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Abstract 

Theory of Principal Components for Applications  

in Exploratory Crime Analysis and Clustering 

By Daniel Silva 

Master of Science in Applied Statistics 

Minnesota State University, Mankato 

Mankato, Minnesota, 2020 

The purpose of this paper is to develop the theory of principal components analysis 

succinctly from the fundamentals of matrix algebra and multivariate statistics. 

Principal components analysis is sometimes used as a descriptive technique to 

explain the variance-covariance or correlation structure of a dataset. However, most 

often, it is used as a dimensionality reduction technique to visualize a high 

dimensional dataset in a lower dimensional space. Principal components analysis 

accomplishes this by using the first few principal components, provided that they 

account for a substantial proportion of variation in the original dataset. In the same 

way, the first few principal components can be used as inputs into a cluster analysis 

in order to combat the curse of dimensionality and optimize the runtime for large 

datasets. The application portion of this paper will apply these methods to a US 

Crime 2018 dataset extracted from the Uniform Crime Reports on the FBI’s website. 
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Chapter 1 

Introduction 

Principal components analysis (PCA) is multivariate statistical method that seeks to 

transform a set of correlated variables 𝑋1, 𝑋2, … , 𝑋𝑝 into a new set of uncorrelated 

variables 𝑌1, 𝑌2, … , 𝑌𝑝 that retain the total system variation. These new variables are 

called the principal components. Each principal component 𝑌1, 𝑌2, … , 𝑌𝑝 is a distinct 

linear combination of the original variables 𝑋1, 𝑋2, … , 𝑋𝑝 derived in decreasing order 

of importance in the sense that 𝑌1 accounts for as much of the variation in the 

original system amongst all other linear combinations 𝑌2, … , 𝑌𝑝. Then 𝑌2 is chosen to 

account for as much as possible of the remaining system variation, subject to being 

uncorrelated with 𝑌1. Analogously, 𝑌𝑖 is chosen to account for as much as possible of 

the remaining system variation, subject to being uncorrelated with 𝑌1, 𝑌2, … , 𝑌𝑖−1.  

The general hope of PCA is that the first few components will account for a 

substantial proportion of the variation in the original system, 𝑋1, 𝑋2, … , 𝑋𝑝 , and can, 

consequently, be used to provide a lower-dimensional summary of these variables 

[1, p. 41]. These first few principal components may then replace the original 

𝑋1, 𝑋2, … , 𝑋𝑝 and can be used for descriptives, graphical interpretations, and even 

inputs into another analysis, with minimal loss of information. That is why principal 

components analysis is often thought of as a dimensionality reduction technique as  
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well as an interpretive aid in explained the original variables. 

1.1 Theory Structure 

 In order to get a proper treatment of PCA, one needs a couple preliminaries 

including matrix algebra, multivariate population theory, and multivariate sample 

theory. 

Matrix algebra is the backbone of multivariate statistics. Chapter 2 devotes 

itself to covering all essential notations and concepts necessary to understand later 

chapters. This includes, but is not limited to, vector/matrix notations, inner-product, 

matrix multiplication, independence, square matrices, orthogonal matrices, 

eigenvalues and eigenvectors, and matrix maximization of quadratic forms. 

Covering matrix algebra before multivariate population theory is critical 

because it bridges the gap from one’s knowledge of univariate population theory to 

multivariate population theory. Chapter 3, Multivariate Population Theory, covers 

population random matrices, random vectors, mean vectors, variance-covariance 

and correlations matrices, and the corresponding theory related to linear 

combination used directly in the treatment of population PCA. Further, the same 

topics, as above, are extended to standardized multivariate populations. 

Chapter 4, Multivariate Sample Theory, follows directly from Chapter 3. It is 

paramount in understanding how one goes from population principal components 

to sample principal components. New concepts of multivariate random samples will  
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be derived from concepts of matrix algebra, multivariate population theory, and 

univariate random samples learned in one’s previous coursework. Then, the sample 

equivalents to Chapter 3 will be covered; including those related to standardized 

multivariate populations and linear combinations. 

Chapter 5 is devoted to the main topic of PCA. Here we will cover population 

principal components for unstandardized and standardized continuous random 

variables. Similarly, we will cover sample principal components for unstandardized 

and standardized multivariate random samples.  

1.2 Application Background and Structure 

Local law enforcement agency across the United States collect data on violent and 

property crimes. Every year, the FBI compiles, publishes, and archives this data in 

the Uniform Crime Reports (UCR). The UCR Program's primary objective is to 

generate reliable information for use in law enforcement administration, operation, 

management, and analytics.  

 Violent crime definitions according to the FBI are: 

❖ Murder and nonnegligent manslaughter: the willful (nonnegligent) killing of 

one human being by another. 

❖ Rape: The penetration, no matter how slight, of the vagina or anus with any 

body part or object, or oral penetration by a sex organ of another person, 

without the consent of the victim. 
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❖ Robbery: The taking or attempting to take anything of value from the care, 

custody, or control of a person or persons by force or threat of force or 

violence and/or by putting the victim in fear. 

❖ Aggravated assault: An unlawful attack by one person upon another for the 

purpose of inflicting severe or aggravated bodily injury. This type of assault 

usually is accompanied by the use of a weapon or by means likely to produce 

death or great bodily harm. Simple assaults are excluded. 

Property crime definitions according to the FBI are: 

❖ Burglary (breaking or entering): The unlawful entry of a structure to commit 

a felony or a theft. Attempted forcible entry is included. 

❖ Larceny-theft (except motor vehicle theft): The unlawful taking, carrying, 

leading, or riding away of property from the possession or constructive 

possession of another. Examples are thefts of bicycles, motor vehicle parts 

and accessories, shoplifting, pocket-picking, or the stealing of any property 

or article that is not taken by force and violence or by fraud. Attempted 

larcenies are included. Embezzlement, confidence games, forgery, check 

fraud, etc., are excluded. 

❖ Motor vehicle theft: The theft or attempted theft of a motor vehicle. A motor 

vehicle is self-propelled and runs on land surface and not on rails. 

Motorboats, construction equipment, airplanes, and farming equipment are 

specifically excluded from this category [2]. 
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For our application, Chapter 6, we shall use the UCR’s US Crime 2018 data for 

metropolitan statistical areas. Where a metropolitan statistical area is defined by a 

city with surrounding suburbs that are connected by some economic factors. One 

disclaimer is our analysis is not meant to rank local or federal law enforcement 

agencies based on the crime rates in their respective regions. Our analysis is only 

meant to group metropolitan statistical areas with similar crime profiles and 

compare their group averages to each-other and to the national averages. Also, note 

that crimes are generally underreported.  

The first step in our analysis will be of a univariate nature. We will calculate 

descriptives and assess the shape of each of the seven crime distributions. For 

example, checking whether the parent distribution is perhaps normal or even 

lognormal. In addition, we will look at the tail-ends of the distributions checking for 

univariate outliers. The second step is a bivariate distribution analysis. We will 

graphically visualize the correlation matrix. In addition, we will look at contour- and 

scatter- plots of the pairs of variables. The third step will be a short multivariate 

distribution analysis where we will solely test for multivariate normality. 

Next, we will standardize the US Crime 2018 data to prepare it for PCA. It is 

common practice to do this when the ranges of the variables are largely different. 

Once this is done, we can calculate the sample principal components. Topics of 

interest are explained variance by sample principal component and contributions of 
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standardized variables to each sample principal component. Also, one can attempt 

to interpret the sample principal component dimensions in the context of the 

subject matter--crime. Then, one can look at correlations of standardized variables 

with the sample principal components. Finally, one can create scatterplots of the 

first few sample principal components and look for clusters of metropolitan 

statistical areas or potential multivariate outliers. 

 After this we will use cluster analysis to attempt to meaningfully group (or 

profile) metropolitan statistical areas with similar crime attributes. We will use two 

sets of inputs (1) the Standardized Crime 2018 variables and (2) the first three 

sample principal components. Three cluster algorithms will be used 𝑘-Means, 

Ward’s method, and Average method with both sets of inputs. This will leave use 

with six cluster assignments to compare and contrast graphically and via their 

respective cluster mean vectors.  
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Chapter 2 

Matrix Algebra 

2.1 Vectors 

Definition 2.1.1 (Vector). A 𝑛 × 1 dimensional array 𝐱
(𝑛×1)

 of 𝑛 real numbers 

𝑥1, 𝑥2, … , 𝑥𝑗 , … , 𝑥𝑛 (𝑛 − 𝑡𝑢𝑝𝑙𝑒) is called a vector, and in general, is denoted by a 

boldfaced, lowercase letter. It is written as 

𝐱
(𝑛×1)

=  

[
 
 
 
 
 
𝑥1
𝑥2
⋮
𝑥𝑗
⋮
𝑥𝑛]
 
 
 
 
 

(𝑛×1)

 

[3, pp. 49, 82]. 

A vector 𝐱
(𝑛×1)

 can be represented geometrically as a directed line in 𝑛 

dimensions with component 𝑥1 along the 1th axis, 𝑥2 along the 2nd axis,…, 𝑥𝑗  along 

the 𝑗th axis,…, and 𝑥𝑛 along the 𝑛th axis [3, p. 50]. 
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Definition 2.1.2 (Vector Transpose). A 1× 𝑛 dimensional array 𝐱′

(1×𝑛)
of 𝑛 real 

numbers 𝑥1, 𝑥2, … , 𝑥𝑗 , … , 𝑥𝑛 (𝑛 − 𝑡𝑢𝑝𝑙𝑒) is called a vector transpose. It is written as 

𝐱′
(1×𝑛)

= [𝑥1, 𝑥2, … , 𝑥𝑗 , … , 𝑥𝑛]
(1×𝑛)

 

where the prime denotes the operation of transposing a column 𝐱
(𝑛×1)

 to a row 𝐱′
(1×𝑛)

 

[3, p. 49]. 

Definition 2.1.3 (Zero-Vector). 𝟎
(𝑛×1)

 vector is a 𝑛 × 1 dimensional array of 0′𝑠. It is 

written as 

𝟎
(𝑛×1)

=

[
 
 
 
 
 
01
02
⋮
0𝑗
⋮
0𝑛]
 
 
 
 
 

 

(𝑛×1)

  

often thought of as the origin in 𝑛 −  𝑠𝑝𝑎𝑐𝑒. 

Definition 2.1.4 (One Vector). 𝟏
(𝑛×1)

 vector is a  𝑛 × 1 dimensional array of 1′𝑠. It is 

written as 

𝟏
(𝑛×1)

=

[
 
 
 
 
 
11
12
⋮
1𝑗
⋮
1𝑛]
 
 
 
 
 

(𝑛×1)
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Definition 2.1.5 (Scalar Multiplication). Let 𝑐 be an arbitrary scalar. Then the 

product 𝑐𝐱
(𝑛×1)

 is a vector with 𝑗𝑡ℎ entry 𝑐𝑥𝑗 . It is written as 

𝑐𝐱
(𝑛×1)

= 𝑐 ⋅

[
 
 
 
 
 
𝑥1
𝑥2
⋮
𝑥𝑗
⋮
𝑥𝑛]
 
 
 
 
 

(𝑛×1)

=

[
 
 
 
 
 
𝑐𝑥1
𝑐𝑥2
⋮
𝑐𝑥𝑗
⋮
𝑐𝑥𝑛]

 
 
 
 
 

(𝑛×1)

  

[3, pp. 50, 82]. 

Definition 2.1.6 (Vector Addition). The sum of two vectors 𝐱
(𝑛×1)

 and 𝐲
(𝑛×1)

, each 

having the same number of entries, is the vector 

𝐳
(𝑛×1)

= 𝐱
(𝑛×1)

+ 𝐲
(𝑛×1)

 𝑤𝑖𝑡ℎ 𝑗𝑡ℎ 𝑒𝑛𝑡𝑟𝑦 𝑧𝑗 = 𝑥𝑗 + 𝑦𝑗  

That is, 

𝐳
(𝑛×1)

= 𝐱
(𝑛×1)

+ 𝐲
(𝑛×1)

=

[
 
 
 
 
 
𝑥1
𝑥2
⋮
𝑥𝑗
⋮
𝑥𝑛]
 
 
 
 
 

(𝑛×1)

+

[
 
 
 
 
 
𝑦1
𝑦2
⋮
𝑦𝑗
⋮
𝑦𝑛]
 
 
 
 
 

(𝑛×1)

 =

[
 
 
 
 
 
𝑥1 + 𝑦1
𝑥2 + 𝑦2

⋮
𝑥𝑗 + 𝑦𝑗

⋮
𝑥𝑛 + 𝑦𝑛]

 
 
 
 
 

(𝑛×1)

= 𝐱 + 𝐲
(𝑛×1)

  

[3, pp. 51, 83]. 

The sum of two vectors emanating from the origin 𝟎
(𝑛×1)

 is the diagonal of the 

parallelogram formed with the two original vectors as adjacent sides [3, p. 51]. 
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Definition 2.1.7 (Vector Space). The space of all real 𝑛 − 𝑡𝑢𝑝𝑙𝑒𝑠 (vectors), with 

scalar multiplication and vector addition, is called a vector space [3, p. 83]. 

Definition 2.1.8 (Linear Span). The vector 

𝐲
(𝑛×1)

= 𝑎1𝐱1
(𝑛×1)

+ 𝑎2𝐱2
(𝑛×1)

+⋯+ 𝑎𝑘𝐱𝑘
(𝑛×1)

+⋯+ 𝑎𝑝𝐱𝑝
(𝑛×1)

 

 is a linear combination of the vectors 𝐱1, 𝐱2, … , 𝐱𝑘, … , 𝐱𝑝 in ℝ𝑛 where 

𝑎1, 𝑎2, … , 𝑎𝑘, … , 𝑎𝑝 are real. The set of all linear combinations of 𝐱1, 𝐱2, … , 𝐱𝑘, … , 𝐱𝑝 is 

called their linear span, denoted, span(𝐱1, 𝐱2, … , 𝐱𝑘, … , 𝐱𝑝) [3, p. 83], [4, p. 114]. 

Definition 2.1.9 (Linearly Dependent). A set of vectors 𝐱1, 𝐱2, … , 𝐱𝑘, … , 𝐱𝑝 is said to 

be linearly dependent if there exist 𝑝 numbers (𝑎1, 𝑎2, … , 𝑎𝑘, … , 𝑎𝑝), not all zero, 

such that 

𝑎1𝐱1
(𝑛×1)

+ 𝑎2𝐱2
(𝑛×1)

+⋯+ 𝑎𝑘𝐱𝑘
(𝑛×1)

+⋯+ 𝑎𝑝𝐱𝑝
(𝑛×1)

= 𝟎
(𝑛×1)

   

[3, p. 83]. 

If one of the vectors, for example, 𝐱𝑘
(𝑛×1)

, is 𝟎
(𝑛×1)

, the set is linearly dependent 

(Let 𝑎𝑘 be the only nonzero coefficient). Linear dependence implies that at least one 

vector in the set can be written as a linear combination of the other vectors. Vectors 

of the same dimension that are not linearly dependent are said to be linearly 

independent [3, pp. 53, 83]. 
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Definition 2.1.10 (Basis). Any set of 𝑛 linearly independent vectors is called a basis 

for the vector space of all 𝑛 − 𝑡𝑢𝑝𝑙𝑒𝑠 of real numbers [3, p. 84]. 

Result 2.1.1. Every vector can be expressed as a unique linear combination of a fixed 

basis [3, p. 84]. 

Definition 2.1.11 (Inner Product). The inner (or dot) product of two vectors 𝐱
(𝑛×1)

 

and 𝐲
(𝑛×1)

 with the same number of entries is defined as the sum of component 

products: 

𝐱′
(1×𝑛)

⋅ 𝐲
(𝑛×1)

= [𝑥1, 𝑥2, … , 𝑥𝑗 , … , 𝑥𝑛]
(1×𝑛)

⋅

[
 
 
 
 
 
𝑦1
𝑦2
⋮
𝑦𝑗
⋮
𝑦𝑛]
 
 
 
 
 

(𝑛×1)

= 𝑥1𝑦1 + 𝑥2𝑦2 +⋯+ 𝑥𝑗𝑦𝑗 +⋯+ 𝑥𝑛𝑦𝑛 

or 

𝐲′
(1×𝑛)

⋅ 𝐱
(𝑛×1)

= [𝑦1, 𝑦2, … , 𝑦𝑗 , … , 𝑦𝑛]
(1×𝑛)

⋅

[
 
 
 
 
 
𝑥1
𝑥2
⋮
𝑥𝑗
⋮
𝑥𝑛]
 
 
 
 
 

(𝑛×1)

= 𝑦1𝑥1 + 𝑦2𝑥2 +⋯+ 𝑦𝑗𝑥𝑗 +⋯+ 𝑦𝑛𝑥𝑛 

[3, pp. 52, 85]. 

Hence,  

𝐱′
(1×𝑛)

⋅ 𝐲
(𝑛×1)

= 𝐲′
(1×𝑛)

⋅ 𝐱
(𝑛×1)

. 
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Definition 2.1.12 (Length of a Vector). A vector has both direction and length. The 

length of a vector 𝐱
(𝑛×1)

 of 𝑛 elements emanating from the origin 𝟎
(𝑛×1)

 is given by the 

Pythagorean formula: 

𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝐱
(𝑛×1)

 

                                              = 𝐿𝐱
(1×1)

 

                                              = √ 𝐱′
(1×𝑛)

⋅ 𝐱
(𝑛×1)

 

                                              =

√
  
  
  
  
  
  
 

[𝑥1, 𝑥2, … , 𝑥𝑗 , … , 𝑥𝑛]
(1×𝑛)

⋅

[
 
 
 
 
 
𝑥1
𝑥2
⋮
𝑥𝑗
⋮
𝑥𝑛]
 
 
 
 
 

 

(𝑛×1)

  

                                              = √𝑥1
2 + 𝑥2

2 +⋯+ 𝑥𝑗
2 +⋯+ 𝑥𝑛2 

[3, p. 84]. 

 Multiplication by 𝑐 does not change the direction of the vector 𝐱
(𝑛×1)

 if 𝑐 > 0. 

However, a negative value of 𝑐 creates a vector with a direction opposite that of 

𝐱
(𝑛×1)

. From 𝐿𝑐𝐱 = |𝑐|𝐿𝐱 it is clear that 𝐱
(𝑛×1)

 is expanded if |𝑐| > 1 and contracted if 

0 < |𝑐| < 1. Choosing 𝑐 = 𝐿𝐱
−1, we obtain the unit vector 𝐿𝐱

−1𝐱
(𝑛×1)

, which has length 1 

and lies in the direction of 𝐱
(𝑛×1)

 [3, p. 51]. 
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Definition 2.1.13 (Angle). The angle 𝜃 between two vectors 𝐱

(𝑛×1)
 and 𝐲

(𝑛×1)
 in a plane, 

both having 𝑛 entries, is defined from 

cos(𝜃) =

𝐱′
(1×𝑛)

⋅ 𝐲
(𝑛×1)

𝐿𝐱𝐿𝐲
=

𝐱′
(1×𝑛)

⋅ 𝐲
(𝑛×1)

√ 𝐱′
(1×𝑛)

⋅ 𝐱
(𝑛×1)√

𝐲′
(1×𝑛)

⋅ 𝐲
(𝑛×1)

 

or 

cos(𝜃) =

𝐲′
(1×𝑛)

⋅ 𝐱
(𝑛×1)

𝐿𝐱𝐿𝐲
=

𝐲′
(1×𝑛)

⋅ 𝐱
(𝑛×1)

√ 𝐱′
(1×𝑛)

⋅ 𝐱
(𝑛×1)√

𝐲′
(1×𝑛)

⋅ 𝐲
(𝑛×1)

 

[3, pp. 52-53, 85]. 

Definition 2.1.14 (Perpendicular). When the angle between two vectors 𝐱
(𝑛×1)

, 𝐲
(𝑛×1)

 is 

𝜃 = 90° or 𝜃 = 270°, we say that 𝐱
(𝑛×1)

 and 𝐲
(𝑛×1)

  are perpendicular (orthogonal). 

Since cos(𝜃) = 0 only if 𝜃 = 90° or 𝜃 = 270°, the condition becomes 

𝐱
(𝑛×1)

 𝑎𝑛𝑑 𝐲
(𝑛×1)

 𝑎𝑟𝑒 𝑝𝑒𝑟𝑝𝑒𝑛𝑑𝑖𝑐𝑢𝑙𝑎𝑟 𝑖𝑓 𝐱′
(1×𝑛)

⋅ 𝐲
(𝑛×1)

= 𝐲′
(1×𝑛)

⋅ 𝐱
(𝑛×1)

= 0 

We write 𝐱
(𝑛×1)

⊥ 𝐲
(𝑛×1)

 [3, pp. 53, 86]. 
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Result 2.1.2. 

(a) 𝐳
(𝑛×1)

 is perpendicular to every vector if and only if 𝐳
(𝑛×1)

= 𝟎
(𝑛×1)

. 

(b) If 𝐳
(𝑛×1)

 is perpendicular to each vector 𝐱1, 𝐱2, … , 𝐱𝑘, … , 𝐱𝑝 then 𝐳
(𝑛×1)

 is 

perpendicular to the span(𝐱1, 𝐱2, … , 𝐱𝑘, … , 𝐱𝑝). 

(c) Mutually perpendicular vectors are linearly independent. 

[3, p. 86]. 

2.2 Matrices 

Definition 2.2.1 (Matrix). A 𝑛 × 𝑝 dimensional array 𝐀
(𝑛×𝑝)

 of elements with 𝑛 rows 

and 𝑝 columns is called a matrix, and in general, is denoted by a boldfaced, 

uppercase letter. It is written as 

𝐀
(𝑛×𝑝)

=

[
 
 
 
 
 
𝑎11 𝑎12 ⋯ 𝑎1𝑘 ⋯ 𝑎1𝑝
𝑎21 𝑎22 ⋯ 𝑎2𝑘 ⋯ 𝑎2𝑝
⋮ ⋮ ⋮ ⋮
𝑎𝑗1 𝑎𝑗2 ⋯ 𝑎𝑗𝑘 ⋯ 𝑎𝑗𝑝
⋮ ⋮ ⋮ ⋮
𝑎𝑛1 𝑎𝑛2 ⋯ 𝑎𝑛𝑘 ⋯ 𝑎𝑛𝑝]

 
 
 
 
 

(𝑛×𝑝)

= [

𝑎11 𝑎12 ⋯ 𝑎1𝑝
𝑎21 𝑎22 ⋯ 𝑎2𝑝
⋮ ⋮ ⋱ ⋮
𝑎𝑛1 𝑎𝑛2 ⋯ 𝑎𝑛𝑝

]

(𝑛×𝑝)

 

𝑗 = 1,2, … , 𝑛, 𝑘 = 1,2, … , 𝑝. Or more compactly as 

𝐀
(𝑛×𝑝)

= {𝑎𝑗𝑘} 

where the index 𝑗 refers to the row and the index 𝑘 refers to the column. 

 In our work, the matrix elements will be in ℝ or functions taking on values 

in ℝ [3, pp. 54, 87-88]. 
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Definition 2.2.2 (Matrix Transpose). A 𝑝 × 𝑛 dimensional array 𝐀′

(𝑝×𝑛)
 of elements 

with 𝑝 rows and 𝑛 columns is called a matrix transpose, 

𝐀′
(𝑝×𝑛)

=

[
 
 
 
 
 
𝑎11 𝑎21 ⋯ 𝑎𝑗1 ⋯ 𝑎𝑛1
𝑎12 𝑎22 ⋯ 𝑎𝑗2 ⋯ 𝑎𝑛2
⋮ ⋮ ⋮ ⋮
𝑎1𝑘 𝑎2𝑘 ⋯ 𝑎𝑗𝑘 ⋯ 𝑎𝑛𝑘
⋮ ⋮ ⋮ ⋮
𝑎1𝑝 𝑎2𝑝 ⋯ 𝑎𝑗𝑝 ⋯ 𝑎𝑛𝑝]

 
 
 
 
 

(𝑝×𝑛)

= [

𝑎11 𝑎21 ⋯ 𝑎𝑛1
𝑎12 𝑎22 ⋯ 𝑎𝑛2
⋮ ⋮ ⋱ ⋮
𝑎1𝑝 𝑎2𝑝 ⋯ 𝑎𝑛𝑝

]

(𝑝×𝑛)

 

for 𝑗 = 1,2, … , 𝑛, 𝑘 = 1,2, … , 𝑝. 

The transpose operation 𝐀′
(𝑝×𝑛)

 of a matrix changes the columns into rows, so 

that the first column of 𝐀
(𝑛×𝑝)

 becomes the first row of 𝐀′
(𝑝×𝑛)

, the second column 

becomes the second row, and so forth [3, p. 55]. 

Definition 2.2.3 (Matrix Addition). Let the matrices 𝐀
(𝑛×𝑝)

 and 𝐁
(𝑛×𝑝)

 both be of 

dimension 𝑛 × 𝑝 with arbitrary elements 𝑎𝑗𝑘 and 𝑏𝑗𝑘, 𝑗 = 1,2, … , 𝑛, 𝑘 = 1,2, … , 𝑝, 

respectively. The sum of the matrices 𝐀
(𝑛×𝑝)

 and 𝐁
(𝑛×𝑝)

 is an 𝑛 × 𝑝 matrix 𝐂
(𝑛×𝑝)

, written 

𝐂
(𝑛×𝑝)

= 𝐀
(𝑛×𝑝)

+ 𝐁
(𝑛×𝑝)

, such that an arbitrary element of 𝐂
(𝑛×𝑝)

 is given by 

𝑐𝑗𝑘 = 𝑎𝑗𝑘 + 𝑏𝑗𝑘      𝑗 = 1,2, … , 𝑛      𝑘 = 1,2, … , 𝑝  

𝐂
(𝑛×𝑝)

= 𝐀
(𝑛×𝑝)

+ 𝐁
(𝑛×𝑝)

=

[
 
 
 
𝑎11 + 𝑏11 𝑎12 + 𝑏12 ⋯ 𝑎1𝑝 + 𝑏1𝑝
𝑎21 + 𝑏21 𝑎22 + 𝑏22 ⋯ 𝑎2𝑝 + 𝑏2𝑝

⋮ ⋮ ⋱ ⋮
𝑎𝑛1 + 𝑏𝑛1 𝑎𝑛2 + 𝑏𝑛2 ⋯ 𝑎𝑛𝑝 + 𝑏𝑛𝑝]

 
 
 

(𝑛×𝑝)

= 𝐀 + 𝐁
(𝑛×𝑝)

 

Note that the addition of matrices is defined only for matrices of the same 

dimension [3, p. 88]. 
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Definition 2.2.4 (Scalar Multiplication). 

Let 𝑐 be an arbitrary scalar and 𝐀
(𝑛×𝑝)

= {𝑎𝑗𝑘}. Then 𝑐𝐀
(𝑛×𝑝)

= 𝐀𝑐
(𝑛×𝑝)

= 𝐁
(𝑛×𝑝)

= {𝑏𝑗𝑘}, 

where 𝑏𝑗𝑘 = 𝑐𝑎𝑗𝑘 = 𝑎𝑗𝑘𝑐, 𝑗 = 1,2, … , 𝑛, 𝑘 = 1,2, … , 𝑝. That is, 

𝑐𝐀
(𝑛×𝑝)

= 𝐀𝑐
(𝑛×𝑝)

= [

𝑐𝑎11 𝑐𝑎12 ⋯ 𝑐𝑎1𝑝
𝑐𝑎21 𝑐𝑎22 ⋯ 𝑐𝑎2𝑝
⋮ ⋮ ⋱ ⋮

𝑐𝑎𝑛1 𝑐𝑎𝑛2 ⋯ 𝑐𝑎𝑛𝑝

]

(𝑛×𝑝)

= [

𝑎11𝑐 𝑎12𝑐 ⋯ 𝑎1𝑝𝑐
𝑎21𝑐 𝑎22𝑐 ⋯ 𝑎2𝑝𝑐

⋮ ⋮ ⋱ ⋮
𝑎𝑛1𝑐 𝑎𝑛2𝑐 ⋯ 𝑎𝑛𝑝𝑐

]

(𝑛×𝑝)

= 𝐁
(𝑛×𝑝)

 

Multiplication of a matrix by a scalar produces a new matrix whose elements 

are the elements of the original matrix, each multiplied by the scalar [3, pp. 55, 89]. 

Definition 2.2.5 (Matrix Multiplication). The product 𝐀
(𝑛×𝑚)

⋅ 𝐁
(𝑚×𝑝)

 of an 𝑛 × 𝑚 matrix 

𝐀
(𝑛×𝑚)

= {𝑎𝑗𝑘} and an 𝑚 × 𝑝 matrix 𝐁
(𝑚×𝑝)

= {𝑏𝑗𝑘} is the 𝑛 × 𝑝 matrix                      

𝐂
(𝑛×𝑝)

= 𝐀
(𝑛×𝑚)

⋅ 𝐁
(𝑚×𝑝)

= {𝑐𝑗𝑘} whose elements in the 𝑗𝑡ℎ row and 𝑘𝑡ℎ column is the 

inner product of the 𝑗𝑡ℎ row of 𝐀
(𝑛×𝑚)

 and the 𝑘𝑡ℎ column of 𝐁
(𝑚×𝑝)

 or 

𝑐𝑗𝑘 = (𝑗, 𝑘) 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑜𝑓 𝐀
(𝑛×𝑚)

⋅ 𝐁
(𝑚×𝑝)

 = 𝑎𝑗1𝑏1𝑘 + 𝑎𝑗2𝑏2𝑘 +⋯+ 𝑎𝑗𝑚𝑏𝑚𝑘 =∑ 𝑎𝑗𝑙𝑏𝑙𝑘
𝑚

𝑙=1
 

for 𝑗 = 1,2, … , 𝑛, 𝑘 = 1,2, … , 𝑝 [3, pp. 55-56, 90]. 
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More generally, the matrix product is given by 

𝐀
(𝑛×𝑚)

⋅ 𝐁
(𝑚×𝑝)

 

=

[
 
 
 
 
 
𝑎11 𝑎12 ⋯ 𝑎1𝑚
𝑎21 𝑎22 ⋯ 𝑎2𝑚
⋮ ⋮ ⋮
𝑎𝑗1 𝑎𝑗2 ⋯ 𝑎𝑗𝑚
⋮ ⋮ ⋮
𝑎𝑛1 𝑎𝑛2 ⋯ 𝑎𝑛𝑚]

 
 
 
 
 

(𝑛×𝑚)

⋅

[
 
 
 
 
𝑏11 𝑏12 ⋯ 𝑏1𝑘 ⋯ 𝑏1𝑝
𝑏21 𝑏22 ⋯ 𝑏2𝑘 ⋯ 𝑏2𝑝
⋮ ⋮ ⋮ ⋮

𝑏𝑚1 𝑏𝑚2 ⋯ 𝑏𝑚𝑘 ⋯ 𝑏𝑚𝑝]
 
 
 
 

(𝑚×𝑝)

 

=

[
 
 
 
 
 
 
 
 
 
 
 

Column 1 Column  2 ⋯ Column  𝑘 ⋯ Column  𝑝

row 1 ∑ 𝑎1𝑙𝑏𝑙1
𝑚

𝑙=1
∑ 𝑎1𝑙𝑏𝑙2

𝑚

𝑙=1
⋯ ∑ 𝑎1𝑙𝑏𝑙𝑘

𝑚

𝑙=1
⋯ ∑ 𝑎1𝑙𝑏𝑙𝑝

𝑚

𝑙=1

row 2 ∑ 𝑎2𝑙𝑏𝑙1
𝑚

𝑙=1
∑ 𝑎2𝑙𝑏𝑙2

𝑚

𝑙=1
⋯ ∑ 𝑎2𝑙𝑏𝑙𝑘

𝑚

𝑙=1
⋯ ∑ 𝑎2𝑙𝑏𝑙𝑝

𝑚

𝑙=1

⋮ ⋮ ⋮ ⋮ ⋮

row 𝑗 ∑ 𝑎𝑗𝑙𝑏𝑙1
𝑚

𝑙=1
∑ 𝑎𝑗𝑙𝑏𝑙2

𝑚

𝑙=1
⋯ ∑ 𝑎𝑗𝑙𝑏𝑙𝑘

𝑚

𝑙=1
⋯ ∑ 𝑎𝑗𝑙𝑏𝑙𝑝

𝑚

𝑙=1

⋮ ⋮ ⋮ ⋮ ⋮

row 𝑛 ∑ 𝑎𝑛𝑙𝑏𝑙1
𝑚

𝑙=1
∑ 𝑎𝑛𝑙𝑏𝑙2

𝑚

𝑙=1
⋯ ∑ 𝑎𝑛𝑙𝑏𝑙𝑘

𝑚

𝑙=1
⋯ ∑ 𝑎𝑛𝑙𝑏𝑙𝑝

𝑚

𝑙=1 ]
 
 
 
 
 
 
 
 
 
 
 

(𝑛×𝑝)

 

=

[
 
 
 
 
 
𝑐11 𝑐12 ⋯ 𝑐1𝑘 ⋯ 𝑐1𝑝
𝑐21 𝑐22 ⋯ 𝑐2𝑘 ⋯ 𝑐2𝑝
⋮ ⋮ ⋮ ⋮
𝑐𝑗1 𝑐𝑗2 ⋯ 𝑐𝑗𝑘 ⋯ 𝑐𝑗𝑝
⋮ ⋮ ⋮ ⋮
𝑐𝑛1 𝑐𝑛2 ⋯ 𝑐𝑛𝑘 ⋯ 𝑐𝑛𝑝]

 
 
 
 
 

(𝑛×𝑝)

= 𝐂
(𝑛×𝑝)

 

Note that for the product 𝐀
(𝑛×𝑚)

⋅ 𝐁
(𝑚×𝑝)

 to be defined, the column dimension of 

𝐀
(𝑛×𝑚)

 must equal the row dimension of 𝐁
(𝑚×𝑝)

. If that is so, then the row dimension of 

𝐀
(𝑛×𝑚)

⋅ 𝐁
(𝑚×𝑝)

 equals the row dimension of 𝐀
(𝑛×𝑚)

, and the column dimension of 𝐀
(𝑛×𝑚)

⋅

𝐁
(𝑚×𝑝)

 equals the column dimension of 𝐁
(𝑚×𝑝)

 [3, pp. 55-56, 90]. 
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Result 2.2.1. For all matrices 𝐀, 𝐁, and 𝐂 (of equal dimension) and scalars 𝑐 and 𝑑, 

the following holds: 

(𝐚) 𝐀 − 𝐁 = 𝐀 + (−1)𝐁  

(𝐛) (𝐀 + 𝐁) + 𝐂 = 𝐀 + (𝐁 + 𝐂) 

(𝐜) 𝐀 + 𝐁 = 𝐁 + 𝐀 

(𝐝) 𝑐(𝐀 + 𝐁) = 𝑐𝐀 + 𝑐𝐁 

(𝐞) (𝑐 + 𝑑)𝐀 = 𝑐𝐀 + 𝑑𝐀 

(𝐟) (𝐀 + 𝐁)′ = 𝐀′ + 𝐁′ 

(𝐠) (𝑐𝑑)𝐀 = 𝑐(𝑑𝐀) 

(𝐡) (𝑐𝐀)′ = 𝑐𝐀′ (Note 𝑐′ = 𝑐)  

[3, p. 89]. 

Result 2.2.2. For all matrices 𝐀, 𝐁, and 𝑪 (of dimensions such that the indicated 

products are defined) and a scalar 𝑐, 

(𝐚) 𝑐(𝐀𝐁) = (𝑐𝐀)𝐁  

(𝐛) 𝐀(𝐁𝐂) = (𝐀𝐁)𝐂  

(𝐜) 𝐀(𝐁 + 𝐂) = 𝐀𝐁 + 𝐀𝐂 

(𝐝) (𝐁 + 𝐂)𝐀 = 𝐁𝐀 + 𝐂𝐀 

(𝐞) (𝐀𝐁)′ = 𝐁′𝐀′ 

[3, p. 91]. 
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Definition 2.2.6 (Zero Matrix). 𝟎

(𝑛×𝑝)
 matrix is a rectangular array of 0′𝑠, of arbitrary 

dimension 𝑛 × 𝑝. It is written as 

𝟎
(𝑛×𝑝)

=

[
 
 
 
011 012 ⋯ 01𝑝
021 022 ⋯ 02𝑝
⋮ ⋮ ⋱ ⋮
0𝑛1 0𝑛2 ⋯ 0𝑛𝑝]

 
 
 

(𝑛×𝑝)

= [

0 0 ⋯ 0
0 0 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 0

]

(𝑛×𝑝)

 

Note that the notation for the 𝟎
(𝑝×1)

 vector is similar; but the dimension makes 

the context clear. 

Definition 2.2.7 (Square Matrix). If an arbitrary matrix 𝐀
(𝑝×𝑝)

 has the same number of 

rows and columns, say dimension 𝑝 × 𝑝, then 𝐀
(𝑝×𝑝)

 is called a square matrix. It is 

written as 

𝐀
(𝑝×𝑝)

= [

𝑎11 𝑎12 ⋯ 𝑎1𝑝
𝑎21 𝑎22 ⋯ 𝑎2𝑝
⋮ ⋮ ⋱ ⋮
𝑎𝑝1 𝑎𝑝2 ⋯ 𝑎𝑝𝑝

]

(𝑝×𝑝)

= {𝑎𝑖𝑘} 

for 𝑖 = 1,2, … , 𝑝 rows and 𝑘 = 1,2, … , 𝑝 columns [3, p. 90]. 

Definition 2.2.8 (Symmetrix Matrix). Let 𝐀
(𝑝×𝑝)

= {𝑎𝑖𝑘} be a 𝑝 × 𝑝 (square) matrix. 

Then 𝐀
(𝑝×𝑝)

 is said to be a symmetric matrix if 𝐀
(𝑝×𝑝)

= 𝐀′
(𝑝×𝑝)

. That is, 𝐀
(𝑝×𝑝)

 is symmetric 

if 𝑎𝑖𝑘 = 𝑎𝑘𝑖 ∀ 𝑖 = 1,2, … , 𝑝, 𝑘 = 1,2, … , 𝑝 [3, p. 90]. 
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Definition 2.2.9 (Determinant). The determinant of a square 𝑝 × 𝑝 matrix 𝐀

(𝑝×𝑝)
, 

denoted by |𝐀|, is the scalar 

|𝐀| = 𝑎11                                               if 𝑝 = 1 

|𝐀| =∑ 𝑎1𝑘|𝐀1𝑘|(−1)
1+𝑘         if 𝑝 > 1

𝑝

𝑘=1
 

where 𝐀1𝑘 is the (𝑝 − 1) × (𝑝 − 1) matrix obtained by deleting the first row and 𝑘𝑡ℎ 

column of 𝐀
(𝑝×𝑝)

. Also, 

|𝐀| =∑ 𝑎𝑖𝑘|𝐀𝑖𝑘|(−1)
𝑖+𝑘

𝑝

𝑘=1
         if 𝑝 > 1 

with the 𝑖𝑡ℎ row in place of the first row [3, p. 93]. 

Definition 2.2.10 (Identity Matrix). The 𝑝 × 𝑝 identity matrix, denoted by 𝐈
(𝑝×𝑝)

, is the 

square matrix with ones on the main (𝑁𝑊 − 𝑆𝐸) diagonal and zeros elsewhere. It is 

written as 

𝐈
(𝑝×𝑝)

= [

111 0 ⋯ 0
0 122 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 1𝑝𝑝

]

(𝑝×𝑝)

= [

1 0 ⋯ 0
0 1 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 1

]

(𝑝×𝑝)

 

[3, p. 90]. 

The matrix 𝐈
(𝑝×𝑝)

 acts like 1 in ordinary multiplication (1 ⋅ 𝑎 = 𝑎 ⋅ 1 = 𝑎) 

𝐈
(𝑝×𝑝)

⋅ 𝐀
(𝑝×𝑝)

= 𝐀
(𝑝×𝑝)

⋅ 𝐈
(𝑝×𝑝)

= 𝐀
(𝑝×𝑝)

 for any 𝐀
(𝑝×𝑝)

 

so it is called the identity matrix [3, p. 58]. 
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Remark 2.2.1. There are several important differences between the algebra of 

matrices and the algebra of real numbers. Two of these differences are as follows: 

1. Matrix multiplication is, in general, not commutative. That is, in general, 

𝐀
(𝑝×𝑝)

⋅ 𝐁
(𝑝×𝑝)

≠ 𝐁
(𝑝×𝑝)

⋅ 𝐀
(𝑝×𝑝)

 

2. Let 𝟎
(𝑛×𝑝)

 denote the zero matrix, that is, the matrix with zero for every 

element. In the algebra of real numbers, if the product of two numbers, 𝑎𝑏, is 

zero, then 𝑎 = 0 or 𝑏 = 0. In matrix algebra, however, the product of two 

nonzero matrices may be the zero matrix. Hence,  

𝐀
(𝑛×𝑚)

⋅ 𝐁
(𝑚×𝑝)

= 𝟎
(𝑛×𝑝)

 

does not imply that 𝐀
(𝑛×𝑚)

= 𝟎
(𝑛×𝑚)

or 𝐁
(𝑚×𝑝)

= 𝟎
(𝑚×𝑝)

. It is true, however, that if 

either 

𝐀
(𝑛×𝑚)

= 𝟎
(𝑛×𝑚)

or 𝐁
(𝑚×𝑝)

= 𝟎
(𝑚×𝑝)

, then 𝐀
(𝑛×𝑚)

⋅ 𝐁
(𝑚×𝑝)

= 𝟎
(𝑛×𝑝)

 

 [3, pp. 58, 92]. 

Definition 2.2.11 (Row Rank and Column Rank). The row rank of a matrix is the 

maximum number of linearly independent rows, considered as vectors. The column 

rank of a matrix is the rank of its set of columns, considered as vectors [3, p. 94]. 

Result 2.2.3 (Rank of a Matrix). The row rank and the column rank of a matrix are 

equal. Thus, the rank of a matrix is either the row rank or the column rank [3, p. 94]. 
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Definition 2.2.12 (Nonsingular). A square matrix 𝐀

(𝑝×𝑝)
 is nonsingular if  

𝐀
(𝑝×𝑝)

⋅ 𝐱
(𝑝×1)

= 𝟎
(𝑝×1)

 

implies  

𝐱
(𝑝×1)

= 𝟎
(𝑝×1)

. 

If a matrix fails to be nonsingular, it is called singular. Equivalently, a square matrix 

is nonsingular if its rank is equal to the number of rows (or columns) it has. 

Note that 𝐀
(𝑝×𝑝)

⋅ 𝐱
(𝑝×1)

= 𝑥1𝐚1
(𝑝×1)

+ 𝑥2𝐚2
(𝑝×1)

+⋯+ 𝑥𝑘𝐚𝑘
(𝑝×1)

+⋯+ 𝑥𝑝𝐚𝑝
(𝑝×1)

, where 𝑥𝑘𝐚𝑘
(𝑝×1)

 is 

the 𝑘th column of 𝐀
(𝑝×𝑝)

, so that the condition of nonsingularity is just the statement 

that the columns of 𝐀
(𝑝×𝑝)

 are linearly independent [3, p. 95]. 

Definition 2.2.13 (Inverse). Let 𝐀
(𝑝×𝑝)

 be a nonsingular square matrix of dimension 

𝑝 × 𝑝. Then there is a unique 𝑝 × 𝑝 matrix 𝐁
(𝑝×𝑝)

 such that  

𝐀
(𝑝×𝑝)

⋅ 𝐁
(𝑝×𝑝)

= 𝐁
(𝑝×𝑝)

⋅ 𝐀
(𝑝×𝑝)

= 𝐈
(𝑝×𝑝)

 

where 𝐈
(𝑝×𝑝)

 is the 𝑝 × 𝑝 identity matrix. Then 𝐁
(𝑝×𝑝)

 is called the inverse of 𝐀
(𝑝×𝑝)

 and 

is denoted by 𝐀−1
(𝑝×𝑝)

 [3, p. 95]. 
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Result 2.2.4. For a square matrix 𝐀

(𝑝×𝑝)
 of dimension 𝑝 × 𝑝, the following are 

equivalent: 

(a) 𝐀
(𝑝×𝑝)

⋅ 𝐱
(𝑝×1)

= 𝟎
(𝑝×1)

 implies 𝐱
(𝑝×1)

= 𝟎
(𝑝×1)

 ( 𝐀
(𝑝×𝑝)

 𝑖𝑠 𝑛𝑜𝑛𝑠𝑖𝑛𝑔𝑢𝑙𝑎𝑟). 

(b) |𝐀| ≠ 0 where (| ⋅ | 𝑑𝑒𝑛𝑜𝑡𝑒𝑠 𝑡ℎ𝑒 𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑛𝑡 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟).  

(c) There exists a matrix 𝐀−1
(𝑝×𝑝)

 such that 𝐀
(𝑝×𝑝)

⋅ 𝐀−1
(𝑝×𝑝)

= 𝐀−1
(𝑝×𝑝)

⋅ 𝐀
(𝑝×𝑝)

= 𝐈
(𝑝×𝑝)

. 

[3, p. 96]. 

Result 2.2.5. Let 𝐀
(𝑝×𝑝)

 and 𝐁
(𝑝×𝑝)

 be 𝑝 × 𝑝 square matrices, and let the indicated 

inverses exist. Then the following hold: 

(a) (𝐀−1)
(𝑝×𝑝)

′ = (𝐀′)
(𝑝×𝑝)

−1 

(b) (𝐀𝐁)
(𝑝×𝑝)

−1 = 𝐁−𝟏
(𝑝×𝑝)

⋅ 𝐀−1
(𝑝×𝑝)

 

[3, p. 96]. 

Definition 2.2.14 (Trace). Let 𝐀
(𝑝×𝑝)

= {𝑎𝑖𝑘} be a 𝑝 × 𝑝 square matrix. The trace of the 

matrix 𝐀
(𝑝×𝑝)

, written tr(𝐀) is the sum of the diagonal elements; that is,  

tr(𝐀) =∑ 𝑎𝑖𝑖
𝑝

𝑖=1
 

[3, p. 96]. 
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Result 2.2.6. Let 𝐀

(𝑝×𝑝)
 and 𝐁

(𝑝×𝑝)
 be 𝑝 × 𝑝 square matrices, 𝐁−1

(𝑝×𝑝)
 exist, and 𝑐 be a 

scalar. 

(𝐚) tr(𝑐𝐀) = 𝑐tr(𝐀) 

(𝐛) tr(𝐀𝐁) = tr(𝐁𝐀) 

(𝐜) tr(𝐁−1𝐀𝐁) = tr(𝐀) 

[3, p. 97]. 

Definition 2.2.15 (Orthogonal). A square matrix 𝐀
(𝑝×𝑝)

 is said to be orthogonal if its 

rows  

𝐚𝑟
(𝑝×1)

= [

𝑎𝑟1
𝑎𝑟2
⋮
𝑎𝑟𝑝

] 

for 𝑟 = 1,2, … , 𝑝, considered as vectors, are mutually perpendicular, 

𝐚𝑟
′

(1×𝑝)
⋅ 𝐚𝑠
(𝑝×1)

= 0 𝑓𝑜𝑟 𝑟 ≠ 𝑠 

and have unit lengths 

𝐚𝑟
′

(1×𝑝)
⋅ 𝐚𝑟
(𝑝×1)

= 1 

that is, 

𝐀
(𝑝×𝑝)

⋅ 𝐀′
(𝑝×𝑝)

= 𝐈
(𝑝×𝑝)

, 

and its columns 

𝐚𝑖
(𝑝×1)

= [

𝑎1𝑖
𝑎2𝑖
⋮
𝑎𝑝𝑖

] 

for 𝑖 = 1,2, … , 𝑝, considered as vectors, are mutually perpendicular, 
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𝐚𝑖
′

(1×𝑝)
⋅ 𝐚𝑘
(𝑝×1)

= 0 𝑓𝑜𝑟 𝑖 ≠ 𝑘 

and have unit lengths 

𝐚𝑖
′

(1×𝑝)
⋅ 𝐚𝑖
(𝑝×1)

= 1 

that is, 

𝐀′
(𝑝×𝑝)

⋅ 𝐀
(𝑝×𝑝)

= 𝐈
(𝑝×𝑝)

 

[3, pp. 59, 97]. 

Result 2.2.7. A square matrix 𝐀
(𝑝×𝑝)

 is orthogonal if and only if 𝐀−1
(𝑝×𝑝)

= 𝐀′
(𝑝×𝑝)

. For an 

orthogonal matrix, 𝐀
(𝑝×𝑝)

⋅ 𝐀′
(𝑝×𝑝)

= 𝐀′
(𝑝×𝑝)

⋅ 𝐀
(𝑝×𝑝)

= 𝐈
(𝑝×𝑝)

, so, the rows and columns are 

also mutually perpendicular [3, pp. 59, 97]. 
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Definition 2.2.16 (Eigenvalues). Let 𝐀

(𝑝×𝑝)
 be a 𝑝 × 𝑝 square matrix and 𝐈

(𝑝×𝑝)
 be the 

𝑝 × 𝑝 identity matrix. Then the scalars 𝜆1, 𝜆2, … , 𝜆𝑝 satisfying the polynomial 

equation |𝐀 − 𝜆𝐈| = 0 are called the eigenvalues (or characteristic roots) of a matrix 

𝐀
(𝑝×𝑝)

. The equation |𝐀 − 𝜆𝐈| = 0 (as a function of 𝜆) is called the characteristic 

equation [3, p. 97]. 

Definition 2.2.17 (Eigenvector). Let 𝐀
(𝑝×𝑝)

 be a square matrix of dimension 𝑝 × 𝑝 and 

let 𝜆 be an eigenvalue of 𝐀
(𝑝×𝑝)

 . If 𝐱
(𝑝×1)

 is a nonzero vector ( 𝐱
(𝑝×1)

≠ 𝟎
(𝑝×1)

) such that 

𝐀
(𝑝×𝑝)

⋅ 𝐱
(𝑝×1)

= 𝜆 ⋅ 𝐱
(𝑝×1)

  

then 𝐱
(𝑝×1)

 is said to be an eigenvector (characteristic vector) of the matrix 𝐀
(𝑝×𝑝)

 

associated with the eigenvalue 𝜆 [3, p. 98]. 

 An equivalent condition for 𝜆 to be a solution of the eigenvalue-eigenvector 

equation is |𝐀 − 𝜆𝐈| = 0. This follows because the statement that 𝐀
(𝑝×𝑝)

⋅ 𝐱
(𝑝×1)

= 𝜆𝐱
(𝑝×1)

 

for some 𝜆 and 𝐱
(𝑝×1)

≠ 𝟎
(𝑝×1)

 implies that 

𝟎
(𝑝×1)

= (𝐀 − 𝜆𝐈)
(𝑝×𝑝)

⋅ 𝐱
(𝑝×1)

= 𝑥1 ⋅ col1(𝐀 − 𝜆𝐈)
(𝑝×1)

+⋯+ 𝑥𝑝 ⋅ col𝑝(𝐀 − 𝜆𝐈)
(𝑝×1)

 

That is, the columns of (𝐀 − 𝜆𝐈)
(𝑝×𝑝)

 are linearly dependent so, by Result 2.2.4. (b), 

|𝐀 − 𝜆𝐈| = 0, as asserted [3, p. 98]. 
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Ordinarily, we normalize 𝐱
(𝑝×1)

 so that it has length unity. It is convenient to 

denote normalized eigenvectors by  

𝐞
(𝑝×1)

= 𝐿𝐱
−1 ⋅ 𝐱

(𝑝×1)
=

𝐱
(𝑝×1)

 

𝐿𝐱
(1×1)

=
𝐱

(𝑝×1)
 

√ 𝐱′
(1×𝑛)

⋅ 𝐱
(𝑛×1)

 

and we do so in what follows [3, pp. 60, 99]. 

Definition 2.2.18 (Eigenvalue-Eigenvector Pairs). Let 𝐀
(𝑝×𝑝)

 be a 𝑝 × 𝑝 square 

symmetric matrix. Then 𝐀
(𝑝×𝑝)

 has 𝑝 eigenvalue-eigenvector pairs-namely, 

(𝜆1, 𝐞1
(𝑝×1)

) , (𝜆2, 𝐞2
(𝑝×1)

) ,… , (𝜆𝑖, 𝐞𝑖
(𝑝×1)

) ,… , (𝜆𝑝, 𝐞𝑝
(𝑝×1)

). 

