

+ (−1)i[f(v0), ..., f(vj−1), f(vj), f(vj+1), ..., f(vn)]

We will now show that the sum we left off with cancels out. We will proceed by
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cases. Without loss of generality, assume that j < i. We proceed by a parity

argument in regards to i and j.

– Case 1: Both i and j are even. We then know that (−1)j = (−1)i = 1.

Now we focus on the term which swapped f(vi) for f(vj). Note that f(vi)

moved i-j-1 positions. Therefore, since both i and j are even, i− j− 1 will

be odd. Since f(vi) shifted an odd amount of positions, the resulting cell

will have a negative orientation. Therefore, we obtain f] ◦ ∂ = 0.

– Case 2: Both i and j are odd. Therefore, (−1)i = (−1)j = −1. Similarly,

i− j − 1 will be odd once again. Because f(vi) shifted an odd amount of

positions, the resulting cell will have the opposite orientation. Therefore,

we obtain f] ◦ ∂ = 0.

– Case 3: Assume, without loss of generality, that i is odd and j is even.

Then we know (−1)i = −1 and (−1)j = 1, so the cells have opposite

orientations. The quantity i− j − 1 will be even, therefore the shifting of

f(vi) will not change the orientation of the resulting cell. Therefore, we

obtain f] ◦ ∂ = 0.

Hence, ∂ ◦ f] = f] ◦ ∂.

• Now we consider the case where there are more than two vertices with the same

image under f]. Note that when this occurs, the boundary wont be able to take

out each of these overlapping vertices so there will be non-distinct vertices in

the sum
∑

k(−1)k[f(v0), ..., ˆf(vk), ..., f(vn)]. Therefore, f] will send this to 0.

Furthermore, We know we will have ∂ ◦ f] = 0. Therefore, f ◦ ∂ = ∂ ◦ f].

Hence, we have shown that f] is a chain map
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Now that we have our chain maps we can start constructing the chain homotopy.

We wish to model a notion of closeness between two simplicial maps. This is where

our arrows come into play. However, before we get into that consider the following

definition.

Definition 6.4. Let K and L both be abstract simplicial complexes and f, g : K → L

be simplicial maps. We say that f and g differ by a vertex pivot if the following

occurs. For a cell σ ∈ K

• f(σ) = g(σ).

• f(σ) = (g(σ)− {u}) ∪ {v} Where {u} ∈ g(σ) and {v} ∈ f(σ) are vertices in L

and f(σ) ∪ {v} is a cell in L.

Furthermore, the second condition requires that f(σ) and g(σ) share cell. If two

simplicial maps f and g differ by vertex pivot we will denote this by f ∼p g

We illustrate the previous definition with an example.

Example 6.5. In this example f and g are simplicial maps. We will map the 2-

simplex to the tetrahedron. Consider the following figure.

a b

c

Figure 11: The 2-simplex with labeled vertices

We map the 2-simplex according to the mapping rule visualized by the following

figure. In the figure, the shaded regions reflect that f and g mapped the 2-simplex to
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2-dimensional cells on the tetrahedron. We see that the images of the vertices a and

b under f and g are the same. Notice that the images of c under f and g differ.

f(a) = g(a) f(b) = g(b)

g(c)

f(c)

Figure 12: A solid tetrahedron with the images of f and g

In the figure of the tetrahedron, we see that f(∆2) = (g(∆2)−{g({c})})∪{f({c})}

as well as g(∆2) = (f(∆2)− {f({c}})) ∪ {g({c})}.

In definition 6.4 and the above example we see that the images of f and g differ

by vertex. The idea here is, we can slide a vertex in the image of f in one move to

get to a vertex in the image of g. We elaborate more on what me mean by slide later.

Definition 6.4 almost makes an equivalence relation, so we extend the definition as

follows.

