
Minnesota State University, Mankato Minnesota State University, Mankato 

Cornerstone: A Collection of Scholarly Cornerstone: A Collection of Scholarly 

and Creative Works for Minnesota and Creative Works for Minnesota 

State University, Mankato State University, Mankato 

All Graduate Theses, Dissertations, and Other 
Capstone Projects 

Graduate Theses, Dissertations, and Other 
Capstone Projects 

2020 

Control of a Grid-Tied Single-Phase Inverter for Renewable Energy Control of a Grid-Tied Single-Phase Inverter for Renewable Energy 

Integration Integration 

Dianzhi Yu 
Minnesota State University, Mankato 

Follow this and additional works at: https://cornerstone.lib.mnsu.edu/etds 

 Part of the Controls and Control Theory Commons, and the Power and Energy Commons 

Recommended Citation Recommended Citation 
Yu, D. (2020). Control of a grid-tied single-phase inverter for renewable energy integration [Master’s thesis, 
Minnesota State University, Mankato]. Cornerstone: A Collection of Scholarly and Creative Works for 
Minnesota State University, Mankato. https://cornerstone.lib.mnsu.edu/etds/1068/ 

This Thesis is brought to you for free and open access by the Graduate Theses, Dissertations, and Other Capstone 
Projects at Cornerstone: A Collection of Scholarly and Creative Works for Minnesota State University, Mankato. It 
has been accepted for inclusion in All Graduate Theses, Dissertations, and Other Capstone Projects by an 
authorized administrator of Cornerstone: A Collection of Scholarly and Creative Works for Minnesota State 
University, Mankato. 

http://cornerstone.lib.mnsu.edu/
http://cornerstone.lib.mnsu.edu/
https://cornerstone.lib.mnsu.edu/
https://cornerstone.lib.mnsu.edu/
https://cornerstone.lib.mnsu.edu/
https://cornerstone.lib.mnsu.edu/etds
https://cornerstone.lib.mnsu.edu/etds
https://cornerstone.lib.mnsu.edu/theses_dissertations-capstone
https://cornerstone.lib.mnsu.edu/theses_dissertations-capstone
https://cornerstone.lib.mnsu.edu/etds?utm_source=cornerstone.lib.mnsu.edu%2Fetds%2F1068&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/269?utm_source=cornerstone.lib.mnsu.edu%2Fetds%2F1068&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/274?utm_source=cornerstone.lib.mnsu.edu%2Fetds%2F1068&utm_medium=PDF&utm_campaign=PDFCoverPages


 

 

CONTROL OF A GRID-TIED SINGLE-PHASE INVERTER FOR RENEWABLE 

ENERGY INTEGRATION  

 

by 

 

Dianzhi Yu 

 

A THESIS 

 

submitted in partial fulfillment of the requirements  

for the degree of Master Science in Electrical Engineering  

at Minnesota State University, Mankato 

 

Major:  Electrical Engineering 

 

 

Under the Supervision of Professor Jianwu Zeng 

 

Mankato, Minnesota 

July, 2020 

 

 

 



 

 

July 10, 2020  

 

 

CONTROL OF A Grid-TIED SINGLE-PHASE INVERTER FOR RENEWABLE 

ENERGY INTEGRATION 

Dianzhi Yu  

 

 

This thesis has been examined and approved by the following members of the student's 

committee. 

 

               

Advisor 

 

  

Committee Member 

 

  

Committee Member 



 i 

 

CONTROL OF A GRID-TIED SINGLE-PHASE INVERTER FOR RENEWABLE 

ENERGY INTEGRATION  

 

Dianzhi Yu, M.S. 

Minnesota State University, Mankato, 2020 

 

Advisor:  Jianwu Zeng 

With increasing demand for generating electricity from clean energy, renewable 

energy sources (RESs), such as wind and solar, has gained much attention due to the clean 

and quiet characteristics. In many applications, connecting multiple RESs of different types 

(e.g., wind and solar), voltages, and capacities to a power grid or load is required. Single-

phase inverters have been widely installed in residential power system to meet the full or 

partial load demand. 

In this work, multiport converters were developed for integrating multiple RESs, 

wind turbine and photovoltaic (PV) panel. Since the intermittent characteristic of the RESs, 

an energy storage device, e.g., batteries, needs to be used together. Frist, multiport DC-DC 

converters were proposed for simultaneous maximum power point tracking (MPPT) 

control of each source. However, the output of these converters is DC and cannot be 

directly connected to the AC utility grid which requires a DC-AC inverter regulates the 

voltage from DC to AC. This thesis introduces a single-phase, four-port inverter for 

integrating RESs to the AC utility grid. All controllers are developed in rotation d-q frame. 

The inverter not only can operate in a standalone mode, but also can works with other 

inverters with the droop control as well as the grid.  
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Chapter 1 :  Introduction 

This chapter introduces the background for this thesis: There is a need for the 

development of multiport converters to integrate renewable energy sources (RESs) with 

different types and capacities, and energy storage systems (ESSs) to the power grid. Based 

on this motivation, this chapter discusses the research objectives and outline of this thesis. 

1.1  Background 

Electricity infrastructure is the foundation of every country all over the world. The 

traditional power systems are centralized and built far away from the costumers. The 

sources like coal are limited in supply and unfriendly to the environment. In addition, it 

may need a long time to restore if there are power outages caused by natural disasters such 

as floods and hurricanes. For example, Hurricane Sandy left million customers without 

power for serval days across 15 states in August 2003 [1]. The widespread power outages 

in the wake of Hurricane Sandy cast light on the weakness of a centralized electric power 

system. As the demand for electricity grows, the penetration of distributed generation (DG) 

is gradually increasing in developed countries worldwide [2]. Due to the merits of 

renewable energy, RESs, such as wind turbine generators (WTGs) and photovoltaic (PV) 

panels are widely used to generate electricity.  

Microgrids are introduced into electric power systems for managing the widespread 

penetration of renewable energy and DGs in power distribution networks [2]-[3]. The 

microgrids concept assumes a cluster of loads and microsources operating as a single 
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controllable system that provides both power and heat to its local area. This concept 

provides a new paradigm for defining the operation of distributed generation [2]. Power 

electronic converters play an important role in integrating various RESs, such as PV and 

wind energy systems, and ESS, such as batteries, into a microgrid and managing the power 

flows among different sources and the microgrid [4]. 

1.2  Renewable Energy Conversion and Energy Storage Systems  

The basic characteristics of renewable energy systems are sustainable and clean. 

But the renewable energy also has intermittence. Therefore, both WTGs and PV panels are 

used in some applications to complement with each other, e.g., the solar energy is available 

in the daytime when the wind speed is low and the strong winds often occur when it’s 

cloudy, rainy or at night. The energy storage deceives like batteries are also used with RESs 

in case neither solar nor wind energy is available. 

