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Abstract 
 

Motivated by the need for assistance of indoor guidance for visually impaired 

persons (VIPs), a sensing system using inertial and geo-magnetic information has been 

developed to navigate a VIP person indoor. Orientation estimation, which is critical for 

indoor localization, is conducted using the information of the angular velocity, acceleration 

and geomagnetic field. By analyzing the characters of human gait, a method to eliminate 

the accumulated drift introduced by double integrations is introduced. By attaching the 

inertial sensor to the foot, the periodic stationary state will facilitate the drift correction. 

Also, the distinctive distortion of the geomagnetic field, which contains spatial 

information, provides a good approach to estimation location by utilizing an improved 

subsequence Dynamic Time Warping (DTW) Algorithm. To eliminate the effect of the 

relative constant geomagnetic field, magnetic tensor is introduced to extract the magnetic 

distortion. Kalman filter is utilized to fuse the orientation and location estimations of 

respective inertial and geomagnetic information and provide reliable and accurate indoor 

location. To demonstrate the accuracy and efficiency of the newly designed algorithms and 

sensing system, a prototype which consists of inertial sensors and magnetic tensor sensor 

was developed.  Several experiments with three different indoor routes were designed to 

demonstrate and illustrate the sensing system.
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Chapter 1. Introduction and Background 

1.1 Introduction 

Human relies on the vision systems to percept and interpret their surroundings. 

Estimated in 2010, globally there were 285 million visually impaired people, of whom 39 

were blind. Most of them live in developing countries [1]. For people who lost the visual 

ability, way-finding, which is an easy task for healthy people to navigate indoor and 

outdoor, becomes a challenging and daunting task.  

Traditionally, several methods have been utilized to assist the visually impaired 

person (VIP) to find a way, such as tactile paving, white canes and guide dogs. Tactile 

paving is a system of textured ground surface indicators designed to assist the VIPs to find 

the way and avoid obstacles. As part of infrastructures, it is not practical to promote tactile 

paving in the developing countries where most of VIPs live and have this indicator system 

installed everywhere (indoor and outdoor). White canes are one of the most widely used 

tools to assist the VIPs for wayfinding due to the low cost, lightweight and small size. The 

VIPs feel confident about the information they percept from the white canes. By keeping 

scanning the limited areas ahead of the VIPs, they can only detect the sufficiently large 

obstacles (such as steps and uneven surface) near the ground/floor level. Guide dogs are 

another efficient method to assist the VIPs. However, it is very expensive to train a qualified 

guide dog, which can only serve for 5 years. Also, to take care of the guide dogs is not an 

easy task, especially for the VIPs. Traditional methods are not practical and efficient, which 
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leads to a high demand for new technologies/methods to guide the VIPs and facilitate their 

daily life. 

Although very high-resolution images are now widely available at low cost, 

optically obtained images must be processed digitally and converted into some other forms 

(such as voice and tactile) before they can be effectively appreciated by the visually 

impaired. Among the key challenges for a visually impaired person to effectively use 

existing vision algorithms (that are often designed for machine applications) is the lack of 

physical characteristics of objects in optically obtained images. Some other technologies 

like Wi-fi, Bluetooth and RFID have been used for indoor localization discussed in detail 

in section1.3. However, they do bring some disadvantages like infrastructure, time and 

accuracy. Thereby, a newly designed sensing system capable of assisting the VIPs for 

indoor navigation accurately and efficiently is highly desired. 

1.2 Introduction to Inertial and Magnetic Sensors 

Based on the sensor functionality, sensors can be divided into two categories, active 

sensors and passive sensors. An active sensor measures and retrieves the information of 

the physical quantity with the use of self-generated signals, such as LiDAR, ultrasonic, 

sonar etc. A passive sensor measures a naturally-generated physical quantity (or 

parameters) indicating object information and properties, such as gravity, light, 

temperature, magnetic field etc. Examples of passive sensors are thermocouple, 

geomagnetic sensor, optical sensor, Infrared sensor and inertial measurement unit (IMU) 

etc. 
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In this research, the primary sensors making use of naturally generated signals include 

micro-electromechanical system (MEMS) IMU (containing Gyroscope and 

Accelerometer) and MEMS Magnetometer sensors. A detailed sensor design for the newly 

designed sensing system is presented in Chapter 3.  

1. MEMS Gyroscope  

It has a proof mass resonating in one direction. According to newtons law a body 

continues to rotate in the direction of motions until an external force is acted upon it. When 

the resonating gyro mass is rotated, it deviates from its regular path by Coriolis effect. This 

is taken as an electrical signal which gives a measure of angular velocity of the object 

attached to the gyroscope. Figure 1 [2] illustrates a simplified structure of a MEMS 

gyroscope. 

 

Figure 1: MEMS Gyroscope  

2. MEMS Accelerometer  

Accelerometer has a proof mass representing a spring mass damping system. The 

proof mass is placed between two plates with gaps between plates and mass. Sensor 
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movement displaces the proof mass causing a change in capacitance, which gives a 

measure of acceleration of proof mass depicting the acceleration of object holding the 

sensor. Figure 2 [3] illustrates a simplified structure of a MEMS Accelerometer.  

 

Figure 2: MEMS Accelerometer 

3. MEMS Magnetometer 

It measures earth magnetic field and any anomaly fields using hall effect or 

magneto resistive effect. The change in magnetic field redistributes the flow of electrons 

in a thin conductive plate thereby creating a voltage difference. Figure 3 Illustrates working 

of Hall effect. 

 

Figure 3: Hall effect Illustration 
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1.3 Review of Prior and Related Work 

A review of prior and related work is organized in three subsections based on the 

general procedures of the indoor localization: 1) orientation and position estimation, 2) 

sensor fusion techniques.   

1.3.1 Orientation and Position Estimation  

Orientation estimation is the first step for indoor localization and can be obtained 

with different methods. For a VIP, navigation to a certain location is not possible through 

communication between brain and eyes. Cameras or visual sensors come next to eyes to 

capture surrounding information and can be used for orientation and position estimation of 

a VIP.  Vision-based navigation for robots [4,5] have been proposed, however, a VIP 

movement is complex and unsteady compared to a rigid body of a robot. Also, for accuracy 

a very complex algorithm is required and must be based on artificial intelligence or 

machine learning, which are at its nascent stage. But few methods like edge detection and 

fingerprinting methods [6,7] can be used where a large database of building pictures is 

gathered and compared with current location. This method is highly inaccurate with picture 

comparison and takes up a huge database processing time. Other method would be to use 

magnetometers. Magnetic compass has long been used previously to navigate in a certain 

direction. Advancements in MEMS technology [8] have made these magnetometers very 

compact.  Although these give approximate orientation, raw use of this technology is not 

recommended for a VIP in indoor orientation estimation as the magnetic field is influenced 

by the surrounding ferrous objects [9]. A good estimate of orientation can also be obtained 

from gyroscope readings as the angle rotated from the initial position is integrated [10]. 
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Gyroscopes have long been used for flight and rocket navigation and are very bulky. 

