
Minnesota State University, Mankato Minnesota State University, Mankato 

Cornerstone: A Collection of Scholarly Cornerstone: A Collection of Scholarly 

and Creative Works for Minnesota and Creative Works for Minnesota 

State University, Mankato State University, Mankato 

All Graduate Theses, Dissertations, and Other 
Capstone Projects 

Graduate Theses, Dissertations, and Other 
Capstone Projects 

2022 

A Quantitative Assessment and Comparison of the Undergraduate A Quantitative Assessment and Comparison of the Undergraduate 

Curriculum Prerequisite Structures for the Universities in the Curriculum Prerequisite Structures for the Universities in the 

Minnesota State System with Particular Emphasis on Minnesota State System with Particular Emphasis on 

Mathematics Courses Mathematics Courses 

Erik Loge 
Minnesota State University, Mankato 

Follow this and additional works at: https://cornerstone.lib.mnsu.edu/etds 

 Part of the Curriculum and Instruction Commons, Educational Leadership Commons, Higher 

Education Commons, and the Science and Mathematics Education Commons 

Recommended Citation Recommended Citation 
Loge, E. (2022). A quantitative assessment and comparison of the undergraduate curriculum prerequisite 
structures for the universities in the Minnesota State System with particular emphasis on mathematics 
courses [Doctoral dissertation, Minnesota State University, Mankato]. Cornerstone: A Collection of 
Scholarly and Creative Works for Minnesota State University, Mankato. https://cornerstone.lib.mnsu.edu/
etds/1208/ 

This Dissertation is brought to you for free and open access by the Graduate Theses, Dissertations, and Other 
Capstone Projects at Cornerstone: A Collection of Scholarly and Creative Works for Minnesota State University, 
Mankato. It has been accepted for inclusion in All Graduate Theses, Dissertations, and Other Capstone Projects by 
an authorized administrator of Cornerstone: A Collection of Scholarly and Creative Works for Minnesota State 
University, Mankato. 

http://cornerstone.lib.mnsu.edu/
http://cornerstone.lib.mnsu.edu/
https://cornerstone.lib.mnsu.edu/
https://cornerstone.lib.mnsu.edu/
https://cornerstone.lib.mnsu.edu/
https://cornerstone.lib.mnsu.edu/etds
https://cornerstone.lib.mnsu.edu/etds
https://cornerstone.lib.mnsu.edu/theses_dissertations-capstone
https://cornerstone.lib.mnsu.edu/theses_dissertations-capstone
https://cornerstone.lib.mnsu.edu/etds?utm_source=cornerstone.lib.mnsu.edu%2Fetds%2F1208&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/786?utm_source=cornerstone.lib.mnsu.edu%2Fetds%2F1208&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1230?utm_source=cornerstone.lib.mnsu.edu%2Fetds%2F1208&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1245?utm_source=cornerstone.lib.mnsu.edu%2Fetds%2F1208&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1245?utm_source=cornerstone.lib.mnsu.edu%2Fetds%2F1208&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/800?utm_source=cornerstone.lib.mnsu.edu%2Fetds%2F1208&utm_medium=PDF&utm_campaign=PDFCoverPages


A Quantitative Assessment and Comparison of the Undergraduate Curriculum 

Prerequisite Structures for the Universities in the Minnesota State System with 

Particular Emphasis on Mathematics Courses 

 

 

By 

Erik Loge 

 

 

 

A Dissertation Submitted in Partial Fulfillment 

of the Requirements for the Degree of 

Educational Doctorate 

In 

Educational Leadership 

 

 

 

 

Minnesota State University, Mankato 

Mankato, Minnesota 

April 2022 

  



i 

 

Date of Final Defense: April 5, 2022 

A Quantitative Assessment and Comparison of the Undergraduate Curriculum 

Prerequisite Structures for the Universities in the Minnesota State System with Particular 

Emphasis on Mathematics Courses 

Erik Loge 

This dissertation has been approved by the following 

members of the examining committee: 

  

 

 

  

 ________________________________ 

Dr. Jason Kaufman 

 

 

________________________________ 

Dr. Anne Weyandt 

 

 

_______________________________ 

Dr. Thomas Sundquist 

 

 

 

 

 

 

 

 



ii 

 
Abstract 

The purpose of this dissertation is to study the consistency of the structures and the 

centrality of mathematics courses in the curricula of the universities in the Minnesota 

State University system. This research will be based on the curriculum prerequisite 

networks for the seven universities in the Minnesota State System. These networks will 

be constructed from the information in the course catalogs available on each university’s 

public website. The networks will be constructed with courses represented by nodes and 

weighted edges representing prerequisite relationships. The analysis will use curriculum 

network analytics to evaluate and compare the connectedness of the networks, the 

centrality of mathematics courses,  and the importance of mathematics departments in the 

structure of each university’s curriculum. 
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Chapter I - Introduction 

Background of the Problem 

It is typical for universities in the United States to have a list of regularly offered 

courses compiled into a course catalog. The course catalog will generally provide a 

description for each course along with any prerequisite or corequisite courses. Students 

must successfully complete a prerequisite course before starting work in the next course 

which will be called a target course. Some course prerequisites are satisfied with a 

passing grade, and some have a minimum grade requirement. Corequisite courses are 

similar to prerequisites, but often corequisites can be completed either before a target 

course or at the same time as the target course. Prerequisite courses can lead to a chain of 

courses that must be completed, one after another, before a student can proceed to the 

final course in the sequence. These prerequisite chains can lead to longer completion 

times for graduation. Each link in a prerequisite chain is likely to indicate another 

semester in a student’s journey through the curriculum. Additionally, if a single course 

appears in several prerequisite chains, then it starts to take on a more central role in a 

university’s curriculum. If a course that is central to the curriculum is problematic with 

regard to student success, then it can cause a bottleneck for the flow of students on their 

journey toward graduation. Alternatively, a course that is central to the curriculum can 

also be an important hub for the dissemination of knowledge throughout large parts of the 

university. The same ideas regarding a course being central to a curriculum can also be 

applied to departments that have courses that show up in several prerequisite 

chains.  Since nearly every university now offers its course catalog in a digital format, a 

university’s curriculum can be downloaded and modeled into a network where the nodes 
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represent courses, and the directed edges represent the relationships between prerequisite 

and target courses. This prerequisite curriculum network can then be analyzed to give a 

quantitative representation for the structure of the university’s curriculum. This analysis 

can then be used to help the university make more informed decisions on things ranging 

from curriculum changes to course scheduling and allocation of funding (Slim et al., 

2014). 

Prerequisites 

Requirements for prerequisite knowledge can be found at universities throughout 

history. Often, prerequisite requirements were imposed upon students before enrollment 

in the university was allowed. For example, since Latin was the primary language of 

instruction at Medieval universities, students often had to satisfy a requirement of fluency 

in Latin before admission. One university admission requirement of the time stated that 

the Latin skills of prospective students must be developed enough to “read, sing and 

construe well and also compose twenty-four verses on one subject in one day” (Lukas, 

2006, p. 48). The curricula of early American universities were largely copied from 

Europe. This resulted in continued admission requirements of fluency in Latin and 

possibly Greek. It was not until 1745 that a university in North America required more 

than a working knowledge of these languages as a minimum for admission. In that year, 

Yale became the first American university to require some knowledge of mathematics as 

an admissions requirement (Denham, 2002). As the American university progressed 

through the nineteenth century, the typical university curriculum evolved from a strictly 

defined path to graduation to an elective model of education (Bok, 2013). As academic 

majors became more prevalent and courses have become more specialized, the act of 
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choosing, assigning, and enforcing course prerequisites has become more complex for 

each university. 

The reasons for selecting and assigning modern course prerequisites vary. Many 

prerequisite courses that are contained in the same academic department as their target 

course will be chosen due to a direct link in content between the two courses. This is 

often seen in sequential courses with titles that can be similar to Elementary French I and 

Elementary French II (Abou-Sayf, 2008; Walker, 2010). The content learned in the 

prerequisite courses will be necessary for the students to understand the content in the 

target courses. Beyond these typical course content prerequisites, courses can also be 

selected as prerequisites for other reasons. A course may be chosen as a prerequisite 

because its completion has been shown to produce more successful or capable students in 

target courses. This can happen even though there is little to no content overlap between 

the prerequisite and target courses (Walker, 2010; Prante, 2016; O’Shea & Pollatsek, 

1997). Walker calls these courses filter and maturity prerequisites. Additionally, a course 

may be chosen as a prerequisite to satisfy a safety requirement in a target course or to 

satisfy a requirement called upon by a stakeholder outside of the university (Abou-Sayf, 

2008). Requirements from outside of the university may come from a system that the 

university belongs to (Minnesota State, 2015), a state legislature (Omnibus Supplemental 

Appropriations Bill, 2014), an outside accrediting body, or some other stakeholder with 

sway over desired student outcomes (Johnson & Wang, 2015).  