1.2.1 Wind Energy Conversion System 

Wind energy conversion systems (WECS) are designed to convert the energy of 

wind movement into mechanical power, which typically uses a WTG. The mechanical 

energy will be transferred into making electricity and in windmills this energy is used to 

do work such as pumping water, mill grains, or drive machinery. Fig 1.1 shows the 

configuration of a WECS. The WTG can be a permanent magnet synchronous generator 

(PMSG), doubly fed induction generator (DFIG), induction generator, synchronous 

generator, etc. Wind energy acquired from the wind turbine is sent to the generator. To 
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achieve maximum power from the wind energy, the rotation speed of the generator is 

controlled by a pulse width modulation (PWM) converter. The output power of the 

generator is supplied to the grid through a generator-side converter and a grid-side 

inverter[5]. 

 

Fig 1.1 Configuration of WECS. 

The mechanical power captured by the wind turbine can be formulated as: 

  31
,

2
t p wP C A v      

                          (1.1) 

where ρ is the air density, A is the area swept by the blades, vw is the wind speed, Cp(λ,β) 

represents the power coefficient of the wind turbine, β is the wind turbine pitch angle, and 

λ is the tip-speed ratio (TSR), which is defined as 

w

R

v





                                                              (1.2)                                                          

where ω and R represent the angular speed and the radius of the wind turbine, respectively. 

Since in the real application the wind speed may vary from time to time, the operating rotor 



4 

 

 

 

speed needs to be changed with the wind speed so that the maximum power can be 

generated by the WTG. Therefore, it is necessary to implement the maximum power point 

tracking (MPPT) algorithm to follow the MPP, which is changed with the wind speed. 

1.2.2 PV System 

A PV system is designed to supply usable solar power by means of PV. Fig 1.2 

shows a typical PV system. The components mainly include PV panels and a power 

converter. The function of PV panels is to absorb and convert sunlight into electricity. Then, 

the power converter is to convert the time-variant voltage of the PV panels to a constant 

voltage required by the load or the grid. Meanwhile, the converter will regulate the PV 

panels to work in MPPT mode such that maximum power is generated. 

PV 
Panel

Power 
converter

LoadSolar 
radiationç

ç

ç
çSun

 

Fig 1.2 A typical PV system. 

PV systems range from small, rooftop-mounted or building-integrated systems with 

capacities from a few to several tens of kilowatts, to large utility-scale power stations of 

hundreds of megawatts. Nowadays, most PV systems are grid-connected, while off-grid or 

stand-alone systems. The grid-connected systems are especially employed in residential or 

commercial area. A grid connected system is connected to a larger independent grid 
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(typically the public electricity grid) and feeds energy directly into the grid. In this thesis, 

the PV system will be connected with converters to regulate the output voltage and eject 

power into the grid. 

1.2.3 Energy Storage Systems 

RESs are alternative to fossil fuels due to the merits of cleanness and infinite. But 

the RESs like solar and wind energy are related to the weather conditions which cause the 

RESs will fluctuate independently. Therefore, the stochastic or intermittence 

characteristics should be taken into consideration. The ESSs are identified as a key solution 

to mitigate the intermittence of the RESs and provide an uninterruptible power supply (UPS) 

required by the load or grid [6]. 

While many forms of ESSs have been installed, pumped hydro storage systems are 

by far the most widely used, compressed air energy storage is the next largest, followed by 

batteries [7]. With the development of materials technology, batteries are now becoming a 

good candidate for the electrical energy storage system [8]. In this thesis, a battery is used 

as the energy storage device with RESs. Fig 1.3 shows a typical structure of an electrical 

energy system using a RES with a battery to supply a load. 
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Power 

converter
Loadç
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Battery

ç

 

Fig 1.3 A typical power system with battery ESS 

As shown in Fig 1.3, the power flow of the battery is bidirectional, this will ensure 

the whole system energy supply continuously and improve the reliability of the system. 

When the power generated by the RES is higher than the load, the battery is charged to 

store the surplus energy; when the RES power is not sufficient to supply the load, the 

battery will be discharged to provide the deficient power. 

1.3  Background of Renewable Energy Integration to the Microgrid 

1.3.1 Microgrid with RESs and ESSs 

With the increasing demand of energy, microgrids are becoming a promising 

technology for integrating RESs [9]. Microgrids can operate at both grid-connected and 

stand-alone modes. There are two types of microgrids: AC and DC microgrids. AC 

microgrids are connected to the utility at the point of common coupling (PCC); DC 

microgrids can generate power from PV panels to some DC loads e.g. LED lighting [10]. 

But one of the biggest challenges of RESs is their uncertainty. This challenge will bring an 
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adverse effect on microgrid control and operation. To avoid and mitigate this disadvantage, 

there are serval ways to solve the problem. One solution is to develop a RES prediction 

system which will provide information on how much renewable energy can be expected at 

a given point in time [11]. A good renewable energy prediction method will help achieve 

grid stability [11]-[15]. The other solution is to add EESs, such as batteries, in the microgrid. 

This is called hybrid microgrids by combing DC and AC systems. Nowadays, hybrid 

microgrids are growing rapidly and widely applied in power system, like residential areas.  

According to the power conversion stage, there are two solutions to integrate RESs 

of different types and capacities to a microgrid: a one-stage DC-AC system and a two-stage 

DC-DC-AC system.  

1.3.2 One-Stage DC-AC Power Conversion System  

Fig 1.4 shows the configuration of this system, Due to this one stage of power 

conversion, this solution has high efficiency. However, in this solution, the double-line-

frequncy issue is inherited [16]. In one-stage DC-AC power conversion system, each 

source is directly connected to a DC-AC inverter. And then, the DC power from the 

renewable source will be converted to the AC required by the microgrid. 
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Source 1 



Inverter 1

Source 2 

Source m 

Inverter 2

Inverter m

Grid

 

Fig 1.4 One-Stage DC-AC conversion system. 

1.3.3 Two-Stage DC-DC-AC Power Conversion System  

In a two-stage DC-DC-AC power conversion system, it consists of DC-DC 

converters and DC-AC inverters. First stage is a DC-DC converter which is used to step 

up the low time-variant voltage of each source to the high constant voltage. Second stage 

is DC-AC inverter to regulate the DC link voltage to AC for gird. There are two ways of 

this system.  

Fig 1.5 shows the traditional way that each source will connect to one DC-DC 

converter. Another way is using a multiport DC-DC converter to interface all the sources.  

Fig 1.6 shows the multiport two-stage system. Compared to the traditional one, a multiport 

DC-DC converter has lower cost and higher power density. In this thesis, multiport DC-
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DC converters of different topologies are developed for the DC-DC-AC power conversion 

system.  