Let the normalized eigenvectors be the columns of another matrix  

𝐄
(𝑝×𝑝)

= [

𝑒11 𝑒12 ⋯ 𝑒1𝑝
𝑒21 𝑒22 ⋯ 𝑒2𝑝
⋮ ⋮ ⋱ ⋮
𝑒𝑝1 𝑒𝑝2 ⋯ 𝑒𝑝𝑝

]

(𝑝×𝑝)

 

where the columns of the 𝐄
(𝑝×𝑝)

 are mutually perpendicular  

𝐞𝑖
′

(1×𝑝)
⋅ 𝐞𝑘
(𝑝×1)

= 0 for 𝑖 ≠ 𝑘 

and have unit lengths 

𝐞𝑖
′

(1×𝑝)
⋅ 𝐞𝑖
(𝑝×1)

= 1 

that is, 

𝐄′
(𝑝×𝑝)

⋅ 𝐄
(𝑝×𝑝)

= 𝐈
(𝑝×𝑝)
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And the rows of 𝐄

(𝑝×𝑝)
 are mutually perpendicular  

𝐞𝑟
′

(1×𝑝)
⋅ 𝐞𝑠
(𝑝×1)

= 0 for 𝑟 ≠ 𝑠 

and have unit lengths 

𝐞𝑟
′

(1×𝑝)
⋅ 𝐞𝑟
(𝑝×1)

= 1 

that is, 

𝐄
(𝑝×𝑝)

⋅ 𝐄′
(𝑝×𝑝)

= 𝐈
(𝑝×𝑝)

 

Thus, 𝐄
(𝑝×𝑝)

 is orthogonal making  

𝐄
(𝑝×𝑝)

⋅ 𝐄′
(𝑝×𝑝)

= 𝐄′
(𝑝×𝑝)

⋅ 𝐄
(𝑝×𝑝)

= 𝐈
(𝑝×𝑝)

 

and  

𝐄−1
(𝑝×𝑝)

= 𝐄′
(𝑝×𝑝)

 

Let us demonstrate,  

𝐄
(𝑝×𝑝)

⋅ 𝐄′
(𝑝×𝑝)

 

                        = [

𝑒11 𝑒12 ⋯ 𝑒1𝑝
𝑒21 𝑒22 ⋯ 𝑒2𝑝
⋮ ⋮ ⋱ ⋮
𝑒𝑝1 𝑒𝑝2 ⋯ 𝑒𝑝𝑝

]

(𝑝×𝑝)

⋅ [

𝑒11 𝑒21 ⋯ 𝑒𝑝1
𝑒12 𝑒22 ⋯ 𝑒𝑝2
⋮ ⋮ ⋱ ⋮
𝑒1𝑝 𝑒2𝑝 ⋯ 𝑒𝑝𝑝

]

(𝑝×𝑝)

 

                        =

[
 
 
 
𝐞1
′ 𝐞1 = 1 𝐞1

′ 𝐞2 = 0 ⋯ 𝐞1
′ 𝐞𝑝 = 0

𝐞2
′ 𝐞1 = 0 𝐞2

′ 𝐞2 = 1 ⋯ 𝐞2
′ 𝐞𝑝 = 0

⋮ ⋮ ⋱ ⋮
𝐞𝑝
′ 𝐞1 = 0 𝐞𝑝

′ 𝐞2 = 0 ⋯ 𝐞𝑝
′ 𝐞𝑝 = 1]

 
 
 

(𝑝×𝑝)

, {rows perpendicular} 
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                        = [

11 0 ⋯ 0
0 12 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 1𝑝

]

(𝑝×𝑝)

 

                        = [

1 0 ⋯ 0
0 1 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 1

]

(𝑝×𝑝)

 

                        = 𝐈
(𝑝×𝑝)

 

and  

𝐄′
(𝑝×𝑝)

⋅ 𝐄
(𝑝×𝑝)

 

                         = [

𝑒11 𝑒21 ⋯ 𝑒𝑝1
𝑒12 𝑒22 ⋯ 𝑒𝑝2
⋮ ⋮ ⋱ ⋮
𝑒1𝑝 𝑒2𝑝 ⋯ 𝑒𝑝𝑝

]

(𝑝×𝑝)

[

𝑒11 𝑒12 ⋯ 𝑒1𝑝
𝑒21 𝑒22 ⋯ 𝑒2𝑝
⋮ ⋮ ⋱ ⋮
𝑒𝑝1 𝑒𝑝2 ⋯ 𝑒𝑝𝑝

]

(𝑝×𝑝)

 

                         =

[
 
 
 
𝐞1
′ 𝐞1 = 1 𝐞1

′ 𝐞2 = 0 ⋯ 𝐞1
′ 𝐞𝑝 = 0

𝐞2
′ 𝐞1 = 0 𝐞2

′ 𝐞2 = 1 ⋯ 𝐞2
′ 𝐞𝑝 = 0

⋮ ⋮ ⋱ ⋮
𝐞𝑝
′ 𝐞1 = 0 𝐞𝑝

′ 𝐞2 = 0 ⋯ 𝐞𝑝
′ 𝐞𝑝 = 1]

 
 
 

(𝑝×𝑝)

, {columns perpendicular} 

                         = [

11 0 ⋯ 0
0 12 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 1𝑝

]

(𝑝×𝑝)

 

                         = [

1 0 ⋯ 0
0 1 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 1

]

(𝑝×𝑝)

 

                         = 𝐈
(𝑝×𝑝)

 ∎ 
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Note that the eigenvectors are unique unless two or more eigenvalues are 

equal. Clearly, 𝐞1
(𝑝×1)

, 𝐞2
(𝑝×1)

, … , 𝐞𝑖
(𝑝×1)

, … , 𝐞𝑝
(𝑝×1)

 are the (normalized) solutions of the 

equations 𝐀
(𝑝×𝑝)

⋅ 𝐞𝑖
(𝑝×1)

= 𝜆𝑖 ⋅ 𝐞𝑖
(𝑝×1)

 for 𝑖 = 1,2, … , 𝑝 [3, pp. 60-61, 65]. 

Definition 2.2.19 (Quadratic Form). A quadratic form 𝑄(𝐱)
(1×1)

 in the 𝑝 variables 

𝑥1, 𝑥2, … , 𝑥𝑝 is 𝑄(𝐱) 
(1×1)

= 𝐱′
(1×𝑝)

⋅ 𝐀
(𝑝×𝑝)

⋅ 𝐱
(𝑝×1)

, where 𝐱′
(1×𝑝)

= [𝑥1, 𝑥2, … , 𝑥𝑝]
(1×𝑝)

 and 𝐀
(𝑝×𝑝)

 is a 

𝑝 × 𝑝 symmetric matrix. 

Note that a quadratic form can be written as 

𝑄(𝐱) 
(1×1)

=∑ ∑ 𝑎𝑖𝑘𝑥𝑖𝑥𝑘
𝑝

𝑘=1

𝑝

𝑖=1
 

Because 𝐱′
(1×𝑝)

⋅ 𝐀
(𝑝×𝑝)

⋅ 𝐱
(𝑝×1)

 has only squared terms 𝑥𝑖
2 and product terms 𝑥𝑖𝑥𝑘, it is 

called a quadratic form [3, pp. 62, 99]. 

 If ∃  𝐱
(𝑝×1)

≠ 𝟎
(𝑝×1)

 and a 𝑝 × 𝑝 symmetric matrix 𝐀
(𝑝×𝑝)

 where 

0
(1×1)

= 𝐱′
(1×𝑝)

⋅ 𝐀
(𝑝×𝑝)

⋅ 𝐱
(𝑝×1)

 

then the matrix 𝐀
(𝑝×𝑝)

 and the quadratic form are said to be positive semi-definite. If 

0
(1×1)

< 𝐱′
(1×𝑝)

⋅ 𝐀
(𝑝×𝑝)

⋅ 𝐱
(𝑝×1)

 

∀ 𝐱
(𝑝×1)

≠ 𝟎
(𝑝×1)

 then the 𝑝 × 𝑝 symmetric matrix 𝐀
(𝑝×𝑝)

 and the quadratic form are 

said to be positive definite [3, p. 62].  
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In addition, when 𝐀
(𝑝×𝑝)

 is positive definite the quadratic form can be 

interpreted as a squared distance [3, p. 64]. If the quadratic form and the matrix 

𝐀
(𝑝×𝑝)

 are positive semi-definite or positive definite they are said to be nonnegative 

definite [3, p. 62]. 

Results involving quadratic forms and symmetric matrices are, in many 

cases, a direct consequence of an expansion for symmetric matrices known as the 

spectral decomposition. That is, any symmetric square matrix can be reconstructed 

from its eigenvalues and eigenvectors. The particular expression reveals the relative 

importance of each pair according to the relative size of the eigenvalue and the 

direction of the eigenvector [3, pp. 61, 99]. 

Result 2.2.8 (Spectral Decomposition). The Spectral Decomposition. Let 𝐀
(𝑝×𝑝)

 be a 

𝑝 × 𝑝 symmetric matrix. Then 𝐀
(𝑝×𝑝)

 can be expressed in terms of its 𝑝 eigenvalue-

eigenvector pairs (𝜆𝑖, 𝐞𝑖
(𝑝×1)

) as 

𝐀
(𝑝×𝑝)

=∑ 𝜆𝑖 ⋅ 𝐞𝑖
(𝑝×1)

⋅ 𝐞𝑖
′

(1×𝑝)

𝑝

𝑖=1
= 𝜆1 ⋅ 𝐞1

(𝑝×1)
⋅ 𝐞1

′

(1×𝑝)
+⋯+ 𝜆𝑝 ⋅ 𝐞𝑝

(𝑝×1)

⋅ 𝐞𝑝
′

(1×𝑝)

 

where 𝜆1, 𝜆1, … , 𝜆𝑝 are the eigenvalues of 𝐀
(𝑝×𝑝)

 and 𝐞1
(𝑝×1)

, 𝐞2
(𝑝×1)

, … , 𝐞𝑝
(𝑝×1)

 are the 

associated normalized eigenvectors [3, pp. 61, 100]. 
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Using the spectral decomposition, we can easily show that a 𝑝 × 𝑝 symmetric 

matrix 𝐀
(𝑝×𝑝)

 is a positive definite matrix if and only if every eigenvalue of 𝐀
(𝑝×𝑝)

 is 

positive [𝜆𝑖 > 0 ∀ 𝑖]. Similarly, 𝐀
(𝑝×𝑝)

 is a positive semi-definite matrix if and only if 

∃ 𝜆𝑖 = 0 and the other eigenvalues are positive [5, pp. 212, 549]. 

The spectral decomposition allows us to express the inverse of a square 

matrix in terms of its eigenvalues and eigenvectors, and this leads to a useful 

square-root matrix. 

Let 𝐀
(𝑝×𝑝)

 be a 𝑝 × 𝑝 positive definite matrix with the spectral decomposition 

𝐀
(𝑝×𝑝)

=∑ 𝜆𝑖 ⋅ 𝐞𝑖
(𝑝×1)

⋅ 𝐞𝑖
′

(1×𝑝)

𝑝

𝑖=1
. 

Let 𝐄
(𝑝×𝑝)

be a 𝑝 × 𝑝 orthogonal matrix with columns equal to the normalized 

eigenvectors of 𝐀
(𝑝×𝑝)

, 

𝐄
(𝑝×𝑝)

 = [

𝑒11 𝑒12 ⋯ 𝑒1𝑝
𝑒21 𝑒22 ⋯ 𝑒2𝑝
⋮ ⋮ ⋱ ⋮
𝑒𝑝1 𝑒𝑝2 ⋯ 𝑒𝑝𝑝

]

(𝑝×𝑝)

 

 let and 𝚲
(𝑝×𝑝)

be the the diagonal matrix of eigenvalues of 𝐀
(𝑝×𝑝)

, 

𝚲
(𝑝×𝑝)

= [

𝜆1 0 ⋯ 0
0 𝜆2 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝜆𝑝

]

(𝑝×𝑝)

 

with inverse,  
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𝚲−1
(𝑝×𝑝)

=

[
 
 
 
 
 
 
 
1

𝜆1
0 ⋯ 0

0
1

𝜆2
⋯ 0

⋮ ⋮ ⋱ ⋮

0 0 ⋯
1

𝜆𝑝]
 
 
 
 
 
 
 

(𝑝×𝑝)

 

Then  

𝐀
(𝑝×𝑝)

=∑ 𝜆𝑖 ⋅ 𝐞𝑖
(𝑝×1)

⋅ 𝐞𝑖
′

(1×𝑝)

𝑝

𝑖=1
= 𝐄

(𝑝×𝑝)
⋅ 𝚲
(𝑝×𝑝)

⋅ 𝐄′
(𝑝×𝑝)

 

With inverse 

𝐀−1
(𝑝×𝑝)

=∑
1

𝜆𝑖
⋅ 𝐞𝑖
(𝑝×1)

⋅ 𝐞𝑖
′

(1×𝑝)

𝑝

𝑖=1

= 𝐄
(𝑝×𝑝)

⋅ 𝚲−1
(𝑝×𝑝)

⋅ 𝐄′
(𝑝×𝑝)

 

since, 

𝐀−1
(𝑝×𝑝)

⋅ 𝐀
(𝑝×𝑝)

 

                       = [ 𝐄
(𝑝×𝑝)

⋅ 𝚲−1
(𝑝×𝑝)

⋅ 𝐄′
(𝑝×𝑝)

] [ 𝐄
(𝑝×𝑝)

⋅ 𝚲
(𝑝×𝑝)

⋅ 𝐄′
(𝑝×𝑝)

] 

                       = 𝐄
(𝑝×𝑝)

⋅ 𝚲−1
(𝑝×𝑝)

⋅ [ 𝐄′
(𝑝×𝑝)

⋅ 𝐄
(𝑝×𝑝)

] ⋅ 𝚲
(𝑝×𝑝)

⋅ 𝐄′
(𝑝×𝑝)

, {𝐑𝐞𝐬𝐮𝐥𝐭 𝟐. 𝟐. 𝟐 (𝐛)} 

                       = 𝐄
(𝑝×𝑝)

⋅ 𝚲−1
(𝑝×𝑝)

⋅ 𝐈
(𝑝×𝑝)

⋅ 𝚲
(𝑝×𝑝)

⋅ 𝐄′
(𝑝×𝑝)

, {𝐄 is orthogonal, 𝐄−1 = 𝐄′} 

                       = 𝐄
(𝑝×𝑝)

⋅ 𝚲−1
(𝑝×𝑝)

⋅ 𝚲
(𝑝×𝑝)

⋅ 𝐄′
(𝑝×𝑝)

 

                       = 𝐄
(𝑝×𝑝)

⋅ 𝐈
(𝑝×𝑝)

⋅ 𝐄′
(𝑝×𝑝)

, {𝚲−1 is inverse of 𝚲} 

                      = 𝐄
(𝑝×𝑝)

⋅ 𝐄′
(𝑝×𝑝)

 

                      = 𝐈
(𝑝×𝑝)

, {𝐄 is orthogonal, 𝐄−1 = 𝐄′} 
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and 

𝐀
(𝑝×𝑝)

⋅ 𝐀−1
(𝑝×𝑝)

 

                       = [ 𝐄
(𝑝×𝑝)

⋅ 𝚲
(𝑝×𝑝)

⋅ 𝐄′
(𝑝×𝑝)

] [ 𝐄
(𝑝×𝑝)

⋅ 𝚲−1
(𝑝×𝑝)

⋅ 𝐄′
(𝑝×𝑝)

] 

                       = 𝐄
(𝑝×𝑝)

⋅ 𝚲
(𝑝×𝑝)

⋅ [ 𝐄′
(𝑝×𝑝)

⋅ 𝐄
(𝑝×𝑝)

] ⋅ 𝚲−1
(𝑝×𝑝)

⋅ 𝐄′
(𝑝×𝑝)

, {𝐑𝐞𝐬𝐮𝐥𝐭 𝟐. 𝟐. 𝟐 (𝐛)} 

                       = 𝐄
(𝑝×𝑝)

⋅ 𝚲
(𝑝×𝑝)

⋅ 𝐈
(𝑝×𝑝)

⋅ 𝚲−1
(𝑝×𝑝)

⋅ 𝐄′
(𝑝×𝑝)

, {𝐄 is orthogonal, 𝐄−1 = 𝐄′}  

                       = 𝐄
(𝑝×𝑝)

⋅ 𝚲
(𝑝×𝑝)

⋅ 𝚲−1
(𝑝×𝑝)

⋅ 𝐄′
(𝑝×𝑝)

 

                       = 𝐄
(𝑝×𝑝)

⋅ 𝐈
(𝑝×𝑝)

⋅ 𝐄′
(𝑝×𝑝)

, {𝚲−1 is inverse of 𝚲} 

= 𝐄
(𝑝×𝑝)

⋅ 𝐄′
(𝑝×𝑝)

 

= 𝐈
(𝑝×𝑝)

, {𝐄 is orthogonal, 𝐄−1 = 𝐄′} ∎ 

[3, pp. 65-66]. 

Definition 2.2.20 (Square-Root Matrix). Let 𝚲1 2⁄

(𝑝×𝑝)
 denote the diagonal matrix with 

√𝜆𝑖 as the 𝑖𝑡ℎ diagonal element. Then the square-root matrix, of a positive definite 

matrix 𝐀
(𝑝×𝑝)

 is given by 

𝐀1 2⁄

(𝑝×𝑝)
=∑√𝜆𝑖 ⋅ 𝐞𝑖

(𝑝×1)
⋅ 𝐞𝑖

′

(1×𝑝)

𝑝

𝑖=1

= 𝐄
(𝑝×𝑝)

⋅ 𝚲1 2⁄

(𝑝×𝑝)
⋅ 𝐄′
(𝑝×𝑝)

 

[3, p. 66]. 
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Result 2.2.9. The square-root matrix A1 2⁄

(𝑝×𝑝)
 has the following properties: 

(𝐚) (𝐀1 2⁄

(𝑝×𝑝)
)
′

= 𝐀1 2⁄

(𝑝×𝑝)
, (𝑡ℎ𝑎𝑡 𝑖𝑠, 𝐀1 2⁄  𝑖𝑠 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐) 

(𝐛) 𝐀1 2⁄

(𝑝×𝑝)
⋅ 𝐀1 2⁄

(𝑝×𝑝)
= 𝐀

(𝑝×𝑝)
, {[ 𝐄

(𝑝×𝑝)
⋅ 𝚲1 2⁄

(𝑝×𝑝)
⋅ 𝐄′
(𝑝×𝑝)

] [ 𝐄
(𝑝×𝑝)

⋅ 𝚲1 2⁄

(𝑝×𝑝)
⋅ 𝐄′
(𝑝×𝑝)

]}  

(𝐜) (𝐀1 2⁄

(𝑝×𝑝)
)
−1

= ∑
1

√𝜆𝑖
⋅ 𝐞𝑖
(𝑝×1)

⋅ 𝐞𝑖
′

(1×𝑝)

𝑝
𝑖=1 = 𝐄

(𝑝×𝑝)
⋅ 𝚲−1 2⁄

(𝑝×𝑝)
⋅ 𝐄′
(𝑝×𝑝)

, where 𝚲−1 2⁄

(𝑝×𝑝)
 is a 

diagonal matrix with 1 √𝜆𝑖⁄  as the 𝑖𝑡ℎ diagonal element. 

(𝐝) 𝐀1 2⁄

(𝑝×𝑝)
⋅ 𝐀−1 2⁄

(𝑝×𝑝)
= 𝐀−1 2⁄

(𝑝×𝑝)
⋅ 𝐀1 2⁄

(𝑝×𝑝)
= 𝐈

(𝑝×𝑝)
 (𝑖𝑛𝑣𝑒𝑟𝑠𝑒), and 𝐀−1 2⁄

(𝑝×𝑝)
⋅ 𝐀−1 2⁄

(𝑝×𝑝)
= 𝐀−1

(𝑝×𝑝)
, where 

𝐀−1 2⁄

(𝑝×𝑝)
= (𝐀1 2⁄

(𝑝×𝑝)
)
−1

. 

[3, p. 66]. 

Theorem 2.2.1 (Maximization of Quadratic Forms for Points on the Unit Sphere). 

Let 𝐁
(𝑝×𝑝)

 be a positive definite matrix with eigenvalues 𝜆1 > 𝜆2 > ⋯ > 𝜆𝑝 > 0 and 

associated normalized eigenvectors 𝐞1
(𝑝×1)

, 𝐞2
(𝑝×1)

, … , 𝐞𝑝
(𝑝×1)

. Then 

max
𝐱

(𝑝×1)
≠ 𝟎
(𝑝×1)

𝐱′
(1×𝑝)

⋅ 𝐁
(𝑝×𝑝)

⋅ 𝐱
(𝑝×1)

𝐱′
(1×𝑝)

⋅ 𝐱
(𝑝×1)

= 𝜆1          (𝑎𝑡𝑡𝑎𝑖𝑛𝑒𝑑 𝑤ℎ𝑒𝑛 𝐱
(𝑝×1)

= 𝐞1
(𝑝×1)

) 

min
𝐱

(𝑝×1)
≠ 𝟎
(𝑝×1)

𝐱′
(1×𝑝)

⋅ 𝐁
(𝑝×𝑝)

⋅ 𝐱
(𝑝×1)

𝐱′
(1×𝑝)

⋅ 𝐱
(𝑝×1)

= 𝜆𝑝          (𝑎𝑡𝑡𝑎𝑖𝑛𝑒𝑑 𝑤ℎ𝑒𝑛 𝐱
(𝑝×1)

= 𝐞𝑝
(𝑝×1)

) 
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Moreover, 

max
𝐱

(𝑝×1)
⊥ 𝐞1
(𝑝×1)

, 𝐞2
(𝑝×1)

,…, 𝐞𝑘
(𝑝×1)

𝐱′
(1×𝑝)

⋅ 𝐁
(𝑝×𝑝)

⋅ 𝐱
(𝑝×1)

𝐱′
(1×𝑝)

⋅ 𝐱
(𝑝×1)

= 𝜆𝑘+1, 

(𝑎𝑡𝑡𝑎𝑖𝑛𝑒𝑑 𝑤ℎ𝑒𝑛 𝐱
(𝑝×1)

= 𝐞𝑘+1
(𝑝×1)

, 𝑘 = 1,2, … , 𝑝 − 1) 

where the symbol ⊥ is read “is perpendicular to.” 

Proof: Let 𝐄
(𝑝×𝑝)

 be the orthogonal matrix whose columns are the eigenvectors 

𝐞1
(𝑝×1)

, 𝐞2
(𝑝×1)

, … , 𝐞𝑝
(𝑝×1)

and 𝚲
(𝑝×𝑝)

 be the diagonal matrix with eigenvalues 𝜆1, 𝜆1, … , 𝜆𝑝 

along the main diagonal. Let 𝐁1 2⁄

(𝑝×𝑝)
= 𝐄

(𝑝×𝑝)
⋅ 𝚲1 2⁄

(𝑝×𝑝)
⋅ 𝐄′
(𝑝×𝑝)

 (square-root matrix) 

and 𝐲
(𝑝×1)

= 𝐄′
(𝑝×𝑝)

⋅ 𝐱
(𝑝×1)

. 

 Consequently, 𝐱
(𝑝×1)

≠ 𝟎
(𝑝×1)

 implies 𝐲
(𝑝×1)

≠ 𝟎
(𝑝×1)

 because 𝐄′
(𝑝×𝑝)

is an 

orthogonal matrix and hence has inverse 𝐄
(𝑝×𝑝)

 { 𝐄′
(𝑝×𝑝)

= 𝐄−1
(𝑝×𝑝)

}. Thus,  

𝐱
(𝑝×1)

= 𝐄
(𝑝×𝑝)

⋅ 𝐲
(𝑝×1)

. But 𝐱
(𝑝×1)

 is a nonzero vector, and 𝟎
(𝑝×1)

≠ 𝐱
(𝑝×1)

= 𝐄
(𝑝×𝑝)

⋅ 𝐲
(𝑝×1)

 

implies that 𝐲
(𝑝×1)

≠ 𝟎
(𝑝×1)

. 
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Thus, 

𝐱′
(1×𝑝)

⋅ 𝐁
(𝑝×𝑝)

⋅ 𝐱
(𝑝×1)

𝐱′
(1×𝑝)

⋅ 𝐱
(𝑝×1)

 

=
𝐱′

(1×𝑝)
⋅ [𝐁1 2⁄

(𝑝×𝑝)
⋅ 𝐁1 2⁄

(𝑝×𝑝)
] ⋅ 𝐱

(𝑝×1)

𝐱′
(1×𝑝)

⋅ 𝐱
(𝑝×1)

, {𝐁1 2⁄

(𝑝×𝑝)
⋅ 𝐁1 2⁄

(𝑝×𝑝)
= 𝐁

(𝑝×𝑝)
, 𝐑𝐞𝐬𝐮𝐥𝐭 𝟐. 𝟐. 𝟗. (𝐛)} 

=

𝐱′
(1×𝑝)

⋅ [[ 𝐄
(𝑝×𝑝)

⋅ 𝚲1 2⁄

(𝑝×𝑝)
⋅ 𝐄′
(𝑝×𝑝)

] [ 𝐄
(𝑝×𝑝)

⋅ 𝚲1 2⁄

(𝑝×𝑝)
⋅ 𝐄′
(𝑝×𝑝)

]] ⋅ 𝐱
(𝑝×1)

𝐱′
(1×𝑝)

⋅ 𝐱
(𝑝×1)

,  

{𝐁1 2⁄

(𝑝×𝑝)
= 𝐄

(𝑝×𝑝)
⋅ 𝚲1 2⁄

(𝑝×𝑝)
⋅ 𝐄′
(𝑝×𝑝)

, 𝐑𝐞𝐬𝐮𝐥𝐭 𝟐. 𝟐. 𝟗.  (𝐛)} 

=
𝐱′

(1×𝑝)
⋅ [ 𝐄
(𝑝×𝑝)

⋅ 𝚲1 2⁄

(𝑝×𝑝)
⋅ [ 𝐄′
(𝑝×𝑝)

⋅ 𝐄
(𝑝×𝑝)

] ⋅ 𝚲1 2⁄

(𝑝×𝑝)
⋅ 𝐄′
(𝑝×𝑝)

] ⋅ 𝐱
(𝑝×1)

𝐱′
(1×𝑝)

⋅ 𝐱
(𝑝×1)

, {𝐑𝐞𝐬𝐮𝐥𝐭 𝟐. 𝟐. 𝟐 (𝐛)} 

=
𝐱′

(1×𝑝)
⋅ [ 𝐄
(𝑝×𝑝)

⋅ 𝚲1 2⁄

(𝑝×𝑝)
⋅ 𝚲1 2⁄

(𝑝×𝑝)
⋅ 𝐄′
(𝑝×𝑝)

] ⋅ 𝐱
(𝑝×1)

𝐱′
(1×𝑝)

⋅ 𝐱
(𝑝×1)

, { 𝐄
(𝑝×𝑝)

 is orthogonal, 𝐄−1
(𝑝×𝑝)

= 𝐄′
(𝑝×𝑝)

} 

=
[ 𝐱′
(1×𝑝)

⋅ 𝐄
(𝑝×𝑝)

] [𝚲1 2⁄

(𝑝×𝑝)
⋅ 𝚲1 2⁄

(𝑝×𝑝)
] [ 𝐄′
(𝑝×𝑝)

⋅ 𝐱
(𝑝×1)

]

𝐱′
(1×𝑝)

⋅ 𝐱
(𝑝×1)

, {𝐑𝐞𝐬𝐮𝐥𝐭 𝟐. 𝟐. 𝟐. (𝐛)} 

=
[ 𝐱′
(1×𝑝)

⋅ 𝐄
(𝑝×𝑝)

] [𝚲1 2⁄

(𝑝×𝑝)
⋅ 𝚲1 2⁄

(𝑝×𝑝)
] [ 𝐄′
(𝑝×𝑝)

⋅ 𝐱
(𝑝×1)

]

𝐱′
(1×𝑝)

⋅ 𝐄
(𝑝×𝑝)

⋅ 𝐄′
(𝑝×𝑝)

⋅ 𝐱
(𝑝×1)

, 

 { 𝐄
(𝑝×𝑝)

 is orthogonal, 𝐄−1
(𝑝×𝑝)

= 𝐄′
(𝑝×𝑝)

, 𝐄
(𝑝×𝑝)

⋅ 𝐄′
(𝑝×𝑝)

= 𝐈
(𝑝×𝑝)

} 
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=
[ 𝐱′
(1×𝑝)

⋅ 𝐄
(𝑝×𝑝)

] [𝚲1 2⁄

(𝑝×𝑝)
⋅ 𝚲1 2⁄

(𝑝×𝑝)
] [ 𝐄′
(𝑝×𝑝)

⋅ 𝐱
(𝑝×1)

]

[ 𝐱′
(1×𝑝)

⋅ 𝐄
(𝑝×𝑝)

] [ 𝐄′
(𝑝×𝑝)

⋅ 𝐱
(𝑝×1)

]
, {𝐑𝐞𝐬𝐮𝐥𝐭 𝟐. 𝟐. 𝟐. (𝐛)} 

=

𝐲′
(1×𝑝)

[𝚲1 2⁄

(𝑝×𝑝)
⋅ 𝚲1 2⁄

(𝑝×𝑝)
] 𝐲
(𝑝×1)

𝐲′
(1×𝑝)

⋅ 𝐲
(𝑝×1)

, { 𝐲
(𝑝×1)

= 𝐄′
(𝑝×𝑝)

⋅ 𝐱
(𝑝×1)

, 𝐑𝐞𝐬𝐮𝐥𝐭 𝟐. 𝟐. 𝟐. (𝐞)} 

=

𝐲′
(1×𝑝)

⋅ [

𝜆1 0 ⋯ 0
0 𝜆2 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝜆𝑝

]

(𝑝×𝑝)

 ⋅ 𝐲
(𝑝×1)

𝐲′
(1×𝑝)

⋅ 𝐲
(𝑝×1)

 

=

𝐲′
(1×𝑝)

⋅ 𝚲
(𝑝×𝑝)

 ⋅ 𝐲
(𝑝×1)

𝐲′
(1×𝑝)

⋅ 𝐲
(𝑝×1)

 

=

[𝑦1, 𝑦2, … , 𝑦𝑝]
(1×𝑝)

⋅ [

𝜆1 0 ⋯ 0
0 𝜆2 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝜆𝑝

]

(𝑝×𝑝)

 ⋅ [

𝑦1
𝑦2
⋮
𝑦𝑝

]

(𝑝×1)

[𝑦1, 𝑦2, … , 𝑦𝑝]
(1×𝑝)

⋅ [

𝑦1
𝑦2
⋮
𝑦𝑝

]

(𝑝×1)

 

=

[𝑦1, 𝑦2, … , 𝑦𝑝]
(1×𝑝)

 ⋅ [

𝜆1𝑦1
𝜆2𝑦2
⋮

𝜆𝑝𝑦𝑝

]

(𝑝×1)

∑ 𝑦𝑖
2𝑝

𝑖=1
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=
∑ 𝜆𝑖𝑦𝑖

2𝑝
𝑖=1

∑ 𝑦𝑖
2𝑝

𝑖=1

 

≤ 𝜆1 ⋅
∑ 𝑦𝑖

2𝑝
𝑖=1

∑ 𝑦𝑖
2𝑝

𝑖=1

 

= 𝜆1 

Setting, 

𝐱
(𝑝×1)

= 𝐞1
(𝑝×1)

= [

𝑒11
𝑒21
⋮
𝑒𝑝1

]

(𝑝×1)

 

gives 

𝐲
(𝑝×1)

 

= 𝐄′
(𝑝×𝑝)

⋅ 𝐞1
(𝑝×1)

 

= [

𝑒11 𝑒21 ⋯ 𝑒𝑝1
𝑒12 𝑒22 ⋯ 𝑒𝑝2
⋮ ⋮ ⋱ ⋮
𝑒1𝑝 𝑒2𝑝 ⋯ 𝑒𝑝𝑝

] [

𝑒11
𝑒21
⋮
𝑒𝑝1

]

(𝑝×1)

 

(𝑝×𝑝)

 

=

[
 
 
 
e1
′ e1
e2
′ e1
⋮

e𝑝
′ e1]

 
 
 

(𝑝×1)
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= [

11
02
⋮
0𝑝

]

(𝑝×1)

, {orthogonality of eigenvectors} 

= [

1
0
⋮
0

]

(𝑝×1)

 

That is, 

e𝑘
′ e1 = {

1,   𝑘 = 1
0,   𝑘 = 0

 

For this choice of 𝐱
(𝑝×1)

, we have 𝐲
(𝑝×1)

= [

1
0
⋮
0

]

(𝑝×1)

⇒ 

=

𝐲′
(1×𝑝)

⋅ 𝚲
(𝑝×𝑝)

 ⋅ 𝐲
(𝑝×1)

𝐲′
(1×𝑝)

⋅ 𝐲
(𝑝×1)

 

=

[11, 02, … , 0𝑝]
(1×𝑝)

⋅ [

𝜆1 0 ⋯ 0
0 𝜆2 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝜆𝑝

]

(𝑝×𝑝)

 ⋅ [

11
02
⋮
0𝑝

]

(𝑝×1)

 

[11, 02, … , 0𝑝]
(1×𝑝)

⋅ [

11
02
⋮
0𝑝

]

(𝑝×1)

 

 

=

[11, 02, … , 0𝑝]
(1×𝑝)

⋅ [

𝜆1
02
⋮
0𝑝

]

(𝑝×1)

 

1 
=
𝜆1 

1 
= 𝜆1 
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A similar argument produces the second part. 

Now, 

𝐱
(𝑝×1)

= 𝐄
(𝑝×𝑝)

⋅ 𝐲
(𝑝×1)

= 𝑦1 ⋅ 𝐞1
(𝑝×1)

+ 𝑦2 ⋅ 𝐞2
(𝑝×1)

+⋯+ 𝑦𝑝 ⋅ 𝐞𝑝
(𝑝×1)

, 

so 𝐱
(𝑝×1)

⊥ 𝐞1
(𝑝×1)

, 𝐞2
(𝑝×1)

, … , 𝐞𝑘
(𝑝×1)

 implies 

0 = 𝐞𝑖
′

(1×𝑝)
⋅ 𝐱
(𝑝×1)

= 𝑦1 ⋅ 𝐞𝑖
′

(1×𝑝)
⋅ 𝐞1
(𝑝×1)

+⋯+ 𝑦𝑝 ⋅ 𝐞𝑖
′

(1×𝑝)
⋅ 𝐞𝑝
(𝑝×1)

= 𝑦𝑖 , 𝑖 ≤ 𝑘 

Therefore, for 𝐱
(𝑝×1)

 perpendicular to the first 𝑘 eigenvectors 𝐞𝑖
(𝑝×1)

, the left-hand side 

of the inequality in becomes 

𝐱′
(1×𝑝)

⋅ 𝐁
(𝑝×𝑝)

⋅ 𝐱
(𝑝×1)

𝐱′
(1×𝑝)

⋅ 𝐱
(𝑝×1)

=
∑ 𝜆𝑖𝑦𝑖

2𝑝
𝑖=𝑘+1

∑ 𝑦𝑖
2𝑝

𝑖=𝑘+1

 

Taking 𝑦𝑘+1 = 1, 𝑦𝑘+2 = ⋯ = 𝑦𝑝 = 0 gives the asserted maximum. ∎ 

For a fixed 𝐱0
(𝑝×1)

≠ 𝟎
(𝑝×1)

,  

𝐱0
′

(1×𝑝)
⋅ 𝐁
(𝑝×𝑝)

⋅ 𝐱0
(𝑝×1)

𝐱0
′

(1×𝑝)
⋅ 𝐱0
(𝑝×1)

 

has the same value as 

𝐱′
(1×𝑝)

⋅ 𝐁
(𝑝×𝑝)

⋅ 𝐱
(𝑝×1)

, 

where 

𝐱′
(1×𝑝)

=

𝐱0
′

(1×𝑝)

√ 𝐱0
′

(1×𝑝)
⋅ 𝐱0
(𝑝×1)

=

𝐱0
′

(1×𝑝)

𝐿𝐱0
(1×1)
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is of unit length. Consequently,  

max
𝐱

(𝑝×1)
≠ 𝟎
(𝑝×1)

𝐱′
(1×𝑝)

⋅ 𝐁
(𝑝×𝑝)

⋅ 𝐱
(𝑝×1)

𝐱′
(1×𝑝)

⋅ 𝐱
(𝑝×1)

= 𝜆1          (𝑎𝑡𝑡𝑎𝑖𝑛𝑒𝑑 𝑤ℎ𝑒𝑛 𝐱
(𝑝×1)

= 𝐞1
(𝑝×1)

) 

says that the largest eigenvalue, 𝜆1, is the maximum value of the quadratic form 

𝐱′
(1×𝑝)

⋅ 𝐁
(𝑝×𝑝)

⋅ 𝐱
(𝑝×1)

 

for all points 𝐱
(𝑝×1)

 whose distance from the origin is unity. Similarly, 𝜆𝑝 is the 

smallest value of the quadratic form for all points 𝐱
(𝑝×1)

 one unit from the origin. The 

largest and smallest eigenvalues thus represent extreme values of 

𝐱′
(1×𝑝)

⋅ 𝐁
(𝑝×𝑝)

⋅ 𝐱
(𝑝×1)

 

for points on the unit sphere. The "intermediate" eigenvalues of the 𝑝 × 𝑝 positive 

definite matrix 𝐁
(𝑝×𝑝)

 also have an interpretation as extreme values when 𝐱
(𝑝×1)

 is 

further restricted to be perpendicular to the earlier choices [3, pp. 80-81]. 
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Chapter 3 

Multivariate Population Theory 

3.1 Population Random Matrix 

Definition 3.1.1 (Population Random Matrix 𝐗). A population random matrix 𝐗
(𝑛×𝑝)

 

for continuous variables is a matrix whose elements are population continuous 

random variables. Specifically, let 𝐗
(𝑛×𝑝)

= {𝑋𝑖𝑗} be an 𝑛 × 𝑝 population random 

matrix 

𝐗
(𝑛×𝑝)

=

[
 
 
 
 
 
 
𝑋11 𝑋12 ⋯ 𝑋1𝑗 ⋯ 𝑋1𝑝
𝑋21 𝑋22 ⋯ 𝑋2𝑗 ⋯ 𝑋2𝑝
⋮ ⋮ ⋮ ⋮
𝑋𝑖1 𝑋𝑖2 ⋯ 𝑋𝑖𝑗 ⋯ 𝑋𝑖𝑝
⋮ ⋮ ⋮ ⋮
𝑋𝑛1 𝑋𝑛2 ⋯ 𝑋𝑛𝑗 ⋯ 𝑋𝑛𝑝]

 
 
 
 
 
 

(𝑛×𝑝)

=

[
 
 
 
𝑋11 𝑋12 ⋯ 𝑋1𝑝
𝑋21 𝑋22 ⋯ 𝑋2𝑝
⋮ ⋮ ⋱ ⋮
𝑋𝑛1 𝑋𝑛2 ⋯ 𝑋𝑛𝑝]

 
 
 

(𝑛×𝑝)

 

for 𝑖 = 1,2, … , 𝑛 rows and 𝑗 = 1,2, … , 𝑝 columns [3, p. 66]. 
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3.2 Population Random Vector, Mean Vector, Variance-

Covariance Matrix, and Correlation Matrix 

3.2.1 Population Random Vector 

Definition 3.2.1 (Population Random Vector 𝐗). A population random vector 𝐗
(𝑝×1)

 

for continuous random variables is a vector whose elements are population 

continuous random variables from a 𝑝 − 𝑣𝑎𝑟𝑖𝑎𝑡𝑒 population. Specifically, let   

𝐗
(𝑝×1)

= {𝑋𝑖} be a 𝑝 × 1 population random vector 

𝐗
(𝑝×1)

= [

𝑋1
𝑋2
⋮
𝑋𝑝

]

(𝑝×1)

 

[3, p. 68]. 
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3.2.2 Probability Density Functions 

Definition 3.2.2 (Joint Probability Density Function). The collective behavior of the 𝑝 

continuous random variables 𝑋1, 𝑋2, … , 𝑋𝑝 or, equivalently, the population random 

vector 𝐗
(𝑝×1)

, is described by a joint probability density function (pdf)  

𝑓 ( 𝐱
(𝑝×1)

) = 𝑓12⋯𝑝(𝑥1, 𝑥2, … , 𝑥𝑝) 

[3, p. 68] where 𝑥𝑖 ∈ ℝ, 𝑖 = 1,2, … , 𝑝. Satisfying constraints, 

(𝐚) 𝑓12⋯𝑝(𝑥1, 𝑥2, … , 𝑥𝑝) ≥ 0 

(𝐛) ∫ ∫ ⋯∫ 𝑓12⋯𝑝(𝑥1, 𝑥2, … , 𝑥𝑝)𝑑𝑥1𝑑𝑥2⋯𝑑𝑥𝑝

∞

−∞

∞

−∞

∞

−∞

= 1 

Definition 3.2.3 (Univariate Marginal Probability Density Function). Each element of 

𝐗
(𝑝×1)

 is a population random variable with its own univariate marginal pdf defined as 

𝑓𝑖(𝑥𝑖). Specifically, 

𝑓𝑖(𝑥𝑖) = {
∫ ∫ ⋯∫ 𝑓12⋯𝑝(𝑥1, 𝑥2, … , 𝑥𝑝)𝑑𝑥1𝑑𝑥2⋯𝑑𝑥𝑖−1𝑑𝑥𝑖+1⋯𝑑𝑥𝑝

∞

−∞

∞

−∞

∞

−∞

0                                                                                                   otherwise

 

[3, p. 68] for 𝑥𝑖 ∈ ℝ, 𝑖 = 1,2, … , 𝑝. Satisfying constraints, 

(𝐚) 𝑓𝑖(𝑥𝑖) ≥ 0 

(𝐛) ∫ 𝑓𝑖(𝑥𝑖)𝑑𝑥𝑖

∞

−∞

= 1 
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Definition 3.2.4 (Bivariate Marginal Probability Density Function). Each pair of 

elements of 𝐗
(𝑝×1)

 is a bivariate population random vector (𝑋𝑖, 𝑋𝑘) with a bivariate 

(joint) marginal pdf defined as 𝑓𝑖𝑘(𝑥𝑖 , 𝑥𝑘). Specifically, 

𝑓𝑖𝑘(𝑥𝑖, 𝑥𝑘) 

= {
∫ ∫ ⋯∫ 𝑓12⋯𝑝(𝑥1, 𝑥2, … , 𝑥𝑝)𝑑𝑥1𝑑𝑥2⋯𝑑𝑥𝑖−1𝑑𝑥𝑖+1⋯𝑑𝑥𝑘−1𝑑𝑥𝑘+1⋯𝑑𝑥𝑝

∞

−∞

∞

−∞

∞

−∞

0                                                                                                                             otherwise

 

[3, p. 68] for (𝑥𝑖, 𝑥𝑘) ∈ ℝ , 𝑖, 𝑘 = 1,2, … , 𝑝, 𝑖 ≠ 𝑘. Satisfying constraints, 

(𝐚) 𝑓𝑖𝑘(𝑥𝑖, 𝑥𝑘) ≥ 0 

(𝐛) ∫ ∫ 𝑓𝑖𝑘(𝑥𝑖, 𝑥𝑘)𝑑𝑥𝑖𝑑𝑥𝑘

∞

−∞

∞

−∞

= 1 

3.2.3 Population Parameters 

Definition 3.2.5 (Univariate Marginal Population Mean). The univariate marginal 

population means 𝜇𝑖 are defined as 𝜇𝑖 = 𝐸(𝑋𝑖) with pdf 𝑓𝑖(𝑥𝑖). Specifically, if they 

exist (finite) 

𝜇𝑖 = 𝐸(𝑋𝑖) = ∫ 𝑥𝑖𝑓𝑖(𝑥𝑖)𝑑𝑥𝑖

∞

−∞

 

for 𝑖 = 1,2, … , 𝑝 where −∞ < 𝜇𝑖 < ∞ [3, p. 68]. 
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Definition 3.2.6 (Univariate Marginal Population Variance). The univariate marginal 

population variances 𝜎𝑖𝑖  are defined as 𝜎𝑖𝑖 = var(𝑋𝑖) = 𝐸(𝑋𝑖 − 𝜇𝑖)
2 with pdf 𝑓𝑖(𝑥𝑖). 

Specifically, if they exist  

𝜎𝑖𝑖 = var(𝑋𝑖) = 𝐸(𝑋𝑖 − 𝜇𝑖)
2 = ∫ (𝑥𝑖 − 𝜇𝑖)

2𝑓𝑖(𝑥𝑖)𝑑𝑥𝑖

∞

−∞

 

for 𝑖 = 1,2, … , 𝑝 where 0 < 𝜎𝑖𝑖 < ∞. The univariate marginal population standard 

deviation is the square-root of the variance √𝜎𝑖𝑖 [3, p. 68]. 

Definition 3.2.7 (Bivariate Marginal Population Covariance). The bivariate marginal 

population covariances 𝜎𝑖𝑘  are defined as 𝜎𝑖𝑘 = cov(𝑋𝑖, 𝑋𝑘) = 𝐸(𝑋𝑖 − 𝜇𝑖)(𝑋𝑘 − 𝜇𝑘) 

with pdf 𝑓𝑖𝑘(𝑥𝑖, 𝑥𝑘). Specifically, if they exist 

𝜎𝑖𝑘 = cov(𝑋𝑖, 𝑋𝑘) = 𝐸(𝑋𝑖 − 𝜇𝑖)(𝑋𝑘 − 𝜇𝑘) 

       = ∫ ∫ (𝑥𝑖 − 𝜇𝑖)(𝑥𝑘 − 𝜇𝑘)𝑓𝑖𝑘(𝑥𝑖, 𝑥𝑘)𝑑𝑥𝑖𝑑𝑥𝑘

∞

−∞

∞

−∞

 

for 𝑖, 𝑘 = 1,2, … , 𝑝 where −∞ < 𝜎𝑖𝑘 < ∞ [3, p. 68]. 

Note that 𝜎𝑖𝑘 = 𝜎𝑘𝑖  and when 𝑖 = 𝑘 the bivariate marginal population 

covariance becomes the univariate marginal population variance 𝜎𝑖𝑖 . 

Definition 3.2.8 (Bivariate Marginal Population Correlation). The bivariate marginal 

population correlations 𝜌𝑖𝑘 are defined as 𝜌𝑖𝑘 = corr(𝑋𝑖, 𝑋𝑘) =
𝜎𝑖𝑘

√𝜎𝑖𝑖√𝜎𝑘𝑘
.Specifically, 

if they exist 

𝜌𝑖𝑘 = corr(𝑋𝑖, 𝑋𝑘) =
𝜎𝑖𝑘

√𝜎𝑖𝑖√𝜎𝑘𝑘
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       =
𝐸(𝑋𝑖 − 𝜇𝑖)(𝑋𝑘 − 𝜇𝑘)

√𝐸(𝑋𝑖 − 𝜇𝑖)2√𝐸(𝑋𝑘 − 𝜇𝑘)2
 

       =
∫ ∫ (𝑥𝑖 − 𝜇𝑖)(𝑥𝑘 − 𝜇𝑘)𝑓𝑖𝑘(𝑥𝑖 , 𝑥𝑘)𝑑𝑥𝑖𝑑𝑥𝑘

∞

−∞

∞

−∞

√∫ (𝑥𝑖 − 𝜇𝑖)2𝑓𝑖(𝑥𝑖)𝑑𝑥𝑖
∞

−∞
√∫ (𝑥𝑘 − 𝜇𝑘)2𝑓𝑘(𝑥𝑘)𝑑𝑥𝑘

∞

−∞

 

for 𝑖, 𝑘 = 1,2, … , 𝑝 where −1 ≤ 𝜌𝑖𝑘 ≤ 1 [3, p. 71]. 

Note that 𝜌𝑖𝑘 = 𝜌𝑘𝑖 and when 𝑖 = 𝑘 the bivariate marginal population 

correlation becomes 𝜌𝑖𝑖 =
𝜎𝑖𝑖

√𝜎𝑖𝑖√𝜎𝑖𝑖
=

𝜎𝑖𝑖

𝜎𝑖𝑖
= 1.  

3.2.4 Independent Random Variables 

Definition 3.2.9 (Statistically Independent). If the bivariate marginal pdf 𝑓𝑖𝑘(𝑥𝑖, 𝑥𝑘) 

for continuous random variables (𝑋𝑖, 𝑋𝑘), can be written as the product of the 

corresponding univariate marginal pdf’s 𝑓𝑖(𝑥𝑖), 𝑓𝑘(𝑥𝑘) so that 

𝑓𝑖𝑘(𝑥𝑖, 𝑥𝑘) ≡ 𝑓𝑖(𝑥𝑖)𝑓𝑘(𝑥𝑘) 

then 𝑋𝑖 and 𝑋𝑘 are said to be statistically independent.  

Furthermore, if, (𝑋𝑖, 𝑋𝑘) are statistical independent, then 𝜎𝑖𝑘 = 0 and 𝜌𝑖𝑘 = 0 

[3, pp. 69, 71]. 

Definition 3.2.10 (Mutually Statistically Independent). The 𝑝 population continuous 

random variables (𝑋1, 𝑋2, … , 𝑋𝑝) are mutually statistically independent if their joint 

pdf can be factored as a product of their univariate marginal pdf’s  

𝑓12⋯𝑝(𝑥1, 𝑥2, … , 𝑥𝑝) ≡ 𝑓1(𝑥1)𝑓2(𝑥2)⋯𝑓𝑝(𝑥𝑝) 

[3, p. 69]. 
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In addition, if, (𝑋1, 𝑋2, … , 𝑋𝑝) are mutually statistically independent, then every 

subset of continuous population random variables ≥ 2 are also mutually statistically 

independent. 

3.2.5 Population Mean Vector 

Definition 3.2.11 (Population Mean Vector for 𝐗). The population mean vector for 

𝐗
(𝑝×1)

 or expected value of a population random vector is a random vector consisting 

of the univariate marginal expectations of each of its elements. Then, if these 

expectations exist, the population mean vector for 𝐗
(𝑝×1)

, denoted by 𝝁𝐗
(𝑝×1)

= 𝐸(𝐗)
(𝑝×1)

, is 

the 𝑝 × 1 vector 

𝝁𝐗
(𝑝×1)

= 𝐸(𝐗)
(𝑝×1)

= [

𝐸(𝑋1)
𝐸(𝑋2)
⋮

𝐸(𝑋𝑝)

]

(𝑝×1)

= [

𝜇1
𝜇2
⋮
𝜇𝑝

]

(𝑝×1)

 

where −∞ < 𝜇𝑖 < ∞, for 𝑖 = 1,2, … , 𝑝 [3, p. 69]. 
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3.2.6 Population Variance-Covariance Matrix 

Theorem 3.2.1 (Population Variance-Covariance Matrix for 𝐗). The population 

variance-covariance matrix for 𝐗
(𝑝×1)

 is a symmetric matrix containing the 𝑝 

univariate marginal population variances 𝜎𝑖𝑖  and the 𝑝(𝑝 − 1) 2⁄  distinct bivariate 

marginal population covariances 𝜎𝑖𝑘  (𝑖 < 𝑘). Then, if these variances and 

covariances exist, the 𝑝 × 𝑝 population variance-covariance matrix for 𝐗
(𝑝×1)

 is given 

by 

∑𝐗
(𝑝×𝑝)

= Cov(𝐗)
(𝑝×𝑝)

= 𝐸(𝐗 − 𝝁𝐗)
(𝑝×1)

(𝐗 − 𝝁𝐗)
′

(1×𝑝)
 

where 𝝁𝐗
(𝑝×1)

= 𝐸(𝐗)
(𝑝×1)

 is the population mean vector. 

Proof. Use linearity of the operator 𝐸, Definition 2.1.2, 2.1.11, 2.2.5, 3.2.6., and 3.2.7. 

∑𝐗
(𝑝×𝑝)

 

= Cov(𝐗)
(𝑝×𝑝)

 

= 𝐸(𝐗 − 𝝁𝐗)
(𝑝×1)

(𝐗 − 𝝁𝐗)
′

(1×𝑝)
 

= 𝐸

(

 
 
[

𝑋1 − 𝜇1
𝑋2 − 𝜇2

⋮
𝑋𝑝 − 𝜇𝑝

]

(𝑝×1)

⋅ [𝑋1 − 𝜇1, 𝑋2 − 𝜇2, … , 𝑋𝑝 − 𝜇𝑝]
(1×𝑝)

)

 
 

 

= 𝐸

(

 
 
 

[
 
 
 
 

(𝑋1 − 𝜇1)
2 (𝑋1 − 𝜇1)(𝑋2 − 𝜇2) ⋯ (𝑋1 − 𝜇1)(𝑋𝑝 − 𝜇𝑝)

(𝑋2 − 𝜇2)(𝑋1 − 𝜇1) (𝑋2 − 𝜇2)
2 ⋯ (𝑋2 − 𝜇2)(𝑋𝑝 − 𝜇𝑝)

⋮ ⋮ ⋱ ⋮
(𝑋𝑝 − 𝜇𝑝)(𝑋1 − 𝜇1) (𝑋𝑝 − 𝜇𝑝)(𝑋2 − 𝜇2) ⋯ (𝑋𝑝 − 𝜇𝑝)

2 ]
 
 
 
 

(𝑝×𝑝) )
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= 𝐸

[
 
 
 
 

(𝑋1 − 𝜇1)
2 (𝑋1 − 𝜇1)(𝑋2 − 𝜇2) ⋯ (𝑋1 − 𝜇1)(𝑋𝑝 − 𝜇𝑝)

(𝑋2 − 𝜇2)(𝑋1 − 𝜇1) (𝑋2 − 𝜇2)
2 ⋯ (𝑋2 − 𝜇2)(𝑋𝑝 − 𝜇𝑝)

⋮ ⋮ ⋱ ⋮
(𝑋𝑝 − 𝜇𝑝)(𝑋1 − 𝜇1) (𝑋𝑝 − 𝜇𝑝)(𝑋2 − 𝜇2) ⋯ (𝑋𝑝 − 𝜇𝑝)

2 ]
 
 
 
 

(𝑝×𝑝)

 

=

[
 
 
 
 

𝐸(𝑋1 − 𝜇1)
2 𝐸(𝑋1 − 𝜇1)(𝑋2 − 𝜇2) ⋯ 𝐸(𝑋1 − 𝜇1)(𝑋𝑝 − 𝜇𝑝)

𝐸(𝑋2 − 𝜇2)(𝑋1 − 𝜇1) 𝐸(𝑋2 − 𝜇2)
2 ⋯ 𝐸(𝑋2 − 𝜇2)(𝑋𝑝 − 𝜇𝑝)

⋮ ⋮ ⋱ ⋮
𝐸(𝑋𝑝 − 𝜇𝑝)(𝑋1 − 𝜇1) 𝐸(𝑋𝑝 − 𝜇𝑝)(𝑋2 − 𝜇2) ⋯ 𝐸(𝑋𝑝 − 𝜇𝑝)

2
]
 
 
 
 

(𝑝×𝑝)

 

= [

𝜎11 𝜎12 ⋯ 𝜎1𝑝
𝜎21 𝜎22 ⋯ 𝜎2𝑝
⋮ ⋮ ⋱ ⋮
𝜎𝑝1 𝜎𝑝2 ⋯ 𝜎𝑝𝑝

]

(𝑝×𝑝)

 

[3, pp. 69-70] ∎ 

3.2.7 Population Standard Deviation Matrix 

Definition 3.2.12 (Population Standard Deviation Matrix for 𝐗). The population 

standard deviation matrix for 𝐗
(𝑝×1)

 is a diagonal matrix containing the 𝑝 univariate 

marginal population standard deviations √𝜎𝑖𝑖  along the main diagonal. Then, if 

these standard deviations exist, the population standard deviation matrix for 𝐗
(𝑝×1)

 is 

denoted by 𝐕1 2⁄

(𝑝×𝑝)
, is the 𝑝 × 𝑝 matrix 

𝐕1 2⁄

(𝑝×𝑝)
=

[
 
 
 
 √𝜎11 0 ⋯ 0

0 √𝜎22 ⋯ 0

⋮ ⋮ ⋱ ⋮
0 0 ⋯ √𝜎𝑝𝑝]

 
 
 
 

(𝑝×𝑝)

 

with inverse 
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(𝐕1 2⁄ )−1
(𝑝×𝑝)

= 𝐕−1 2⁄

(𝑝×𝑝)
=

[
 
 
 
 
 
 
 
1

√𝜎11
0 ⋯ 0

0
1

√𝜎22
⋯ 0

⋮ ⋮ ⋱ ⋮

0 0 ⋯
1

√𝜎𝑝𝑝]
 
 
 
 
 
 
 

(𝑝×𝑝)

 

[3, pp. 59, 72]. 

3.2.8 Population Correlation Matrix 

Theorem 3.2.2 (Population Correlation Matrix for 𝐗). The population correlation 

matrix for 𝐗
(𝑝×1)

 is a symmetric matrix containing the 𝑝 bivariate marginal 

population correlations 𝜌𝑖𝑖 = 1 along the main diagonal and the 𝑝(𝑝 − 1) 2⁄  distinct 

bivariate marginal population correlations 𝜌𝑖𝑘 (𝑖 < 𝑘). Then, if these correlations 

exist, the 𝑝 × 𝑝 population correlation matrix for 𝐗
(𝑝×1)

 is given by 

𝝆
(𝑝×𝑝)

= Corr(𝐗)
(𝑝×𝑝)

= (𝐕1 2⁄ )−1
(𝑝×𝑝)

⋅ ∑𝐗
(𝑝×𝑝)

⋅ (𝐕1 2⁄ )−1
(𝑝×𝑝)

 

where (𝐕1 2⁄ )−1
(𝑝×𝑝)

 is the inverse population standard deviation matrix and ∑𝐗
(𝑝×𝑝)

 is the 

population variance-covariance matrix [3, p. 72]. 