Mathematics Curriculum 

In science, technology, engineering, and mathematics (STEM) disciplines, 

mathematics courses are often called upon to act as prerequisites for major’s courses. The 
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2015 Curriculum Guide to Majors in the Mathematical Sciences (Mathematical 

Association of America, 2015) noted that biology students accounted for 30% of 

mainstream Calculus I students with engineering students accounting for 27% of those 

same students. College Algebra is often one of the lowest level mathematics courses 

available for college credit at a university. It also serves as a prerequisite for classes in 

many departments. A study of one university by Herriott and Dunbar (2009) found that 

only 9% of students enrolled in College Algebra had declared majors in actuarial science, 

chemistry, computer science, engineering, mathematics, or physics. Over 70% of the 

students enrolled in College Algebra in the study by Herriott and Dunbar had declared 

majors in either Business, Economics, or Health Sciences. This research indicates that 

mathematics courses and departments play a central role in the structure of a university’s 

curriculum and can greatly affect a student’s progress towards graduation.   

  University mathematics departments tend to have courses that follow a relatively 

standard hierarchy of core courses that form a prerequisite chain through the mathematics 

curriculum. College algebra is often one of the lowest level mathematics courses that 

offers college credit. From college algebra, students can progress through the 

mathematics curriculum by taking Precalculus or Trigonometry, Calculus I, Calculus II, 

Calculus III, Differential Equations, and then Linear Algebra (O’Shea & Pollatsek, 

1997). This typical path through the mathematics curriculum makes up part of what 

Goldberg (2008) called the math-science death march. Many STEM majors will start on 

this prerequisite chain at or after Calculus I, but that still leaves a long path to completion 

(Mathematical Association of America, 2015). 
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Network Analysis 

With all of the course and prerequisite information for universities now available 

in online course catalog repositories, it is now possible to compile and analyze this 

information using methods that would have been difficult or impossible in the past. 

However, Knorn et al. (2019) indicate that quantitative measures of curriculum design are 

rarely used at the university level. Ruitenberg (2005) states that “cartographic 

representations are not common in educational theory, nor have the functions and effects 

of cartographic representation been fully considered and studied in educational circles” 

(p. 8). The cartographic representations that Ruitenberg refers to in this quote include 

networks and network analysis. Ruitenberg states that networks help represent the spatial 

aspects of education in ways that the written word cannot as easily convey. Aldrich 

(2015) comments that the use of concept and curriculum mapping has come close to 

representing a scientific view on the shape of curricula. However, Aldrich indicates that 

the visual representations of the structure represented in concept and curriculum mapping 

is too often hidden in text, tables, and spreadsheets. Further, concept and curriculum 

mappings do not easily lend themselves to quantitative analysis. In the last decade, the 

use of network analysis to describe university curricula has become more common. Some 

studies focus on the connections of concepts in learning but not the prerequisite 

connections from university course catalogs (Knorn et. al, 2019; Komenda et. al, 2015; 

Varagnolo et. al, 2020). Other studies use student enrollment and performance data along 

with networks built based on course prerequisite information to model things like student 

flow through a program or college (Saltzman & Roeder, 2011; Molontay et al., 2020). A 

third type of study uses metrics and clustering algorithms on curriculum prerequisite 



6 

 
networks to describe the structure, connectedness, strengths, and issues with curricula 

(Aldrich, 2015; Heileman et al., 2019; Meghanathan, 2017; Slim et al., 2014; Wigdahl et 

al., 2014). 

Representing the course catalog of a university with a prerequisite network 

provides unique visual representations and quantitative analyses of the curriculum 

(Aldrich, 2015). A network is made up of nodes (vertices) and the edges that form the 

connections between these nodes. The edges that connect nodes can be directed or 

undirected. A directed edge indicates a connection starting at one node and only moving 

to the other. An undirected edge indicates a two-way connection between two nodes. 

Edges and nodes can also be weighted. Different weightings can be assigned to the edges 

connecting two nodes (Newman, 2010).  

Figure 1 

Sample Portion of a Prerequisite Network and Its Adjacency Matrix

 

Note. Image by the author. 
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Figure 1 is a sample portion for one possible setup of a directed prerequisite 

network. This prerequisite network shows the nodes as courses represented by their 

department and course number. Each directed edge starts at a prerequisite course and 

points to the target course. Solid lines indicate a required prerequisite course. Dashed 

lines indicate that the prerequisite can be satisfied from a choice of courses. For example, 

the prerequisite for MATH 165 is either MATH 107 or MATH 105 but both courses do 

not have to be completed. The prerequisites for CHEM 475 require MATH 165 and 

either PHYS 252 or CHEM 466. A student is not required to take both CHEM 466 and 

PHYS 252. Each of MATH 105, MATH 107, and MATH 166 have one required 

prerequisite course. 

In Figure 1 each node represents a course, and each connecting edge represents a 

prerequisite relationship between the courses. These edges are inherently directed; the 

edge starts at the prerequisite course and points to the target course. The weighting of the 

edges can be determined by the statement of the prerequisite. If a course is required 

without choice, then the prerequisite edge will have a weighting of one. If an option is 

given to satisfy a prerequisite by completing one of n possible course choices, then the 

weight of the directed edges from the options to the target will each have a weighting of 

1/n (Aldrich, 2015). A network can also be represented as a matrix (see Figure 1). If a 

network has n nodes, then the matrix would be built with n columns and n rows where 

each row and column represent a single node. In an adjacency matrix, the weighting of 

the edge connecting the j node to the i node is put in the i,j entry of the matrix. If no 

connection exists, then the entry in the adjacency matrix is zero. The analysis of the 

network is largely done using computer algorithms acting on matrices that represent the 
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network (Newman, 2010). The theory and computations behind the calculations in 

network analysis are well defined and reproducible with any number of computer algebra 

systems. 

Problem Statement 

Since each university typically uses a local process to assign prerequisite courses, 

it is possible that there are inconsistencies in prerequisites across a state system of 

universities. Additionally, the various stages of reviewing, adding, removing, and 

enforcing prerequisites lead to the possibility of different curriculum structures across a 

statewide system of universities. A review and comparison of the course prerequisite 

networks for universities in a given system could reveal consistencies and inconsistencies 

across the curricula in the system. Further, an analysis of these networks can lead to 

useful information regarding course, department, and university curricular needs (Slim et 

al., 2014). In particular, is there consistency in the way that mathematics departments fit 

into university curricula and the corresponding prerequisite course networks for a state-

wide university system?  

Hypotheses 

This research will analyze the course prerequisite networks for the seven 

universities in the Minnesota State System. The analysis will test for commonalities and 

differences in the ways that mathematics departments fit into each of the networks. 

The flow of prerequisites through a mathematics department is often relatively 

standardized across universities (O’Shea & Pollatsek, 1997). However, courses outside of 

the mathematics department can be assigned mathematics course prerequisites for varied 

reasons (Abou-Sayf, 2008; Walker, 2010; Prante, 2016). The 2015 Curriculum Guide to 
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Majors in the Mathematical Sciences (Mathematical Association of America, 2015) noted 

that biology, engineering, and economics majors accounted for over half of the students 

who take university Calculus 1 courses. Overwhelmingly, these students took Calculus 1 

to satisfy a program requirement or course prerequisite. Similarly, one university reported 

that 98% of students enrolled in College Algebra take the class to satisfy a program 

requirement or course prerequisite (Herriott & Dunbar, 2009). This large amount of 

assigning lower-level mathematics courses as prerequisites could lead to high variability 

in course prerequisites between universities. Alternatively, Walker (2010) implies that 

higher level mathematics courses are often assigned as prerequisites to ensure that 

students have developed mathematical maturity as opposed to specific skills. This 

dichotomy leads to the first hypothesis of this research. 

Hypothesis 1: It is hypothesized that, in mathematics departments, lower-level 

courses will exhibit a higher variance in being labeled a prerequisite than higher level 

mathematics courses. 

Many students enroll in mathematics courses to satisfy program requirements or 

course prerequisites for majors outside of the mathematics department (Herriott & 

Dunbar, 2009; Mathematical Association of America, 2015). This can lead to longer 

paths through the curriculum and extended timetables for the completion of a degree. In a 

study by Slim et al. (2014), it was found that the ten highest ranking courses on a 

cruciality metric at a large university were all in the mathematics department. The 

cruciality metric was based in part on the longest path that contains a course. This leads 

to hypothesis two.  
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Hypothesis 2: It is hypothesized that the longest prerequisite paths through the 

curriculum will contain mathematics prerequisites. 

The internal prerequisites of a mathematics department tend to follow a fairly 

standard pattern running through the courses of College Algebra, Precalculus, a three-

course Calculus sequence, and finally higher-level courses (O’Shea & Pollatsek, 1997). 

Also, mathematics courses are often taken by students in majors outside of the 

mathematics department to fulfill course requirements  (Mathematical Association of 

America, 2015). The number of times that the mathematics department has courses listed 

as prerequisites increases the importance of the department to the overall structure of the 

curriculum prerequisite network. This leads to the third hypothesis of this research. 

