
Minnesota State University, Mankato Minnesota State University, Mankato 

Cornerstone: A Collection of Scholarly Cornerstone: A Collection of Scholarly 

and Creative Works for Minnesota and Creative Works for Minnesota 

State University, Mankato State University, Mankato 

All Graduate Theses, Dissertations, and Other 
Capstone Projects 

Graduate Theses, Dissertations, and Other 
Capstone Projects 

2020 

Fault Detection and Classification of a Single Phase Inverter Using Fault Detection and Classification of a Single Phase Inverter Using 

Artificial Neural Networks Artificial Neural Networks 

Ayomikun Samuel Orukotan 
Minnesota State University, Mankato 

Follow this and additional works at: https://cornerstone.lib.mnsu.edu/etds 

 Part of the Artificial Intelligence and Robotics Commons, and the Electrical and Electronics Commons 

Recommended Citation Recommended Citation 
Orukotan, A. (2020). Fault detection and classification of a single phase inverter using artificial neural 
networks [Master’s thesis, Minnesota State University, Mankato]. Cornerstone: A Collection of Scholarly 
and Creative Works for Minnesota State University, Mankato. https://cornerstone.lib.mnsu.edu/etds/1043 

This Thesis is brought to you for free and open access by the Graduate Theses, Dissertations, and Other Capstone 
Projects at Cornerstone: A Collection of Scholarly and Creative Works for Minnesota State University, Mankato. It 
has been accepted for inclusion in All Graduate Theses, Dissertations, and Other Capstone Projects by an 
authorized administrator of Cornerstone: A Collection of Scholarly and Creative Works for Minnesota State 
University, Mankato. 

http://cornerstone.lib.mnsu.edu/
http://cornerstone.lib.mnsu.edu/
https://cornerstone.lib.mnsu.edu/
https://cornerstone.lib.mnsu.edu/
https://cornerstone.lib.mnsu.edu/
https://cornerstone.lib.mnsu.edu/etds
https://cornerstone.lib.mnsu.edu/etds
https://cornerstone.lib.mnsu.edu/theses_dissertations-capstone
https://cornerstone.lib.mnsu.edu/theses_dissertations-capstone
https://cornerstone.lib.mnsu.edu/etds?utm_source=cornerstone.lib.mnsu.edu%2Fetds%2F1043&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/143?utm_source=cornerstone.lib.mnsu.edu%2Fetds%2F1043&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/270?utm_source=cornerstone.lib.mnsu.edu%2Fetds%2F1043&utm_medium=PDF&utm_campaign=PDFCoverPages


Fault Detection and Classi�cation of a

Single Phase Inverter Using Arti�cial Neural

Networks

by

Orukotan, Ayomikun Samuel

A Thesis Submitted in Partial Ful�llment of the

Requirements for the Degree of

Master of Science

In

Electrical Engineering

Minnesota State University, Mankato

June 8, 2020



June 8, 2020

Fault Detection and Classi�cation of a Single Phase Inverter using Arti�cial Neural

Networks

Orukotan, Ayomikun Samuel

This thesis has been examined and approved by the following members of the

student's committee.

Professor Vincent Winstead, P.E
Advisor

Professor Jianwu Zeng
Committee Member

Professor Xuanhui Wu
Committee Member



ii

Acknowledgements

I would like to express my deepest gratitude to my supervisor Professor Vincent

Winstead for his intelligent guidance and patient nurture for the past years. I have

learned so much from his ways of critical thinking and his analytic insights into the

problems helped greatly in the accomplishment of this thesis. I am proud to have such

a great mentor on my way towards research and he has made my stay at Minnesota

State University, Mankato a truly valuable experience. I want to also thank my

colleague and friend, Somefun Oluwasegun for his numerous helpful comments and

enlightening discussions throughout my research course. I would also like to dedicate

this special thanks to my family, especially my parents, who have always been there

for me, whenever and wherever. This research work will not be possible without their

love and encouragements. Finally, thanks are dedicated to XCEL Energy for the

funding support.



iii

Contents

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of �gures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

1 Introduction 1

2 Background Information 7

2.1 Important Arti�cial Neural Network Terminology and Concepts . . . 7

2.1.1 Activation Functions . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1.1 Linear Activation Function . . . . . . . . . . . . . . 10

2.1.1.2 Sigmoid or logistic Activation Function . . . . . . . . 11

2.1.1.3 Hyperbolic Tangent Activation Function . . . . . . . 11

2.1.1.4 Recti�ed Linear Unit (ReLu) . . . . . . . . . . . . . 12

2.1.1.5 Leaky ReLu . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.1.6 SoftMax Activation Function . . . . . . . . . . . . . 13

2.1.2 Weights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.3 Layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.4 Bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14



iv

2.1.5 Units/Neurons . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.6 Threshold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.7 Learning Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.8 Error Calculation . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1.8.1 Error Calculation under Supervised Training . . . . . 16

2.1.8.2 Error Calculation under an Unsupervised Training . 18

2.2 Arti�cial Neural Network Structure and Architecture . . . . . . . . . 19

2.2.1 Input Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.2 Hidden Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.3 Output Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3 Learning in Neural Network . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.1 Supervised Learning . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.2 Unsupervised Learning . . . . . . . . . . . . . . . . . . . . . . 23

2.3.3 Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . 23

2.3.4 Techniques of Supervised Learning of a neural network . . . . 24

2.3.5 Problems commonly solved with Neural Networks . . . . . . . 24

2.3.5.1 Classi�cation . . . . . . . . . . . . . . . . . . . . . . 24

2.3.5.2 Prediction . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3.5.3 Pattern Recognition . . . . . . . . . . . . . . . . . . 25

2.3.5.4 Optimization . . . . . . . . . . . . . . . . . . . . . . 26

2.4 Training Algorithms or learning rules for Arti�cial Neural Networks . 27

2.4.1 Delta Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4.2 Generalized Delta Rule . . . . . . . . . . . . . . . . . . . . . . 29



v

2.4.3 Gradient Descent (GD) Algorithm . . . . . . . . . . . . . . . . 30

2.4.3.1 Stochastic Gradient Descent (SGD) . . . . . . . . . . 30

2.4.3.2 Mini-batch Gradient Descent . . . . . . . . . . . . . 30

2.4.3.3 Batch Gradient Descent . . . . . . . . . . . . . . . . 31

2.4.4 Back Propagation Algorithm . . . . . . . . . . . . . . . . . . . 31

2.4.4.1 Fundamental mathematics behind Back Propagation [1] 32

2.4.5 Boltzmann Learning . . . . . . . . . . . . . . . . . . . . . . . 35

2.4.6 Competitive Learning Rule . . . . . . . . . . . . . . . . . . . . 36

2.4.7 Memory Based Learning . . . . . . . . . . . . . . . . . . . . . 36

2.4.8 Hebb-Net Learning . . . . . . . . . . . . . . . . . . . . . . . . 37

2.4.9 Forward Propagation . . . . . . . . . . . . . . . . . . . . . . . 38

2.5 Convergence of Gradient Descent . . . . . . . . . . . . . . . . . . . . 38

3 Methodology 40

3.1 One-hot encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2 Momentum [2] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3 Node List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.4 Layer Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.5 Weight Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.6 Inverter Model or Snapshot of the studied model . . . . . . . . . . . . 45

3.7 Fault Detection and Fault Generation . . . . . . . . . . . . . . . . . . 46

3.8 Data Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.9 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47



vi

3.9.1 Pre-processing of Data . . . . . . . . . . . . . . . . . . . . . . 47

3.9.2 Power Spectral Density estimate of the raw data . . . . . . . . 47

3.10 Flow diagram of the proposed Neural Network Process . . . . . . . . 48

3.11 Performance Timing for Faults . . . . . . . . . . . . . . . . . . . . . 50

4 Results and Discussion 52

4.1 Training, validation, and testing of neural networks . . . . . . . . . . 52

4.2 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2.1 Classi�cation Accuracy . . . . . . . . . . . . . . . . . . . . . . 53

4.2.2 Loss Function . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.3 Fault Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.4 Fault Classi�cation and loss function results for 1,000 iterations . . . 55

4.5 Fault Classi�cation and loss function results for 10,000 iterations . . . 65

4.6 Fault Classi�cation and loss function results for 20,000 iterations . . . 75

Conclusion 83

Appendix 94

References 95



vii

List of Tables

2-1 Analogy between the brain and Neural Network . . . . . . . . . . . . 8

2-2 The XOR logical operation in Neural Network . . . . . . . . . . . . . 17

2-3 The Layer structure of di�erent NN type . . . . . . . . . . . . . . . . 20

2-4 Types of Training Methods and their Data . . . . . . . . . . . . . . . 23

3-1 Weight Initialization Scheme under Normal or Uniform Distribution . 44

3-2 Performance Timing Computations . . . . . . . . . . . . . . . . . . . 51

4-1 Detected Faults and Description . . . . . . . . . . . . . . . . . . . . . 54

4-2 Fault Classi�cation rates(%) of di�erent neural network models . . . 64

4-3 Loss Function of di�erent methods over 1,000 Epochs . . . . . . . . . 65

4-4 Fault Classi�cation rates(%) for 10,000 Simulation runs . . . . . . . . 74

4-5 Loss Function of di�erent methods over 10,000 Epochs . . . . . . . . 75

4-6 Loss Function of three di�erent methods . . . . . . . . . . . . . . . . 80

4-7 Fault Classi�cation rates(%) for 20,000 Simulation runs . . . . . . . . 81



viii

List of Figures

2-1 Illustrative diagram explaining Neural Network Terminology . . . . . 8

2-2 General Overview of Activation functions in Neural Network . . . . . 10

2-3 The Structure of a Self Organizing Map . . . . . . . . . . . . . . . . . 18

2-4 The Layer structure of a Neural Network . . . . . . . . . . . . . . . . 20

2-5 A single Layer Neural Network . . . . . . . . . . . . . . . . . . . . . . 28

2-6 A single-layer neural network with three input nodes and one output
node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2-7 Gradient Descent paths in parameter space . . . . . . . . . . . . . . . 31

2-8 A deep multi-layer Neural Network . . . . . . . . . . . . . . . . . . . 33

2-9 The architecture of Hebb-Net Learning . . . . . . . . . . . . . . . . . 37

3-1 The Snapshot of the studied model . . . . . . . . . . . . . . . . . . . 45

3-2 The Simulink Model of the Circuit Under Test . . . . . . . . . . . . . 46

3-3 Welch Power Spectral Density Estimate . . . . . . . . . . . . . . . . . 48

3-4 Flow diagram of the proposed Neural Network Process . . . . . . . . 50

4-1 Line Plots of Loss and Accuracy over 1000 Training Epochs . . . . . . 56

4-2 Line Plots of Loss and Accuracy over 1000 Epochs for single switch . 57

4-3 Plots of Training error and Accuracy over 1000 Epochs for single switch 58

4-4 Plots of error and accuracy over 1000 Epochs for double switch faults 59

4-5 Plots of training error and Accuracy over 1000 Epochs for triple faults 60



ix

4-6 Plots of MSE Loss and Accuracy over 1000 Epochs for multiple faults 61

4-7 Line Plots of Cross-entropy Loss over 1000 Epochs under normal con-
dition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4-8 Confusion matrix over 1000 Training Epochs under faulty condition . 63

4-9 Line Plots of MSE Loss and Accuracy over 10000 Training Epochs . . 66

4-10 Line Plots of MSE Loss and Accuracy for s3 in Fault type 2 . . . . . 67

4-11 Line Plots of Loss and Accuracy typical of Fault type 3 . . . . . . . . 68

4-12 Line Plots of Loss and Accuracy typical of Fault type 4 . . . . . . . . 69

4-13 Line Plots of Loss and Accuracy typical of Fault type 5 . . . . . . . . 70

4-14 Line Plots of Loss and Classi�cation Accuracy typical of Fault type 5 71

4-15 Training Performance Plot of Cross Entropy Loss typical of Fault type 4 72

4-16 Confusion Matrix typical of Fault type 4 over 10000 training epochs . 73

4-17 Training Learning Curves of a single switch over 20,000 epochs . . . 76

4-18 Training Learning Curves of double switch faults over 20,000 epochs 77

4-19 Training Learning Curves of triple switch faults over 20,000 epochs . 78

4-20 Training Learning Curves of multiple switch over 20,000 epochs . . . 79



x

Abstract

The detection of switching faults of power converters or the Cicuit Under Test (CUT)

is real-time important for safe and e�cient usage. The CUT is a single phase inverter.