Proof. Use Definition 2.2.5, 3.2.6. and 3.2.7. 

𝝆
(𝑝×𝑝)

= Corr(𝐗)
(𝑝×𝑝)

 

= (𝐕1 2⁄ )−1
(𝑝×𝑝)

⋅ ∑𝐗
(𝑝×𝑝)

⋅ (𝐕1 2⁄ )−1
(𝑝×𝑝)

 

= 𝐕−1 2⁄

(𝑝×𝑝)
⋅ ∑𝐗
(𝑝×𝑝)

⋅ 𝐕−1 2⁄

(𝑝×𝑝)
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=

[
 
 
 
 
 
 
 
1

√𝜎11
0 ⋯ 0

0
1

√𝜎22
⋯ 0

⋮ ⋮ ⋱ ⋮

0 0 ⋯
1

√𝜎𝑝𝑝]
 
 
 
 
 
 
 

(𝑝×𝑝)

⋅ [

𝜎11 𝜎12 ⋯ 𝜎1𝑝
𝜎21 𝜎22 ⋯ 𝜎2𝑝
⋮ ⋮ ⋱ ⋮
𝜎𝑝1 𝜎𝑝2 ⋯ 𝜎𝑝𝑝

]

(𝑝×𝑝)

⋅

[
 
 
 
 
 
 
 
1

√𝜎11
0 ⋯ 0

0
1

√𝜎22
⋯ 0

⋮ ⋮ ⋱ ⋮

0 0 ⋯
1

√𝜎𝑝𝑝]
 
 
 
 
 
 
 

(𝑝×𝑝)

 

[
 
 
 
 
 
 
𝜎11

√𝜎11

𝜎12

√𝜎11
⋯

𝜎1𝑝

√𝜎11
𝜎21

√𝜎22

𝜎22

√𝜎22
⋯

𝜎2𝑝

√𝜎22
⋮ ⋮ ⋱ ⋮
𝜎𝑝1

√𝜎𝑝𝑝

𝜎𝑝2

√𝜎𝑝𝑝
⋯

𝜎𝑝𝑝

√𝜎𝑝𝑝]
 
 
 
 
 
 

(𝑝×𝑝)

⋅

[
 
 
 
 
 
 
 
1

√𝜎11
0 ⋯ 0

0
1

√𝜎22
⋯ 0

⋮ ⋮ ⋱ ⋮

0 0 ⋯
1

√𝜎𝑝𝑝]
 
 
 
 
 
 
 

(𝑝×𝑝)

 

=

[
 
 
 
 
 
 
 

𝜎11

√𝜎11√𝜎11

𝜎12

√𝜎11√𝜎22
⋯

𝜎1𝑝

√𝜎11√𝜎𝑝𝑝
𝜎21

√𝜎22√𝜎11

𝜎22

√𝜎22√𝜎22
⋯

𝜎2𝑝

√𝜎22√𝜎𝑝𝑝
⋮ ⋮ ⋱ ⋮
𝜎𝑝1

√𝜎𝑝𝑝√𝜎11

𝜎𝑝2

√𝜎𝑝𝑝√𝜎22
⋯

𝜎𝑝𝑝

√𝜎𝑝𝑝√𝜎𝑝𝑝]
 
 
 
 
 
 
 

(𝑝×𝑝)

 

= [

𝜌11 𝜌12 ⋯ 𝜌1𝑝
𝜌21 𝜌22 ⋯ 𝜌2𝑝
⋮ ⋮ ⋱ ⋮
𝜌𝑝1 𝜌𝑝2 ⋯ 𝜌𝑝𝑝

]

(𝑝×𝑝)

 

=

[
 
 
 
1 𝜌12 ⋯ 𝜌1𝑝
𝜌21 1 ⋯ 𝜌2𝑝
⋮ ⋮ ⋱ ⋮
𝜌𝑝1 𝜌𝑝2 ⋯ 1 ]

 
 
 

(𝑝×𝑝)

 

Thus, 𝝆
(𝑝×𝑝)

 can be obtained from (𝐕1 2⁄ )−1
(𝑝×𝑝)

 and ∑𝐗 ∎ 
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Corollary 3.2.1. Let 𝐕1 2⁄

(𝑝×𝑝)
be the population standard deviation matrix and 𝝆

(𝑝×𝑝)
 be 

the population correlation matrix. Then ∑𝐗
(𝑝×𝑝)

 the population variance-covariance 

matrix can be obtained. That is, 

𝝆
(𝑝×𝑝)

= (𝐕1 2⁄ )−1
(𝑝×𝑝)

⋅ ∑𝐗
(𝑝×𝑝)

⋅ (𝐕1 2⁄ )−1
(𝑝×𝑝)

 

𝐕1 2⁄

(𝑝×𝑝)
⋅ 𝝆
(𝑝×𝑝)

⋅ 𝐕1 2⁄

(𝑝×𝑝)
= 𝐕1 2⁄

(𝑝×𝑝)
⋅ (𝐕1 2⁄ )−1

(𝑝×𝑝)
⋅ ∑𝐗
(𝑝×𝑝)

⋅ (𝐕1 2⁄ )−1
(𝑝×𝑝)

⋅ 𝐕1 2⁄

(𝑝×𝑝)
 

𝐕1 2⁄

(𝑝×𝑝)
⋅ 𝝆
(𝑝×𝑝)

⋅ 𝐕1 2⁄

(𝑝×𝑝)
= 𝐈

(𝑝×𝑝)
⋅ ∑𝐗
(𝑝×𝑝)

⋅ 𝐈
(𝑝×𝑝)

, {(𝐕1 2⁄ )−1
(𝑝×𝑝)

 inverse of 𝐕1 2⁄

(𝑝×𝑝)
} 

∑𝐗
(𝑝×𝑝)

= 𝐕1 2⁄

(𝑝×𝑝)
⋅ 𝝆
(𝑝×𝑝)

⋅ 𝐕1 2⁄

(𝑝×𝑝)
 

[3, p. 72]. 

3.3 Population Mean Vector and Variance-Covariance 

Matrix for Linear Combinations of Continuous Random 

Variables 

3.3.1 Linear Combination 

Definition 3.3.1 (Linear Combination of 𝐗). Let 𝐜
(𝑝×1)

 be a 𝑝 × 1 vector of constants 

defined as 

𝐜
(𝑝×1)

= [

𝑐1
𝑐2
⋮
𝑐𝑝

]

(𝑝×1)
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and let 𝐗

(𝑝×1)
 be a 𝑝 × 1 population random vector of continuous random variables 

𝐗
(𝑝×1)

= [

𝑋1
𝑋2
⋮
𝑋𝑝

]

(𝑝×1)

 

𝑖 = 1,2, … , 𝑝. Then a linear combination of 𝐗
(𝑝×1)

, is given by the inner product 

𝐜′
(1×𝑝)

⋅ 𝐗
(𝑝×1)

= [𝑐1, 𝑐2, … , 𝑐𝑝]
(1×𝑝)

[

𝑋1
𝑋2
⋮
𝑋𝑝

]

(𝑝×1)

= 𝑐1𝑋1 + 𝑐2𝑋2 +⋯+ 𝑐𝑝𝑋𝑝 

[3, p. 76]. 

3.3.2 Population Parameters for Linear Combinations 

Theorem 3.3.1 (Mean of a Linear Combination of 𝐗). Suppose a linear combination  

𝐜′
(1×𝑝)

⋅ 𝐗
(𝑝×1)

 is given by Definition 3.3.1 and a population mean vector 𝝁𝐗
(𝑝×1)

= 𝐸(𝐗)
(𝑝×1)

 is 

given by Definition 3.2.11. Then the expected value or mean of a linear combination 

of 𝐗
(𝑝×1)

, is given by 

𝐸 ( 𝐜′
(1×𝑝)

⋅ 𝐗
(𝑝×1)

) = 𝐜′
(1×𝑝)

⋅ 𝝁𝐗
(𝑝×1)

 

Proof. Using linearity of 𝐸 and Definition 3.2.5. 

𝐸 ( 𝐜′
(1×𝑝)

⋅ 𝐗
(𝑝×1)

) 
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                               = 𝐸

(

 
 
[𝑐1, 𝑐2, … , 𝑐𝑝]

(1×𝑝)

[

𝑋1
𝑋2
⋮
𝑋𝑝

]

(𝑝×1))

 
 

 

                               = 𝐸(𝑐1𝑋1 + 𝑐2𝑋2 +⋯+ 𝑐𝑝𝑋𝑝) 

                               = 𝑐1𝐸(𝑋1) + 𝑐2𝐸(𝑋2) + ⋯+ 𝑐𝑝𝐸(𝑋𝑝) 

                               = 𝑐1𝜇1 + 𝑐2𝜇2 +⋯+ 𝑐𝑝𝜇𝑝 

                               = [𝑐1, 𝑐2, … , 𝑐𝑝]
(1×𝑝)

[

𝜇1
𝜇2
⋮
𝜇𝑝

]

(𝑝×1)

 

                               = 𝐜′
(1×𝑝)

⋅ 𝝁𝐗
(𝑝×1)

 ∎ 

Theorem 3.3.2 (Variance of a Linear Combination of 𝐗). Suppose a linear 

combination  𝐜′
(1×𝑝)

⋅ 𝐗
(𝑝×1)

 is given by Definition 3.3.1 and a population variance-

covariance   ∑𝐗
(𝑝×𝑝)

= Cov(𝐗)
(𝑝×𝑝)

 is given by Theorem 3.2.1. Then the variance of a linear 

combination of 𝐗
(𝑝×1)

, is given by 

var ( 𝐜′
(1×𝑝)

⋅ 𝐗
(𝑝×1)

) = 𝐜′
(1×𝑝)

⋅ ∑𝐗
(𝑝×𝑝)

⋅ 𝐜
(𝑝×1)

=∑∑𝑐𝑖𝑐𝑘𝜎𝑖𝑘

𝑝

𝑘=1

𝑝

𝑖

 

                                 = ∑𝑐𝑖
2𝜎𝑖𝑖

𝑝

𝑖=1

+∑∑𝑐𝑖𝑐𝑘𝜎𝑖𝑘⏟        
𝑖≠𝑘

=∑𝑐𝑖
2𝜎𝑖𝑖

𝑝

𝑖=1

+ 2∑𝑐𝑖𝑐𝑘𝜎𝑖𝑘
𝑖<𝑘
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Proof. Using properties of variance and covariance. 

var ( 𝐜′
(1×𝑝)

⋅ 𝐗
(𝑝×1)

) 

= var

(

 
 
[𝑐1, 𝑐2, … , 𝑐𝑝]

(1×𝑝)

[

𝑋1
𝑋2
⋮
𝑋𝑝

]

(𝑝×1))

 
 

 

= var(𝑐1𝑋1 + 𝑐2𝑋2 +⋯+ 𝑐𝑝𝑋𝑝) 

= cov(𝑐1𝑋1 + 𝑐2𝑋2 +⋯+ 𝑐𝑝𝑋𝑝, 𝑐1𝑋1 + 𝑐2𝑋2 +⋯+ 𝑐𝑝𝑋𝑝) 

= 𝑐1
2var(𝑋1) + 𝑐1𝑐2cov(𝑋1, 𝑋2) +⋯+ 𝑐1𝑐𝑝cov(𝑋1, 𝑋𝑝) 

    +𝑐2𝑐1cov(𝑋2, 𝑋1) + 𝑐2
2var(𝑋2) + ⋯+ 𝑐2𝑐𝑝cov(𝑋2, 𝑋𝑝) 

    +⋯+ 

    𝑐𝑝𝑐1cov(𝑋𝑝, 𝑋1) + 𝑐𝑝𝑐2cov(𝑋𝑝, 𝑋2) + ⋯+ 𝑐𝑝
2var(𝑋𝑝) 

= 𝑐1
2var(𝑋1) + 𝑐2

2var(𝑋2) + ⋯+ 𝑐𝑝
2var(𝑋𝑝) 

     +2𝑐1𝑐2cov(𝑋1, 𝑋2) +⋯+ 2𝑐𝑝−1𝑐𝑝cov(𝑋𝑝−1, 𝑋𝑝) 

= 𝑐1
2𝜎11 + 𝑐2

2𝜎22 +⋯+ 𝑐𝑝
2𝜎𝑝𝑝 

    +2𝑐1𝑐2𝜎12 +⋯+ 2𝑐𝑝−1𝑐𝑝𝜎(𝑝−1)(𝑝) 

=∑∑𝑐𝑖𝑐𝑘𝜎𝑖𝑘

𝑝

𝑘=1

𝑝

𝑖=1

=∑𝑐𝑖
2𝜎𝑖𝑖

𝑝

𝑖=1

+∑∑𝑐𝑖𝑐𝑘𝜎𝑖𝑘⏟        
𝑖≠𝑘

 

=∑𝑐𝑖
2𝜎𝑖𝑖

𝑝

𝑖=1

+ 2∑𝑐𝑖𝑐𝑘𝜎𝑖𝑘
𝑖<𝑘
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= 𝐜′

(1×𝑝)
⋅ ∑𝐗
(𝑝×𝑝)

⋅ 𝐜
(𝑝×1)

 

= [𝑐1, 𝑐2, … , 𝑐𝑝]
(1×𝑝)

[

𝜎11 𝜎12 ⋯ 𝜎1𝑝
𝜎21 𝜎22 ⋯ 𝜎2𝑝
⋮ ⋮ ⋱ ⋮
𝜎𝑝1 𝜎𝑝2 ⋯ 𝜎𝑝𝑝

]

(𝑝×𝑝)

[

𝑐1
𝑐2
⋮
𝑐𝑝

]

(𝑝×1)

 

= [𝑐1, 𝑐2, … , 𝑐𝑝]
(1×𝑝)

[

𝑐1𝜎11 + 𝑐2𝜎12 +⋯+ 𝑐𝑝𝜎1𝑝
𝑐1𝜎21 + 𝑐2𝜎22 +⋯+ 𝑐𝑝𝜎2𝑝

               ⋮
𝑐1𝜎𝑝1 + 𝑐2𝜎𝑝2 +⋯+ 𝑐𝑝𝜎𝑝𝑝

]

(𝑝×1)

 

= 𝑐1(𝑐1𝜎11 + 𝑐2𝜎12 +⋯+ 𝑐𝑝𝜎1𝑝) 

    +𝑐2(𝑐2𝑐1𝜎21 + 𝑐2𝜎22 +⋯+ 𝑐𝑝𝜎2𝑝) 

    +⋯+ 

    𝑐𝑝(𝑐1𝜎𝑝1 + 𝑐2𝜎𝑝2 +⋯+ 𝑐𝑝𝜎𝑝𝑝) 

= 𝑐1
2𝜎11 + 𝑐1𝑐2𝜎12 +⋯+ 𝑐1𝑐𝑝𝜎1𝑝 

    +𝑐2𝑐1𝜎21 + 𝑐2
2𝜎22 +⋯+ 𝑐2𝑐𝑝𝜎2𝑝 

    +⋯+ 

    𝑐𝑝𝑐1𝜎𝑝1 + 𝑐𝑝𝑐2𝜎𝑝2 +⋯+ 𝑐𝑝
2𝜎𝑝𝑝 

= 𝑐1
2𝜎11 + 𝑐2

2𝜎22 +⋯+ 𝑐𝑝
2𝜎𝑝𝑝 

     +2𝑐1𝑐2𝜎12 +⋯+ 2𝑐𝑝−1𝑐𝑝𝜎(𝑝−1)(𝑝) 

=∑∑𝑐𝑖𝑐𝑘𝜎𝑖𝑘

𝑝

𝑘=1

𝑝

𝑖=1

=∑𝑐𝑖
2𝜎𝑖𝑖

𝑝

𝑖=1

+∑∑𝑐𝑖𝑐𝑘𝜎𝑖𝑘⏟        
𝑖≠𝑘

 

=∑𝑐𝑖
2𝜎𝑖𝑖

𝑝

𝑖=1

+ 2∑𝑐𝑖𝑐𝑘𝜎𝑖𝑘
𝑖<𝑘

 ∎ 
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Theorem 3.3.3 (Covariance of Two Linear Combinations of 𝐗). Suppose two linear 

combinations 𝐛′
(1×𝑝)

⋅ 𝐗
(𝑝×1)

 and 𝐜′
(1×𝑝)

⋅ 𝐗
(𝑝×1)

 are given following Definition 3.3.1 and a 

population variance-covariance ∑𝐗
(𝑝×𝑝)

= Cov(𝐗)
(𝑝×𝑝)

 is given by Theorem 3.2.1.Then the 

covariance of two linear combinations of 𝐗
(𝑝×1)

, is given by 

cov ( 𝐛′
(1×𝑝)

⋅ 𝐗
(𝑝×1)

, 𝐜′
(1×𝑝)

⋅ 𝐗
(𝑝×1)

) = 𝐛′
(1×𝑝)

⋅ ∑𝐗
(𝑝×𝑝)

⋅ 𝐜
(𝑝×1)

 

                                                         = ∑∑𝑏𝑖𝑐𝑘𝜎𝑖𝑘

𝑝

𝑘=1

𝑝

𝑖=1

=∑𝑏𝑖𝑐𝑖𝜎𝑖𝑖

𝑝

𝑖=1

+∑∑𝑏𝑖𝑐𝑘𝜎𝑖𝑘⏟        
𝑖≠𝑘

 

Proof. Using properties of variance and covariance. 

cov ( 𝐛′
(1×𝑝)

⋅ 𝐗
(𝑝×1)

, 𝐜′
(1×𝑝)

⋅ 𝐗
(𝑝×1)

) 

= cov

(

 
 
[𝑏1, 𝑏2, … , 𝑏𝑝]

(1×𝑝)

[

𝑋1
𝑋2
⋮
𝑋𝑝

]

(𝑝×1)

, [𝑐1, 𝑐2, … , 𝑐𝑝]
(1×𝑝)

[

𝑋1
𝑋2
⋮
𝑋𝑝

]

(𝑝×1))

 
 

 

= cov(𝑏1𝑋1 + 𝑏2𝑋2 +⋯+ 𝑏𝑝𝑋𝑝, 𝑐1𝑋1 + 𝑐2𝑋2 +⋯+ 𝑐𝑝𝑋𝑝) 

  



60 
 

= 𝑏1𝑐1var(𝑋1) + 𝑏1𝑐2cov(𝑋1, 𝑋2) + ⋯+ 𝑏1𝑐𝑝cov(𝑋1, 𝑋𝑝) 

    +𝑏2𝑐1cov(𝑋2, 𝑋1) + 𝑏2𝑐2var(𝑋2) + ⋯+ 𝑏2𝑐𝑝cov(𝑋2, 𝑋𝑝) 

    +⋯+ 

    𝑏𝑝𝑐1cov(𝑋𝑝, 𝑋1) + 𝑏𝑝𝑐2cov(𝑋𝑝, 𝑋2) + ⋯+ 𝑏𝑝𝑐𝑝var(𝑋𝑝) 

= 𝑏1𝑐1𝜎11 + 𝑏2𝑐2𝜎22 +⋯+ 𝑏𝑝𝑐𝑝𝜎𝑝𝑝 + 𝑏1𝑐2𝜎12 + 𝑏2𝑐1𝜎21 

    +⋯+ 𝑏𝑝−1𝑐𝑝𝜎(𝑝−1)(𝑝) + 𝑏𝑝𝑐𝑝−1𝜎(𝑝)(𝑝−1) 

=∑∑𝑏𝑖𝑐𝑘𝜎𝑖𝑘

𝑝

𝑘=1

𝑝

𝑖=1

 

=∑𝑏𝑖𝑐𝑖𝜎𝑖𝑖

𝑝

𝑖=1

+∑∑𝑏𝑖𝑐𝑘𝜎𝑖𝑘⏟        
𝑖≠𝑘

 

= 𝐛′
(1×𝑝)

⋅ ∑𝐗
(𝑝×𝑝)

⋅ 𝐜
(𝑝×1)

 

= [𝑏1, 𝑏2, … , 𝑏𝑝]
(1×𝑝)

[

𝜎11 𝜎12 ⋯ 𝜎1𝑝
𝜎21 𝜎22 ⋯ 𝜎2𝑝
⋮ ⋮ ⋱ ⋮
𝜎𝑝1 𝜎𝑝2 ⋯ 𝜎𝑝𝑝

]

(𝑝×𝑝)

[

𝑐1
𝑐2
⋮
𝑐𝑝

]

(𝑝×1)

 

= [𝑏1, 𝑏2, … , 𝑏𝑝]
(1×𝑝)

[

𝑐1𝜎11 + 𝑐2𝜎12 +⋯+ 𝑐𝑝𝜎1𝑝
𝑐1𝜎21 + 𝑐2𝜎22 +⋯+ 𝑐𝑝𝜎2𝑝

               ⋮
𝑐1𝜎𝑝1 + 𝑐2𝜎𝑝2 +⋯+ 𝑐𝑝𝜎𝑝𝑝

]

(𝑝×1)
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= 𝑏1(𝑐1𝜎11 + 𝑐2𝜎12 +⋯+ 𝑐𝑝𝜎1𝑝) 

    +𝑏2(𝑐1𝜎21 + 𝑐2𝜎22 +⋯+ 𝑐𝑝𝜎2𝑝) 

    +⋯+ 

    𝑏𝑝(𝑐1𝜎𝑝1 + 𝑐2𝜎𝑝2 +⋯+ 𝑐𝑝𝜎𝑝𝑝) 

= 𝑏1𝑐1𝜎11 + 𝑏1𝑐2𝜎12 +⋯+ 𝑏1𝑐𝑝𝜎1𝑝 

    +𝑏2𝑐1𝜎21 + 𝑏2𝑐2𝜎22 +⋯+ 𝑏2𝑐𝑝𝜎2𝑝 

    +⋯+ 

    𝑏𝑝𝑐1𝜎𝑝1 + 𝑏𝑝𝑐2𝜎𝑝2 +⋯+ 𝑏𝑝𝑐𝑝𝜎𝑝𝑝 

= 𝑏1𝑐1𝜎11 + 𝑏2𝑐2𝜎22 +⋯+ 𝑏𝑝𝑐𝑝𝜎𝑝𝑝 + 𝑏1𝑐2𝜎12 + 𝑏2𝑐1𝜎21 

    +⋯+ 𝑏𝑝−1𝑐𝑝𝜎(𝑝−1)(𝑝) + 𝑏𝑝𝑐𝑝−1𝜎(𝑝)(𝑝−1) 

=∑∑𝑏𝑖𝑐𝑘𝜎𝑖𝑘

𝑝

𝑘=1

𝑝

𝑖=1

=∑𝑏𝑖𝑐𝑖𝜎𝑖𝑖

𝑝

𝑖=1

+∑∑𝑏𝑖𝑐𝑘𝜎𝑖𝑘⏟        
𝑖≠𝑘

 ∎ 
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3.3.3 𝒒 Linear Combinations 

Definition 3.3.2 (𝑞 Linear Combinations of 𝐗). Consider 𝐂
(𝑞×𝑝)

a matrix of real 

constants and the 𝒒 linear combinations of 𝐗
(𝑝×1)

, 𝑌𝑖,  

𝑌1 = 𝐜1
′

(1×𝑝)
⋅ 𝐗
(𝑝×1)

= 𝑐11𝑋1 + 𝑐12𝑋2 +⋯+ 𝑐1𝑝𝑋𝑝 

𝑌2 = 𝐜2
′

(1×𝑝)
⋅ 𝐗
(𝑝×1)

= 𝑐21𝑋1 + 𝑐22𝑋2 +⋯+ 𝑐2𝑝𝑋𝑝  

                                                        ⋮                                                 ⋮               

𝑌𝑞 = 𝐜𝑞
′

(1×𝑝)

⋅ 𝐗
(𝑝×1)

= 𝑐𝑞1𝑋1 + 𝑐𝑞2𝑋2 +⋯+ 𝑐𝑞𝑝𝑋𝑝 

or in matrix notation, 

𝐘
(𝑞×1)

= [

𝑌1
𝑌2
⋮
𝑌𝑞

]

(𝑞×1)

=

[
 
 
 
 
 
𝐜1
′

(1×𝑝)
⋅ 𝐗
(𝑝×1)

𝐜2
′

(1×𝑝)
⋅ 𝐗
(𝑝×1)

⋮
𝐜𝑞
′

(1×𝑝)

⋅ 𝐗
(𝑝×1)]

 
 
 
 
 

(𝑞×1)

= [

𝑐11 𝑐12 ⋯ 𝑐1𝑝
𝑐21 𝑐22 ⋯ 𝑐2𝑝
⋮ ⋮ ⋱ ⋮
𝑐𝑞1 𝑐𝑞2 ⋯ 𝑐𝑞𝑝

]

(𝑞×𝑝)

[

𝑋1
𝑋2
⋮
𝑋𝑝

]

(𝑝×1)

= 𝐂
(𝑞×𝑝)

⋅ 𝐗
(𝑝×1)

 

[3, p. 76]. 
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3.3.4 Population Mean Vector for 𝒒 Linear Combinations 

Theorem 3.3.4 (Population Mean Vector for 𝑞 Linear Combinations of 𝐗). Suppose 𝑞 

linear combinations 𝑌𝑖 = 𝐜𝑖
′

(1×𝑝)
⋅ 𝐗
(𝑝×1)

 are given by Definition 3.3.2 and a population 

mean vector 𝝁𝐗
(𝑝×1)

= 𝐸(𝐗)
(𝑝×1)

 is given by Definition 3.2.11.Then the population mean 

vector for 𝒒 linear combinations of 𝐗
(𝑝×1)

, 𝐘
(𝑝×1)

, is given by 

𝝁𝐘
(𝑞×1)

= 𝐸(𝐘)
(𝑞×1)

= 𝐸 ( 𝐂
(𝑞×𝑝)

⋅ 𝐗
(𝑝×1)

) = 𝐂
(𝑞×𝑝)

⋅ 𝝁𝐗
(𝑝×1)

=

[
 
 
 
 
 
𝐜1
′

(1×𝑝)
⋅ 𝝁𝐗
(𝑝×1)

𝐜2
′

(1×𝑝)
⋅ 𝝁𝐗
(𝑝×1)

⋮
𝐜𝑞
′

(1×𝑝)

⋅ 𝝁𝐗
(𝑝×1)]

 
 
 
 
 

(𝑞×1)

 

[3, p. 76]. 

Proof. Using the linearity of 𝐸 and Definition 2.2.5. 

𝝁𝐘
(𝑞×1)

 

           = 𝐸(𝐘)
(𝑞×1)

 

           = 𝐸 ( 𝐂
(𝑞×𝑝)

⋅ 𝐗
(𝑝×1)

) 

           = 𝐸

(

 
 
[

𝑐11 𝑐12 ⋯ 𝑐1𝑝
𝑐21 𝑐22 ⋯ 𝑐2𝑝
⋮ ⋮ ⋱ ⋮
𝑐𝑞1 𝑐𝑞2 ⋯ 𝑐𝑞𝑝

]

(𝑞×𝑝)

[

𝑋1
𝑋2
⋮
𝑋𝑝

]

(𝑝×1))
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           = [

𝑐11 𝑐12 ⋯ 𝑐1𝑝
𝑐21 𝑐22 ⋯ 𝑐2𝑝
⋮ ⋮ ⋱ ⋮
𝑐𝑞1 𝑐𝑞2 ⋯ 𝑐𝑞𝑝

]

(𝑞×𝑝)

𝐸

(

 
 
[

𝑋1
𝑋2
⋮
𝑋𝑝

]

(𝑝×1))

 
 

 

           = [

𝑐11 𝑐12 ⋯ 𝑐1𝑝
𝑐21 𝑐22 ⋯ 𝑐2𝑝
⋮ ⋮ ⋱ ⋮
𝑐𝑞1 𝑐𝑞2 ⋯ 𝑐𝑞𝑝

]

(𝑞×𝑝)

[

𝐸(𝑋1)
𝐸(𝑋2)
⋮

𝐸(𝑋𝑝)

]

(𝑝×1)

 

           = [

𝑐11 𝑐12 ⋯ 𝑐1𝑝
𝑐21 𝑐22 ⋯ 𝑐2𝑝
⋮ ⋮ ⋱ ⋮
𝑐𝑞1 𝑐𝑞2 ⋯ 𝑐𝑞𝑝

]

(𝑞×𝑝)

[

𝜇1
𝜇2
⋮
𝜇𝑝

]

(𝑝×1)

 

           = 𝐂
(𝑞×𝑝)

⋅ 𝝁𝐗
(𝑝×1)

 

           = [

𝑐11𝜇1 + 𝑐12𝜇2 +⋯+ 𝑐1𝑝𝜇𝑝
𝑐21𝜇1 + 𝑐22𝜇2 +⋯+ 𝑐2𝑝𝜇𝑝

                ⋮
𝑐𝑞1𝜇1 + 𝑐𝑞2𝜇2 +⋯+ 𝑐𝑞𝑝𝜇𝑝

]

(𝑞×1)

 

           =

[
 
 
 
 
 
𝐜1
′

(1×𝑝)
⋅ 𝝁𝐗
(𝑝×1)

𝐜2
′

(1×𝑝)
⋅ 𝝁𝐗
(𝑝×1)

⋮
𝐜𝑞
′

(1×𝑝)

⋅ 𝝁𝐗
(𝑝×1)]

 
 
 
 
 

(𝑞×1)

 ∎ 
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Thus, the 𝑖th row of 𝐘
(𝑞×1)

 has population mean 

�̅�𝑖 = 𝐸(𝑌𝑖) = 𝐸 ( 𝐜𝑖
′

(1×𝑝)
⋅ 𝐗
(𝑝×1)

) = 𝐜𝑖
′

(1×𝑝)
⋅ 𝝁𝐗
(𝑝×1)

 

for 𝑖 = 1,2, … , 𝑞. 

3.3.5 Population Variance-Covariance Matrix for 𝒒 Linear 

Combinations 

Theorem 3.3.5. (Population Variance-Covariance Matrix for 𝑞 Linear Combinations 

of 𝐗). Suppose 𝑞 linear combinations 𝑌𝑖 = 𝐜𝑖
′

(1×𝑝)
⋅ 𝐗
(𝑝×1)

 are given by Definition 3.3.2 

and a population variance-covariance ∑𝐗
(𝑝×𝑝)

= Cov(𝐗)
(𝑝×𝑝)

 is given by Theorem 3.2.1. 

Then the symmetric population variance-covariance matrix for 𝒒 linear 

combinations of 𝐗
(𝑝×1)

, 𝐘
(𝑞×1)

, is given by 

∑𝐘
(𝑞×𝑞)

= Cov(𝐘)
(𝑞×𝑞)

= 𝐂
(𝑞×𝑝)

⋅ ∑𝐗
(𝑝×𝑝)

⋅ 𝐂′
(𝑝×𝑞)

 

[3, p. 76]. 

Proof. Using Definition 2.2.5 for matrix multiplication and following Theorem 3.3.2 

for computation of diagonal elements and Theorem 3.3.3 for computation of off-

diagonal elements. 

∑𝐘
(𝑞×𝑞)

 

           = Cov(𝐘)
(𝑞×𝑞)
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           = 𝐂

(𝑞×𝑝)
⋅ ∑𝐗
(𝑝×𝑝)

⋅ 𝐂′
(𝑝×𝑞)

 

           = [

𝑐11 𝑐12 ⋯ 𝑐1𝑝
𝑐21 𝑐22 ⋯ 𝑐2𝑝
⋮ ⋮ ⋱ ⋮
𝑐𝑞1 𝑐𝑞2 ⋯ 𝑐𝑞𝑝

]

(𝑞×𝑝)

[

𝜎11 𝜎12 ⋯ 𝜎1𝑝
𝜎21 𝜎22 ⋯ 𝜎2𝑝
⋮ ⋮ ⋱ ⋮
𝜎𝑝1 𝜎𝑝2 ⋯ 𝜎𝑝𝑝

]

(𝑝×𝑝)

[

𝑐11 𝑐21 ⋯ 𝑐𝑞1
𝑐12 𝑐22 ⋯ 𝑐𝑞2
⋮ ⋮ ⋱ ⋮
𝑐1𝑝 𝑐2𝑝 ⋯ 𝑐𝑞𝑝

]

(𝑝×𝑞)

 

          =

[
 
 
 
 
 
𝐜1
′

(1×𝑝)
⋅ ∑𝐗
(𝑝×𝑝)

⋅ 𝐜1
(𝑝×1)

𝐜1
′

(1×𝑝)
⋅ ∑𝐗
(𝑝×𝑝)

⋅ 𝐜2
(𝑝×1)

⋯ 𝐜1
′

(1×𝑝)
⋅ ∑𝐗
(𝑝×𝑝)

⋅ 𝐜𝑞
(𝑝×1)

𝐜2
′

(1×𝑝)
⋅ ∑𝐗
(𝑝×𝑝)

⋅ 𝐜1
(𝑝×1)

𝐜2
′

(1×𝑝)
⋅ ∑𝐗
(𝑝×𝑝)

⋅ 𝐜2
(𝑝×1)

⋯ 𝐜2
′

(1×𝑝)
⋅ ∑𝐗
(𝑝×𝑝)

⋅ 𝐜𝑞
(𝑝×1)

⋮ ⋮ ⋱ ⋮
𝐜𝑞
′

(1×𝑝)

⋅ ∑𝐗
(𝑝×𝑝)

⋅ 𝐜1
(𝑝×1)

𝐜𝑞
′

(1×𝑝)

⋅ ∑𝐗
(𝑝×𝑝)

⋅ 𝐜2
(𝑝×1)

⋯ 𝐜𝑞
′

(1×𝑝)

⋅ ∑𝐗
(𝑝×𝑝)

⋅ 𝐜𝑞
(𝑝×1)]

 
 
 
 
 

(𝑞×𝑞)

 ∎ 

Thus, the 𝑖th row of 𝐘
(𝑞×1)

 has population variance  

var(𝑌𝑖) = 𝐜𝑖
′

(1×𝑝)
⋅ ∑𝐗
(𝑝×𝑝)

⋅ 𝐜𝑖
(𝑝×1)

 

for 𝑖 = 1,2, … , 𝑞. 

And the 𝑖th row and 𝑘th row of 𝐘
(𝑞×1)

have population covariance 

cov(𝑌𝑖, 𝑌𝑘) = 𝐜𝑖
′

(1×𝑝)
⋅ ∑𝐗
(𝑝×𝑝)

⋅ 𝐜𝑘
(𝑝×1)

= 𝐜𝑘
′

(1×𝑝)
⋅ ∑𝐗
(𝑝×𝑝)

⋅ 𝐜𝑖
(𝑝×1)

 

for 𝑖, 𝑘 = 1,2, … , 𝑞. 
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3.4 Population Random Vector, Mean Vector, and 

Variance-Covariance Matrix for Standardized 

Continuous Random Variables 

3.4.1 Population Random Vector for Standardized Continuous 

Random Variables 

Definition 3.4.1 (Population Random Vector 𝐙). A population random vector for 

standardized continuous variables is a vector whose elements are standardized 

population continuous random variables from a 𝑝 − 𝑣𝑎𝑟𝑖𝑎𝑡𝑒 population. Each 

standardized continuous random variable is of the form  

𝑍𝑖 =
𝑋𝑖 − 𝜇𝑖

√𝜎𝑖𝑖
 

for 𝑖 = 1,2, … , 𝑝.  

Specifically, let the population random vector 𝐙
(𝑝×1)

= {𝑍𝑖} be defined by 

𝐙
(𝑝×1)

= 𝐕−1 2⁄

(𝑝×𝑝)
⋅ ( 𝐗

(𝑝×1)
− 𝝁𝐗

(𝑝×1)
) = [

𝑍1
𝑍2
⋮
𝑍𝑝

]

(𝑝×1)

=

[
 
 
 
 
 
 
 
𝑋1 − 𝜇1

√𝜎11
𝑋2 − 𝜇2

√𝜎22
⋮

𝑋𝑝 − 𝜇𝑝

√𝜎𝑝𝑝 ]
 
 
 
 
 
 
 

(𝑝×1)

 

where 𝐗
(𝑝×1)

 is a population random vector defined in Definition 3.2.1., 𝝁𝐗
(𝑝×1)

is a  
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population mean vector defined in Definition 3.2.11., and 𝐕−1 2⁄

(𝑝×𝑝)
is an inverse 

population standard deviation matrix defined in Definition 3.2.12. 

𝐙
(𝑝×1)

= 𝐕−1 2⁄

(𝑝×𝑝)
⋅ ( 𝐗

(𝑝×1)
− 𝝁𝐗

(𝑝×1)
) 

          =

[
 
 
 
 
 
 
 
1

√𝜎11
0 ⋯ 0

0
1

√𝜎22
⋯ 0

⋮ ⋮ ⋱ ⋮

0 0 ⋯
1

√𝜎𝑝𝑝]
 
 
 
 
 
 
 

(𝑝×𝑝)

⋅

(

 
 
[

𝑋1
𝑋2
⋮
𝑋𝑝

]

(𝑝×1)

− [

𝜇1
𝜇2
⋮
𝜇𝑝

]

(𝑝×1))

 
 

 

          =

[
 
 
 
 
 
 
 
1

√𝜎11
0 ⋯ 0

0
1

√𝜎22
⋯ 0

⋮ ⋮ ⋱ ⋮

0 0 ⋯
1

√𝜎𝑝𝑝]
 
 
 
 
 
 
 

(𝑝×𝑝)

⋅

(

 
 
[

𝑋1 − 𝜇1
𝑋2 − 𝜇2

⋮
𝑋𝑝 − 𝜇𝑝

]

(𝑝×1) )

 
 
=

[
 
 
 
 
 
 
 
𝑋1 − 𝜇1

√𝜎11
𝑋2 − 𝜇2

√𝜎22
⋮

𝑋𝑝 − 𝜇𝑝

√𝜎𝑝𝑝 ]
 
 
 
 
 
 
 

(𝑝×1)

= [

𝑍1
𝑍2
⋮
𝑍𝑝

]

(𝑝×1)

 

[3, pp. 436-437]. 
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3.4.2 Population Parameters for Standardized Continuous 

Random Variables 

Theorem 3.4.1 (Univariate Marginal Population Mean for 𝑍𝑖). Suppose the 

univariate marginal population means 𝜇𝑖 = 𝐸(𝑋𝑖) are given by Definition 3.2.5 and 

univariate marginal population standard deviations √𝜎𝑖𝑖 are given by Definition 

3.2.6. Then the univariate marginal population means for 𝑍𝑖  are given by 

𝜇𝑧,𝑖 = 𝐸(𝑍𝑖) = 𝐸 (
𝑋𝑖 − 𝜇𝑖

√𝜎𝑖𝑖
) = 0 

for 𝑖 = 1,2, … , 𝑝. 

Proof. Using linearity of 𝐸. 

𝜇𝑧,𝑖 

         = 𝐸(𝑍𝑖) 

         = 𝐸 (
𝑋𝑖 − 𝜇𝑖

√𝜎𝑖𝑖
) 

         =
1

√𝜎𝑖𝑖
𝐸(𝑋𝑖 − 𝜇𝑖) 

         =
1

√𝜎𝑖𝑖
[𝐸(𝑋𝑖) − 𝜇𝑖] 

         =
1

√𝜎𝑖𝑖
[𝜇𝑖 − 𝜇𝑖] 

         = 0 ∎ 
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Theorem 3.4.2 (Univariate Marginal Population Variance for 𝑍𝑖). Suppose the 

univariate marginal population means 𝜇𝑖 = 𝐸(𝑋𝑖) are given by Definition 3.2.5 and 

univariate marginal population standard deviations √𝜎𝑖𝑖 are given by Definition 

3.2.6. Then the univariate marginal population variances for 𝑍𝑖are given by 

𝜎𝑧,𝑖𝑖 = 𝐸(𝑍𝑖 − 𝜇𝑧,𝑖)
2 = var(𝑍𝑖) = var (

𝑋𝑖 − 𝜇𝑖

√𝜎𝑖𝑖
) = 1 

for 𝑖 = 1,2, … , 𝑝. 

Proof. Using properties of variance and covariance. 

𝜎𝑧,𝑖𝑖 

         = 𝐸(𝑍𝑖 − 𝜇𝑧,𝑖)
2 

         = var(𝑍𝑖) 

         = var (
𝑋𝑖 − 𝜇𝑖

√𝜎𝑖𝑖
) 

         =
1

𝜎𝑖𝑖
var(𝑋𝑖 − 𝜇𝑖) 

         =
1

𝜎𝑖𝑖
cov(𝑋𝑖 − 𝜇𝑖, 𝑋𝑖 − 𝜇𝑖) 

         =
1

𝜎𝑖𝑖
[cov(𝑋𝑖, 𝑋𝑖) − cov(𝑋𝑖, 𝜇𝑖) − cov(𝜇𝑖, 𝑋𝑖) + cov(𝜇𝑖, 𝜇𝑖)] 

         =
1

𝜎𝑖𝑖
cov(𝑋𝑖 , 𝑋𝑖) =

1

𝜎𝑖𝑖
var(𝑋𝑖) 

         =
𝜎𝑖𝑖
𝜎𝑖𝑖

= 1 ∎ 
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Theorem 3.4.3 (Bivariate Marginal Population Covariance for 𝑍𝑖  and 𝑍𝑘). Suppose 

the univariate marginal population means 𝜇𝑖 = 𝐸(𝑋𝑖) are given by Definition 3.2.5 

and univariate marginal population standard deviations √𝜎𝑖𝑖  are given by Definition 

3.2.6. Then the bivariate marginal population covariances for 𝑍𝑖  and 𝑍𝑘are given by 

𝜎𝑧,𝑖𝑘 = 𝐸(𝑍𝑖 − 𝜇𝑧,𝑖)(𝑍𝑘 − 𝜇𝑧,𝑘) = cov(𝑍𝑖, 𝑍𝑘) = cov (
𝑋𝑖 − 𝜇𝑖

√𝜎𝑖𝑖
,
𝑋𝑘 − 𝜇𝑘

√𝜎𝑘𝑘
) = 𝜌𝑖𝑘  

for 𝑖, 𝑘 = 1,2, … , 𝑝.  

Proof. Using properties of covariance and Definition 3.2.8. 

𝜎𝑧,𝑖𝑘 

= 𝐸(𝑍𝑖 − 𝜇𝑧,𝑖)(𝑍𝑘 − 𝜇𝑧,𝑘) 

= cov(𝑍𝑖, 𝑍𝑘) 

= cov (
𝑋𝑖 − 𝜇𝑖

√𝜎𝑖𝑖
,
𝑋𝑘 − 𝜇𝑘

√𝜎𝑘𝑘
) 

=
1

√𝜎𝑖𝑖√𝜎𝑘𝑘
cov(𝑋𝑖 − 𝜇𝑖, 𝑋𝑘 − 𝜇𝑘) 

=
1

√𝜎𝑖𝑖√𝜎𝑘𝑘
[cov(𝑋𝑖, 𝑋𝑘) − cov(𝑋𝑖, 𝜇𝑘) − cov(𝜇𝑖, 𝑋𝑘) + cov(𝜇𝑖, 𝜇𝑘)] 

=
1

√𝜎𝑖𝑖√𝜎𝑘𝑘
cov(𝑋𝑖, 𝑋𝑘) 

=
𝜎𝑖𝑘

√𝜎𝑖𝑖√𝜎𝑘𝑘
= corr(𝑋𝑖, 𝑋𝑘) = 𝜌𝑖𝑘 ∎ 
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Thus, standardizing population continuous random variables turns bivariate 

marginal population covariances 𝜎𝑧,𝑖𝑘 into bivariate marginal population 

correlations 𝜌𝑖𝑘. That is, 𝜎𝑧,𝑖𝑘 = 𝜌𝑖𝑘 for 𝑖, 𝑘 = 1,2, … , 𝑝. If 𝑋𝑖, 𝑋𝑘 are statistically 

independent, then 𝜎𝑧,𝑖𝑘 = 𝜌𝑖𝑘 = 0. Note 𝜎𝑧,𝑖𝑘 = 𝜎𝑧,𝑘𝑖, and when 𝑖 = 𝑘, 𝜎𝑧,𝑖𝑖 = 𝜌𝑖𝑖 = 1. 

3.4.3 Population Mean Vector for Standardized Continuous 

Random Variables 

Definition 3.4.2 (Population Mean Vector for 𝐙). The population mean vector for 

𝐙
(𝑝×1)

 or expected value of 𝐙
(𝑝×1)

is a random vector consisting of the univariate 

marginal expectations of each of its standardized elements. Then the population 

mean vector for 𝐙
(𝑝×1)

 or expected value of 𝐙
(𝑝×1)

 denoted by 𝝁𝐙
(𝑝×1)

= 𝐸(𝐙)
(𝑝×1)

, is the 𝑝 × 1 

vector 

𝝁𝐙
(𝑝×1)

= 𝐸(𝐙)
(𝑝×1)

= [

𝐸(𝑍1)
𝐸(𝑍2)
⋮

𝐸(𝑍𝑝)

]

(𝑝×1)

= [

𝜇𝑧,1
𝜇𝑧,2
⋮
𝜇𝑧,𝑝

]

(𝑝×1)

=

[
 
 
 
0𝑧,1
0𝑧,2
⋮
0𝑧,𝑝]

 
 
 

(𝑝×1)

= [

0
0
⋮
0

]

(𝑝×1)

= 𝟎
(𝑝×1)

 

Thus, the population mean vector for 𝐙
(𝑝×1)

is the 𝟎
(𝑝×1)

− vector [3, p. 437]. 
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3.4.4 Population Variance-Covariance Matrix for Standardized 

Continuous Random Variables 

Theorem 3.4.4 (Population Variance-Covariance Matrix for 𝐙). The population 

variance-covariance matrix for 𝐙
(𝑝×1)

 is a symmetric matrix containing the 𝑝 

univariate marginal population variances 𝜎𝑧,𝑖𝑖 = 1 and the 𝑝(𝑝 − 1) 2⁄  distinct 

bivariate marginal population covariances 𝜎𝑧,𝑖𝑘 = 𝜌𝑖𝑘 (𝑖 < 𝑘). Then, if these 

variances and covariances exist, the 𝑝 × 𝑝 population variance-covariance matrix for 

𝐙
(𝑝×1)

 is given by 

∑𝐙
(𝑝×𝑝)

= Cov(𝐙)
(𝑝×𝑝)

= 𝐸(𝐙 − 𝝁𝐙)
(𝑝×1)

(𝐙 − 𝝁𝐙)
′

(1×𝑝)
= 𝝆

(𝑝×𝑝)
 

where 𝝁𝐙
(𝑝×1)

= 𝐸(𝐙)
(𝑝×1)

= 𝟎
(𝑝×1)

 is the population mean vector for 𝐙
(𝑝×1)

 [3, p. 437]. 

Proof. Use linearity of the operator 𝐸, Definition 2.1.2, 2.1.11, and 2.2.5, Theorem 

3.4.2 and Theorem 3.4.3.  

∑𝐙
(𝑝×𝑝)

 

= Cov(𝐙)
(𝑝×𝑝)

 

= 𝐸(𝐙 − 𝝁𝐙)
(𝑝×1)

(𝐙 − 𝝁𝐙)
′

(1×𝑝)
 

= 𝐸

(

  
 

[
 
 
 
𝑍1 − 𝜇𝑧,1
𝑍2 − 𝜇𝑧,2

⋮
𝑍𝑝 − 𝜇𝑧,𝑝]

 
 
 

(𝑝×1)

⋅ [𝑍1 − 𝜇𝑧,1, 𝑍2 − 𝜇𝑧,2, … , 𝑍𝑝 − 𝜇𝑧,𝑝]
(1×𝑝)

)
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= 𝐸

(

 
 
 

[
 
 
 
 

(𝑍1 − 𝜇𝑧,1)
2 (𝑍1 − 𝜇𝑧,1)(𝑍2 − 𝜇𝑧,2) ⋯ (𝑍1 − 𝜇𝑧,1)(𝑍𝑝 − 𝜇𝑧,𝑝)

(𝑍2 − 𝜇𝑧,2)(𝑍1 − 𝜇𝑧,1) (𝑍2 − 𝜇𝑧,2)
2 ⋯ (𝑍2 − 𝜇𝑧,2)(𝑍𝑝 − 𝜇𝑧,𝑝)

⋮ ⋮ ⋱ ⋮
(𝑍𝑝 − 𝜇𝑧,𝑝)(𝑍1 − 𝜇𝑧,1) (𝑍𝑝 − 𝜇𝑧,𝑝)(𝑍2 − 𝜇𝑧,2) ⋯ (𝑍𝑝 − 𝜇𝑧,𝑝)

2 ]
 
 
 
 

(𝑝×𝑝) )

 
 
 

 

= 𝐸

[
 
 
 
 

(𝑍1 − 𝜇𝑧,1)
2 (𝑍1 − 𝜇𝑧,1)(𝑍2 − 𝜇𝑧,2) ⋯ (𝑍1 − 𝜇𝑧,1)(𝑍𝑝 − 𝜇𝑧,𝑝)

(𝑍2 − 𝜇𝑧,2)(𝑍1 − 𝜇𝑧,1) (𝑍2 − 𝜇𝑧,2)
2 ⋯ (𝑍2 − 𝜇𝑧,2)(𝑍𝑝 − 𝜇𝑧,𝑝)

⋮ ⋮ ⋱ ⋮
(𝑍𝑝 − 𝜇𝑧,𝑝)(𝑍1 − 𝜇𝑧,1) (𝑍𝑝 − 𝜇𝑧,𝑝)(𝑍2 − 𝜇𝑧,2) ⋯ (𝑍𝑝 − 𝜇𝑧,𝑝)

2 ]
 
 
 
 

(𝑝×𝑝)

 

=

[
 
 
 
 

𝐸(𝑍1 − 𝜇𝑧,1)
2 𝐸(𝑍1 − 𝜇𝑧,1)(𝑍2 − 𝜇𝑧,2) ⋯ 𝐸(𝑍1 − 𝜇𝑧,1)(𝑍𝑝 − 𝜇𝑧,𝑝)

𝐸(𝑍2 − 𝜇𝑧,2)(𝑍1 − 𝜇𝑧,1) 𝐸(𝑍2 − 𝜇𝑧,2)
2 ⋯ 𝐸(𝑍2 − 𝜇𝑧,2)(𝑍𝑝 − 𝜇𝑧,𝑝)

⋮ ⋮ ⋱ ⋮
𝐸(𝑍𝑝 − 𝜇𝑧,𝑝)(𝑍1 − 𝜇𝑧,1) 𝐸(𝑍𝑝 − 𝜇𝑧,𝑝)(𝑍2 − 𝜇𝑧,2) ⋯ 𝐸(𝑍𝑝 − 𝜇𝑧,𝑝)

2 ]
 
 
 
 

(𝑝×𝑝)

 

= [

𝜎𝑧,11 𝜎𝑧,12 ⋯ 𝜎𝑧,1𝑝
𝜎𝑧,21 𝜎𝑧,22 ⋯ 𝜎𝑧,2𝑝
⋮ ⋮ ⋱ ⋮

𝜎𝑧,𝑝1 𝜎𝑧,𝑝2 ⋯ 𝜎𝑧,𝑝𝑝

]

(𝑝×𝑝)

=

[
 
 
 
 
 
 
 

𝜎11

√𝜎11√𝜎11

𝜎12

√𝜎11√𝜎22
⋯

𝜎1𝑝

√𝜎11√𝜎𝑝𝑝
𝜎21

√𝜎22√𝜎11

𝜎22

√𝜎22√𝜎22
⋯

𝜎2𝑝

√𝜎22√𝜎𝑝𝑝
⋮ ⋮ ⋱ ⋮
𝜎𝑝1

√𝜎𝑝𝑝√𝜎11

𝜎𝑝2

√𝜎𝑝𝑝√𝜎22
⋯

𝜎𝑝𝑝

√𝜎𝑝𝑝√𝜎𝑝𝑝]
 
 
 
 
 
 
 

(𝑝×𝑝)

 

= [

𝜌11 𝜌12 ⋯ 𝜌1𝑝
𝜌21 𝜌22 ⋯ 𝜌2𝑝
⋮ ⋮ ⋱ ⋮
𝜌𝑝1 𝜌𝑝2 ⋯ 𝜌𝑝𝑝

]

(𝑝×𝑝)

=

[
 
 
 
1 𝜌12 ⋯ 𝜌1𝑝
𝜌21 1 ⋯ 𝜌2𝑝
⋮ ⋮ ⋱ ⋮
𝜌𝑝1 𝜌𝑝2 ⋯ 1 ]

 
 
 

(𝑝×𝑝)

= 𝝆
(𝑝×𝑝)

 

Hence, the population variance-covariance matrix for 𝐙
(𝑝×1)

 is equal to the population 

correlation matrix of 𝐗
(𝑝×1)

. That is, ∑𝐙
(𝑝×𝑝)

= 𝝆
(𝑝×𝑝)

 ∎ 
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3.5 Mean Vector and Variance-Covariance Matrix for 

Linear Combinations of Standardized Continuous 

Random Variables 

3.5.1 Linear Combination of Standardized Continuous Random 

Variables 

Definition 3.5.1 (Linear Combination of 𝐙). Let 𝐜
(𝑝×1)

 be a 𝑝 × 1 vector of constants 

defined as 

𝐜
(𝑝×1)

= [

𝑐1
𝑐2
⋮
𝑐𝑝

]

(𝑝×1)

 

and let 𝐙
(𝑝×1)

 be a 𝑝 × 1 population random vector of standardized continuous 

random variables 

𝐙
(𝑝×1)

= [

𝑍1
𝑍2
⋮
𝑍𝑝

]

(𝑝×1)

 

Then a linear combination of 𝐙
(𝑝×1)

, 𝑝 standardized random variables, is given by the 

inner product 
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𝐜′
(1×𝑝)

⋅ 𝐙
(𝑝×1)

= [𝑐1, 𝑐2, … , 𝑐𝑝]
(1×𝑝)

[

𝑍1
𝑍2
⋮
𝑍𝑝

]

(𝑝×1)

= 𝑐1𝑍1 + 𝑐2𝑍2 +⋯+ 𝑐𝑝𝑍𝑝. 