Source 1 



DC-DC Converter 1

Source 2 

Source m 

DC-DC Converter 2

DC-DC Converter m

Grid

Inverter

 

Fig 1.5 Traditional two-stage DC-AC system 

Source m 

Source 1

Source 2 

 Grid

DC-DC Converter Inverter

 

Fig 1.6 Multiport two-stage DC-AC system 
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1.4 Research Objectives 

The objective of the research is to develop a multiport power converter for 

renewable energy conversion and integration. The objectives of this research are listed as 

follows:   

Control in the d-q rotation frame: In real time applications, voltages and currents 

are sensed in stationary frame which are changed from time to time. Using d-q rotation 

frame will make computations and controllers design easy since the time-varying signals 

in the stationary frame will become constant values in the rotation frame.  In this research, 

the PI controllers in d-q will be designed to make inverter works in both standalone and 

grid-connected modes.   

Standalone mode: When the inverters work without the utility grid, it is called the 

standalone mode. The inverter remains as a basic source and generates sufficient power for 

the load. 

Grid-connected mode: When the inverters are connected with the grid, the system 

can deliver power to the grid which is called the grid-connected mode. The inverter can 

match the voltage and frequency of grid accurately. In this thesis, the inverter can distribute 

the power equally by using droop control. 
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1.5  Outline of Thesis 

This thesis will be organized as follows.  

Chapter 2 reviews the typical topology using multiport converters to interface with 

hybrid wind and solar energy systems in residential power systems. The principle operation 

of inverter is also discussed.  

Chapter 3 proposes a standalone multiport DC-AC inverter for wind/solar hybrid 

energy systems. The controllers design and simulation analysis are presented. Then the 

controllers designed in the d-q rotation frame is discussed. Finally, a prototype of the 

designed inverter is constructed and validated by results. 

Chapter 4 introduces a single-phase grid-connected inductor-capacitor-inductor 

(LCL)-resonant circuit to achieve power distribution based on the multiport DC-AC 

inverter proposed in Chapter 3. Compared to the Chapter 3, this chapter will focus on power 

sharing, synchronization, droop control, and transient response. The quality of 

experimental results is discussed by analyzing its spectrum, e.g., total harmonic distortion 

(THD).  

Finally, the thesis ends with conclusions, a summary of contributions, and 

recommendations for future work in Chapter 5. 
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Chapter 2 :  A Review of Multiport Converters 

Nowadays, the commonly used RESs are wind energy and solar energy. The most 

promising deceive in ESSs is battery which will also be applied. The multiport converters 

which share some components have lower cost and higher efficiency than conventional 

ones. Therefore, in many applications, converters at least have three ports to integrate 

different types of energy sources to a power grid. The first stage multiport DC-DC 

converters can step up the low, time-variant voltage to high, constant voltage required by 

the AC side. The second stage is a grid-connected DC-AC inverter which can regulate the 

voltage from DC to AC. 

The multiport DC-DC converter topologies can be classified into two categories: 

nonisolated and isolated [17]. Nonisolated converters include various boost-type 

converters [18]-[22]. Their voltage ratios can be further increased by using the cascaded or 

coupled-inductor technique [22]-[24]. When the voltage regulation ratios are high, the 

isolated converters are preferable than nonisolated converters by properly designing the 

transformer’s turn ratio. In addition, the isolated converters provide isolation between the 

input and output which is good for the safety [4]. 

The main types of DC-AC inverters include single-phase and three-phase. 

Normally, three-phase systems are used when the electrical power is distributed to the 

industry or commercial buildings. Single-phase systems are used primarily in low voltage 

such as residential [25]. 
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This chapter reviews different types and the principle operations of DC-AC 

inverters. 

2.1 The Types of DC-AC Inverter 

An inverter is an electrical device that converts the DC power into the AC power. 

There are many ways to classify DC-AC inverters. One way is based on the nature of DC 

source feeding the inverter. It has voltage source inverter (VSI) and current source inverter 

(CSI). VSI has a constant voltage at its output termianls and the output voltage does not 

depend on the load, the output current is deterimined by the load. In this thesis, the inverter 

mentioned later belongs to the VSI. For VSI, it contains single phase inverter and three 

phase inverter.  

2.1.1 Single Phase Inverter 

The single-phase inverter mainly has two topologies: one is half bridge inverter, the 

other is full bridge inverter. The basic building block is the inverter leg. Fig. 2.1 shows the 

structure of half bridge inverter. The half bridge inverter has two switches in one leg. S1 

and S2 are switched using frequency modulation in a complementary manner. When S1 is 

on, the energy is supplied from the source to the load. The positive current flows to the 

load. And the output voltage is +Vdc· d1. where d1 is the duty cycle of the S1. When S2 is 

on, it’s a negative current flow. The output voltage is equal to − Vdc· d2. In half bridge, the 

time for S1 on is kept for half a period and 0 for the following period. So the output voltage 

is half of the input voltage. 
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LOAD

S1

S2

Vdc

 

Fig. 2.1 Half bridge inverter topology 

Fig. 2.2 shows the full bridge inverter topology. Two inverter legs are connected in 

parallel and four switched are used. The switches in one leg are complementary. When the 

switch S1, S4 are on, S2 and S3 off, the output voltage is equal to Vdc. Instead, the output 

voltage is equal to −Vdc. Based on the half bridge, VA= dA·Vdc and VB=dB·Vdc. Therefore, 

the output voltage of load is equal to (dA−dB)·Vdc. For a sinusoidal output, (dA−dB) must 

vary sinusoidally. So the magnitude and frequency can be controlled by controlling the 

duty cycle. 
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Fig. 2.2 Full bridge inverter topology 

As discussed above, the main difference between the half bridge and full bridge is 

the maximum value of output voltage. The full bridge topology provides double the output 

voltage compared to the half bridge topology when the supply voltage is same. So, the full 

bridge is good for the high power requirement. In this thesis, full bridge topology is the 

fundamental to design the inverter. 

2.1.2 Three Phase Inverter 

Three phase inverters are used for variable-frequency drive applications and for 

high power applications such as HVDC power transmission. Fig. 2.3 shows a basic three-

phase inverter consists of three single phase inverter switches each connected to one of the 
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three load terminals. Three phase VSI has 120 degree mode and 180 degree mode which 

depends on the conduction state of each electronic device. The voltage of each line has the 

same magnitude but with 120 degree shift.  

LOAD1

Vdc

S3

S4

S1

S2

A

B

S1

S2

C

LOAD2

LOAD3

 

Fig. 2.3 Three phase inverter topology 

2.2 Principle of Inverter Operation 

As mentioned above, the key for inverters generating AC power is the modulation 

switching method. The pulse width modulation (PWM) method is a commonly used 

technique to reduce the average power delivered by an electrical signal, by effectively 

chopping it up into discrete parts. By controlling the pulse width, the frequency and 

amplitude of the inverter output voltage could be controlled. There are many different 

PWM techniques. The most commonly used modulation method is sinusoidal PWM 

(SPWM) which can get a desired sinusoidal voltage. Fig. 2.4 shows the SPWM for inverter. 
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As shown in Fig. 2.4 (a), the desired reference signal is compared with a triangular carrier 

wave, which results in the chopped square pulses. The frequency of the carrier wave is 

switching frequency. And the switching frequency is normally much higher than the 

modulating frequency. According to the averaging theory, as long as the switching 

frequency is high enough, the average of the pulses over one switching period would be 

able to well approximate the original signal [26]. Fig. 2.4 (b) and (c) show the switches of 

the same legs which are operated in a complementary way to avoid short circuit. 