This thesis presents two unique methods that relies on back propagation principles

to solve classi�cation problems with a two-layer network. These mathematical algo-

rithms or proposed networks is able to diagnose single, double, triple and multiple

switching faults over di�erent iterations representing range of frequencies. First, the

fault detection and classi�cation problems are formulated as neural network based

classi�cation problems and the neural network design process is clearly described.

Then, neural networks are trained over di�erent epochs to perform fault detection or

repeatedly trained with the training data until the error is reduced to the satisfac-

tory level. The performance of neural networks for di�erent test suites are examined

using two evaluation metric (classi�cation accuracy and training error loss) from the

standpoint of stability and convergence. The classi�cation performance of the pro-

posed neural network between normal and abnormal conditions is within the range

of 93% and 100%. The simulation results show that the proposed network can detect

faults quite e�ciently, with the ability to di�erentiate between switching fault types.

The results of this analysis on training error and accuracy are identi�ed in tabular

forms of Fault IDs and corresponding results based on di�erent network designs and

architecture.
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Chapter 1

Introduction

The Power Electronics Market is expected to garner $ 25 billion by 2022, registering a

Compound Annual Growth Rate (CAGR) of 8.9% , with the inverter market valued to

reach US$ 93.7 billion by 2024, at a CAGR of 5.8% [3]. The DC-DC converter market

is projected to grow from US$ 8.5billion in 2019 to US$ 22.4 billion by 2025, at a

CAGR of 17.5% [4]. The implication of these recent statistics is that as long as power

converter market size continues to increase, whether according to type (high voltage

or low voltage) or to applications (electronics, industrial and power utilities), power

electronics devices like (IGBT, MOSFET, BJTs), which are susceptible to failure in

di�erent modes, must be carefully studied to reduce their failure rates in either a

preventive or corrective manner or both.

Inverter drive systems have become ubiquitous in the industry for di�erent high-

powered applications. However, every coin has two sides. On one hand, this type

of system has signi�cant bene�ts and makes people's lives more convenient. On the

other hand, due to various faults that can occur in such power systems, ensuring com-

ponent or system reliability, safety and e�ciency is increasingly becoming a di�cult

task. For instance, in a photovoltaic-Inverter generation system, the cost of failure is

equal to the value of the energy that would be generated while the system is down

plus the cost of repairing and replacing parts [5]. To develop innovative power elec-

tronic converters and systems for all relevant applications which are e�cient, reliable
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and cost-competitive through reduction in maintenance and operational costs, early

detection of (process) faults is necessary to avert total system failure. Predicting

faults can minimize plant downtime, extended equipment life, increase the safety and

reduce manufacturing costs.

In line with the aforementioned, many engineers and researchers have focused on

di�erent methods of fault detection in the quest of �nding answers to increasing

demands for reliability and safety of power systems. Most of the methods in the fault

detection literature are based on various linear methodologies or exact models whereas

industrial processes are often di�cult to model. They are complex, non-linear and

not exactly known.

It is of importance to de�ne the following terminology related to faults: fault, failure

and malfunction, types of faults and fault detection. A fault (defect/bug) is the cause

of a failure in the model while a failure is the situation where a model output deviates

from the expected/correct output. In addition, a test suite is a set of test cases [6].

Fault detection determines the occurrence of fault in a monitored system while fault

isolation determines the location and the type of fault. Fault identi�cation determines

the magnitude (size) of the fault. Intuitively, fault isolation and fault identi�cation

are together referred to as fault diagnosis [7].

In another survey, Semiconductor failures in device modules were estimated at 21% of

converter system failures, according to a survey based on over 200 products from 80

companies [8]. The results of a recent questionnaire for industrial power electronics

[9], also showed that only 50% of respondents were satis�ed with reliability monitoring

methods, showing that additional research e�orts are needed in health management.

Therefore, a number of researchers have considered arti�cial neural networks as an

alternative way to represent knowledge about faults [10], [11] and [12].

In the work of [13], they presented an overview of fault detection and isolation tech-
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niques on vibrational time series data using Neural Networks. Their study explored

automated methods of detecting faults in the viscous damper bearings of a helicopter

drive shaft. Speci�cally, they designed a system that correctly categorize time series

data from a helicopter drive shaft into either good or bad classes. Based on these

study, they had concluded that the best approach which presents the best possibility

of success for a particular system is one that is monitored over its lifetime and faults

are detected as deviation from normal behavior. Their study also established that

an approach that relies on combining data from di�erent systems is doomed to fail.

In another research e�ort, [14] developed a method for obstacle recognition used by

a mobile robot. In the presence of noise, their method took into account the phys-

ical behavior of re�ected ultrasound waves in order to extract some features from

the signals and then, to take decision using a neural network. However, the results

of this work proved e�cient for a small set of data because 100 percent of learning

samples (26 measurements) were well classi�ed for 6 types of obstacles and 92 % for

an hundred samples.

Arti�cial Neural Networks (ANN) provide an excellent mathematical tool for dealing

with non-linear problems. In the works of [15] using the data-set presented in [16],

they analyzed a database with the characteristics of a liquid ultrasonic �ow meter,

their state (healthy or unhealthy) and established relevant factors that can cause

system failure. The results of their study have shown that to decide the state of health

of a device, some problem variables contribute more compared to others especially

when dataset is slightly unbalanced.

In another study, [17] modeled the energy generated as a function of environmental

and control variables and used the model to improve the performance of Combined

Cycle Power Plants using Neural Network with four (4) inputs (temperature, exhaust

vacuum, ambient pressure and relative humidity) and one output (Energy Output).
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Corroborating the �ndings of [15], a practical example in [18] forecasted the power

generated by solar plants as a scaled power generated as a function of all the input

variables.

In the work of [19], they have used the Hop�eld network for identi�cation of system

parameters. The obtained parameters were further passed to Adaptive Resonance

Theory (ART) network for fault diagnosis. The problem with this method is the

choice of the optimal window size to detect the system parameters. Circumventing

this problem, [20] have proposed a model-based fault diagnosis method to detect the

fault and isolate faults in the robot arm control system. The fault in this system is

detected when the error (i.e. di�erence between the system output and the estimated

output) exceeds a predetermined threshold. Once the fault is detected, the estimated

parameters are transferred to the fault classi�er to determine the output. In similar

fashion, [21] proposed a new neural network for fault diagnosis of rotating machinery

which synthesizes the ART and the learning strategy of Kohonen network.

In this work of [22], possible cyber-attacks to aircraft attitude sensors were investi-

gated using a new approach based on neural network observer. It is capable of online

detection of possible attacks on the UAV sensors in the Inertial Measurement Units

(IMU). The proposed design used Extended Kalman Filter (EKF) to tune the NN

weights which increases the learning speed of the NN, and subsequently, improves the

ability of the detection of the sudden attacks. The simulation results show that the

developed method can successfully and accurately detect the sudden and smooth at-

tacks in the sensors. This detection can be further used to help the system to correct

itself and to be robust against cyber-attacks.

This thesis therefore presents a knowledge-based and Arti�cial-Intelligence (AI) based

method to detect single and multiple faults of semiconductor switches of a single-phase

inverter system. The AI-based (non-parametric) techniques have several advantages
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compared to data-based, analytically redundant and parametric or statistical meth-

ods. For example, AI-based techniques do not require explicit mathematical models

which can be challenging to derive. Unlike many other techniques, ANN does not

impose any restrictions on the input variables (as in how they should be distributed).

Additionally, many studies have shown that ANNs can better model heteroskedastic-

ity i.e. data with high volatility and non-constant variance, given its ability to learn

hidden relationships in the data without imposing any �xed relationships in the data

[9].

We presume that to get a good model with high accuracy, it is expedient to �nd opti-

mal values of �W� (weights) that minimizes the prediction error as low as reasonably

possible. This is achieved through the application of Back propagation algorithm

which makes ANN a learning algorithm. By learning from the errors, the model is

improved.

The rest of this thesis is organized as follows. Chapter 2 provides some background

information on Arti�cial Neural Network (ANN) structure and architecture, Arti�cial

Neural Network Terminologies, Learning techniques in Neural Network, training algo-

rithms and procedures for training and convergence of Gradient Descent. Chapter 3

describes the methodology of Neural Networks as it relates to fault detection and clas-

si�cation method used in this thesis. It describes how neural networks learn complex

behaviors through ANN-based Algorithms, particularly,the back-propagation algo-

rithm, which is an important and representative learning rule of the neural network

used in this thesis. Chapter 3 also provides a mathematical foundation of Activa-

tion functions in ANN, and convergence which relates to how well a Neural Network

learns. Chapter 4 contains the simulation studies and presents results and other rel-

evant discussions. Chapter 5 outlines the conclusion and possible direction for the

future. Subsequent sections capture the reference section and Appendices for other
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important information.
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Chapter 2

Background Information

In this chapter, this thesis presents some background information necessary to un-

derstand the techniques/approaches used, de�nition of technical terms and concepts,

comprehensive explanation of learning rules and training algorithms, as well as the

mathematics behind them as deemed �t. The content of this chapter is organized

under the following headings:

1) Arti�cial Neural Network (ANN) structure and architecture.

2) Arti�cial Neural Network Terminology.

3) Learning in Neural Networks.

4) Training Algorithms or learning rules for ANN.

5) Convergence of Gradient Descent (GD) Algorithms.

2.1 Important Arti�cial Neural Network Terminology and Concepts

The neural network imitates the mechanism of the human brain. As the human brain

is composed of neurons or nerve cells which transmit and process the information

received from our senses. The neural network is constructed with connections of

nodes, which are elements that correspond to the neurons of the brain. The Neural

Network simulates the connection of neurons using the weight value. The table below

summarizes the analogy between the brain and neural network (technology).
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Brain Neural Network

Neuron Node

Connection of Neurons Connection of weights

Table 2-1: Analogy between the brain and Neural Network

To explain some terminology used in Arti�cial Neural Network(s), consider the dia-

gram below which represents the nodes of a neural network and which is denoted by

the input signals, weights of corresponding input signals, bias and other important

terms.

Figure 2-1: Illustrative diagram explaining Neural Network Terminology [23]

2.1.1 Activation Functions

Activation functions (mapping functions) are very important parts of the neural net-

work used to calculate the output response of a neuron. The sum of the weighted

input signal is applied with an activation function to obtain this response. The activa-

tion function in a Neural Network is analogous to the build-up of electrical potential

in biological neurons that ignites once a certain activation potential is reached. In-
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tuitively, this activation potential is mirrored in arti�cial neural networks using a

probability measure. Depending upon the choice of activation function used, the

properties of the network �ring can be quite di�erent but for neurons in the same

layer, the activation function is usually the same. It is however worth noting that an

activation function does two things;

1) Ensure non-linearity

2) Ensure gradients remain relatively large through the hidden unit.

A neural network without any activation function would simply be a linear regres-

sion model, which is limited to the set of functions it can approximate. Using a

non-linear activation, we are able to generate non-linear mappings from inputs to

outputs. Hence, the need for connectionism. The basic idea of connectionism is to

use simple neuron units which interconnect with each other and produce complex

behavior. Without non-linearity, you cannot achieve this complexity.

The general form of an activation function is shown below:

h = f
(
W TX + b

)
f(·) represents the activation function acting on the weights and biases, producing h,

the neural network output. Another important feature of an activation function is that

it should be di�erentiable. The derivative of an activation function helps in calculating

the backpropagation of a network which is to compute gradients of error (loss) with

respect to the weights and updates the weight using gradient descent. The choice of

an activation function is very important and can drastically improve or hinder the

performance of a Neural Network. There are di�erent types of activation functions

that can be used to solve di�erent problems depending on problem speci�cations or

peculiarity. These functions include: Sigmoid, Linear, ReLu (Recti�ed Linear unit),
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Leaky ReLu activation functions etc. The table below shows a summary of di�erent

activation functions, their graph and equations.