Hypothesis 3: It is hypothesized that mathematics departments will have 

consistently high centrality in the network analysis. 

The final hypothesis comes from the idea of specialized and service mathematics 

courses. It is not unusual for mathematics departments to have courses specifically 

designed for students in another department or major. These service courses can serve as 

an alternative to the typical College Algebra or Calculus 1 course prerequisites 

(Ackerman, Fenton, & Raymond, 2020). Also, there are cases where these specialized 

courses are not taught in the mathematics department but in the department of the 

student's major course of study (Klingbeil & Bourne, 2014; Albers, 2018). More 

specialized courses would seem to be likely at larger institutions with more options for 

staffing and scheduling. Therefore, we have the fourth hypothesis of this research.  

Hypothesis 4: It is hypothesized that the interconnectedness of undergraduate 

curricula will be inversely correlated with institutional size. 
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Significance of Research 

Consistently defined curriculum prerequisite networks can give an effective way 

for comparing the curricula of universities (Heileman et al., 2018).  Heileman et al. 

further indicate that faculty can review these comparisons “leading to data-informed 

decision-making around curriculum reform” (p. 3). Further, a comparison of the 

curriculum prerequisite networks can help target specific issues that each university 

closely tracks. Molontay et al. (2020) refer to curriculum prerequisite networks by noting 

that “the structure of the network has a huge impact on dropout rates and on graduation 

times” (p. 491).  

Limitations 

This research is restricted to the curriculum and prerequisite courses defined in 

the online course catalogs for the seven universities in the Minnesota State University 

System. The information in the online course catalogs for these universities will be 

scraped in the fall of 2021.  Prerequisites that indicate a need for instructor, department, 

or program approval are not included. Prerequisites that require a certain number of 

credits must first be completed in a department, program, or college are not included. 

Prerequisites referring to “previous experience with…” are not included. One-way 

corequisites are treated the same as prerequisites. Two-way corequisites (co-corequisites) 

are treated as a single course.  

Although historical success rates of students in particular courses and with 

particular instructors can be useful in determining how crucial a course is to a 

university’s curriculum (Slim et al., 2014), those considerations and statistics are not part 

of this research.   
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Definitions 

Acyclic Directed Network 

A directed graph is one where each edge connecting two notes only crosses in one 

direction. An acyclic graph has no cycles. There is no path in an acyclic directed graph 

where a node can be both the starting and ending point (Newman, 2010). 

Betweenness Edge Centrality 

The betweenness edge centrality of an edge in a network is a measure of how 

many shortest paths between nodes contain the given edge (Newman, 2010).  

Bipartite Network 

A bipartite network consists of two different types of nodes. The edges in a 

bipartite network can only connect nodes that are of a different type. Edges can be 

directed or undirected. For example, if the nodes in a directed bipartite network represent 

either learning outcomes or courses, then the edges in the network must either connect a 

learning outcome to a course or a course to a learning outcome (Newman, 2010). 

Blocking Factor 

The blocking factor for a course in a prerequisite network is the number of unique 

courses, excluding itself, that exist in all possible paths starting at that course (Slim et al., 

2014) 

Centrality 

The measure of a node’s importance in a network is its centrality. There are many 

different acceptable kinds of centrality measures in network analysis (Newman, 2010). 

This research will use in and out degree centrality as well as betweenness edge centrality. 
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Curriculum Prerequisite Network 

A network where the nodes represent courses, and each directed edge represents a 

relationship from a prerequisite to a target course (Aldrich, 2015). 

Community Detection (Clustering) 

Community detection is the act of reducing a network into subgroups that contain 

many connections between nodes and few connections between groups (Newman, 2010). 

The community detection used in this research will be done through the FindCommunity 

command in the program Mathematica. The centrality model of this command uses 

betweenness edge centrality to define its communities (Jung, 2016; see also Fortunato, 

2010). 

Degree Centrality 

The in-degree centrality of a node in a directed network is the number of edges 

that direct into the node. The out-degree centrality of a node in a directed network is the 

number of edges that begin at that node. The degree centrality of a node in an undirected 

network is the number of edges that touch the node (Newman, 2010). 

Delay Factor 

The delay factor for a node in a prerequisite network is defined as the length of 

the longest geodesic path that contains that node (Slim et al., 2014) 

Geodesic Path 

A geodesic path between two nodes is one that crosses the fewest edges while 

traveling from the starting node to the ending node. If the edges have weightings, then the 

geodesic path is the one with the smallest sum of edge weights (Newman, 2010).  
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Geodesic Edge Betweenness Centrality 

The geodesic edge betweenness centrality (edge betweenness) of an edge in a 

network is the number of geodesic paths that contain that edge (Fortunato, 2010). 

Isolated Course 

 An isolated course is one that has no prerequisites and does not serve as the 

prerequisite for any other course. These courses will be not connected to any edges in the 

curriculum prerequisite network and will have a total in-degree and out-degree of zero. 

Linked Course 

 A linked course will either have at least one prerequisite or serve as a prerequisite 

to at least one other course. These courses will be connected to at least one edge in a 

curriculum prerequisite network and will have a total in and out-degree greater than zero. 

Path Length  

The path length referred to in this research will be the geodesic path length. The 

geodesic path between two nodes is the one that requires the fewest number of edges to 

be crossed. The length of the geodesic path is the number of edges crossed while 

traveling from the starting node to the last node (Newman, 2010).   

Prerequisite 

A course that must be completed before a student starts work in a target course. 

Generally, if one is allowed to enroll in a prerequisite and a target course during the same 

semester, the prerequisite is called a corequisite. For the purposes of this research, 

prerequisites and corequisites will be treated as the same thing. In the case of two-way 

corequisites, the two courses will be listed as a single course with a single node in the 
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network analysis. For example: If BIOL 105 has a corequisite of the lab course BIOL 

105L and vice versa, then the course will be listed as BIOL 105/BIOL 105L. 

Target Course 

A target course is one that has a course prerequisite. For example: If MATH 165 

has a prerequisite of MATH 107, then MATH 107 is the prerequisite and MATH 107 is 

the target.  

Weakly Connected Components  

Two nodes are in the same weakly connected component of a network if there is a 

path connecting them. 
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Chapter II – Literature Review 

In a university’s curriculum, it is common to have one course that must be 

completed before a student is allowed to continue onto a second course. The required 

course is called a prerequisite and the second course will be referred to as a target course. 

Prerequisite courses in a university’s curriculum can be assigned for several reasons. 

Prerequisite assignments are generally local university decisions. It is very common for 

departments to have sequential courses that serve as prerequisites for the courses that 

follow. Often in these departmental prerequisite assignments there is an amount of 

content overlap between a prerequisite and a target course. The prerequisite course will 

serve as an introduction to a topic that will be utilized or built upon in the target course. 

Outside of content overlap and preparation, prerequisites can also be assigned for other 

reasons. Some course prerequisites are chosen because success in the course has shown to 

lead to success in a target course or program. Similarly, a prerequisite could be assigned 

to a target course to require students to reach a certain level of academic maturity before 

continuing onto a target course.  

If it happens that a single course is listed as a prerequisite for several different 

target courses, then that course tends to be more important to the structure of the 

university’s curriculum. Similarly, if a course is part of several different prerequisite 

chains in the curriculum, then it will again become more important to the university’s 

curriculum. These courses and their departments become more central to the curriculum 

as they get called more often as prerequisites. This centrality can make courses a valuable 

information hub to a large part of the university’s curriculum. It could also lead to a 

bottleneck that slows a student’s progress toward a degree.  
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 University mathematics departments often follow a standard chain of 

prerequisites through the mathematics curriculum. Additionally, mathematics courses 

often serve as course prerequisites to many courses outside of the mathematics 

department. Mathematics courses are often assigned as prerequisites to courses in 

science, engineering, technology, economics, and finance. The most common courses 

listed as mathematics prerequisites are the lower-level courses of College Algebra and 

Calculus 1. Having mathematics prerequisites for courses outside of the department adds 

to the length of prerequisite chains for higher level courses and programs. This can add to 

the difficulty of graduating in a timely manner.  

Prerequisites  

At the university level, prerequisite courses can be assigned for target courses to 

serve a few purposes. One of the most common reasons for selecting a course 

prerequisite is content preparation (Abou-Sayf, 2008; Walker, 2010). Content 

prerequisites are especially common in sequential courses contained in a single 

department. In this situation, a portion of the content studied in a prerequisite course will 

be directly referenced or built upon in a target course. For example, it would make little 

sense to teach the language skills of an Elementary French II course if students don’t 

have a sufficient background in the French language equivalent to the work in an 

Elementary French I course.  