 

Fig. 2.4 SPWM for a single-phase inverter 

2.3 Improvement for Inverter Output 

Harmonic components that degrade the power quality inevitability exist in the 

inverter output voltage because of the PWM method. Harmonics are voltages or currents 

that operate at a frequency that is an integer (whole-number) multiple of the fundamental 
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frequency, which may distort its wave shape. So, the total harmonic distortion (THD) is a 

measurement of all harmonic components to the power of the fundamental frequency. The 

lower THD means the better quality.  

A filter is often installed between the inverter and the load or grid to improve the 

quality[27]. There are some various filters including passive power filter (PPF), active 

power filter (APF) and hybrid filter APF (HAPF). Fig. 2.5 shows the most commonly used 

passive inverter filters, LC filters and LCL filters. 

Lg

+
C

–

L

+
C

–

L

(a) LC filter (b) LCL filter
 

Fig. 2.5 The circuit model of the passive power filters 

The cut-off frequency fc of the LC filter is 

1

2
cf

L C


  
                                                     (2.1) 

thus, it can filter out the harmonics located at frequencies higher than fc. But it may cause 

a resonance which would magnify the harmonic current components at fc and leads to the 

voltage THD higher. Meanwhile, the fc should be much lower than the switching frequency 

fsw to filter out the switching harmonics. And it has to be high enough to provide bandwidth 

for the controllers. It’s usually chosen as:  

3 2

sw sw
c

f f
f                                                      (2.2) 
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The output impendence of inverter plays an important role in power sharing [28]. 

The types of the line impendences contain resistive, resistive-inductive and others. Since 

most output filters inductor, the output impedance of inverter is usually inductive.   

2.4 Summary 

From the literature review described above, the principle operation for inverters is 

PWM method. To get higher quality of output waveform, the filter is necessary. In this 

work, the full-bridge DC-AC inverter is implemented with SPWM method which can 

generate AC power. And the output filter will be chosen differently in both standalone and 

grid-connected mode. 
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Chapter 3  Modeling and Controller Design of Proposed 

Inverter  

Single-phase PV inverters have been widely installed in residential power systems 

to meet full or partial load demand. This work employs a typical topology with two-stage 

four-port converters. As shown in Fig. 3.1, the multiport converters consist of a boost DC-

DC converter which interfaces with three ports, wind turbine, PV panel and batteries in 

first stage and a DC-AC inverter in second stage. The function of the boost converter is 

voltage amplification and maximum power point tracking (MPPT). After stepping up the 

time-variant, low-level source voltages to a constant high-level voltage which is required 

by the cascaded DC-AC inverter, the inverter can generate sinusoidal waveform then eject 

to the load or grid. The proposed DC-AC inverter is based on full-bridge with capacitor 

and inductors.  
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Fig. 3.1 Topology 
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3.1 The Proposed DC-AC Inverter 

The proposed inverter designed in this work is single-phase based on full bridge 

with controllable switches and output filters. The full bridge is also known as H-bridge. It 

consists of four controllable switches like metal-oxide-semiconductor field effect transistor 

(MOSFET) or GaN board, capacitors and inductors.  

To avoid creating a short circuit of the DC source, the signals are generated in each 

leg of the bridge reversely. The bottom gate control is the inverse of the top, but the same 

to the top of the parallel leg. That means the signals of S31 and S32 in Fig. 3.1 are in 

complementary manner, but S32 and S41 are correspondingly same. But S31 and S32 are never 

closed at same time, otherwise it would cause a short circuit from vdc to the ground. To 

avoid this shoot-through, a deadtime is implemented in real switches. If the deadtime is too 

long and the voltage loop decreases, it will cause the voltage loss and crossing zero 

distortion. In this work, 0.2 microseconds deadtime is selected. 

The gates of the H-bridge are driven by a PWM generator. The switching frequency 

fsw of PWM signals is usually chosen as high as possible to reduce current ripple in the 

inductor. In this work, the period time of switching, i.e., T, is 10 microseconds. When the 

switches are on and off, the proportion of “ON” time to the period time is defined as duty 

cycle (d). If d3 is defined as the ON time of S31, then vA = vdc· d3, vB = −vdc· (1−d3). 

Therefore, the control voltage vc= vdc· (2d3−1). Fig. 3.2 shows the drive waveform for four 

switches. To control the output voltage of inverter, we can control the duty cycle.  
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Fig. 3.2 Drive waveform for switches 

 Fig. 3.3 shows the experimental waveforms of the drive signals which are down 

sampling. This tests that the driver of proposed inverter is working. 

 

Fig. 3.3 Experimental waveforms for drive signals for 100 microseconds 
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Since the inverter requires an output filter to limit the high frequency current ripple 

[29], the LCL output filter is selected at grid-connected mode. For the standalone mode, 

the inverter will connect with the resistive loads. Fig. 3.4 shows the simplified circuits at 

two modes. Once one single-phase DC-AC inverter working well, parallel connected 

inverters can simulate the grid system. The inverters need to detect the voltage and 

frequency from the grid, then generate different output with power need. One inverter can 

be simulated as the source because of its the stable output at standalone mode.  
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Fig. 3.4 Simpified inverter circuits at standalone and grid-connected mode 

3.2  Modeling of Proposed Inverter 

The main part of the whole work is modeling and designing the control method. 

How to design the controller is the key to the power electronics systems. Before designing 

the controller, the converter needs to be modelled. The most popular way of modeling is to 

use state space averaging method (SSAM) which is based on the small-signal model of the 

whole system. By using a formal method for deriving the small-signal AC equations of a 

switching converter, the differential equations in the different operation stages can be 

expressed. In addition, there are some computer programs existing which utilize the SSAM, 

for example, Matlab Simulink.  
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As shown in Fig. 3.4, the state-space models of inverter connecting with load R can 

be found as follows: 
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                                       (3.1) 

where vc is the control voltage of the H-bridge between nodes A and B; ia is the current 

flowing through the inductor of L2; vo is the voltage of the inverter; r is the resistance of 

L2. Then the small-signal model with ẋ = A·x + B·u form can be expressed as follows: 
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                          (3.2) 

where x = [ia, vo]
T and u = d3. 

3.3 Controller Design of Proposed Inverter 

Every switching power converter consists of a switching network and some sort of 

input and output filters. By controlling the switching network, processing power with high 

efficiency and reliability is achieved in a desired and controlled manner. AC or DC power 

presented at the input of the switching network is transformed into either AC or DC output 

power and delivered to some load based on the nature of the converter. The task of 

controlling switches become evidently important, when processing an input power for 
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certain desired output power. A controller is a subsystem or a process assembled for the 

purpose of controlling the output of a plant such as a switching mode converter. 