Figure 2-2: General Overview of Activation functions in Neural Network [24]

2.1.1.1 Linear Activation Function

The linear threshold function is the simplest of all the activation functions. In fact,

it is not really a threshold or activation function at all, as whatever number is passed

to it is returned unchanged. The drawback of this activation function is that it does

not keep the input or output of the neuron within any sort of range. Furthermore,

since there is no useful integral for it, the backpropagation training algorithm cannot

be used with the linear activation function.
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2.1.1.2 Sigmoid or logistic Activation Function

The sigmoidal activation function is useful with input positive numbers going into the

neural network. The backpropagation algorithm requires the integral of the activation

function. One of the most signi�cant limitations of the sigmoidal activation function

is that it is only capable of producing positive output. If a negative output is required,

then the hyperbolic tangent activation function is considered. It ranges from 0 to 1.

However, the drawback is that a saturated neuron causes the gradient to vanish and

since it is not a zero-centered function, it makes convergence slower. The logistic

function is given as:

f (x) = 1
1+e−x

= y

Its derivative is given as:

f
′
(x) = ∂y

∂x
= −1

(1+e−x)2
· (−e−x)

f
′
(x) = 1

1+e−x

(
1− 1

1+e−x

)
f
′
(x) = y · (1− y) (see[25])

2.1.1.3 Hyperbolic Tangent Activation Function

The hyperbolic tangent activation function is a zero-centered function which allows

for both positive and negative output. The output ranges from -1 to 1. This activa-

tion function circumvents the non-zero centric issue associated with logistic activation

functions. Hence optimization becomes comparatively easier than with logistic. How-

ever, a hyperbolic tangent activated neuron may lead to saturation and cause van-

ishing gradients. It is similar to a logistic activation function with a mathematical

equation shown below:

f (x) = ex−e−x
ex+e−x

= 1−e−2x

1+e−2x

f (x) = 2 · 1
1+e−2x − 1 = 2 · logistic (2x)− 1
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Where logistic function is de�ned as the Logistic Activation function which can be

expressed as:

logistic (x)= f (x) = 1
1+e−x

= y

The derivative of Hyperbolic Tangent (tanh) activation function is given as:

f
′
(x) = ∂f(x)

∂x
=

∂ e
x−e−x
ex+e−x

∂x

f
′
(x) =

(ex+e−x)(ex+e−x)−(ex−e−x)(ex−e−x)
(ex+e−x)2

f
′
(x) = 1−

(
ex−e−x
ex+e−x

)2
= 1− f (x)2 see([26])

2.1.1.4 Recti�ed Linear Unit (ReLu)

It is used as a standard activation function in Convolutional Neural Network because

it is computationally e�cient and avoids the vanishing gradient problem. In practice,

even though it is not a zero-centered function, it converges much faster compared to

logistic and hyperbolic tangent activation functions. If the input is a positive number,

the function returns the number itself and if the input is a negative number then the

function returns 0. It is mathematically expressed as:

f (x) = max (0, a) = max

(
0,

i=n∑
i=1

wixi + b

)
The derivative of ReLu activation function is given as:

f
′
(x) = ∂f(x)

∂x
=


0 if x < 0,

1 if x > 0.

= sgn (ReLu (x))

Mathematically, sgn is represented as the signum function. According to [27], the

sign function or signum function is an odd mathematical function that extracts the

sign of a real number.

The signum function of a real number x is de�ned as follows:

sgn(x) =


−1 if x < 0

0 if x = 0

1 if x > 0
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Alternatively: sgn(x) =
d

dx
|x| , x 6= 0.

Considering this: a case of bias initialized to a large negative value, then the weighted

sum of inputs is close to 0 and the neuron is not activated. The implication of

this instance is that up to 50% of ReLu activated neurons (may) die during the

training [26]. In practice, to circumvent this problem, bias is initialized to a large

positive value or another variant of ReLu known as Leaky ReLu is used.

2.1.1.5 Leaky ReLu

It was proposed to �x the dying neurons problem of ReLu. It introduces a small

slope to keep the update alive for the neurons where the weighted sum of inputs is

negative. If the input is a positive number, the function returns the number itself and

if the input is a negative number then it returns a negative value scaled by 0.01(or

any other small value) [26]. It doesn't have any saturation problem in both positive

and negative region. The neurons do not die because �0.01x� ensures that at least a

small gradient will �ow through. Although the change in weight will be small but

after a few iterations it may come out from its original value. It is mathematically

de�ned as:

f (x) = max (0.01a, a) = max

(
0.01a,

i=n∑
i=1

wixi + b

)
The derivative of Leaky ReLu is given as:

f
′
(x) = ∂f(x)

∂x
=


0.01 if x < 0

1 if x > 0

2.1.1.6 SoftMax Activation Function

For a binary classi�cation problem, the logistic activation function works well but not

for a multiclass classi�cation problem. So, SoftMax is used for multiclass classi�cation

problem. The soft-max activation function is again a type of sigmoid function. As
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the name suggests, it is a�soft� �avor of the max function where instead of selecting

only one maximum value, it assigns the maximal element to the largest portion of

the distribution, and other smaller elements getting some part of the distribution.

The standard softmax function σ : Rk → Rk is de�ned by the formula as shown

below: σ(z)i =
ezi∑K
j=1 e

zj
for i = 1, · · · , K and z = (z1, · · · , zK) ∈ RK (see [28])

In other words, the standard exponential function is applied to each element zi of

the input vector z and these values are normalize by dividing the sum of all these

exponentials. This normalization ensures that the sum of the components of the

output vector σ(z) is 1. SoftMax is generally preferred in the output layer where we

are trying to get probabilities for di�erent classes in the output.

2.1.2 Weights

Weights are network parameters that can be set to zero or initialized using speci�c

methods but changes in weight generally indicate the overall performance of the neural

net.

2.1.3 Layers

A layer is the highest-level building block in Neural Network. A layer is a container

that usually receives weighted input, transforms it with a set of mostly non-linear

functions called activation function and then passes these values as output to the

next layer. The �rst and last layers in a network are called input and output layers,

respectively, and all layers in between are called hidden layers.

2.1.4 Bias

It is a factor associated with the storage of information. Bias acts exactly as a

weight on a connection from a unit whose activation is always 1. As a rule of thumb,
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increasing the bias increases the net input to the unit which in turn improves the

performance of the neural network. If bias is present, the net input is calculated as:

Neti = b+
n∑
i=0

wixi

Where b =bias, Neti = Net Input, xi = Input from neuron i and wi = weight of the

neuron i to the output neuron.

2.1.5 Units/Neurons

They are functions containing weights and biases and wait for data. After the data

arrives, they perform some computations and then use an activation function to

restrict the data to a range.

2.1.6 Threshold

The threshold, θ, is a factor used in calculating the activations in a given net. The

activation function is a function of the threshold.

2.1.7 Learning Rate

Learning rate is a concept in Neural Network training algorithms that speci�es how

radically the weight matrix should be updated based on training results. Learning

rate is otherwise referred to as the step size of a neural network algorithm. Speci�cally,

the learning rate is a con�gurable hyperparameter (these are the values which you

have to manually set) used in the training of neural networks that has a small positive

value, often in the range between 0 and 1. The learning rate controls how quickly the

model is adapted to the problem and properly setting the learning rate can have a

profound impact on the speed with which the neural network learns. Setting it too low

will impede performance; too high may cause the neural network to behave randomly

and never converge on a solution. In practice, a learning rate that is too large can
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cause the model to converge too quickly to an optimal solution and overshoot the

minimum, but a learning rate that is too small will take too many iterations to get

to the minimum and lead to slow convergence.

2.1.8 Error Calculation

Error calculation is an important aspect of any neural network; whether the neural

network is supervised or unsupervised, an error rate must be calculated. The goal of

virtually all training algorithms is to minimize the rate of error. This thesis exam-

ines how the rate of error is calculated for both supervised and unsupervised neural

network.

2.1.8.1 Error Calculation under Supervised Training

There are two values that must be considered in determining the rate of error for

supervised training. First, we must calculate the error for each element of the training

set as it is processed. Second, we must calculate the average of the errors for all of

the elements of the training set across each sample. Implementing logic gates using

neural networks help understand the mathematical computation by which a neural

network processes its inputs to arrive at a certain output. This neural network will

deal with the XOR logic problem. An XOR (exclusive OR gate) is a digital logic

gate that gives a true output only when both its inputs di�er from each other. For

example, consider the XOR logical operation below:
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A B A ⊕ B

0 0 0

0 1 1

1 0 1

1 1 0

Table 2-2: The XOR logical operation in Neural Network

From the truth table shown above, the XOR logical operation requires a slightly more

complex neural network than the �AND� and �OR� logical operations, (both of which

have only two layers� an input layer and an output layer) because it requires one

or more hidden layers [29]. Typically, for a complex system, the process involves

creating a random weight matrix and then testing each row in the training set. An

output error is then calculated for each element of the training set and after all of the

elements of the training set have been processed, the root mean square (RMS) error

is determined for all of them.

The output error is simply an error calculation that is performed to determine how

di�erent a neural network's output is from the ideal output. This value is rarely used

for any purpose other than as a stepping-stone in the calculation of the root mean

square (RMS) error for the entire training set. Once all of the elements of a training

set have been run through the network, the RMS error can be calculated. This error

acts as the global rate of error for the entire neural network. It is important to note

that a global error is a capture of all local errors calculated for each iteration, and

can be mathematically aggregated using any of the techniques listed below:

Mean Square Error,MSE = 1
n

n∑
i=1

E2
i

Sum of Squares Error, SSE = 1
2

n∑
i=1

E2
i

Root Mean Square, RMS =
√
MSE
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2.1.8.2 Error Calculation under an Unsupervised Training

In the literature, one common procedure of calculating error in an unsupervised train-

ing is by using a Self-Organizing Map. According to [29] and [30], a Self-Organizing

Map (SOM) is a Neural Network Architecture that only contains an input neuron

layer, no hidden layer and an output neuron layer. The input to a self-organizing

map is submitted to the neural network via the input neurons. The input neurons

receive �oating point numbers that make up the input pattern to the network. A

self-organizing map requires that the inputs be normalized to fall between -1 and 1

such that only one of the output neurons produces a value which could either be true

or false. The structure of a typical SOM is shown below:

Figure 2-3: The Structure of a Self Organizing Map [30]

In reality, most unsupervised neural networks are designed to classify input data

based on one of the output neurons. The degree to which each output neuron �res
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for the input data is usually explored in order to produce an error for unsupervised

training. Ideally, we would like a single neuron to �re at a high level for each member

of the training set but when this is not the case, we adjust the weights to the neuron

with the greatest number of �rings, that is, the winning neuron consolidates its win.

This training method causes more and more neurons to �re for the di�erent elements

in the training set.

2.2 Arti�cial Neural Network Structure and Architecture

As the �neural� part of its name suggests, they are brain-inspired systems which are

intended to replicate the way humans learn (from its mistakes). It was intended to

simulate the behavior of biological systems composed of neurons. Arti�cial Neural

Networks (ANNs) are computational algorithms used as generalized non-linear func-

tion approximators. The arti�cial Neural network is typically organized in layers of

many interconnected nodes which contain an activation function.

Neural Networks consist of input and output layers, as well as a hidden layer (in

most cases) consisting of units or neurons that transform the input into a meaningful

output. There are two major types of Neural networks which are single-layer neural

network and multi-layer neural network. Initially, Neural Network pioneers had a

very simple architecture with only input and output layers but no hidden layer. This

topology is called single-layer neural networks. However, when hidden layers are

added to a single-layer neural network, this produces a multi-layer neural network.

Therefore, the multi-layer neural network consists of an input layer, hidden layer(s),

and output layer.

On the other hand, it is necessary to distinguish between shallow neural network

and deep neural network. The Neural Network (NN) that has a single hidden layer

is called a shallow neural network or a vanilla neural network. A multi-layer neural

network that contains two or more hidden layers is called a deep neural network. Most
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of the contemporary Neural Networks used in practical applications are deep neural

networks. The table below puts in perspective the di�erence between single-layer and

multi-layer neural network as it relates to the types and layers of a network.

Neural Network Type Layer Structure

Single layer NN Input Layer → Output Layer

Multi-Layer Shallow NN Input Layer → Hidden Layer → Output Layer

Multi-Layer Deep NN Input Layer → Hidden Layers → Output Layers

Table 2-3: The Layer structure of di�erent NN type

Generally, Neural Network contains three major layers, as it can be seen from the

diagram below:

Figure 2-4: The Layer structure of a Neural Network [31]

1) Input Layer
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2) Hidden Layer(s)

3) Output Layer

2.2.1 Input Layer

This is the initial data for the NN. The objective of the input layer is to receive as input

the values of the explanatory attributes for each observation. Usually, the number

of input nodes in an input layer is equal to the number of explanatory variables.