3.5.2 Population Parameters for Linear Combinations of 

Standardized Continuous Random Variables  

Theorem 3.5.1 (Mean of a Linear Combination of 𝐙). Suppose a linear combination 

of 𝐙
(𝑝×1)

, 𝐜′
(1×𝑝)

⋅ 𝐙
(𝑝×1)

, is given by Definition 3.5.1 and a population mean vector of 

𝐙
(𝑝×1)

, 𝝁𝐙
(𝑝×1)

= 𝐸(𝐙)
(𝑝×1)

= 𝟎
(𝑝×1)

, is given by Definition 3.4.1. Then the expected value or 

mean of a linear combination of 𝐙
(𝑝×1)

, is given by 

𝐸 ( 𝐜′
(1×𝑝)

⋅ 𝐙
(𝑝×1)

) = 𝐜′
(1×𝑝)

⋅ 𝝁𝐙
(𝑝×1)

= 0 

Proof. Using linearity of 𝐸 and Theorem 3.4.1. 

𝐸 ( 𝐜′
(1×𝑝)

⋅ 𝐙
(𝑝×1)

) 

                                = 𝐸

(

 
 
[𝑐1, 𝑐2, … , 𝑐𝑝]

(1×𝑝)

[

𝑍1
𝑍2
⋮
𝑍𝑝

]

(𝑝×1))

 
 

 

                                = 𝐸(𝑐1𝑍1 + 𝑐2𝑍2 +⋯+ 𝑐𝑝𝑍𝑝) 

                                = 𝑐1𝐸(𝑍1) + 𝑐2𝐸(𝑍2) + ⋯+ 𝑐𝑝𝐸(𝑍𝑝) 

                                = 𝑐1𝜇𝑧,1 + 𝑐2𝜇𝑧,2 +⋯+ 𝑐𝑝𝜇𝑧,𝑝 
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                                = [𝑐1, 𝑐2, … , 𝑐𝑝]
(1×𝑝)

[

𝜇𝑧,1
𝜇𝑧,2
⋮
𝜇𝑧,𝑝

]

(𝑝×1)

 

                                = 𝐜′
(1×𝑝)

⋅ 𝝁𝐙
(𝑝×1)

 

                                = 𝐜′
(1×𝑝)

⋅ 𝟎
(𝑝×1)

 

                                = 0 ∎ 

Theorem 3.5.2 (Variance of a Linear Combination of 𝐙). Suppose a linear 

combination of 𝐙
(𝑝×1)

, 𝐜′
(1×𝑝)

⋅ 𝐙
(𝑝×1)

, is given by Definition 3.5.1 and a population 

variance-covariance of 𝐙
(𝑝×1)

, ∑𝐙
(𝑝×𝑝)

= 𝝆
(𝑝×𝑝)

, is given by Theorem 3.4.4. Then the 

variance of a linear combination of 𝐙
(𝑝×1)

, is given by 

var ( 𝐜′
(1×𝑝)

⋅ 𝐙
(𝑝×1)

) = 𝐜′
(1×𝑝)

⋅ ∑𝐙
(𝑝×𝑝)

⋅ 𝐜
(𝑝×1)

=∑∑𝑐𝑖𝑐𝑘𝜎𝑧,𝑖𝑘

𝑝

𝑘=1

𝑝

𝑖

 

                                 = ∑𝑐𝑖
2𝜎𝑧,𝑖𝑖

𝑝

𝑖=1

+∑∑𝑐𝑖𝑐𝑘𝜎𝑧,𝑖𝑘⏟          
𝑖≠𝑘

=∑𝑐𝑖
2𝜎𝑧,𝑖𝑖

𝑝

𝑖=1

+ 2∑𝑐𝑖𝑐𝑘𝜎𝑧,𝑖𝑘
𝑖<𝑘

 

                                = 𝐜′
(1×𝑝)

⋅ 𝝆
(𝑝×𝑝)

⋅ 𝐜
(𝑝×1)

=∑∑𝑐𝑖𝑐𝑘𝜌𝑖𝑘

𝑝

𝑘=1

𝑝

𝑖

 

                                = ∑𝑐𝑖
2𝜌𝑖𝑖

𝑝

𝑖=1

+∑∑𝑐𝑖𝑐𝑘𝜌𝑖𝑘⏟        
𝑖≠𝑘

= 𝑝𝑐𝑖
2 + 2∑𝑐𝑖𝑐𝑘𝜌𝑖𝑘

𝑖<𝑘

. 
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Proof. Follows directly from Theorem 3.3.2, Theorem 3.4.3, and Theorem 3.4.4 ∎ 

Theorem 3.5.3 (Covariance of Two Linear Combinations of 𝐙). Suppose two linear 

combinations of 𝐙
(𝑝×1)

, 𝐛′
(1×𝑝)

⋅ 𝐙
(𝑝×1)

 and 𝐜′
(1×𝑝)

⋅ 𝐙
(𝑝×1)

, are given following Definition 3.5.1 

and a population variance-covariance of 𝐙
(𝑝×1)

, ∑𝐙
(𝑝×𝑝)

= 𝝆
(𝑝×𝑝)

 is given by Theorem 

3.4.4.Then the covariance of two linear combinations of 𝐙
(𝑝×1)

, is given by 

cov ( 𝐛′
(1×𝑝)

⋅ 𝐙
(𝑝×1)

, 𝐜′
(1×𝑝)

⋅ 𝐙
(𝑝×1)

) = 𝐛′
(1×𝑝)

⋅ ∑𝐙
(𝑝×𝑝)

⋅ 𝐜
(𝑝×1)

=∑∑𝑏𝑖𝑐𝑘𝜎𝑧,𝑖𝑘

𝑝

𝑘=1

𝑝

𝑖=1

 

                                                         = ∑∑𝑏𝑖𝑐𝑘𝜎𝑧,𝑖𝑘

𝑝

𝑘=1

𝑝

𝑖=1

= 𝑝𝑏𝑖𝑐𝑖 +∑∑𝑏𝑖𝑐𝑘𝜎𝑧,𝑖𝑘⏟          
𝑖≠𝑘

 

                                                         = 𝑝𝑏𝑖𝑐𝑖 +∑∑𝑏𝑖𝑐𝑘𝜌𝑖𝑘⏟        
𝑖≠𝑘

=∑∑𝑏𝑖𝑐𝑘𝜌𝑖𝑘

𝑝

𝑘=1

𝑝

𝑖=1

 

                                                         = 𝐛′
(1×𝑝)

⋅ 𝝆
(𝑝×𝑝)

⋅ 𝐜
(𝑝×1)

. 

Proof. Follows directly from Theorem 3.3.3, Theorem 3.4.3, and Theorem 3.4.4 ∎ 
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3.5.3 𝒒 Linear Combinations of Standardized Continuous 

Random Variables 

Definition 3.5.2 (𝑞 Linear Combinations of 𝐙). Consider 𝐂
(𝑞×𝑝)

a matrix of real 

constants and the 𝒒 linear combinations of 𝐙
(𝑝×1)

, 𝑌𝑖, 

𝑌1 = 𝐜1
′

(1×𝑝)
⋅ 𝐙
(𝑝×1)

= 𝑐11𝑍1 + 𝑐12𝑍2 +⋯+ 𝑐1𝑝𝑍𝑝 

𝑌2 = 𝐜2
′

(1×𝑝)
⋅ 𝐙
(𝑝×1)

= 𝑐21𝑍1 + 𝑐22𝑍2 +⋯+ 𝑐2𝑝𝑍𝑝  

                                                         ⋮                                                 ⋮               

𝑌𝑞 = 𝐜𝑞
′

(1×𝑝)

⋅ 𝐙
(𝑝×1)

= 𝑐𝑞1𝑍1 + 𝑐𝑞2𝑍2 +⋯+ 𝑐𝑞𝑝𝑍𝑝 

or in matrix notation, 

𝐘
(𝑞×1)

= [

𝑌1
𝑌2
⋮
𝑌𝑞

]

(𝑞×1)

=

[
 
 
 
 
 
𝐜1
′

(1×𝑝)
⋅ 𝐙
(𝑝×1)

𝐜2
′

(1×𝑝)
⋅ 𝐙
(𝑝×1)

⋮
𝐜𝑞
′

(1×𝑝)

⋅ 𝐙
(𝑝×1)]

 
 
 
 
 

(𝑞×1)

= [

𝑐11 𝑐12 ⋯ 𝑐1𝑝
𝑐21 𝑐22 ⋯ 𝑐2𝑝
⋮ ⋮ ⋱ ⋮
𝑐𝑞1 𝑐𝑞2 ⋯ 𝑐𝑞𝑝

]

(𝑞×𝑝)

[

𝑍1
𝑍2
⋮
𝑍𝑝

]

(𝑝×1)

= 𝐂
(𝑞×𝑝)

⋅ 𝐙
(𝑝×1)
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3.5.4 Population Mean Vector for 𝒒 Linear Combinations of 

Standardized Continuous Random Variables 

Theorem 3.5.4 (Population Mean Vector for 𝑞 Linear Combinations of 𝐙). Suppose 𝑞 

linear combinations of 𝐙
(𝑝×1)

, 𝑌𝑖 = 𝐜𝑖
′

(1×𝑝)
⋅ 𝐙
(𝑝×1)

 are given by Definition 3.5.2 and a 

population mean vector of 𝐙
(𝑝×1)

, 𝝁𝐙
(𝑝×1)

= 𝐸(𝐙)
(𝑝×1)

= 𝟎
(𝑝×1)

 is given by Definition 

3.4.1.Then the population mean vector for 𝒒 linear combinations of 𝐙
(𝑝×1)

, 𝐘
(𝑝×1)

, is 

given by 

𝝁𝐘
(𝑞×1)

= 𝐸(𝐘)
(𝑞×1)

= 𝐸 ( 𝐂
(𝑞×𝑝)

⋅ 𝐙
(𝑝×1)

) = 𝐂
(𝑞×𝑝)

⋅ 𝝁𝐙
(𝑝×1)

=

[
 
 
 
 
 
𝐜1
′

(1×𝑝)
⋅ 𝝁𝐙
(𝑝×1)

𝐜2
′

(1×𝑝)
⋅ 𝝁𝐙
(𝑝×1)

⋮
𝐜𝑞
′

(1×𝑝)

⋅ 𝝁𝐙
(𝑝×1)]

 
 
 
 
 

(𝑞×1)

= 𝟎
(𝑞×1)

 

Proof. Using the linearity of 𝐸 and Definition 2.2.5. 

𝝁𝐘
(𝑞×1)

 

           = 𝐸(𝐘)
(𝑞×1)

 

           = 𝐸 ( 𝐂
(𝑞×𝑝)

⋅ 𝐙
(𝑝×1)

) 

           = 𝐸

(

 
 
[

𝑐11 𝑐12 ⋯ 𝑐1𝑝
𝑐21 𝑐22 ⋯ 𝑐2𝑝
⋮ ⋮ ⋱ ⋮
𝑐𝑞1 𝑐𝑞2 ⋯ 𝑐𝑞𝑝

]

(𝑞×𝑝)

[

𝑍1
𝑍2
⋮
𝑍𝑝

]

(𝑝×1))
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           = [

𝑐11 𝑐12 ⋯ 𝑐1𝑝
𝑐21 𝑐22 ⋯ 𝑐2𝑝
⋮ ⋮ ⋱ ⋮
𝑐𝑞1 𝑐𝑞2 ⋯ 𝑐𝑞𝑝

]

(𝑞×𝑝)

𝐸

(

 
 
[

𝑍1
𝑍2
⋮
𝑍𝑝

]

(𝑝×1))

 
 

 

           = [

𝑐11 𝑐12 ⋯ 𝑐1𝑝
𝑐21 𝑐22 ⋯ 𝑐2𝑝
⋮ ⋮ ⋱ ⋮
𝑐𝑞1 𝑐𝑞2 ⋯ 𝑐𝑞𝑝

]

(𝑞×𝑝)

[

𝐸(𝑍1)
𝐸(𝑍2)
⋮

𝐸(𝑍𝑝)

]

(𝑝×1)

 

           = [

𝑐11 𝑐12 ⋯ 𝑐1𝑝
𝑐21 𝑐22 ⋯ 𝑐2𝑝
⋮ ⋮ ⋱ ⋮
𝑐𝑞1 𝑐𝑞2 ⋯ 𝑐𝑞𝑝

]

(𝑞×𝑝)

[

𝜇𝑧,1
𝜇𝑧,2
⋮
𝜇𝑧,𝑝

]

(𝑝×1)

 

           = 𝐂
(𝑞×𝑝)

⋅ 𝝁𝐙
(𝑝×1)

 

           = [

𝑐11𝜇𝑧,1 + 𝑐12𝜇𝑧,2 +⋯+ 𝑐1𝑝𝜇𝑧,𝑝
𝑐21𝜇𝑧,1 + 𝑐22𝜇𝑧,2 +⋯+ 𝑐2𝑝𝜇𝑧,𝑝

                ⋮
𝑐𝑞1𝜇𝑧,1 + 𝑐𝑞2𝜇𝑧,2 +⋯+ 𝑐𝑞𝑝𝜇𝑧,𝑝

]

(𝑞×1)

 

           =

[
 
 
 
 
 
𝐜1
′

(1×𝑝)
⋅ 𝝁𝐙
(𝑝×1)

𝐜2
′

(1×𝑝)
⋅ 𝝁𝐙
(𝑝×1)

⋮
𝐜𝑞
′

(1×𝑝)

⋅ 𝝁𝐙
(𝑝×1)]

 
 
 
 
 

(𝑞×1)

  

           = [

0
0
⋮
0

]

(𝑞×1)

 

           = 𝟎
(𝑞×1)

 ∎ 
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Thus, the 𝑖th row of 𝐘
(𝑝×1)

 has population mean 

�̅�𝑖 = 𝐸(𝑌𝑖) = 𝐸 ( 𝐜𝑖
′

(1×𝑝)
⋅ 𝐙
(𝑝×1)

) = 𝐜𝑖
′

(1×𝑝)
⋅ 𝝁𝐙
(𝑝×1)

= 0 

 for 𝑖 = 1,2, … , 𝑞. 
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3.5.5 Population Variance-Covariance Matrix for 𝒒 Linear 

Combinations of Standardized Continuous Random Variables 

Theorem 3.5.5. (Population Variance-Covariance Matrix for 𝑞 Linear Combinations 

of 𝐙). Suppose 𝑞 linear combinations of 𝐙
(𝑝×1)

, 𝑌𝑖 = 𝐜𝑖
′

(1×𝑝)
⋅ 𝐙
(𝑝×1)

 are given by Definition 

3.5.2 and a population variance-covariance of 𝐙
(𝑝×1)

, ∑𝐙
(𝑝×𝑝)

= 𝝆
(𝑝×𝑝)

 is given by 

Theorem 3.4.4. Then the symmetric population variance-covariance matrix for 𝒒 

linear combinations of 𝐙
(𝑝×1)

, 𝐘
(𝑝×1)

, is given by 

∑𝐘
(𝑞×𝑞)

= Cov(𝐘)
(𝑞×𝑞)

= 𝐂
(𝑞×𝑝)

⋅ ∑𝐙
(𝑝×𝑝)

⋅ 𝐂′
(𝑝×𝑞)

= 𝐂
(𝑞×𝑝)

⋅ 𝝆
(𝑝×𝑝)

⋅ 𝐂′
(𝑝×𝑞)

 

Proof. Using Definition 2.2.5 for matrix multiplication and following Theorem 3.5.2 

for computation of diagonal elements and Theorem 3.5.3 for computation of off-

diagonal elements. 

∑𝐘
(𝑞×𝑞)

 

           = Cov(𝐘)
(𝑞×𝑞)

 

           = 𝐂
(𝑞×𝑝)

⋅ ∑𝐙
(𝑝×𝑝)

⋅ 𝐂′
(𝑝×𝑞)

 

           = [

𝑐11 𝑐12 ⋯ 𝑐1𝑝
𝑐21 𝑐22 ⋯ 𝑐2𝑝
⋮ ⋮ ⋱ ⋮
𝑐𝑞1 𝑐𝑞2 ⋯ 𝑐𝑞𝑝

]

(𝑞×𝑝)

[

𝜎𝑧,11 𝜎𝑧,12 ⋯ 𝜎𝑧,1𝑝
𝜎𝑧,21 𝜎𝑧,22 ⋯ 𝜎𝑧,2𝑝
⋮ ⋮ ⋱ ⋮

𝜎𝑧,𝑝1 𝜎𝑧,𝑝2 ⋯ 𝜎𝑧,𝑝𝑝

]

(𝑝×𝑝)

[

𝑐11 𝑐21 ⋯ 𝑐𝑞1
𝑐12 𝑐22 ⋯ 𝑐𝑞2
⋮ ⋮ ⋱ ⋮
𝑐1𝑝 𝑐2𝑝 ⋯ 𝑐𝑞𝑝

]

(𝑝×𝑞)
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           =

[
 
 
 
 
 
𝐜1
′

(1×𝑝)
⋅ ∑𝐙
(𝑝×𝑝)

⋅ 𝐜1
(𝑝×1)

𝐜1
′

(1×𝑝)
⋅ ∑𝐙
(𝑝×𝑝)

⋅ 𝐜2
(𝑝×1)

⋯ 𝐜1
′

(1×𝑝)
⋅ ∑𝐙
(𝑝×𝑝)

⋅ 𝐜𝑞
(𝑝×1)

𝐜2
′

(1×𝑝)
⋅ ∑𝐙
(𝑝×𝑝)

⋅ 𝐜1
(𝑝×1)

𝐜2
′

(1×𝑝)
⋅ ∑𝐙
(𝑝×𝑝)

⋅ 𝐜2
(𝑝×1)

⋯ 𝐜2
′

(1×𝑝)
⋅ ∑𝐙
(𝑝×𝑝)

⋅ 𝐜𝑞
(𝑝×1)

⋮ ⋮ ⋱ ⋮
𝐜𝑞
′

(1×𝑝)

⋅ ∑𝐙
(𝑝×𝑝)

⋅ 𝐜1
(𝑝×1)

𝐜𝑞
′

(1×𝑝)

⋅ ∑𝐙
(𝑝×𝑝)

⋅ 𝐜2
(𝑝×1)

⋯ 𝐜𝑞
′

(1×𝑝)

⋅ ∑𝐙
(𝑝×𝑝)

⋅ 𝐜𝑞
(𝑝×1)]

 
 
 
 
 

(𝑞×𝑞)

 

           = 𝐂
(𝑞×𝑝)

⋅ 𝝆
(𝑝×𝑝)

⋅ 𝐂′
(𝑝×𝑞)

 

           = [

𝑐11 𝑐12 ⋯ 𝑐1𝑝
𝑐21 𝑐22 ⋯ 𝑐2𝑝
⋮ ⋮ ⋱ ⋮
𝑐𝑞1 𝑐𝑞2 ⋯ 𝑐𝑞𝑝

]

(𝑞×𝑝)

[

𝜌11 𝜌12 ⋯ 𝜌1𝑝
𝜌21 𝜌22 ⋯ 𝜌2𝑝
⋮ ⋮ ⋱ ⋮
𝜌𝑝1 𝜌𝑝2 ⋯ 𝜌𝑝𝑝

]

(𝑝×𝑝)

[

𝑐11 𝑐21 ⋯ 𝑐𝑞1
𝑐12 𝑐22 ⋯ 𝑐𝑞2
⋮ ⋮ ⋱ ⋮
𝑐1𝑝 𝑐2𝑝 ⋯ 𝑐𝑞𝑝

]

(𝑝×𝑞)

 

           =

[
 
 
 
 
 
𝐜1
′

(1×𝑝)
⋅ 𝝆
(𝑝×𝑝)

⋅ 𝐜1
(𝑝×1)

𝐜1
′

(1×𝑝)
⋅ 𝝆
(𝑝×𝑝)

⋅ 𝐜2
(𝑝×1)

⋯ 𝐜1
′

(1×𝑝)
⋅ 𝝆
(𝑝×𝑝)

⋅ 𝐜𝑞
(𝑝×1)

𝐜2
′

(1×𝑝)
⋅ 𝝆
(𝑝×𝑝)

⋅ 𝐜1
(𝑝×1)

𝐜2
′

(1×𝑝)
⋅ 𝝆
(𝑝×𝑝)

⋅ 𝐜2
(𝑝×1)

⋯ 𝐜2
′

(1×𝑝)
⋅ 𝝆
(𝑝×𝑝)

⋅ 𝐜𝑞
(𝑝×1)

⋮ ⋮ ⋱ ⋮
𝐜𝑞
′

(1×𝑝)

⋅ 𝝆
(𝑝×𝑝)

⋅ 𝐜1
(𝑝×1)

𝐜𝑞
′

(1×𝑝)

⋅ 𝝆
(𝑝×𝑝)

⋅ 𝐜2
(𝑝×1)

⋯ 𝐜𝑞
′

(1×𝑝)

⋅ 𝝆
(𝑝×𝑝)

⋅ 𝐜𝑞
(𝑝×1)]

 
 
 
 
 

(𝑞×𝑞)

 ∎ 

Thus, the 𝑖th row 𝐘
(𝑞×1)

 has population variance 

var(𝑌𝑖) = 𝐜𝑖
′

(1×𝑝)
⋅ ∑𝐙
(𝑝×𝑝)

⋅ 𝐜𝑖
(𝑝×1)

= 𝐜𝑖
′

(1×𝑝)
⋅ 𝝆
(𝑝×𝑝)

⋅ 𝐜𝑖
(𝑝×1)

 

for 𝑖 = 1,2, … , 𝑞. 

And the 𝑖th row and 𝑘th row of 𝐘
(𝑞×1)

 have population covariance 

                     cov(𝑌𝑖, 𝑌𝑘) 

= 𝐜𝑖
′

(1×𝑝)
⋅ ∑𝐙
(𝑝×𝑝)

⋅ 𝐜𝑘
(𝑝×1)

= 𝐜𝑘
′

(1×𝑝)
⋅ ∑𝐙
(𝑝×𝑝)

⋅ 𝐜𝑖
(𝑝×1)

 

= 𝐜𝑖
′

(1×𝑝)
⋅ 𝝆
(𝑝×𝑝)

⋅ 𝐜𝑘
(𝑝×1)

= 𝐜𝑘
′

(1×𝑝)
⋅ 𝝆
(𝑝×𝑝)

⋅ 𝐜𝑖
(𝑝×1)

 

for 𝑖, 𝑘 = 1,2, … , 𝑞. 
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Chapter 4 

Multivariate Sample Theory 

4.1 Organization of Multivariate Sample Data 

Multivariate sample data arise whenever an investigator, seeking to understand a 

social or physical phenomenon, selects a number 𝑝 > 1 of variables or 

characteristics to record. The values of these variables are all recorded for each 

distinct multivariate observation. 

We will use the notation 𝑥𝑗𝑘 , for realized samples, to indicate the particular 

value of the 𝑘th variable (characteristic) on the 𝑗th multivariate observation. That is, 

𝑥𝑗𝑘 = measurement of the 𝑘th variable on the 𝑗th multivariate observation 

Consequently, 𝑛 multivariate observations on 𝑝 variables (characteristic) can be 

displayed as follows: 

Variable 1 Variable 2 ⋯ Variable 𝑘 ⋯ Variable 𝑝
Observation 1: 𝑥11 𝑥12 ⋯ 𝑥1𝑘 ⋯ 𝑥1𝑝
Observation 2: 𝑥21 𝑥22 ⋯ 𝑥2𝑘 ⋯ 𝑥2𝑝

⋮ ⋮ ⋮ ⋮ ⋮
Observation 𝑗: 𝑥𝑗1 𝑥𝑗2 ⋯ 𝑥𝑗𝑘 ⋯ 𝑥𝑗𝑝

⋮ ⋮ ⋮ ⋮ ⋮
Observation 𝑛: 𝑥𝑛1 𝑥𝑛2 ⋯ 𝑥𝑛𝑘 ⋯ 𝑥𝑛𝑝

 

for 𝑗 = 1,2, … , 𝑛 multivariate observations and 𝑘 = 1,2, … , 𝑝 variables [3, p. 5]. 
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A variable or column of the multivariate sample data array is called a realized 

characteristic vector of dimension 𝑛 × 1 

𝐱𝑘
(𝑛×1)

= [

𝑥1𝑘
𝑥2𝑘
⋮
𝑥𝑛𝑘

]

(𝑛×1)

 

for 𝑘 = 1,2, … , 𝑝. Where the transpose of the characteristic vector is of dimension 

1 × 𝑛 

𝐱𝑘
′

(1×𝑛)
= [𝑥1𝑘 , 𝑥2𝑘 , … , 𝑥𝑛𝑘]

(1×𝑛)
. 

A realized multivariate observation vector of dimension 𝑝 × 1 is given by 

𝐱𝑗
(𝑝×1)

= [

𝑥𝑗1
𝑥𝑗2
⋮
𝑥𝑗𝑝

]

(𝑝×1)

 

for 𝑗 = 1,2, … , 𝑛. Where a row of the multivariate sample data array is given by the 

transpose of a multivariate observation vector of dimension 1 × 𝑝 

𝐱𝑗
′

(1×𝑝)

= [𝑥𝑗1, 𝑥𝑗2, … , 𝑥𝑗𝑝]
(1×𝑝)

. 

The 𝑛 × 𝑝 multivariate sample matrix 𝐗
(𝑛×𝑝)

 can also be displayed as 𝑛 

realized transposed multivariate observation vectors, stacked on top of each-other, 

each with 𝑝 characteristics or variable elements. 

  



87 
 

𝐗
(𝑛×𝑝)

=

[
 
 
 
 
 
𝑥11 𝑥12 ⋯ 𝑥1𝑘 ⋯ 𝑥1𝑝
𝑥21 𝑥22 ⋯ 𝑥2𝑘 ⋯ 𝑥2𝑝
⋮ ⋮ ⋮ ⋮
𝑥𝑗1 𝑥𝑗2 ⋯ 𝑥𝑗𝑘 ⋯ 𝑥𝑗𝑝
⋮ ⋮ ⋮ ⋮
𝑥𝑛1 𝑥𝑛2 ⋯ 𝑥𝑛𝑘 ⋯ 𝑥𝑛𝑝]

 
 
 
 
 

(𝑛×𝑝)

=

[
 
 
 
 
 
𝐱1
′

𝐱2
′

⋮
𝐱𝑗
′

⋮
𝐱𝑛
′ ]
 
 
 
 
 

 

for 𝑗 = 1,2, … , 𝑛 multivariate observations and 𝑘 = 1,2, … , 𝑝 variables. 

4.2 Random Samples 

4.2.1 Univariate Random Sample 

Definition 4.2.1 (Univariate Random Sample). If random variables 𝑋𝑗𝑘 for                 

𝑗 = 1,2, … , 𝑛 are independent and identically distributed (𝑖𝑖𝑑) from a common 

population continuous random variable 𝑋𝑘, with univariate marginal pdf 𝑓𝑘(𝑥𝑘), 

population mean 𝜇𝑘, and population variance 𝜎𝑘𝑘; then, 𝑋1𝑘, 𝑋2𝑘, … , 𝑋𝑛𝑘 constitute a 

univariate random sample of size 𝑛 [6, p. 226]. 

One should be aware that the elements 𝑋𝑗𝑘 for 𝑗 = 1,2, … , 𝑛 must be 

independent; however, random variables (characteristics) 𝑋𝑘 from 𝑘 = 1,2, … , 𝑝 are 

generally not assumed independent--especially when realized on the same 

multivariate observations [3, p. 119]. 
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4.2.2 Multivariate Random Sample 

Definition 4.2.2 (Multivariate Random Sample). If random vectors 

𝐗𝑗
(𝑝×1)

=

[
 
 
 
𝑋𝑗1
𝑋𝑗2
⋮
𝑋𝑗𝑝]

 
 
 

(𝑝×1)

 

for 𝑗 = 1,2, … , 𝑛 are independent and identically distributed (𝑖𝑖𝑑) observed from a 

common population random vector of continuous random variables 

𝐗
(𝑝×1)

= [

𝑋1
𝑋2
⋮
𝑋𝑝

]

(𝑝×1)

, 

defined in Definition 3.21., with joint pdf 

𝑓 ( 𝐱
(𝑝×1)

) = 𝑓12⋯𝑝(𝑥1, 𝑥2, … , 𝑥𝑝), 

defined in definition 3.2.2., population mean vector 

𝝁𝐗
(𝑝×1)

= 𝐸(𝐗)
(𝑝×1)

= [

𝐸(𝑋1)
𝐸(𝑋2)
⋮

𝐸(𝑋𝑝)

]

(𝑝×1)

= [

𝜇1
𝜇2
⋮
𝜇𝑝

]

(𝑝×1)

, 

defined in Definition 3.2.11., and population variance-covariance matrix  

∑𝐗
(𝑝×𝑝)

= Cov(𝐗)
(𝑝×𝑝)

= 𝐸(𝐗 − 𝝁𝐗)
(𝑝×1)

(𝐗 − 𝝁𝐗)
′

(1×𝑝)
; 

defined in Theorem 3.2.1.,then, these random vectors 𝐗1
(𝑝×1)

, 𝐗2
(𝑝×1)

, … , 𝐗𝑛
(𝑝×1)

 constitute 

a multivariate random sample of size 𝑛 from a 𝑝 − 𝑣𝑎𝑟𝑖𝑎𝑡𝑒 population. 
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4.2.3 Multivariate Random Sample Matrix 

Definition 4.2.3 (Multivariate Random Sample Matrix). A multivariate random 

sample matrix is a random matrix whose row vectors are unrealized multivariate 

sample observations 

𝐗𝑗
′

(1×𝑝)

= [𝑋𝑗1, 𝑋𝑗2, … , 𝑋𝑗𝑝]
(1×𝑝)

 

for 𝑗 = 1,2, … , 𝑛. In addition, the column vectors of the matrix are unrealized 

variables or characteristics taken on each of the 𝑛 multivariate sample observations 

𝐗𝑘
(𝑛×1)

= [

𝑋1𝑘
𝑋2𝑘
⋮
𝑋𝑛𝑘

]

(𝑛×1)

 

for 𝑘 = 1,2, … , 𝑝. Let the (𝑗, 𝑘)𝑡ℎ entry be a continuous random variable 𝑋𝑗𝑘, then the 

𝑛 × 𝑝 multivariate random sample matrix 𝐗
(𝑛×𝑝)

= {𝑋𝑗𝑘} is defined by 

𝐗
(𝑛×𝑝)

=

[
 
 
 
 
 
 
𝑋11 𝑋12 ⋯ 𝑋1𝑘 ⋯ 𝑋1𝑝
𝑋21 𝑋22 ⋯ 𝑋2𝑘 ⋯ 𝑋2𝑝
⋮ ⋮ ⋮ ⋮
𝑋𝑗1 𝑋𝑗2 ⋯ 𝑋𝑗𝑘 ⋯ 𝑋𝑗𝑝
⋮ ⋮ ⋮ ⋮
𝑋𝑛1 𝑋𝑛2 ⋯ 𝑋𝑛𝑘 ⋯ 𝑋𝑛𝑝]

 
 
 
 
 
 

(𝑛×𝑝)

=

[
 
 
 
 
 
𝐗1
′

𝐗2
′

⋮
𝐗𝑗
′

⋮
𝐗𝑛
′ ]
 
 
 
 
 

 

for 𝑗 = 1,2, … , 𝑛 and 𝑘 = 1,2, … , 𝑝. Since the row vectors 𝐗1
′

(1×𝑝)
, 𝐗2

′

(1×𝑝)
, … , 𝐗𝑛

′

(1×𝑝)
 

represent 𝑖𝑖𝑑 multivariate sample observations with common joint pdf, 

𝐗1
(𝑝×1)

, 𝐗2
(𝑝×1)

, … , 𝐗𝑛
(𝑝×1)

 are said to form a multivariate random sample [3, p. 119]. 
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One often refers to each 

𝐗𝑗
(𝑝×1)

=

[
 
 
 
𝑋𝑗1
𝑋𝑗2
⋮
𝑋𝑗𝑝]

 
 
 

(𝑝×1)

 

for 𝑗 = 1,2, … , 𝑛, as an unrealized multivariate sample observation (vector). When 

the multivariate sample observation (vector) has been realized (drawn) the 

notation becomes 

𝐱𝑗
(𝑝×1)

= [

𝑥𝑗1
𝑥𝑗2
⋮
𝑥𝑗𝑝

]

(𝑝×1)

 

for 𝑗 = 1,2, … , 𝑛. Similarly, one often refers to each 

𝐗𝑘
(𝑛×1)

= [

𝑋1𝑘
𝑋2𝑘
⋮
𝑋𝑛𝑘

]

(𝑛×1)

 

for 𝑘 = 1,2, … , 𝑝, as an unrealized sample characteristic (vector). 

When the sample characteristic (vector) has been realized the notation becomes 

𝐱𝑘
(𝑛×1)

= [

𝑥1𝑘
𝑥2𝑘
⋮
𝑥𝑛𝑘

]

(𝑛×1)

 

for 𝑘 = 1,2, … , 𝑝. 
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4.3 Sample Statistics 

Definition 4.3.1 (Sample Mean). Let 𝑋𝑗𝑘 for 𝑗 = 1,2, … , 𝑛 be 𝑖𝑖𝑑 continuous random 

variables with common population univariate marginal pdf 𝑓𝑘(𝑥𝑘), mean 𝜇𝑘, and 

variance 𝜎𝑘𝑘 . Then the unrealized sample mean �̅�𝑘 is defined by 

�̅�𝑘 =
1

𝑛
∑ 𝑋𝑗𝑘

𝑛

𝑗=1
 

for 𝑘 = 1,2, … , 𝑝 where −∞ < �̅�𝑘 < ∞.  

Because 𝐸(�̅�𝑘) = 𝜇𝑘, one can say �̅�𝑘 is an unbiased estimator for the 

univariate marginal population mean 𝜇𝑘.  

Definition 4.3.2 (Sample Variance). Let 𝑋𝑗𝑘 for 𝑗 = 1,2, … , 𝑛 be 𝑖𝑖𝑑 continuous 

random variables with common population univariate marginal pdf 𝑓𝑘(𝑥𝑘), mean 𝜇𝑘, 

and variance 𝜎𝑘𝑘 . Then the unrealized sample variance 𝑆𝑘𝑘 is defined by  

𝑆𝑘𝑘 =
1

𝑛 − 1
∑ (𝑋𝑗𝑘 − �̅�𝑘)

2𝑛

𝑗=1
 

for 𝑘 = 1,2, … , 𝑝 where 0 < 𝑆𝑘𝑘 < ∞. 

Because 𝐸(𝑆𝑘𝑘) = 𝜎𝑘𝑘 , one can say 𝑆𝑘𝑘 is an unbiased estimator for the 

univariate marginal population variance 𝜎𝑘𝑘 . Although, the sample standard 

deviation √𝑆𝑘𝑘 is a biased estimator for the univariate marginal population 

standard deviation √𝜎𝑘𝑘; given, 𝐸(√𝑆𝑘𝑘) ≠ √𝜎𝑘𝑘.  
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Definition 4.3.3 (Sample Covariance). Let 𝐗𝑗
(2×1)

= [
𝑋𝑗𝑖
𝑋𝑗𝑘

]

(2×1)

 for 𝑗 = 1,2, … , 𝑛 be 𝑖𝑖𝑑 

continuous random vectors with common population bivariate (joint) marginal pdf 

𝑓𝑖𝑘(𝑥𝑖, 𝑥𝑘). Denote the common population univariate marginal pdf for 𝑋𝑗𝑖 as 𝑓𝑖(𝑥𝑖) 

with mean and variance [
𝜇𝑖
𝜎𝑖𝑖
]

(2×1)

 and common population univariate marginal pdf for 

𝑋𝑗𝑘 as 𝑓𝑘(𝑥𝑘) with mean and variance [
𝜇𝑘
𝜎𝑘𝑘

]
(2×1)

. Then the unrealized sample covariance 

𝑆𝑖𝑘 is defined by  

𝑆𝑖𝑘 =
1

𝑛 − 1
∑ (𝑋𝑗𝑖 − �̅�𝑖)(𝑋𝑗𝑘 − �̅�𝑘)

𝑛

𝑗=1
 

for 𝑖, 𝑘 = 1,2, … , 𝑝 where −∞ < 𝑆𝑖𝑘 < ∞. 

Because 𝐸(𝑆𝑖𝑘) = 𝜎𝑖𝑘 , one can say 𝑆𝑖𝑘 is an unbiased estimator for the 

bivariate marginal population covariance 𝜎𝑖𝑘 . Given that 𝐗𝑗
(2×1)

= [
𝑋𝑗𝑖
𝑋𝑗𝑘

]

(2×1)

⊆

[
 
 
 
𝑋𝑗1
𝑋𝑗2
⋮
𝑋𝑗𝑝]

 
 
 

(𝑝×1)

 for      

𝑗 = 1,2, … , 𝑛, the multivariate random sample is collected on 𝑝 characteristics and 

then subset into bivariate pairs. Furthermore, 𝑆𝑖𝑘 = 𝑆𝑘𝑖 and when 𝑖 = 𝑘 the sample 

covariance becomes the sample variance 𝑆𝑘𝑘.  
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Definition 4.3.4 (Sample Correlation). Let 𝐗𝑗
(2×1)

= [
𝑋𝑗𝑖
𝑋𝑗𝑘

]

(2×1)

 for 𝑗 = 1,2, … , 𝑛 be 𝑖𝑖𝑑 

continuous random vectors with common population bivariate (joint) marginal pdf 

𝑓𝑖𝑘(𝑥𝑖, 𝑥𝑘). Denote the common population univariate marginal pdf for 𝑋𝑗𝑖 as 𝑓𝑖(𝑥𝑖) 

with mean and variance [
𝜇𝑖
𝜎𝑖𝑖
]

(2×1)

 and common population univariate marginal pdf for 

𝑋𝑗𝑘 as 𝑓𝑘(𝑥𝑘) with mean and variance [
𝜇𝑘
𝜎𝑘𝑘

]
(2×1)

. Then the unrealized sample correlation 

𝑅𝑖𝑘 is defined by 

𝑅𝑖𝑘 =
𝑆𝑖𝑘

√𝑆𝑖𝑖√𝑆𝑘𝑘
 

       =

1
𝑛 − 1

∑ (𝑋𝑗𝑖 − �̅�𝑖)(𝑋𝑗𝑘 − �̅�𝑘)
𝑛
𝑗=1

√ 1
𝑛 − 1

∑ (𝑋𝑗𝑖 − �̅�𝑖)2
𝑛
𝑗=1

√ 1
𝑛 − 1

∑ (𝑥𝑗𝑘 − �̅�𝑘)2
𝑛
𝑗=1

 

       =
∑ (𝑋𝑗𝑖 − �̅�𝑖)(𝑋𝑗𝑘 − �̅�𝑘)
𝑛
𝑗=1

√∑ (𝑋𝑗𝑖 − �̅�𝑖)2
𝑛
𝑗=1 √∑ (𝑋𝑗𝑘 − �̅�𝑘)2

𝑛
𝑗=1

 

for 𝑖, 𝑘 = 1,2, … , 𝑝 where −1 ≤ 𝑅𝑖𝑘 ≤ 1. 

Because 𝐸(𝑅𝑖𝑘) ≠ 𝜌𝑖𝑘 , one can say 𝑅𝑖𝑘 is a biased estimator for the bivariate 

marginal population correlation 𝜌𝑖𝑘. Next, 𝑅𝑖𝑘 = 𝑅𝑘𝑖 and when 𝑖 = 𝑘 the sample 

correlation becomes 𝑅𝑘𝑘 =
𝑆𝑘𝑘

√𝑆𝑘𝑘√𝑆𝑘𝑘
=

𝑆𝑘𝑘

𝑆𝑘𝑘
= 1.  
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4.4 Sample Mean Vector, Variance-Covariance Matrix, 

and Correlation Matrix 

4.4.1 Sample Mean Vector 

Theorem 4.4.1 (Sample Mean Vector for 𝐗). Let random vectors 𝐗1
(𝑝×1)

, 𝐗2
(𝑝×1)

, … , 𝐗𝑛
(𝑝×1)

 

constitute a multivariate random sample defined in Definition 4.2.2. Then the 𝑝 × 1 

unrealized sample mean vector for 𝐗
(𝑛×𝑝)

 is defined by  

�̅�
(𝑝×1)

=
1

𝑛
∑ 𝐗𝑗

(𝑝×1)

𝑛

𝑗=1
=
1

𝑛
⋅ 𝐗′
(𝑝×𝑛)

⋅ 𝟏
(𝑛×1)

=

[
 
 
 
�̅�1
�̅�2
⋮
�̅�𝑝]
 
 
 

(𝑝×1)

 

where −∞ < �̅�𝑘 < ∞, for 𝑘 = 1,2, … , 𝑝 [3, p. 138]. 

Proof. Use Definition 2.1.4, Definition 2.2.2, Definition 2.2.3, and Definition 4.3.1. 

�̅�
(𝑝×1)

 

          =
1

𝑛
∑ 𝐗𝑗

(𝑝×1)

𝑛

𝑗=1
 

          =
1

𝑛
( 𝐗1
(𝑝×1)

+ 𝐗2
(𝑝×1)

+⋯+ 𝐗𝑛
(𝑝×1)

) 

          =
1

𝑛

(

 
 
[

𝑋11
𝑋12
⋮
𝑋1𝑝

]

(𝑝×1)

+ [

𝑋21
𝑋22
⋮
𝑋2𝑝

]

(𝑝×1)

+⋯+ [

𝑋𝑛1
𝑋𝑛2
⋮
𝑋𝑛𝑝

]

(𝑝×1))
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          =
1

𝑛
[

𝑋11 + 𝑋21 +⋯+ 𝑋𝑛1
𝑋12 + 𝑋22 +⋯+ 𝑋𝑛2

            ⋮
𝑋1𝑝 + 𝑋2𝑝 +⋯+ 𝑋𝑛𝑝

]

(𝑝×1)

 

          =
1

𝑛

[
 
 
 
 
 
 
 ∑ 𝑋𝑗1

𝑛

𝑗=1

∑ 𝑋𝑗2
𝑛

𝑗=1

⋮

∑ 𝑋𝑗𝑝
𝑛

𝑗=1 ]
 
 
 
 
 
 
 

(𝑝×1)

 

          =

[
 
 
 
 
 
 
 
1

𝑛
∑ 𝑋𝑗1

𝑛

𝑗=1

1

𝑛
∑ 𝑋𝑗2

𝑛

𝑗=1

⋮
1

𝑛
∑ 𝑋𝑗𝑝

𝑛

𝑗=1 ]
 
 
 
 
 
 
 

(𝑝×1)

 

          =

[
 
 
 
�̅�1
�̅�2
⋮
�̅�𝑝]
 
 
 

(𝑝×1)

 

In terms of matrix operations �̅�
(𝑝×1)

 can be obtained by 

�̅�
(𝑝×1)

=
1

𝑛
⋅ 𝐗′
(𝑝×𝑛)

⋅ 𝟏
(𝑛×1)

 

          =
1

𝑛
[

𝑋11 𝑋21 ⋯ 𝑋𝑛1
𝑋12 𝑋22 ⋯ 𝑋𝑛2
⋮ ⋮ ⋱ ⋮
𝑋1𝑝 𝑋2𝑝 ⋯ 𝑋𝑛𝑝

]

(𝑝×𝑛)

⋅ [

11
12
⋮
1𝑛

]

(𝑛×1)
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          =
1

𝑛
[

𝑋11 + 𝑋21 +⋯+ 𝑋𝑛1
𝑋12 + 𝑋22 +⋯+ 𝑋𝑛2

            ⋮
𝑋1𝑝 + 𝑋2𝑝 +⋯+ 𝑋𝑛𝑝

]

(𝑝×1)

 

          =
1

𝑛

[
 
 
 
 
 
 
 ∑ 𝑋𝑗1

𝑛

𝑗=1

∑ 𝑋𝑗2
𝑛

𝑗=1

⋮

∑ 𝑋𝑗𝑝
𝑛

𝑗=1 ]
 
 
 
 
 
 
 

(𝑝×1)

 

          =

[
 
 
 
 
 
 
 
1

𝑛
∑ 𝑋𝑗1

𝑛

𝑗=1

1

𝑛
∑ 𝑋𝑗2

𝑛

𝑗=1

⋮
1

𝑛
∑ 𝑋𝑗𝑝

𝑛

𝑗=1 ]
 
 
 
 
 
 
 

 

          =

[
 
 
 
�̅�1
�̅�2
⋮
�̅�𝑝]
 
 
 

(𝑝×1)

 ∎ 

Because 𝐸 ( �̅�
(𝑝×1)

) = 𝝁𝐗
(𝑝×1)

, one can say �̅�
(𝑝×1)

 is an unbiased estimator for the 

population mean vector 𝝁𝐗
(𝑝×1)

. 
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4.4.2 Sample Variance-Covariance Matrix 

Theorem 4.4.2 (Sample Variance-Covariance Matrix for 𝐗). Let random 

vectors 𝐗1
(𝑝×1)

, 𝐗2
(𝑝×1)

, … , 𝐗𝑛
(𝑝×1)

 constitute a multivariate random sample defined in 

Definition 4.2.2. Assume the sample mean vector �̅�
(𝑝×1)

 defined in Theorem 4.4.1 

exists. Then the 𝑝 × 𝑝 symmetric unrealized sample variance-covariance matrix for 

𝐗
(𝑛×𝑝)

is defined by 

𝐒𝐗
(𝑝×𝑝)

=
1

𝑛 − 1
∑ ( 𝐗𝑗

(𝑝×1)

− �̅�
(𝑝×1)

)
𝑛

𝑗=1
( 𝐗𝑗
(𝑝×1)

− �̅�
(𝑝×1)

)

′

 

           =
1

𝑛 − 1
⋅ ( 𝐗

(𝑛×𝑝)
−
1

𝑛
⋅ 𝟏
(𝑛×1)

⋅ 𝟏′
(1×𝑛)

⋅ 𝐗
(𝑛×𝑝)

)
′

⋅ ( 𝐗
(𝑛×𝑝)

−
1

𝑛
⋅ 𝟏
(𝑛×1)

⋅ 𝟏′
(1×𝑛)

⋅ 𝐗
(𝑛×𝑝)

) 

           =
1

𝑛 − 1
⋅ ( 𝐗

(𝑛×𝑝)
− 𝟏

(𝑛×1)
⋅ �̅�′
(1×𝑝)

)
′

⋅ ( 𝐗
(𝑛×𝑝)

− 𝟏
(𝑛×1)

⋅ �̅�′
(1×𝑝)

) =

[
 
 
 
𝑆11 𝑆12 ⋯ 𝑆1𝑝
𝑆21 𝑆22 ⋯ 𝑆2𝑝
⋮ ⋮ ⋱ ⋮
𝑆𝑝1 𝑆𝑝2 ⋯ 𝑆𝑝𝑝]

 
 
 

(𝑝×𝑝)

 

[3, pp. 123,138]. 

Proof. Use Definition 2.1.4, Definition 2.2.2, Definition 2.2.3, Definition 2.2.3, 

Definition 4.2.3, Definition 4.3.2, and Definition 4.3.3. 

𝐒𝐗
(𝑝×𝑝)

=
1

𝑛 − 1
∑ ( 𝐗𝑗

(𝑝×1)

− 𝐗
(𝑝×1)

)
𝑛

𝑗=1
( 𝐗𝑗
(𝑝×1)

− �̅�
(𝑝×1)

)

′

 

          =
1

𝑛 − 1
∑

(

  
 

[
 
 
 
𝑋𝑗1
𝑋𝑗2
⋮
𝑋𝑗𝑝]

 
 
 

(𝑝×1)

−

[
 
 
 
�̅�1
�̅�2
⋮
�̅�𝑝]
 
 
 

(𝑝×1))

  
 𝑛

𝑗=1

(

  
 

[
 
 
 
𝑋𝑗1
𝑋𝑗2
⋮
𝑋𝑗𝑝]

 
 
 

(𝑝×1)

−

[
 
 
 
�̅�1
�̅�2
⋮
�̅�𝑝]
 
 
 

(𝑝×1))

  
 

′
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           =
1

𝑛 − 1
∑

(

 
 
 

[
 
 
 
 
𝑋𝑗1 − �̅�1

𝑋𝑗2 − �̅�2
⋮

𝑋𝑗𝑝 − �̅�𝑝]
 
 
 
 

(𝑝×1) )

 
 
 𝑛

𝑗=1

(

 
 
 

[
 
 
 
 
𝑋𝑗1 − �̅�1

𝑋𝑗2 − �̅�2
⋮

𝑋𝑗𝑝 − �̅�𝑝]
 
 
 
 

(𝑝×1) )

 
 
 

′

 

           =
1

𝑛 − 1
∑

(

 
 
 

[
 
 
 
 
𝑋𝑗1 − �̅�1

𝑋𝑗2 − �̅�2
⋮

𝑋𝑗𝑝 − �̅�𝑝]
 
 
 
 

(𝑝×1) )

 
 
 𝑛

𝑗=1
([𝑋𝑗1 − �̅�1, 𝑋𝑗2 − �̅�2, … , 𝑋𝑗𝑝 − �̅�𝑝]

(1×𝑝)

) 

           =

[
 
 
 
 
 
 
 ∑ (𝑋𝑗1 − �̅�1)

2𝑛
𝑗=1

𝑛 − 1

∑ (𝑋𝑗1 − �̅�1)(𝑋𝑗2 − �̅�2)
𝑛
𝑗=1

𝑛 − 1
⋯

∑ (𝑋𝑗1 − �̅�1)(𝑋𝑗𝑝 − �̅�𝑝)
𝑛
𝑗=1

𝑛 − 1

∑ (𝑋𝑗2 − �̅�2)(𝑋𝑗1 − �̅�1)
𝑛
𝑗=1

𝑛 − 1

∑ (𝑋𝑗2 − �̅�2)
2𝑛

𝑗=1

𝑛 − 1
⋯

∑ (𝑋𝑗2 − �̅�2)(𝑋𝑗𝑝 − �̅�𝑝)
𝑛
𝑗=1

𝑛 − 1
⋮ ⋮ ⋱ ⋮

∑ (𝑋𝑗𝑝 − �̅�𝑝)(𝑋𝑗1 − �̅�1)
𝑛
𝑗=1

𝑛 − 1

∑ (𝑋𝑗𝑝 − �̅�𝑝)(𝑋𝑗2 − �̅�2)
𝑛
𝑗=1

𝑛 − 1
⋯

∑ (𝑋𝑗𝑝 − �̅�𝑝)
2𝑛

𝑗=1

𝑛 − 1 ]
 
 
 
 
 
 
 

(𝑝×𝑝)

 

           =

[
 
 
 
𝑆11 𝑆12 ⋯ 𝑆1𝑝
𝑆21 𝑆22 ⋯ 𝑆2𝑝
⋮ ⋮ ⋱ ⋮
𝑆𝑝1 𝑆𝑝2 ⋯ 𝑆𝑝𝑝]

 
 
 

(𝑝×𝑝)

 

In terms of matrix operations 𝐒𝐗
(𝑝×𝑝)

 can be obtained by 

𝐒𝐗
(𝑝×𝑝)

=
1

𝑛 − 1
⋅ ( 𝐗

(𝑛×𝑝)
−
1

𝑛
⋅ 𝟏
(𝑛×1)

⋅ 𝟏′
(1×𝑛)

⋅ 𝐗
(𝑛×𝑝)

)
′

⋅ ( 𝐗
(𝑛×𝑝)

−
1

𝑛
⋅ 𝟏
(𝑛×1)

⋅ 𝟏′
(1×𝑛)

⋅ 𝐗
(𝑛×𝑝)

) 

where 

1

𝑛
⋅ 𝟏
(𝑛×1)

⋅ 𝟏′
(1×𝑛)

⋅ 𝐗
(𝑛×𝑝)

 

          =
1

𝑛
⋅ [

11
12
⋮
1𝑛

]

(𝑛×1)

⋅ [11, 12, … , 1𝑛]
(1×𝑛)

⋅

[
 
 
 
𝑋11 𝑋12 ⋯ 𝑋1𝑝
𝑋21 𝑋22 ⋯ 𝑋2𝑝
⋮ ⋮ ⋱ ⋮
𝑋𝑛1 𝑋𝑛2 ⋯ 𝑋𝑛𝑝]

 
 
 

(𝑛×𝑝)
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          = [

11
12
⋮
1𝑛

]

(𝑛×1)

⋅
1

𝑛
⋅ [∑ 𝑋𝑗1

𝑛

𝑗=1
,∑ 𝑋𝑗2

𝑛

𝑗=1
, … ,∑ 𝑋𝑗𝑝

𝑛

𝑗=1
]

(1×𝑝)

 

          = [

11
12
⋮
1𝑛

]

(𝑛×1)

⋅ [
1

𝑛
∑ 𝑋𝑗1

𝑛

𝑗=1
,
1

𝑛
∑ 𝑋𝑗2

𝑛

𝑗=1
, … ,

1

𝑛
∑ 𝑋𝑗𝑝

𝑛

𝑗=1
]

(1×𝑝)

 

          = [

11
12
⋮
1𝑛

]

(𝑛×1)

⋅ [�̅�1, �̅�2, … , �̅�𝑝]
(1×𝑝)

 

          = 𝟏
(𝑛×1)

⋅ 𝐗′
(1×𝑝)

 

          =

[
 
 
 
 
�̅�1 �̅�2 ⋯ �̅�𝑝

�̅�1 �̅�2 ⋯ �̅�𝑝
⋮ ⋮ ⋱ ⋮
�̅�1 �̅�2 ⋯ �̅�𝑝]

 
 
 
 

(𝑛×𝑝)

 

Thus, 

𝐒𝐗
(𝑝×𝑝)

=
1

𝑛 − 1
⋅ ( 𝐗

(𝑛×𝑝)
−
1

𝑛
⋅ 𝟏
(𝑛×1)

⋅ 𝟏′
(1×𝑛)

⋅ 𝐗
(𝑛×𝑝)

)
′

⋅ ( 𝐗
(𝑛×𝑝)

−
1

𝑛
⋅ 𝟏
(𝑛×1)

⋅ 𝟏′
(1×𝑛)

⋅ 𝐗
(𝑛×𝑝)

) 

          =
1

𝑛 − 1
⋅ ( 𝐗

(𝑛×𝑝)
− 𝟏

(𝑛×1)
⋅ 𝐗′
(1×𝑝)

)
′

⋅ ( 𝐗
(𝑛×𝑝)

− 𝟏
(𝑛×1)

⋅ 𝐗′
(1×𝑝)

) 

          =
1

𝑛 − 1
⋅

[
 
 
 
 
𝑋11 − �̅�1 𝑋12 − �̅�2 ⋯ 𝑋1𝑝 − �̅�𝑝

𝑋21 − �̅�1 𝑋22 − �̅�2 ⋯ 𝑋2𝑝 − �̅�𝑝
⋮ ⋮ ⋱ ⋮

𝑋𝑛1 − �̅�1 𝑋𝑛2 − �̅�2 ⋯ 𝑋𝑛𝑝 − �̅�𝑝]
 
 
 
 

(𝑛×𝑝)

′

[
 
 
 
 
𝑋11 − �̅�1 𝑋12 − �̅�2 ⋯ 𝑋1𝑝 − �̅�𝑝

𝑋21 − �̅�1 𝑋22 − �̅�2 ⋯ 𝑋2𝑝 − �̅�𝑝
⋮ ⋮ ⋱ ⋮

𝑋𝑛1 − �̅�1 𝑋𝑛2 − �̅�2 ⋯ 𝑋𝑛𝑝 − �̅�𝑝]
 
 
 
 

(𝑛×𝑝)

 

          =
1

𝑛 − 1
⋅

[
 
 
 
𝑋11 − �̅�1 𝑋21 − �̅�1 ⋯ 𝑋𝑛1 − �̅�1
𝑋12 − �̅�2 𝑋22 − �̅�2 ⋯ 𝑋𝑛2 − �̅�2

⋮ ⋮ ⋱ ⋮
𝑋1𝑝 − �̅�𝑝 𝑋2𝑝 − �̅�𝑝 ⋯ 𝑋𝑛𝑝 − �̅�𝑝]

 
 
 

(𝑝×𝑛)
[
 
 
 
 
𝑋11 − �̅�1 𝑋12 − �̅�2 ⋯ 𝑋1𝑝 − �̅�𝑝

𝑋21 − �̅�1 𝑋22 − �̅�2 ⋯ 𝑋2𝑝 − �̅�𝑝
⋮ ⋮ ⋱ ⋮

𝑋𝑛1 − �̅�1 𝑋𝑛2 − �̅�2 ⋯ 𝑋𝑛𝑝 − �̅�𝑝]
 
 
 
 

(𝑛×𝑝)
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          =

[
 
 
 
 
 
 
 ∑ (𝑋𝑗1 − �̅�1)

2𝑛
𝑗=1

𝑛 − 1

∑ (𝑋𝑗1 − �̅�1)(𝑋𝑗2 − �̅�2)
𝑛
𝑗=1

𝑛 − 1
⋯

∑ (𝑋𝑗1 − �̅�1)(𝑋𝑗𝑝 − �̅�𝑝)
𝑛
𝑗=1

𝑛 − 1

∑ (𝑋𝑗2 − �̅�2)(𝑋𝑗1 − �̅�1)
𝑛
𝑗=1

𝑛 − 1

∑ (𝑋𝑗2 − �̅�2)
2𝑛

𝑗=1

𝑛 − 1
⋯

∑ (𝑋𝑗2 − �̅�2)(𝑋𝑗𝑝 − �̅�𝑝)
𝑛
𝑗=1

𝑛 − 1
⋮ ⋮ ⋱ ⋮

∑ (𝑋𝑗𝑝 − �̅�𝑝)(𝑋𝑗1 − �̅�1)
𝑛
𝑗=1

𝑛 − 1

∑ (𝑋𝑗𝑝 − �̅�𝑝)(𝑋𝑗2 − �̅�2)
𝑛
𝑗=1

𝑛 − 1
⋯

∑ (𝑋𝑗𝑝 − �̅�𝑝)
2𝑛

𝑗=1

𝑛 − 1 ]
 
 
 
 
 
 
 

(𝑝×𝑝)

 

          =

[
 
 
 
𝑆11 𝑆12 ⋯ 𝑆1𝑝
𝑆21 𝑆22 ⋯ 𝑆2𝑝
⋮ ⋮ ⋱ ⋮
𝑆𝑝1 𝑆𝑝2 ⋯ 𝑆𝑝𝑝]

 
 
 

(𝑝×𝑝)

 ∎ 

The diagonal elements of the sample variance-covariance matrix are the 

sample variances  

𝑆𝑘𝑘 = (𝑛 − 1)−1∑ (𝑋𝑗𝑘 − �̅�𝑘)
2𝑛

𝑗=1
 

for 𝑘 = 1,2, … , 𝑝, 𝑖 = 𝑘 where 𝑆𝑖𝑖 = 𝑆𝑘𝑘. The off-diagonal elements of the sample 

variance-covariance matrix are the sample covariances 

𝑆𝑖𝑘 = (𝑛 − 1)−1∑(𝑋𝑗𝑖 − �̅�𝑖)(𝑋𝑗𝑘 − �̅�𝑘)

𝑛

𝑗=1

 

 for 𝑖, 𝑘 = 1,2, … , 𝑝, 𝑖 ≠ 𝑘 where 𝑆𝑖𝑘 = 𝑆𝑘𝑖 . Furthermore, 

tr(𝐒𝐗) =∑ 𝑆𝑘𝑘
𝑝

𝑘=1
= 𝑆11 + 𝑆22 +⋯+ 𝑆𝑝𝑝 

(total sample variance). Because, 𝐸 ( 𝐒𝐗
(𝑝×𝑝)

) = ∑𝐗
(𝑝×𝑝)

, one can say 𝐒𝐗
(𝑝×𝑝)

 is an unbiased 

estimator for the population variance-covariance matrix ∑𝐗
(𝑝×𝑝)

. 
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4.4.3 Sample Standard Deviation Matrix 

Definition 4.4.1 (Sample Standard Deviation Matrix for 𝐗). Let random 

vectors 𝐗1
(𝑝×1)

, 𝐗2
(𝑝×1)

, … , 𝐗𝑛
(𝑝×1)

 constitute a multivariate random sample defined in 

Definition 4.2.2. Assume the sample standard deviations defined in Definition 4.3.2 

exists. Then the 𝑝 × 𝑝 diagonal unrealized sample standard deviation matrix for 

𝐗
(𝑛×𝑝)

 is defined by 

𝐃1 2⁄

(𝑝×𝑝)
=

[
 
 
 
 
 √𝑆11 0 ⋯ 0

0 √𝑆22 ⋯ 0

⋮ ⋮ ⋱ ⋮

0 0 ⋯ √𝑆𝑝𝑝]
 
 
 
 
 

(𝑝×𝑝)

 

with inverse 

                        (𝐃1 2⁄ )−1
(𝑝×𝑝)

= 𝐃−1 2⁄

(𝑝×𝑝)
=

[
 
 
 
 
 
 
 
1

√𝑆11
0 ⋯ 0

0
1

√𝑆22
⋯ 0

⋮ ⋮ ⋱ ⋮

0 0 ⋯
1

√𝑆𝑝𝑝]
 
 
 
 
 
 
 

(𝑝×𝑝)

 

[3, p. 139]. 
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4.4.4 Sample Correlation Matrix 

Theorem 4.4.3 (Sample Correlation Matrix for 𝐗). Let random 

vectors 𝐗1
(𝑝×1)

, 𝐗2
(𝑝×1)

, … , 𝐗𝑛
(𝑝×1)

 constitute a multivariate random sample defined in 

Definition 4.2.2. Assume the sample variance-covariance matrix 𝐒𝐗
(𝑝×𝑝)

defined in 

Theorem4.4.2 exists, and the inverse sample standard deviation matrix defined in 

Definition 4.4.1 exists. Then the 𝑝 × 𝑝 symmetric unrealized sample correlation 

matrix for 𝐗
(𝑛×𝑝)

 is defined by 

𝐑
(𝑝×𝑝)

 

           = 𝐃−1 2⁄

(𝑝×𝑝)
⋅ 𝐒𝐗
(𝑝×𝑝)

⋅ 𝐃−1 2⁄

(𝑝×𝑝)
 

           =

[
 
 
 
1 𝑅12 ⋯ 𝑅1𝑝
𝑅21 1 ⋯ 𝑅2𝑝
⋮ ⋮ ⋱ ⋮
𝑅𝑝1 𝑅𝑝2 ⋯ 1 ]

 
 
 

(𝑝×𝑝)

 

[3, p. 139]. 