For the proposed inverter, the controllers can be designed based on the simplified 

model as shown in Equation (3.2), the transfer function of vo(s)/ ia(s) and ia(s)/ d3(s) can be 

derived as follows: 
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                                         (3.4) 

Fig. 3.5 shows the signals flows of the PI controller and the plant of the standalone 

inverter. The controllers include the voltage controller Gcv(s) and current controller Gci(s), 

which are designed to control the inverter voltage and current, respectively. 

+

‒ 
i

L

1

r

+

‒ 
v

 C

1+ v

1/R

‒ 
2Vdc

d3Gcv(s)v* +

‒ 

v

I*

‒ 

i

Gci(s) 1/(2Vdc)
+

+

v
Plant

 

Fig. 3.5 Signal flows of the PI controller and the plant 

3.3.1 d-q frame reference 

The inverter generates AC signals which means the values of voltage and current 

are time-variant. But it will be easier to regulate signals as constant values by using PI 

controller. To make computations more easily, the d-q transformation which converts the 
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time-variant values to constant is used. It’s a form of transformation between stationary 

and rotating frames. It is much easier to perform analysis and design controllers for three 

phase converters in DQ rotating frame because all time-varying state variables of the 

converter become DC time-invariant, hence only one operating point needs to be defined 

and considered for analysis. 

For single phase inverter, the imaginary orthogonal circuit concept is introduced to 

create the additional orthogonal phase information [30]. The imaginary orthogonal circuit 

has the same circuit components and parameters as the real circuit. However, the imaginary 

circuit has 90 degrees phase shifted with respect to the phase in the real circuit. There are 

two ways to create the phase shifted. One is to differentiate output voltage and inductor 

current of the real circuit, a 90-degree phase shifted output voltage and inductor current 

can be created for the imaginary circuit [27]. Alternative way is to delay the real circuit 

variables for quarter period. 

 Fig. 3.6 shows the vector I can be decomposed into two components Iα and Iβ in 

the stationary α-β frame. The current signal I can be transformed to the d-q frame using the 

time delay method. The actual current signal can be referred as the real current on d axis 

and the time delayed signal as the imaginary current on q axis, where corresponds to the α 

and β respectively. And the rotating frame d-q has the same angular frequency with the 

fundamental frequency of inverter. A rotating vector in the α-β frame becomes a constant 

vector in d-q frame due to the rotation of the reference plane itself. Therefore, the 
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components Iα and Iβ change phase angle and magnitude of the vector I, while the Id and Iq 

are constant at any time and only depend on the magnitude of vector I not its position. 

α

β

d

q

I

Iα

Iβ

Id

Iq

ωt

 

Fig. 3.6 d-q transformation 

According to the characteristic of d-q frame, the transformation matrices are non-

singular and orthogonal. Therefore TT = T-1 and T·T-1 = I. The equations that describe the 

relationship between α-β and d-q frame are given as follows: 
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As shown in Fig. 3.7, build a simulation with a AC input vo = 10·sin(2π·t). The 

block to get dq transformation is based on the matrices T. Then delay the input for a quarter 

of period to create the orthogonal axis. The vb is delayed a quarter of sample time compared 

to va. To get the same angle, the phase locked loop (PLL) block is used too.  

 

Fig. 3.7 Simulation to test dq frame 

As shown in Fig. 3.8, the time delayed method works to create an imaginary 

orthogonal circuit. It takes around 0.05s to get the stable values in d-q frame. During the 

steady state, the value of voltage in d axis is 10 which is equal to the magnitude of input 
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voltage. And the value in q axis is 0. Therefore, the transformation matrices to converter 

signal into the d-q frame is correct. 

 

Fig. 3.8 Simulation waveforms of dq transformation 

The differential equations of standalone inverter in d-q frame can be derived as 

follows: 
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where K1 and K2 are the coefficients of the coupling network of the current and voltage 

loop. With the decoupling network, the coefficients are – K1 and – K2.  

Based on the equations derived in d-q frame, Fig. 3.9 shows the signal flows of the 

inverter controllers with details in plants and controllers. 
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Fig. 3.9 Signal flows in d-q frame 

3.3.2 Controller design analysis in standalone mode 

 As shown in Fig. 3.10 (a), before using the current controller, the original current 

loop has high cut off frequency around 160 Hz. And in the low frequency area, the 

magnitude range is small. After the compensation, the cut off frequency can decrease to 10 

Hz. And the phase margin to -180 phase degree is more than 40 degree.  

Usually, the outer controller is slower than the inner controller. The cut off 

frequency of voltage loop is chosen as the 1/10 times of the current loop. As shown in Fig. 

3.10 (b), the cut off frequency of original voltage loop is around 6.36 kHz. When using the 

voltage controller, the cut off frequency is around 1 Hz. The phase margin also shows the 

controller working stable. 
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Fig. 3.10 Bode plots of inverters before and after using controllers 
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3.4 Simulation of the standalone inverter 

Based on the modeling and controller designing, it’s easy to build a simulation of 

the standalone inverter in Matlab Simulink. As shown in Fig. 3.11, the PV array block can 

simulate the PV panel. The parameters of capacitor and load can be set as real. In the U.S., 

the standard combination for voltage and frequency is 110 V (RMS value) and 60 Hz. Since 

the control of duty cycle, the reference value of DC link voltage is chosen as 190 V. 

 

Fig. 3.11 Simulation of standalone inverter 

The power can be defined by setting the numbers of parallel strings and series-

connected modules of per string. The input of sun irradiance and cell temperature can 

simulate the situation in real life. Fig. 3.12 shows the I-V and P-V characteristics at 1000 
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W/m2 and 25℃. The maximum power can up to 700 W at 230 V. The maximum short-

circuit current is around 3.5 A. The maximum open-circuit voltage is up to 280 V. 

 

Fig. 3.12 I-V and P-V characteristics 

Fig. 3.13 shows the single flows of inverter in the simulation. The current through 

the inductor and the voltage of the inverter can be measured by the measurement blocks. 

The block to do d-q transformation has been verified in Fig. 3.8. Therefore, the signals can 

be calculated in the d-q frame and also feedback to the controllers. The PI controllers can 

regulate the current and voltage. 
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Fig. 3.13 Simulation design of the standalone inverter 

Fig. 3.14 shows the simulation result. The voltage of inverter and current through 

the inductor are both stable. The total harmonic distortion (THD) of voltage is less than 

0.5% which testified the effectiveness of inverter’s controllers. 