Speci�cally, input layer presents the patterns to the network, which communicates

to one or more hidden layers even though the nodes of the input layer are passive,

meaning they do not change the data. From the input layer, each value is duplicated

and sent to all the hidden nodes.

2.2.2 Hidden Layer

This is the intermediate layer between the input and output layers. The hidden layer

applies given transformations to the input values inside the network. In a hidden

layer, the actual processing is done via a system of weighted connections. There

may be one or more hidden layers but the values entering a hidden node is usually

multiplied by its weights. The weighted inputs are then added to produce a single

number. There can be one or more hidden layers in the Architecture of ANN which

makes it deep or shallow as the case may be. The hidden layers then link to an output

layer.

2.2.3 Output Layer

The Output layer produces the result for any given inputs. It receives connections

from hidden layers or from the input layer by returning an output value that cor-

responds to the prediction of the response variable. In classi�cation problems for
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instance, there is usually only one output node that might give di�erent possibilities.

The active nodes of the output layer combine and change the data to produce the

output values. The ability of the neural network to provide useful data manipula-

tion lies in the proper selection of the weights and also, a�ect the output whether

positively or negatively.

2.3 Learning in Neural Network

Training or Learning is the process by which connection weights are assigned. Most

training algorithms begin by assigning random numbers to a weighted matrix. How-

ever, the type of learning is determined by the manner in which the parameter changes

takes place and the set of well-de�ned rules for the solution of a learning problem is

called a learning algorithm. Each Learning algorithm di�ers from others in the way

in which the adjustment to a synaptic weight of a neuron is formulated. Also, the

manner in which a neural network is made up of a set of inter-connected neurons

relating to its environment has to be considered. Generally, there are three types of

learning. They are;

1) Supervised Learning

2) Unsupervised Learning

3) Reinforcement Learning

2.3.1 Supervised Learning

Supervised learning is a type of training method or algorithm that takes a known set of

input data and known responses to the data (output) and trains a model to generate

reasonable predictions for the response to new data [32]. As adaptive algorithms

identify patterns in data, a computer �learns� from di�erent observations. When

exposed to more observations, the computer improves its predictive performance.
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2.3.2 Unsupervised Learning

Unsupervised Learning is a type of training method that does not provide the neural

network with expected outputs. In a neural net, if for the training input vectors, the

target output is not known, the training method adopted is called an unsupervised

training. The net may modify the weight so that the most similar input vector is

assigned to the same output unit. Of course, unsupervised networks are far more

complex and di�cult to implement and that is why it is otherwise called self-learning

or self-organizing networks because of its ability to carry out self-triggered learning.

2.3.3 Reinforcement Learning

Reinforcement learning is a general approach to learning that can be applied when

the knowledge required to apply supervised learning is not available. Reinforcement

learning attempts to learn the input-output mapping through trial and error with a

view to maximize a performance index called the reinforcement signal. The system

knows whether the output is correct or not but does not know the correct output.

Reinforcement learning employs sets of input, associated outputs, and grade as train-

ing data. It is generally used when optimal interaction is required, such as control

and game plays [2]. The table below depicts the di�erent training methods and how

its data are formulated.

Training Method Training Data

Supervised Learning { input, correct output}

Unsupervised Learning { input}

Reinforced Learning { input, some output, grade for this output}
Table 2-4: Types of Training Methods and their Data
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2.3.4 Techniques of Supervised Learning of a neural network

In this thesis, supervised learning techniques are considered and hence, we focus on

this type of training method. Moreover, it is used for more applications compared

to unsupervised learning and reinforcement learning [2]. This training method is

closely connected with a speci�c network topology which is explained in subsequent

sections. The common ones include: Recurrent Cascade Correlation, Learning Vector

Quantization, Feed forward propagation, Backpropagation through time and Real-

time recurrent Learning.

2.3.5 Problems commonly solved with Neural Networks

Neural networks are particularly useful for solving problems that cannot be expressed

as a series of steps, such as recognizing patterns, classi�cation, series prediction, and

data mining. There are many di�erent problems that can be solved with a neural

network and these problems are categorized into types which include:

1) Classi�cation

2) Prediction

3) Pattern recognition

4) Optimization

2.3.5.1 Classi�cation

Classi�cation is the process of classifying input data into groups. For example, IT

Solutions at Minnesota State University, Mankato, a technology-based platform, may

want its emailing system to classify incoming mail into groups, of either spam or

non-spam messages. In the same vein, the neural network is usually trained by

assigning it to group of data and as to which group each data element belongs. This
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allows the neural network to learn the characteristics that may indicate each group

membership. Neural networks are used in a broad range of classi�cation problems:

Examples include image classi�cation [33], digit and character classi�cation [34�37],

or even medical diagnosis [38, 39]. A comprehensive survey on classi�cation by neural

networks can be found in [40].

2.3.5.2 Prediction

Prediction is another common application for neural networks. Given a time-based

series of input data, a neural network will predict future values. However, the accuracy

of the guess will be dependent upon many factors, such as the quantity and relevance

of the input data.

2.3.5.3 Pattern Recognition

Pattern recognition is one of the most common uses for neural networks. Pattern

recognition is simply the ability to recognize a pattern. The pattern must be recog-

nized even when it is distorted. For example, every person who holds a driver's license

in the United States should be able to accurately identify a tra�c light which is a sine

qua non for safety of self and other drivers on the road. This is an extremely criti-

cal pattern recognition procedure carried out by countless drivers every day. Many

variations of the tra�c light recognition exist today, owing to di�erences in human

perception, vision di�erences and eye defects. Still, recognizing a tra�c light is not

a hard task for a mentally stable driver. How hard is it to write an algorithm that

accepts an image and tells a driver if it is a tra�c light or other road signs? Without

the use of neural networks, this could be a very complex task.
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2.3.5.4 Optimization

Another common use for neural networks is optimization. Optimization can be ap-

plied to many di�erent problems for which an optimal solution is required. The neural

network may not always �nd the optimal solution; rather, it seeks to �nd an acceptable

solution. Optimization problems include circuit board assembly, resource allocation,

and many others. Perhaps one of the most well-known optimization problems is the

Traveling Salesman Problem (TSP).

A salesman must visit a set number of cities. He would like to visit all cities and travel

the fewest number of miles possible. With only a few cities, this is not a complex

problem. However, with a large number of cities, brute force methods of calculation

do not work nearly as well as a neural network approach [30]. Basically, the two most

common types of application for supervised learning are classi�cation and regression.

In classi�cation, the goal is to assign a class (or label) from a �nite set of classes to an

observation. That is, responses are categorical variables. Applications include spam

�lters, advertisement recommendation systems, and image and speech recognition.

Classi�cation algorithms usually apply to nominal response values. However, some

algorithms can accommodate ordinal classes. In regression, the goal is to predict

a continuous measurement for an observation. That is, the responses variables are

real numbers. Applications include forecasting stock prices, energy consumption, or

disease incidence [32].

It is important to note that using an algorithm is a function of memory consump-

tion, training speed and predictive accuracy on new data. These algorithms common

to supervised training include: Classi�cation Trees, Regression Trees, Discriminant

Analysis (classi�cation), k-Nearest Neighbors (classi�cation), Naive Bayes (classi�ca-

tion), Support Vector Machines (SVM) for classi�cation and SVM for regression.
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2.4 Training Algorithms or learning rules for Arti�cial Neural Networks

A neural network learns about its immediate environment through an interactive

process of adjustments applied to its bias levels and weights. One common input to

any learning rule is the error. The error is the degree to which the actual output

of the neural network di�ers from the anticipated output. In supervised training,

the neural network is constantly adjusting the weights to attempt to better align the

actual results with the anticipated outputs that were provided. There are various

learning rules in the literature. However, this thesis explains the following common

ones.

1) Delta Rule and Generalized Delta rule

2) Boltzmann Learning

3) Gradient Descent Algorithm

4) Back Propagation Algorithm

5) Forward Propagation

6) Memory-based Learning

7) Competitive Learning rule

8) Hebbian or Hebb-Net learning Rule

2.4.1 Delta Rule

This is the representative learning rule of the single-layer neural network. It can

sometimes be referred to as Adaline rule or the Widrow-Ho� rule. Although, it is

not capable of multi-layer neural network training, it is very useful for studying the

important concepts of the learning rule of the neural network. It is gradient descent
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training technique that adjusts a network's weights based on di�erences between

output and the ideal output. Back-propagation is a form of the delta rule. The delta

learning rule is valid for only continuous activation functions and in the supervised

training mode. In fact, the aim of the delta rule is to minimize the error over all

training patterns.

Figure 2-5: A single Layer Neural Network [2]

Consider a single-layer neural network, shown above. In the �gure, di is the correct

output of the output node i. xj is input value and ei is the output error. The delta

rule can be expressed in equation as:

wij = wij + αeixj (Equation 2.1)

where xj = The output from the input node, j (j = 1, 2, 3)

ei = The error of the output node, i = error of the output, yi, from the correct output,

di, to the input. wij = The weight between the output node i and input node, j and

α = Learning rate.

The learning rate, α, determines how much the weight is changed per time. If this

value is too high, the output wanders around the solution and fails to converge.
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Figure 2-6: A single-layer neural network with three input nodes and one
output node [2]

Considering, a single-layer neural network with three input nodes and one output

node. Applying (Equation 2.1) to the neural network above, the adjustment of the

weights is calculated as:

w11 ← w11 + αe1x1

w12 ← w12 + αe1x2

w13 ← w13 + αe1x3

Where: w11, w12 and w13 are weights. e1 is the error of the output, y1, from the

correct output, d1, to the input. The weight updates according to delta rule is the

multiplicative factor of the learning rate, α, output node error, ei and input node

value, xj . This can be mathematically expressed as:

Weight Updates,∆wij = αeixj (Equation 2.2)

The delta rule is a type of numerical method called gradient descent. The gradient

descent starts from the initial value and proceeds to the solution.

2.4.2 Generalized Delta Rule

Delta rule has variants and as such as, there exists a generalized delta rule which can

be expressed as:
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wij = wij + αδixj (Equation 2.3)

In (Equation 2.3) above, δi is de�ned as:

δi = φ
′
(Vi) ei

where ei = The error of the output node i

Vi = The weighted sum of the output node i

φ
′
= The derivative of the activation function of the output node i

2.4.3 Gradient Descent (GD) Algorithm

This is the simplest training algorithm used in supervised training model. There are

di�erent variations of GD algorithm. They are:

1) Stochastic Gradient Descent (SGD)

2) Mini Batch GD

3) Batch GD

2.4.3.1 Stochastic Gradient Descent (SGD)

The Stochastic Gradient Descent (SGD) calculates the error for each training data

and adjusts the weights immediately. With every GD iterations, it is imperative to

shu�e the training set and pick a random training example from it but the draw back

is that since you only use one training example, your path to the local minima will

be noisy like a drunk man with an unstable or zig-zag pattern of movement.

2.4.3.2 Mini-batch Gradient Descent

The mini batch method is a blend of the SGD and batch methods. Instead of iterating

over all training examples and with each iteration only performing computations on
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a single training example, we process `n' training examples at once. This is a good

choice for very large data sets.

2.4.3.3 Batch Gradient Descent

In the batch method, each weight update is calculated for all errors of the training

data, and the average of the weight updates is used for adjusting the weights. This

method uses all of the training data and updates only once. Vanilla or Batch gradient

descent may be too slow or unstable due to the di�erences between the dimensions.

The �gure below shows the comparison of the di�erent variants of Gradient Descent.

Figure 2-7: Gradient Descent paths in parameter space [41]

2.4.4 Back Propagation Algorithm

Backpropagation is a powerful training tool used by most Arti�cial Neural Networks

to learn the knowledge weights of the hidden units or simply put, learning from

mistakes. It is a feeding back mechanism that captures the rate of change of error

with respect to the weight. It is only used in supervised learning since it requires

a known output for training to help in determining the gradient descent of the loss
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function. Mathematically, it is an extension of the gradient-based delta learning rule

and it also uses gradient descent for training. The back-propagation algorithm de�nes

the hidden layer error (the di�erence between desired and target) as it propagates the

output error backward from the output layer. Once the hidden layer error is obtained,

the weights of every layer are adjusted using the delta rule. The importance of the

backpropagation algorithm is that it provides a systematic method to de�ne the error

of the hidden node. It is used mostly in the case of Multilayer Neural Network.