Proof. Use Definition 2.2.5 and Definition 4.3.4. 

𝐑
(𝑝×𝑝)

= 𝐃−1 2⁄

(𝑝×𝑝)
⋅ 𝐒𝐗
(𝑝×𝑝)

⋅ 𝐃−1 2⁄

(𝑝×𝑝)
 

           =

[
 
 
 
 
 

1

√𝑆11
0 ⋯ 0

0
1

√𝑆22
⋯ 0

⋮ ⋮ ⋱ ⋮

0 0 ⋯
1

√𝑆𝑝𝑝]
 
 
 
 
 

(𝑝×𝑝)

[
 
 
 
𝑆11 𝑆12 ⋯ 𝑆1𝑝
𝑆21 𝑆22 ⋯ 𝑆2𝑝
⋮ ⋮ ⋱ ⋮
𝑆𝑝1 𝑆𝑝2 ⋯ 𝑆𝑝𝑝]

 
 
 

(𝑝×𝑝) [
 
 
 
 
 

1

√𝑆11
0 ⋯ 0

0
1

√𝑆22
⋯ 0

⋮ ⋮ ⋱ ⋮

0 0 ⋯
1

√𝑆𝑝𝑝]
 
 
 
 
 

(𝑝×𝑝)
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           =

[
 
 
 
 
 
 
 
 
𝑆11

√𝑆11

𝑆12

√𝑆11
⋯

𝑆1𝑝

√𝑆11
𝑆21

√𝑆22

𝑆22

√𝑆22
⋯

𝑆2𝑝

√𝑆22
⋮ ⋮ ⋱ ⋮
𝑆𝑝1

√𝑆𝑝𝑝

𝑆𝑝2

√𝑆𝑝𝑝
⋯

𝑆𝑝𝑝

√𝑆𝑝𝑝]
 
 
 
 
 
 
 
 

(𝑝×𝑝)

⋅

[
 
 
 
 
 
 
 
1

√𝑆11
0 ⋯ 0

0
1

√𝑆22
⋯ 0

⋮ ⋮ ⋱ ⋮

0 0 ⋯
1

√𝑆𝑝𝑝]
 
 
 
 
 
 
 

(𝑝×𝑝)

 

           =

[
 
 
 
 
 
 
 
 

𝑆11

√𝑆11√𝑆11

𝑆12

√𝑆11√𝑆22
⋯

𝑆1𝑝

√𝑆11√𝑆𝑝𝑝
𝑆21

√𝑆22√𝑆11

𝑆22

√𝑆22√𝑆22
⋯

𝑆2𝑝

√𝑆22√𝑆𝑝𝑝
⋮ ⋮ ⋱ ⋮
𝑆𝑝1

√𝑆𝑝𝑝√𝑆11

𝑆𝑝2

√𝑆𝑝𝑝√𝑆22
⋯

𝑆𝑝𝑝

√𝑆𝑝𝑝√𝑆𝑝𝑝]
 
 
 
 
 
 
 
 

(𝑝×𝑝)

 

           =

[
 
 
 
1 𝑅12 ⋯ 𝑅1𝑝
𝑅21 1 ⋯ 𝑅2𝑝
⋮ ⋮ ⋱ ⋮
𝑅𝑝1 𝑅𝑝2 ⋯ 1 ]

 
 
 

(𝑝×𝑝)

 ∎ 

The diagonal elements of the sample correlation matrix are  

𝑅𝑘𝑘 =
𝑆𝑘𝑘

√𝑆𝑘𝑘√𝑆𝑘𝑘
=
𝑆𝑘𝑘
𝑆𝑘𝑘

= 1 

for 𝑘 = 1,2, … , 𝑝, 𝑖 = 𝑘 where 𝑅𝑖𝑖 = 𝑅𝑘𝑘. The off-diagonal elements of the sample 

correlation matrix are 

𝑅𝑖𝑘 =
𝑆𝑖𝑘

√𝑆𝑖𝑖√𝑆𝑘𝑘
 

for 𝑖, 𝑘 = 1,2, … , 𝑝, 𝑖 ≠ 𝑘 where 𝑅𝑖𝑘 = 𝑅𝑘𝑖.  
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Furthermore,  

tr(𝐑) =∑ 𝑅𝑘𝑘
𝑝

𝑘=1
= 1 + 1 +⋯+ 1 = 𝑝 

(number of characteristics). Because, 𝐸 ( 𝐑
(𝑝×𝑝)

) ≠ 𝝆
(𝑝×𝑝)

, one can say 𝐑
(𝑝×𝑝)

 is a biased 

estimator for the population correlation matrix 𝝆
(𝑝×𝑝)

. Finally, 

𝐑
(𝑝×𝑝)

= 𝐃−1 2⁄

(𝑝×𝑝)
⋅ 𝐒𝐗
(𝑝×𝑝)

⋅ 𝐃−1 2⁄

(𝑝×𝑝)
 ⇒ 𝐒𝐗

(𝑝×𝑝)
= 𝐃1 2⁄

(𝑝×𝑝)
⋅ 𝐑
(𝑝×𝑝)

⋅ 𝐃1 2⁄

(𝑝×𝑝)
 

[3, p. 140]. 

4.5 Sample Mean Vector and Variance-Covariance 

Matrix for Linear Combinations of Continuous Random 

Variables 

4.5.1 Linear Combination 

Definition 4.5.1 (Linear Combination of 𝐗). Let 𝐜
(𝑝×1)

 be a 𝑝 × 1 vector of constants 

defined as 

𝐜
(𝑝×1)

= [

𝑐1
𝑐2
⋮
𝑐𝑝

]

(𝑝×1)
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and let 𝐗

(𝑝×1)
 be a 𝑝 × 1 population random vector of continuous random variables 

𝐗
(𝑝×1)

= [

𝑋1
𝑋2
⋮
𝑋𝑝

]

(𝑝×1)

 

Now consider a linear combination of 𝐗
(𝑛×𝑝)

 of the form  

𝐜′
(1×𝑝)

⋅ 𝐗
(𝑝×1)

= [𝑐1, 𝑐2, … , 𝑐𝑝]
(1×𝑝)

⋅ [

𝑋1
𝑋2
⋮
𝑋𝑝

]

(𝑝×1)

= 𝑐1𝑋1 + 𝑐2𝑋2 +⋯+ 𝑐𝑝𝑋𝑝 

whose unrealized quantity on the 𝑗𝑡ℎ multivariate sample observation is 

𝐜′
(1×𝑝)

⋅ 𝐗𝑗
(𝑝×1)

= [𝑐1, 𝑐2, … , 𝑐𝑝]
(1×𝑝)

⋅

[
 
 
 
𝑋𝑗1
𝑋𝑗2
⋮
𝑋𝑗𝑝]

 
 
 

(𝑝×1)

= 𝑐1𝑋𝑗1 + 𝑐2𝑋𝑗2 +⋯+ 𝑐𝑝𝑋𝑗𝑝 

for 𝑗 = 1,2, … , 𝑛 [3, p. 140]. 

4.5.2 Sample Statistics for Linear Combinations 

Theorem 4.5.1 (Sample Mean of a Linear Combination of 𝐗). Let random 

vectors 𝐗1
(𝑝×1)

, 𝐗2
(𝑝×1)

, … , 𝐗𝑛
(𝑝×1)

 constitute a multivariate random sample defined in 

Definition 4.2.2. Assume the sample mean vector �̅�
(𝑝×1)

 defined in Theorem 4.4.1 

exists. Next, consider a linear combination of the form 𝐜′
(1×𝑝)

⋅ 𝐗
(𝑝×1)

 with 𝑗𝑡ℎ 

multivariate sample observation 𝐜′
(1×𝑝)

⋅ 𝐗𝑗
(𝑝×1)

 given in Definition 4.5.1. Then, the 
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unrealized sample mean of a linear combination of 𝐗

(𝑛×𝑝)
 is defined by  

𝑠𝑎𝑚𝑝𝑙𝑒 𝑚𝑒𝑎𝑛 𝑜𝑓 𝐜′
(1×𝑝)

⋅ 𝐗
(𝑝×1)

= 𝐸 ( 𝐜′
(1×𝑝)

⋅ 𝐗
(𝑝×1)

) = 𝐜′
(1×𝑝)

⋅ �̅�
(𝑝×1)

. 

[3, p. 140]. 

Proof. Use Definition 2.1.6, Definition 2.1.11, and Result 2.2.1. (d). 

𝐸 ( 𝐜′
(1×𝑝)

⋅ 𝐗
(𝑝×1)

) 

                              =
1

𝑛
∑ 𝐜′

(1×𝑝)
⋅ 𝐗𝑗
(𝑝×1)

𝑛

𝑗=1
 

                              =
1

𝑛
( 𝐜′
(1×𝑝)

⋅ 𝐗1
(𝑝×1)

+ 𝐜′
(1×𝑝)

⋅ 𝐗2
(𝑝×1)

+⋯+ 𝐜′
(1×𝑝)

⋅ 𝐗𝑛
(𝑝×1)

) 

                              = 𝐜′
(1×𝑝)

⋅ [
1

𝑛
( 𝐗1
(𝑝×1)

+ 𝐗2
(𝑝×1)

+⋯+ 𝐗𝑛
(𝑝×1)

)] 

                              = 𝐜′
(1×𝑝)

⋅

[
 
 
 
 
1

𝑛

(

 
 
[

𝑋11
𝑋12
⋮
𝑋1𝑝

]

(𝑝×1)

+ [

𝑋21
𝑋22
⋮
𝑋2𝑝

]

(𝑝×1)

+⋯+ [

𝑋𝑛1
𝑋𝑛2
⋮
𝑋𝑛𝑝

]

(𝑝×1))

 
 

]
 
 
 
 

 

                              = 𝐜′
(1×𝑝)

⋅

[
 
 
 
 
1

𝑛
[

𝑋11 + 𝑋21 +⋯+ 𝑋𝑛1
𝑋12 + 𝑋22 +⋯+ 𝑋𝑛2

            ⋮
𝑋1𝑝 + 𝑋2𝑝 +⋯+ 𝑋𝑛𝑝

]

(𝑝×1) ]
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                              = 𝐜′
(1×𝑝)

⋅

[
 
 
 
 
 
 
 
 

1

𝑛

[
 
 
 
 
 
 
 ∑ 𝑋𝑗1

𝑛

𝑗=1

∑ 𝑋𝑗2
𝑛

𝑗=1

⋮

∑ 𝑋𝑗𝑝
𝑛

𝑗=1 ]
 
 
 
 
 
 
 

(𝑝×1) ]
 
 
 
 
 
 
 
 

 

                             = 𝐜′
(1×𝑝)

⋅

[
 
 
 
 
 
 
 
1

𝑛
∑ 𝑋𝑗1

𝑛

𝑗=1

1

𝑛
∑ 𝑋𝑗2

𝑛

𝑗=1

⋮
1

𝑛
∑ 𝑋𝑗𝑝

𝑛

𝑗=1 ]
 
 
 
 
 
 
 

(𝑝×1)

 

                             = 𝐜′
(1×𝑝)

⋅

[
 
 
 
�̅�1
�̅�2
⋮
�̅�𝑝]
 
 
 

(𝑝×1)

 

                             = 𝐜′
(1×𝑝)

⋅ �̅�
(𝑝×1)

 ∎ 

Theorem 4.5.2 (Sample Variance of a Linear Combination of 𝐗). Let random 

vectors 𝐗1
(𝑝×1)

, 𝐗2
(𝑝×1)

, … , 𝐗𝑛
(𝑝×1)

 constitute a multivariate random sample defined in 

Definition 4.2.2. Assume the sample variance-covariance matrix 𝐒𝐗
(𝑝×𝑝)

 defined in 

Theorem 4.4.2 exists. Next consider a linear combination of the form 𝐜′
(1×𝑝)

⋅ 𝐗
(𝑝×1)

 

with 𝑗𝑡ℎ multivariate sample observation 𝐜′
(1×𝑝)

⋅ 𝐗𝑗
(𝑝×1)

 given in Definition 4.5.1. Then 

the unrealized sample variance of a linear combination of 𝐗
(𝑛×𝑝)

 is defined by  
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𝑠𝑎𝑚𝑝𝑙𝑒 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑜𝑓 𝐜′
(1×𝑝)

⋅ 𝐗
(𝑝×1)

= var ( 𝐜′
(1×𝑝)

⋅ 𝐗
(𝑝×1)

) = 𝐜′
(1×𝑝)

⋅ 𝐒𝐗
(𝑝×𝑝)

⋅ 𝐜
(𝑝×1)

 

[3, p. 140]. 

Proof. Use Definition 2.1.11 and Result 2.2.1. (d). 

Since, 

( 𝐜′
(1×𝑝)

⋅ 𝐗𝑗
(𝑝×1)

− 𝐜′
(1×𝑝)

⋅ �̅�
(𝑝×1)

)

2

 

                                                        = ( 𝐜′
(1×𝑝)

⋅ ( 𝐗𝑗
(𝑝×1)

− �̅�
(𝑝×1)

))

2

 

                                                        = 𝐜′
(1×𝑝)

⋅ (𝐗𝑗 − �̅�
(𝑝×1)

) ⋅ 𝐜′
(1×𝑝)

⋅ (𝐗𝑗 − �̅�
(𝑝×1)

) 

                                                        = 𝐜′
(1×𝑝)

⋅ (𝐗𝑗 − �̅�
(𝑝×1)

) ⋅ (𝐗𝑗 − �̅�
(𝑝×1)

)

′

⋅ 𝐜
(𝑝×1)

 

                                                        = 𝐜′
(1×𝑝)

⋅ ( 𝐗𝑗
(𝑝×1)

− �̅�
(𝑝×1)

)( 𝐗𝑗
(𝑝×1)

− �̅�
(𝑝×1)

)

′

⋅ 𝐜
(𝑝×1)

 

⇒ 

var ( 𝐜′
(1×𝑝)

⋅ 𝐗
(𝑝×1)

) 

                                  =
1

𝑛 − 1
∑ 𝐜′

(1×𝑝)
⋅ ( 𝐗𝑗

(𝑝×1)

− �̅�
(𝑝×1)

)( 𝐗𝑗
(𝑝×1)

− �̅�
(𝑝×1)

)

′

⋅ 𝐜
(𝑝×1)

𝑛

𝑗=1

 

                                  = 𝐜′
(1×𝑝)

⋅ [
1

𝑛 − 1
∑ ( 𝐗𝑗

(𝑝×1)

− �̅�
(𝑝×1)

)
𝑛

𝑗=1
( 𝐗𝑗
(𝑝×1)

− �̅�
(𝑝×1)

)

′

] ⋅ 𝐜
(𝑝×1)
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                                 = 𝐜′

(1×𝑝)
⋅ 𝐒𝐗
(𝑝×𝑝)

⋅ 𝐜
(𝑝×1)

 ∎ 

Theorem 4.5.3 (Sample Covariance of Two Linear Combinations of 𝐗). Let random 

vectors 𝐗1
(𝑝×1)

, 𝐗2
(𝑝×1)

, … , 𝐗𝑛
(𝑝×1)

 constitute a multivariate random sample defined in 

Definition 4.2.2. Assume the sample variance-covariance matrix 𝐒𝐗
(𝑝×𝑝)

 defined in 

Theorem 4.4.2 exists. Next consider two linear combinations of the form 𝐛′
(1×𝑝)

⋅ 𝐗
(𝑝×1)

 

and 𝐜′
(1×𝑝)

⋅ 𝐗
(𝑝×1)

 with 𝑗𝑡ℎ multivariate sample observations 𝐛′
(1×𝑝)

⋅ 𝐗𝑗
(𝑝×1)

and            

𝐜′
(1×𝑝)

⋅ 𝐗𝑗
(𝑝×1)

, respectively, given in Definition 4.5.1. Then the unrealized sample 

covariance of two linear combinations of 𝐗
(𝑛×𝑝)

 is defined by  

𝑠𝑎𝑚𝑝𝑙𝑒 𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑜𝑓 𝐛′
(1×𝑝)

⋅ 𝐗
(𝑝×1)

 𝑎𝑛𝑑 𝐜′
(1×𝑝)

⋅ 𝐗
(𝑝×1)

 

                                   = cov ( 𝐛′
(1×𝑝)

⋅ 𝐗
(𝑝×1)

 , 𝐜′
(1×𝑝)

⋅ 𝐗
(𝑝×1)

) = 𝐛′
(1×𝑝)

⋅ 𝐒𝐗
(𝑝×𝑝)

⋅ 𝐜
(𝑝×1)

 

[3, pp. 140-141]. 

Proof. Use Definition 2.1.11 and Result 2.2.1. (d). 

Since, 

( 𝐛′
(1×𝑝)

⋅ 𝐗𝑗
(𝑝×1)

− 𝐛′
(1×𝑝)

⋅ �̅�
(𝑝×1)

) ⋅ ( 𝐜′
(1×𝑝)

⋅ 𝐗𝑗
(𝑝×1)

− 𝐜′
(1×𝑝)

⋅ �̅�
(𝑝×1)

) 

= ( 𝐛′
(1×𝑝)

⋅ 𝐗𝑗
(𝑝×1)

− 𝐛′
(1×𝑝)

⋅ �̅�
(𝑝×1)

) ⋅ ( 𝐜′
(1×𝑝)

⋅ 𝐗𝑗
(𝑝×1)

− 𝐜′
(1×𝑝)

⋅ �̅�
(𝑝×1)

) 

= 𝐛′
(1×𝑝)

⋅ (𝐗𝑗 − �̅�
(𝑝×1)

) ⋅ 𝐜′
(1×𝑝)

⋅ (𝐗𝑗 − �̅�
(𝑝×1)

) 
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= 𝐛′
(1×𝑝)

⋅ (𝐗𝑗 − �̅�
(𝑝×1)

) ⋅ (𝐗𝑗 − �̅�
(𝑝×1)

)

′

⋅ 𝐜
(𝑝×1)

 

= 𝐛′
(1×𝑝)

⋅ ( 𝐗𝑗
(𝑝×1)

− �̅�
(𝑝×1)

)( 𝐗𝑗
(𝑝×1)

− �̅�
(𝑝×1)

)

′

⋅ 𝐜
(𝑝×1)

 

⇒ 

cov ( 𝐛′
(1×𝑝)

⋅ 𝐗
(𝑝×1)

 , 𝐜′
(1×𝑝)

⋅ 𝐗
(𝑝×1)

) 

=
1

𝑛 − 1
∑ 𝐛′

(1×𝑝)
⋅ ( 𝐗𝑗

(𝑝×1)

− �̅�
(𝑝×1)

)( 𝐗𝑗
(𝑝×1)

− �̅�
(𝑝×1)

)

′

⋅ 𝐜
(𝑝×1)

𝑛

𝑗=1

 

= 𝐛′
(1×𝑝)

⋅ [
1

𝑛 − 1
∑ ( 𝐗𝑗

(𝑝×1)

− �̅�
(𝑝×1)

)
𝑛

𝑗=1
( 𝐗𝑗
(𝑝×1)

− �̅�
(𝑝×1)

)

′

] ⋅ 𝐜
(𝑝×1)

 

= 𝐛′
(1×𝑝)

⋅ 𝐒𝐗
(𝑝×𝑝)

⋅ 𝐜
(𝑝×1)

 ∎ 

4.5.3 𝒒 Linear Combinations 

Definition 4.5.2 (𝑞 Linear Combinations of 𝐗). Let random vectors 𝐗1
(𝑝×1)

, 𝐗2
(𝑝×1)

, … , 𝐗𝑛
(𝑝×1)

 

constitute a multivariate random sample defined in Definition 4.2.2. Now consider 𝒒 

linear combinations of 𝐗
(𝑛×𝑝)

 of the 𝑝 population continuous random variables 

𝑋1, 𝑋2, … , 𝑋𝑝 with form: 

𝑌𝑖 = 𝐜𝑖
′

(1×𝑝)
⋅ 𝐗
(𝑝×1)

= [𝑐𝑖1, 𝑐𝑖2, … , 𝑐𝑖𝑝]
(1×𝑝)

⋅ [

𝑋1
𝑋2
⋮
𝑋𝑝

]

(𝑝×1)

= 𝑐𝑖1𝑋1 + 𝑐𝑖2𝑋2 +⋯+ 𝑐𝑖𝑝𝑋𝑝 

for 𝑖 = 1,2, … , 𝑞 linear combinations 
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𝑌1 = 𝐜1
′

(1×𝑝)
⋅ 𝐗
(𝑝×1)

= 𝑐11𝑋1 + 𝑐12𝑋2 +⋯+ 𝑐1𝑝𝑋𝑝 

𝑌2 = 𝐜2
′

(1×𝑝)
⋅ 𝐗
(𝑝×1)

= 𝑐21𝑋1 + 𝑐22𝑋2 +⋯+ 𝑐2𝑝𝑋𝑝  

                                                        ⋮                                                  ⋮               

𝑌𝑞 = 𝐜𝑞
′

(1×𝑝)

⋅ 𝐗
(𝑝×1)

= 𝑐𝑞1𝑋1 + 𝑐𝑞2𝑋2 +⋯+ 𝑐𝑞𝑝𝑋𝑝 

[3, pp. 143-144]or in matrix notation, 

𝐘
(𝑞×1)

= [

𝑌1
𝑌2
⋮
𝑌𝑞

]

(𝑞×1)

=

[
 
 
 
 
 
𝐜1
′

(1×𝑝)
⋅ 𝐗
(𝑝×1)

𝐜2
′

(1×𝑝)
⋅ 𝐗
(𝑝×1)

⋮
𝐜𝑞
′

(1×𝑝)

⋅ 𝐗
(𝑝×1)]

 
 
 
 
 

(𝑞×1)

= [

𝑐11 𝑐12 ⋯ 𝑐1𝑝
𝑐21 𝑐22 ⋯ 𝑐2𝑝
⋮ ⋮ ⋱ ⋮
𝑐𝑞1 𝑐𝑞2 ⋯ 𝑐𝑞𝑝

]

(𝑞×𝑝)

[

𝑋1
𝑋2
⋮
𝑋𝑝

]

(𝑝×1)

= 𝐂
(𝑞×𝑝)

⋅ 𝐗
(𝑝×1)

 

where the unrealized quantity on the 𝑗𝑡ℎ multivariate sample observation,              

𝑗 = 1,2, … , 𝑛, on the 𝑖𝑡ℎ linear combination, 𝑖 = 1,2, … , 𝑞, is 

𝑌𝑗𝑖 = 𝐜𝑖
′

(1×𝑝)
⋅ 𝐗𝑗
(𝑝×1)

= [𝑐𝑖1, 𝑐𝑖2, … , 𝑐𝑖𝑝]
(1×𝑝)

⋅

[
 
 
 
𝑋𝑗1
𝑋𝑗2
⋮
𝑋𝑗𝑝]

 
 
 

(𝑝×1)

= 𝑐𝑖1𝑋𝑗1 + 𝑐𝑖2𝑋𝑗2 +⋯+ 𝑐𝑖𝑝𝑋𝑗𝑝. 

4.5.4 Sample Mean Vector for 𝒒 Linear Combinations 

Definition 4.5.3 (Sample Mean Vector for 𝑞 Linear Combinations of 𝐗). Let random 

vectors 𝐗1
(𝑝×1)

, 𝐗2
(𝑝×1)

, … , 𝐗𝑛
(𝑝×1)

 constitute a multivariate random sample defined in 

Definition 4.2.2. Assume the sample mean vector �̅�
(𝑝×1)

 defined in Theorem 4.4.1 

exists. Next, consider 𝑞 linear combinations of the form 𝑌𝑖 = 𝐜𝑖
′

(1×𝑝)
⋅ 𝐗
(𝑝×1)

 with 𝑗𝑡ℎ  
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multivariate sample observation 𝑌𝑗𝑖 = 𝐜𝑖

′

(1×𝑝)
⋅ 𝐗𝑗
(𝑝×1)

 given in Definition 4.5.2. Then the 

unrealized sample mean vector for 𝒒 linear combinations of 𝐗
(𝑛×𝑝)

 is defined by  

𝑠𝑎𝑚𝑝𝑙𝑒 𝑚𝑒𝑎𝑛 𝑣𝑒𝑐𝑡𝑜𝑟 𝑜𝑓 𝐘
(𝑞×1)

 

                                                �̅�
(𝑞×1)

= 𝐸 ( 𝐘
(𝑞×1)

) = 𝐸 ( 𝐂
(𝑞×𝑝)

⋅ 𝐗
(𝑝×1)

) = 𝐂
(𝑞×𝑝)

⋅ �̅�
(𝑝×1)

 

[3, p. 144]. 

Thus, the 𝑖th row of 𝐘
(𝑞×1)

 has unrealized sample mean  

�̅�𝑖 = 𝐸(𝑌𝑖) = 𝐸 ( 𝐜𝑖
′

(1×𝑝)
⋅ 𝐗
(𝑝×1)

) = 𝐜𝑖
′

(1×𝑝)
⋅ �̅�
(𝑝×1)

 

for 𝑖 = 1,2, … , 𝑞. 

4.5.5 Sample Variance-Covariance Matrix for 𝒒 Linear 

Combinations 

Definition 4.5.4 (Sample Variance-Covariance Matrix for 𝑞 Linear Combinations of 

𝐗). Let random vectors 𝐗1
(𝑝×1)

, 𝐗2
(𝑝×1)

, … , 𝐗𝑛
(𝑝×1)

 constitute a multivariate random sample 

defined in Definition 4.2.2. Assume the sample variance-covariance matrix 

𝐒𝐗
(𝑝×𝑝)

 defined in Theorem 4.4.2 exists. Next consider  𝑞 linear combinations of the 

form 𝑌𝑖 = 𝐜𝑖
′

(1×𝑝)
⋅ 𝐗
(𝑝×1)

 with 𝑗𝑡ℎ multivariate sample observation 𝑌𝑗𝑖 = 𝐜𝑖
′

(1×𝑝)
⋅ 𝐗𝑗
(𝑝×1)

 

given in Definition 4.5.2. Then the unrealized sample variance-covariance matrix for 

𝒒 linear combinations of 𝐗
(𝑛×𝑝)

 is defined by  
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𝐒𝐘

(𝑞×𝑞)
= 𝐂

(𝑞×𝑝)
⋅ 𝐒𝐗
(𝑝×𝑝)

⋅ 𝐂′
(𝑝×𝑞)

 

          =

[
 
 
 
 
 
𝐜1
′

(1×𝑝)
⋅ 𝐒𝐗
(𝑝×𝑝)

⋅ 𝐜1
(𝑝×1)

𝐜1
′

(1×𝑝)
⋅ 𝐒𝐗
(𝑝×𝑝)

⋅ 𝐜2
(𝑝×1)

⋯ 𝐜1
′

(1×𝑝)
⋅ 𝐒𝐗
(𝑝×𝑝)

⋅ 𝐜𝑞
(𝑝×1)

𝐜2
′

(1×𝑝)
⋅ 𝐒𝐗
(𝑝×𝑝)

⋅ 𝐜1
(𝑝×1)

𝐜2
′

(1×𝑝)
⋅ 𝐒𝐗
(𝑝×𝑝)

⋅ 𝐜2
(𝑝×1)

⋯ 𝐜2
′

(1×𝑝)
⋅ 𝐒𝐗
(𝑝×𝑝)

⋅ 𝐜𝑞
(𝑝×1)

⋮ ⋮ ⋱ ⋮
𝐜𝑞
′

(1×𝑝)

⋅ 𝐒𝐗
(𝑝×𝑝)

⋅ 𝐜1
(𝑝×1)

𝐜𝑞
′

(1×𝑝)

⋅ 𝐒𝐗
(𝑝×𝑝)

⋅ 𝐜2
(𝑝×1)

⋯ 𝐜𝑞
′

(1×𝑝)

⋅ 𝐒𝐗
(𝑝×𝑝)

⋅ 𝐜𝑞
(𝑝×1)]

 
 
 
 
 

(𝑞×𝑞)

 

[3, p. 144]. 

Thus, the 𝑖th row of 𝐘
(𝑞×1)

 has unrealized sample variance 

var(𝑌𝑖) = 𝐜𝑖
′

(1×𝑝)
⋅ 𝐒𝐗
(𝑝×𝑝)

⋅ 𝐜𝑖
(𝑝×1)

 

 for 𝑖 = 1,2, … , 𝑞. 

And, the 𝑖th row and 𝑘th row of 𝐘
(𝑝×1)

 have unrealized sample covariance 

cov(𝑌𝑖, 𝑌𝑘) = 𝐜𝑖
′

(1×𝑝)
⋅ 𝐒𝐗
(𝑝×𝑝)

⋅ 𝐜𝑘
(𝑝×1)

= 𝐜𝑘
′

(1×𝑝)
⋅ 𝐒𝐗
(𝑝×𝑝)

⋅ 𝐜𝑖
(𝑝×1)

 

for 𝑖, 𝑘 = 1,2, … , 𝑞. 
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4.6 Standardized Random Samples 

4.6.1 Standardized Univariate Random Sample 

Definition 4.6.1 (Standardized Univariate Random Sample). Let random variables 

𝑋𝑗𝑘 for 𝑗 = 1,2, … , 𝑛 constitute a univariate random sample defined in Definition 

4.2.1. Assume the sample mean �̅�𝑘 defined in Definition 4.3.1 and sample variance 

𝑆𝑘𝑘 defined in Definition 4.3.2 exist. Then the standardized univariate random 

sample is defined by  

𝑍𝑗𝑘 =
𝑋𝑗𝑘 − �̅�𝑘

√𝑆𝑘𝑘
 

for 𝑗 = 1,2, … , 𝑛. Hence, 𝑍1𝑘, 𝑍2𝑘 , … , 𝑍𝑛𝑘 constitute standardized univariate random 

sample of size 𝑛. 

Definition 4.6.2 (Standardized Sample Characteristic Vector). Let 𝐗𝑘
(𝑛×1)

be a sample 

characteristic vector defined in Definition 4.2.3. Assume the sample mean �̅�𝑘 

defined in Definition 4.3.1 and sample variance 𝑆𝑘𝑘 defined in Definition 4.3.2 exist. 

Then the unrealized standardized sample characteristic vector is defined by 

𝐙𝑘
(𝑛×1)

=

𝐗𝑘
(𝑛×1)

− �̅�𝑘 ⋅ 𝟏
(𝑛×1)

√𝑆𝑘𝑘
=

[
 
 
 
 
 
 
 
 
𝑋1𝑘 − �̅�𝑘

√𝑆𝑘𝑘

𝑋2𝑘 − �̅�𝑘

√𝑆𝑘𝑘
⋮

𝑋𝑛𝑘 − �̅�𝑘

√𝑆𝑘𝑘 ]
 
 
 
 
 
 
 
 

(𝑛×1)

= [

𝑍1𝑘
𝑍2𝑘
⋮
𝑍𝑛𝑘

]

(𝑛×1)

 

for 𝑘 = 1,2, … , 𝑝 [3, p. 135].   
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4.6.2 Standardized Multivariate Random Sample 

Theorem 4.6.1 (Standardized Multivariate Random Sample). Let random vectors 

𝐗𝑗
(𝑝×1)

=

[
 
 
 
𝑋𝑗1
𝑋𝑗2
⋮
𝑋𝑗𝑝]

 
 
 

(𝑝×1)

 

for 𝑗 = 1,2, … , 𝑛 constitute a multivariate random sample defined in Definition 4.2.2. 

Assume the sample mean vector �̅�
(𝑝×1)

 defined in Theorem 4.4.1 and inverse sample 

standard deviation matrix 𝐃−1 2⁄

(𝑝×𝑝)
defined in Definition 4.4.1 exist. Then the 

standardized multivariate random sample is defined by 

𝐙𝑗
(𝑝×1)

= 𝐃−1 2⁄

(𝑝×𝑝)
⋅ ( 𝐗𝑗

(𝑝×1)

− �̅�
(𝑝×1)

) =

[
 
 
 
 
 
 
 
 
𝑋𝑗1 − �̅�1

√𝑆11

𝑋𝑗2 − �̅�2

√𝑆22
⋮

𝑋𝑗𝑝 − �̅�𝑝

√𝑆𝑝𝑝 ]
 
 
 
 
 
 
 
 

(𝑝×1)

=

[
 
 
 
𝑍𝑗1
𝑍𝑗2
⋮
𝑍𝑗𝑝]

 
 
 

(𝑝×1)

 

for 𝑗 = 1,2, … , 𝑛. Hence, random vectors 𝐙1
(𝑝×1)

, 𝐙2
(𝑝×1)

, … , 𝐙𝑛
(𝑝×1)

 constitute a standardized 

multivariate random sample of size 𝑛 [3, p. 449]. 

Proof. Use Definition 2.2.5. 

𝐙𝑗
(𝑝×1)

= 𝐃−1 2⁄

(𝑝×𝑝)
⋅ ( 𝐗𝑗

(𝑝×1)

− �̅�
(𝑝×1)

) 
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          =

[
 
 
 
 
 
 
 
1

√𝑆11
0 ⋯ 0

0
1

√𝑆22
⋯ 0

⋮ ⋮ ⋱ ⋮

0 0 ⋯
1

√𝑆𝑝𝑝]
 
 
 
 
 
 
 

(𝑝×𝑝)

⋅

(

  
 

[
 
 
 
𝑋𝑗1
𝑋𝑗2
⋮
𝑋𝑗𝑝]

 
 
 

(𝑝×1)

−

[
 
 
 
�̅�1
�̅�2
⋮
�̅�𝑝]
 
 
 

(𝑝×1))

  
 

 

          =

[
 
 
 
 
 
 
 
1

√𝑆11
0 ⋯ 0

0
1

√𝑆22
⋯ 0

⋮ ⋮ ⋱ ⋮

0 0 ⋯
1

√𝑆𝑝𝑝]
 
 
 
 
 
 
 

(𝑝×𝑝)

[
 
 
 
 
𝑋𝑗1 − �̅�1

𝑋𝑗2 − �̅�2
⋮

𝑋𝑗𝑝 − �̅�𝑝]
 
 
 
 

(𝑝×1)

 

           =

[
 
 
 
 
 
 
 
 
𝑋𝑗1 − �̅�1

√𝑆11

𝑋𝑗2 − �̅�2

√𝑆22
⋮

𝑋𝑗𝑝 − �̅�𝑝

√𝑆𝑝𝑝 ]
 
 
 
 
 
 
 
 

(𝑝×1)

 

           =

[
 
 
 
𝑍𝑗1
𝑍𝑗2
⋮
𝑍𝑗𝑝]

 
 
 

(𝑝×1)

 for 𝑗 = 1,2, … , 𝑛 ∎ 
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4.6.3 Standardized Multivariate Random Sample Matrix 

Definition 4.6.3 (Standardized Multivariate Random Sample Matrix). A standardized 

multivariate random sample matrix is a matrix whose row vectors are transposed 

unrealized standardized multivariate random sample observations 

𝐙𝑗
′

(1×𝑝)

= [𝑍𝑗1, 𝑍𝑗2, … , 𝑍𝑗𝑝]
(1×𝑝)

 

for 𝑗 = 1,2, … , 𝑛 defined in Theorem 4.6.1. In addition, the column vectors of the 

matrix are unrealized standardized sample variables or characteristic vectors  

𝐙𝑘
(𝑛×1)

= [

𝑍1𝑘
𝑍2𝑘
⋮
𝑍𝑛𝑘

]

(𝑛×1)

 

for 𝑘 = 1,2, … , 𝑝 defined in Definition 4.6.2. Let the (𝑗, 𝑘)𝑡ℎ entry be a standardized 

continuous random variable 𝑍𝑗𝑘 , then the 𝑛 × 𝑝 standardized multivariate random 

sample matrix 𝐙
(𝑛×𝑝)

= {𝑍𝑗𝑘} is defined by 

𝐙
(𝑛×𝑝)

=

[
 
 
 
 
 
 
𝑍11 𝑍12 ⋯ 𝑍1𝑘 ⋯ 𝑍1𝑝
𝑍21 𝑍22 ⋯ 𝑍2𝑘 ⋯ 𝑍2𝑝
⋮ ⋮ ⋮ ⋮
𝑍𝑗1 𝑍𝑗2 ⋯ 𝑍𝑗𝑘 ⋯ 𝑍𝑗𝑝
⋮ ⋮ ⋮ ⋮
𝑍𝑛1 𝑍𝑛2 ⋯ 𝑍𝑛𝑘 ⋯ 𝑍𝑛𝑝]

 
 
 
 
 
 

(𝑛×𝑝)
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          =

[
 
 
 
 
 
 
 
 
 
 
 
 
𝑋11 − �̅�1

√𝑆11

𝑋12 − �̅�2

√𝑆22
⋯

𝑋1𝑘−�̅�𝑘

√𝑆𝑘𝑘
⋯

𝑋1𝑝−�̅�𝑝

√𝑆𝑝𝑝

𝑋21 − �̅�1

√𝑆11

𝑋22 − �̅�2

√𝑆22
⋯

𝑋2𝑘 − �̅�𝑘

√𝑆𝑘𝑘
⋯

𝑋2𝑝 − �̅�𝑝

√𝑆𝑝𝑝

⋮ ⋮ ⋮ ⋮
𝑋𝑗1 − �̅�1

√𝑆11

𝑋𝑗2 − �̅�2

√𝑆22
⋯

𝑋𝑗𝑘 − �̅�𝑘

√𝑆𝑘𝑘
⋯

𝑋𝑗𝑝 − �̅�𝑝

√𝑆𝑝𝑝

⋮ ⋮ ⋮ ⋮
𝑋𝑛1 − �̅�1

√𝑆11

𝑋𝑛2 − �̅�2

√𝑆22
⋯

𝑋𝑛𝑘 − �̅�𝑘

√𝑆𝑘𝑘
⋯

𝑋𝑛𝑝 − �̅�𝑝

√𝑆𝑝𝑝 ]
 
 
 
 
 
 
 
 
 
 
 
 

(𝑛×𝑝)

=

[
 
 
 
 
 
𝐙1
′

𝐙2
′

⋮
𝐙𝑗
′

⋮
𝐙𝑛
′ ]
 
 
 
 
 

 

for 𝑗 = 1,2, … , 𝑛 standardized multivariate sample observations and 𝑘 = 1,2, … , 𝑝 

standardized sample characteristics [3, p. 450]. 

4.7 Sample Statistics for Standardized Samples 

Theorem 4.7.1 (Sample Mean for 𝑍𝑘). Let 𝑍𝑗𝑘  for 𝑗 = 1,2, … , 𝑛 constitute a 

standardized univariate random sample defined in Definition 4.6.1. Then the 

unrealized sample mean for 𝑍𝑘, �̅�𝑘, is defined by 

�̅�𝑘 =
1

𝑛
∑ 𝑍𝑗𝑘

𝑛

𝑗=1
=
1

𝑛
∑

𝑋𝑗𝑘 − �̅�𝑘

√𝑆𝑘𝑘

𝑛

𝑗=1
= 0 

for 𝑘 = 1,2, … , 𝑝. 

Proof. 

�̅�𝑘 

      =
1

𝑛
∑ 𝑍𝑗𝑘

𝑛

𝑗=1
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      =
1

𝑛
∑

𝑋𝑗𝑘 − �̅�𝑘

√𝑆𝑘𝑘

𝑛

𝑗=1
 

      =
1

√𝑆𝑘𝑘
[
1

𝑛
∑ (𝑋𝑗𝑘 − �̅�𝑘

𝑛

𝑗=1
)] 

      =
1

√𝑆𝑘𝑘
[
1

𝑛
∑ 𝑋𝑗𝑘

𝑛

𝑗=1
−
1

𝑛
∑ �̅�𝑘

𝑛

𝑗=1
] 

      =
1

√𝑆𝑘𝑘
[
1

𝑛
⋅ (𝑛 ⋅ �̅�𝑘) −

1

𝑛
(𝑛 ⋅ �̅�𝑘)] 

      =
1

√𝑆𝑘𝑘
[�̅�𝑘 − �̅�𝑘] = 0 ∎ 

Theorem 4.7.2 (Sample Variance for 𝑍𝑘). Let 𝑍𝑗𝑘  for 𝑗 = 1,2, … , 𝑛 constitute a 

standardized univariate random sample defined in Definition 4.6.1. Then the 

unrealized sample variance for 𝑍𝑘, 𝑆𝑧,𝑘𝑘, is defined by 

𝑆𝑧,𝑘𝑘 =
1

𝑛 − 1
∑ (𝑍𝑗𝑘 − �̅�𝑘)

2𝑛

𝑗=1
=

1

𝑛 − 1
∑ (

𝑋𝑗𝑘 − �̅�𝑘

√𝑆𝑘𝑘
)

2𝑛

𝑗=1
= 1 

for 𝑘 = 1,2, … , 𝑝. 

𝑆𝑧,𝑘𝑘 

          =
1

𝑛 − 1
∑ (𝑍𝑗𝑘 − �̅�𝑘)

2𝑛

𝑗=1
 

          =
1

𝑛 − 1
∑ (

𝑋𝑗𝑘 − �̅�𝑘

√𝑆𝑘𝑘
− 0)

2𝑛

𝑗=1
 

          =
1

𝑛 − 1
∑ (

𝑋𝑗𝑘 − �̅�𝑘

√𝑆𝑘𝑘
)

2𝑛

𝑗=1
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          =
1

𝑆𝑘𝑘
⋅ [

1

𝑛 − 1
∑ (𝑋𝑗𝑘 − �̅�𝑘)

2𝑛

𝑗=1
] 

          =
1

𝑆𝑘𝑘
⋅ 𝑆𝑘𝑘 = 1 ∎ 

Theorem 4.7.3 (Sample Covariance for 𝑍𝑖  and 𝑍𝑘). Let 𝐙𝑗
(2×1)

= [
𝑋𝑗𝑖
𝑋𝑗𝑘

]

(2×1)

 for 𝑗 = 1,2, … , 𝑛 

constitute a two-dimensional characteristic subset of the standardized 

multivariance random sample defined in Theorem 4.6.1. Assume the sample means 

�̅�𝑖, �̅�𝑘 defined in Theorem 4.7.1 and sample variances 𝑆𝑧,𝑖𝑖, 𝑆𝑧,𝑘𝑘 defined in Theorem 

4.7.2 exist. Then the unrealized sample covariance for 𝑍𝑖  and 𝑍𝑘, 𝑆𝑧,𝑖𝑘, is defined by  

𝑆𝑧,𝑖𝑘 =
1

𝑛 − 1
∑ (𝑍𝑗𝑖 − �̅�𝑖)(𝑍𝑗𝑘 − �̅�𝑘)

𝑛

𝑗=1
=

1

𝑛 − 1
∑ (

𝑋𝑗𝑖 − �̅�𝑖

√𝑆𝑖𝑖
)(

𝑋𝑗𝑘 − �̅�𝑘

√𝑆𝑘𝑘
)

𝑛

𝑗=1
= 𝑅𝑖𝑘 

for 𝑖, 𝑘 = 1,2, … , 𝑝. 

Proof.  

𝑆𝑧,𝑖𝑘 

          =
1

𝑛 − 1
∑ (𝑍𝑗𝑖 − �̅�𝑖)(𝑍𝑗𝑘 − �̅�𝑘)

𝑛

𝑗=1
 

          =
1

𝑛 − 1
∑ (

𝑋𝑗𝑖 − �̅�𝑖

√𝑆𝑖𝑖
− 0)(

𝑋𝑗𝑘 − �̅�𝑘

√𝑆𝑘𝑘
− 0)

𝑛

𝑗=1
 

          =
1

𝑛 − 1
∑ (

𝑋𝑗𝑖 − �̅�𝑖

√𝑆𝑖𝑖
)(

𝑋𝑗𝑘 − �̅�𝑘

√𝑆𝑘𝑘
)

𝑛

𝑗=1
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          =
1

√𝑆𝑖𝑖√𝑆𝑘𝑘
⋅ [

1

𝑛 − 1
∑ (𝑋𝑗𝑖 − �̅�𝑖)(𝑋𝑗𝑘 − �̅�𝑘)

𝑛

𝑗=1
] 

          =
1

√𝑆𝑖𝑖√𝑆𝑘𝑘
⋅ 𝑆𝑖𝑘 =

𝑆𝑖𝑘

√𝑆𝑖𝑖√𝑆𝑘𝑘
= 𝑅𝑖𝑘 ∎ 

Note 𝑆𝑧,𝑖𝑘 = 𝑆𝑧,𝑘𝑖, and when 𝑖 = 𝑘, 𝑆𝑧,𝑘𝑘 = 𝑅𝑘𝑘 = 1. 

4.8 Sample Mean Vector and Variance-Covariance 

Matrix for Standardized Samples 

4.8.1 Sample Mean Vector for Standardized Samples 

Theorem 4.8.1 (Sample Mean Vector for 𝐙). Let 𝐙1
(𝑝×1)

, 𝐙2
(𝑝×1)

, … , 𝐙𝑛
(𝑝×1)

 constitute a 

standardized multivariate random sample defined in Theorem 4.6.1. Then the 𝑝 × 1 

unrealized sample mean vector for 𝐙
(𝑛×𝑝)

is defined by  

�̅�
(𝑝×1)

=
1

𝑛
∑ 𝐙𝑗

(𝑝×1)

𝑛

𝑗=1
=
1

𝑛
⋅ 𝐙′
(𝑝×𝑛)

⋅ 𝟏
(𝑛×1)

= 

[
 
 
 
�̅�1
�̅�2
⋮
�̅�𝑝]
 
 
 

(𝑝×1)

= [

0
0
⋮
0

]

(𝑝×1)

= 𝟎
(𝑝×1)

 

[3, p. 450]. 
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Proof. Use Definition 2.1.4, Definition 2.2.2, Definition 2.2.3, and Theorem 4.7.1. 