 

Fig. 3.14 Simulation results when inverter works in the standalone mode. 
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Chapter 4 :  Inverter in Grid-connected Mode 

As discussed in Chapter 3, the proposed inverter can work stably in standalone 

mode. To integrate different energy sources to the utility grid, it’s required that the inverters 

can also work in grid-connected mode. This chapter will discuss how to design grid-

connected inverters including the modeling and controller design. The setup and analysis 

of experiment results are also presented. 

4.1  Controller Design of Grid-Connected Inverter 

When the inverters connect to the grid, it needs synchronize the voltage with the 

grid. The first step is to use the phase lock loop (PLL) algorithm. The PLL block can test 

the voltage and frequency with the grid. Once the inverters can get the signals in phase, the 

inverter-level controller will be developed to regulate the grid current with sinusoidal 

waveform. Then, the system-level droop control will be used to achieve the power sharing 

among inverters in the microgrid. 

4.1.1 Inverter-level controller design in d-q frame 

As shown in Fig. 3.4, when the inverters connect to the grid, the state-space models 

of inverter can be found as follows: 
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where vc is the output voltage of the H-bridge between nodes A and B; ia is the current 

flowing through the inductor of L2; vo and vg are the voltage of the inverter and the grid, 

respectively; r is the resistance of L2 and Lg. It can be simplified as follows: 

2

2

2

2

2 2 2 22

3 2 2

2 2 23 2 2

g a
c g g g a

g

g g g

g g go
g

g g go
a g g g

g g g ga
g

di di
v L r i V L r i

dt dt

di
d L r i V

d i di dVdtdv
L r

dt dt dt dt dt

d i di dVdv
i C i C L C r C i

dt dt dt dt

d i d i d V didi
C L C r C

dt dt dt dt dt


        


  

    
       



            

        







                               (4.2) 

Therefore the differential equation in the α-β stationary frame can be found as 

follows: 
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With the d-q transformation mentioned in Equation (3.5), the third differential of 

current can be transformed into d-q frame as follows: 
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The differential equation of grid-connected inverter in the d-q frame can be derived as:
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where K is the coefficient of the coupling network of the current loop. With the decoupling 

network, the coefficient is – K. The transfer function of ig(s)/vc(s) can be found in: 

 

     3 2 2 2

3 2 1 3 0 2

1

3

g

c

i s

v s a s a s a a s a a 


          
        (4.6) 

Based on the transfer function, the PI current controller Gcig(s) can be designed to 

eject the sinusoidal current into the grid. Fig. 4.1 shows the bode plots with and without 

using controller Gcig(s). The original current loop has the gain at its resonant frequency. 

After using the controller, the magnitude of the resonance is around -20 dB which will 

decrease the oscillation of output voltage. The resistant of inductor is sensitive to the third 

transfer function. 

 

Fig. 4.1 Bode plots of inverter current loop with and without Gcig(s). 
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4.1.2 System-level controller design in grid-connected mode 

Fig. 4.2 shows the power flow of two inverters connected in parallel. Z (= R + j·X ) 

and θ are the line impendence and its angle, respectively; δ is the phase angle difference 

between two inverters; U1 and U2 are the output voltage of two inverters, respectively. 

Z∠θ

Inv2Inv1 U1∠0
U2∠- δ  

I∠-ϕ 

 

Fig. 4.2 The power flow between two inverters 

The key method for the parallel operation of inverters is the droop control. It’s 

widely used in power distribution systems. The advantage of droop control is that no 

external communication mechanism is needed among the inverters. And this is good for 

both linear and nonlinear loads sharing [31]. 

The inverter can be taken as a controllable energy source that regulates the 

frequency and the magnitude. The power generated by one inverter is: 

 
2

*
1 2 1 1 2

1 1

j
jj

j

U U e U U U
S P j Q U I U e e

Z e Z Z


 







   
           

 
             (4.7) 

Therefore, the real power and reactive power can be found as follows: 
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then, 
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Since there is Lg in the inverter, X >>R, then P and Q are proportional to δ and 

voltage difference, respectively.  By adjusting the frequency and amplitude of the voltage, 

P and Q can be controlled independently. In the d-q frame, Q = Vq·Id − Vd·Iq, specially 

when the synchronous frame is align to Vd, Vq = 0, then the following droop controller can 

be designed as follows: 
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                                                   (4.10) 

where kp and kq are droop coefficients corresponding to P and Q, respectively; f0 is the 

reference frequency. Iq
* is the reference current of iq. Fig. 4.3 shows the conventional droop 

control. The parallel connected inverters can be controlled in parallel to meet the same 

conditions, which means the output voltage, frequency and phase in consistently. 
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Fig. 4.3 droop control 
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As discussed above, Fig. 4.4 shows the overall signals flow of the controllers in the 

grid-connected mode. 
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Fig. 4.4 Signal flow of the inverter in grid-connected mode 

4.2 Experimental Setup for grid-connected inverters 

Fig. 4.5 shows the setup of experiment. There are two parallel-connected converters, 

one is the multiport converter which connected with a PV simulator, a WTG simulated by 

two back to back connected electric machines, battery and the load; the other is a H-bridge 

inverter directly connected to a DC voltage source. The same droop controller is adopted 

in both inverters. The open-circuit voltage Voc and the short-circuit current Isc of the PV 

panel are 68 V and 2 A (at 25℃, 1 kW/m2) respectively, the nominal battery voltage is 24 

V, and the output voltage of WTG is around 48 V, the reference DC link voltage V*
dc is 

190 V, and the switching frequency is 100 kHz. 
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Fig. 4.5 Experiment setup 

4.2.1 Setup with microprocessor board 

Any continuous and time-varying signal, such as voltage, current and voice, is an 

analog signal. By contrast, a set of discrete or finite signal is called digital signal. Working 

with electronics needs to deal with both analog and digital signals. In this work, all the 

converters connect with the digital signal processing (DSP) board which is implemented 

with chip TMS320F28335. The code is firstly programmed in Matlab Simulink. After 

building the code, the code can be loaded into the DSP processor by IDE software code 

composer studio (CCS). Fig. 4.6 shows the setup in CCS. 
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Fig. 4.6 Set up for DSP in CCS 

In order to process the analog and digital signals, an analog to digital converter 

(ADC) is a useful feature that converts an analog voltage or current to a digital value. 

Typically, the digital output value is proportional to the input. For F28335 DSP, it has two 

ports and eight pins for each port to do ADC conversion. And the ADC is 12-bit which 

means it can detect 4096 discrete analog values. In this system, the maximum system 

voltage is 3 V. This means that the ADC assumes 3 V is 4095 and anything less than 3 V 

will be a ratio between 0 and 4095. Thus, the equation can simply describe as follows: 

4095

3
D A                                             (4.11) 
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where A and D represents the analog and digital values, respectively. 

4.2.2 Setup with sampling sensors 

As mentioned above, the system voltage of ADC converter ranges from 0 V to 3.3 

V. Therefore, the sensor is useful to convert the sensed signal to the sampling value. 

Sampling is performed by measuring the value of the continuous every T seconds, which 

is called sampling period. In this work, the chip for sensor is ACS0712 05B. Fig. 4.7 shows 

the schematic of the sensor.  