MEMS gyroscopes are  very compact and cheap but have accuracy issues as they suffer 

from drift if used for long time [11].  

After orientation estimation, localization would only be complete with position 

estimation. Wi-fi is used everywhere which uses designated spectrum of radio frequencies 

to communicate with devices. Like satellites for GPS, routers arranged at different 

locations can be used to identify the user’s position using triangulation method [12]. There 

are three ways to this method, Time of Arrival (Lateration method), Angle of arrival 

(Angulation method) and RSSI (radio signal strength indicator). The above-mentioned 

methods are accurate to 3-5m as they have multipath issues which leads  to incorrect 

position. Like Wi-fi technology, Radio Frequency Identification (RFID) is another method 

which uses transmitter and receiver technique [13] with tags placed at different reference 

locations. A method proposes a smart floor with RFID tags transmitting unique ID’s at all  

times to a portable terminal unit consisting RFID reader attached to VIP [14]. Similar use 

of RFID has been proposed with robot [15] and smartphones [16,17] as a portable unit. 

Limitations, however, include time and effort for reconfiguration. The accuracy of this 

method depends on the distance between each tag. Despite low accuracy, radio frequency 

method would be best for a normal person as he/she would use interpretation to reach the 

destination. However, for a VIP this might not be a best option. Like RFID tags Infrared 

LED’s have been proposed in [18,19] which are placed strategically indoor. However, for 

efficient transmission of Infrared signal, the source must be directed towards the receiver, 

which would be impossible for a VIP. A method named Dristi [20] proposes OEM 
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ultrasonic pilots placed in a room, two beacons and wearable computer attached to the VIP. 

This method is accurate and proposes to be switchable  between indoor and outdoor. 

However, the fact that the system being very bulky  is not practically wearable by a VIP. 

Magnetic sensors are another method of obtaining a user’s position. A magnetic  sensor  

reads the surrounding magnetic field but gets distorted by surrounding objects. Magnetic 

maps can be generated by moving the sensor on the hallway of a building using these 

sensors and will be used as a reference map. When a VIP moves through the same hallway 

with sensor, a new map is generated and can be compared  with reference map to obtain 

the position. However, as the navigation solely depends on the surrounding objects, any 

drastic change in surrounding results in change of magnetic map, which makes this method 

unreliable [21,22]. MEMS IMU generally include an accelerometer and gyroscope. 

Gyroscope has been discussed in earlier section and is used for orientation estimation. 

Accelerometers on the other hand, can be used for position estimation by double integration 

of accelerometer data. However, there are disadvantages as the accuracy is not 

recommended for navigation. Even a well calibrated IMU [23] tend to drift over long time 

usage due to double integration of accelerometer data to get the position of a user [24]. The 

accuracy can be resolved by a mounting the IMU on the foot of user. This method is called 

Zero Velocity Update (ZVU) and would have frequent stationary intervals for the IMU 

[25] to reduce the error. However, only high cost ($1000) IMU’s proved to be accurate 

with ZVU method and low cost ($50) IMU’s accuracy must be addressed.   
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1.3.2 Sensor Fusion Technique 

From discussions in orientation and position estimation literatures, every sensor has its 

pros and cons and if used as a single sensor, the result will not be accurate. To overcome 

this accuracy issue,  a technique called sensor fusion is implemented. This technique 

basically, combines results of all implemented sensors and give a better result than using a 

single sensor. There are sensor fusion algorithms which can be used like complimentary 

filter, Kalman filter, Extended Kalman filter, particle filter and some algorithms like AHRS 

and gradient decent specific for orientation estimation. Complimentary filter is basically a 

combination of high pass filter and low pass filter giving weightage for best of both. 

Kalman filter [26-29] and Extended Kalman filter uses a series of measurements observed 

over time containing statistical noise, inaccuracies and produces estimates of unknown 

variables that tend to be more accurate than those based on a single measurement alone. 

Particle filter is another filtering technique which uses Monte-Carlo method for estimation 

using random particles with gaussian noise. However, this method is useful to know a 

person’s location but would not be able to guide a VIP [30]. 

1.  Sensor Fusion for Orientation Estimation 

There have been many researches on human motion analysis using Attitude and 

Heading Reference Systems (AHRS), which understands the orientation of limbs using 

IMU mounted on human body. Sensor data can be fused using complimentary [31,32], 

gradient decent and Kalman [33-35] for attitude estimation. However, Kalman does 

provide accuracy but is computationally complex [36-42]. AHRS Algorithms used by 

Mahony, which uses only accelerometer and gyroscope works on complimentary filter, 
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having both proportional and integral gains. Madgwick AHRS [43] uses magnetometer, 

gyroscope and accelerometer sensors with the use of use gradient decent method. 

2. Sensor Fusion for Position Estimation 

Wi-Fi can be used in combination with an IMU [44] mounted on human body or a 

magnetic map from magnetometer [45] for position estimation. However, Wi-fi needs 

additional  infrastructure and maintenance. A monocular camera and an IMU has been used 

to complement each other using extended Kalman filter, where image processing technique 

like canny edge detection has been implemented [46]. However, image processing does 

take up time and depends on the optical conditions. Step detection is used widely to find 

the position of the user with an IMU mounted on foot. A double integration of acceleration 

for step length and heading information from gyroscope and magnetometer are clubbed 

using Kalman filter for position estimation [47,48]. Walking pattern is different for every 

individual and every limb in human body has specific acceleration. Placement of IMU on 

a human body must be chosen such that the drift can be corrected significantly. Other 

mounting methods include IMU attached to chest [49] and waist [50] for step detection and 

a particle filter is used to match position with floor map. A method has been implemented 

using magnetic coils arranged across the building generating magnetic field in combination 

to an IMU. However, like Wi-Fi, infrastructure is a problem [51,52]. IMU in smartphones 

have been used to generate magnetic map to aid inertial navigation by accelerometers 

[53,54]. This method of estimation using a smart phone are accurate than standalone IMU 

or magnetic map. However, foot mounted MEMS IMU has more advantages than a 

smartphone IMU. From literature study many ideas have been discussed like, Wi-Fi, RFID, 
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MEMS IMU, cameras, magnetic sensors and sensor fusion methods. However,  multipath 

and interference issues with radio frequencies, drift issues with inertial sensors, 

computational restriction with cameras and change of magnetic map with surrounding 

objects motivate us to develop a method for VIP indoor localization. The fact that MEMS 

IMU’s reduce error when mounted on user foot (ZVU method) can be used in a better way 

to get accurate localization. On other hand, magnetic map from geo magnetic sensors  has 

a possibility to compliment an IMU.  