Definition 6.6. We say that two simplicial maps f, g are pivot homotopic if there

exists a sequences of maps

f = f1 ∼p f2 ∼p · · · ∼p fn = g

Now we are in a place to prove that pivot homotopic maps define an equivalence

relation.
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Proposition 6.7. Pivot homotopic maps define an equivalence relation. We will say

that if functions differ by a simplicial pivot, then they are in the same pivot class.

Proof. • First we show reflexivity. By definition we have f(σ) = f(σ) ∈ L.

• Now we show symmetry. Assume f ∼p g. We will show g ∼p f . Note that

when g(σ) = f(σ) this follows right away. Now we need to check the other

condition. We have that f(σ) = (g(σ)− {u}) ∪ {v}. Since {u} is in the image

of g but not in the image of f and {v} is in the image of f but not g, we have

g(σ) = (f(σ)− {v}) ∪ {u}. Hence, g ∼p f .

• Now we prove transitivity. Assume that f ∼p g and g ∼p h. Let the vertices

{v}, {u}, and {w} be in the images of f , g, and h respectively. Since f ∼p g,

we have f(σ) = (g(σ)− {u}) ∪ {v}. Furthermore, since g ∼p h we obtain

f(σ) = (((h(σ)− {w})− {u}) ∪ {u}) ∪ {v}

= (h(σ)− {w}) ∪ {v}

Therefore, f ∼p h.

Hence, pivot homotopic maps form an equivalence relation.

We now bring discrete Morse theory into the development. We define arrows based

on simplicial pivots. We will then show that these set of arrows will define a vector

field in the sense of Forman.

Definition 6.8. For two simplicial maps where f ∼p g we construct pivot arrows

in the following way.

• If f(σ) = g(σ), then f(σ) will not be on an arrow.
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• If f(σ) = (g(σ)−{u})∪{v}, then the pair (f(σ), f(σ)∪{u}) is an arrow where

f(σ) is the tail and f(σ) ∪ {u} is the head.

We will prove that the collection of arrows from the above definition forms a

discrete vector field.

Proposition 6.9. The set of pivot arrows form a discrete vector field.

Proof. We need to show that each cell is on at most one arrow. Note that the only

cells which are on arrows are cells which are contained in f(σ) and f(σ)∪ {u} where

f(σ) does not overlap with g(σ) and {u} is in the image of g and not f . We know

each f(σ) will be a tail of an arrow and f(σ) ∪ {u} a head. With these observations

combined, we see that each f(σ) will be on at most one tail of an arrow and never a

head. Similarly, each f(σ) ∪ {u} will be on at most one head of an arrow and never

a tail. Hence, the collection of pivot arrows on an abstract simplicial complex forms

a discrete vector field.

Example 6.10. We will illustrate what this induced vector field may look like in a

simple example. Consider the line segment.

a b

Consider the following 2-simplex with the image of f and g defined on it with the

induced vector field beside it.

f(a) = g(a) f(b)

g(b)

(a) Images of f and g on ∆2 (b) Induced vector field.
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The idea here is that we are sliding the image of f to the image of g where there

is a common overlap in their images. Here the common overlap is a vertex. We can

think of the vertex as the fixed position as we pivot the image of f to the image of g.

Recall that the goal is to show that if two simplicial maps f and g differ by a

vertex pivot then there is a chain homotopy between f] and g]. Our candidate for

chain homotopy is H = V ◦ f] where V is the vector field map associated with the

discrete vector field induced by vertex pivots.