�̅�
(𝑝×1)

 

           =
1

𝑛
∑ 𝐙𝑗

(𝑝×1)

𝑛

𝑗=1
 

           =
1

𝑛
( 𝐙1
(𝑝×1)

+ 𝐙2
(𝑝×1)

+⋯+ 𝐙𝑛
(𝑝×1)

) 

            =
1

𝑛

(

 
 
[

𝑍11
𝑍12
⋮
𝑍1𝑝

]

(𝑝×1)

+ [

𝑍21
𝑍22
⋮
𝑍2𝑝

]

(𝑝×1)

+⋯+ [

𝑍𝑛1
𝑍𝑛2
⋮
𝑍𝑛𝑝

]

(𝑝×1))

 
 

 

           =
1

𝑛
[

𝑍11 + 𝑍21 +⋯+ 𝑍𝑛1
𝑍12 + 𝑍22 +⋯+ 𝑍𝑛2

            ⋮
𝑍1𝑝 + 𝑍2𝑝 +⋯+ 𝑍𝑛𝑝

]

(𝑝×1)

 

           =
1

𝑛

[
 
 
 
 
 
 
 ∑ 𝑍𝑗1

𝑛

𝑗=1

∑ 𝑍𝑗2
𝑛

𝑗=1

⋮

∑ 𝑍𝑗𝑝
𝑛

𝑗=1 ]
 
 
 
 
 
 
 

(𝑝×1)

 

           =

[
 
 
 
 
 
 
 
1

𝑛
∑ 𝑍𝑗1

𝑛

𝑗=1

1

𝑛
∑ 𝑍𝑗2

𝑛

𝑗=1

⋮
1

𝑛
∑ 𝑍𝑗𝑝

𝑛

𝑗=1 ]
 
 
 
 
 
 
 

(𝑝×1)
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           =

[
 
 
 
�̅�1
�̅�2
⋮
�̅�𝑝]
 
 
 

(𝑝×1)

= [

0
0
⋮
0

]

(𝑝×1)

= 𝟎
(𝑝×1)

 

In terms of matrix operations �̅�
(𝑝×1)

 can be obtained by 

�̅�
(𝑝×1)

=
1

𝑛
⋅ 𝐙′
(𝑝×𝑛)

⋅ 𝟏
(𝑛×1)

 

          =
1

𝑛
[

𝑍11 𝑍21 ⋯ 𝑍𝑛1
𝑍12 𝑍22 ⋯ 𝑍𝑛2
⋮ ⋮ ⋱ ⋮
𝑍1𝑝 𝑍2𝑝 ⋯ 𝑍𝑛𝑝

]

(𝑝×𝑛)

⋅ [

11
12
⋮
1𝑛

]

(𝑛×1)

 

         =
1

𝑛
[

𝑍11 + 𝑍21 +⋯+ 𝑍𝑛1
𝑍12 + 𝑍22 +⋯+ 𝑍𝑛2

            ⋮
𝑍1𝑝 + 𝑍2𝑝 +⋯+ 𝑍𝑛𝑝

]

(𝑝×1)

 

         =
1

𝑛

[
 
 
 
 
 
 
 ∑ 𝑍𝑗1

𝑛

𝑗=1

∑ 𝑍𝑗2
𝑛

𝑗=1

⋮

∑ 𝑍𝑗𝑝
𝑛

𝑗=1 ]
 
 
 
 
 
 
 

(𝑝×1)

=

[
 
 
 
 
 
 
 
1

𝑛
∑ 𝑍𝑗1

𝑛

𝑗=1

1

𝑛
∑ 𝑍𝑗2

𝑛

𝑗=1

⋮
1

𝑛
∑ 𝑍𝑗𝑝

𝑛

𝑗=1 ]
 
 
 
 
 
 
 

(𝑝×1)

 

         =

[
 
 
 
�̅�1
�̅�2
⋮
�̅�𝑝]
 
 
 

(𝑝×1)

= [

0
0
⋮
0

]

(𝑝×1)

= 𝟎
(𝑝×1)

 ∎ 
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4.8.2 Sample Variance-Covariance Matrix for Standardized 

Samples 

Theorem 4.8.2 (Sample Variance-Covariance Matrix for 𝐙). Let 𝐙1
(𝑝×1)

, 𝐙2
(𝑝×1)

, … , 𝐙𝑛
(𝑝×1)

 

constitute a standardized multivariate random sample defined in Theorem 4.6.1. 

Assume the sample mean vector �̅�
(𝑝×1)

 defined in Theorem 4.8.1 exists. 

Then the 𝑝 × 𝑝 symmetric unrealized sample variance-covariance matrix for 𝐙
(𝑛×𝑝)

is 

defined by  

𝐒𝐙
(𝑝×𝑝)

=
1

𝑛 − 1
∑ ( 𝐙𝑗

(𝑝×1)

− �̅�
(𝑝×1)

)
𝑛

𝑗=1
( 𝐙𝑗
(𝑝×1)

− �̅�
(𝑝×1)

)

′

 

=
1

𝑛 − 1
⋅ ( 𝐙

(𝑛×𝑝)
−
1

𝑛
⋅ 𝟏
(𝑛×1)

⋅ 𝟏′
(1×𝑛)

⋅ 𝐙
(𝑛×𝑝)

)
′

⋅ ( 𝐙
(𝑛×𝑝)

−
1

𝑛
⋅ 𝟏
(𝑛×1)

⋅ 𝟏′
(1×𝑛)

⋅ 𝐙
(𝑛×𝑝)

) 

=
1

𝑛 − 1
⋅ ( 𝐙

(𝑛×𝑝)
− 𝟏

(𝑛×1)
⋅ �̅�′
(1×𝑝)

)
′

⋅ ( 𝐙
(𝑛×𝑝)

− 𝟏
(𝑛×1)

⋅ �̅�′
(1×𝑝)

) =
1

𝑛 − 1
⋅ 𝐙′
(𝑝×𝑛)

⋅ 𝐙
(𝑛×𝑝)

= 𝐑
(𝑝×𝑝)

 

[3, p. 450]. 

Proof. Use Definition 2.1.4, Definition 2.2.2, Definition 2.2.3, Theorem 4.6.1, 

Theorem 4.7.2, and Theorem 4.7.3. 

𝐒𝐙
(𝑝×𝑝)

=
1

𝑛 − 1
∑ ( 𝐙𝑗

(𝑝×1)

− �̅�
(𝑝×1)

)
𝑛

𝑗=1
( 𝐙𝑗
(𝑝×1)

− �̅�
(𝑝×1)

)

′

 

           =
1

𝑛 − 1
∑ ( 𝐙𝑗

(𝑝×1)

− 𝟎
(𝑝×1)

)
𝑛

𝑗=1
( 𝐙𝑗
(𝑝×1)

− 𝟎
(𝑝×1)

)

′

 

           =
1

𝑛 − 1
∑ 𝐙𝑗

(𝑝×1)

𝑛

𝑗=1
⋅ 𝐙𝑗

′

(1×𝑝)

=
1

𝑛 − 1
∑

[
 
 
 
𝑍𝑗1
𝑍𝑗2
⋮
𝑍𝑗𝑝]

 
 
 

(𝑝×1)

𝑛

𝑗=1
[𝑍𝑗1, 𝑍𝑗2, … , 𝑍𝑗𝑝]

(1×𝑝)
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           =
1

𝑛 − 1
∑

(

 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 
𝑋𝑗1 − �̅�1

√𝑆11

𝑋𝑗2 − �̅�2

√𝑆22
⋮

𝑋𝑗𝑝 − �̅�𝑝

√𝑆𝑝𝑝 ]
 
 
 
 
 
 
 
 

(𝑝×1)

[
𝑋𝑗1 − �̅�1

√𝑆11
,
𝑋𝑗2 − �̅�2

√𝑆22
, … ,

𝑋𝑗𝑝 − �̅�𝑝

√𝑆𝑝𝑝
]

(1×𝑝)

)

 
 
 
 
 
 
 

𝑛

𝑗=1
 

           =

[
 
 
 
 
 
 
 
 
 
 
 ∑ (𝑋𝑗1 − �̅�1)

2𝑛
𝑗=1

√𝑆11√𝑆11
𝑛 − 1

∑ (𝑋𝑗1 − �̅�1)(𝑋𝑗2 − �̅�2)
𝑛
𝑗=1

√𝑆11√𝑆22
𝑛 − 1

⋯

∑ (𝑋𝑗1 − �̅�1)(𝑋𝑗𝑝 − �̅�𝑝)
𝑛
𝑗=1

√𝑆11√𝑆𝑝𝑝

𝑛 − 1
∑ (𝑋𝑗2 − �̅�2)(𝑋𝑗1 − �̅�1)
𝑛
𝑗=1

√𝑆22√𝑆11
𝑛 − 1

∑ (𝑋𝑗2 − �̅�2)
2𝑛

𝑗=1

√𝑆22√𝑆22
𝑛 − 1

⋯

∑ (𝑋𝑗2 − �̅�2)(𝑋𝑗𝑝 − �̅�𝑝)
𝑛
𝑗=1

√𝑆22√𝑆𝑝𝑝

𝑛 − 1
⋮ ⋮ ⋱ ⋮

∑ (𝑋𝑗𝑝 − �̅�𝑝)(𝑋𝑗1 − �̅�1)
𝑛
𝑗=1

√𝑆𝑝𝑝√𝑆11

𝑛 − 1

∑ (𝑋𝑗𝑝 − �̅�𝑝)(𝑋𝑗2 − �̅�2)
𝑛
𝑗=1

√𝑆𝑝𝑝√𝑆22

𝑛 − 1
⋯

∑ (𝑋𝑗𝑝 − �̅�𝑝)
2𝑛

𝑗=1

√𝑆𝑝𝑝√𝑆𝑝𝑝

𝑛 − 1 ]
 
 
 
 
 
 
 
 
 
 
 

(𝑝×𝑝)

 

           =

[
 
 
 
 
 
 
 
 
 
 
(𝑛 − 1)𝑆11
√𝑆11√𝑆11
𝑛 − 1

(𝑛 − 1)𝑆12
√𝑆11√𝑆22
𝑛 − 1

⋯

(𝑛 − 1)𝑆1𝑝

√𝑆11√𝑆𝑝𝑝

𝑛 − 1
(𝑛 − 1)𝑆21
√𝑆22√𝑆11
𝑛 − 1

(𝑛 − 1)𝑆22
√𝑆22√𝑆22
𝑛 − 1

⋯

(𝑛 − 1)𝑆2𝑝

√𝑆22√𝑆𝑝𝑝

𝑛 − 1
⋮ ⋮ ⋱ ⋮

(𝑛 − 1)𝑆𝑝1

√𝑆𝑝𝑝√𝑆11

𝑛 − 1

(𝑛 − 1)𝑆𝑝2

√𝑆𝑝𝑝√𝑆22

𝑛 − 1
⋯

(𝑛 − 1)𝑆𝑝𝑝

√𝑆𝑝𝑝√𝑆𝑝𝑝

𝑛 − 1 ]
 
 
 
 
 
 
 
 
 
 

(𝑝×𝑝)

 

{𝑆𝑖𝑘 =
1

𝑛 − 1
∑(𝑋𝑗𝑖 − �̅�𝑖)(𝑋𝑗𝑘 − �̅�𝑘)

𝑛

𝑗=1

⇒ (𝑛 − 1)𝑆𝑖𝑘 =∑(𝑋𝑗𝑖 − �̅�𝑖)(𝑋𝑗𝑘 − �̅�𝑘)

𝑛

𝑗=1

for 𝑖, 𝑘 = 1,2, … , 𝑝} 
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          =

[
 
 
 
 
 
 
 
 

𝑆11

√𝑆11√𝑆11

𝑆12

√𝑆11√𝑆22
⋯

𝑆1𝑝

√𝑆11√𝑆𝑝𝑝
𝑆21

√𝑆22√𝑆11

𝑆22

√𝑆22√𝑆22
⋯

𝑆2𝑝

√𝑆22√𝑆𝑝𝑝
⋮ ⋮ ⋱ ⋮
𝑆𝑝1

√𝑆𝑝𝑝√𝑆11

𝑆𝑝2

√𝑆𝑝𝑝√𝑆22
⋯

𝑆𝑝𝑝

√𝑆𝑝𝑝√𝑆𝑝𝑝]
 
 
 
 
 
 
 
 

(𝑝×𝑝)

 

          =

[
 
 
 
1 𝑅12 ⋯ 𝑅1𝑝
𝑅21 1 ⋯ 𝑅2𝑝
⋮ ⋮ ⋱ ⋮
𝑅𝑝1 𝑅𝑝2 ⋯ 1 ]

 
 
 

 

          = 𝐑
(𝑝×𝑝)

  

In terms of matrix operations 𝐒𝐙
(𝑝×𝑝)

= 𝐑
(𝑝×𝑝)

 can be obtained by 

𝐒𝐙
(𝑝×𝑝)

=
1

𝑛 − 1
⋅ ( 𝐙

(𝑛×𝑝)
−
1

𝑛
⋅ 𝟏
(𝑛×1)

⋅ 𝟏′
(1×𝑛)

⋅ 𝐙
(𝑛×𝑝)

)
′

⋅ ( 𝐙
(𝑛×𝑝)

−
1

𝑛
⋅ 𝟏
(𝑛×1)

⋅ 𝟏′
(1×𝑛)

⋅ 𝐙
(𝑛×𝑝)

) 

where 

1

𝑛
⋅ 𝟏
(𝑛×1)

⋅ 𝟏′
(1×𝑛)

⋅ 𝐙
(𝑛×𝑝)

 

          =
1

𝑛
⋅ [

11
12
⋮
1𝑛

]

(𝑛×1)

⋅ [11, 12, … , 1𝑛]
(1×𝑛)

⋅

[
 
 
 
𝑍11 𝑍12 ⋯ 𝑍1𝑝
𝑍21 𝑍22 ⋯ 𝑍2𝑝
⋮ ⋮ ⋱ ⋮
𝑍𝑛1 𝑍𝑛2 ⋯ 𝑍𝑛𝑝]

 
 
 

(𝑛×𝑝)

 

          = [

11
12
⋮
1𝑛

]

(𝑛×1)

⋅
1

𝑛
⋅ [∑ 𝑍𝑗1

𝑛

𝑗=1
,∑ 𝑍𝑗2

𝑛

𝑗=1
, … ,∑ 𝑍𝑗𝑝

𝑛

𝑗=1
]

(1×𝑝)

 

          = [

11
12
⋮
1𝑛

]

(𝑛×1)

⋅
1

𝑛
⋅ [∑

𝑋𝑗1 − �̅�1

√𝑆11

𝑛

𝑗=1

,∑
𝑋𝑗2 − �̅�2

√𝑆22

𝑛

𝑗=1

, … ,∑
𝑋𝑗𝑝 − �̅�𝑝

√𝑆𝑝𝑝

𝑛

𝑗=1

]

(1×𝑝)
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          = [

11
12
⋮
1𝑛

]

(𝑛×1)

⋅ [
1

𝑛
∑

𝑋𝑗1 − �̅�1

√𝑆11

𝑛

𝑗=1

,
1

𝑛
∑

𝑋𝑗2 − �̅�2

√𝑆22

𝑛

𝑗=1

, … ,
1

𝑛
∑

𝑋𝑗𝑝 − �̅�𝑝

√𝑆𝑝𝑝

𝑛

𝑗=1

]

(1×𝑝)

 

          = [

11
12
⋮
1𝑛

]

(𝑛×1)

⋅ [�̅�1, �̅�2, … , �̅�𝑝]
(1×𝑝)

 

          = 𝟏
(𝑛×1)

⋅ �̅�′
(1×𝑝)

 

          =

[
 
 
 
 
�̅�1 �̅�2 ⋯ �̅�𝑝

�̅�1 �̅�2 ⋯ �̅�𝑝
⋮ ⋮ ⋱ ⋮
�̅�1 �̅�2 ⋯ �̅�𝑝]

 
 
 
 

(𝑛×𝑝)

 

          = [

0 0 ⋯ 0
0 0 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 0

]

(𝑛×𝑝)

= 𝟎
(𝑛×𝑝)

 

Thus, 

𝐒𝐙
(𝑝×𝑝)

=
1

𝑛 − 1
⋅ ( 𝐙

(𝑛×𝑝)
−
1

𝑛
⋅ 𝟏
(𝑛×1)

⋅ 𝟏′
(1×𝑛)

⋅ 𝐙
(𝑛×𝑝)

)
′

⋅ ( 𝐙
(𝑛×𝑝)

−
1

𝑛
⋅ 𝟏
(𝑛×1)

⋅ 𝟏′
(1×𝑛)

⋅ 𝐙
(𝑛×𝑝)

) 

          =
1

𝑛 − 1
⋅ ( 𝐙

(𝑛×𝑝)
− 𝟏

(𝑛×1)
⋅ �̅�′
(1×𝑝)

)
′

⋅ ( 𝐙
(𝑛×𝑝)

− 𝟏
(𝑛×1)

⋅ �̅�′
(1×𝑝)

) 

          =
1

𝑛 − 1
⋅ ( 𝐙

(𝑛×𝑝)
− 𝟎

(𝑛×𝑝)
)
′

⋅ ( 𝐙
(𝑛×𝑝)

− 𝟎
(𝑛×𝑝)

) 

          =
1

𝑛 − 1
⋅ 𝐙′
(𝑝×𝑛)

⋅ 𝐙
(𝑛×𝑝)

 

          =
1

𝑛 − 1
⋅ [

𝑍11 𝑍21 ⋯ 𝑍𝑛1
𝑍12 𝑍22 ⋯ 𝑍𝑛2
⋮ ⋮ ⋱ ⋮
𝑍1𝑝 𝑍2𝑝 ⋯ 𝑍𝑛𝑝

]

(𝑝×𝑛)
[
 
 
 
𝑍11 𝑍12 ⋯ 𝑍1𝑝
𝑍21 𝑍22 ⋯ 𝑍2𝑝
⋮ ⋮ ⋱ ⋮
𝑍𝑛1 𝑍𝑛2 ⋯ 𝑍𝑛𝑝]

 
 
 

(𝑛×𝑝)
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          =
1

𝑛 − 1

[
 
 
 
 
 
 
 
 
𝑋11 − �̅�1

√𝑆11

𝑋21 − �̅�1

√𝑆11
⋯

𝑋𝑛1 − �̅�1

√𝑆11

𝑋12 − �̅�2

√𝑆22

𝑋22 − �̅�2

√𝑆22
⋯

𝑋𝑛2 − �̅�2

√𝑆22
⋮ ⋮ ⋱ ⋮

𝑋1𝑝−�̅�𝑝

√𝑆𝑝𝑝

𝑋2𝑝 − �̅�𝑝

√𝑆𝑝𝑝
⋯

𝑋𝑛𝑝 − �̅�𝑝

√𝑆𝑝𝑝 ]
 
 
 
 
 
 
 
 

(𝑝×𝑛)
[
 
 
 
 
 
 
 
 
𝑋11 − �̅�1

√𝑆11

𝑋12 − �̅�2

√𝑆22
⋯

𝑋1𝑝−�̅�𝑝

√𝑆𝑝𝑝

𝑋21 − �̅�1

√𝑆11

𝑋22 − �̅�2

√𝑆22
⋯

𝑋2𝑝 − �̅�𝑝

√𝑆𝑝𝑝
⋮ ⋮ ⋱ ⋮

𝑋𝑛1 − �̅�1

√𝑆11

𝑋𝑛2 − �̅�2

√𝑆22
⋯

𝑋𝑛𝑝 − �̅�𝑝

√𝑆𝑝𝑝 ]
 
 
 
 
 
 
 
 

(𝑛×𝑝)

 

          =

[
 
 
 
 
 
 
 
 
 
 
 ∑ (𝑋𝑗1 − �̅�1)

2𝑛
𝑗=1

√𝑆11√𝑆11
𝑛 − 1

∑ (𝑋𝑗1 − �̅�1)(𝑋𝑗2 − �̅�2)
𝑛
𝑗=1

√𝑆11√𝑆22
𝑛 − 1

⋯

∑ (𝑋𝑗1 − �̅�1)(𝑋𝑗𝑝 − �̅�𝑝)
𝑛
𝑗=1

√𝑆11√𝑆𝑝𝑝

𝑛 − 1
∑ (𝑋𝑗2 − �̅�2)(𝑋𝑗1 − �̅�1)
𝑛
𝑗=1

√𝑆22√𝑆11
𝑛 − 1

∑ (𝑋𝑗2 − �̅�2)
2𝑛

𝑗=1

√𝑆22√𝑆22
𝑛 − 1

⋯

∑ (𝑋𝑗2 − �̅�2)(𝑋𝑗𝑝 − �̅�𝑝)
𝑛
𝑗=1

√𝑆22√𝑆𝑝𝑝

𝑛 − 1
⋮ ⋮ ⋱ ⋮

∑ (𝑋𝑗𝑝 − �̅�𝑝)(𝑋𝑗1 − �̅�1)
𝑛
𝑗=1

√𝑆𝑝𝑝√𝑆11

𝑛 − 1

∑ (𝑋𝑗𝑝 − �̅�𝑝)(𝑋𝑗2 − �̅�2)
𝑛
𝑗=1

√𝑆𝑝𝑝√𝑆22

𝑛 − 1
⋯

∑ (𝑋𝑗𝑝 − �̅�𝑝)
2𝑛

𝑗=1

√𝑆𝑝𝑝√𝑆𝑝𝑝

𝑛 − 1 ]
 
 
 
 
 
 
 
 
 
 
 

(𝑝×𝑝)

 

{𝑆𝑖𝑘 =
1

𝑛−1
∑ (𝑋𝑗𝑖 − �̅�𝑖)(𝑋𝑗𝑘 − �̅�𝑘)
𝑛
𝑗=1 ⇒ (𝑛 − 1)𝑆𝑖𝑘 = ∑ (𝑋𝑗𝑖 − �̅�𝑖)(𝑋𝑗𝑘 − �̅�𝑘)

𝑛
𝑗=1  for 𝑖, 𝑘 = 1,2,… ,𝑝}   

          =

[
 
 
 
 
 
 
 
 
 
 
(𝑛 − 1)𝑆11
√𝑆11√𝑆11
𝑛 − 1

(𝑛 − 1)𝑆12
√𝑆11√𝑆22
𝑛 − 1

⋯

(𝑛 − 1)𝑆1𝑝

√𝑆11√𝑆𝑝𝑝

𝑛 − 1
(𝑛 − 1)𝑆21
√𝑆22√𝑆11
𝑛 − 1

(𝑛 − 1)𝑆22
√𝑆22√𝑆22
𝑛 − 1

⋯

(𝑛 − 1)𝑆2𝑝

√𝑆22√𝑆𝑝𝑝

𝑛 − 1
⋮ ⋮ ⋱ ⋮

(𝑛 − 1)𝑆𝑝1

√𝑆𝑝𝑝√𝑆11

𝑛 − 1

(𝑛 − 1)𝑆𝑝2

√𝑆𝑝𝑝√𝑆22

𝑛 − 1
⋯

(𝑛 − 1)𝑆𝑝𝑝

√𝑆𝑝𝑝√𝑆𝑝𝑝

𝑛 − 1 ]
 
 
 
 
 
 
 
 
 
 

(𝑝×𝑝)
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          =

[
 
 
 
 
 
 
 
 

𝑆11

√𝑆11√𝑆11

𝑆12

√𝑆11√𝑆22
⋯

𝑆1𝑝

√𝑆11√𝑆𝑝𝑝
𝑆21

√𝑆22√𝑆11

𝑆22

√𝑆22√𝑆22
⋯

𝑆2𝑝

√𝑆22√𝑆𝑝𝑝
⋮ ⋮ ⋱ ⋮
𝑆𝑝1

√𝑆𝑝𝑝√𝑆11

𝑆𝑝2

√𝑆𝑝𝑝√𝑆22
⋯

𝑆𝑝𝑝

√𝑆𝑝𝑝√𝑆𝑝𝑝]
 
 
 
 
 
 
 
 

(𝑝×𝑝)

 

          =

[
 
 
 
1 𝑅12 ⋯ 𝑅1𝑝
𝑅21 1 ⋯ 𝑅2𝑝
⋮ ⋮ ⋱ ⋮
𝑅𝑝1 𝑅𝑝2 ⋯ 1 ]

 
 
 

(𝑝×𝑝)

  

          = 𝐑
(𝑝×𝑝)

 ∎ 

Thus, the sample variance-covariance matrix 𝐒𝐙
(𝑝×𝑝)

 derived from matrix 𝐙
(𝑛×𝑝)

, 

is equivalent to the sample correlation matrix 𝐑
(𝑝×𝑝)

, derived from 𝐗
(𝑛×𝑝)

. That is, 

𝐒𝐙
(𝑝×𝑝)

= 𝐑
(𝑝×𝑝)

 .The diagonal elements of 𝐒𝐙
(𝑝×𝑝)

= 𝐑
(𝑝×𝑝)

are the sample variances  

𝑆𝑧,𝑘𝑘 =
𝑆𝑘𝑘

√𝑆𝑘𝑘√𝑆𝑘𝑘
=
𝑆𝑘𝑘

𝑆𝑘𝑘
= 𝑅𝑘𝑘 = 1 

for 𝑘 = 1,2, … , 𝑝, 𝑖 = 𝑘 where 𝑆𝑧,𝑖𝑖 = 𝑆𝑧,𝑘𝑘. The off-diagonal elements of               

𝐒𝐙
(𝑝×𝑝)

= 𝐑
(𝑝×𝑝)

 are the sample covariances 

𝑆𝑧,𝑖𝑘 =
𝑆𝑖𝑘

√𝑆𝑖𝑖√𝑆𝑘𝑘
= 𝑅𝑖𝑘 

for 𝑖, 𝑘 = 1,2, … , 𝑝, 𝑖 ≠ 𝑘 where 𝑆𝑧,𝑖𝑘 = 𝑆𝑧,𝑘𝑖 . 
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Furthermore, 

tr(𝐑) =∑ 𝑅𝑘𝑘
𝑝

𝑘=1
= tr(𝐒𝐙) =∑ 𝑆𝑧,𝑘𝑘

𝑝

𝑘=1
= 1 + 1 +⋯+ 1 = 𝑝 

(total standardized sample variance). 

4.9 Sample Mean Vector and Variance-Covariance 

Matrix for Linear Combinations of Standardized 

Samples 

4.9.1 Linear Combination of Standardized Samples 

Definition 4.9.1 (Linear Combination of 𝐙). Let 𝐜
(𝑝×1)

 be a 𝑝 × 1 vector of constants 

defined as 

𝐜
(𝑝×1)

= [

𝑐1
𝑐2
⋮
𝑐𝑝

]

(𝑝×1)

 

and let 𝐙
(𝑝×1)

 be a 𝑝 × 1 population random vector of standardized continuous 

random variables 

𝐙
(𝑝×1)

= [

𝑍1
𝑍2
⋮
𝑍𝑝

]

(𝑝×1)
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Now consider a linear combination of 𝐙

(𝑛×𝑝)
 with form 

𝐜′
(1×𝑝)

⋅ 𝐙
(𝑝×1)

= [𝑐1, 𝑐2, … , 𝑐𝑝]
(1×𝑝)

⋅ [

𝑍1
𝑍2
⋮
𝑍𝑝

]

(𝑝×1)

= 𝑐1𝑍1 + 𝑐2𝑍2 +⋯+ 𝑐𝑝𝑍𝑝 

whose unrealized quantity on the 𝑗𝑡ℎ standardized multivariate sample observation 

is 

𝐜′
(1×𝑝)

⋅ 𝐙𝑗
(𝑝×1)

= [𝑐1, 𝑐2, … , 𝑐𝑝]
(1×𝑝)

⋅

[
 
 
 
𝑍𝑗1
𝑍𝑗2
⋮
𝑍𝑗𝑝]

 
 
 

(𝑝×1)

= 𝑐1𝑍𝑗1 + 𝑐2𝑍𝑗2 +⋯+ 𝑐𝑝𝑍𝑗𝑝 

for 𝑗 = 1,2, … , 𝑛. 

4.9.2 Sample Statistics for Linear Combinations of 

Standardized Samples 

Definition 4.9.2 (Sample Mean for a Linear Combination of 𝐙). Let 𝐙1
(𝑝×1)

, 𝐙2
(𝑝×1)

, … , 𝐙𝑛
(𝑝×1)

 

constitute a standardized multivariate random sample defined in Theorem 4.6.1. 

Assume the sample mean vector �̅�
(𝑝×1)

 defined in Theorem 4.8.1 exists. Next, 

consider a linear combination of the form 𝐜′
(1×𝑝)

⋅ 𝐙
(𝑝×1)

 with 𝑗𝑡ℎ standardized 

multivariate sample observation 𝐜′
(1×𝑝)

⋅ 𝐙𝑗
(𝑝×1)

 given in Definition 4.9.1. Then the 

unrealized sample mean for a linear combination of 𝐙
(𝑛×𝑝)

 is defined by 
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𝑠𝑎𝑚𝑝𝑙𝑒 𝑚𝑒𝑎𝑛 𝑜𝑓 𝐜′
(1×𝑝)

⋅ 𝐙
(𝑝×1)

= 𝐸 ( 𝐜′
(1×𝑝)

⋅ 𝐙
(𝑝×1)

) = 𝐜′
(1×𝑝)

⋅ �̅�
(𝑝×1)

= 0. 

Definition 4.9.3 (Sample Variance for a Linear Combination of 𝐙). Let 

𝐙1
(𝑝×1)

, 𝐙2
(𝑝×1)

, … , 𝐙𝑛
(𝑝×1)

 constitute a standardized multivariate random sample defined in 

Theorem 4.6.1. Assume the sample variance-covariance matrix 𝐒𝐙
(𝑝×𝑝)

= 𝐑
(𝑝×𝑝)

defined 

in Theorem 4.8.2 exists. Next, consider a linear combination of the form 𝐜′
(1×𝑝)

⋅ 𝐙
(𝑝×1)

 

with 𝑗𝑡ℎ standardized multivariate sample observation 𝐜′
(1×𝑝)

⋅ 𝐙𝑗
(𝑝×1)

 given in 

Definition 4.9.1. Then the unrealized sample variance for a linear combination of 

𝐙
(𝑛×𝑝)

 is defined by 

𝑠𝑎𝑚𝑝𝑙𝑒 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑜𝑓 𝐜′
(1×𝑝)

⋅ 𝐙
(𝑝×1)

 

= var ( 𝐜′
(1×𝑝)

⋅ 𝐙
(𝑝×1)

) = 𝐜′
(1×𝑝)

⋅ 𝐒𝐙
(𝑝×𝑝)

⋅ 𝐜
(𝑝×1)

= 𝐜′
(1×𝑝)

⋅ 𝐑
(𝑝×𝑝)

⋅ 𝐜
(𝑝×1)

. 

Definition 4.9.4 (Sample Covariance for Two Linear Combinations of 𝐙). Let 

𝐙1
(𝑝×1)

, 𝐙2
(𝑝×1)

, … , 𝐙𝑛
(𝑝×1)

 constitute a standardized multivariate random sample defined in 

Theorem 4.6.1. Assume the sample variance-covariance matrix 𝐒𝐙
(𝑝×𝑝)

= 𝐑
(𝑝×𝑝)

defined 

in Theorem 4.8.2 exists. Next, consider two linear combinations of the form        

𝐛′
(1×𝑝)

⋅ 𝐙
(𝑝×1)

 and 𝐜′
(1×𝑝)

⋅ 𝐙
(𝑝×1)

 with 𝑗𝑡ℎ standardized multivariate sample observations 

𝐛′
(1×𝑝)

⋅ 𝐙𝑗
(𝑝×1)

and 𝐜′
(1×𝑝)

⋅ 𝐙𝑗
(𝑝×1)

, respectively, given in  
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Definition 4.9.1. Then the unrealized sample covariance for two linear combinations 

of 𝐙
(𝑛×𝑝)

is defined by  

𝑠𝑎𝑚𝑝𝑙𝑒 𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑜𝑓 𝐛′
(1×𝑝)

⋅ 𝐙
(𝑝×1)

 𝑎𝑛𝑑 𝐜′
(1×𝑝)

⋅ 𝐙
(𝑝×1)

 

cov ( 𝐛′
(1×𝑝)

⋅ 𝐙
(𝑝×1)

 , 𝐜′
(1×𝑝)

⋅ 𝐙
(𝑝×1)

) 

= 𝐛′
(1×𝑝)

⋅ 𝐒𝐙
(𝑝×𝑝)

⋅ 𝐜
(𝑝×1)

= 𝐜′
(1×𝑝)

⋅ 𝐒𝐙
(𝑝×𝑝)

⋅ 𝐛
(𝑝×1)

 

= 𝐛′
(1×𝑝)

⋅ 𝐑
(𝑝×𝑝)

⋅ 𝐜
(𝑝×1)

= 𝐜′
(1×𝑝)

⋅ 𝐑
(𝑝×𝑝)

⋅ 𝐛
(𝑝×1)

. 

4.9.3 𝒒 Linear Combinations of Standardized Samples 

Definition 4.9.5 (𝑞 Linear Combinations of 𝐙). Let 𝐙1
(𝑝×1)

, 𝐙2
(𝑝×1)

, … , 𝐙𝑛
(𝑝×1)

 constitute a 

standardized multivariate random sample defined in Theorem 4.6.1. Now consider 

𝒒 linear combinations of 𝐙
(𝑛×𝑝)

 of the form: 

𝑌𝑖 = 𝐜𝑖
′

(1×𝑝)
⋅ 𝐙
(𝑝×1)

= [𝑐𝑖1, 𝑐𝑖2, … , 𝑐𝑖𝑝]
(1×𝑝)

⋅ [

𝑍1
𝑍2
⋮
𝑍𝑝

]

(𝑝×1)

= 𝑐𝑖1𝑍1 + 𝑐𝑖2𝑍2 +⋯+ 𝑐𝑖𝑝𝑍𝑝 

for 𝑖 = 1,2, … , 𝑞 linear combinations 
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𝑌1 = 𝐜1
′

(1×𝑝)
⋅ 𝐙
(𝑝×1)

= 𝑐11𝑍1 + 𝑐12𝑍2 +⋯+ 𝑐1𝑝𝑍𝑝 

𝑌2 = 𝐜2
′

(1×𝑝)
⋅ 𝐙
(𝑝×1)

= 𝑐21𝑍1 + 𝑐22𝑍2 +⋯+ 𝑐2𝑝𝑍𝑝  

                                                         ⋮                                                 ⋮               

𝑌𝑞 = 𝐜𝑞
′

(1×𝑝)

⋅ 𝐙
(𝑝×1)

= 𝑐𝑞1𝑍1 + 𝑐𝑞2𝑍2 +⋯+ 𝑐𝑞𝑝𝑍𝑝 

or in matrix notation, 

𝐘
(𝑞×1)

= [

𝑌1
𝑌2
⋮
𝑌𝑞

]

(𝑞×1)

=

[
 
 
 
 
 
𝐜1
′

(1×𝑝)
⋅ 𝐙
(𝑝×1)

𝐜2
′

(1×𝑝)
⋅ 𝐙
(𝑝×1)

⋮
𝐜𝑞
′

(1×𝑝)

⋅ 𝐙
(𝑝×1)]

 
 
 
 
 

(𝑞×1)

= [

𝑐11 𝑐12 ⋯ 𝑐1𝑝
𝑐21 𝑐22 ⋯ 𝑐2𝑝
⋮ ⋮ ⋱ ⋮
𝑐𝑞1 𝑐𝑞2 ⋯ 𝑐𝑞𝑝

]

(𝑞×𝑝)

[

𝑍1
𝑍2
⋮
𝑍𝑝

]

(𝑝×1)

= 𝐂
(𝑞×𝑝)

⋅ 𝐙
(𝑝×1)

 

where the unrealized quantity on the 𝑗𝑡ℎ standardized multivariate sample 

observation, 𝑗 = 1,2, … , 𝑛, and 𝑖𝑡ℎ linear combination, 𝑖 = 1,2, … , 𝑞, is 

𝑌𝑗𝑖 = 𝐜𝑖
′

(1×𝑝)
⋅ 𝐙𝑗
(𝑝×1)

= [𝑐𝑖1, 𝑐𝑖2, … , 𝑐𝑖𝑝]
(1×𝑝)

⋅

[
 
 
 
𝑍𝑗1
𝑍𝑗2
⋮
𝑍𝑗𝑝]

 
 
 

(𝑝×1)

= 𝑐𝑖1𝑍𝑗1 + 𝑐𝑖2𝑍𝑗2 +⋯+ 𝑐𝑖𝑝𝑍𝑗𝑝. 

4.9.4 Sample Mean Vector for 𝒒 Linear Combinations of 

Standardized Samples 

Definition 4.9.6 (Sample Mean Vector for 𝑞 Linear Combinations of 𝐙). Let 

𝐙1
(𝑝×1)

, 𝐙2
(𝑝×1)

, … , 𝐙𝑛
(𝑝×1)

 constitute a standardized multivariate random sample defined in 

Theorem 4.6.1. Assume the sample mean vector �̅�
(𝑝×1)

= 𝟎
(𝑝×1)

 defined  
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in Theorem 4.8.1 exists. Next, consider  𝑞 linear combinations of 𝐙

(𝑛×𝑝)
 of the form 

𝑌𝑖 = 𝐜𝑖
′

(1×𝑝)
⋅ 𝐙
(𝑝×1)

 with 𝑗𝑡ℎ standardized multivariate sample observation                  

𝑌𝑗𝑖 = 𝐜𝑖
′

(1×𝑝)
⋅ 𝐙𝑗
(𝑝×1)

 given in Definition 4.9.5. Then the unrealized sample mean vector 

for 𝒒 linear combinations of 𝐙
(𝑛×𝑝)

is defined by  

𝑠𝑎𝑚𝑝𝑙𝑒 𝑚𝑒𝑎𝑛 𝑣𝑒𝑐𝑡𝑜𝑟 𝑜𝑓 𝐘
(𝑞×1)

 

�̅�
(𝑞×1)

= 𝐸 ( 𝐘
(𝑞×1)

) = 𝐸 ( 𝐂
(𝑞×𝑝)

⋅ 𝐙
(𝑝×1)

) = 𝐂
(𝑞×𝑝)

⋅ �̅�
(𝑝×1)

= 𝟎
(𝑞×1)

. 

Thus, the 𝑖th row of 𝐘
(𝑞×1)

 has unrealized sample mean  

�̅�𝑖 = 𝐸(𝑌𝑖) = 𝐸 ( 𝐜𝑖
′

(1×𝑝)
⋅ 𝐙
(𝑝×1)

) = 𝐜𝑖
′

(1×𝑝)
⋅ �̅�
(𝑝×1)

= 0 

for 𝑖 = 1,2, … , 𝑞. 

4.9.5 Sample Variance-Covariance Matrix for 𝒒 Linear 

Combinations of Standardized Samples 

Definition 4.9.7 (Sample Variance-Covariance Matrix for 𝑞 Linear Combinations of 

𝐙). Let 𝐙1
(𝑝×1)

, 𝐙2
(𝑝×1)

, … , 𝐙𝑛
(𝑝×1)

 constitute a standardized multivariate random sample 

defined in Theorem 4.6.1. Assume the sample variance-covariance matrix         

𝐒𝐙
(𝑝×𝑝)

= 𝐑
(𝑝×𝑝)

defined in Theorem 4.8.2 exists. Next, consider 𝑞 linear combinations of 

𝐙
(𝑛×𝑝)

 of the form 𝑌𝑖 = 𝐜𝑖
′

(1×𝑝)
⋅ 𝐙
(𝑝×1)

 with 𝑗𝑡ℎ standardized multivariate sample  
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observation 𝑌𝑗𝑖 = 𝐜𝑖

′

(1×𝑝)
⋅ 𝐙𝑗
(𝑝×1)

 given in Definition 4.9.5. Then the unrealized 

symmetric standardized sample variance-covariance matrix for 𝒒 linear 

combinations of 𝐙
(𝑛×𝑝)

 is defined by 

𝐒𝐘
(𝑞×𝑞)

= 𝐂
(𝑞×𝑝)

⋅ 𝐒𝐙
(𝑝×𝑝)

⋅ 𝐂′
(𝑝×𝑞)

 

           =

[
 
 
 
 
 
𝐜1
′

(1×𝑝)
⋅ 𝐒𝐙
(𝑝×𝑝)

⋅ 𝐜1
(𝑝×1)

𝐜1
′

(1×𝑝)
⋅ 𝐒𝐙
(𝑝×𝑝)

⋅ 𝐜2
(𝑝×1)

⋯ 𝐜1
′

(1×𝑝)
⋅ 𝐒𝐙
(𝑝×𝑝)

⋅ 𝐜𝑞
(𝑝×1)

𝐜2
′

(1×𝑝)
⋅ 𝐒𝐙
(𝑝×𝑝)

⋅ 𝐜1
(𝑝×1)

𝐜2
′

(1×𝑝)
⋅ 𝐒𝐙
(𝑝×𝑝)

⋅ 𝐜2
(𝑝×1)

⋯ 𝐜2
′

(1×𝑝)
⋅ 𝐒𝐙
(𝑝×𝑝)

⋅ 𝐜𝑞
(𝑝×1)

⋮ ⋮ ⋱ ⋮
𝐜𝑞
′

(1×𝑝)

⋅ 𝐒𝐙
(𝑝×𝑝)

⋅ 𝐜1
(𝑝×1)

𝐜𝑞
′

(1×𝑝)

⋅ 𝐒𝐙
(𝑝×𝑝)

⋅ 𝐜2
(𝑝×1)

⋯ 𝐜𝑞
′

(1×𝑝)

⋅ 𝐒𝐙
(𝑝×𝑝)

⋅ 𝐜𝑞
(𝑝×1)]

 
 
 
 
 

(𝑞×𝑞)

 

           = 𝐂
(𝑞×𝑝)

⋅ 𝐑
(𝑝×𝑝)

⋅ 𝐂′
(𝑝×𝑞)

 

          =

[
 
 
 
 
 
𝐜1
′

(1×𝑝)
⋅ 𝐑
(𝑝×𝑝)

⋅ 𝐜1
(𝑝×1)

𝐜1
′

(1×𝑝)
⋅ 𝐑
(𝑝×𝑝)

⋅ 𝐜2
(𝑝×1)

⋯ 𝐜1
′

(1×𝑝)
⋅ 𝐑
(𝑝×𝑝)

⋅ 𝐜𝑞
(𝑝×1)

𝐜2
′

(1×𝑝)
⋅ 𝐑
(𝑝×𝑝)

⋅ 𝐜1
(𝑝×1)

𝐜2
′

(1×𝑝)
⋅ 𝐑
(𝑝×𝑝)

⋅ 𝐜2
(𝑝×1)

⋯ 𝐜2
′

(1×𝑝)
⋅ 𝐑
(𝑝×𝑝)

⋅ 𝐜𝑞
(𝑝×1)

⋮ ⋮ ⋱ ⋮
𝐜𝑞
′

(1×𝑝)

⋅ 𝐑
(𝑝×𝑝)

⋅ 𝐜1
(𝑝×1)

𝐜𝑞
′

(1×𝑝)

⋅ 𝐑
(𝑝×𝑝)

⋅ 𝐜2
(𝑝×1)

⋯ 𝐜𝑞
′

(1×𝑝)

⋅ 𝐑
(𝑝×𝑝)

⋅ 𝐜𝑞
(𝑝×1)]

 
 
 
 
 

(𝑞×𝑞)

 

Thus, the 𝑖th row of 𝐘
(𝑞×1)

 has unrealized sample variance 

var(𝑌𝑖) = 𝐜𝑖
′

(1×𝑝)
⋅ 𝐒𝐙
(𝑝×𝑝)

⋅ 𝐜𝑖
(𝑝×1)

= 𝐜𝑖
′

(1×𝑝)
⋅ 𝐑
(𝑝×𝑝)

⋅ 𝐜𝑖
(𝑝×1)

 

 for 𝑖 = 1,2, … , 𝑞. 
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And, the 𝑖th row and 𝑘th row of 𝐘

(𝑞×1)
 has unrealized sample covariance 

                     cov(𝑌𝑖, 𝑌𝑘) 

= 𝐜𝑖
′

(1×𝑝)
⋅ 𝐒𝐙
(𝑝×𝑝)

⋅ 𝐜𝑘
(𝑝×1)

= 𝐜𝑘
′

(1×𝑝)
⋅ 𝐒𝐙
(𝑝×𝑝)

⋅ 𝐜𝑖
(𝑝×1)

  

= 𝐜𝑖
′

(1×𝑝)
⋅ 𝐑
(𝑝×𝑝)

⋅ 𝐜𝑘
(𝑝×1)

= 𝐜𝑘
′

(1×𝑝)
⋅ 𝐑
(𝑝×𝑝)

⋅ 𝐜𝑖
(𝑝×1)

 

for 𝑖, 𝑘 = 1,2, … , 𝑞. 
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Chapter 5 

Principal Components Analysis 

5.1 Introduction 

A principal components analysis is concerned with explaining the variance-

covariance (or correlation) structure of a set of variables through a few linear 

combinations of these variables. Its general objectives are (1) data reduction and 

(2) interpretation [3, p. 430]. 

5.2 Population Principal Components 

Algebraically, population principal components are particular linear combinations 

of the 𝑝 population continuous random variables 𝑋1, 𝑋2, … , 𝑋𝑝. Geometrically, these 

linear combinations represent the selection of a new coordinate system obtained by 

rotating the original system with 𝑋1, 𝑋2, … , 𝑋𝑝 as the coordinate axes. The new axes 

represent the directions with maximum variability and provide a simpler and more 

parsimonious description of the covariance (or correlation) structure. 

 As we shall see, principal components depend solely on the covariance 

matrix ∑𝐗
(𝑝×𝑝)

 or the correlation matrix ∑𝐙
(𝑝×𝑝)

= 𝝆
(𝑝×𝑝)

. Their development does not 

require a multivariate normal assumption. On the other hand, principal  
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components derived for multivariate normal populations have useful 

interpretations in terms of the constant density ellipsoids. Further, inferences can 

be made from the sample components when the population is multivariate normal 

[3, pp. 430-431]. 

Let  

𝐗
(𝑝×1)

= [

𝑋1
𝑋2
⋮
𝑋𝑝

]

(𝑝×1)

 

be a population random vector for continuous random variables defined in 

Definition 3.2.1. Assume the corresponding population variance-covariance matrix 

∑𝐗
(𝑝×𝑝)

= [

𝜎11 𝜎12 ⋯ 𝜎1𝑝
𝜎21 𝜎22 ⋯ 𝜎2𝑝
⋮ ⋮ ⋱ ⋮
𝜎𝑝1 𝜎𝑝2 ⋯ 𝜎𝑝𝑝

]

(𝑝×𝑝)

 

defined in Theorem 3.2.1 is positive definite with eigenvalue and normalized-

eigenvector pairs 

(𝜆1, 𝐞1
(𝑝×1)

) , (𝜆2, 𝐞2
(𝑝×1)

) ,… , (𝜆𝑖, 𝐞𝑖
(𝑝×1)

) ,… , (𝜆𝑝, 𝐞𝑝
(𝑝×1)

) 

where 𝜆1 > 𝜆2 > ⋯ > 𝜆𝑝 > 0. That is, the 𝜆𝑖′s are positive and distinct. One should 

be aware that a population variance-covariance matrix is in general positive semi-

definite [6, p. 200]. But some books still assume positive definite population 

variance-covariance matrix in their treatment of PCA [6, p. 206]. The purpose of the 

assumption here is due to the fact that the proof for Theorem 5.2.1 (𝑖th Population 

Principal Component) uses Theorem 2.2.1 (Maximization of Quadratic Forms for 
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Points on the Unit Sphere) where 𝐁

(𝑝×𝑝)
= ∑𝐗

(𝑝×𝑝)
 is positive definite. To clarify, we 

assume 𝜆𝑖 > 0, 𝑖 = 1,… , 𝑝 based on ∑𝐗
(𝑝×𝑝)

 being positive definite. However, the 

assumption of the 𝜆𝑖′s being distinct ensures the 𝐞𝑖′s are mutually orthogonal. In 

general, the 𝜆𝑖’s can be repeated but then the associated eigenvectors need to be 

chosen to be orthogonal [3, p. 432].  

Therefore, for the remainder of the paper we will assume all populations 

variance-covariance and correlation matrices will be positive definite and the 𝜆𝑖′s 

are positive and distinct, including for the sample cases. It is our belief that these 

assumptions do not detract from the general concept of principal components 

analysis and are also seen quite often in applications. Our rationalization comes 

from the fact that, the variance-covariance matrix of a multivariate probability 

distribution is positive definite unless one variable is an exact linear function of the 

others [7]. 

Moving on, let the orthogonal matrix with columns being the normalized 

eigenvectors be  

𝐄
(𝑝×𝑝)

= [

𝑒11 𝑒12 ⋯ 𝑒1𝑝
𝑒21 𝑒22 ⋯ 𝑒2𝑝
⋮ ⋮ ⋱ ⋮
𝑒𝑝1 𝑒𝑝2 ⋯ 𝑒𝑝𝑝

]

(𝑝×𝑝)

= [ 𝐞1
(𝑝×1)

⋮ 𝐞2
(𝑝×1)

⋮ ⋯ ⋮ 𝐞𝑝
(𝑝×1)

]

(𝑝×𝑝)

 

given in Definition 2.2.18. From Definition 3.3.2 consider 𝑞 = 𝑝 linear combinations, 

𝑌𝑖, of the 𝑝 population continuous random variables 𝑋1, 𝑋2, … , 𝑋𝑝 with arbitrary 

coefficients: 
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𝑌1 = 𝐜1
′

(1×𝑝)
⋅ 𝐗
(𝑝×1)

= 𝑐11𝑋1 + 𝑐12𝑋2 +⋯+ 𝑐1𝑝𝑋𝑝 

𝑌2 = 𝐜2
′

(1×𝑝)
⋅ 𝐗
(𝑝×1)

= 𝑐21𝑋1 + 𝑐22𝑋2 +⋯+ 𝑐2𝑝𝑋𝑝  

                                                        ⋮                                                 ⋮               

𝑌𝑝 = 𝐜𝑝
′

(1×𝑝)

⋅ 𝐗
(𝑝×1)

= 𝑐𝑝1𝑋1 + 𝑐𝑝2𝑋2 +⋯+ 𝑐𝑝𝑝𝑋𝑝 

or in matrix notation, 

𝐘
(𝑝×1)

= [

𝑌1
𝑌2
⋮
𝑌𝑝

]

(𝑝×1)

=

[
 
 
 
 
 
𝐜1
′

(1×𝑝)
⋅ 𝐗
(𝑝×1)

𝐜2
′

(1×𝑝)
⋅ 𝐗
(𝑝×1)

⋮
𝐜𝑝
′

(1×𝑝)

⋅ 𝐗
(𝑝×1)]

 
 
 
 
 

(𝑝×1)

= [

𝑐11 𝑐12 ⋯ 𝑐1𝑝
𝑐21 𝑐22 ⋯ 𝑐2𝑝
⋮ ⋮ ⋱ ⋮
𝑐𝑝1 𝑐𝑝2 ⋯ 𝑐𝑝𝑝

]

(𝑝×𝑝)

[

𝑋1
𝑋2
⋮
𝑋𝑝

]

(𝑝×1)

= 𝐂
(𝑝×𝑝)

⋅ 𝐗
(𝑝×1)

 

Using Theorem 3.3.5, we obtain 

Var(𝑌𝑖) = Var ( 𝐜𝑖
′

(1×𝑝)
⋅ 𝐗
(𝑝×1)

) = 𝐜𝑖
′

(1×𝑝)
⋅ ∑𝐗
(𝑝×𝑝)

⋅ 𝐜𝑖
(𝑝×1)

 

for 𝑖 = 1,2, … , 𝑝 and 

Cov(𝑌𝑖, 𝑌𝑘) = Cov( 𝐜𝑖
′

(1×𝑝)
⋅ 𝐗
(𝑝×1)

, 𝐜𝑘
′

(1×𝑝)
⋅ 𝐗
(𝑝×1)

) = 𝐜𝑖
′

(1×𝑝)
⋅ ∑𝐗
(𝑝×𝑝)

⋅ 𝐜𝑘
(𝑝×1)

 

for 𝑖, 𝑘 = 1,2, … , 𝑝, 𝑖 ≠ 𝑘. 

The population principal components are those uncorrelated linear combinations 

𝑌1, 𝑌2, … , 𝑌𝑝 whose population variances are as large as possible [3, p. 431].  
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The first population principal component is the linear combination with 

maximum variance among all linear combinations. That is, it maximizes        

Var(𝑌1) =  Var ( 𝐜1
′

(1×𝑝)
⋅ 𝐗
(𝑝×1)

) = 𝐜1
′

(1×𝑝)
⋅ ∑𝐗
(𝑝×𝑝)

⋅ 𝐜1
(𝑝×1)

. It is clear that Var(𝑌1) can be 

increased by multiplying any 𝐜1
(𝑝×1)

 by some constant. To eliminate this 

indeterminacy, it is convenient to restrict attention to coefficient vectors of unit 

length. We therefore define 

First  population

principal component
= linear combination 𝑌1 = 𝐜1

′

(1×𝑝)
⋅ 𝐗
(𝑝×1)

 that maximizes 

                                                       Var ( 𝐜1
′

(1×𝑝)
⋅ 𝐗
(𝑝×1)

)  subject to 𝐜1
′

(1×𝑝)
⋅ 𝐜1
(𝑝×1)

= 1 

Second  population

principal component
= linear combination 𝑌2 = 𝐜2

′

(1×𝑝)
⋅ 𝐗
(𝑝×1)

 that maximizes 

                                                       Var ( 𝐜2
′

(1×𝑝)
⋅ 𝐗
(𝑝×1)

)  subject to 𝐜2
′

(1×𝑝)
⋅ 𝐜2
(𝑝×1)

= 1 and 

                                                       Cov ( 𝐜1
′

(1×𝑝)
⋅ 𝐗
(𝑝×1)

, 𝐜2
′

(1×𝑝)
⋅ 𝐗
(𝑝×1)

) = 0 

And the 𝑖th step, 

𝑖th  population

principal component
= linear combination 𝑌𝑖 = 𝐜𝑖

′

(1×𝑝)
⋅ 𝐗
(𝑝×1)

 that maximizes 

                                                       Var ( 𝐜𝑖
′

(1×𝑝)
⋅ 𝐗
(𝑝×1)

)  subject to 𝐜𝑖
′

(1×𝑝)
⋅ 𝐜𝑖
(𝑝×1)

= 1 and 

                                                       Cov ( 𝐜𝑖
′

(1×𝑝)
⋅ 𝐗
(𝑝×1)

, 𝐜𝑘
′

(1×𝑝)
⋅ 𝐗
(𝑝×1)

) = 0     for     𝑘 < 𝑖 

[3, p. 431].  
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Theorem 5.2.1 (𝑖th Population Principal Component). Let 𝐗

(𝑝×1)
 be a population 

random vector for continuous random variables defined in Definition 3.2.1 with 

associated positive-definite variance-covariance matrix ∑𝐗
(𝑝×𝑝)

 defined in Theorem 

3.2.1. Let ∑𝐗
(𝑝×𝑝)

 have eigenvalue and normalized-eigenvector pairs (𝜆𝑖, 𝐞𝑖
(𝑝×1)

)           

𝑖 = 1,2, … , 𝑝 where 𝜆1 > 𝜆2 > ⋯ > 𝜆𝑝 > 0. Then the unrealized 𝒊th population 

principal component is given by 

𝑌𝑖 = 𝐞𝑖
′

(1×𝑝)
⋅ 𝐗
(𝑝×1)

= [𝑒1𝑖, 𝑒2𝑖, … , 𝑒𝑝𝑖]
(1×𝑝)

⋅ [

𝑋1
𝑋2
⋮
𝑋𝑝

]

(𝑝×1)

= 𝑒1𝑖𝑋1 + 𝑒2𝑖𝑋2 +⋯+ 𝑒𝑝𝑖𝑋𝑝 

for 𝑖 = 1,2, … , 𝑝, with unrealized population variance and covariance  

Var(𝑌𝑖) = 𝐞𝑖
′

(1×𝑝)
⋅ ∑𝐗
(𝑝×𝑝)

⋅ 𝐞𝑖
(𝑝×1)

= 𝜆𝑖 

for 𝑖 = 1,2, … , 𝑝 and  

Cov(𝑌𝑖, 𝑌𝑘) = 𝐞𝑖
′

(1×𝑝)
⋅ ∑𝐗
(𝑝×𝑝)

⋅ 𝐞𝑘
(𝑝×1)

= 0 

for 𝑖, 𝑘 = 1,2, … , 𝑝, 𝑖 ≠ 𝑘 [3, p. 432].   
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Proof. 