1.4 Problem Description and Objectives 

Inspired by the fact that birds utilize the geomagnetic field for homing and 

migration, magnetic distortion or anomalies by steel structures, electrical closets, metal 

doors or frames in a building can be used for indoor navigation of an VIP. Meanwhile, to 

minimize the localization uncertainty and eliminate the effects of the magnetic fluctuation 

on the estimation, inertial information is integrated using sensor fusion methods. This can 

be achieved by three objectives. 

− The first objective is to estimate the orientation/position using inertial information. The 

inherently accumulative drift will be eliminated by using the characteristics of human 

walking. 

− The second objective is to estimate the position with geomagnetic information for the 

VIPs. The orientation information will be involved to correct the deviation introduced 

by the orientation difference between the magnetic map and real-time data. 
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− The third objective is to fuse the inertial and geomagnetic information to obtain 

accurate, reliable and robust position estimation. 

1.5 Outline and Organizations of Thesis 

Thesis can be outlines into five chapters discussing every stage of the project and 

methodology. Chapter 2 explains the different segments of orientation estimation, DTW 

and sensor fusion algorithms for VIP indoor localization. Sensing system design required 

for the proposed algorithm is discussed in Chapter 3. Experimental demonstration and 

analysis of the proposed method is discussed in Chapter 4 followed by conclusion and 

future work  in Chapter 5. 
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Chapter 2. Indoor Localization Using Inertial and 

Geomagnetic Information 

To successfully guide the VIPs indoor with low cost and high efficiency and 

accuracy, a new indoor localization method is developed using two types of naturally-

generated physical information, inertial and geomagnetic information. 

Inertial sensors such as accelerometers and gyroscopes are capable of directly 

measuring the acceleration and angular velocity. Mathematically, the location and 

orientation can be estimated by doing the integration. However, the measurement errors 

will be amplified/accumulated by the integration operation, which will contaminate the 

estimation results. Inspired by the fact that birds utilize the geomagnetic field for homing 

and migration, magnetic distortion or anomalies by steel structures, electrical closets, metal 

doors or frames in a building can be used for indoor navigation of a VIP. To minimize the 

localization uncertainty and eliminate the effects of the passive physical parameter 

fluctuation on the estimation, new sensor fusion algorithms are developed to provide more 

accurate indoor location estimation after individual analysis of indoor localization using 

inertial and geomagnetic information. 

In order to conduct indoor position tracking, several coordinate frames need to be 

introduced at first. To simplify this problem, we assume the earth is stationary and the earth 

frame is an inertial frame as shown in Figure 4 [55] 
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Figure 4: Co-ordinate Frame Representation 

− Sensor frame (s) is the coordinate frame of inertial sensors with its origin located at the 

center of sensors. All sensor readings are with respect to this frame. 

− Navigation frame (n) is a local coordinate frame that is defined as stationary with 

respect to the earth. The results of position tracking are the estimation of the location 

and orientation of the sensor frame with respect to the navigation frame. 

− Inertial/earth frame (i) is a stationary frame with the origin located at the center of the 

earth. The inertial sensors measure the linear acceleration and angular velocity with 

respect to the inertial frame. 

Since there is no relative motion between the navigation frame and inertial frame, 

inertial sensors are assumed to measure the linear acceleration / angular velocity with 

respect to navigation frame. 

𝑋𝑖 

𝑌𝑖 

𝑍𝑖 

n 
s 
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2.1 Orientation Representation 

Since several frames are utilized to perform the indoor localization as introduced 

above. The transformation and orientation representation between all those frames are 

critical and basis for the localization algorithms. Three types of orientation representation 

are introduced in this section. 

1. Euler Angle Representation 

Euler angles are indicated by pitch, roll and yaw, which follows a sequence of 

rotations X-Y-X, X-Z-X, Y-X-Y, Y-Z-Y, Z-X-Z and Z-Y-Z with the first and third rotation 

about same axis. Tait-Bryan conventions follows X-Y-Z, X-Z-Y, Y-X-Z, Y-Z-X, Z-X-Y and 

Z-Y-X. Let  ,  ,  be pitch, roll and yaw respectively. A rotation [R] can be defined by 

each axis rotation from Eq.(1a,b,c) 

     ( ) ( ) ( )Z Y X  =R    (1a) 
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However, due to the usage of trigonometry functions in the multiplication of 

matrices, Euler angles suffer with gimble lock, where one degree of freedom is lost. Gimble 

lock can be addressed by cumulative matrix transformation method. However, it is 

computationally expensive. 

2. Equivalent Axis-Angle Representation 

Axis-Angle is another representation shown in Figure 5, which defines any 

orientation as a rotation of a vector, ˆ ( , , )T

x y za a a a= , about an axis, ê , of an angle,  . 

Rotation, [R], can be represented from Eq.2.  However, Axis-Angle is also computationally 

expensive. 

 

Figure 5: Angle-Axis Representation 
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3. Quaternion Representation 

Like Axis-Angle, Quaternions representation also states that any rotation or 

sequence of rotation of a moving coordinate B about a fixed coordinate A can also be 

interpreted as a single rotation by an angle α about a fixed axis (called Euler axis), which 

is represented with a unit vector 
T

x y zu u u =  u . Thereby, a combination of a unit 

X
Y

Z



ê
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vector representing the axis and a scalar angle can uniquely determine a 3D rotation or the 

orientation of coordinate B relative to coordinate A. A number system, quaternions, 

consisting of four numbers are introduced to mathematically represent this quaternion 

rotation or orientation as below 

 1 2 3 4 cos 2 sin 2 sin 2 sin 2BA

x y zq q q q u u u    = = − − − q  (3a, b) 

The inverse (denoted by subscript −1) or conjugate (denoted by subscript *) of the 

quaternion rotation are introduced to represent the opposite rotation or swapped relative 

orientation, which is mathematically expressed in Eq. (4). 

( ) ( )  
1 *

1 2 3 4

BA BA ABq q q q
−

= = − − − =q q q  (4a, b) 

where qAB represents the orientation of coordinate A with respect coordinate B. 

To represent a sequential orientation and coordinate transformation, the Hamilton product 

(denoted by  ) of the quaternion is introduced in Eq. (5). This product is not commutative, 

which is expressed as   m n n m . 

   1 2 3 4 1 2 3 4

T

1 1 2 2 3 3 4 4

1 2 2 1 3 4 4 3

1 3 2 4 3 1 4 2

1 4 2 3 3 2 4 1

     

m m m m n n n n

m n m n m n m n

m n m n m n m n

m n m n m n m n

m n m n m n m n

 = 

− − − 
 

+ + −
 =
 − + +
 

+ − + 

m n

 
             

(5) 

Assume another coordinate C is introduced and its orientation qCB with respect to 

coordinate B is given. The orientation of C relative to A is represented with the quaternion 

product in Eq. (6). 
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CA CB BA= q q q  (6) 

Assume uA is a vector described in coordinate A. A 0(zero) is inserted to this vector 

to make it a row vector containing 4 elements. Given the relative orientation of coordinate 

B represented with qAB, the same vector described in coordination B is expressed in Eq. 