Theorem 6.11. H = V ◦ f] is a chain homotopy from f] to g]. That is,

∂H +H∂ = g] − f]

Proof. We first prove the case when the image of f and g differ by a vertex. Suppose,

without loss of generality, that the vertices have been ordered such that f(vi) =

g(vi) if i 6= n and f(vn) 6= g(vn). Let f(vn) = v and g(vn) = u. Note that in the

following calculations [u, f(v0)..., f(vn−1), v̂] = g] and

[û, f(v0), .., f(vn−1), v] = f]. Observe the following:

∂H +H∂ = ∂(V f]) + (V f])∂

= ∂(V f]) + V (∂f])

= −〈∂(f] ∪ {u}), f]〉 ∂(f] ∪ {u})− 〈∂(∂f] ∪ {u}), f] ∪ {u}〉 ∂f] ∪ {u}

= (−1)vg] − (−1)uf] −
∑
k 6=v,u

(−1)k[u, f(v0), ..., ˆf(vk), ..., f(vn−1), v]

+
∑
k 6=u,v

(−1)k[u, f(v0), ..., ˆf(vk), ..., f(vn−1), v]

= g] − f]

Some explanation may be in order for the last two equalities. So we know from

section 4 and our definition of pivot arrows that g is not in the image of V so we are
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justified for k 6= u, v in the last part of the sum. The last equality comes from how v

and u are ordered in regards to (−1)v and (−1)u.

Now we consider the case when the image of f is the same as the image of g. Note

that f] and g] are not in the image of V . Observe the following:

∂H +H∂ = ∂(V f]) + (V f])∂

= ∂(V f]) + V (∂f])

= 0 + 0

= 0

= g] − f]

Hence, H is a chain homotopy between g] and f].
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7 Vertex Pivots and Contiguous Maps

In the previous section we developed a chain homotopy between chain maps which

were induced by simplicial maps. Though this idea is not new, it has not been dis-

cussed in detail under the scope of discrete Morse theory. The reader may have

noticed that simplicial maps which differ by a vertex pivot is a close notion of con-

tiguous maps.

Definition 7.1. Let K and L be abstract simplicial complexes and f, g : K → L

simplicial maps. If for every cell σ ∈ K we have that f(σ) ∪ g(σ) is a cell in L, then

we say f and g are contiguous. Denote contiguous maps by f ∼c g.

We see that simplicial maps which differ by a vertex pivot is a stronger notion

than contiguous maps. In fact, simplicial maps as described in definition 6.4 are

contiguous maps; however, not all contiguous maps are of definition 6.4. Making use

contiguous maps, Barmak and Minian [1] introduce the notion of strong homotopy.

Definition 7.2. Two simplicial maps f, g are strongly homotopic, f ∼ g, if there

exists a sequence of contiguous maps joining f and g.

f = f0 ∼c f1 ∼c f2 ∼c · · · ∼c fn−1 ∼c fn = g

Scoville [16] has a chapter dedicated to the combination of discrete Morse the-

ory and strong homotopy theory. This chapter summarizes the collaborative work

of himself and others in Fernández-Ternero et al. [4] in a more digestible way. The

motivation here is that elementary collapses may not induce a simplicial map; how-

ever, a composition of elementary collapses might be. With this motivation, it is then

showed exactly when a composition of elementary collapses induces a simplicial map.

As subtly mentioned in section 5, one of the main ideas of discrete Morse theory
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is, in our case, every abstract simplicial complex can be broken down or built up

using elementary expansions or collapses. Strong homotopy theory would allow the

notion of a strong elementary collapses to be added to the mix. However, we need

one more definition before we give the definitions of strong elementary collapses and

expansions.

Definition 7.3. Let K be an abstract simplicial complex. A vertex v′ is dominated

by a vertex v if every maximal cell of v′ also contains v.

Example 7.4. In this example, we see that each maximal cell which contains v′ also

contains v but not the other way around. Here we say that v dominates v′ or v′ is

dominated by v.

v

v′

Figure 14: Example of dominating vertices.

Definition 7.5. Let K be an abstract simplicial complex with v′ and v as vertices.

If v′ is dominated by v, then the removal of v′ is an elementary strong collapse

which we denote by K ↘↘ K − {v′}. An elementary strong expansion is the

addition of a dominated vertex which we denote by K ↗↗ K ∪{v′}. We also denote

sequences of elementary strong collapses/expansions by ↘↘ and ↗↗ respectively.