Using Definition 2.2.18, Theorem 3.3.5 

Var(𝑌𝑖) = 𝐞𝑖
′

(1×𝑝)
⋅ ∑𝐗
(𝑝×𝑝)

⋅ 𝐞𝑖
(𝑝×1)

 

               = 𝐞𝑖
′

(1×𝑝)
⋅ ( ∑𝐗

(𝑝×𝑝)
⋅ 𝐞𝑖
(𝑝×1)

) 

               = 𝐞𝑖
′

(1×𝑝)
⋅ (𝜆𝑖 ⋅ 𝐞𝑖

(𝑝×1)
) 

               = 𝜆𝑖 ⋅ 𝐞𝑖
′

(1×𝑝)
⋅ 𝐞𝑖
(𝑝×1)

 

               = 𝜆𝑖 ⋅ 1 = 𝜆𝑖, 𝑖 = 1,2, … , 𝑝 

Similarly, 

Cov(𝑌𝑖, 𝑌𝑘) = 𝐞𝑖
′

(1×𝑝)
⋅ ∑𝐗
(𝑝×𝑝)

⋅ 𝐞𝑘
(𝑝×1)

 

                     = 𝐞𝑖
′

(1×𝑝)
⋅ ( ∑𝐗

(𝑝×𝑝)
⋅ 𝐞𝑘
(𝑝×1)

) 

                     = 𝐞𝑖
′

(1×𝑝)
⋅ (𝜆𝑘 ⋅ 𝐞𝑘

(𝑝×1)
) 

                     = 𝜆𝑘 ⋅ 𝐞𝑖
′

(1×𝑝)
⋅ 𝐞𝑘
(𝑝×1)

 

                     = 𝜆𝑘 ⋅ 0 = 0, 𝑖, 𝑘 = 1,2, … , 𝑝, 𝑖 ≠ 𝑘. 
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Next, we know from the first part of Theorem 2.2.1, with 𝐁

(𝑝×𝑝)
= ∑𝐗

(𝑝×𝑝)
, that 

max
𝐜

(𝑝×1)
≠ 𝟎
(𝑝×1)

𝐜′
(1×𝑝)

⋅ ∑𝐗
(𝑝×𝑝)

⋅ 𝐜
(𝑝×1)

𝐜′
(1×𝑝)

⋅ 𝐜
(𝑝×1)

= 𝜆1          (attained when 𝐜
(𝑝×1)

= 𝐞1
(𝑝×1)

) 

By Definition 2.2.18 𝐞1
′

(1×𝑝)
⋅ 𝐞1
(𝑝×1)

= 1 since the eigenvectors are normalized. Thus, 

max
𝐜

(𝑝×1)
≠ 𝟎
(𝑝×1)

𝐜′
(1×𝑝)

⋅ ∑𝐗
(𝑝×𝑝)

⋅ 𝐜
(𝑝×1)

𝐜′
(1×𝑝)

⋅ 𝐜
(𝑝×1)

= 𝜆1 =

𝐞1
′

(1×𝑝)
⋅ ∑𝐗
(𝑝×𝑝)

⋅ 𝐞1
(𝑝×1)

𝐞1
′

(1×𝑝)
⋅ 𝐞1
(𝑝×1)

= 𝐞1
′

(1×𝑝)
⋅ ∑𝐗
(𝑝×𝑝)

⋅ 𝐞1
(𝑝×1)

= Var(𝑌1) 

Similarly, using the second part of Theorem 2.2.1 we get 

max
𝐜

(𝑝×1)
⊥ 𝐞1
(𝑝×1)

, 𝐞2
(𝑝×1)

,…, 𝐞𝑘
(𝑝×1)

𝐜′
(1×𝑝)

⋅ ∑𝐗
(𝑝×𝑝)

⋅ 𝐜
(𝑝×1)

𝐜′
(1×𝑝)

⋅ 𝐜
(𝑝×1)

= 𝜆𝑘+1, 𝑘 = 1,2, … , 𝑝 − 1 

For the choice 𝐜
(𝑝×1)

= 𝐞𝑘+1
(𝑝×1)

, with 𝐞𝑘+1
′

(𝑝×1)
⋅ 𝐞𝑖
(𝑝×1)

= 0,  

for 𝑖 = 1,2, … , 𝑘 and 𝑘 = 1,2, … , 𝑝 − 1, 

𝐞𝑘+1
′

(1×𝑝)
⋅ ∑𝐗
(𝑝×𝑝)

⋅ 𝐞𝑘+1
(𝑝×1)

𝐞𝑘+1
′

(1×𝑝)
⋅ 𝐞𝑘+1
(𝑝×1)

= 𝐞𝑘+1
′

(1×𝑝)
⋅ ∑𝐗
(𝑝×𝑝)

⋅ 𝐞𝑘+1
(𝑝×1)

= Var(𝑌𝑘+1) ∎ 

From above, the principal components are uncorrelated and have variances equal to 

the eigenvalues of ∑𝐗
(𝑝×𝑝)

 [3, p. 432].  
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Thus, the population principal components, 𝑌𝑖, are given by 

𝑌1 = 𝐞1
′

(1×𝑝)
⋅ 𝐗
(𝑝×1)

= 𝑒11𝑋1 + 𝑒21𝑋2 +⋯+ 𝑒𝑝1𝑋𝑝 

𝑌2 = 𝐞2
′

(1×𝑝)
⋅ 𝐗
(𝑝×1)

= 𝑒12𝑋1 + 𝑒22𝑋2 +⋯+ 𝑒𝑝2𝑋𝑝  

                                                        ⋮                                                  ⋮               

𝑌𝑝 = 𝐞𝑝
′

(1×𝑝)

⋅ 𝐗
(𝑝×1)

= 𝑒1𝑝𝑋1 + 𝑒2𝑝𝑋2 +⋯+ 𝑒𝑝𝑝𝑋𝑝 

or in matrix notation,  

𝐘
(𝑝×1)

= [

𝑌1
𝑌2
⋮
𝑌𝑝

]

(𝑝×1)

=

[
 
 
 
 
 
𝐞1
′

(1×𝑝)
⋅ 𝐗
(𝑝×1)

𝐞2
′

(1×𝑝)
⋅ 𝐗
(𝑝×1)

⋮
𝐞𝑝
′

(1×𝑝)

⋅ 𝐗
(𝑝×1)]

 
 
 
 
 

(𝑝×1)

= [

𝑒11 𝑒21 ⋯ 𝑒𝑝1
𝑒12 𝑒22 ⋯ 𝑒𝑝2
⋮ ⋮ ⋱ ⋮
𝑒1𝑝 𝑒2𝑝 ⋯ 𝑒𝑝𝑝

]

(𝑝×𝑝)

[

𝑋1
𝑋2
⋮
𝑋𝑝

]

(𝑝×1)

= 𝐄′
(𝑝×𝑝)

⋅ 𝐗
(𝑝×1)

 

Theorem 5.2.2 (Total Population Variance). Let 𝐗
(𝑝×1)

 be a population random vector 

for continuous random variables defined in Definition 3.2.1 with associated 

positive-definite variance-covariance matrix ∑𝐗
(𝑝×𝑝)

 defined in Theorem 3.2.1. Let 

∑𝐗
(𝑝×𝑝)

 have eigenvalue and normalized-eigenvector pairs (𝜆𝑖, 𝐞𝑖
(𝑝×1)

) 𝑖 = 1,2, … , 𝑝 

where 𝜆1 > 𝜆2 > ⋯ > 𝜆𝑝 > 0. Let 𝑌1 = 𝐞1
′

(1×𝑝)
⋅ 𝐗
(𝑝×1)

, 𝑌2 = 𝐞2
′

(1×𝑝)
⋅ 𝐗
(𝑝×1)

, … , 𝑌𝑝 = 𝐞𝑝
′

(1×𝑝)

⋅

𝐗
(𝑝×1)

 be the population principal components. Then the total population variance 

𝜎11 + 𝜎22 +⋯+ 𝜎𝑝𝑝 =∑𝜎𝑖𝑖

𝑝

𝑖=1

= 𝜆1 + 𝜆2 +⋯+ 𝜆𝑝 =∑Var(𝑌𝑖)

𝑝

𝑖=1

. 
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Proof. 

From Definition 2.2.14, 

tr(∑𝐗) =∑𝜎𝑖𝑖

𝑝

𝑖=1

= 𝜎11 + 𝜎22 +⋯+ 𝜎𝑝𝑝. 

Using a direct result of Result 2.2.8 with 𝐀
(𝑝×𝑝)

= ∑𝐗
(𝑝×𝑝)

, we can write  

∑𝐗
(𝑝×𝑝)

= 𝐄
(𝑝×𝑝)

⋅ 𝚲
(𝑝×𝑝)

⋅ 𝐄′
(𝑝×𝑝)

 

where 𝚲
(𝑝×𝑝)

is the diagonal matrix of eigenvalues and 𝐄
(𝑝×𝑝)

 is the orthogonal matrix 

with columns being the normalized eigenvectors.  

Using Result 2.2.6 (b) and orthogonality of 𝐄
(𝑝×𝑝)

, we have 

tr(∑𝐗) = tr(𝐄 ⋅ 𝚲 ⋅ 𝐄′) = tr(𝚲 ⋅ 𝐄′ ⋅ 𝐄) = tr(𝚲 ⋅ 𝐈) = tr(𝚲) = 𝜆1 + 𝜆2 +⋯+ 𝜆𝑝 

Thus, 

∑𝜎𝑖𝑖

𝑝

𝑖=1

= tr(∑𝐗) = tr(𝚲) =∑Var(𝑌𝑖)

𝑝

𝑖=1

 ∎ 

Hence, 

Total population variance = 𝜎11 + 𝜎22 +⋯+ 𝜎𝑝𝑝 

                                              = 𝜆1 + 𝜆2 +⋯+ 𝜆𝑝. 

Consequently,  

(

Proportion of total
population variance
due to 𝑖th population
principal component

) =
𝜆𝑖

𝜆1 + 𝜆2 +⋯+ 𝜆𝑝
         𝑖 = 1,2, … , 𝑝 
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and  

(

Proportion of total population
variance due to the first 𝑘 population

principal components
) =

∑ 𝜆𝑖
𝑘
𝑖=1

𝜆1 + 𝜆2 +⋯+ 𝜆𝑝
         𝑘 < 𝑝. 

If most (for instance, 80 to 90%) of the total population variance, for large 𝑝, 

can be attributed to the first one, two, or three components, then these components 

can "replace" the original 𝑝 variables without much loss of information. 

Each component of the coefficient vector 𝐞𝑖
′ = [𝑒1𝑖, 𝑒2𝑖, … , 𝑒𝑘𝑖 , … , 𝑒𝑝𝑖] also 

merits inspection. The magnitude of 𝑒𝑘𝑖 measures the importance of the 𝑘th variable 

to the 𝑖th principal component, irrespective of the other variables [3, pp. 432-433]. 

  



149 
 

5.3 Population Principal Components for Standardized 

Continuous Random Variables 

The population principal components derived from a standardized population 

random vector for continuous random variables 𝐙
(𝑝×1)

 may be obtained from the 

normalized eigenvectors of the correlation matrix ∑𝐙
(𝑝×𝑝)

= 𝝆
(𝑝×𝑝)

. All our previous 

results apply, with some simplifications, since the variance of each 𝑍𝑖  is unity. We 

shall continue to use the notation 𝑌𝑖 to refer to the 𝑖th population principal 

component and (𝜆𝑖, 𝐞𝑖
(𝑝×1)

) for the eigenvalue and normalized-eigenvector pair from 

either ∑𝐙
(𝑝×𝑝)

= 𝝆
(𝑝×𝑝)

or ∑𝐗
(𝑝×𝑝)

. However, the (𝜆𝑖, 𝐞𝑖
(𝑝×1)

) derived from ∑𝐗
(𝑝×𝑝)

 are, in 

general, not the same as the ones derived from ∑𝐙
(𝑝×𝑝)

= 𝝆
(𝑝×𝑝)

 [3, p. 437]. 

Theorem 5.3.1 (𝑖th Population Principal Component of 𝐙). Let 𝐙
(𝑝×1)

 be a 

standardized population random vector for continuous random variables defined in 

Definition 3.4.1. with associated positive-definite variance-covariance matrix   

∑𝐙
(𝑝×𝑝)

= 𝝆
(𝑝×𝑝)

 defined in Theorem 3.4.4. Let ∑𝐙
(𝑝×𝑝)

= 𝝆
(𝑝×𝑝)

 have eigenvalue and 

normalized-eigenvector pairs (𝜆𝑖, 𝐞𝑖
(𝑝×1)

) , 𝑖 = 1,2, … , 𝑝 where 𝜆1 > 𝜆2 > ⋯ > 𝜆𝑝 > 0. 
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Then the unrealized 𝒊th population principal component of 𝐙

(𝑝×1)
 is given by 

𝑌𝑖 = 𝐞𝑖
′

(1×𝑝)
⋅ 𝐙
(𝑝×1)

= 𝐞𝑖
′

(1×𝑝)
⋅ (𝐕1 2⁄ )

−1

(𝑝×𝑝)

⋅ ( 𝐗
(𝑝×1)

− 𝝁𝐗
(𝑝×1)

) 

                                      = 𝐞𝑖
′

(1×𝑝)
⋅ 𝐕−1 2⁄

(𝑝×𝑝)
⋅ ( 𝐗

(𝑝×1)
− 𝝁𝐗

(𝑝×1)
) 

                                     = [𝑒1𝑖, 𝑒2𝑖, … , 𝑒𝑝𝑖]
(1×𝑝)

⋅ [

𝑍1
𝑍2
⋮
𝑍𝑝

]

(𝑝×1)

= 𝑒1𝑖𝑍1 + 𝑒2𝑖𝑍2 +⋯+ 𝑒𝑝𝑖𝑍𝑝 

for 𝑖 = 1,2, … , 𝑝 with unrealized population variance and covariance,  

Var(𝑌𝑖) = 𝐞𝑖
′

(1×𝑝)
⋅ ∑𝐙
(𝑝×𝑝)

⋅ 𝐞𝑖
(𝑝×1)

= 𝐞𝑖
′

(1×𝑝)
⋅ 𝝆
(𝑝×𝑝)

⋅ 𝐞𝑖
(𝑝×1)

= 𝜆𝑖 

for 𝑖 = 1,2, … , 𝑝 and 

Cov(𝑌𝑖, 𝑌𝑘) = 𝐞𝑖
′

(1×𝑝)
⋅ ∑𝐙
(𝑝×𝑝)

⋅ 𝐞𝑘
(𝑝×1)

= 𝐞𝑖
′

(1×𝑝)
⋅ 𝝆
(𝑝×𝑝)

⋅ 𝐞𝑘
(𝑝×1)

= 0 

for 𝑖, 𝑘 = 1,2, … , 𝑝, 𝑖 ≠ 𝑘 [3, p. 437].  

Proof.  

Follows from Theorem 5.2.1 with 𝑍1, 𝑍2, … , 𝑍𝑝 in place of 𝑋1, 𝑋2, … , 𝑋𝑝 and        

∑𝐙
(𝑝×𝑝)

= 𝝆
(𝑝×𝑝)

 in place of ∑𝐗
(𝑝×𝑝)

 ∎ 
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Thus, the population principal components of 𝐙

(𝑝×1)
, 𝑌𝑖, are given by 

𝑌1 = 𝐞1
′

(1×𝑝)
⋅ 𝐙
(𝑝×1)

= 𝑒11𝑍1 + 𝑒21𝑍2 +⋯+ 𝑒𝑝1𝑍𝑝 

𝑌2 = 𝐞2
′

(1×𝑝)
⋅ 𝐙
(𝑝×1)

= 𝑒12𝑍1 + 𝑒22𝑍2 +⋯+ 𝑒𝑝2𝑍𝑝  

                                                         ⋮                                                  ⋮               

𝑌𝑝 = 𝐞𝑝
′

(1×𝑝)

⋅ 𝐙
(𝑝×1)

= 𝑒1𝑝𝑍1 + 𝑒2𝑝𝑍2 +⋯+ 𝑒𝑝𝑝𝑍𝑝 

or in matrix notation,  

𝐘
(𝑝×1)

= [

𝑌1
𝑌2
⋮
𝑌𝑝

]

(𝑝×1)

=

[
 
 
 
 
 
𝐞1
′

(1×𝑝)
⋅ 𝐙
(𝑝×1)

𝐞2
′

(1×𝑝)
⋅ 𝐙
(𝑝×1)

⋮
𝐞𝑝
′

(1×𝑝)

⋅ 𝐙
(𝑝×1)]

 
 
 
 
 

(𝑝×1)

= [

𝑒11 𝑒21 ⋯ 𝑒𝑝1
𝑒12 𝑒22 ⋯ 𝑒𝑝2
⋮ ⋮ ⋱ ⋮
𝑒1𝑝 𝑒2𝑝 ⋯ 𝑒𝑝𝑝

]

(𝑝×𝑝)

[

𝑍1
𝑍2
⋮
𝑍𝑝

]

(𝑝×1)

 

                                     = 𝐄′
(𝑝×𝑝)

⋅ 𝐙
(𝑝×1)

= 𝐄′
(𝑝×𝑝)

⋅ (𝐕1 2⁄ )
−1

(𝑝×𝑝)

⋅ ( 𝐗
(𝑝×1)

− 𝝁𝐗
(𝑝×1)

) 

                                     = 𝐄′
(𝑝×𝑝)

⋅ 𝐕−1 2⁄

(𝑝×𝑝)
⋅ ( 𝐗

(𝑝×1)
− 𝝁𝐗

(𝑝×1)
) 

Theorem 5.3.2 (Total Standardized Population Variance). Let 𝐙
(𝑝×1)

 be a standardized 

population random vector for continuous random variables defined in Definition 

3.4.1. with associated positive-definite standardized variance-covariance matrix 

∑𝐙
(𝑝×𝑝)

= 𝝆
(𝑝×𝑝)

 defined in Theorem 3.4.4. Let ∑𝐙
(𝑝×𝑝)

= 𝝆
(𝑝×𝑝)

 have eigenvalue and 

normalized-eigenvector pairs (𝜆𝑖, 𝐞𝑖
(𝑝×1)

) , 𝑖 = 1,2, … , 𝑝 where 𝜆1 > 𝜆2 > ⋯ > 𝜆𝑝 > 0.  
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Let 𝑌1 = 𝐞1

′

(1×𝑝)
⋅ 𝐙
(𝑝×1)

, 𝑌2 = 𝐞2
′

(1×𝑝)
⋅ 𝐙
(𝑝×1)

, … , 𝑌𝑝 = 𝐞𝑝
′

(1×𝑝)

⋅ 𝐙
(𝑝×1)

 be the population principal 

components of 𝐙
(𝑝×1)

. 

Then the total standardized population variance 

∑Var(𝑍𝑖)

𝑝

𝑖=1

=∑Var(𝑌𝑖)

𝑝

𝑖=1

= 𝑝. 

Proof.  

Follows from Theorem 5.2.2 with 𝑍1, 𝑍2, … , 𝑍𝑝 in place of 𝑋1, 𝑋2, … , 𝑋𝑝 and        

∑𝐙
(𝑝×𝑝)

= 𝝆
(𝑝×𝑝)

 in place of ∑𝐗
(𝑝×𝑝)

 ∎ 

Hence, 

Total standardized population variance = 1 + 1 +⋯+ 1 

                                                                                                         = 𝑝 

                                                                                                         = 𝜆1 + 𝜆2 +⋯+ 𝜆𝑝. 

Consequently, 

(

 
 

Proportion of total
standardized population variance
due to 𝑖th population principal

 component of 𝐙
(𝑝×1) )

 
 
=
𝜆𝑖
𝑝
         𝑖 = 1,2, … , 𝑝 

and 

(

Proportion of total standardized
population variance due to the first 𝑘  
population principal components of 𝐙

(𝑝×1)

) =
∑ 𝜆𝑖
𝑘
𝑖=1

𝑝
         𝑘 < 𝑝 

[3, p. 437]. 
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5.4 Sample Principal Components 

Theorem 5.4.1 (𝑖th Sample Principal Component). Let random vectors 

𝐗1
(𝑝×1)

, 𝐗2
(𝑝×1)

, … , 𝐗𝑛
(𝑝×1)

 constitute a multivariate random sample defined in Definition 

4.2.2 with associated positive-definite sample variance-covariance matrix 𝐒𝐗
(𝑝×𝑝)

 

defined in Theorem 4.4.2. Let 𝐒𝐗
(𝑝×𝑝)

 have sample eigenvalue and normalized- 

eigenvector pairs (�̂�𝑖, �̂�𝑖
(𝑝×1)

) , 𝑖 = 1,2, … , 𝑝 where �̂�1 > �̂�2 > ⋯ > �̂�𝑝 > 0. Then the 

unrealized 𝒊th sample principal component is of the form 

�̂�𝑖 = �̂�𝑖
′

(1×𝑝)
⋅ 𝐗
(𝑝×1)

= [�̂�1𝑖, �̂�2𝑖, … , �̂�𝑝𝑖]
(1×𝑝)

⋅ [

𝑋1
𝑋2
⋮
𝑋𝑝

]

(𝑝×1)

= �̂�1𝑖𝑋1 + �̂�2𝑖𝑋2 +⋯+ �̂�𝑝𝑖𝑋𝑝 

for 𝑖 = 1,2, … , 𝑝 with unrealized quantity on the 𝑗𝑡ℎ multivariate sample observation 

�̂�𝑗𝑖 = �̂�𝑖
′

(1×𝑝)
⋅ 𝐗𝑗
(𝑝×1)

= [�̂�1𝑖, �̂�2𝑖, … , �̂�𝑝𝑖]
(1×𝑝)

⋅

[
 
 
 
𝑋𝑗1
𝑋𝑗2
⋮
𝑋𝑗𝑝]

 
 
 

(𝑝×1)

= �̂�1𝑖𝑋𝑗1 + �̂�2𝑖𝑋𝑗2 +⋯+ �̂�𝑝𝑖𝑋𝑗𝑝 

for 𝑗 = 1,2, … , 𝑛, with unrealized sample variance and covariance  

var(�̂�𝑖) = �̂�𝑖
′

(1×𝑝)
⋅ 𝐒𝐗
(𝑝×𝑝)

⋅ �̂�𝑖
(𝑝×1)

= �̂�𝑖  

for 𝑖 = 1,2, … , 𝑝 and  

cov(�̂�𝑖, �̂�𝑘) = �̂�𝑖
′

(1×𝑝)
⋅ 𝐒𝐗
(𝑝×𝑝)

⋅ �̂�𝑘
(𝑝×1)

= 0 
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for 𝑖, 𝑘 = 1,2, … , 𝑝, 𝑖 ≠ 𝑘 given in Definition 4.5.4 [3, p. 442]. 

One can write the 𝑛 sample principal components in matrix notation 

�̂�
(𝑛×𝑝)

= 𝐗
(𝑛×𝑝)

∙ �̂�
(𝑝×𝑝)

 

          =

[
 
 
 
 
 
 
𝑋11 𝑋12 ⋯ 𝑋1𝑝
𝑋21 𝑋22 ⋯ 𝑋2𝑝
⋮ ⋮ ⋮
𝑋𝑗1 𝑋𝑗2 ⋯ 𝑋𝑗𝑝
⋮ ⋮ ⋮
𝑋𝑛1 𝑋𝑛2 ⋯ 𝑋𝑛𝑝]

 
 
 
 
 
 

(𝑛×𝑝)

[
 
 
 
 
�̂�11 �̂�12 ⋯ �̂�1𝑖 ⋯ �̂�1𝑝
�̂�21 �̂�22 ⋯ �̂�2𝑖 ⋯ �̂�2𝑝
⋮ ⋮ ⋮ ⋮
�̂�𝑝1 �̂�𝑝2 ⋯ �̂�𝑝𝑖 ⋯ �̂�𝑝𝑝]

 
 
 
 

(𝑝×𝑝)

 

         =

[
 
 
 
 
 
 
 
 
 
𝐗1
′

(1×𝑝)
∙ �̂�1
(𝑝×1)

𝐗1
′

(1×𝑝)
∙ �̂�2
(𝑝×1)

⋯ 𝐗1
′

(1×𝑝)
∙ �̂�𝑖
(𝑝×1)

⋯ 𝐗1
′

(1×𝑝)
∙ �̂�𝑝
(𝑝×1)

𝐗2
′

(1×𝑝)
∙ �̂�1
(𝑝×1)

𝐗2
′

(1×𝑝)
∙ �̂�2
(𝑝×1)

⋯ 𝐗2
′

(1×𝑝)
∙ �̂�𝑖
(𝑝×1)

⋯ 𝐗2
′

(1×𝑝)
∙ �̂�𝑝
(𝑝×1)

⋮ ⋮ ⋮ ⋮
𝐗𝑗
′

(1×𝑝)

∙ �̂�1
(𝑝×1)

𝐗𝑗
′

(1×𝑝)

∙ �̂�2
(𝑝×1)

⋯ 𝐗𝑗
′

(1×𝑝)

∙ �̂�𝑖
(𝑝×1)

⋯ 𝐗𝑗
′

(1×𝑝)

∙ �̂�𝑝
(𝑝×1)

⋮ ⋮ ⋮ ⋮
𝐗𝑛
′

(1×𝑝)
∙ �̂�1
(𝑝×1)

𝐗𝑛
′

(1×𝑝)
∙ �̂�2
(𝑝×1)

⋯ 𝐗𝑛
′

(1×𝑝)
∙ �̂�𝑖
(𝑝×1)

⋯ 𝐗𝑛
′

(1×𝑝)
∙ �̂�𝑝
(𝑝×1)]

 
 
 
 
 
 
 
 
 

(𝑛×𝑝)

 

Using Definition 2.1.11 inner (dot) product of two vectors 

𝐱′
(1×𝑛)

⋅ 𝐲
(𝑛×1)

= 𝐲′
(1×𝑛)

⋅ 𝐱
(𝑛×1)

⇒ 

         =

[
 
 
 
 
 
 
 
 
 
�̂�1
′

(1×𝑝)
∙ 𝐗1
(𝑝×1)

�̂�2
′

(1×𝑝)
∙ 𝐗1
(𝑝×1)

⋯ �̂�𝑖
′

(1×𝑝)
∙ 𝐗1
(𝑝×1)

⋯ �̂�𝑝
′

(1×𝑝)

∙ 𝐗1
(𝑝×1)

�̂�1
′

(1×𝑝)
∙ 𝐗2
(𝑝×1)

�̂�2
′

(1×𝑝)
∙ 𝐗2
(𝑝×1)

⋯ �̂�𝑖
′

(1×𝑝)
∙ 𝐗2
(𝑝×1)

⋯ �̂�𝑝
′

(1×𝑝)

∙ 𝐗2
(𝑝×1)

⋮ ⋮ ⋮ ⋮
�̂�1
′

(1×𝑝)
∙ 𝐗𝑗
(𝑝×1)

�̂�2
′

(1×𝑝)
∙ 𝐗𝑗
(𝑝×1)

⋯ �̂�𝑖
′

(1×𝑝)
∙ 𝐗𝑗
(𝑝×1)

⋯ �̂�𝑝
′

(1×𝑝)

∙ 𝐗𝑗
(𝑝×1)

⋮ ⋮ ⋮ ⋮
�̂�1
′

(1×𝑝)
∙ 𝐗𝑛
(𝑝×1)

�̂�2
′

(1×𝑝)
∙ 𝐗𝑛
(𝑝×1)

⋯ �̂�𝑖
′

(1×𝑝)
∙ 𝐗𝑛
(𝑝×1)

⋯ �̂�𝑝
′

(1×𝑝)

∙ 𝐗𝑛
(𝑝×1)]

 
 
 
 
 
 
 
 
 

(𝑛×𝑝)
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          =

[
 
 
 
 
 
 
�̂�11 �̂�12 ⋯ �̂�1𝑖 ⋯ �̂�1𝑝

�̂�21 �̂�22 ⋯ �̂�2𝑖 ⋯ �̂�2𝑝
⋮ ⋮ ⋮ ⋮
�̂�𝑗1 �̂�𝑗2 ⋯ �̂�𝑗𝑖 ⋯ �̂�𝑗𝑝
⋮ ⋮ ⋮ ⋮
�̂�𝑛1 �̂�𝑛2 ⋯ �̂�𝑛𝑖 ⋯ �̂�𝑛𝑝]

 
 
 
 
 
 

(𝑛×𝑝)

 

Theorem 5.4.2 (Total Sample Variance). Let random vectors 𝐗1
(𝑝×1)

, 𝐗2
(𝑝×1)

, … , 𝐗𝑛
(𝑝×1)

 

constitute a multivariate random sample defined in Definition 4.2.2. with associated 

positive-definite sample variance-covariance matrix 𝐒𝐗
(𝑝×𝑝)

 defined in Theorem 4.4.2. 

Let 𝐒𝐗
(𝑝×𝑝)

 have sample eigenvalue and normalized- eigenvector pairs (�̂�𝑖, �̂�𝑖
(𝑝×1)

),      

𝑖 = 1,2, … , 𝑝 where �̂�1 > �̂�2 > ⋯ > �̂�𝑝 > 0. Let the unrealized sample principal 

components be of the form �̂�𝑖 = �̂�𝑖
′

(1×𝑝)
⋅ 𝐗
(𝑝×1)

 with 𝑗𝑡ℎ multivariate sample 

observation �̂�𝑗𝑖 = �̂�𝑖
′

(1×𝑝)
⋅ 𝐗𝑗
(𝑝×1)

. Then the total sample variance 

𝑆11 + 𝑆22 +⋯+ 𝑆𝑝𝑝 =∑𝑆𝑖𝑖

𝑝

𝑖=1

= �̂�1 + �̂�2 +⋯+ �̂�𝑝 =∑Var( �̂�𝑖)

𝑝

𝑖=1

. 

Consequently, 

(

Proportion of total
sample variance
due to 𝑖th sample

principal component

) =
�̂�𝑖

�̂�1 + �̂�2 +⋯+ �̂�𝑝
         𝑖 = 1,2, … , 𝑝 

[3, p. 442] and 

(
Proportion of total sample 
variance due to the first 𝑘 

sample principal components
) =

∑ �̂�𝑖
𝑘
𝑖=1

�̂�1+�̂�2+⋯+�̂�𝑝
         𝑘 < 𝑝.  
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We shall denote the sample principal components by �̂�1, �̂�2, … , �̂�𝑝, 

irrespective of whether they are obtained from 𝐒𝐗
(𝑝×𝑝)

or 𝐒𝐙
(𝑝×𝑝)

= 𝐑
(𝑝×𝑝)

. The 

components constructed from 𝐒𝐗
(𝑝×𝑝)

 and 𝐒𝐙
(𝑝×𝑝)

= 𝐑
(𝑝×𝑝)

 are not the same, in general, 

but it will be clear from the context which matrix is being used, and the single 

notation �̂�𝑖 is convenient. It is also convenient to label the component coefficient 

vectors �̂�𝑖
(𝑝×1)

 and the component �̂�𝑖 for both situations [3, p. 443]. 

5.5 Sample Principal Components for Standardized 

Samples 

Theorem 5.5.1 (𝑖th Sample Principal Component of 𝐙). Let random 

vectors 𝐙1
(𝑝×1)

, 𝐙2
(𝑝×1)

, … , 𝐙𝑛
(𝑝×1)

 constitute a standardized multivariate random sample 

defined in Theorem 4.6.1. with associated positive-definite sample variance-

covariance matrix 𝐒𝐙
(𝑝×𝑝)

= 𝐑
(𝑝×𝑝)

 defined in Theorem 4.8.2. Let 𝐒𝐙
(𝑝×𝑝)

= 𝐑
(𝑝×𝑝)

 have 

sample eigenvalue and normalized-eigenvector pairs (�̂�𝑖, �̂�𝑖
(𝑝×1)

) , 𝑖 = 1,2, … , 𝑝 where 

�̂�1 > �̂�2 > ⋯ > �̂�𝑝 > 0. Then the unrealized 𝒊th sample principal component of 

𝐙
(𝑛×𝑝)

is of the form 

�̂�𝑖 = �̂�𝑖
′

(1×𝑝)
⋅ 𝐙
(𝑝×1)

= [�̂�1𝑖, �̂�2𝑖, … , �̂�𝑝𝑖]
(1×𝑝)

⋅ [

𝑍1
𝑍2
⋮
𝑍𝑝

]

(𝑝×1)

= �̂�1𝑖𝑍1 + �̂�2𝑖𝑍2 +⋯+ �̂�𝑝𝑖𝑍𝑝  
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for 𝑖 = 1,2, … , 𝑝 with unrealized quantity on the 𝑗𝑡ℎ standardized multivariate 

sample observation 

�̂�𝑗𝑖 = �̂�𝑖
′

(1×𝑝)
⋅ 𝐙𝑗
(𝑝×1)

= [�̂�1𝑖, �̂�2𝑖, … , �̂�𝑝𝑖]
(1×𝑝)

⋅

[
 
 
 
𝑍𝑗1
𝑍𝑗2
⋮
𝑍𝑗𝑝]

 
 
 

(𝑝×1)

= �̂�1𝑖𝑍𝑗1 + �̂�2𝑖𝑍𝑗2 +⋯+ �̂�𝑝𝑖𝑍𝑗𝑝 

for 𝑗 = 1,2, … , 𝑛 with unrealized sample variance and covariance  

var(�̂�𝑖) = �̂�𝑖
′

(1×𝑝)
⋅ 𝐒𝐙
(𝑝×𝑝)

⋅ �̂�𝑖
(𝑝×1)

= �̂�𝑖
′

(1×𝑝)
⋅ 𝐑
(𝑝×𝑝)

⋅ �̂�𝑖
(𝑝×1)

= �̂�𝑖 

for 𝑖 = 1,2, … , 𝑝 and  

cov(�̂�𝑖, �̂�𝑘) = �̂�𝑖
′

(1×𝑝)
⋅ 𝐒𝐙
(𝑝×𝑝)

⋅ �̂�𝑘
(𝑝×1)

= �̂�𝑖
′

(1×𝑝)
⋅ 𝐑
(𝑝×𝑝)

⋅ �̂�𝑘
(𝑝×1)

= 0 

for 𝑖, 𝑘 = 1,2, … , 𝑝, 𝑖 ≠ 𝑘 given in Definition 4.9.7 [3, p. 451]. 

One can write the 𝑛 sample principal components of 𝐙
(𝑛×𝑝)

 in matrix notation 

�̂�
(𝑛×𝑝)

= 𝐙
(𝑛×𝑝)

∙ �̂�
(𝑝×𝑝)

 

          =

[
 
 
 
 
 
 
𝑍11 𝑍12 ⋯ 𝑍1𝑝
𝑍21 𝑍22 ⋯ 𝑍2𝑝
⋮ ⋮ ⋮
𝑍𝑗1 𝑍𝑗2 ⋯ 𝑍𝑗𝑝
⋮ ⋮ ⋮
𝑍𝑛1 𝑍𝑛2 ⋯ 𝑍𝑛𝑝]

 
 
 
 
 
 

(𝑛×𝑝)

[
 
 
 
 
�̂�11 �̂�12 ⋯ �̂�1𝑖 ⋯ �̂�1𝑝
�̂�21 �̂�22 ⋯ �̂�2𝑖 ⋯ �̂�2𝑝
⋮ ⋮ ⋮ ⋮
�̂�𝑝1 �̂�𝑝2 ⋯ �̂�𝑝𝑖 ⋯ �̂�𝑝𝑝]

 
 
 
 

(𝑝×𝑝)

 

          =

[
 
 
 
 
 
 
�̂�11 �̂�12 ⋯ �̂�1𝑖 ⋯ �̂�1𝑝

�̂�21 �̂�22 ⋯ �̂�2𝑖 ⋯ �̂�2𝑝
⋮ ⋮ ⋮ ⋮
�̂�𝑗1 �̂�𝑗2 ⋯ �̂�𝑗𝑖 ⋯ �̂�𝑗𝑝
⋮ ⋮ ⋮ ⋮
�̂�𝑛1 �̂�𝑛2 ⋯ �̂�𝑛𝑖 ⋯ �̂�𝑛𝑝]

 
 
 
 
 
 

(𝑛×𝑝)
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Theorem 5.5.2 (Total Standardized Sample Variance). Let random 

vectors 𝐙1
(𝑝×1)

, 𝐙2
(𝑝×1)

, … , 𝐙𝑛
(𝑝×1)

 constitute a standardized multivariate random sample 

defined in Theorem 4.6.1 with associated positive-definite standardized sample 

variance-covariance matrix 𝐒𝐙
(𝑝×𝑝)

= 𝐑
(𝑝×𝑝)

 defined in Theorem 4.8.2. Let 𝐒𝐙
(𝑝×𝑝)

= 𝐑
(𝑝×𝑝)

 

have sample eigenvalue and normalized-eigenvector pairs (�̂�𝑖, �̂�𝑖
(𝑝×1)

) , 𝑖 = 1,2, … , 𝑝 

where �̂�1 > �̂�2 > ⋯ > �̂�𝑝 > 0. Let the unrealized sample principal components of 

𝐙
(𝑛×𝑝)

 be of the form �̂�𝑖 = �̂�𝑖
′

(1×𝑝)
⋅ 𝐙
(𝑝×1)

 with 𝑗𝑡ℎ standardized multivariate sample 

observations �̂�𝑗𝑖 = �̂�𝑖
′

(1×𝑝)
⋅ 𝐙𝑗
(𝑝×1)

. 

Then the total standardized sample variance 

1 + 1 +⋯+ 1 = 𝑝 =∑𝑆𝑧,𝑖𝑖

𝑝

𝑖=1

=∑𝑅𝑖𝑖

𝑝

𝑖=1

= �̂�1 + �̂�2 +⋯+ �̂�𝑝 =∑Var(�̂�𝑖)

𝑝

𝑖=1

. 

Consequently,  

(

 
 

Proportion of total
standardized sample variance
due to the 𝑖th sample principal

 component of 𝐙
(𝑛×𝑝) )

 
 
=
�̂�𝑖
𝑝
         𝑖 = 1,2, … , 𝑝 

and 

(

Proportion of total standardized 
sample variance due to the first 𝑘 

sample principal components of 𝐙
(𝑛×𝑝)

) =
∑ �̂�𝑖
𝑘
𝑖=1

𝑝
         𝑘 < 𝑝. 
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A rule of thumb suggests retaining only those components whose variances 

�̂�𝑖 are greater than unity or, equivalently, only those components which, 

individually, explain at least a proportion 1 𝑝⁄  of the total variance. This rule does 

not have a great deal of theoretical support, however, and it should not be applied 

blindly. Also, a scree plot is useful for selecting the appropriate number of 

components [3, p. 451]. 
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Chapter 6 

Results and Discussion 

6.1 R Programming Language 

Analysis of data is conducted using R version 3.6.2 (2019-12-12) -- "Dark and 

Stormy Night". R is an open source software for statistical computing and graphics. 

The latest version can be downloaded at R: The R Project for Statistical Computing 

website https://www.r-project.org/. 

6.2 Univariate Distribution Analysis 

6.2.1 Descriptives for US Crime 2018 

Table 6.2.1: Descriptives for US Crime 2018 

 

Table 6.2.1 gives the descriptives for 327 US metropolitan statistical areas in 2018 

for violent crime and property crime per 100,000 residents. 

  

vars n sd min q1 median mean q3 max range 

MURDER 1 327 5.45 0 1.95 3.9 5.11 6.25 60.9 60.9

RAPE 2 327 26.36 13 33.15 44.8 50.99 62.2 200.1 187.1

ROBBERY 3 327 61.93 1.2 33.3 55.5 70.52 87.95 473.2 472

ASSAULT 4 327 182.33 30.2 152.1 233.6 270.11 323.7 1477.8 1447.6

BURGLARY 5 327 233.2 87.3 264.1 393.9 435.9 557.1 1576.1 1488.8

LARCENY 6 327 734.07 488.5 1282 1657.2 1748.4 2045.1 8558.1 8069.6

VEHICLE 7 327 160.58 13.7 103 166.7 215.18 281.4 970.9 957.2

https://www.r-project.org/
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6.2.2 Distributions of US Crime 2018 

6.2.2.1 Murder Distribution 

 

Figure 6.2.1: Murder Distribution Plots 

Based on the density and histogram in Figure 6.2.1, the distribution of Murder looks 

right skewed. The lower left plot in Figure 6.2.1 is a Normal QQ-Plot for Murder that 

shows a clear lack of normality. One can use Shapiro-Wilk test for normality with 

𝛼 = 0.1 to confirm this assertion. That is, 

𝐻0 ∶  Population Distribution for Murder is Normal 

                                 𝐻1 ∶  Population Distribution for Murder is not Normal 
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W = 0.61016; p − value ≅ 0 

Thus, as expected, one rejects 𝐻0. There is sufficient evidence to say that the 

population distribution of Murder is not normally distributed. However, the 

distribution of Murder could be lognormal. The lower right plot in Figure 6.2.1 is a 

Lognormal QQ-Plot for Murder that shows a clear potential of lognormality, along 

with the density and histogram. One can use the same Shapiro-Wilk test to test for 

lognormality by a simple log transformation on 𝐗Murder
(327×1)

. Indeed, this is due to the 

fact that 𝑋𝑖 ~ Lognormal ⇒ log(𝑋𝑖) ~ Normal [8]. 

𝐻0 ∶  Population Distribution for Murder is Lognormal 

                              𝐻1 ∶  Population Distribution for Murder is not Lognormal 

p − value doesn′t exist  

The p − value doesn′t exist because seven metropolitan statistical areas have 

murder rates of 0. As a result, the transformation from 𝐗Murder
(327×1)

 to log (𝐗Murder
(327×1)

) 

cannot be completed and the Shapiro-Wilk test will not compute a p − value. 

Nevertheless, using the Lognormal QQ-Plot one can cautiously assume the 

population distribution of Murder is approximately lognormal. 

 It has been found that all the outliers of Murder are located at the upper end 

of the distribution. These metropolitan statistical areas correspond places with 

extremely high murder rates per 100,000 residents. Furthermore, it may be of 

interest to see the areas in the lowest 2.5% of the Murder distribution for 2018. 
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Figure 6.2.2: Murder Outliers and Lower 2.5% of Sample 

The left plot in Figure 6.2.2 shows the seven metropolitan statistical areas with a 

murder rate of 0. The right plot in Figure 6.2.2 highlights three areas with radically 

high murder rates per 100,000; namely, St Louis (60.9), Detroit (38.9), and New 

Orleans (37.1). 
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6.2.2.2 Rape Distribution 

 

Figure 6.2.3: Rape Distribution Plots 

Based on the density and histogram in Figure 6.2.3, the distribution of rape looks 

right skewed with several outliers. Next, one uses Shapiro-Wilk test to test for 

normality and lognormality with 𝛼 = 0.1. 

𝐻0 ∶  Population Distribution for Rape is Normal 

                                   𝐻1 ∶  Population Distribution for Rape is not Normal 

W = 0.85053; p − value ≅ 0 
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𝐻0 ∶  Population Distribution for Rape is Lognormal 

                                𝐻1 ∶  Population Distribution for Rape is not Lognormal 

p − value ≅ 0.164 

One rejects 𝐻0 for normality and fails to reject 𝐻0 for lognormality. Yet the 

Lognormal QQ-Plot appears to contradict the hypothesis test result. Thus, more 

work should be done to resolve this inconsistency. However, learning the true 

distribution of rape is not of major interest, so one can move on. 

 

Figure 6.2.4: Rape Outliers and Lower 2.5% of Sample 

The right plot in Figure 6.2.4 focuses one’s attention to four areas with extremely 

high rape rates per 100,000; specifically, Anchorage (200.1), Myrtle Beach (190), 

New Orleans (171.8), and Detroit (147.2). Anchorage has long time been known for  
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its high rape rates. The question of interest is why? Some have posed that it is 

related to the high male-to-female ratio. Others have said it is due to the long 

winters and physical isolation of individuals. While others have stated that the issue 

is established upon patriarchy and capitalism, which objectifies and commodifies 

women as the property of men [9]. Whereas, Myrtle Beach and New Orleans are 

vacation and party destinations which could lead to increased sexual assault. 

Finally, remember, that Detroit and New Orleans also had dangerously high Murder 

rates. One should pay attention to these metropolitan statistical areas that 

repeatedly show up in the high-ranking crime category. 

6.2.2.3 Robbery Distribution 
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Figure 6.2.5: Robbery Distribution Plots 

Based on the density and histogram in Figure 6.2.5, the distribution of Robbery 

looks right skewed with several outliers. Next, one uses Shapiro-Wilk test for testing 

normality and lognormality with 𝛼 = 0.1. 

𝐻0 ∶  Population Distribution for Robbery is Normal 

                                𝐻1 ∶  Population Distribution for Robbery is not Normal 

W = 0.73871; p − value ≅ 0 

𝐻0 ∶  Population Distribution for Robbery is Lognormal 

                             𝐻1 ∶  Population Distribution for Robbery is not Lognormal 

p − value ≅ 0 

One rejects 𝐻0 for normality and lognormality. 

 

Figure 6.2.6: Robbery Outliers and Lower 2.5% of Sample 
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The right plot in Figure 6.2.6 has some repeatedly high-ranking metropolitan 

statistical areas for crime, in general, and in robbery as well. The names one hasn’t 

seen yet in the univariate outliers list are Houston, Albuquerque, Stockton, and San 

Francisco.  

6.2.2.4 Assault Distribution 

 

Figure 6.2.7: Assault Distribution Plots 

Based on the density and histogram in Figure 6.2.7, the distribution of Assault looks 

right skewed with several outliers. Next, one uses Shapiro-Wilk test for normality 

and lognormality with 𝛼 = 0.1. 
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𝐻0 ∶  Population Distribution for Assault is Normal 

                                  𝐻1 ∶  Population Distribution for Assault is not Normal 

W = 0.8109; p − value ≅ 0 

𝐻0 ∶  Population Distribution for Assault is Lognormal 

                              𝐻1 ∶  Population Distribution for Assault is not Lognormal 

p − value ≅ 0.3352 

One rejects 𝐻0 for normality and fails to reject 𝐻0 for lognormality. Similar to rape, 

the Lognormal QQ-Plot for assault, appears to contradict the hypothesis test result.  

 

Figure 6.2.8: Assault Outliers and Lower 2.5% of Sample 

The right plot in Figure 6.2.8 features four areas with drastically higher assault rates 

per 100,000. Detroit (1477.8), St Louis (1165.6), Little Rock (1130.5), and 

Farmington (1006.4). Interesting, two metropolitan statistical areas are in New 

Mexico: Farmington and Albuquerque. Similarly, three metropolitan statistical  
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areas are in Texas: Lubbock, Odessa, and Houston. Immediately we can see many of 

these outliers have been seen in previous plots. 

6.2.2.5 Burglary Distribution 

 

Figure 6.2.9: Burglary Distribution Plots 

Based on the density and histogram in Figure 6.2.9, the distribution of Burglary 

looks right skewed with several outliers. Next, one uses Shapiro-Wilk test for 

normality and lognormality with 𝛼 = 0.1. 
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𝐻0 ∶  Population Distribution for Burglary is Normal 

                                𝐻1 ∶  Population Distribution for Burglary is not Normal 

W = 0.90035; p − value ≅ 0 

𝐻0 ∶  Population Distribution for Burglary is Lognormal 

                            𝐻1 ∶  Population Distribution for Burglary is not Lognormal 

p − value ≅ 0.4335 

One rejects 𝐻0 for normality and fails to reject 𝐻0 for lognormality. Similar to rape 

and assault, the Lognormal QQ-Plot for burglary, appears to contradict the 

hypothesis test result.  

 

Figure 6.2.10: Burglary Outliers and Lower 2.5% of Sample 

The right plot in Figure 6.2.10 contains two areas with larger burglary rates per 

100,000: Lake Charles (1576.1) and Hot Springs (1421.6). What is noteworthy is 

these areas have not shown up on any other of the other outlier plots. 
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6.2.2.6 Larceny Distribution 

 

Figure 6.2.11: Larceny Distribution Plots 

Based on the density and histogram in Figure 6.2.11, the distribution of Larceny 

looks right skewed with several outliers. Next, one uses Shapiro-Wilk test for 

normality and lognormality with 𝛼 = 0.1. 

𝐻0 ∶  Population Distribution for Larceny is Normal 

                                𝐻1 ∶  Population Distribution for Larceny is not Normal 

W = 0.90035; p − value ≅ 0 
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𝐻0 ∶  Population Distribution for Larceny is Lognormal 

                             𝐻1 ∶  Population Distribution for Larceny is not Lognormal 

p − value ≅ 0.04679 

One rejects 𝐻0 for normality and lognormality. 

 

Figure 6.2.12: Larceny Outliers and Lower 2.5% of Sample 

The right plot in Figure 6.2.12 has one extreme crime area that stands out compared 

to the other outliers. Myrtle Beach’s (8558.1) larceny crime rate is almost double 

any other of the outliers. Theft of person property is often higher in tourist 

destinations. It is surprising that Las Vegas is not one of the high-raking areas for 

this type of crime. 
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6.2.2.7 Vehicle Distribution 

 

Figure 6.2.13: Vehicle Distribution Plots 

Based on the density and histogram in Figure 6.2.11, the distribution of Vehicle 

looks right skewed with several outliers. Next, one uses Shapiro-Wilk test for 

normality and lognormality with 𝛼 = 0.1. 

𝐻0 ∶  Population Distribution for Vehicle is Normal 

                                 𝐻1 ∶  Population Distribution for Vehicle is not Normal 

W = 0.8565; p − value ≅ 0 

  



175 
 

𝐻0 ∶  Population Distribution for Vehicle is Lognormal 

                              𝐻1 ∶  Population Distribution for Vehicle is not LogNormal 

p − value ≅ 0.3367 

One rejects 𝐻0 for normality and fails to reject 𝐻0 for lognormality. 

 

Figure 6.2.14: Vehicle Outliers and Lower 2.5% of Sample 

The right plot in Figure 6.2.14 does not show any metropolitan statistical areas 

where vehicle theft stands out significantly more than others. 
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6.3 Bivariate Distribution Analysis 

6.3.1 Correlation Matrix for US Crime 2018 

 

Figure 6.3.1: Correlation Matrix for US Crime 2018 

In Figure 6.3.1, one can see strong positive sample correlation between murder and 

robbery, murder and assault, robbery and assault, burglary and larceny, and 

robbery and vehicular theft. 
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6.3.2 Contour-Scatter Matrix 

 

Figure 6.3.2: Contour-Scatter Matrix 

The upper diagonal of Figure 6.3.2 displays scatterplots for the seven US Crime 2018 

characteristics (variables). One can see there is a dense cloud on the lower-left part 

of most of the scatterplots linked to areas where pairs of characteristics have lower 

or medium crime rates. In contrast, one can see less dense scatter in the upper-right 

of the scatterplots related to those areas where high to extremely crime rates exist. 
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 The lower diagonal of Figure 6.3.2 displays contour plots where the 2-d 

density is colored with a lighter color for more dense regions and the 2-d density is 

colored darker for less dense regions. Specifically, the contour plots are a nice way 

to visualize the bivariate densities in two dimensions instead of in three dimensions. 

Here, with the contour plots, one can see the densest regions for each pair of 

variables, unlike in the upper diagonal where it is obscured by the larger number of 

dots scattered in close proximity. 

6.4 Multivariate Distribution Analysis 

6.4.1 Testing Multivariate Normality 

Using the generalization of Shapiro-Wilk test (Villasenor-Alva and Gonzalez-Estrada 

2009) for multivariate normality one can test 

𝐻0 ∶  Population Distribution is Multivariate Normal 

                               𝐻1 ∶  Population Distribution is not Multivariate Normal 

W = 0.8513; p − value ≅ 0 

Consequently, one rejects 𝐻0. There is sufficient evidence to say that the US Crime 

population distribution is not multivariate normal. 
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6.5 Sample PCA for Standardized US Crime 2018 

When individual sample characteristics have vastly different ranges they are 

routinely standardized before running a principal components analysis [3, p. 439]. 

Otherwise the characteristics with the largest ranges will dominate the first few 

sample principal components. Hence, the first step in the principal components 

analysis is to standardize the US Crime 2018 data. 

6.5.1 Descriptives for Standardized US Crime 2018 

Table 6.5.1: Descriptives for Standardized US Crime 2018  

 

In Table 6.5.1, one can see that all sample means are 0 and all sample standard 

deviations are 1. Further, the respective ranges are comparable in size. Now, 

elements in the standardized multivariate random sample matrix that are positive 

will be above the sample mean and elements that are negative will be below the 

sample mean. 

  

vars n sd min q1 median mean q3 max range

MURDER 1 327 1 -0.94 -0.58 -0.22 0 0.21 10.24 11.18

RAPE 2 327 1 -1.44 -0.68 -0.23 0 0.43 5.66 7.1

ROBBERY 3 327 1 -1.12 -0.60 -0.24 0 0.28 6.5 7.62

ASSAULT 4 327 1 -1.32 -0.65 -0.2 0 0.29 6.62 7.94

BURGLARY 5 327 1 -1.49 -0.74 -0.18 0 0.52 4.89 6.38

LARCENY 6 327 1 -1.72 -0.64 -0.12 0 0.40 9.28 10.99

VEHICLE 7 327 1 -1.25 -0.70 -0.3 0 0.41 4.71 5.96
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6.5.2 Sample PCA for Standardized US Crime 2018 

6.5.2.1 Explained Standardized Sample Variance by Principal 

Component for US Crime 2018 

Table 6.5.2: Explained Standardized Sample Variance by Principal Component 

 

The first row of Table 6.5.2 displays the standardized sample variances for each of 

the sample principal components (var(�̂�𝑖) = �̂�𝑖 for 𝑖 = 1,… ,7). The second row 

provides the percent of standardized sample variance due to the 𝑖th sample 

principal component (
�̂�𝑖

7
∙ 100%, 𝑖 = 1, … ,7). Finally, the third row shows the 

percent of standardized sample variance due to the first 𝑘th sample principal 

component (
∑ �̂�𝑖
𝑘
𝑖=1

7
, 𝑘 ≤ 7). One can see that the first three sample principal 

components account for 83.43% of the total standardized variation in the sample 

from US Crime 2018. Figure 6.5.1 gives us a way to visualize the relation between 

the standardized sample principal components and their percentages of explained 

standardized sample variance.  

  

y1 y2 y3 y4 y5 y6 y7

Eigenvalues 4.4138 0.7695 0.6568 0.4503 0.3226 0.2163 0.1707

% of Variance 63.05% 10.99% 9.38% 6.43% 4.61% 3.09% 2.44%

Cumulative % 63.05% 74.05% 83.43% 89.86% 94.47% 97.56% 100.00%
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Figure 6.5.1: Explained Standardized Sample Variance by Principal Component 

6.5.2.2 Sample Principal Components for Standardized Crime 2018 

Table 6.5.3: Sample Principal Components for Standardized Crime 2018 

 

Given that the first three sample principal components yield 83.43% of the total 

standardized variation in the sample, there is no need to use the other four sample 

components in one’s analysis.  