An additional reason for choosing a course prerequisite is a common belief that 

completing the prerequisite course will help assure students’ success in a target course or 

program (Abou-Sayf, 2008; Walker, 2010; Prante, 2016). This reasoning is similar to the 

idea of content preparation, but in this form, there may not be a direct content overlap 
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between a prerequisite and target course. In these cases, a prerequisite essentially serves 

as a registration gate to the target course. This gate could be in place for what Walker 

(2010) calls filtering or maturity purposes.  

A filter prerequisite is used when completing a course generally equates to 

increased student success in a target course. However, there is not necessarily a direct 

content overlap between the prerequisite and target course. Prante (2016) states that a 

mathematics prerequisite can be used as “a filtering mechanism for enrolment in 

economics. That is, students with mathematical skills (even those not used in Principles 

of Economics courses) are more likely to succeed in economics simply because strong 

mathematics skills are correlated with skills that also predict success in economics” (p. 

81).  

A maturity prerequisite lies somewhere between a content and filter prerequisite. 

With a maturity prerequisite, there again may not be direct content overlap between a 

prerequisite and a target course, but the prerequisite may provide students “with solid 

technical and conceptual tools…” and “whet their appetite for further study” (O’Shea & 

Pollatsek, 1997, p. 566). Walker (2010) recounts his teaching of a computer science 

course that did not directly draw upon the course’s mathematics prerequisites, but “the 

mathematical sophistication of the students allowed substantial depth in describing and 

analyzing algorithms” (p. 15).  

In addition to helping ensure student success, the completion of a safety 

prerequisite may be required for safety reasons in the target course (Abou-Sayf, 2008). 

For example, an aviation program would certainly need to have coursework explaining 

safety measures that are expected of pilots before student pilots would be allowed to go 
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on solo flights. A final common occurrence for choosing a course or program prerequisite 

may be due to external requirements. An example of this can be seen in nursing curricula 

that have certification requirements of nursing students which are independent of the 

university where classes are taken. Any designated content, filter, maturity, or safety 

prerequisites could be removed if the assumptions that defined the assignment are shown 

to be false or for other administrative considerations. 

The assignment of course prerequisites at a university is generally a local 

decision. When a course is developed or up for review, there is typically a department 

and/or committee approval process that must be followed on each campus. The choice of 

assigning or removing course prerequisites is often the job of the academic department 

that will teach the course (Bok, 2013). It is common to choose course prerequisites based 

on quantitative research. A common study for the effectiveness of a prerequisite will 

compare student success in a target course against the student’s completion or omission 

of a possible course prerequisite (Donovan & Wheland, 2009; Green, Stone & Charles, 

2009; McCarron & Burstein, 2017; McCoy & Pierce, 2004). Further research has been 

conducted that investigates the properties of a prerequisite that lead to student success. 

Shaffer et al. (2016) showed that students benefited in a target course only on those topics 

that were covered at length in a prerequisite course. Tai and Sadler (2007) found that the 

method of instruction in a prerequisite course affected the usefulness of prerequisite 

material in a target course.  

There can be additional requirements on course prerequisites imposed by a 

campus, system, or state. For example, for many years, the California Community 

College system had a policy that mandated cross-departmental prerequisites could only 
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be called in a target course if there was statistical validation of the prerequisite course’s 

benefits in the target course. After more than a decade of use, the statistical validation 

requirement was relaxed in order to allow content review as the justification of a cross-

departmental prerequisite. Content review continues to be the predominant method of 

choosing course prerequisites for colleges and universities across the country (Academic 

Senate for California Community Colleges, 2010).  

In the Minnesota State System of Colleges and Universities, prerequisite course 

selection is largely determined by the individual colleges and universities. However, the 

state legislature has mandated some standardization of requirements in several four-year 

degrees (2014 Session Laws H.F. 3172). The goal of the legislation was to develop 

transfer pathways that would ease the transition for students from two to four-year 

institutions. This Transfer Pathways program led to a standardization in the first two 

years of coursework for students beginning selected majors at two-year institutions. 

Those students would then be able to seamlessly transfer to a four-year institution to 

complete the coursework for their major (Minnesota State, 2015).  

There is not a great deal of research on systematic methods used to choose or 

justify prerequisites through content review. Abou-Sayf (2008) attempted to formalize 

the prerequisite content review process on his campus by developing a program where 

faculty chose learning outcomes instead of courses when reviewing prerequisite 

requirements. The program then listed courses that had overlap with the desired learning 

outcomes. Abou-Sayf was trying to remove any preconceived notions that faculty had 

about which courses should serve as prerequisites. The results of his study found that the 

overlap of concepts from prerequisite to target courses was minimal in the best of 
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circumstances. In a review of the curriculum for a university engineering department, 

Johnson and Wang (2014) sought the input of faculty and industry professionals to 

review the department curriculum through the use of a design structure matrix. These 

stakeholders defined desired incoming and outgoing skills for courses in the department. 

This information defined the matrix structure which, in turn, helped identify potential 

changes and deletions to the current prerequisite structure of the curriculum.  

Reasons for the removal of prerequisites can also vary. There are instances where 

course prerequisites can form unintended bottlenecks where students don’t advance 

through the curriculum at the desired pace. If a barrier for the advancement of students 

through a program is a bigger negative than the positive that the prerequisite adds to 

student success, then a change in the prerequisite structure can be made. New or different 

prerequisites can be assigned or developed without a reduction of standards, quality, or 

graduates (Klingbeil & Bourne, 2014). Removing prerequisites can also result in 

increased enrollment and shorten paths to graduation (Abou-Sayf, 2008; Soria & 

Mumpower, 2012; Johnson & Wang, 2014). Although, McCoy and Pierce (2004) claim 

that the enforcement of prerequisite gates does not have a long-term effect on enrollment. 

Finally, a prerequisite should be removed if it is listed for multiple courses in a path to 

completion. A redundant prerequisite could cause problems with recency requirements 

and registration barriers (Aldrich, 2015).  

Enforcement of Prerequisite Courses 

Research has shown that newly enforced course prerequisites can lead to 

increased student success in target courses (McCoy & Pierce, 2004; Soria & Mumpower, 

2012). Soria and Mumpower state that the enforcement of prerequisites varies widely by 
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university campus. Campus prerequisite enforcement ranges from electronic gates on 

registration to requiring faculty members and/or advisors to police the registration of 

students into particular courses. Soria and Mumpower found that enforcing prerequisites 

improved student success in an introductory composition course. The prerequisite 

enforcement also led to more students completing a developmental course before 

enrolling in the introductory composition course. Soria and Mumpower indicate that this 

increase in developmental course work stems from more developmental advising 

opportunities. “While we acknowledge the prerequisite system does not guarantee 

developmental advising opportunities, we believe it serves as an important gateway for 

many students to benefit from developmental advising” (p. 37). McCoy and Pierce 

similarly found that biology success rates improved after prerequisites changed from 

latent to enforced.  

Mathematics Curricula 

The internal course prerequisites of a mathematics department tend to follow a 

fairly standard pattern running through the courses of College Algebra, Precalculus, a 

three-course calculus sequence, and finally on to higher-level courses. There are naturally 

other non-major courses in the mathematics department that fit into this progression, but 

these noted courses represent a relatively consistent prerequisites chain in American 

university mathematics departments (O’Shea & Pollatsek, 1997). O’Shea and Pollatsek 

contend that this traditional setup of mathematics curriculum has many shortcomings and 

could benefit from some adjustments. To date, it appears that the suggestions advocated 

by O’Shea and Pollatsek have not been adopted for most universities. The Mathematical 

Association of America (MAA), through its Committee on the Undergraduate Program in 
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Mathematics (CUPM), noted in the “2015 CUPM Curriculum Guide to Majors in the 

Mathematical Sciences” that most mathematics departments still follow the traditional 

“hierarchical nature of the mathematics curricula” (Mathematical Association of 

America, 2015, p. 55). The CUPM report also indicates that universities must “choose 

prerequisites that best fit their goals, student populations, and local resources” (p. 37). 

The courses outside of the mathematics department which call mathematics 

courses as prerequisites may have more variation. Inside and outside of the mathematics 

department, prerequisite mathematics courses are often also satisfied by enrolling at the 

university with a sufficient score on the ACT, SAT, or some other standardized test 

(Soria & Mumpower, 2012; Minnesota State, 2018). Mathematics courses are often listed 

as prerequisites for courses in STEM (Science, Technology, Engineering, and 

Mathematics) departments and business-related departments (Donovan & Wheland, 

2009; Green, Stone & Charles, 2007; McCarron & Burstein, 2017; McCoy & Pierce, 

2004).  