2.4.4.1 Fundamental mathematics behind Back Propagation [1]

In order to truly understand backpropagation as a training algorithm, we need to

understand two (2) simple truths;

1) We cannot directly arrive at the rate of change of the error with respect to

weights for all the units. Instead, we need to �rst compute the rate of change

of error with respect to the activation functions of the hidden activities.

2) Once the rate of change of error with respect to the activation function is known,

then using chain-rule, we can compute the rate of change of error with respect

to the hidden units.

To explain the concept of backpropagation, let us consider a multi-layer ANN illus-

trated below.
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Figure 2-8: A deep multi-layer Neural Network [23]

In the above illustration, let us explain the di�erent notations:

1) yj is the output of the activation function in the j-layer.

2) yi which is the output of the activation function in the i-layer.

3) Knowledge weight, wij which is the strength of the connections between neurons

in layer `i' and layer `j'.

4) Theta, θ, is the transfer potential into layer `j'.

Let's assume an error, E, which is the di�erence between output yj and some expected

value tj which can be expressed as: E (j) = t (j)− y (j)

In order to compute the rate of change of error E with respect to weight wij, we must

compute in the following order.

(a) The rate of change of error E with respect to the transfer potential, θ (j)
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(b) The rate of change of error E with respect to the activation function of the

hidden units in layer `i' and

(c) The rate of change of error E with respect to the hidden weights w (ij).

Writing the procedures (a, b, and c) mathematically, we have:

∂E
∂θj

= ∂E
∂yj
· dyj
dθj

Assuming a logistic sigmoid activation function which is given by:

f (θ) = 1
1+e−θ

It is worthy to note that the Logistic sigmoid function is assumed to explain the

mathematics behind back propagation because it is real-valued and di�erentiable,

which is a primary requirement for being an activation function in ANN. Theta, θ,

is the transfer potential in the activation function above and it is mathematically

expressed as:

θ =
∑n

i=1Xi ∗Wi

The `∗ ' operator is an activation function in the equation above. Therefore,

the full form of the logistic sigmoid activation function which is the output of the

activation function is expressed as:

f (θ) = y
′
= 1

1+e

−

n∑
i=1

(Xi ∗Wi)

where the Local or standard error, E is given as:

E = y
′ − y

y
′
is the output from the activation function and y is the actual expected output.

From the equation above;

∂E
∂θj

= ∂E
∂yj
· dyj
dθj

Where
dyj
dθj

is the derivative of the logistic sigmoid function

dyj
dθj

= yj (1− yj)
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∂E
∂θj

= ∂E
∂yj
· yj (1− yj)

∂E
∂yi

=
∑

J
∂E
∂θj
· dθj
dyi

=
∑

j
∂E
∂θj
· wij

Recall that: θj =
∑

i (yi · wij)
∂θj
∂wij

= yi

∂E
∂wij

= ∂E
∂θj
· ∂θj
∂wij

= ∂E
∂θj
· yi

∴ ∂E
∂wij

= ∂E
∂yj
yj (1− yj) · yi

If we choose ESS, E = 1
2

∑
j (tj − yj)2 Where tj is the expected output and yj is the

output of the activation function in the j-layer.

∂E
∂yj

= − (tj − yj)

Hence, ∂E
∂wij

= −yi · yj (1− yj) (tj − yj)

So, the rate of change can now be directly applied to every knowledge weight or

Weight Update, wij is expressed as:

wij =
∂E

∂wij
+ wij (Equation 2.4)

2.4.5 Boltzmann Learning

This is a stochastic learning in which the neurons constitute a recurrent structure

and they work in binary form. This learning is characterized by an energy function,

E which is determined by the particular states occupied by the individual neurons of

the machine. It is given by:

E = −1
2

∑
i

∑
iWijXjXi i 6= j

Where Xi is the state of neuron i and Wij is the weight of neuron i to neuron j. The

i 6= j means that none of the neurons in the machine has self feedback.

This learning process has two kinds of neurons: Visible and hidden neurons. In visible

neurons, there is an operating interface between the network and the environment

whereas, in the hidden neurons, they operate independent of the environment. In a
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nutshell, the learning rule of the multiclass classi�cation neural network is identical to

that of the binary classi�cation neural network. Although these two neural networks

employ di�erent activation functions�the sigmoid for the binary and the SoftMax

for the multiclass�the derivation of the learning rule leads to the same result.

2.4.6 Competitive Learning Rule

This rule is suited for unsupervised network training and it is such that the output

neurons of a neural network compete among themselves to become active. This rule

has a competitive mechanism that allows the neurons to �ght for the right to respond

to a given subset of inputs so that only one output neuron is active at any given

time. This learning �nd application in learning the statistical properties of inputs

and solving clustering problems.

2.4.7 Memory Based Learning

In memory-based learning, all the previous experiences are stored in a large memory

of correctly classi�ed relationship based on input vector and a scalar desired response.

This algorithm �nd application in radial basis function network. According to [16],

a radial basis function network is an arti�cial neural network that uses as activation

functions.

It de�nes the local neighborhood of a test vector and a learning rule applied to the

training in a local neighborhood which is popularly referred to as the nearest neighbor

rule. The nearest neighbor rule is such that the local neighborhood is de�ned as the

training example that lies in the immediate neighborhood of the test vector. This

test vector is said to be the nearest neighbor of x if the minimum Euclidean distance

between two immediate vectors is equal to the distance between the test vectors. A

variant of the nearest neighbor classi�er is the K-nearest neighbor classi�er which

usually acts like an averaging device.
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2.4.8 Hebb-Net Learning

This is the �rst learning law for arti�cial neural network, and it was designed by

Donald Hebb in 1949. The law states that if two neurons are activated simultane-

ously, then the strength of the connection between them should be increased. The

architecture of the Hebb net consists of bias which acts as a weight on a connection

from a unit whose activation is always 1. If the bias is increased, the net input of the

unit also increases. Also, both the input and output data should be in bipolar form.

For instance, if it is in binary form, the Hebb net cannot learn. This Hebb rule �nds

application in pattern classi�cation problem.

Figure 2-9: The architecture of Hebb-Net Learning [42]
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2.4.9 Forward Propagation

According to Universal approximation theorem, a well-guided and engineered deep

neural network can approximate any arbitrary complex and continuous relationship

among the variables. The way neural network learns the true function is by building

complex representations on top of simple ones. In a feedforward network, the infor-

mation moves in only one direction � forward � from the input nodes, through the

hidden nodes (if any) and to the output nodes. There are no cycles or loops in the

network unlike recurrent Neural Networks or back propagation in which the connec-

tions between the nodes form a cycle. The input layer provides the initial data that

then propagates to the hidden units at each layer and �nally produce the output.

The architecture of a forward propagated network entails determining its depth,

width, and activation functions used on each layer. In this case, depth is the number

of hidden layers. Width is the number of units (nodes) on each hidden layer since the

dimensions of neither input layer nor output layer cannot be controlled. Examples of

Feedforward networks are single layer perceptron (no hidden layer) and multi-layer

perceptron (has one or more hidden layers).

2.5 Convergence of Gradient Descent

An iterative algorithm is said to have converged to a solution if the value updates

arrive at a �xed point where the gradient is zero and further updates do not change

the estimate or jitter around the local minimum. Generally, Convergence is mathe-

matically expressed as:

R =
|f(x(k+1))−f(x∗)|
|f(x(k))−f(x∗)|

Where x((k+1) is the kth iteration and x∗ is the optimal value of x

If R is a constant or upper bounded, the convergence is linear. However, in reality,

its arriving at the solution exponentially fast
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|f
(
x(k)
)
− f (x∗) | = Ck|f

(
x(0)
)
− f (x∗) |(see[43])
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Chapter 3

Methodology

3.1 One-hot encoding

One-hot encoding is otherwise referred to as 1-of-N encoding and it is used as a method

to quantify categorical data. According to [44], one hot encoding is a representation of

categorical variables as binary vectors. This �rst requires that the categorical values

be mapped to integer values. Then, each integer value is represented as a binary

vector that is all zero values except the index of the integer, which is marked with a

1. Suppose, your features have normal, open circuit fault and closed fault labels and

if you convert these features to nominal values yielding No Fault=2, Fault short=1,

Fault Open=0. Therefore, in the case of One-hot encoding, we represent the three

output nodes from the neural network by creating the classes as the following vectors:

Class1→ [1, 0, 0] Class2→ [0, 1, 0] Class3→ [0, 0, 1]

3.2 Momentum [2]

Momentum is a method that helps accelerate Stochastic Gradient Descent in the

relevant direction, dampens oscillations [45] [46] and improves both training speed

and accuracy [47]. According to [48], the idea of momentum-based optimizers is to

remember the previous gradients from recent optimization steps and to use them to

help to do a better job of choosing the direction to move next, acting less like a drunk

student walking downhill and more like a rolling ball.

Generally, Gradient Descent with momentum depends on two training parameters;
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learning rate (δ) and momentum constant (mc). The parameter, δ, indicates the

learning rate and the parameter, mc is the momentum constant that de�nes the

amount of momentum and this is set between 0 (no momentum) and values close to

1 (lots of momentum). This section explores the variations of the weight adjustment.

A critical look into the work of [2] has shown that the weight adjustment has relied

on the simplest forms of (Equation 2.2) and (Equation 2.3). However, there are

various weight adjustment forms available. The bene�ts of using the advanced weight

adjustment formulas include higher stability and faster speeds in the training process

of the neural network. These characteristics are especially favorable for Deep Learning

as it is hard to train. This section only covers the formulas that contain momentum,

which have been used for a long time. The momentum, mk; k ∈ N+, is a term that is

added to the delta rule for adjusting the weight. The use of the momentum term drives

the weight adjustment to a certain direction to some extent, rather than producing

an immediate change. It acts similarly to physical momentum, which impedes the

reaction of the body to the external forces.

∆w (k) = αδx (k)

m (k) = ∆w (k) + βm (k − 1)

w (k) = w (k) +m (k)

m (k − 1) = m (k)

(Equation 3.1)

Where m (k − 1) is the previously computed momentum and β is a positive constant

that is less than 1. Let's brie�y see why we modify the weight adjustment formula in

this manner. The following steps show how the momentum changes over time:
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m (0) = 0

m (1) = ∆w (1) + βm (0) = ∆w (1)

m (2) = ∆w (2) + βm (1) = ∆w (2) + β∆w (1)

m (3) = ∆w (3) + βm (2) = ∆w (3) + β {∆w (2) + β∆w (1)}

= ∆w (3) + β∆w (2) + β2∆w (1)

...

(Equation 3.2)

It is noticeable from these steps that the previous weight update, i.e.∆w(1), ∆w(2),

∆w(3), etc., is added to each momentum over the process. Since β is less than

1, the older weight update exerts a lesser in�uence on the momentum. Although

the in�uence diminishes over time, the old weight updates remain in the momen-

tum. Therefore, the weight is not solely a�ected by a particular weight update value.

Therefore, the learning stability improves. In addition, the momentum grows more

and more with weight updates. As a result, the weight update becomes greater and

greater as well. Therefore, the learning rate increases.

3.3 Node List

A node list is a collection of nodes in a Neural Network. In this thesis, the node list

object is used to explore the possibility of having di�erent Neural Network architec-

tures (whether deep or shallow) for the purpose of results evaluation. According to

[12], the node-list is a set of s nodes represented by N. It is generally expressed as:

N = { n1, n2, n3, . . ., ns }
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3.4 Layer Space

This is a neural network methodology used to de�ne the structure of spaces of neural

network functions and it is otherwise referred to as space of weight.

3.5 Weight Initialization

A proper initialization of the weights in a neural network is critical to its convergence.