  

y1 y2 y3 y4 y5 y6 y7

MURDER -0.3704 0.4863 -0.3767 0.197 -0.3164 -0.4799 0.3394

RAPE -0.2849 -0.7469 -0.5518 0.0673 -0.0436 -0.1588 -0.1574

ROBBERY -0.4087 0.3387 -0.131 -0.3787 -0.1169 0.1769 -0.7161

ASSAULT -0.4144 0.0985 -0.1529 0.4294 0.2454 0.709 0.2191

BURGLARY -0.372 -0.0847 0.555 0.5261 0.1749 -0.3644 -0.3261

LARCENY -0.3792 -0.2702 0.4419 -0.2523 -0.6337 0.193 0.2923

VEHICLE -0.4009 -0.0313 0.0989 -0.5371 0.6261 -0.2013 0.328
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attempted to be explained in the context of the subject matter. To demonstrate, 

sample principal component �̂�1 has eigenvector components of roughly equal 

magnitudes. Thus, �̂�1 can be considered a general crime component. If one was to 

explain a metropolitan statistical area’s crime rate with one value, then �̂�𝑗1 would be 

it. Most importantly because �̂�1 maximizes the standardized sample variance 

var(�̂�1) subject to �̂�1
′

(1×7)
⋅ �̂�1
(7×1)

= 1 and cov(�̂�1, �̂�𝑘) = 0, 𝑘 = 2,… ,7. Notice that all the 

eigenvector components are negative; accordingly, an area with larger crime rates 

would have a very negative value (in general). 

�̂�1 = −0.37𝑥MURDER − 0.28𝑥RAPE − 0.41𝑥ROBBERY − 0.41𝑥ASSAULT 

                             −0.37𝑥BURGLARY − 0.37𝑥LARCENY − 0.40𝑥VEHICLE 

with 𝑗th observation 

�̂�𝑗1 = −0.37𝑥𝑗,MURDER − 0.28𝑥𝑗,RAPE − 0.41𝑥𝑗,ROBBERY − 0.41𝑥𝑗,ASSAULT 

                         −0.37𝑥𝑗,BURGLARY − 0.37𝑥𝑗,LARCENY − 0.40𝑥𝑗,VEHICLE 

Sample principal component �̂�2 has largest eigenvector component magnitudes on 

murder and rape. Therefore, �̂�2 could be deemed a heinous crime component. If the 

area has a much larger murder rate, then rape rate, �̂�𝑗2 will likely stand out in the 

positive direction. If the area has a much larger rape rate, then murder rate, �̂�𝑗2 will 

likely stand out in the negative direction. If the area has approximately equal values, 

then �̂�𝑗2 will likely not stand out in either direction. 
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�̂�2 = 0.49𝑥MURDER − 0.75𝑥RAPE + 0.34𝑥ROBBERY + 0.10𝑥ASSAULT 

                           −0.08𝑥BURGLARY − 0.27𝑥LARCENY − 0.03𝑥VEHICLE 

with 𝑗th observation 

�̂�𝑗2 = 0.49𝑥𝑗,MURDER − 0.75𝑥𝑗,RAPE + 0.34𝑥𝑗,ROBBERY + 0.10𝑥𝑗,ASSAULT 

                           −0.08𝑥𝑗,BURGLARY − 0.27𝑥𝑗,LARCENY − 0.03𝑥𝑗,VEHICLE 

Sample principal component �̂�3 has negative eigenvector components for violent 

crime and positive eigenvector components for property crime. Immediately, �̂�3 can 

be thought of as a crime type component. That is, areas with particularly negative 

�̂�𝑗3 values will often have larger violent crime relative to property crime. 

Conversely, areas with larger property crime relative to violent crime will have 

more positive �̂�𝑗3 values. 

�̂�3 = −0.38𝑥MURDER − 0.55𝑥RAPE − 0.13𝑥ROBBERY − 0.15𝑥ASSAULT 

                             +0.56𝑥BURGLARY + 0.44𝑥LARCENY + 0.10𝑥VEHICLE 

with 𝑗th observation 

�̂�𝑗3 = −0.38𝑥𝑗,MURDER − 0.55𝑥𝑗,RAPE − 0.13𝑥𝑗,ROBBERY − 0.15𝑥𝑗,ASSAULT 

                             +0.56𝑥𝑗,BURGLARY + 0.44𝑥𝑗,LARCENY + 0.10𝑥𝑗,VEHICLE 

Note that explaining these principal components is not a perfect science and caution 

should be exercised when interpreting the �̂�𝑖’s in context of the data. Figure 6.5.2 

gives a graphical interpretation of how the standardized characteristics contributed 

to the first three sample principal component derived from the US Crime 2018 data.  
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Figure 6.5.2: Contrib. of Standardized Characteristics to Each Principal Component 

In Figure 6.5.2, the percent contribution of the 𝑘th standardized 

characteristic to the 𝑖th sample principal component is calculated as 

Sample Contribution𝑘𝑖 = �̂�𝑘𝑖
2 ∙ 100% 

for 𝑘, 𝑖 = 1,2, … , 𝑝 because �̂�𝑖
′ ∙ �̂�𝑖 ⋅ 100% = 1 ⋅ 100% = 100%. Hence, �̂�𝑘𝑖

2  is the 

proportion contribution of the 𝑘th standardized characteristic to the 𝑖th sample 

principal component. To clarify further, �̂�𝑖
′ ∙ �̂�𝑖 represents the squared length or 

magnitude of the vector �̂�𝑖 so �̂�𝑘𝑖
2 = �̂�𝑘𝑖 ∙ �̂�𝑘𝑖 is the part that the standardized 

characteristic 𝑧𝑘 that contributes to magnitude of, or squared length of, �̂�𝑖. 
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6.5.2.3 Correlation Matrix for Sample Principal Components and 

Standardized Crime 2018 Characteristics  

 

Figure 6.5.3: Correlation Matrix for Sample Principal Components and Standardized 

Crime 2018 Characteristics 

The upper-right triangle of Figure 6.5.3 displays the sample correlations between 

the (Standardized) US Crime 2018 characteristics as seen in Figure 6.3.1.The 

bottom-left triangle of Figure 6.5.3 shows the sample principal components are 

indeed uncorrelated because cov(�̂�𝑖, �̂�𝑘) = 0 ∀ 𝑖 ≠ 𝑘.  

In the right-bottom square of Figure 6.5.3, the correlations between the 

sample principal components and the standardized US Crime 2018 characteristics, 

can be seen. The interpretation of these sample correlations can lead to similar  
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interpretations as looking at �̂�𝑘𝑖 directly, but with some data, this is not true [3, p. 

434]. For Figure 6.5.3, the correlations between sample principal components and 

the standardized US Crime 2018 characteristics match the original interpretations 

of the �̂�𝑘𝑖’s. 

To illustrate, the eigenvector components of �̂�1 are all negative and nearly 

the same magnitude. Analogously, the correlations between the eigenvector 

components of �̂�1 and the standardized US Crime 2018 characteristics are all strong 

negatively correlated. For the eigenvector components of �̂�2 and the standardized 

US Crime 2018 characteristics, one can see a strong negative correlation between 

the standardized rape characteristic and its respective eigenvector component. In 

the same way, the standardized murder characteristic is positively correlated with 

its eigenvector counterpart. Principal component �̂�3 has negative correlations with 

the violent crime characteristics and positive correlations with the property crime 

characteristics. Henceforth, the correlation structure between the sample principal 

components and the standardized US Crime 2018 characteristics agree with the 

signs and magnitudes of the �̂�𝑘𝑖’s. 
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6.5.2.4 Scatterplots for Sample Principal Components from 

Standardized US Crime 2018 

 

Figure 6.5.4: Scatterplot for �̂�2 ~ �̂�1 

Figure 6.5.4 plots sample principal components 

�̂�𝑗2 = 0.49𝑥𝑗,MURDER − 0.75𝑥𝑗,RAPE + 0.34𝑥𝑗,ROBBERY + 0.10𝑥𝑗,ASSAULT 

                           −0.08𝑥𝑗,BURGLARY − 0.27𝑥𝑗,LARCENY − 0.03𝑥𝑗,VEHICLE 

by 

�̂�𝑗1 = −0.37𝑥𝑗,MURDER − 0.28𝑥𝑗,RAPE − 0.41𝑥𝑗,ROBBERY − 0.41𝑥𝑗,ASSAULT 

                         −0.37𝑥𝑗,BURGLARY − 0.37𝑥𝑗,LARCENY − 0.40𝑥𝑗,VEHICLE 

for 𝑗 = 1, 2, … , 327.  
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From Figure 6.5.4, metropolitan statistical areas to the far left in the �̂�1 

direction are those places with very extreme crimes rates on one or more 

characteristics. Specifically, because �̂�1 has all negative eigenvector components, 

areas with large crime rates will have sample principle components scores far to the 

left. Thus, St. Louis, Detroit, New Orleans, Little Rock, Anchorage, and Myrtle Beach 

can be put into the severe crime category based on the general crime component �̂�1. 

Next, from Figure 6.5.4, metropolitan statistical areas in the upper region of 

�̂�2 dimension are going to have high murder rates relative to rape rates. These areas 

include St. Louis, Chicago, and Baltimore (see also Figure 6.6.2 for Murder Outliers). 

At the same time, metropolitan statistical areas in the lower region of �̂�2 are going to 

have high rape rates relative to murder rates. These areas include Myrtle Beach and 

Anchorage (see also Figure 6.6.3 for Rape Outliers). After all, �̂�2 is the heinous crime 

component, which is dominated by the negative eigenvector component for rape 

and the positive eigenvector component for murder. 

There are also cases where areas had large murder and rape rates that ended 

up in the center region of �̂�2 . These areas include Detroit, New Orleans, and Little 

Rock (see Figure 6.6.2-6.6.3). Finally, areas that had smaller crimes rates would end 

up center around (�̂�1 = 0, �̂�2 = 0). 
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Figure 6.5.5: Scatterplot for �̂�3 ~ �̂�1 

Figure 6.5.5 plots sample principal components 

�̂�𝑗3 = −0.38𝑥𝑗,MURDER − 0.55𝑥𝑗,RAPE − 0.13𝑥𝑗,ROBBERY − 0.15𝑥𝑗,ASSAULT 

                             +0.56𝑥𝑗,BURGLARY + 0.44𝑥𝑗,LARCENY + 0.10𝑥𝑗,VEHICLE 

by 

�̂�𝑗1 = −0.37𝑥𝑗,MURDER − 0.28𝑥𝑗,RAPE − 0.41𝑥𝑗,ROBBERY − 0.41𝑥𝑗,ASSAULT 

                         −0.37𝑥𝑗,BURGLARY − 0.37𝑥𝑗,LARCENY − 0.40𝑥𝑗,VEHICLE 

 for 𝑗 = 1, 2, … , 327.  

From Figure 6.5.5, metropolitan statistical areas in the upper region of �̂�3 have 

serious crime rates related to one or more violent crimes relative to property 

crimes. One the other hand, metropolitan statistical areas in the lower region of �̂�3 

have significant crime rates related to one or more property crimes relative to  
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violent crimes. That is, �̂�3 has negative eigenvector components for violent crime 

and positive eigenvector components for property crime. Specifically, for violent 

crime �̂�3 is most weighted towards murder and rape. While, property crime is most 

weighted towards burglary and larceny. This is the crime type component. 

 Lake Charles has the largest value on �̂�3. It is interesting because the area 

only came up once in the outliers for burglary where it had the largest number of 

burglaries (1576.1) per 100, 000 in the nation (see Figure 6.2.10). Otherwise, Lake 

Charles has not shown up on one’s radar.  

 Myrtle Beach is interesting because it has large crime rates for all 

characteristics except for murder. Thus, it is tough to say whether Myrtle Beach is 

worse with respect to violent crime or property crime based on its �̂�𝑗3 value. In 

short, �̂�3 has neutralized the effect for Myrtle Beach.  

 St. Louis, Detroit, and New Orleans have high crime rates on most of the 

characteristics, but violent crime is most pronounced in �̂�3. Most notably, St. Louis 

has the largest murder rate of 60.9, Detroit has the second highest murder rate at 

38.9, and New Orleans has the third highest murder rate at 37.1. New Orleans ranks 

third in rape at 171.8 and Detroit ranks fourth at 147.2. St Louis leads in robbery 

with 473.2, Detroit takes fourth with 344, and New Orleans in sixth with 307.5. 

Detroit is in first for assault with 1477.8 and St. Louis is in second with 1165.6. 
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Figure 6.5.6: Scatterplot for �̂�3 ~ �̂�2 

Figure 6.5.6 plots sample principal components 

�̂�𝑗3 = −0.38𝑥𝑗,MURDER − 0.55𝑥𝑗,RAPE − 0.13𝑥𝑗,ROBBERY − 0.15𝑥𝑗,ASSAULT 

                             +0.56𝑥𝑗,BURGLARY + 0.44𝑥𝑗,LARCENY + 0.10𝑥𝑗,VEHICLE 

by 

�̂�𝑗2 = 0.49𝑥𝑗,MURDER − 0.75𝑥𝑗,RAPE + 0.34𝑥𝑗,ROBBERY + 0.10𝑥𝑗,ASSAULT 

                           −0.08𝑥𝑗,BURGLARY − 0.27𝑥𝑗,LARCENY − 0.03𝑥𝑗,VEHICLE 

for 𝑗 = 1, 2, … , 327. 
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6.6 𝒌-Means Clustering Method 

The 𝑘-Means clustering algorithm is used to partition a set of 𝑛 unclassified 

multivariate sample observations 𝐱1
(𝑝×1)

, 𝐱2
(𝑝×1)

, … , 𝐱𝑛
(𝑝×1)

 into 𝑘 clusters or groups using 

a distance metric, most commonly, Euclidean distance. Note that the number of 

clusters 𝑘 must be specified in advance, which there are various numerical 

processes to help, analytically, specify this parameter [10, p. 532]. 

  



193 
 

Because the 𝑘-Means algorithm, by default, uses the Euclidean distance metric it 

suffers from certain deficiencies based on the number of calculations it must make 

and the size of those calculations. Respectively, the 𝑘-Means algorithm runs slower 

and has trouble finding reasonable clusters in the same proximity when: 

(1) 𝑛 and 𝑝 are large. 

(2) The ranges of the 𝑥1, 𝑥2, … , 𝑥𝑝 are large and/or when the ranges of 

𝑥1, 𝑥2, … , 𝑥𝑝 are largely different from each other. 

One solution to solve the range dilemma is to standardize the sample and use 

𝐳1
(𝑝×1)

, 𝐳2
(𝑝×1)

, … , 𝐳𝑛
(𝑝×1)

 as the inputs into the 𝑘-Means algorithm. However, this solution 

does not address the number of characteristics 𝑝 being large. To address this issue, 

one can subset 𝑝 variables in some meaningful way and continue with the 𝑘-Means 

analysis; but it is in generally difficult to make the decision of which characteristics 

to keep and which to lose. However, another option exists to solve both problems 

simultaneously. Specifically, one can use the first two or three sample principal 

components from the standardized sample provided that they account for a large 

proportion of the variability in 𝐳1
(𝑝×1)

, 𝐳2
(𝑝×1)

, … , 𝐳𝑛
(𝑝×1)

.  

 For the US Crime 2018 data, we will use the standardized sample and the 

first three sample principal components derived from the standardized sample as 

inputs into the 𝑘-Means algorithm to compare. One can then see how similar or 

different the two inputs behave with respect to the 𝑘-Means cluster assignments. 
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6.6.1 Choosing 𝒌 

One black-box method for choosing the appropriate 𝑘 for several clustering 

methods is found in the R package NbClust. NbClust provides 30 indices for 

determining the relevant number of clusters and proposes to users the best 

clustering scheme from the different results obtained by varying all combinations of 

number of clusters, distance measures, and clustering methods. It can 

simultaneously compute all the indices and determine the number of clusters in a 

single function call [11]. 

 

Figure 6.6.1: NbClust, Black-Box Method, 𝑘-Means 

In Table 6.6.1, the optimal number of clusters is found to be 𝑘 = 3 for both inputs,  
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Standardized Crime 2018 and �̂�1, �̂�2, �̂�3. 

6.6.2 𝒌-Means, 𝒌 = 𝟑 

6.6.2.1 𝒌-Means, 𝒌 = 𝟑, Cluster Sizes 

Table 6.6.1: 𝑘-Means, 𝑘 = 3, Cluster Sizes 

 

6.6.2.2 𝒌-Means, 𝒌 = 𝟑, Differences in Cluster Assignments 

Table 6.6.2: 𝑘-Means, 𝑘 = 3, Differences in Cluster Assignments 

 

From Table 6.6.2, one can see that 5 metropolitan statistical areas were assigned to 

cluster 1 using Standardized Crime 2018 and the same 5 metropolitan statistical 

areas where assigned to cluster 2 using �̂�1, �̂�2, �̂�3. Similarly, one can see that the 

same 12 metropolitan statistical areas were assigned to cluster 2 using 

Standardized Crime 2018 and cluster 3 using �̂�1, �̂�2, �̂�3. Table 6.6.3 presents the 

specific metropolitan statistical areas assigned to different clusters. These cases are 

usually located near the border’s edges of the cluster regions. 

  

cluster 1 2 3

size 11 116 200

cluster 1 2 3

size 6 109 212

k=3, k-Means, Standardized Crime 2018, Cluster Size

k=3, k-Means, y1, y2, y3, Cluster Size

cluster 1 2 3

1 6 5 0

2 0 104 12

3 0 0 200

k-Means, k=3, Differences in Cluster Assignments
y1, y2, y3

Standardized 

Crime 2018 
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Table 6.6.3: 𝑘-Means, 𝑘 = 3, Differences in Cluster Assignments for Clusters 1,2,3 

 

6.6.2.3 𝒌-Means, 𝒌 = 𝟑, Sample Cluster Mean Vectors 

Table 6.6.4: 𝑘-Means, 𝑘 = 3, Sample Cluster Mean Vectors 

 

  

Metropolitan Statistical Area Standardized Crime 2018 y1, y2, y3

Albuquerque 1 2

Chicago 1 2

Houston 1 2

Memphis 1 2

Nashville 1 2

Metropolitan Statistical Area Standardized Crime 2018 y1, y2, y3

Brunswick 2 3

Charleston 2 3

Columbus_OH 2 3

Dayton 2 3

Jackson_MI 2 3

Lexington 2 3

Orlando 2 3

Reno 2 3

Saginaw 2 3

Salem 2 3

San_Jose 2 3

Honolulu 2 3

k-Means, k=3, Differences in Assignments for Cluster 1 and 2

k-Means, k=3, Differences in Assignments for Cluster 2 and 3

cluster MURDER RAPE ROBBERY ASSAULT BURGLARY LARCENY VEHICLE

1 22.7091 111.782 312.0364 865.3273 811.3909 3678.564 681.509

2 6.79483 58.5103 97.13879 362.3543 616.0431 2158.441 318.863

3 3.1705 43.2875 41.8045 183.871 310.761 1404.355 129.394

cluster MURDER RAPE ROBBERY ASSAULT BURGLARY LARCENY VEHICLE

1 29.55 153.2 316.9833 1010 925.7 4402.25 819.6

2 7.30917 58.8835 108.5073 391.3817 640.5229 2227.902 332.594

3 3.29293 44.0415 44.01981 186.8175 316.8269 1426.697 137.703

MURDER RAPE ROBBERY ASSAULT BURGLARY LARCENY VEHICLE

5.11 50.99 70.52 270.11 435.9 1748.36 215.18

Original Sample Mean Vector for Crime 2018

k-Means, k=3, Standardized Crime 2018, Sample Cluster Mean Vectors

k-Means, k=3, y1, y2, y3, Sample Cluster Mean Vectors
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Table 6.6.4 reveals that cluster 3 has smaller sample mean components for both 

inputs compared to the original sample mean vector for Crime 2018. Thus, cluster 3 

can be labeled the below average crime cluster. Cluster 2 has larger sample mean 

components for both inputs compared to the original sample mean vector for Crime 

2018. Hence, cluster 2 can be labeled the above average crime cluster. Cluster 1 has 

much larger sample mean components for both inputs compared to their respective 

cluster 2’s, cluster 3’s, and the original sample mean vector for Crime 2018.  

Correspondingly, cluster 1 can be labeled the extreme crime cluster. At the same 

time, one should notice that the sample means with input �̂�1, �̂�2, �̂�3 are higher than 

the samples means with input Standardized Crime 2018. The reason will be evident 

once we plot the cluster assignments on the �̂�1, �̂�2, �̂�3 and the original dimensions. 
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6.6.2.4 𝒌-Means, 𝒌 = 𝟑, Scatterplots on �̂�𝟏, �̂�𝟐, �̂�𝟑 

 

Figure 6.6.1: 𝑘-Means, 𝑘 = 3, Input Standardized Crime 2018, Plotted on  �̂�1, �̂�2, �̂�3 

Focusing our attention on the �̂�1 (horizontal) dimension or the general crime 

component of Figure 6.6.1, with Standardized Crime 2018 inputs, one can see that 

the three clusters are fairly well-separated. Cluster 1, the extreme crime cluster is 

farthest to the left because the eigenvector coefficients of �̂�1 are negative, making 

areas with extreme crime on one or more of the characteristics shift to the left. 

Continuing to focus our attention on �̂�1, cluster 2, the above average crime cluster, is 

shifted to the right from clusters 1. We saw in Table 6.6.4, that cluster 2, had smaller 

sample mean vector components then cluster 1; thus, it makes sense that is would  
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be farther to the right in the �̂�1 dimension. Likewise, cluster 3 the below average 

crime cluster, is farther to the right then clusters 1 and 2 given its smaller mean 

vector components. 

 

Figure 6.6.2: 𝑘-Means, 𝑘 = 3, Input �̂�1, �̂�2, �̂�3, Plotted on  �̂�1, �̂�2, �̂�3 

 Referring to Figure 6.6.2, the clusters with input �̂�1, �̂�2, �̂�3 do not look 

remarkably different from clusters in Figure 6.6.1, with input Standardized Crime 

2018. Except that cluster 1, the extreme crime cluster, has lost five metropolitan 

statistical areas, Albuquerque, Chicago, Houston, Memphis, and Nashville which 

have been absorbed into cluster 2 the above average crime cluster. These areas have 

large crime rates but not as extreme as St. Louis, Detroit, New Orleans, Little Rock,  
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Anchorage, and Myrtle Beach with respect to the point estimate �̂�𝑗1. That is why 

the cluster mean vector components are larger for the extreme crime cluster with 

input �̂�1, �̂�2, �̂�3 compared to the extreme crime cluster with input Standardized 

Crime 2018. Lastly, one should mention that Albuquerque, Chicago, Houston, 

Memphis, and Nashville are on the boundary of clusters 1 and 2 for both inputs; 

consequently, being assigned to either cluster does not seem unreasonable. 

6.6.2.5 𝒌-Means, 𝒌 = 𝟑, Scatterplots on Original Crime 2018 Dimensions 

Another method of visualizing the 𝑘-Means, 𝑘 = 3, cluster assignments for inputs 

Standardized Crime 2018 and �̂�1, �̂�2, �̂�3 is to plot them using a scatterplot matrix on 

the original Crime 2018 dimensions. 

 

Figure 6.6.3: 𝑘-Means, 𝑘 = 3, Input Standardized Crime 2018, Original Crime 2018 
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Looking at Figure 6.6.3, 𝑘-Means, 𝑘 = 3, Input Standardized Crime 2018, one 

can see the densities for each cluster on each characteristic. Cluster 1’s distributions 

are all shifted farthest to the right giving it the largest sample mean on each 

characteristic. Next, cluster 2 has the second largest sample means based on the 

position of the densities. Afterward, cluster 3 has the smallest sample means based 

upon the same reasoning. One can also gather the same insight by looking at the 

boxplots located on the right side of Figure 6.6.3. In short, these results match the 

graphical interpretations given in Figure 6.6.1. 

 

Figure 6.6.4: 𝑘-Means, 𝑘 = 3, Input �̂�1, �̂�2, �̂�3, Original Crime 2018 

Results from Figure 6.6.4 are analogous to results from Figure 6.6.3. 
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6.7 Hierarchical Clustering Methods 

In a hierarchical clustering algorithm, the data are not partitioned into a particular 

number of clusters at a single step. Instead the clustering consists of a series of 

partitions, which may run from a single cluster containing all 𝑛 individuals, to 𝑛 

clusters each containing a single individual. Hierarchical clustering techniques may 

be subdivided into agglomerative methods, which proceed by a series of successive 

fusions of the 𝑛 individuals into groups, and divisive methods, which separate the 𝑛 

individuals successively into smaller groups [12, p. 71].  

6.7.1 Agglomerate Clustering Methods 

Agglomerative clustering is the most common type of hierarchical clustering used to 

group objects in clusters based on their similarity. It works in a “bottom-up” 

manner. That is, each object is initially considered as a single-element cluster (leaf). 

At each step of the algorithm, the two clusters that are most similar are combined 

into a new bigger cluster (nodes). This procedure is iterated until all points are 

members of just one single big cluster (root). The result is a tree-based 

representation of the fusion of the objects, named a dendrogram [11]. For our 

analysis, we will focus solely on two agglomerative clustering methods Average and 

Ward. 
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6.7.1.1 Average and Ward’s Method 

Average and Ward’s Method can use a Euclidean Distance Matrix 𝐃
(𝑛×𝑛)

 as an initial 

input into the algorithm. Then each method defines a linkage function that takes the 

distance information 𝐃
(𝑛×𝑛)

 and groups pairs of objects into clusters based on some 

type of similarity criterion. Next, these newly formed clusters are linked to each 

other to make bigger clusters. This process is iterated until all the objects in the 

original data set are linked together into a dendrogram.  

❖ Average Linkage Function defines similarity between two clusters as the 

average distance between the elements in one cluster and the elements in the 

other cluster. 

❖ Ward’s Linkage Function minimizes the total within-cluster variance. At each 

step the pair of clusters with minimum between-cluster distance are merged. 

Note that, at each stage of the clustering process the two clusters, that have the 

smallest linkage distance, are linked together [11]. 
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6.7.1.1.1 Euclidean Distance Matrix 𝐃𝐙

(𝒏×𝒏)
 for Standardized Sample 𝐙

(𝒏×𝒑)
 

𝐃𝐙
(𝑛×𝑛)

= [

𝑑11 𝑑12 ⋯ 𝑑1𝑛
𝑑21 𝑑22 ⋯ 𝑑2𝑛
⋮ ⋮ ⋱ ⋮
𝑑𝑝1 𝑑𝑝2 ⋯ 𝑑𝑛𝑛

]

(𝑛×𝑛)

= [

0 𝑑12 ⋯ 𝑑1𝑛
𝑑21 0 ⋯ 𝑑2𝑛
⋮ ⋮ ⋱ ⋮
𝑑𝑝1 𝑑𝑝2 ⋯ 0

]

(𝑛×𝑛)

 

where 

𝑑𝑗𝑙 = 𝑑 ( 𝐳𝑗
(𝑝×1)

, 𝐳𝑙
(𝑝×1)

) = √∑(𝑧𝑗𝑘 − 𝑧𝑙𝑘)2

𝑝

𝑘=1

 

                                         = √(𝑧𝑗1 − 𝑧𝑙1)2 + (𝑧𝑗2 − 𝑧𝑙2)2 +⋯+(𝑧𝑗𝑝 − 𝑧𝑙𝑝)2 

for 𝑗, 𝑙 = 1,2, … , 𝑛. 

6.7.1.1.2 Euclidean Distance Matrix 𝐃𝐘
(𝒏×𝒏)

 for Sample Principal Components �̂�
(𝒏×𝒑)

 

𝐃𝐘
(𝑛×𝑛)

 =

[
 
 
 
 
�̂�11 �̂�12 ⋯ �̂�1𝑛
�̂�21 �̂�22 ⋯ �̂�2𝑛
⋮ ⋮ ⋱ ⋮
�̂�𝑝1 �̂�𝑝2 ⋯ �̂�𝑛𝑛]

 
 
 
 

(𝑛×𝑛)

=

[
 
 
 
 
0 �̂�12 ⋯ �̂�1𝑛
�̂�21 0 ⋯ �̂�2𝑛
⋮ ⋮ ⋱ ⋮
�̂�𝑝1 �̂�𝑝2 ⋯ 0 ]

 
 
 
 

(𝑛×𝑛)

 

where 

�̂�𝑗𝑙 = 𝑑 ( �̂�𝑗
(𝑝×1)

, �̂�𝑙
(𝑝×1)

) = √∑(�̂�𝑗𝑘 − �̂�𝑙𝑘)2

𝑝

𝑘=1

 

                                         = √(�̂�𝑗1 − �̂�𝑙1)2 + (�̂�𝑗2 − �̂�𝑙2)2 +⋯+(�̂�𝑗𝑝 − �̂�𝑙𝑝)2 

for 𝑗, 𝑙 = 1,2, … , 𝑛. 
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6.7.1.1.3 Average and Ward’s Clustering Pseudo-Code 

❖ Prepare the sample data. 

❖  Compute the Euclidean distance matrix 𝐃
(𝑛×𝑛)

. 

❖ Use linkage function to group objects into dendrogram based on 𝐃
(𝑛×𝑛)

.  

❖ Determine where to partition the dendrogram branches, creating 𝑘 clusters  

[11]. 

6.7.2 Euclidean Distance Matrices 

6.7.2.1 Euclidean Distance Matrix for Standardized US Crime 2018 

Table 6.7.1: Euclidean Distance Matrix for Standardized US Crime 2018, First Five 

Observations 

 

  

Abilene Akron Albany_GA Albany_NY Albuquerque

Abilene 0 0.8 3.1 1.9 6.1

Akron 0.8 0 3.2 1.3 6.3

Albany_GA 3.1 3.2 0 4.2 4.6

Albany_NY 1.9 1.3 4.2 0 7.3

Albuquerque 6.1 6.3 4.6 7.3 0

Euclidean Distance Matrix for Standardized US Crime 2018, First Five Observations
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6.7.2.2 Euclidean Distance Matrix for �̂�𝟏, �̂�𝟐, �̂�𝟑 

Table 6.7.2: Euclidean Distance Matrix for �̂�1, �̂�2, �̂�3, First Five Observations 

 

6.7.3 Wards Method 

6.7.3.1 Choosing 𝒌 

 

Figure 6.7.1: NbClust, Black-Box Method, Ward 

  

Abilene Akron Albany_GA Albany_NY Albuquerque

Abilene 0 0.7 2.8 1.5 5.5

Akron 0.7 0 2.9 1.1 5.8

Albany_GA 2.8 2.9 0 3.8 3.4

Albany_NY 1.5 1.1 3.8 0 6.9

Albuquerque 5.5 5.8 3.4 6.9 0

Euclidean Distance Matrix for y1, y2, y3, First Five Observations
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In Figure 6.7.1, the optimal number of clusters is found to be 𝑘 = 3 for both inputs, 

Standardized US Crime 2018 and �̂�1, �̂�2, �̂�3. We will continue our analysis with 𝑘 = 3. 

6.7.3.2 Ward, 𝒌 = 𝟑 

6.7.3.2.1 Ward, 𝒌 = 𝟑, Cluster Sizes 

Table 6.7.3: Ward, 𝑘 = 3, Cluster Sizes 

 

Interestingly, one can see that the cluster sizes for Wards algorithm, in Table 6.7.3, 

match the cluster sizes in the 𝑘-Means algorithm, for cluster 1 (Table 6.6.1). That is, 

cluster 1 has 11 members for 𝑘-Means and Wards methods, with respect to input 

standardized Crime 2018. In the same way, cluster 1 has 6 members for 𝑘-Means 

and Wards methods, with respect to input �̂�1, �̂�2, �̂�3.Yet, the other assignments for 

Wards are not the same as for 𝑘-Means. At first glance, it looks like Wards method 

produces larger cluster 3’s and smaller cluster 2’s then in the 𝑘-Means analysis.  

6.7.3.2.2 Ward, 𝒌 = 𝟑, Difference in Cluster Assignments 

Table 6.7.4: Ward, 𝑘 = 3, Differences in Cluster Assignments 

 

  

cluster 1 2 3

size 11 48 268

cluster 1 2 3

size 6 72 249

k=3, Ward, Standardized Crime 2018, Cluster Size

k=3, Ward, y1, y2, y3, Cluster Size

cluster 1 2 3

1 6 5 0

2 0 45 3

3 0 22 246

Ward, k=3, Differences in Cluster Assignments
y1, y2, y3

Standardized 

Crime 2018 
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Table 6.7.5: Ward, 𝑘 = 3, Differences in Cluster Assignments for Clusters 1,2,3 

 

  

Metropolitan Statistical Area Standardized Crime 2018 y1, y2, y3

Albuquerque 1 2

Chicago 1 2

Houston 1 2

Memphis 1 2

Nashville 1 2

Metropolitan Statistical Area Standardized Crime 2018 y1, y2, y3

Dothan 2 3

Jackson_TN 2 3

Lafayette_LA 2 3

Metropolitan Statistical Area Standardized Crime 2018 y1, y2, y3

Battle_Creek 3 2

Billings 3 2

Chattanooga 3 2

Cleveland 3 2

Colorado_Springs 3 2

Columbia_SC 3 2

Farmington 3 2

Fresno 3 2

Gainesville_FL 3 2

Gulfport 3 2

Jackson_MI 3 2

Medford 3 2

Modesto 3 2

Muskegon 3 2

Panama_City 3 2

Rapid_City 3 2

Salt_Lake 3 2

San_Francisco 3 2

Seattle 3 2

Stockton 3 2

Tuscaloosa 3 2

Warner_Robins 3 2

Ward, k=3, Differences in Assignments for Cluster 3 and 2

Ward, k=3, Differences in Assignments for Cluster 1 and 2

Ward, k=3, Differences in Assignments for Cluster 2 and 3
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6.7.3.2.3 Ward, 𝒌 = 𝟑, Sample Mean Vectors 

Table 6.7.6: Ward, 𝑘 = 3, Sample Cluster Mean Vectors 

 

Table 6.7.6 shows that the cluster sample means for Wards method are not very 

different than those of the 𝑘-Means (Table 6.6.4). Thus, for both inputs we can again 

label cluster 3 the below average crime cluster; cluster 2 the above average crime 

cluster; and cluster 1 the extreme crime cluster. Despite that similarity to the 𝑘-

Means, there are some key differences. First, the cluster 3 sample means for input 

Standardized Crime 2018 and input �̂�1, �̂�2, �̂�3 are larger than the cluster 3 samples 

means from the 𝑘-Means analysis (Table 6.6.4). Second, the cluster 2 sample means 

for input Standardized Crime 2018 and input �̂�1, �̂�2, �̂�3 are larger than the cluster 2 

samples means from the 𝑘-Means analysis (Table 6.6.4). This can be visualized later 

using the cluster assignments plotted on �̂�1, �̂�2, �̂�3. Third and finally, the sample 

mean components for input �̂�1, �̂�2, �̂�3, in Wards, are not systematically larger than 

the sample mean components for input Standardized Crime 2018; as they were with 

𝑘-Means (Table 6.6.4).  

cluster MURDER RAPE ROBBERY ASSAULT BURGLARY LARCENY VEHICLE

1 22.7091 111.782 312.0364 865.3273 811.3909 3678.564 681.509

2 8.33125 64.8854 103.6271 439.1646 783.5458 2451.292 348.371

3 3.81493 46.0082 54.68246 215.4007 358.2201 1543.24 172.183

cluster MURDER RAPE ROBBERY ASSAULT BURGLARY LARCENY VEHICLE

1 29.55 153.2 316.9833 1010 925.7 4402.25 819.6

2 7.72639 65.3292 113.8458 434.8806 703.2458 2419.354 359.553

3 3.76908 44.3831 52.05863 204.6365 346.7896 1490.392 158.868

MURDER RAPE ROBBERY ASSAULT BURGLARY LARCENY VEHICLE

5.11 50.99 70.52 270.11 435.9 1748.36 215.18

Original Sample Mean Vector for Crime 2018

Ward, k=3, Standardized Crime 2018, Sample Cluster Mean Vectors

Ward, k=3, y1, y2, y3, Sample Cluster Mean Vectors
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6.7.3.2.4 Ward, 𝒌 = 𝟑, Rectangular Dendrograms 

 

Figure 6.7.2: Ward, 𝑘 = 3, Input Standardized Crime 2018, Rectangular Dendrogram 

In the dendrogram displayed above, Figure 6.7.2, each leaf corresponds to a 

metropolitan statistical area. As we move up the tree, areas that are similar to each 

other are combined into branches, which are themselves fused at a higher height. 

The height of the fusion, provided on the vertical axis, indicates the 

similarity/distance between the two objects/clusters. The higher the height of the 

fusion, the less similar the objects/clusters are [11].  
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Figure 6.7.3: Ward, 𝑘 = 3, Input �̂�1, �̂�2, �̂�3, Rectangular Dendrogram 

Comparing Figure 6.7.3 to Figure 6.7.4, one can visually see that for input �̂�1, �̂�2, �̂�3, 

Wards method produces a larger cluster 2 and a smaller cluster 3. 

  



212 
 
6.7.3.2.5 Ward, 𝒌 = 𝟑, Scatterplots on �̂�𝟏, �̂�𝟐, �̂�𝟑 

 

Figure 6.7.4: Ward, 𝑘 = 3, Input Standardized Crime 2018, Plotted on  �̂�1, �̂�2, �̂�3 

 

Figure 6.7.5: Ward, 𝑘 = 3, Input �̂�1, �̂�2, �̂�3, Plotted on  �̂�1, �̂�2, �̂�3 
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Referring to Figure 6.7.4 and Figure 6.7.5, one can see that cluster 3 for input 

Standardized Crime 2018 and input �̂�1, �̂�2, �̂�3 have become larger compared to their 

𝑘-Means counterparts in Figure 6.6.1 and Figure 6.6.2. Therefore, using Wards 

algorithm, cluster 3’s centroids, on the �̂�1 axis, have shifted to the left. Since �̂�1 is the 

general crime component, shifting the cluster 3’s to the left, causes the sample mean 

components in Table 6.7.6 to increase. This is because the �̂�1 eigenvector 

components are negative; consequently, areas with larger crime rates will have 

more negative scores on �̂�1.  

Cluster 2, for input Standardized Crime 2018 and input �̂�1, �̂�2, �̂�3 have 

become smaller compared to their 𝑘-Means counterparts in Figure 6.6.1 and Figure 

6.6.2. Since, cluster 2 lost metropolitan statistical areas further to the right with 

respect to the �̂�1 dimension, the general crime component, the sample mean 

components in Table 6.7.6 have also increasing. That is, cluster two lost areas with 

lower crime rates to cluster 3. Hence, the sample mean components increase in the 

original Crime 2018 dimensions.  
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6.7.3.2.6 Ward, 𝒌 = 𝟑, Scatterplots on Original Crime 2018 Dimensions 

 

Figure 6.7.6: Ward, 𝑘 = 3, Input Standardized Crime 2018, Original Crime 2018 

For Figure 6.7.6, once can verify that cluster 1, has the largest sample means, cluster 

2, has the second largest sample means, and cluster 3, has the smallest cluster 

means.  
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Figure 6.7.7: Ward, 𝑘 = 3, Input �̂�1, �̂�2, �̂�3, Original Crime 2018 

For Figure 6.7.7, once can verify that cluster 1, has the largest sample means, cluster 

2, has the second largest sample means, and cluster 3, has the smallest cluster 

means.  
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6.7.4 Average Method 

6.7.4.1 Choosing 𝒌 

 

Figure 6.7.8: NbClust, Black-Box Method, Average 

In Figure 6.7.8, the optimal number of clusters is found to be 𝑘 = 3 for input 

Standardized US Crime 2018 and 𝑘 = 2, 3 for input �̂�1, �̂�2, �̂�3. We will continue our 

analysis with 𝑘 = 3. 
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6.7.4.2 Average, 𝒌 = 𝟑 

6.7.4.2.1 Average, 𝒌 = 𝟑, Cluster Sizes 

Table 6.7.7: Average, 𝑘 = 3, Cluster Sizes 

 

One can see from Table 6.7.7 that the cluster sizes are the same for clusters 1, 2, and 

3. We shall see that each cluster also contains the same metropolitan statistical 

areas. Therefore, there are no differences in cluster assignments for Average, 𝑘 = 3. 

6.7.4.2.2 Average, 𝒌 = 𝟑, Sample Mean Vectors 

Table 6.7.8: Average, 𝑘 = 3, Sample Cluster Mean Vectors 

 

Looking at Table 6.7.8 one can see that cluster 3’s sample mean vector components, 

using Average method, have very similar values to the original Crime 2018 sample  

  

cluster 1 2 3

size 3 3 321

cluster 1 2 3

size 3 3 321

k=3, Average, Standardized Crime 2018, Cluster Size

k=3, Average, y1, y2, y3, Cluster Size

cluster MURDER RAPE ROBBERY ASSAULT BURGLARY LARCENY VEHICLE

1 45.63333 139.9 374.9 1096.767 863.5 3190.1 870.9667

2 13.46667 166.5 259.0667 923.2333 987.9 5614.4 768.2333

3 4.656698 49.081 65.91745 256.2801 426.7424 1698.757 203.881

cluster MURDER RAPE ROBBERY ASSAULT BURGLARY LARCENY VEHICLE

1 45.63333 139.9 374.9 1096.767 863.5 3190.1 870.9667

2 13.46667 166.5 259.0667 923.2333 987.9 5614.4 768.2333

3 4.656698 49.081 65.91745 256.2801 426.7424 1698.757 203.881

MURDER RAPE ROBBERY ASSAULT BURGLARY LARCENY VEHICLE

5.11 50.99 70.52 270.11 435.9 1748.36 215.18

Original Sample Mean Vector for Crime 2018

Average, k=3, Standardized Crime 2018, Sample Cluster Mean Vectors

Average, k=3, y1, y2, y3, Sample Cluster Mean Vectors
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mean vector components. After all, cluster 3 has 321 327⁄  of the metropolitan 

statistical areas in its cluster. One could label cluster 3 as the average crime cluster 

even though it is likely composed of places with low, medium, and high crime rates. 

Cluster 2 and 3 are a bit harder to precisely name. It is clear that, cluster 2 and 

cluster 3 have larger sample mean components then cluster 1. Although, one can 

say, cluster 1 has the largest sample mean components on murder, robbery, assault, 

and vehicle theft. Whereas, cluster 2 has the largest sample mean components on 

rape, burglary, and larceny. It would be convenient if the clusters were split by 

crime type, but this is not the case. 

6.7.4.2.3 Average, 𝒌 = 𝟑, Rectangular Dendrograms 
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Figure 6.7.9: Average, 𝑘 = 3, Input Standardized Crime 2018, Rectangular 

Dendrogram 

 

Figure 6.7.10: Average, 𝑘 = 3, Input �̂�1, �̂�2, �̂�3, Rectangular Dendrogram 

After reviewing Figure 6.7.9 and Figure 6.7.10, one can see that even though the 

dendrograms have the same cluster assignments for 𝑘 = 3, they do not have 

identical tree structure. Undoubtedly, if one would increase 𝑘 (increase the number 

of clusters), the cluster assignments would change for input Standardized Crime 

2018 compared to input �̂�1, �̂�2, �̂�3. In Section 6.7.5, we will analytically compare all 

combinations of dendrograms with respect to inputs and algorithms. 
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6.7.4.2.4 Average, 𝒌 = 𝟑, Scatterplots on �̂�𝟏, �̂�𝟐, �̂�𝟑 

 

Figure 6.7.11: Average, 𝑘 = 3, Input Standardized Crime 2018, Plotted on  �̂�1, �̂�2, �̂�3 

 

Figure 6.7.12: Average, 𝑘 = 3, Input �̂�1, �̂�2, �̂�3, Plotted on  �̂�1, �̂�2, �̂�3 
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As has been noted, cluster assignments for both inputs are same when 𝑘 = 3. Hence, 

Figure 6.7.11 and Figure 6.7.12 are indistinguishable. Cluster 1 has metropolitan 

statistical areas St. Louis, Detroit, and New Orleans. Cluster 2 has metropolitan 

statistical areas Myrtle Beach, Anchorage, and Little Rock. 

Looking at the left plot �̂�2~�̂�1, one can see cluster 1 sits in the upper left 

region. In terms of �̂�1 (general crime component), we know these areas have been 

classified as having extremely high crime rates. In terms of �̂�2 (heinous crime 

component), we know that these areas will have higher murder rates relative to 

rape rapes because the component is dominated by a negative eigenvector 

coefficient for rape and a positive eigenvector coefficient for murder. From Figure 

6.2.2 (Murder Outliers), one can see that St. Louis, Detroit, and New Orleans have 

the largest murder rates of the sample in descending order. One should note that in 

Figure 6.2.4 (Rape Outliers), New Orleans ranks third. Therefore, New Orleans is 

being pulled back down in the �̂�2 direction. Nevertheless, we could cautiously call 

cluster 1, the murder cluster. 

Continuing to look at the left plot �̂�2~�̂�1, one can see cluster 2 sits in the 

lower left region. In terms of �̂�1, we also know these areas have been classified as 

having extremely high crime rates. In terms of �̂�2, we know that these areas will 

have higher rape rates relative to murder rapes. This is certainly true for Anchorage 

and Myrtle Beach because they have the highest rape rates, in descending order, 

according to Figure 6.2.4. Little Rock, however, has large crime  
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rates on murder and rape; thus, it’s getting pulled up in the �̂�2 direction. Regardless, 

one could label cluster 2, the rape cluster. 

6.7.4.2.5 Average, 𝒌 = 𝟑, Scatterplots on Original Crime 2018 Dimensions 

 

Figure 6.7.13: Average, 𝑘 = 3, Input Standardized Crime 2018, Original Crime 2018 
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Figure 6.7.14: Average, 𝑘 = 3, Input �̂�1, �̂�2, �̂�3, Original Crime 2018 

From Figure 6.7.13 and Figure 6.7.14, once can see cluster 1 has the largest sample 

mean components on murder, robbery, assault, and vehicle theft. While, cluster 2 

has the largest sample mean components on rape, burglary, and larceny (as seen in 

Table 6.7.8). 
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6.7.5 Comparing Ward and Average Dendrograms Using 

Tanglegrams 

To visually compare two dendrograms, we'll use the tanglegram function (in the R 

dendextend package), which plots two dendrograms, side by side, with their labels 

connected by lines. Colored lines represent common subtrees between the two 

dendrograms, and dashed lines represent unique branches (not common to both 

trees).  

6.7.5.1 Ward, Input S. Crime 2018 vs. Ward, Input �̂�𝟏, �̂�𝟐, �̂�𝟑 

 

Figure 6.7.15: Ward, Input S. Crime 2018 vs. Ward, Input �̂�1, �̂�2, �̂�3 

The tanglegram for Ward input S. Crime 2018 vs. Ward, input �̂�1, �̂�2, �̂�3, in Figure  
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6.7.15 shows a few common lower initial subtrees where all outer branches are 

unique. Thus, different input on same algorithm gives very unique dendrograms in 

this analysis. 

6.7.5.2 Average, Input S. Crime 2018 vs. Average, Input �̂�𝟏, �̂�𝟐, �̂�𝟑 

 

Figure 6.7.16: Average, Input S. Crime 2018 vs. Average, Input �̂�1, �̂�2, �̂�3 

The tanglegram for Average input S. Crime 2018 vs. Average, input �̂�1, �̂�2, �̂�3, in 

Figure 6.7.16 shows a few more common lower initial subtrees where all outer 

branches are unique. Nonetheless, different input on same algorithm gives very 

unique dendrograms in this analysis. 
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6.7.5.3 Ward, Input S. Crime 2018 vs. Average, Input S. Crime 2018 

 

Figure 6.7.17: Ward, Input S. Crime 2018 vs. Average, Input S. Crime 2018 

The tanglegram for Ward input S. Crime 2018 vs. Average input S. Crime 2018 in 

Figure 6.7.17 shows many common lower subtrees where all outer branches are 

unique. In contrast from the last two tanglegrams, the same inputs on a different 

algorithm gives very similar dendrograms. 
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6.7.5.4 Ward, Input �̂�𝟏, �̂�𝟐, �̂�𝟑 vs. Average, Input �̂�𝟏, �̂�𝟐, �̂�𝟑 

 

Figure 6.7.18: Ward, Input �̂�1, �̂�2, �̂�3 vs. Average, Input �̂�1, �̂�2, �̂�3 

The tanglegram for Ward input �̂�1, �̂�2, �̂�3 vs. Average, input �̂�1, �̂�2, �̂�3 in Figure 6.7.18 

shows many common lower subtrees where all outer branches are unique. As one 

has noted in the previous tanglegram, the same inputs on a different algorithm gives 

very similar dendrograms. 
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6.8 Comparison of 𝒌-Means, Ward, and Average  

We will take a last look at the cluster assignments for 𝑘-Means, Ward, and Average 

methods on �̂�1, �̂�2 and compare their respective cluster sizes. 

6.8.1 𝒌-Means, Ward, and Average, 𝒌 = 𝟑, Scatterplots on 

�̂�𝟏, �̂�𝟐 and Cluster Sizes 

 

Figure 6.8.1: 𝑘-Means, Ward, and Average, 𝑘 = 3, Scatterplots on �̂�1, �̂�2 
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Table 6.8.1: 𝑘-Means, Ward, and Average, 𝑘 = 3, Cluster Sizes 

 

From Figure 6.8.1 and Table 6.8.1, one can see a few general patterns. First, the 6-11 

highest crime metropolitan statistical areas are generally in the same cluster, far to 

the left in the �̂�1 direction. With exception of the Average algorithm where the top 6 

areas are split by dimension �̂�2 (and �̂�3 for that matter). That is, cluster 1, is in the 

upper-left region of �̂�2~�̂�1 and cluster 2 is in the lower-left region of �̂�2~�̂�1. Next, 

comparing 𝑘-Means and Ward, 𝑘-Means cluster sizes for cluster 2 are larger than 

Ward cluster sizes for cluster 2. Conversely, 𝑘-Means cluster sizes for cluster 3 are 

smaller than Ward cluster sizes for cluster 3. Last, 𝑘-Means and Ward are similar 

insofar as, for input Standardized Crime 2018, they include Albuquerque, Chicago, 

Houston, Memphis, and Nashville into cluster 1. Further, 𝑘-Means and Ward, include 

Chicago, Houston, Memphis, and Nashville into cluster 2 for input �̂�1, �̂�2, �̂�3. 

  

cluster 1 2 3 cluster 1 2 3

size 11 116 200 size 6 109 212

cluster 1 2 3 cluster 1 2 3

size 11 48 268 size 6 72 249

cluster 1 2 3 cluster 1 2 3

size 3 3 321 size 3 3 321

k=3, Average, y1, y2, y3, Cluster Size

k=3, Ward, Standardized Crime 2018, Cluster Size

k=3, k-Means, Standardized Crime 2018, Cluster Size k=3, k-Means, y1, y2, y3, Cluster Size

k=3, Ward, y1, y2, y3, Cluster Size

k=3, Average, Standardized Crime 2018, Cluster Size
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Chapter 7 

Conclusion and Future Study 

There were several interesting findings when conducting our research on the US 

Crime 2018 data.  

 Firstly, many of the extreme univariate outliers also stood out in the 

scatterplots of the sample principal components �̂�2 ~ �̂�1 and �̂�3 ~ �̂�1. Next, �̂�1, the  

general crime component was a good point estimator for the overall crime in an 

area because it accounted for 63% of the total variability in the Standardized Crime 

2018 data and the eigenvector coefficients had approximately equal magnitude with 

all negative coefficients. Thus, metropolitan statistical areas with larger crime rates 

generally were farther to the left in the �̂�1 dimension.  

 Then, we observed 𝑘-Means and Ward algorithms clustered areas with 

extreme crime together, above average crime together, and below average crime 

together. When viewing these assignments on the sample principal components and 

the original Crime 2018 dimensions, we also noticed that the 2-d scatters where 

most dense for the below average crime cluster, less dense for the above average 

crime cluster, and sparse for the extreme clime cluster. This intuitively makes sense 

because the univariate crime variables are right skewed, so in 2-d, clusters become 

less dense as crime increases. 
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Following this, it was clear when comparing dendrograms for Average and 

Wards methods, using the same inputs gave remarkably similar tree structures. 

Meanwhile, when using different inputs on the same algorithm, either Average or 

Ward, the tree structures were vastly different. This was not expected. Although, 

one should remember that the input Standardized Crime 2018 was 7 dimensions 

and the input �̂�1, �̂�2, �̂�3 was only 3. As a result, we expect that the general tree 

structures for agglomerative methods, are more sensitive to dimensionality 

differences in the distance calculations then in differences in the link function 

criterions.  

Largely, this research uncovered metropolitan statistical areas with extreme 

crime rates on one or more variables using a combination of univariate and 

bivariate analysis, principal components, and clustering. However, what this paper 

did not do, was attempt to try to explain the underlying reasons behind these crime 

intensities. This is a more nuanced question which necessitates qualitative research 

along with quantitative research. One would need to conduct interviews with local 

officials, experts in the area, and people in the community. Also, one would need to 

research newspaper archives, laws, and get a feel for the culture. Therefore, my 

future research may be to choose a single metropolitan statistical area and focus on 

one aspect of crime such as looking at why St. Louis has the highest murder rate in 

the country or why Myrtle Beach or Anchorage have the highest number of rapes 

per 100, 000 residents.  
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Finally, Table 7.1 provides all metropolitan statistical areas that could be of interest 

for future study that have very high or extremely high crime rates on multiples 

variables. The 1st, 2nd, and 3rd highest crime rates are highlighted below. 

Table 7.1: Metropolitan Statistical Areas of Interest for Future Study 

 

  

METRO MURDER RAPE ROBBERY  ASSAULT BURGLARY LARCENY VEHICLE

Albuquerque 9.5 70 238.2 766.9 869.9 2838.9 817.8

Anchorage 8.4 200.1 235.2 819.9 703.4 3342.5 970.9

Baltimore 13.3 38.3 258.4 410.8 399.8 1804.4 266.3

Chicago 20.7 66.1 356.1 563.1 429.8 2379.2 372.6

Detroit 38.9 147.2 344 1477.8 1108.3 2235 961.5

Houston 11.8 53.8 373.6 587 696 2804.6 509.6

Lake_Charles 5.8 63.7 85.8 392.5 1576.1 2852.1 348.4

Little_Rock 20.1 109.4 159.1 1130.5 1043.2 4942.6 562

Memphis 17.2 50.6 254.4 820.3 847.1 2994 430

Myrtle_Beach 11.9 190 382.9 819.3 1217.1 8558.1 771.8

Nashville 13.3 69.9 308.2 721.3 528.3 3034 449

New_Orleans 37.1 171.8 307.5 646.9 511.4 3290.3 755.3

St_Louis 60.9 100.7 473.2 1165.6 970.8 4045 896.1

Metropolitan Statistical Areas of Interest for Future Study

1st Highest Crime Rate, 2nd Highest Crime Rate, 3rd Highest Crime Rate 
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