(7). 

( )B BA A BA


=  u q u q  (7) 

It can also be represented in a rotation matrix form.  

B A B

A
 =  u u R  

where 

( ) ( )

( ) ( )

( ) ( )

2 2

1 2 2 3 1 4 2 4 1 3

2 2

2 3 1 4 1 3 3 4 1 2

2 2

2 4 1 3 3 4 1 2 1 4

2 2 1 2 2

= 2 2 2 1 2

2 2 1

B

A

q q q q q q q q q q

q q q q q q q q q q

q q q q q q q q q q

 + − + −
 

  − + − +  
 + − + − 

R  

(8a, b) 

 

2.2 Orientation Estimation using IMU 

With the angular velocity
s

nsω represented in the quaternion form shown in Eq. (9a), 

the time rate of the orientation of the navigation frame relative to the sensor frame 

expressed with quaternion can be calculated using Eq. (9b). 

ˆ ˆ ˆ ˆ0s

ns x y z   =  ω ,
1

ˆ
2

ns ns s

ns= q q ω  (9a, b) 

By numerically integrating the quaternion derivative ns
q , the orientation of the navigation 

frame relative to the sensor frame 
ns

tq  can be calculated with Eq. (10b). 

, 1 ,

1

2

ns ns s

t est t ns t−= q q ω , , , 1

ns ns ns

est t est t t t−= + q q q  
(10a, b) 
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where, t is the time interval, , 1

ns

est t−q is the previous orientation estimation. 

2.2.1 Data Pre-processing 

Any error in orientation estimation of the foot in the navigation frame results in 

position error. In attitude estimation, accelerometer data is used in combination with 

gyroscope for correcting the pitch and roll during stationary and motion periods. Stationary 

accelerations would only include gravity component; however, motion period would 

include gravity component as well as any external accelerations. The latter is sufficiently 

higher to contaminate the orientation. Hence, a low pass filtering of accelerometer 

measurement ˆ s

nsa is required to ensure removal of high frequency components which 

mostly contributed by the motion and retain gravity component for orientation correction, 

giving out  ,

,
ˆ s F

ns ta  as low pass filtered data.  

 

 

Figure 6: Low Pass Filtering of Accelerometer Data 

2.2.2 Orientation Estimation  

Given the orientation represented with  1 2 3 4

ns q q q q=q , the gravitational 

acceleration with respect to the sensor frame 
s

nsa  can be calculated with Eq. (11). 

Low  Pass 

Filter 
ˆ s

nsa
,

,
ˆ s F

ns ta
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 ( )
( )

( )

( )

2 4 1 3

1 2 3 4

2 2

2 3

2

2

2 0.5

s ns n ns

ns ns

q q q q

q q q q

q q



 −
 

=   = + 
 

− −  

a q a q  (11a, b) 

Where,  0 0 0 1n

ns =a  is the gravitational acceleration with respect to the inertial 

frame (navigation frame). 

Due to the accumulated error in the orientation estimation , 1

ns

est t−q , there is a 

deviation between ,

s

ns ta and ,

,
ˆ s F

ns ta  (the measurements of the accelerometer), which is 

expressed in Eq. (12a) and Figure 7. The angular velocity is updated with the deviation as 

a

te   and Eq. (12b). 

,

, ,
ˆa s s F

t ns t ns t= e a a ,   , ,
ˆ +s s a a

ns t ns t P tK=ω ω e  (12a, b) 

where ,
ˆ s

ns tω is the measurement of the gyroscope at time t, a

PK  is a constant, which is 

similar to the gain of Proportional controller. With the corrected angular velocity obtained 

from Eq. (12b), the orientation can be estimated with Eq. (10). Figure 8 illustrates the 

overall algorithm for orientation estimation. 

 

Figure 7: Deviation calculation 
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Figure 8: Flowchart illustrating orientation estimation 

2.3 Position Estimation using IMU 

As mentioned above, the position can be estimated by double integration, which 

consequently introduces accumulative errors or drifts. By analyzing the gait phase of 

human (stance, heel-off, swing, and heel-strike), a method to correct the accelerometer drift 

is developed. 

2.3.1 Stationary Phase Detection  

The drift issues caused by long time usage of IMU can be reduced with the 

stationary phase detection method. This method requires the VIP to mount the IMU to one 

of his/her foot making use of stationary and motion intervals of walking foot. However, 

before stationary phase detection, accelerometer data is to be low-pass filtered to eliminate 

any existing noise. The filtered three acceleration components are close to zero for a 

stationary foot and non- zero for a walking foot. A magnitude of three acceleration 

components at each instant would help identify stationary and motion intervals for below 

and above threshold value respectively as shown in Figure 9 
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Figure 9: Illustration of Stationary Detection 

2.3.2 Zero Velocity Update and Drift Correction 

After threshold identification from stationary detection method, the velocity of the 

stationary phases (the rest three phases) should be approximately zero, which can be used 

for velocity and accelerometer drift correction represented with Eq.13. The acceleration 

measurements need to be converted from sensor frame ( ˆ s

nsa ) to navigation frame ( ˆ n

nsa ) 

with Eq.7 before correction and integration. Figure 10 shows the integrated velocity and 

displacement of one period motion (1 meter) before and after drift correction with non-zero 

final velocity in Figure 10(a) and zero final velocity in Figure 10(b). 
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Figure 11: Illustration of motion detection 

( ) ( ) ( )ˆˆ ˆ 1 ,n n n

ns ns nst t t t= − + v v a  (13a) 

(a) Original Data (a) Corrected Data 

Figure 10: Illustration of Velocity drift correction 

k1 k2 

h 
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( ) ( )
( )

( )
( )

( ) ( )
( )

( )

1

2

1 1 2

2 1

2

1

2

1 2

2 1

2

0

ˆ
ˆ

0

0

ˆ
ˆ

0

n

nsn n

ns ns

n

nsn n

ns ns

t k

k
t t t k k t k

k k

t k

t k

k
t t k t k

k k T

t k





= − −  
−

 





= −  
−

 

v
v v

v
a a

 (13b) 

  

( ) ( ) ( ) ( ) 21
1

2

n n n n

ns nst t t t t t= − +  + p p v a  (14) 

where Δt is the sampling period of the inertial sensor, k1 and k2 are the starting and ending 

points of the motion for this period (swing phase), which can be automatically detected 

based on the acceleration measurement. The acceleration will be within a user-defined 

threshold h illustrated by two red dash lines in Figure 11 if the foot or sensor does not move 

(stationary phases). The position can be calculated with corrected velocity 
n

nsv  and 

acceleration 
n

nsa  as shown in Eq. (14). 