The analysis of [49], provides a clear demonstration of the role of non-linearities in

determining the proper weight initializations. According to this research, the weight

initialization strategy for the Recti�ed Linear Unit (RELU), which is not di�erentiable

at 0 is di�erent from activation functions di�erentiable at 0. It is important to

note that the results from [50�54], all rely on the Xavier initialization scheme which

cannot be used to compute the optimal value of v2 as it is a poor choice with ReLu

Activation functions [55]. In an important follow up paper, [55] argued that the

Xavier initialization does not work well with the RELU activation function, and

instead proposed an initialization methodology commonly referred to as the �He�

initialization. In support of the �He� initialization, the authors provided an example

of a 30-layer neural network which converges with the �He� initialization, but not

under the Xavier initialization. According to [55] and corroborated by the �ndings of

[49], the Optimal value of v2 is given as:

v2 = 2
N

where N is the number of nodes feeding into that layer. To put the aforementioned

into a better perspective, according to [54], we initialized the biases to be 0 and the

weights Wij at each layer with the following commonly used heuristic:

Wij = U
[
− 1√

n
, 1√

n

]
Where U [−a, a] is the uniform distribution in the interval (−a, a) and n is the size of

the previous layer (i.e the number of columns of W). The following formula is given
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for calculating the value of ε used to initialize Wij with random values [−ε, ε]. The

parameter, ε, it is de�ned as:

ε =
√
6√

Loutput+Linput

Then, Wij is initialized as:

Wij = (2ε) rand(Loutput, Linput+1)

where Linput = nj and Loutput = nj+1 are the number of units in the adjacent layers

and rand (·) is the random function over the interval (Loutput, Linput+1) with uniform

distribution.

Sometimes, we don't know anything about the fault data captured and as such as-

signing the weights that would work in that particular case becomes a Herculean

task. One good practice, and also corroborated by [56], is to assign the weights from

a Gaussian distribution characterized by a zero mean and some �nite variance. It

is important to note that numerator in the ε formula above can either be
√

2 or
√

6

as deemed �t. If it is
√

2, it represents a normal distribution and
√

6 implies a uni-

form distribution. However, some papers in the literature have provided strategies

for di�erent activation functions which is summarized below:

Activation Function Uniform

Distribution[−ε,+ε]

Normal Distribution

Hyperbolic Tangent

Function

ε =
√

6
nin+nout

σ =
√

2
nin+nout

Sigmoid Function ε = 4 ∗
√

6
nin+nout

σ = 4 ∗
√

2
nin+nout

ReLu (and its variants) ε =
√

2 ∗
√

6
nin+nout

σ =
√

2 ∗
√

2
nin+nout

Table 3-1: Weight Initialization Scheme under Normal or Uniform Distribu-
tion [56]

This thesis employs the �He� weight initialization technique because the author �nds

that it converges in simulation better than any other initialization techniques.
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3.6 Inverter Model or Snapshot of the studied model

The single phase voltage source inverter is designed using Simulink which is utilized

to convert DC power from a battery source to AC by keeping the output voltage of

the inverter at the rated voltage irrespective of a �uctuating load. The inverter model

implements a full-bridge power converter which comprises of four (4) IGBT switches

and modeled with IGBT/diode pairs controlled by �ring pulses produced by a PWM

generator (0/1 signals). This pulse-width modulation (PWM) technique is applied to

control switches. Further, the measured or output voltage is passed through an RLC

sub-circuit for �ltering purposes. The carrier frequency of the single-phase inverter is

1620Hz and the sampling time for the simulation is 30ms.

Figure 3-1: The Snapshot of the studied model
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Figure 3-2: The Simulink Model of the Circuit Under Test

3.7 Fault Detection and Fault Generation

In this thesis, fault detection was formulated as a multi-classi�cation problem where

the labels are normal, open-circuit fault and short-circuit fault. According to [57],

Fault Detection Rate (FDR), which is an accuracy index is de�ned as:

FDR =
# of faulty samples with faulty label

# of faulty samples

On the other hand, fault capture or generation is generated in a single-phase inverter

system to check the performance of the studied model under normal or di�erent other

fault conditions. We generate single and multiple faults by opening the IGBTs of the

inverter so that the system can receive the input signal without respective phases.

In the case of double faults, by convention, there is a high possibility of fault in two

gates used in the same phase (Say, S1&S4 or S2&S3). In practice, Phase mismatch

or complete phase missing can be noticed in the case of short-circuit or open-circuit

faults.
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3.8 Data Description

The data used in this study covers basically the power spectral estimates, encoded

data and fault time measured which is directly dependent on the Output Voltage

sensed by a voltage measurement block in MATLAB/Simulink. This collected data

is used to train the Neural Network.

3.9 Data Analysis

In Neural Network, the data analysis stage involves data pre-processing and feature

extraction. These processes will be explained in subsequent lines.

3.9.1 Pre-processing of Data

The data used in this study is composed of power spectral estimates, speci�cally

ten (10) di�erent data points in the power spectral density plot, encoded data and

recorded fault times for each simulation instance. The purpose of this pre-processing

stage is generally to compensate for known or unknown distortions introduced by the

sensor and/or the environment. This stage involves operations such as scaling and

�ltering. The only pre-processing performed on the fault capture data is to normalize

the Power Spectral Density (PSD) estimate to change the values of numeric columns

in the dataset to a common scale, without distorting di�erences in the ranges of

values.

3.9.2 Power Spectral Density estimate of the raw data

This is a critical stage in feature engineering and data analysis. The pwelch-based

method of spectral analysis was used in the thesis to measure the energy content

of the input signal and used for feature extraction. The matlab syntax is given

as: [pxx,w] = pwelch(x, window, noverlap, w). The Power Spectral Density (PSD)
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returns a one-sided Welch PSD estimates at a normalized frequencies speci�ed in the

vector, w. x is the input signal. Window is the row or column vector or an integer.

noverlap is the number of overlapped samples.The vector w must contain at least

two elements, because otherwise the function interprets it as n�t. n�t speci�es the

number of discrete Fourier transform (DFT) points to use in the PSD estimate.

Figure 3-3: Welch Power Spectral Density Estimate

3.10 Flow diagram of the proposed Neural Network Process

Figure 3-4 shows the �ow chart of the fault detection and classi�cation system pro-

posed in this thesis. The Single phase inverter which operates on the Pulse Width

Modulation(PWM) technique receives DC Supply from a 20V ideal DC voltage source

and then the inverter converts it to AC with a desirable frequency of 60Hz. The in-
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verter produces an output voltage waveform and this sine wave which has harmonic

distortions is subjected to an RLC �lter. The resulting output voltage is collected

which then becomes our raw data. This raw data goes through two major data anal-

ysis step which is: pre-processing and feature extraction. At the data pre-processing

stage, the raw fault data is cleaned, smoothed and normalized to ensure accurate,

e�cient, or meaningful analysis. Thereafter, high level features or attributes are ex-

tracted from the data using the pwelch's method to produce the training data. Then,

the process of model construction begins with o�ine training and appropriate tun-

ing.The training data goes through the feed forward network which is made of the

input layer, hidden layer and output layer with a 10-5-3 node con�guration respec-

tively. The nodes calculate the weighted sum of their input signals and output the

result of the activation function with the weighted sum. The output at the output

node becomes the open-loop result. According to the back-propagation methodology

anchored on the generalized delta rule earlier discussed in this thesis, the error which

is the di�erence between the correct output or target data and the resulting output is

back-propagated until it reaches the hidden layer and weights are updated to reduce

the error. This whole process is repeated for all training data points until the error

reaches an acceptable tolerance level as retraining the model with the same data usu-

ally improve the model. The next stage is model selection and evaluation. At this

stage, the best model is chosen and appropriately deployed for di�erent classi�cation

applications as deemed �t.
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Figure 3-4: Flow diagram of the proposed Neural Network Process

3.11 Performance Timing for Faults

This section measures performance of the code in terms of the time elapsed using the

tic/toc, clock and CPU time commands in MATLAB. The various performance timing

functions help to estimate how long the feature extraction took from the standpoint of

the raw voltage data collected. The �tic/toc� command allows �toc� read the elapsed

time from the stopwatch timer initiated by the �tic� command. The �clock� command

records current date and time as date vector but the clock function is based on the

system time. The �cputime� command returns the total CPU time (in seconds) used
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by the MATLAB application from the time it was started. A Dell G7 15 (7588) gaming

laptop is used for calculation because the calculation time for the same program code

is di�erent but around an average value irrespective of computer's operating speed.

Table 3-2 below shows gives a detailed performance timing information with respect

to the di�erent iterations considered. It took an approximate time of 4 hours, 2 hours

and 9 minutes to compute 20,000, 10,000 and 1,000 iterations respectively.

Elapsed Time (Secs)

Epochs Stop watch Time CPU Time Real Time

1,000 0.630 0.844 532.53

10,000 0.646 0.859 5848

20,000 0.504 0.650 13667

Table 3-2: Performance Timing Computations



52

Chapter 4

Results and Discussion

4.1 Training, validation, and testing of neural networks

The neural network model was trained for di�erent epochs which ranges from 1,000,

10,000 and 20,000 training set respectively. After the training was completed, the per-

formance of each neural network was evaluated using two indicators: the loss or error

function and classi�cation Accuracy. In this thesis, Cross-entropy and Mean Square

Error (MSE) are types of loss functions used when training neural network models.

Conversely, the Neural Network toolbox in Simulink of MATLAB uses the entire data

set in three parts; Training, Validation and Testing. Training data (which captures

a 70% of the total data samples) are presented to the network during training and

the network is adjusted according to its error. Also, validation data (which captures

a 15% of the total data samples) measures network generalization, and halt training

when generalization stops improving and testing data (which also captures a 15%

of the total data samples) have no e�ect on training and so provide an independent

measure of network performance during and after training.

The performance of the trained neural network is tested through the Confusion matrix

or classi�cation accuracy as the case may be. The Confusion matrix or error matrix

of the training, validation and testing phases is a tabular visualization of the model

predictions versus the ground-truth labels. Each row of confusion matrix represents

the instances in a predicted class and each column represents the instances in an

actual class. The confusion matrix shows that the e�ciency of the trained neural
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network in terms of its ability to check and identify correctly the three possible types

of the fault.

4.2 Evaluation Metrics

Metrics are used to monitor and measure the performance of a model during training

and testing. In this thesis, two typical classi�cation-related metrics were considered.

They are;

(i) Classi�cation Accuracy

(ii) Loss function

4.2.1 Classi�cation Accuracy

Classi�cation Accuracy are learning curves de�ned as the number of correct pre-

dictions divided by the total number of predictions, multiplied by 100. It can be

mathematically expressed as:

Classi�cation Accuracy =
Number of correct predictions

Total number of predictions
× 100

4.2.2 Loss Function

Loss functions are functions or learning curves (not necessarily a metric) that show a

measure of the model performance and are used to train a machine learning model,

indicating the fraction of samples which are misclassi�ed.

These learning curves provide an indication of three things: how quickly the model

learns the problem, how well it has learned the problem, and how noisy the weight

updates were to the model during training.
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4.3 Fault Description

This section represents the di�erent categories of fault with speci�c Fault ID which

would be referred to in subsequent lines.

Fault De-

scription

Fault ID Faulty Com-

ponent

No Fault 1 Normal Operation

Single Fault 2 S1

3 S2

4 S3

5 S4

Double Fault 6 S2 & S3

7 S1 & S2

8 S3 & S4

Triple Fault 9 S1, S2 & S3

10 S2, S3 & S4

Multiple Fault 11 S1, S2, S3 & S4

Table 4-1: Detected Faults and Description

Also, Fault IDs can be grouped into �ve (5) categories based on its Fault description

or system condition states for better organization and reference:

� Fault type 1: {1}

� Fault type 2: {2, 3, 4, 5}

� Fault type 3: {6, 7, 8}
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� Fault type 4: {9, 10}

� Fault type 5: {11}

4.4 Fault Classi�cation and loss function results for 1,000 iterations

The Fault classi�cation problem is solved using an input data and target data derived

with one-hot encoding for di�erent iterations. The model of our neural network has

a structure expressed as: nodelist = [Inod, 5, Onod]. Where Inod is the number of

nodes in the Input Layer, Onod is the number of nodes in the Output Layer and

5 represents the number of nodes or neurons in the hidden Layer. In this analysis,

we used the neural network with a single hidden layer whose structure is 10-5-3

and are trained using the Fault Data generated through simulation.In comparing our

results with other data-driven method, Table 4-2 summarizes the results from Deep

Learning Toolbox (DPLT) and our deep neural network model shows the best overall

fault classi�cation rate.