Deeken, Neumann, and Heinze (2019) found that among university STEM 

departments, there is a desire for incoming students to have at least a basic knowledge of 

mathematical content, processes, and the nature of mathematics. The mathematical 

content in this study varied from elementary fraction mastery to calculus, vectors, and 

matrices. The mathematical processes ranged from basic skills to mathematical proofs 

and problem solving. For the students’ view on the nature of mathematics the study found 

that the STEM faculty believed it was necessary that “students should possess a meta-

knowledge (Level 1) about, for example, the necessity of mathematical precision with 

respect to definitions and argumentations and the central role of proving when generating 
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mathematical evidence” (p. 35). Survey results from Fox and Roehrig (2015) noted that 

in physical chemistry “students struggle: because they lack the necessary mathematics 

background to make connections between the concepts and mathematics” (p. 1462). Non-

mathematics departments will often use College Algebra, Calculus 1, or a developmental 

mathematics course as a prerequisite. The departments that are more computation heavy 

may call for an entire calculus sequence as a prerequisite, but a calculus sequence has 

been shown to drastically reduce the number of students that are available to progress 

through programs in a timely manner. The point of a calculus sequence is not always the 

calculus content and computation abilities. There is often a desire from faculty for their 

students to have a level of mathematical maturity (Fulkner, Earl, & Herman, 2019). 

However, it has been claimed that “the standard Calculus-Linear Algebra sequence was 

never designed to meet the needs of students who would not continue with mathematics 

courses” (O’Shea & Pollatesk, 1997, p.4). These mid-level mathematics prerequisites 

often receive complaints for being required, and then the content covered is never called 

upon in the target courses (Walker, 2010). This desire for mathematics maturity in target 

courses, the dislike of the disruption to the graduation cycle, and absence of content recall 

in part led Dudley (2018) to comment “is mathematics necessary? No, but it is sufficient” 

(p. 364). 

Mathematics courses serving as prerequisites for introductory courses in other 

departments also ensures that mathematics is seen early on in an academic career. In their 

study regarding the importance of mathematics as a prerequisite to financial accounting, 

McCarron and Burnstien (2017) noted that without mathematics prerequisites students 

would tend to put off their mathematics requirements until they are very near graduation. 
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The delay of completing mathematics requirements until the final semesters of a 

graduation cycle leads to mathematics courses being more of a hurdle than a benefit. 

College Algebra is one of the most common low level prerequisite courses taken 

by undergraduate students (Herriott & Dunbar, 2009). However, mathematics 

departments often offer alternatives for students who will not need the skills reviewed in 

a college algebra course. Some examples of these mathematics department service 

courses are Mathematics for Finance, Business Calculus, Mathematics for Poets, and 

Mathematics for Engineers (O’Shea & Pollatsek, 1997). The American Mathematical 

Society (American Mathematical Society, 1999) estimates that mathematics departments 

account for up to 7% of the instruction at a university. As a consequence, each semester 

between 25% to 45% of a university’s students are enrolled in at least one mathematics 

course in any given semester. Thus, the assignment of mathematics courses as 

prerequisites in American university curricula greatly impacts student learning and 

progress towards graduation.  

If the typical mathematics courses and these service courses prove to be too large 

of a hindrance for the advancement of students, some departments may take on teaching 

similar prerequisite courses on their own. The engineering department at Wright State 

University eliminated its first-year mathematics prerequisites and replaced it with a 

mathematics course taught in the engineering department. After the change, an increase 

in graduation rates, student motivation, and self-efficacy were reported. These 

advancements were seen over a range of demographics and ability levels (Klingbell & 

Bourne, 2014).  
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Network Analysis 

The structure of the prerequisite requirements of a university’s curriculum can be 

captured in various forms of network representations. These network representations can 

then be analyzed to study the underlying structure of a university’s curriculum. A 

network representation of a university curriculum will consist of nodes and edges. The 

nodes will represent specific portions of the curriculum and the edges will represent 

connections between these curriculum pieces.  

In a bipartite curriculum prerequisite network there are two types of nodes. Some 

nodes will represent courses and other nodes will represent learning outcomes or goals. 

The edges in a bipartite network indicate what learning outcomes need to be learned in 

courses and which learning outcomes need to be learned before starting a course. The 

visual representation of these networks shows the flow of the learning outcomes through 

the curriculum. 

A second type of curriculum prerequisite network has all the nodes representing 

courses in the university curriculum and directed edges that indicate a prerequisite 

relationship between two courses. A directed edge starts at the prerequisites course and 

points to the target course. This type of curriculum prerequisite network can help see the 

extent to which a university’s curriculum is connected. The analysis on this network can 

point to courses of heightened importance that can greatly affect a student’s  progress 

towards graduation.  

In each type of network there are measures that single out nodes which are 

important to the structure and flow of the information. A node’s centrality in the network 

can be measured in several different ways. Traditional methods of measuring a node’s 
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centrality include a node’s degree and its betweenness. A node’s degree is the number of 

edges that start or end at the node. A node’s betweenness is the number of shortest paths 

between two other nodes that travel through the node. These measures can be built upon 

in a  curriculum prerequisite network to more specifically find important nodes that 

represent courses. A course’s blocking factor will be a measure of a course’s tendency to 

prevent a student from taking other courses. A course’s delay factor will be the tendency 

of student’s failure in a course to require a delay in graduation. The cruciality of a course 

will be a measure that combines delay and blocking factors, and the complexity of a 

program will be the sum of the cruciality of its courses.  

The use of network analysis to describe university curricula has become more 

common in recent years. Some studies focus on the connections of concepts in learning 

and not the prerequisite connections from university course catalogs (Knorn et. al, 2019; 

Komenda et. al, 2015; Varagnolo et. al, 2020). Other studies use student enrollment and 

performance data along with networks built based on course prerequisite information to 

model things like student flow through a program or college (Saltzman & Roeder, 2011; 

Molontay et al. 2020). A third type of study uses metrics and clustering algorithms on 

course prerequisite networks to describe the topology, strengths, and issues with curricula 

(Aldrich, 2015; Heileman et al., 2019; Lightfoot, 2010; Meghanathan, 2017; Slim et al., 

2014; Wigdahl et al., 2014). 

Knorn et al. (2019) used directed bipartite networks to develop a quantitative tool 

to aid in analyzing the learning flow in university curricula. In the study by Korn et al., 

the nodes represented either university courses or key learning content. Due to the 

makeup of the nodes, the networks in this study were referred to as directed courses-
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concepts graphs (DCCG). The directed edges in the DCCG then either went from 

learning content to a course or vice versa. A directed edge from learning content to a 

course represented prerequisite knowledge for that course and directed edges from a 

course to learning content indicated material taught in the course. Further, Knorn et al. 

used weighted edges to indicate the level of relevance of the learning content in the given 

course. A weighting of zero, one, or two indicated the degree that learning content varied 

from not relevant to very relevant in a given course. For prerequisite learning content this 

was a measure of how much the content would be relied on in the course. For learning 

content taught in a course, the weighting indicated how thoroughly the content was 

covered in the course.  

Knorn et al. (2019) performed their analysis on a DCCG that represented seven 

courses and 111 learning concepts from the engineering curriculum at Uppsala University 

in Sweden. The analysis consisted of a search for cycles in the curriculum and 

interpreting the flow between nodes. Cycles found in the DCCG indicated that 

prerequisite learning content was being taught in a course that itself had prerequisite 

learning content being taught in the initial course (see Figure 2). 

The flow of the DCCG is a reference of how well the directed “in” edge 

weightings match up with the directed “out” edge weightings for learning content 

(Newman, 2010). The assumption is made that the flow is optimized when the in and out 

edge weightings are equal in a path originating at a course, traveling through learning 

content, and terminating at a second course. This optimization of flow indicates that the 

focus on the content in the prerequisites class is reasonable for the focus that the content 

is given in the target course. If the in-weight is less than the out-weight on one of these 
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paths, then the prerequisite course may need to add more focus on the content due to the 

importance of that content in the target course. If the in-weight is more than the out-

weight, then the prerequisite course may be able to devote less time to that learning 

content due to its lesser importance in the target course (Knorn et al., 2019). Finding 

cycles and analyzing maximum flow in a DCCG can be done algorithmically by network 

analysis software once the nodes, edges, and weightings are defined. Korn et al. surveyed 

faculty to determine the weightings for the connections between courses and learning 

content. 

Figure 2 

A Cycle in a DCCG 

 

Note. DCCG=Directed Courses Concepts Graphs. 

Komenda et al. (2015) focused on course attributes, learning units, and learning 

outcomes in their research in an attempt to model and quantify the different structures 

and content of medical education programs. The study collected specifically designed and 

written text files regarding different learning outcomes and where they appear in the 

medical curriculum from different institutions. Data and text mining techniques were then 

used to find similarities between the documents describing different disciplines in the 
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medical curriculum. The network representing this data had nodes that represented the 

different disciplines in the curriculum and undirected edges that represented similarities 

in course attributes, learning units, and learning outcomes, The edge weightings were 

larger for stronger similarities between disciplines. The network analysis involved using 

an algorithm to detect communities of disciplines in the curriculum and using centrality 

measures to define the vital parts of the curriculum.  