2.4 Position Estimation using MTS  

By observing the phenomenon that the magnetic anomalies introduced by the 

magnetic objects indoor have different and unique features and characters at different 

locations, the distorted geomagnetic field has the potential to be used as an approach to 

offer location information, which is a good supplement for indoor localization using inertial 

information. 
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2.4.1 Magnetic Flux Density and Gradient 

Generally speaking, the measurements of the geomagnetic field T consists of three 

components, geomagnetic field BE, magnetic fields generated by man-made magnetic 

objects B  and unmodeled magnetic field BU as illustrated in Eq. (15).  Although indoor 

location information can be indicated by B, B is relatively small and cannot be directly 

measured with the existence of BE. Magnetic tensor [G], which is a 3×3 symmetric and 

trackless matrix with the expressions shown in Eq. (16), is introduced to extract the 

information of the magnetic anomalies due to ( )0.02 nT/mE B and   T B with 

ignorable BU. 

E U= + +T B B B  (15) 

 
x x y x z x

x y y y z y

x z y z z z

B B B

B B B

B B B

   
  

= =    
    

B
G

R
 (16a) 

   
T

=G G  and 0x x y y z zB B B +  +  =  (16b, c) 

2.4.2 DTW Algorithm 

A reference magnetic map, consisting of spatial magnetic information can be built 

using B and G. Intuitively, by matching the real-time measured magnetic information with 

a reference magnetic map, the location will be estimated. However, the walking speed is 

time-varying, which introduces some difficulties. Based on the traditional Dynamic Time 

Warping (DTW) method, a well-known technique to find an optimal alignment between 

two given time-dependent sequences, an improved subsequence DTW with the 

characteristics of computing time and space efficiency is introduced to conduct indoor 
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localization. We first define classical DTW, which is the basis, followed by the improved 

subsequence DTW. 

1. Classical DTW 

This method compares two different time series for a match between all the 

elements using a low-cost measure also known as local distance measure validating the 

extent of match between elements. Typically, a low-cost would mean a good match as an 

optimal match usually runs along all the low-cost measures. A cost matrix, N MC 

defined by ( , ) : ( , )n mC n m c x y= , can be obtained from all the elements of sequences defined 

as 
1 2{ , ,....., }NX x x x= where [1: ]n N= , N  and

1 2{ , ,....., }MY y y y= where [1: ]m M= ,

M  . Alignment match referred to as
1 2{ , ,....., }Lp p p p= , with 

( , ) [1: ] [1: ]l l lp n m N M=    for [1: ]l L  is obtained satisfying three conditions. 

(i) Boundary Condition: 
1 (1,1)p =  and ( , )lp N M=  

(ii) Monotonicity Condition: 
1 2 3..... Ln n n n    and 

1 2 3..... Lm m m m    

(iii) Step-size Condition: 
1 {(1,0),(0,1),(1,1)}l lp p+ −   for [1: 1]l L −  

The total cost matrix is defined by Eq. (17) 

1

( , ) : ( , )
l l

L

p n m

l

c X Y c x y
    

=

=   (17) 

However, many alignment paths/matches are obtained from ( , )pc X Y , requiring many 

exponential computations. An accumulated cost matrix, ( , )D n m , can be defined to 

identify an optimal low-cost alignment satisfying Eq. (18d) and setting ( ,0) :D n =  for 

[1: ]n N , (0, ) :D m =   for [1: ]m M  and (0,0) : 0D = . 
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( , ) :D n m =  DTW ( (1: ), (1: ))X n Y m  (18a) 

1

1

( ,1) ( , ) [1: ]
n

k

k

D n c x y for n N
=

=     (18b) 

1

1

(1, ) ( , ) [1: ]
m

k

k

D m c x y for m M
=

=     (18c) 

( , ) min{ ( 1, 1), ( 1, ), ( , 1)} ( , )

1

n mD n m D n m D n m D n m c x y

for n N and m M

= − − − − +

                                
 (18d) 

However, classical DTW has a boundary condition enforcing match for the whole time 

series i.e., first and last element.  

2. Subsequence DTW 

This method is an improvisation to classical DTW for a case where one-time 

sequence is part of another time sequence making it suitable for magnetic map matching 

as the measurement map is significantly smaller than reference map, intuitively making it 

a part of reference map. For 
1 2{ , ,....., }NX x x x=  and 

1 2{ , ,....., }MY y y y= ,  M is 

significantly larger than N. * * *

* *

1
( : ) : ( , ,......, )

a a b
Y a b y y y

+
=  with * *1 a b M    

( )( )( )* *

( , ):1

( , ) : arg min , :
a b a b M

a b DTW X Y a b
  

=  (19) 

A modification to accumulated cost matrix by defining Eq.20 and setting ( ,0) :D n =   

for [0: ]n N , (0, ) : 0D m =   for [1: ]m M . 

1

1

( ,1) ( , ) [1: ]
n

k

k

D n c x y for n N
=

=     (20a) 

1(1, ) ( , ) [1: ]kD m c x y for m M=     (20b) 
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The index *b can be defined as Eq. (21). Figure 12 shows comparison of two sequences  

*

[1: ]

: arg min ( , )
b M

b D N b


=  (21) 

 

Figure 12: Illustration of subsequent DTW 

In order to clearly and graphically illustrate the method, only one component of T 

is used to conduct the matching as illustrated in Figure 13. The real-time measured data 

and magnetic map are represented with red and blue curves respectively. The matching is 

conducted to find the best fit within the search window defined with the previously 

estimated location using the measured data in the sample window. The spatial information 

attached to the best fit within the search window indicates the estimated indoor location. 

Search window

Best fit

Sample window

M
F

D
(G

)
M

F
D

(G
)

Time index  

Figure 13: Illustration of improved subsequence DTW 

           Sequence X 

          Sequence Y 

 

Time 



28 
 

2.5 Sensor Fusion Using Kalman Filter 

Kalman Filter is introduced to fuse data from multiple sensors for a better 

estimation. Figure 14 [56] summarizes all the mathematical equations that the Kalman filter 

utilizes to estimate the system state. The Kalman filter goes in a loop or a cycle that consists 

of two steps: Time update and measurement update. 