The overall Classi�cation Accuracy and loss function for each fault state for 1000

Epochs is summarized in Table 4-2 and Table 4-3 respectively. The Classi�cation

accuracy for normal and some selected faulty state, representing single, double, triple

and multiple faults is shown in the �gures below, and only one confusion matrix is

provided here for brevity.

Figure 4-1 shows good convergence behavior for both mean square error loss and

classi�cation accuracy under a normal operating condition of the studied system.

From the �gure, we can see the model performed well, achieving a classi�cation

accuracy of about 100% on the training dataset.



56

Figure 4-1: Line Plots of Loss and Accuracy over 1000 Training Epochs

Figure 4-2 represent the behavior of a single switch fault (s1) with method 2. From

the �gure, we can see that the fault classi�cation accuracy for Fault type 2 rises all the

way up to 100% which indicates that our network correctly classi�es all 1,000 training

samples. We can also see that a shallow network is su�cient to detect correctly this

fault type. In the �rst 50 epochs the accuracy rises to just under 94% percent. Finally,

at around epoch 100 the classi�cation accuracy pretty much stops improving. Later

epochs merely see small stochastic �uctuations near the value of the accuracy at epoch

100. In other words, what our network learns after epoch 100 no longer generalizes

to the test data and so it's not useful learning. We say the network is over-�tting or



57

over-training beyond epoch 100.

Figure 4-2: Line Plots of Loss and Accuracy over 1000 Epochs for single
switch

Figure 4-3 shows the result of (s1) switch which is typical of a single switch fault when

training with Method 1. The plot also shows the unstable nature of the training

process with the chosen con�guration. From the �gure, we can see that the plot

depicts that the noisy updates result in noisy or poor performance throughout the

duration of training. The shape of the error surface is bumpy (not as smooth) as

other loss functions (trained with the second method) where small changes to the

weights are causing large changes in loss.
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Figure 4-3: Plots of Training error and Accuracy over 1000 Epochs for single
switch

Figure 4-4 is created showing two line plots of training error and classi�cation accu-

racy, all of which are indicative of the Fault type 3. From the �gure, we can see that

the Fault Classi�cation Accuracy of Fault type 3 ranges from (98.6% to 100%). There-

fore, this implies that, our shallow network model is enough to e�ectively classify this

Fault-type for 1000 simulation runs.
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Figure 4-4: Plots of error and accuracy over 1000 Epochs for double switch
faults

Figure 4-5 belongs to the family of Fault type 4. From the �gure, the Fault classi�-

cation Accuracy is between the range of (99.4% to 99.8%), depending on training or

re-training which actually helps to optimize network on inputs and targets. As we

can see, our shallow network model is enough to e�ectively classify this Fault-type

for 1000 simulation runs.



60

Figure 4-5: Plots of training error and Accuracy over 1000 Epochs for triple
faults

Figure 4-6 belongs to the family of Fault type 5. In the �rst 150 epochs, the accuracy

rises up to 90%. From the �gure, the overall Fault Classi�cation Accuracy is around

98.6%.
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Figure 4-6: Plots of MSE Loss and Accuracy over 1000 Epochs for multiple
faults

Figure 4-7 shows the training performance plot using the Deep Learning Toolbox

(DPLT). As a basis for comparison, the �gure indicates the result of the Fault type

2 (which in this case is the s1 switch). The overall cross-entropy error of the trained

neural network is 4.2026e − 07 and it can be seen from the �gure that the testing

and the validation curves have similar characteristics which is an indication of e�cient

training.The result also shows that our method had a better accuracy in terms of clas-

si�cation and training error plots. This training stopped when the validation error

occurred at iteration 23. From the �gure, the result is reasonable because of the fol-

lowing considerations; the �nal cross-entropy error is small, the test set error and the
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validation set error have similar characteristics and there is no signi�cant over�tting

that occurred by iteration 23 (where the best validation performance occurs).

Figure 4-7: Line Plots of Cross-entropy Loss over 1000 Epochs under normal
condition

Figure 4-8 shows that the e�ciency of the trained neural network in terms of its

ability to check fault is 100%.
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Figure 4-8: Confusion matrix over 1000 Training Epochs under faulty con-
dition

Table 4-2 compares the results of two di�erent methods for 1000 epochs. In terms of

classi�cation accuracy, our shallow neural network model shows the best overall fault

classi�cation rate.
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Fault ID DPLT Ours

1 100 100

2 100 100

3 100 100

4 100 100

5 100 100

6 98.4 98.6

7 99.8 100

8 100 100

9 98.1 99.8

10 98.4 99.6

11 98.1 98.6

Overall 99.35 99.69

Table 4-2: Fault Classi�cation rates(%) of di�erent neural network models

Table 4-3 summarizes the results from di�erent data-driven methods. The result ob-

tained using DPLT and our methods were used for comparison. DPLT in Table 4-3

used Sigmoid and Softmax Activation functions for hidden layer and output layer re-

spectively and the network is trained with scaled conjugate gradient back-propagation

(trainscg). Method 1 in Table 4-3 used Sigmoid and Linear Activation functions for

hidden layer and output layer respectively. Method 2 in Table 4-3 used ReLu and

Softmax activation functions for their hidden layer and output layer respectively. The

Method 2 was formulated to circumvent the problem of non-convergence and instabil-

ity associated with Method 1. After thorough analysis, our proposed networks show
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the best overall average training error.

Average Train-

ing Error

Our Method

Fault ID DPLT Method 1 Method 2

1 7.402e-17 4.496e-07 1.212e-11

2 4.203e-07 5.088e-04 2.422e-07

3 1.884e-07 5.000e-04 6.156e-07

4 7.099e-07 6.314e-04 7.896e-07

5 4.997e-07 4.933e-04 3.737e-07

6 2.691e-02 1.147e-03 1.366e-02

7 3.910e-05 1.049e-03 2.261e-03

8 2.256e-04 7.396e-04 3.662e-04

9 1.095e-02 1.200e-03 1.738e-03

10 3.338e-02 1.331e-02 5.619e-03

11 2.224e-02 9.243e-04 1.519e-02

Overall 8.523e-03 1.864e-03 3.531e-03

Table 4-3: Loss Function of di�erent methods over 1,000 Epochs

4.5 Fault Classi�cation and loss function results for 10,000 iterations

Now, let us consider the fault classi�cation problem of our studied Inverter process.

The fault classi�cation problem is solved by considering a data sample of 10,000 for
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the di�erent fault types aforementioned. In a similar fashion as the result analysis for

1,000 data samples, the classi�cation accuracy and loss results are presented below.

Figure 4-9 shows good convergence behavior for both Sum of Squared Error loss and

classi�cation accuracy under a normal operating condition of the studied system.

From the �gure, we can see that the model performed well, achieving a classi�cation

accuracy of 100% on the training dataset from the �rst to the last epoch.

Figure 4-9: Line Plots of MSE Loss and Accuracy over 10000 Training Epochs

As you can see from Figure 4-10, we observed that for Fault type 2, the classi�cation

accuracies improve considerably for the �rst 100 Epochs, owing to the use of more

training data.
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Figure 4-10: Line Plots of MSE Loss and Accuracy for s3 in Fault type 2

Figure 4-11 show how the classi�cation accuracy on the training data changes over

time. In the test suite, Fault type 3 which is typical of double switch fault really

learns about peculiarities of the training set with an accuracy that rises all the way

up to 100%.
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Figure 4-11: Line Plots of Loss and Accuracy typical of Fault type 3

Figure 4-12 represents the behavior of Fault type 4. In this case, we can see the model

performed reasonably well, achieving a classi�cation accuracy of about 98.77% on the

training dataset.
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Figure 4-12: Line Plots of Loss and Classi�cation Accuracy typical of Fault
type 4

Figure 4-13 represents the behavior of Fault type 5 to training Loss with the method

1. It shows a deviation from the normal. The result is interesting because of its quick

convergence and stability when the same con�guration gave a bumpy training curve

when applied to 1000 iterations and even double switching faults of 10,000 iterations.
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Figure 4-13: Line Plots of Loss and Classi�cation Accuracy typical of Fault
type 5

Figure 4-14 represents the behavior of Fault type 5. In this case, we can see the model

performed relatively well, achieving a classi�cation accuracy of about 93.14% on the

training dataset.



71

Figure 4-14: Line Plots of Loss and Classi�cation Accuracy typical of Fault
type 5

Figure 4-15 shows the training performance plot using the Deep Learning Toolbox

(DPLT). The Time Delay Neural Network method contains 1 hidden layer and 5

neurons in each layer. As a basis for comparison, the �gure indicates the result of

the Fault type 4. The overall cross-entropy error of the trained neural network is

2.639e − 02 and it can be seen from the �gure that the testing and the validation

curves have similar characteristics which is an indication of e�cient training.The

result shows that our method had a better accuracy in terms of classi�cation and

training loss. This training stopped when the validation error occurred at iteration

111. From the �gure, the result is reasonable because of the following considerations;

the �nal cross-entropy error is small, the test set error and the validation set error

have similar characteristics and there is no signi�cant over�tting that occurred by
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iteration 111 (where the best validation performance occurs).

Figure 4-15: Training Performance Plot of Cross Entropy Loss typical of
Fault type 4

Figure 4-16 shows that the e�ciency of the trained neural network in terms of its

ability to check fault type 4, which is about 98.3%.
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Figure 4-16: Confusion Matrix typical of Fault type 4 over 10000 training
epochs

Table 4-4 compares the results of two di�erent methods for 10000 epochs. In terms of

classi�cation accuracy index, our shallow neural network model shows a good overall

fault classi�cation rate. Perhaps, could have shown the best overall classi�cation rate

if we had the luxury of re-training easily.
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Fault ID DPLT Ours

1 100 100

2 100 100

3 100 100

4 100 100

5 100 100

6 98.30 96.75

7 98.60 100

8 98.90 99.95

9 98.30 96.38

10 98.50 98.77

11 97.50 93.14

Overall 99.10 98.63

Table 4-4: Fault Classi�cation rates(%) for 10,000 Simulation runs

Table 4-5 detailed the average training error of di�erent methods. However, the results

sprang up some surprises. Method 1 which didn't converge well for the di�erent fault

types over 1,000 training epochs performed relatively well with 10,000 training epoch.

Moreover, majority of the Fault ID converged well in a stable manner and has very

small training error. The Neural Network model formulated with Method 1 shows an

overall performance, with method 2 in second place and then DPLT in last place.
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Average Train-

ing Error

Our Method

Fault ID DPLT Method 1 Method 2

1 7.402e-17 5.423e-10 1.618e-15

2 5.670e-07 5.490e-05 1.753e-09

3 4.856e-07 5.024e-05 1.666e-10

4 9.419e-05 2.674e-09 1.753e-09

5 4.828e-07 5.053e-05 2.382e-09

6 1.561e-02 4.307e-14 2.068e-02

7 8.488e-03 7.301e-19 9.667e-07

8 1.175e-02 2.564e-09 7.088e-04

9 2.639e-02 6.741e-09 2.198e-02

10 1.489e-02 5.787e-10 1.010e-02

11 2.796e-02 5.314e-09 1.186e-02

Overall 9.564e-03 1.864e-03 5.939e-03

Table 4-5: Loss Function of di�erent methods over 10,000 Epochs

4.6 Fault Classi�cation and loss function results for 20,000 iterations

Now, let us consider the fault classi�cation problem of our studied Simulink model.

The fault classi�cation problem is solved by considering a data sample of 20, 000 for

the di�erent fault types aforementioned. In a similar fashion, the result analysis for

20, 000 data samples, the classi�cation accuracy and loss results are presented below.
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Figure 4-17 shows the expected behavior as we can see that the model rapidly learns

the problem. At about 15 epochs or even less, the model leaped up to more than 90%

accuracy. We could have stopped training at epoch 50 instead of epoch 20,000 due

to learning speed or to avoid over-�tting. However, the model converged at a larger

batch size and was stable during learning.

Figure 4-17: Training Learning Curves of a single switch over 20,000 epochs

Figure 4-18 exhibited an interesting learning curve which is slightly di�erent from

other category in Fault type 3. Before 10,000 epochs, it was impossible to stop

training because it has a noisy weight updates. At about 8,000 epochs, this plot

depicts clearly that the model is relatively slow to learn this problem, converging at
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a solution after 10,000 epochs, but also stabilizes more towards the end of the run.