The research by Komenda et al. (2015) uses the WalkTrap algorithm to define the 

communities in their developed network. The WalkTrap algorithm defines communities 

of nodes in a network based on what happens in randomized fixed length “walks” 

through the network. A walk through the network starts at a node and each step along a 

defined edge ends at another node. The WalkTrap algorithm defines communities in a 

network based on the idea that short random “walks” in the network will tend to start and 

stop in the same community (Latapy & Pons, 2006). Komenda et al. indicates that the 

communities in their network “represent the most crucial and important parts of a 

curriculum” (p. 5). Further, Komenda et al. states that in the visual representation of their 

network the “groupings of individual communities with related contents across the 

curriculum makes viewing the medical curriculum simpler and easier to understand” 

(p.14). 

The centrality of a node is a measure of its importance in the structure of the 

network (Newman, 2010). There are several different ways to measure the centrality of a 

node in a network. Komenda et al. (2015) measure the centrality of the nodes in their 

network using closeness, betweenness, and eigenvector centrality. Newman indicates that 

the closeness centrality of a node in a connected network is defined as the reciprocal of 
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the average of the geodesic distances from the given node to every other node in the 

network. A geodesic path between two nodes is one that crosses the fewest edges while 

traveling from the starting node to the ending node. If the edges have weightings, then the 

geodesic path is the one with the smallest sum of edge weights. 

To adjust for the problem of a disconnected network, Komenda et al. (2015) 

define the geodesic distance between nodes that are not connected to be equal to the 

number of nodes in the network. Komenda et al. uses a low value of closeness centrality 

to identify those disciplines that are largely independent of others. Newman (2010) 

defines the betweenness centrality of a network node as the number of geodesic paths 

between any two nodes in the network that travel through the given node. Komenda et al. 

indicate that disciplines “with high betweenness centrality are best for joining the 

students’ knowledge from different collections of disciplines” (p. 8).  

Newman (2010) states that eigenvector centrality is somewhat of an extension of 

degree centrality. The degree centrality of a node in an undirected network is the number 

of edges that connect to the node. In a directed network, those edges would be grouped 

into edges that start or end at the node to define in-degree and out-degree centrality 

measures. In eigenvector centrality, each node is given “a score proportional to the sum 

of the scores of its neighbors” (Newman, 2010, p. 169). The sum of these scores from 

connected nodes is the eigenvector centrality for the given node. The eigenvector 

centrality of a node can be high due to a node connecting to several other nodes or 

because a node connects to important notes. Important nodes would be ones that have 

high eigenvector centrality. It is because of this that Komenda et al. use eigenvector 



32 

 
centrality to identify the important disciplines of the curriculum. Newman notes that 

eigenvector centrality works best for undirected networks. 

Similar to the work of Knorn et al. (2019), the work of Varagnolo et al. (2020) 

organizes a bipartite network mapping of courses and concepts, but Varagnolo et al. 

investigates both the directed concepts-courses graphs (DCCG) and the undirected 

concepts-courses graphs (CCG). Again, the connections between courses and concepts 

were defined by faculty members with a score between zero and two with higher values 

indicating a more important concept in a course. This score serves as the edge weighting 

in the connection between concept and course nodes. The work by Varagnolo et al. on 

DCCG is similar to the work of Knorn et al. (2019) and indeed many of the authors are 

shared between the two papers. Much of the analysis of CCG by Varagnolo et al. 

focusses on centrality measures and a small amount of analysis is devoted to minimal 

cuts. 

Varagnolo et al. (2020) reviewed degree, eigenvector, Pagerank, and betweenness 

centrality measures for the courses and concepts in the CCG developed for the Electrical, 

Computer, and Information Engineering program at Uppsala University in Sweden and 

the Engineering Physics program at Lulea University of Technology in Sweden. In their 

analysis, Varagnolo et al. noted that the degree centrality measure was not a desirable 

measure due to its sensitivity to the scoring from the faculty members. Varagnolo et al. 

states the scores that define the edge weights “should be chosen with great care and 

establishing a common understanding among teachers on how to assign weights is 

essential to retrieve meaningful insights from this specific metric” (p. 9). The closeness 

measure used by Varagnolo et al. is different from the definition used by Komenda et al. 
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(2015). Varagnolo et al. defines the closeness centrality of a node to be one over the sum 

of the lengths of the geodesic paths from the given node to all other nodes in the system. 

The difference in the two definitions is the numerator of the value being 1 or n (the total 

number of nodes in the network). In both cases, each node would have a closeness 

centrality measure between zero and one. Komenda et al. indicates that using the total 

number of nodes in the network as the numerator normalizes the measure for purposes of 

comparisons across different networks. Varagnolo et al. indicates that a high value of 

closeness centrality indicates a course node that shares common topics with many other 

courses or a concept node that is consistently taught and referenced across the 

curriculum. Varagnolo et al. also calculates the eigenvector centrality for the nodes in 

their networks. It is noted that in eigenvector centrality, scoring is increased more when a 

connection is to a higher scored node than when a connection is to a lower scored node. 

This measure of centrality will give a score to how influential a course or concept is to 

the curriculum.  

PageRank centrality is named as such due to its use in the web ranking 

technology used by Google (Brin & Page, 1998). The idea of PageRank centrality has the 

scoring of a node increasing when there is a connection to a high scoring node, but nodes 

that connect out towards many other nodes do not increase the scoring by much 

(Newman, 2010). For example, if a course node connects to a concept node that, in turn, 

connects out to every other course, then that concept node will not increase the centrality 

of the course node by much. The PageRank centrality measure is noted to have results 

similar to degree and eigenvector centrality in the research by Varagnolo et al., but the 

interpretation of the measure is not otherwise expanded upon in the research. Similarly, 
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the betweenness centrality measure in the Varagnolo research is noted to be of little 

interest due to the bipartite nature of the networks used.  

Varagnolo et al. (2020) defines a minimum cut for a network as the minimal set of 

nodes or edges or combination thereof that would disconnect the network. A network is 

connected if there is a path from each node to every other node, and a network is 

disconnected if this is not true (Newman, 2010). In the bipartite networks used in the 

research of Varagnolo et al. a minimal course node cut would indicate courses vital to 

connecting the different areas and specialties of the curriculum. 

In the course centrality results of the Varagnolo et al. (2020) research it is noted 

that the researchers and the studied departments interpreted the raw data as more of an 

indication of the flaws in the scoring process than a representation of course importance. 

Normalizing the edge weighting so that the sum of all edges connected to a course node 

is one made the degree centrality measure obsolete but fine-tuned the eigenvector and 

closeness centrality measures. Researchers and programming boards agreed that the 

courses with high normalized eigenvector and closeness centrality scores indicated the 

courses that were vital to the programs. It was noted that concept nodes with low 

closeness and comparatively high degree centrality were concepts important to the 

program but only intensively studied in a few courses.  

In research on student flow through a program, Saltzman and Roeder (2011) used 

the prerequisite network for the core courses in the College of Business at San Francisco 

State University to investigate completion rates and time to graduation. The network that 

was used in this research had the core courses as nodes and the directed edges showed a 

relationship from a prerequisite to a target course. Saltzman and Roeder modeled how 
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students flowed through the prerequisite paths of the core curriculum based on course 

enrollment patterns and student pass rates. The number of core courses taken per 

semester and the success rate for students were estimated from a random stratified sample 

of seniors in the College of Business. Multiple simulations were run to see if there was a 

statistically significant change to graduation time or completion rates based on changes to 

class size, prerequisites, and student preparedness. The flow model also helped to 

confirm which courses act as the largest bottlenecks for student’s progression through the 

curriculum. 

The research of Lightfoot (2010) organizes the curriculum of a college of business 

administration into a directed network where nodes represent courses and directed edges 

represent prerequisite relationships. Lightfoot then uses several graph analytic metrics to 

indicate courses that are uniquely important to the curriculum. Lightfoot uses the 

measures of in-degree, out-degree, betweenness centrality, eigenvector centrality, and 

clustering coefficients in his analysis of the directed prerequisite network. The courses 

with large in-degree are indicated to represent courses where higher level learning should 

take place and final program assessments should be given. Courses with large out-degree 

are indicated to be ideal for baseline assessments and introductory materials. Courses 

with large betweenness centrality are indicated to be “a key link between program tracks 

of course clusters within the program” (p. 67). The courses with high eigenvector 

centrality are said to be ideal points where material should be reinforced before 

assessment.  

Lightfoot (2010) also uses the clustering coefficient for nodes in the prerequisite 

network to define courses that can be useful agents of change in connecting courses. 
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Newman (2010) indicates that the clustering coefficient has a somewhat misleading 

name. The clustering coefficient is not connected to how groups or clusters of vertices are 

identified in a network. The local clustering coefficient is actually more similar to the 

measure of betweenness centrality. Fagiolo (2006) states that the clustering coefficient 

measures the tendency of a network to form circles of connected nodes. Lightfoot’s paper 

does not provide the calculation used for the clustering coefficient, but there are typically 

two options to define the local clustering coefficient in a directed network. Newman 

defines one option where the directed edges of the network are considered without 

direction. This produces an undirected network, and the clustering coefficient of a node is 

then defined as the number of connected neighbors of the node divided by the total 

number of possible connections between those neighbors. Fagiolo (2006) calculates the 

local clustering coefficient of a node as the number of directed triangles formed with a 

vertex divided by the possible number of directed triangles that could include that vertex. 