Measurement Update (“Correct”)

(1) Compute the Kalman gain

(2) Update estimate with measurement zk

(3) Update the error covariance

1( )T T

k k kK P H HP H R− − −= +

ˆ ˆ ˆ( )k k k k kx x K z Hx− −= + −

( )k k kP I K H P−= −

Time Update (“Predict”)

(1) Project the state ahead

(2) Project the error covariance ahead

1
ˆ ˆ

k k kx Ax Bu−

−= +

1

T

k kP AP A Q−

−= +

Initial estimates for            and       
1

ˆ
kx − 1kP −

 

Figure 14: Schematics of Kalman filter 

In Figure 14, ˆ
kx−

and ˆ
kx  are prior and posterior estimates of the system state 

respectively. Pk is the co-variance matrix, which changes during both steps. A is the 

dynamics matrix, Q is the process noise co-variance matrix, B is a control matric and uk is 

a control input. H is the measuring matrix, R is measurement noise covariance matrix, zk is 

the measurement and Kk is dynamic Kalman gain. 
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2.5.1 Yaw Correction 

Generally speaking, as the measurement of the gravitational acceleration can only 

be used for pitch and Roll correction, geomagnetic information is introduced to correct the 

heading. However, the existence of the magnetic anomalies will contaminate the 

geomagnetic field, resulting in a contaminated heading estimation. A Low pass filtering of 

the MFD components would solve this issue by eliminating any existing magnetic 

anomalies, VIP walking frequencies and any noise to some extent from the measurements 

which can be used to get the yaw angle as given by Eq. (23). 


T

X Y ZB B B=     B  (22) 

                                         

                                                    Figure 15: Magnetic Data Filtering 

arctan( , )geo LP LP

Y XB B =  (23) 

Euler angles are obtained using quaternion obtained from Mahony algorithm. 

Quaternion to rotation matric is represented as [R] from Eq. (8) and Euler angles from [R] 

are represented as Eq. (24a,b,c).  

32 33arctan( , )quat R R =  (24a) 

2

31 31arctan( , (1 ) )quat R R = − −  (24b) 

21 11arctan( , )quat R R =  (24c) 

 

Low pass 

Filter 
B LP

B
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where, quat , quat , quat are Pitch, Roll and Yaw angles respectively. A better estimate of 

yaw angle is obtained from Kalman filter by fusing gyroscope and geomagnetic estimations 

with parameters as listed in Table 1 Where, t  b

t  quat

t are yaw angle, yaw angular rate 

bias and angular rate, obtained from t and t-1 instances of quat , respectively. The 

prediction step and update step for Kalman angle estimation is represented in Eq. (25) and 

Eq.26 respectively.  

Table 1:  Kalman System State Estimates for Yaw Correction 

System State: 
T

ˆ b

t t t  =  x  

Control 

Input:  
quat

t tu =  

Measurement Input 
geo

t tz =   

Matrix Coefficients:        
1

1
0 1 0

t t−    
= = =        

   
A B H  

 

_

1

_

1

1

0 1 0

k k quat

kb b

k k

t t 


 

−

−

      −     
 =  +                        

 
(25a) 

_

1 1

_

1

quat b

k k k k

b b

k k

t t   

 

− −

−

   +  − 
=   

                         
 (25b) 

 1

_ _
2

1 0
k k kgeo

b b b
k k k

K

K

  


  

− −       
= + −            

            

 (26) 

The updated yaw is used to estimate yaw angular rate error in sensor frame. 

Previously defined  orientation estimation algorithm can be modified as shown in Figure 

16.  



31 
 

 

Figure 16: Modified Orientation Estimation Algorithm 

However, even a low pass filtered MTS data is not good enough for heading 

estimation. Observing the phenomenon that the magnetic anomalies decrease rapidly with 

the increase of the distance, the magnetic spatial gradient (tensor) [G] can be utilized as an 

indicator to determine the existence of large magnetic anomalies. The geomagnetic 

information will be utilized only when a parameter S, which is the square root of the trace 

function of ([G][G]T) as expressed in Eq. (27), is smaller than the preset threshold. 

  ( )T
traceS = G G  (27) 

Figure 17 illustrates the effectiveness of S as an indicator to integrate the geo-

information for yaw angle estimation. The estimation of yaw angle deviates from the true 

value when the calculated S is above the predefined threshold. 
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Figure 17: Geo-magnetic Gradient Threshold identification 

2.5.2 Magnetic Map Correction 

The characteristics of the magnetic information used to match the magnetic map 

are orientation-sensitive, which will lead to mismatch if the magnetic tensor sensor (MTS) 

orientation is not the same when acquiring data for matching and magnetic maps. Thereby, 

the estimated orientation will be introduced to correct the magnetic characteristics before 

conducting indoor localization using magnetic information. Besides the magnetic 

information, the sensor orientation when acquiring data for the magnetic map needs to be 

integrated into the map file. Assume 
sn

tq  and 
sn

tq  represent the orientation of the MTS 

when acquiring data for matching and magnetic map respectively, the quaternion 

representation of the rotation from the matching orientation to map orientation 
ss

tq  is 

expressed with Eq. (28a). The MFD and magnetic tensor will be corrected with Eq. (29) 

before conducting localization, where s

s
  R is the corresponding rotation matrix of 

ss

tq ;  

s

tB and 
s

tB  are the measured and corrected geo-MFD respectively; s  G  and s  G  are 

measured and corrected magnetic tensor. 
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Figure 18 illustrates the process of the magnetic field correction for the MFD given the 

orientation deviation, where only yaw angle deviation is considered. Given the yaw angle 

deviation illustrated in Figure 18(b), the raw MFD data represented in Figure 18(c) is not 

similar to the magnetic map shown in Figure 18(a), which will lead to matching failure. By 

applying the magnetic field correction with Eq. (29a), the raw MFD data is corrected and 

manifested in Figure 18(d), which is similar to the magnetic map. 

ss sn ns

t t t= q q q , where ( )ns sn

t t



=q q  (28a, b) 

( )s ss s ss

t t t t



=  B q B q , s s s

s
     =     G R G  (29a, b) 
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Figure 18: Illustration of magnetic field correction 
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As mentioned above, the orientation of the MTS and IMU are assumed to be the 

same only for the stationary walking phases. Thereby, the orientation of the MTS during 

the moving walking phases are estimated using linear interpolation using the orientation 

estimated during the stationary phases. 

2.5.3 Position Correction 

Instead of directly solely using double integration of the linear acceleration 

measurements to estimate location, Kalman Filter is introduced to fuse the inertial and 

geomagnetic information to obtain more reliable and accurate estimation. For this 

application (indoor position estimation), the estimation parameters are listed in Table 2. 

Where, ,i td and ,

b

i td  are displacement and velocity bias respectively; ,i kg  is the position 

estimated from the MTS sensor, where the subscript i = x, y, z. The control input ,i td  is the 

corrected velocity estimated using Eq.13b.  

Table 2: System parameter for position estimation using Kalman filter 

System state: 
T

, ,
ˆ b

t i t i td d =  x  
Control input:  

,t i tu d=  

Measurement： 

,t i tz g=  

Matrix coefficients:        
1

1
0 1 0

t t−    
= = =        

   
A B H  

 

Figure 19 illustrates the overall indoor localization algorithm using inertial and 

geomagnetic information. More specifically, with gravitation compensation method, the 

measurements of acceleration, angular velocity and geomagnetic field are utilized to 

estimate orientation, which can not only correct the geomagnetic field and magnetic tensor 

to conduct indoor localization with improved subsequence DTW, but also benefit the final 
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indoor localization. The acceleration measurements, orientation estimation and prior 

location estimation from geomagnetic information are integrated and fused with Kalman 

filter to conduct the indoor navigation. 