Let L be another abstract simplicial complex. If there is a sequence of strong collapses

and expansions from K to L, then K and L have the same strong homotopy type.

If there is a sequence of elementary strong collapses from K to a vertex, then K is

strongly collapsible.
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We see that the above definition is extremely similar to that of definition 5.2.

What Scoville [16] does is add the notion of elementary strong collapses and expan-

sions as another tool into discrete Morse theory. So why mention all of this after the

main result was proven? Well, to generalize the notion of vertex pivots we would like

to use contiguous functions and instead of pivot homotopic maps we would like to

use strongly homotopic maps. However, there are some issues if we try to extend our

development to include general contiguous functions.

Consider the following as one example. We could have images of functions which

differ by more than one vertex pivot. Some cases within this issue include the pos-

sibility of not being able to slide the image of f to the image of g and therefore we

would not have induced vector fields. In the cases where we could slide the image

of f to that of g we do not have a general way to choose which cells would be on

arrows. Another example of what could go wrong is when the image of f is smaller

than the image of g. Here we could have a couple different cases. We would slide the

image of f to g; however, we again run into the issue of how to choose arrows and

the other case would, again, be there is no possible way to slide f onto g. The main

point here being that we have issues with not always being able to collapse f onto g.

We illustrate some of these issues with one final example where the dimension of the

image of f is smaller than that of the image of g.

Example 7.6. Let K be the abstract simplicial complex {{a}, {b}} and L be the

abstract simplicial complex {{x}, {y}, {x, y}}. Let f, g : K → L be simplicial maps

such that f(a) = f(b) = x = g(a) and g(b) = y. Visually we have

f(a) = f(b) = x = g(a) g(b) = y
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We have two possible induced vector fields

1. One of the vector fields

2. The other vector field

Now we calculate H for both cases. First we will consider the chain map g].

Observe the following two calculations which correspond to the vector field 2.

H([a]) = V (g]([a])) = V ([x]) = 0

and

H([b]) = V (g]([b]) = V ([y]) = −[x, y] = [y, x]

So we obtain ∂H([a])+H∂([a]) = 0 and ∂H([b])+H∂([b]) = [x]−[y] = f]([b])−g]([b]).

On the other hand, when we consider f]. Observe the following calculations with

respect to vector field 1.

H([a]) = V (f]([a])) = V ([x]) = −[y, x] = [x, y]

and

H([b]) = V (f]([b])) = V ([x]) = −[y, x] = [x, y]

Therefore, ∂H([a]) + H∂([a]) = [y] − [x] = g]([b]) − f]([a]) and ∂H([b]) + H∂([b]) =

[y]− [x] = f]([b])− g]([b]).

We see that H is a chain homotopy from g] to f] but not vice versa. That is, we
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see that it is impossible to obtain a chain homotopy from f] to g] unless we take

−H but this would not correspond to an arrow as −V does not define a vector field

map. Another issue is that H cannot distinguish between [a] and [b] as we see with

the calculations with respect to the first vector field. In other words, we do not get a

chain homotopy from K to L for all elements in the domain. The issue here is that

composing V with f] can generate some homotopies but cannot generate all of them.

We see that in example 7.6 where our development in section 6 needs some modifi-

cation to work. Notice that in example 7.6 that f and g are both contiguous functions

but composing the vector field map with one of the chain maps did not give us a chain

homotopy in this case. It was noted in the example that it is impossible to obtain the

chain homotopy by the way we defined H. However, not all hope is lost. We did find,

in this specific case, that we were able to build a chain homotopy for one direction.

There may be a modification which we could make in order to fix the issue we have.

As a future avenue of research which extends from what we have, one could possibility

define a vector field between two abstract simplicial complexes which would allow us

to define vector field maps between abstract simplicial complexes as well. The hope

here is that we can, in the future, extend this idea of simplicial maps which differ by

a vertex pivot to that of contiguous maps.
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