A directed triangle between three nodes has directed edges connecting each of the three 

nodes. The directions of those edges indicate different directed triangles. This means that 

a clockwise path through the three nodes would be considered different from a 

counterclockwise path or three edges that do not form a continuous path. In either 

calculation the local clustering coefficient is a measure on the connectedness of the 

neighbors for a particular node. It is this measure of connection that leads Lightfoot to 

believe that the local clustering coefficient is a good indicator of courses that can enact 

changes to neighbor courses. In Lightfoot’s paper, representations of the prerequisite 

network are rendered for each of the metrics used where the node sizes represent the 

relative sizes of the measure for each course. The visual representation of the data leads 
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to a more complete understanding of the measures and the network relationships and an 

easier identification of where the important courses in the curriculum lie. For the graph 

representing the clustering coefficient, it is noted that the course with the largest value 

would be a poor choice for enacting change. That course lands at the end of a prerequisite 

chain. The second largest clustering coefficient option is clearly pictured in the middle of 

a prerequisite chain and noted as the best candidate for changing the program. This 

analysis reiterates the idea that the measures of network analysis are often best 

interpreted when the overall structure of the graph is also considered. 

The research of Slim et al. (2014) introduces the metric of cruciality to university 

prerequisite networks. The prerequisite networks used by Slim et al. are initially built 

with courses being defined by nodes and directed edges representing prerequisite 

relationships. The cruciality metric of a course is defined by the sum of what Slim et al. 

call the course’s blocking and delay factors.  

A course’s blocking factor is defined to be the number of the descendants a course 

has in the prerequisite network (Slim et al., 2014). If node B lies on a path after node A in 

a directed network, then B is defined to be a descendant of node A. In Figure 3, node B is 

a descendent of A. Similarly, the nodes C and D are also descendants of node A. Slim et 

al. include the blocking factor of a course in its cruciality measure due to the multiple 

paths towards graduation that are blocked if a high blocking course is failed. The delay 

factor for a course in a prerequisite network is defined by Slim et al. as the length of the 

longest geodesic prerequisite path that contains that course. This need not be a 

prerequisite path that starts with the course in question. In Figure 3, the delay factor for 

each of the nodes A, B, C and D is three due to the path from A to D. Slim et al. include 
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the delay factor in the cruciality calculation due to the likelihood of a delay in graduating 

after a failure in a high delay course. If a two-year program contains a four-course 

prerequisite path as in Figure 3, then a student who is required to repeat any course in the 

path will have their completion of the program delayed. 

Figure 3 

Delay, Blocking, and Cruciality 

 

Note. Adapted from Slim et al. (2014).  

Slim et al. (2014) also includes a measure of dissimilar mixing based on the same 

directed network used in the cruciality measure. This is a measure calculated for a 

department, not for an individual course. The dissimilar mixing of an academic 

department is defined as the number of prerequisite edges that connect a department 

course to a course outside of the department divided by the total number of edges in the 

entire network. The connection from a department course to a course outside of the 

department can be in either direction. Slim et al. indicate that courses in departments with 

high dissimilar mixings will teach basic skills that should be mastered before students 

move on to more specialized courses. 

Slim et al. (2014) also use a bipartite network to define the importance of a 

course. In these bipartite networks, the two types of nodes are courses and program 

curricula. Undirected edges indicate which courses are required in which programs. The 
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importance of a course node is defined as the ratio of its degree to the number of program 

nodes in the network. Slim et al. includes this measure in the analysis to elevate those 

courses that may not be part of prerequisite paths but are required across several 

programs in the university’s  curriculum. 

Heileman et al. (2019) used the cruciality measure from Slim et al (2014) to 

investigate the perceived quality of programs based on their complexity. Slim et al. 

defined the complexity of a program to be the sum of the cruciality of the courses in the 

program. Heileman et al. found that undergraduate electrical engineering programs with 

higher perceived quality had lower measures of complexity. In this study, the quality of a 

program was interpreted from the “U.S. News & World Report” ranking (U.S. News and 

World Report, 2021). Heilman et al. concludes that organizing a program with the least 

complex curriculum that still leads to students accomplishing the desired learning 

outcomes will yield the most student success. Heileman et al. notes that the relationship 

between low complexity and a high-quality program could also be a result of high-quality 

programs admitting high quality students that do not need the prerequisite work that a 

high complexity program requires.  

Aldrich (2015) uses weighted directed networks to inspect the curriculum 

structure of Benedictine University in Lisle, Illinois with particular focus on the 

biochemistry and molecular biology programs. A network is weighted if different 

weightings are assigned to edges or nodes throughout the structure (Newman, 2010). In 

Aldrich’s research, the nodes of the network represent courses and the directed edges 

point from a prerequisite to a target course. The weighting of the edges in this network is 

determined by the statement of the prerequisite. If a course is required without option as a 
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prerequisite, then the edge representing that prerequisite is given a weight of one. If 

options are given to satisfy a course prerequisite, then each option is given an equal 

portion for the prerequisite edge weight. For example, if either Trigonometry or 

Precalculus will satisfy the prerequisite for Calculus 1, then each of the prerequisite edges 

representing those options would have a weighting of one-half. Aldrich used degree 

centrality, betweenness centrality, and connectedness to analyze the prerequisite network. 

Among other things, Aldrich found that about one-third of courses in the university’s 

curriculum were grouped together in a weakly connected knowledge community. Nodes 

in a directed network are weakly connected if there are edges connecting them 

irrespective of the edge’s direction. Outside of the largest knowledge community, there 

were several other smaller knowledge communities that were contained in single 

departments. Many of these small weakly connected communities contained a set of 

departmental courses that all called upon the same course as a prerequisite. This led to 

high degree centrality for these key departmental courses even though these courses were 

not connected to extra-departmental courses or the largest knowledge community in the 

network. Aldrich also noted that over half of the courses in the curriculum had no 

prerequisite connections at all.  

Conclusion 

In higher education, there are many situations where a network structure can help 

organize information, and network analysis can often help reveal some of the underlying 

structure of a topic. This research will use curriculum prerequisite networks where node’s 

represent courses and the weighted directed edges represent prerequisite relationships. 

Research similar to this has been completed regarding particular universities and 
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programs, but it does not appear that there has been much work done with respect to 

comparing all of the universities across a state system. This research will seek to compare 

the curriculum prerequisite networks for the seven universities across the Minnesota State 

System. Comparisons will be based on curriculum connectedness, cruciality, complexity, 

clustering, and centrality. Particular emphasis will be placed on mathematics courses and 

departments in the structure of the university’s curriculum. 
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Chapter III - Method 

This study will investigate the consistency of the placement and structure of 

mathematics prerequisites in the curriculum prerequisite networks at universities in the 

Minnesota State (MinnState) system. This study will use archival data scraped from each 

university's public website to build the course prerequisite networks for each university’s 

curriculum. The quantitative and visual data will then be analyzed to test the following 

hypotheses. First, it is hypothesized that lower-level courses in mathematics departments 

will exhibit higher variance in being labeled a prerequisite than higher-level courses. 

Second, it is hypothesized that the longest prerequisite paths through the curriculum will 

contain mathematics courses. Third, it is hypothesized that mathematics departments will 

have consistently high centrality in the network analysis. And finally, it is hypothesized 

that the interconnectedness of undergraduate curricula will be inversely correlated with 

the institution size. 

Subjects 

The subjects of this study will be the curricula of the seven universities in the 

Minnesota State Colleges and University System (MinnState). MinnState is the third-

largest system of state colleges and universities in the United States, consisting of thirty 

colleges and seven universities across fifty-four campuses (Minnesota State, 2021).  

The two largest universities in the MinnState system are Minnesota State 

University, Mankato and Saint Cloud State University. Both schools are classified as 

master’s colleges and universities: larger programs (Carnegie Classifications, 2021).  The 

2020-2021 enrollment at Minnesota State University, Mankato was 17,357 while Saint 

Cloud State University had an enrollment of 16,326 students. Minnesota State University, 
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Mankato has 77% of its students enrolled full-time while Saint Cloud State University 

has 61% of its students enrolled full-time (Minnesota State, 2021). Both schools offer 

undergraduate mathematics and statistics degrees, while Minnesota State University, 

Mankato also offers master’s degrees in Mathematics and Mathematics Education 

(Minnesota State University Mankato, 2021; Saint Cloud State University, 2021.). 