Geomagnetic 
Field

Magnetic 
Tensor Magnetic Map

Orientation 
Estimation

Kalman Filter

Improved 
Subsequence DTW

Field 
Correction

Indoor 
Navigation

Acceleration

Angular 
Velocity

Data

Gravitation 
Compensation

 

Figure 19: Flowchart illustrating overall indoor localization algorithm 
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Chapter 3.  Sensing System Design and Implementation 

To validate and demonstrate the algorithm of indoor navigation for the VIPs, a 

sensing system is designed, which includes individual sensor desgin, overall sensing 

system design and sensor calibration. 

3.1 MTS Design 

To validate and demonstrate the algorithm of indoor navigation for the VIPs, a 

sensing system is designed and implemented. Since the algorithm involves the inertial and 

geomagnetic information, the sensing system should be capable of measuring the 

acceleration, angular velocity, geomagnetic field and magnetic tensor. The measurement 

of the first three parameters can be simply obtained with an IMU, which contains an 

accelerometer, a gyroscope and a magnetometer. However, an MTS sensor is to be 

designed with proper parameters. A MTS consists of two orthogonal pairs of 3-axis 

magnetic sensors (BMC050) mounted at ±w/2 (where w = 10 mm) from the x and y axes 

of the sensor local coordinate system as shown in Figure 20[22], is used to measure the 

magnetic tensor [G]. Because [G] defined in Eq. (16a) is symmetric and has the following 

property given in Eq. (16c), only five of its elements require calculation using Eq. (30) 

where Bi,x and Bi,y are the ith MFD component from the sensor ([G]±) along x and y axes 

respectively: 

𝜕𝑥𝐵𝑖 =
1

𝑤
(𝐵𝑖,𝑥+ − 𝐵𝑖,𝑥−) and 𝜕𝑦𝐵𝑗 =

1

𝑤
(𝐵𝑗,𝑦+ − 𝐵𝑗,𝑦−)  

 

where 𝑖 = 𝑥, 𝑦, 𝑧 and  𝑗 = 𝑦, 𝑧  

 

(30) 
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(at ±a/2 along x, y axes) 
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Magnetic 
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Figure 20: Schematics illustrating the MTS 

3.2 Sensor Calibration 

For efficient working of the designed sensing system, it is necessary to calibrate of 

all the sensors. The IMU and MTS needs to be warmed up for 2-3 minutes and calibrated 

before use. For the IMU, there is a slowly time-varying bias in inertial sensor measurement, 

which can be roughly eliminated by subtracting the mean of measurements when the sensor 

is stationary. A water level was used to make sure that the z axis of the IMU is exactly 

vertical during calibration. This should be done each time when the sensor is powered up. 

For MTS, since there are multiple magnetic sensors, misalignment is a major issue which 

need to be calibrated. Misalignment could be due to noise, geometric and positioning errors 

of all sensors. Calibration is done by moving the MTS in translational motion towards a 

permanent magnet in all 3-axis such that each sensor measures the MFD (denoted by Bi 

where i=1,2,3 and 4). The measurements Bj (where j=2,3 and 4) are related to B1 by 

1 1j j
  = H B B  and 1 1 1j j j

     =     H A T   

 

(31a,b) 

Aj1 is 3 × 3 diagonal matrix accounting for relative scale factor between jth and first 

sensor and Tj1 is a 3 × 3 rotational matrix to describe Bj in B1 sensor coordinates. The 

measuring steps are repeated at N locations to calibrate H1i  
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   1.... ....i i ik iN=K B B B ,  1 1j j
    =   H K B  (32a,b) 

 1iH  is given by 

 
1

1 1

T T

i j j j

−  =    
H K K K K   (33) 

Apart from misalignment errors, Anomaly errors are to be calibrated. As all the 

magnetometers are put together using solder materials which are magnetic, this will affect 

the MFD measurements. For anomaly calibration, MTS need to be  placed outside (no 

external magnetic anomalies), the measurements of the magnetic sensors in the MTS T 

consists of two components, MFD of the geomagnetic field BG and internal magnetic 

anomalies BA generated by the magnetic solder materials.  

G A= +T B B  (34) 

In order to estimate BA, the MTS is placed outside with orientation shown in Figure 

21. P2 and P3 can the positions when rotating 180° about z and y axis of the sensor frame. 

Assume internal magnetic anomalies 
1

T
G G G G

x y zB B B =     
B at P1, internal magnetic 

anomalies at P2 and P3 can be estimated with 
2

T
G G G G

x y zB B B = −   −   
B  and 

3

T
G G G G

x y zB B B = −     − 
B . Assume MFD measurements at P1, P2 and P3 are T1, T2 and T3 

respectively, after applying Eq. (34) for each position, the internal magnetic anomalies BA 

can be estimated with Eq.(35). 
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Figure 21: MTS Orientation for calibration 
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3.3 Sensing System Design  

The design of the sensing system is illustrated in Figure 22 where the embedded 

system collects inertial and magnetic information and estimate the indoor location with the 

pre-loaded algorithm and magnetic map. The VIPs interact with the embedded system 

using the sound and vibration. The system is capable of refining and updating the pre-

established magnetic map in the process of usage. The IMU is attached to the user’s foot 

to correct the sensor drift with the characteristics of the human gait whereas the MTS is 

held in hand.  

 
Figure 22: Schematics illustrating the sensing system 

 

(a) Sensor Location (b) IMU Trajectory 
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Chapter 4. Experimental Demonstration and Validation 

In order to demonstrate and validate the feasibility, accuracy and efficiency of the 

newly developed sensor fusion algorithms (Chapter 2) and design of the sensing system 

(Chapter 3), a prototype of the sensing system for indoor navigation is developed, which 

is followed by several experiments performed in the building. 

4.1 Experimental Setup 

A prototype of the sensing system designed for indoor navigation, which consists 

of an embedded system (Arduino Uno R3), an IMU, an SD data logger, an MTS and a 

battery, is developed as illustrated in Figure 23 With an inter-integrated circuit (I2C) 

communication protocol, the Arduino board acquires data from the IMU (GY-85) and MTS 

 

Figure 23: Prototype of Sensing System 

and stores the data in an SD card. Figure 23(c) shows the overall system with IMU attached 

to one of the feet of the VIP and MTS sensor held in hand for data collection. Experiments 

(c) Picture of User with the system (b) IMU Sensing Unit 

(b) MTS Sensing Unit 
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have been conducted using this prototype to validate the proposed algorithm using three 

routes in the university premises. 