Figure 4-18: Training Learning Curves of double switch faults over 20,000
epochs

Figure 4-19 depicts another interesting learning curve. We can see that the model

is relatively slow to learn this problem, thus di�cult �nding a point of convergence.

This particular test suite deviates from other categories in Fault type 4. However,

we can say that the noisy updates has a signi�cant e�ect on its noisy performance

throughout the duration of training. Nevertheless, the model almost converged and

reached learning stability.
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Figure 4-19: Training Learning Curves of triple switch faults over 20,000
epochs

Figure 4-20 leaped up to about 90% accuracy in about 60 epochs. From the learning

curve, the model learns rapidly and converged quickly to a solution at about 1000

epochs but with relatively noisy weight updates.
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Figure 4-20: Training Learning Curves of multiple switch over 20,000 epochs

Table 4-6 and Table 4-7 summarizes the results of training error and classi�cation

accuracy over 20,000 training epochs.
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Average Train-

ing Error

Our Method

Fault ID DPLT Method 1 Method 2

1 7.402e-17 1.405e-12 8.638e-17

2 4.691e-07 4.994e-05 6.904e-12

3 3.734e-07 2.820e-07 5.456e-12

4 1.343e-05 4.649e-05 3.135e-11

5 5.272e-07 4.674e-05 4.299e-11

6 1.6021e-02 2.836e-05 1.998e-02

7 1.102e-03 4.863e-05 4.389e-07

8 6.828e-03 6.641e-05 1.016e-03

9 6.949e-03 8.573e-05 8.527e-04

10 1.277e-02 4.442e-05 1.145e-02

11 2.085e-02 8.418e-05 4.687e-02

Overall 5.867e-03 4.556e-05 7.288e-03

Table 4-6: Loss Function of three di�erent methods
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Fault ID DPLT Ours

1 100 100

2 100 100

3 100 100

4 100 100

5 100 100

6 98.20 97.26

7 99.9 100

8 99.70 99.91

9 99.40 99.91

10 98.70 98.69

11 98.20 90.89

Overall 99.46 98.78

Table 4-7: Fault Classi�cation rates(%) for 20,000 Simulation runs
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Conclusion

In this thesis, we applied shallow neural networks to the problem of fault detection

and classi�cation for di�erent training epochs and a built-in function �nprtool� in

MATLAB was used to perform o�ine training of the neural network for the purpose

of comparing methods. The proposed networks perform well with the selected training

data set. The proposed network shows an 100% accuracy for single switching faults

across 1000, 10,000 and 20,000 training iterations. This implies that the switching

and conduction periods of the switch (single in this case) has zero power loss for signif-

icant training time. Conversely, the proposed network shows an average classi�cation

accuracy of about 99% for double switching faults but an accuracy of between 96.38%

and 99.91% is observed in the case of triple switching faults. Even though the average

accuracy for multiple switching faults was about 94.21%, relatively lower compared

to other categories of fault considered, the general classi�cation performance of the

network is still high. Obviously, the classi�cation performance between normal and

abnormal conditions is quite satisfactory. Although, the results presented in this the-

sis looks promising, several points need to be addressed in future works. First, the

disadvantages of prolonged processing time in neural networks, especially for 10,000

and 20,000 training epochs did not give too much room for repeated training of error

and perhaps, classi�cation accuracy to give better results. Otherwise, our method

would have improved upon the classi�cation accuracies of the DPLT method for both

10,000 and 20,000 training iterations. Second, the same technique can be used to

analyze the faults in a three-phase inverter system with a pilot view of exploring

di�erent types of neural network (e.g. Convolutional Neural Network) to test and see

if they perform better. Lastly, the networks developed in this thesis which have been
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tested in simulation should be applied to an experimental system.
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Appendix

Appendix A

Matlab Code for fault Data Capture

clear

close all

% parameters

%FT = 0.03 * rand() + 0.05;

FT = 0.03 * rand();

s1_set = 2; % 2=no fault, 1=fault short, 0=fault open

s2_set = 2;

s3_set = 2;

s4_set = 2;

my_max = 1000;

% Capture multiple data sets under the same fault condition with random

% fault time and random measurement error. Write to data file after each

% iteration.

fileID = fopen('NN_data_test_s1_1000.txt','w');

for x=1:my_max
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% start simulation

%FT = 0.03 * rand() + 0.05; % new random fault time

FT = 0.03 * rand();

%my_pick = randi([1 4]);

my_pick= 1;

s1_set = 2; % initialize

s2_set = 2; % initialize

s3_set = 2; % initialize

s4_set = 2; % initialize

if (my_pick == 1)

s1_set = randi([0 2]); % 2=no fault, 1=fault short, 0=fault open

end

if (my_pick == 2)

s2_set = randi([0 1]); % 2=no fault, 1=fault short, 0=fault open

end

if (my_pick == 3)

s3_set = randi([0 1]); % 2=no fault, 1=fault short, 0=fault open

end

if (my_pick == 4)

s4_set = randi([0 1]); % 2=no fault, 1=fault short, 0=fault open

end

% To measure time, the tic/toc, cputime and clock commands

% tic--toc--> Stopwatch time

% c=clock---> Real time measurement

% t = cputime;e = cputime-t ---> CPU time

% use any of the time commands to measure the code performance
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%tic

sim('NN__fault_detection_data_generator.slx')

current_data = ans.voltage_measured.Data;

[pxx,w] = pwelch(current_data, 100, [], 18);

%toc

plot(w/pi,10*log10(pxx))

xlabel('\omega / \pi')

%hold on

fprintf(fileID,'%6.2f%6.2f%6.2f%6.2f%6.2f%6.2f%6.2f%6.2f%6.2f%6.2f', 10*log10(pxx));

fprintf(fileID,'%d %d %d %d %6.2f\r\n',s1_set,s2_set,s3_set,s4_set,FT);

end

hold off

fclose(fileID);

Appendix B

Training Algorithm of the Neural Network for Method 1

% NN implementation via backpropagation using

% one hidden layer (sigmoid) and one output layer (linear)

% For use with PSD data from 1-phase Simulink inverter with MOSFET faults

% Written by, V. Winstead

% Dec 1, 2019

%

% hidden layer fn --> logsig(n) = 1 / (1 + exp(-n))

% output layer fn --> purelin(n) = n
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close all

clear

% configuration

n1 = 5; % number of neurons in layer 1 (hidden layer)

i_size = 10; % length of input vector

o_size = 4; % length of output vector

my_alpha = 0.005; % learning rate

s = rng;

% initial conditions on weights (W) and bias offsets (b)

%% adjusted starting weight and bias

W1 = randn(n1, i_size);

b1 = randn(n1, 1);

W2 = randn(o_size, n1);

b2= randn(o_size, 1);

% open data file

fileID = fopen('NN_data_test_s1_s2_s3_s4_1000.txt','r');

formatSpec = '%f %f %f %f %f %f %f %f %f %f %d %d %d %d %f';

A = fscanf(fileID,formatSpec, [15 Inf]);

fclose(fileID);

A = A'; % data read in transposed

p = A(:,1:10); % PSD data only

fault_device = A(:,11:14); % fault condition for each MOSFET

my_index = length(p); % number of iterations to train NN
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for z = 1:my_index

% compute output of hidden layer

my_temp = W1 * p(z,:)' + b1;

a1 = 1 ./ (1 + exp(-my_temp));

% compute output of output layer

my_temp = W2 * a1 + b2;

a2 = my_temp;

% compute error

my_e = fault_device(z,:)' - a2;

% compute partial differentials

F1 = diag((1-a1).*a1);

F2 = diag(ones(o_size, 1));

% compute backpropagation starting with 2nd layer

s2 = -2 * F2 * my_e;

s1 = F1 * W2' * s2;

% update weights and bias values

W2 = W2 - my_alpha * s2 * a1';

b2 = b2 - my_alpha * s2;

W1 = W1 - my_alpha * s1 * p(z)';

b1 = b1 - my_alpha * s1;
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my_e_out(z) = norm(my_e); % store metric of errors

% Average Training error

E1(z) = my_e_out(z)/ my_index;

end

plot(E1)

xlabel('Epoch')

ylabel('Average of Training error')

legend('Average Training error')

title('model loss')

Appendix C

Training and Testing Algorithm of the Neural Network for Method 2

%% (DEEP)NN implementation

% For use with PSD data from 1-phase Simulink inverter with MOSFET faults

%

% hidden layer fn --> 1

% output layer fn --> 1

%% Author:Orukotan, Ayomikun Samuel <ayomikun.orukotan@mnsu.edu>

% Feb 7, 2020

%%

close all;

clear *;
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clc;

% open data file

fileID = fopen('NN_data_test_s4_1000.txt','r');

formatSpec = '%f %f %f %f %f %f %f %f %f %f %d %d %d %d %f';

A = fscanf(fileID,formatSpec, [15 Inf]);

fclose(fileID);

A = A'; % data read in transposed

X = A(:,1:10); % PSD data only

fault_device = A(:,11:14); % fault condition for each MOSFET

% Choose

%DI = fault_device(:,1);

%DI = fault_device(:,2);

%DI = fault_device(:,3);

DI = fault_device(:,4);

% NN Config

[N1,N2] = size(X);

Onod = 3; % 3 output nodes representing the 3-classes: 0 1 and 2

Inod = N2; % nodes of each training data

N = N1; % length of training data

H = 1; % hidden layers (odd)

LS = H + 1; %layer space

% output encoding with One-hot encoding

D = zeros(N,Onod);
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for id = 1:N

if DI(id) == 0

D(id,:) = [1 0 0];

elseif DI(id) == 1

D(id,:) = [0 1 0];

elseif DI(id) == 2

D(id,:) = [0 0 1];

end

end

% node/neuron list in each layer

% 5 hidden nodes in H hidden layer(s)

nodelist = [Inod, 5, Onod]; % in-hid-...-hid-out;

s = rng;

W = cell(LS,1); % weights

dW = cell(LS,1); % prev weights

M = cell(LS,1); % momentum of weights

% initialize weights and its momentums

for id = 1:LS

rb = sqrt(2/(nodelist(id+1)+nodelist(id))); % 6 for normal, 2 for uniform

%W{id} = 1*rb*rand(nodelist(id+1), nodelist(id)) - 0; %normal [0 rb]

W{id} = 2*rb*rand(nodelist(id+1), nodelist(id)) - rb; % uniform, [-rb rb]

M{id} = zeros(nodelist(id+1), nodelist(id));

dW{id} = zeros(nodelist(id+1), nodelist(id));

end
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% train

horizon = 1000; % number of times to train NN

E1 = zeros(horizon, 1); % error metric

Cid = zeros(horizon, 1); % error metric

PCid = zeros(horizon, 1); % error metric

for epoch = 1:horizon

[W,dW,M] = DeepPSDNN(W, dW, M, X, D, LS);

% this epoch's training error

e = 0;

es1 = zeros(Onod,1);

% Verify. inference

Y = zeros(N,Onod);

for k = 1:N

x = X(k,:)';

d = D(k,:)';

u = x;

y = cell(LS,1);

% FORWARD

for id=1:LS

v = weightSum(W{id},u);
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if id == LS

y{id} = Softmax(v);% out Sigmoid(v); Softmax(v)

else

y{id} = ReLU(v); % Sigmoid(v); ReLU(v); % hid

u = y{id};

end

end

Y(k,:) = y{LS,1};

% sum of squared errors

es1 = es1 + (d - y{LS,1}).^2;

e = norm(es1); % norm of classification errors

end

% save learning process

E1(epoch) = e / N;

% percentage of correct fault identification

for k = 1:N

for id = 1:3

if abs( Y(k,id)) < 0.5 && abs(Y(k,id)) >= 0

Y(k,id) = 0;

elseif abs(Y(k,id)) <= 1 && abs(Y(k,id)) >= 0.5

Y(k,id) = 1;

end
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end

if norm(D(k,:)-Y(k,:)) == 0

Cid(epoch) = Cid(epoch) + 1;

end

end

PCid(epoch) = (Cid(epoch) / N ) * 100;

end

% plot training errors

subplot(211)

plot(E1, 'r-.')

xlabel('Epoch')

ylabel('Average of Training error')

title('Model Loss')

legend('Training error')

% plot correct id

subplot(212)

plot(PCid, 'b')

xlabel('Epoch')

ylabel('Correct Identification (%)')

title('Classification Accuracy')

legend('Accuracy')
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