 

Fig. 4.7 Schematic of the sensor 

The chip will sense the input signals. The supply voltage is 5V. The average of the 

sensitivity is 0.185 V/A. Therefore, the sampling value of current equation can be derived 

as follows: 

2.5 0.185V I                                                 (4.12) 



44 

 

 

 

The sampling for the voltage is based on the voltage divided circuit. So, the 

sampling value of voltage can be written as: 

6

4 5 6

u real

R
V V

R R R
 

 
                                       (4.13) 

where R4, R5 and R6 are the resistances which can be chosen by the requirement. In this 

work, the maximum real voltage through the inverter is 200 V. And take the power 

consumption into consideration. The R4, R5 and R6 are chosen as 100k, 100k and 1.5k 

respectively. 

However, the controllers need to control the real analog values. The sampling 

values will be converted into real values after the ADC. In order to get the real values of 

current or voltage, the coefficient is reserve to the sampling one. Fig. 4.8 shows the 

example of voltage sampling signal which reads directly from DSP. It has the spikes at 

high frequency. It’s related to the calculation in the ADC. To reduce this, one way is to 

improve the accuracy by decreasing the sampling time Ts. The more sensed points in one 

period, the more accurate sampling signal will get. Meanwhile, it requires more data space 

for the calculation. In order to build d-q frame in this work, time delayed method is adopted 

which uses the delay block to store the data. Therefore, it has to keep balance between the 

number of sensed signals and storage. In this work, the Ts is 52 microseconds.  
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Fig. 4.8 Original voltage sampling signals 

Another way to reduce the spikes or the oscillation is to add filter. The spikes occurs 

at high frequency. So the RC low pass filter can be used.  Fig. 4.9 shows the RC circuit for 

filter.  
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Fig. 4.9 RC low pass filter circuit 

The transfer function of LPF can be derived as follows: 
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The code in Matlab to get the discrete transfer function is shown as follows: 

      1/ 2 1, 1 2 , , ' 'c sf G tf z c d G T zoh         (4.15) 

where the fc is the cut off frequency for the filter, c2d is the function to transfer the 

continuous to the discrete in Matlab. In this work, the cut off frequency of the filter can be 

chosen at 15 kHz. Fig. 4.10 shows the sampling voltage of inverter using a 15 kHz filter.  

vo read from DSP

vo sampling signal after sampling

 

Fig. 4.10 Voltage sampling signals using the LPF filter. 

The sampling signal is consistent with the real signal without any spikes. The 

accuracy of the ADC and sampling is the key to d-q transformation and controllers. 

Therefore, the check for sampling signals is the first thing to do. 
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4.2.3 Sequence setup at grid-connected mode 

To connect the inverter and the grid, the first step is to check synchronization. The 

most commonly used method is to detect the zero-crossing. And the PLL could set the 

input at zero all the time. The voltage sensor of grid can read the signals from grid. Then 

the PLL block can lock the phase to generate the open loop for the inverter. The range of 

the phase angle is from 0 to 2π. Fig. 4.11 shows the phase angle from grid using the PLL 

block. The voltage of inverter and the voltage of grid are in phase.  

Phase angle from PLL

 

Fig. 4.11 Inverter and grid are in phase using the PLL block 

This open loop will last for serval periods to get the stable inverter voltage. Then, 

the relay will be used to connect the inverter and grid. Fig. 4.12 shows the initialization of 

relay signal. It takes around 250 microseconds.  
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Relay signal

 

Fig. 4.12 The initialization of relay signal 

However, the relay has delay time to close. It’s important to get the right time for 

the relay closed. Otherwise, the synchronization may have errors. Fig. 4.13 shows the time 

for relay closing. It takes around 12 microseconds. When the inverter is in phase with the 

grid, the droop controller will be ready to do the power sharing. 

Relay closing time = 12 ms

 

Fig. 4.13 Time for relay closed 
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Fig. 4.14 shows the overall sequence of experiment. Before connecting with the 

grid, one inverter can output stable waveforms. And the PLL block will be used to detect 

the zero-crossing for synchronization. The relay will be closed when the new inverter can 

work stably with same grid angle. Then the droop control is for power sharing. 

 

Fig. 4.14 Sequence for grid connection 

4.3 Experimental results and analysis 

After the setups, the experiment can be carried out to verify the inverter working in 

the grid connected mode. 
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4.3.1 Steady response in grid-connected mode 

Fig. 4.15 shows the steady-state waveform when the inverter works in the grid 

connected mode. ig1 and ig2 are the output current of two parallel connected inverters. The 

output voltage is 110V with 60 Hz. The mean value of DC-link voltage Vdc is controlled to 

be 190 V. The currents are in phase with vg and the magnitude is close, i.e., ig1 and ig2 which 

peak-to-peak values are 3.43 A and 3.46 A, respectively. This indicates two units are 

sharing power equally. 

vdc(5V/div)

ig2 (2A/div)

vg(100V/div)

ig1 (2A/div)

 

Fig. 4.15 Steady-state waveforms with grid 

4.3.2 The transient responses with grid 

To test the dynamic of the system, Fig. 4.16 shows the measured transient 

waveforms when the inverter is connected to the grid. At first, the load is supplied by one 
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inverter. The peak-to-peak value of ig1 is 6.4 A. When the other inverter is connected at t = 

255 ms, ig1 decreases and ig2 increases. The peak-to-peak value of ig2 is increased to 3 A 

within 100 ms. The output voltage is around 110 V and frequency is around 60 Hz. 

ig1(2A/div)

vo(100V/div)

ig2(2A/div)

The second inverter connected

 

Fig. 4.16 Dynamic waveforms when the inverter connected with the grid 

Fig. 4.17 shows the waveforms that the inverter is switched from grid connected 

mode to the standalone mode. Both inverters supply the power to the load at the beginning, 

then one inverter is removed at t = 0. Therefore, ig1 = 0 and the current of the other inverter 

ig2 increases quickly to supply the load power. The DC-link voltage drops to 178 V and 

then goes back to normal. Vdc is still controlled to be 190 V. The whole transient lasts 

around 100 microseconds. But the output voltage is controlled to be 110 V AC during the 

whole transient.  
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vdc(10V/div)

ig1(2A/div)

ig2(2A/div) vo(100V/div)

 

Fig. 4.17 Waveforms that one inverter disconnected with grid 

Fig. 4.18 shows the waveforms for the load changing from 100 Ω to 50 Ω. The 

waveforms are similar with the mode switch. During the transient, vdc is controlled between 

186 V and 194 V. The output voltage is controlled to be 110 V AC too. When the load is 

changed to 50 Ω, the current of both inverter increases which means the inverters can share 

the power after the load change. 
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vdc(10V/div)

vo(100V/div)ig2(1A/div)

ig1(2A/div)

R = 100 Ω R = 50 Ω 

 

Fig. 4.18 Waveforms when the resistive load is changed from 100 Ω to 50 Ω 

4.3.3 Quality analysis of the inverters 

The quality of current is measured by THD. The equation to calculate the THD for 

the current is: 

2

_

2

1_

n RMS

n

RMS

i

THD
i







                                                    (4.16) 

where n is the numbers of the integer multiples of the frequency of the main signal, i1_RMS 

is the RMS current of the fundamental frequency which is 60 Hz. 