4.2 Experiment Results and Discussion 

Several experiments were conducted in Trafton Science Center, Minnesota State 

University Mankato. Three indoor routes are selected, one of which is utilized to illustrate 

the feasibility and efficiency of certain critical operations of the algorithms. The 

experimental results are presented in this section, which is followed by the discussion from 

the observations. 

 

(a)  Route map (b) Pictures of the route  

Figure  24: Indoor Route Map 
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Assume the VIP enters the building through the north entrance (red circle) and needs to go 

to Room C127 (red star) with the route (total distance 119m) map and pictures shown in 

Figure 24 using the designed prototype sensing system. 

The result analysis follows the algorithm discussed in sections of Chapter 2. Firstly, 

a comparison between two cases, without and with the use of ZVU method is made. In the 

first case shown in Figure 25 a huge drift in position estimation can be observed with pure 

integration of angular velocity and acceleration data where, ZVU and velocity drift 

correction is not implemented.  In the latter case, shown in Figure 26 use of ZVU and drift 

correction does improve the result capturing all the motion and stationary periods. 

However, this position estimation is not accurate and has to be improved to match with the 

route considered in Figure 24. 

 

Figure 25: Estimation without ZVU and Drift Correction 
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Figure 26: Estimation with ZVU and Drift Correction 

ZVU method does capture the motion of the user, however, a closer look at the four 

quaternions representing orientation from Figure 27(a) ,a pure integration for orientation 

would result in a drift, consequently effecting the position estimation. Figure 27(b) shows 

the drift corrected quaternions using pitch and roll angular rate error correction using 

accelerometer data during the stationary intervals as explained in section 2.2.2.  

 
Figure 27(a): No Pitch and Roll Correction Figure 27(b):  Pitch and Roll Corrected 
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A sufficient gain would ensure pitch and roll representing quaternions to correct 

during stationary periods. Although accelerometer data cannot be used for yaw correction, 

pitch and roll correction attributes to the change in yaw due to the dependency of all four 

quaternions. Figure 28 shows a significant improvement in position estimation after pitch 

and roll correction and Table 3 shows error comparison of non ZVU, ZVU and pitch, roll 

corrected position estimations. 

 

Figure 28: Pitch and Roll Corrected Position  

Table 3: Position Error Comparison using ZVU, Pitch and Roll correction methods    

Method Error X-axis (m) Error Y-axis (m) 

No ZVU 20.64 162.36 

ZVU 16.7 116.26 

(ZVU)+(Pitch & Roll corrected ) 12.62 8.59 

Orientation correction for motion periods can also be done, however, due to the 

presence of external accelerations apart from gravity, the use of raw accelerometer data 
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would contaminate the position. Figure 29(a) and (b) show a comparison between raw  data 

versus low pass filtered accelerometer data for correction during motion and stationary 

periods and Table 4 gives error comparison. However, the gains can be different for both 

periods. 

 

Table 4: Position Error Comparison for Raw and Filtered Data for Orientation Correction  

Method Error X-axis (m) Error Y-axis (m) 

Raw Data 12.96 2.31 

Filtered 8.83 5.58 

A deviation of more than 8m observed with respect to x-axis is attributed to an error 

in yaw estimation. Figure 30 shows yaw corrected position estimation, where Geo-

magnetic information is used to correct the yaw for instances with relatively constant 

gradient.  

Figure 29(a): Raw Data for  Correction Figure 29(b): Low pass Filtered Data for  

Correction 
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Figure 30: Yaw Corrected Position 

From all the error corrections used for position estimation using IMU it can be 

observed that the error is reduced at  each stage. However, a deviation from the reference 

path is still observed from Figure 30 which requires an improvement using MTS sensor.  

 

 

Figure 31: Comparison of Results Figure.32: Error Average 
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Table  5: Comparison of Results 

Method Error X-axis (m) Error Y-axis (m) 

IMU 0.71 4.07 

Kalman (IMU+MTS) 0.48 0.54 

 

As the reference magnetic map generated by MTS is a representation of route co-

ordinates, position of a measurement instant would refer to position of a matching instant 

of reference map. Figure 31 compares the results estimated using IMU and KF filter with 

the actual route and Table 5 lists the error of IMU and KF with reference to reference route.   

The average errors of KF filter results for 4 trials plotted in Figure 32 shows an 

average localization error for the whole route of 0.092 m, concluding that the position is 

much better than sole use of IMU.  

The additional experiments using Route map 2 and 3 were conducted to validate the 

proposed method. In the first case, the VIP is assumed to take a round trip of 98m from 

N135 of Trafton North in a rectangular shape with route map as shown in Figure 33(a). In 

the latter experiment, the VIP is assumed to enter the building through the Trafton east 

entrance (red circle) and needs to go to Room N186 (red star) with the route (total distance 

105m) map shown in Figure 34(a). Similarly, the average errors of KF filter results for 4 

trials using Route map 2 and 3 are shown in Figure 35(a) and (b) with the average 

localization error for the whole route are 0.186m  and 0.058m respectively. 
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Figure 33(a): Route Map 2 Figure 33(b): Route 2 Result Comparison 

Figure 34(a): Route Map 3 Figure 34(b): Route 3 Result Comparison 
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Figure 35(b): Route Map 3 Error Analysis Figure 35(a): Route Map 2 Error Analysis 



50 
 

Chapter 5. Conclusion and Future Work 

A sensing system capable of accurately navigating a VIP indoor is presented. 

Inertial and geo-magnetic information is utilized in every possible way to correct any error 

in localization. Human gait characteristics are used to eliminate the accumulated drift by 

IMU and distorted MFD of surrounding spatial information is utilized by MTS. An 

interaction between IMU and MTS is observed for both orientation and position 

estimations using sensor fusion algorithms. The experiments using three different indoor 

routes with the distance of 119m, 98m and 105m were conducted to demonstrate and 

validate the designed algorithms and sensing system. Relatively large errors are observed 

at the corner locations which is similar for route 2 and route 3.  The error averages of all 

three routes is observed to be 0.092m, 0.186m and 0.058m respectively, which successfully 

demonstrate the accuracy and efficiency of the newly designed sensing system for the VIP 

indoor navigation. 

Even though the designed system can guide the VIPs indoor, there are several 

problems unsolved, which motivates the future improvements of the existing algorithms 

and sensing systems. Several possible and potential improvements are listed as followed.  

− For the newly designed system, the MTS and IMU are attached to different part of 

human body, which results in the difficulty of obtaining the orientation of the MTS. To 

solve this problem, another IMU will be introduced to attach to the MTS. 

− A more accurate IMU will be introduced to improve the orientation and location 

estimation. 
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− Instead of using the standard Kalman filter, the extended Kalman filter has the potential 

to improve the accuracy of the location estimation. 

− The potential indoor navigation applications with the routes containing free space and 

stair climbing instead of the corridors will be explored using the newly designed 

sensing system. 
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