Fig. 4.19 shows the spectrum of current ig1 at steady state.  Compared to the 

amplitude at fundamental frequency, the amplitude at second and third harmonic frequency 
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is much lower, which is 21.25 mA and 19.12 mA respectively. And the calculated current 

THD is 3.97% which is less than 5%. 

 

Fig. 4.19 Spectrum of the current ig. 
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Chapter 5 Conclusions and Recommendations for Future 

Works 

5.1 Conclusions 

The objective of this thesis is to develop multiport converters for renewable energy 

integration and microgrid application. The proposed converters have the advantages of 

using less ports to integrate different types of renewable energy sources and working with 

and without the grid. In this thesis, the single-phase inverter was proposed, designed and 

validated by the experimental results. They were: 

 Controller design in the d-q frame. 

 Synchronization with the grid. 

 Droop controller for power sharing. 

 Stable work at standalone mode, gird-connected mode and switched mode. 

The controller design of the proposed inverter is based on the d-q transformation. 

In this approach, the AC signals can be transferred into “dc” variables in the synchronous 

frame. Therefore, it can simplify the complexity of calculation. And. It is easier to be 

controlled and only two regulator structures are required, in the d and q axes only. The 

experiment showed that the inverter implemented with controllers in d-q frame can output 

stable sinusoid waveforms. 

The proposed inverter is designed to synchronize with the grid. When it connected 

with the grid, the inverter can detect the zero-crossing point and read the phase from the 
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grid. Then relay can be set to connect the inverter and grid. The experimental results 

showed that the inverter voltage and grid voltage are in phase before the relay closing. 

Droop controller is used to distribute the power when the inverter is connected with 

the grid. In this work, experimental results showed that the power for inverters can be 

shared equally. 

The proposed inverters can work at standalone mode and grid connected mode. The 

experimental results were provided to show the steady response and dynamic states. The 

inverter can also work at switched mode, such as switched from standalone mode to grid 

connected mode, disconnected with grid mode and load changing mode. 

A new two-level control of a two-stage four-port DC-AC inverter was proposed for 

integrating with the grid with different energy sources. Simulation and experimental results 

showed that the inverter was capable of working and switching from grid connected mode 

and the standalone mode. 

5.2 Recommendations for future work 

Recommendations for future work are listed as follows: 

Improve the initialization of current: When the inverter connected with grid, 

the current has a delay. And it takes some period to be stable. 

Power sharing: The inverter can work stably and share the power equally when 

the load is resistive. It will be worthwhile to investigate the droop controllers for different 

power sharing ratios with different types of load. 
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Appendix 

The .m file in Matlab Simulink: 

% Param  
f = 100e3;                      %f for PWM 
Ts = 52e-6;        % sampling freq., 50 kHz 
Tctrl = Ts; 
fg = 60.0962;T = 1/fg; 
N = T/Ts; 
N = 320; 

 
N1 = 8*N;                             % delay 8T for close loop 
N2 = 2*N;                             % delay 2T for getting Vmax 
NRLY = ceil(7.5e-3/T*N);              % takes 12 ms to close 
 

C2 = 22e-6; 
L2 = 2*(480e-6);                      % INV inductance 
w = 2*pi*fg; 
Vdc = 190;  
Vm = 158; 
Vmb = Vm ; 
%% just input the slope ONLY 
kia = 8.5;                 %5A 
kv = 67; 

% voltage loop 
Kp1 = 4e-3; Ki1 = 8.7;               % fc = 30 Hz 
Imax = 6; 
% current loop 
Kp2 = 6.4; Ki2 = 400;             % fc = 1kHz 
Vmax = [2]; 
%% P & Q filter 
ap = 0.0194; bp = 1- ap;             % 60 Hz 

 
Q0 = Vm^2*w*C2/2;         
P0 = Vm^2/100/2/2; 
Iq_ref = w*C2*Vm; 
Max_dV = 0.4; 

% droop control 
kp = Max_dV /(P0);  
kq = 0.39 /(Q0); 
return; 
% filter param 

Ti = 1/(2*pi*1e3); Gi = tf(1,[Ti 1]); z10k = c2d(Gi,Ts,'zoh'); 
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The signal flows in Matlab Simulink block: 

 

The time sequence blocks: 
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Sampling block: 

 

Controller block: 
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Parameters in controller block: 

 

Filter block: 
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Parameters in PLL Block: 

 

Functions to design PI controller and get the bode plots: 

Vdc = 190; R = 22; C2 = 22e-6;L2 = 2*(480e-6);r2 = 2*0.1; 
L = 1e-3; Vm = 110*sqrt(2); 
w = 2*pi*60;  Rd = 0.5; Lg = 470e-6;  
% V(s)/I(s) 
Gv = tf(R,[R*C2,1]) 
%ia(s)/ d(s) 
Gi = tf([1], [L2, r2]); 
% ig(s)/Vc(s) 
Gs = tf([1], [L2*Lg*C2,  (L2+Lg)*C2*r2,(L2+Lg)+C2*r2^2-3*L2*Lg*C2*w^2, 

2*r2-(L2+Lg)*C2*r2*w^2]); 
% controller design 
Gcs = 0.2*tf([1,400], [1,0]);%LCL 
Gcv = 4e-3*tf([1,8.7],[1,0]);%LC 
Gci = 0.04*tf([1,200], [1,0]); 
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% H(s) -- sample circuit LPF R = 10.2e3;C = 4.7e-9;  
R2 = 10.2e3;C = 4.7e-9; 
H = tf(1,[R2*C 1]); 
return;  

 

% compensation Ia 
bode(Gs); 
hold on; 
bode(Gs*Gcs); 
title('Controller Gcs Bode Plot'); 
legend('before compensation','after compensation'); 
h = legend('before compensation','after compensation'); 

set(h,'Fontsize',10); 
grid on; 

 

% compensation Vc 
bode(Gv); 
hold on; 
bode(Gv*Gcv); 
title('Controller Gcv Bode Plot'); 
legend('before compensation','after compensation'); 
h = legend('before compensation','after compensation'); 

set(h,'Fontsize',10); 
grid on; 

 

% % compensation ia 
bode(Gi); 
hold on; 
bode(Gi*Gci); 
title('Controller Gci Bode Plot'); 
legend('before compensation','after compensation'); 
h = legend('before compensation','after compensation'); 

set(h,'Fontsize',10); 
grid on 
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