Southwest Minnesota State University in Marshall, Minnesota and Minnesota 

State University, Moorhead are both classified as master’s colleges and universities: 

medium programs (Carnegie Classifications, 2021). In the 2020-2021 academic year, the 

enrollment at Southwest Minnesota State University was 8,718 students while Minnesota 

State University, Moorhead had an enrollment of 7,534 students. Southwest Minnesota 

State University had 29% of its students enrolled full-time while Minnesota State 

University, Moorhead had 69% of its students enrolled full time (Minnesota State, 2021). 

Both schools offer undergraduate mathematics and mathematics education degrees and 

graduate certificates in mathematics (Minnesota State University, Moorhead, 2021a; 

Minnesota State University, Moorhead, 2021b; Southwest Minnesota State University, 

2021). 

Winona State University and Bemidji State University are both classified as 

master’s colleges and universities: small programs (Carnegie Classifications, 2021). The 

2020-2021 enrollment at Winona State University was 8,856 students, while the 

enrollment at Bemidji State University was 6,354. Winona State University had 83% of 

its students enrolled full-time while BSU had 65% of its students enrolled full-time 

(Minnesota State, 2021). Both schools offer undergraduate mathematics and mathematics 
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education degrees while Bemidji State University also offers a master’s in mathematics 

education (Bemidji State University, 2021; Winona State University, 2021).  

 The seventh university in the MinnState system is the only one classified as a 

doctoral/professional university (Carnegie Classifications, 2021). Metropolitan State 

University with campuses in Minneapolis and Saint Paul, had 10,575 students enrolled in 

the 2020-2021 academic year. Metropolitan State University has 40% of its students 

enrolled full-time and offers undergraduate degrees in mathematics and mathematics 

education. Metropolitan State University also offers a mathematics graduate certificate 

and a master's degree in urban education with an emphasis in secondary teacher 

preparation for mathematics teaching (Minnesota State, 2021; Metropolitan State 

University, 2021). 

Measures 

The curriculum prerequisite networks for the seven universities in the MinnState 

system will be constructed to test the hypotheses of this research. For each university, the 

prerequisite network will be built with nodes representing courses and directed edges 

representing prerequisite relationships. 

The first hypothesis states that  lower-level mathematics courses will exhibit a 

higher variance in being labeled a prerequisite than higher level mathematics courses. 

Out-degree centrality will be used to test the first hypothesis. The out-degree of a node in 

a directed network is the number of edges that start at that node and direct to another 

node. Also, the out-components of the courses with high out-degree will be compared 

across campuses. The out-components of a node are all the nodes that lie on a directed 

path after the given node. 
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The second hypothesis states that the longest prerequisite paths through the 

curriculum will contain mathematics courses. The directed prerequisite networks for the 

universities in this study should also be acyclic. This means that there should not be a 

prerequisite path that starts at one class and circles back around to the same course. That 

is to say, no course is going to serve as its own prerequisite. If a case such as this arises, 

reasonable adjustments will be made to the curriculum to form an acyclic directed 

network. A second issue that could arise while testing this hypothesis is redundant 

prerequisites. A redundant prerequisite is one that is listed even though the course is also 

listed by another prerequisite. In Figure 4, the MATH 165 prerequisite for CHEM 475 is 

redundant. The MATH 165 course is a prerequisite for both PHYS 262 and CHEM 466, 

and one of those two courses is required to satisfy the prerequisites for CHEM 475. The 

MATH 165 course need not be listed as a prerequisite for CHEM 475 since it is a 

requirement for the other prerequisites of CHEM 475. The example represented in Figure 

4 is an example of a prerequisite that comes from options. Since the prerequisites for 

CHEM 475 can be satisfied by PHYS 252 or CHEM 466, this is a redundant prerequisite 

comes from options. This research does not have a method for capturing this type of 

redundant prerequisite.  

However, some programing in Mathematica has made it possible to locate and 

remove redundant prerequisites that come from course requirements that have no choices. 

If the example represented in Figure 4 was stated with an “and” instead of an “or” 

statement, then it would be a redundant prerequisite that comes from a requirement 

without choices. Essentially, if there is a alternate path of solid edges from the redundant 
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prerequisite to the target course, then this research will locate and delete that redundant 

prerequisite edge from the network.  

Figure 4 

Sample of a Redundant Prerequisite 

 

Note. MATH 165 is a redundant prerequisite for CHEM 475 since it is required for 

PHYS 252 and CHEM 466 and one of those is required as a prerequisite of CHEM 475.  

For this research, the only paths considered between two nodes will be the 

geodesic paths. A geodesic path between two nodes is one that crosses the fewest number 

of edges while traveling from the starting node to the last node (Newman, 2010). 

Restricting the research to only geodesic paths comes from the idea of students trying to 

complete their degree in the fewest number of semesters as possible. Each node in a 

prerequisite path will typically indicate an additional semester of schoolwork for a 

student.  

The third hypothesis is that mathematics departments will have consistently high 

centrality in the curriculum prerequisite networks. Two methods will be used to test the 

third hypothesis. The first method will be a visual representation of each university’s 

prerequisite network. In this representation the nodes in the prerequisite networks will 

represent the academic departments on campus and the edges will represent the 
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prerequisite connections between courses in separate departments. Using the network 

analysis capabilities built into Mathematica software 

(https://www.Wolfram.com/Mathematica/), an algorithm will be run to group the 

departments into communities based on geodesic edge betweenness centrality (Wolfram 

Community, 2018). The geodesic edge betweenness centrality (edge betweenness) of an 

edge in a network is the number of geodesic paths that contain that edge (Fortunato, 

2010). The second treatment will be a measurement of course cruciality as developed by 

Slim et al. (2014). A course’s cruciality is the sum of what Slim et al. define as the 

course’s delay factor and a course’s blocking factor. Higher delay factors for a course 

indicate that a failure in that course is more likely to delay a student’s completion of the 

program.  Higher blocking factors indicate that a failure in the course will block the 

student from progressing through more courses.  

The fourth hypothesis is that the interconnectedness of undergraduate curricula 

will be inversely correlated with institution size. The measures used for this hypothesis 

will be the average out-degree of nodes in the network, the number of weakly connected 

components in the network, and the number of isolated nodes in the network. Two nodes 

in a network are in the same weakly connected component if there is a path from one 

node to the other. It is not possible for an acyclic directed graph to have strongly 

connected components. A node is isolated if it has no edges connecting it to other nodes. 

In the case of this research, an isolated node would represent a course that does not serve 

as a prerequisite and also has no prerequisites. 
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Design and Data Analysis 

The curriculum information from the universities in this research will be scraped 

from each university’s public website. Universities typically have an online course 

catalog where each course is listed with its description and any pre- or corequisites. The 

computer program Mathematica will be used for all of the data scraping and network 

analysis in this research. For universities where the data scrape yields messy data, 

Microsoft Excel (https://www.microsoft.com/en-us/microsoft-365/excel) will be used to 

clean up the data into a usable format.  

In the preparation of the curriculum data for each university, corequisites will be 

treated the same as prerequisites with the exception of two-way corequisites. In the case 

of two-way corequisites, the two courses will be listed as a single course with a single 

node in the network analysis. For example, if BIOL 105 has a corequisite of the lab 

course BIOL 105L and vice versa, then the course will be listed as BIOL 105/BIOL 

105L. Also, prerequisites that do not refer to a particular course will not be a part of this 

research. This exclusion includes prerequisites with wording similar to Consent of 

Instructor, Minimum of 3.5 GPA, 15 Completed Credit Hours, Previous Experience in 

Programming, Admission to the Program, or Department Majors Declared. Additionally, 

any prerequisite references to recommended courses, high school courses, or non-college 

credit courses will not be included in this research. Finally, statements of minimum 

required grades for a prerequisite course will not be included. For example, a prerequisite 

of MATH 107 with a grade of C or higher will be treated as just a prerequisite of MATH 

107. 

https://www.microsoft.com/en-us/microsoft-365/excel
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The cleaned data indicating each prerequisite connection and its weight will then 

be entered back into Mathematica and a network graph will be produced using the 

software. The curriculum data for each university should lead to an acyclic directed 

network. If there are cycles in the resulting network, reasonable accommodations to make 

the network acyclic will be made at the discretion of the researcher.  

The weighting of the edges in the prerequisite network will vary by the available 

choices listed in the prerequisite statement. If a single course is required without any 

alternative choice, the edge representing that connection will be weighted as one. If one 

of n courses can satisfy the prerequisite, then each of those two edges will have a weight 

of 1/n (see Figure 1).  

The departmental prerequisite network will be used to examine the interactions 

between departments based on prerequisites. In this type of network, all 

intradepartmental prerequisites will be removed from the data. The remaining 

prerequisites will then be redefined only using department names and excluding course 

numbers. For example, the relation where CHEM 475 calls MATH 165 as a prerequisite 

will instead be defined as CHEM requiring MATH as a prerequisite. This could make for 

several repetitive edges from one department to another, although the edges could have 

different weights. The analysis will use one edge representing the sum of all the weights 

between two departments (see Figure 5). 

The algorithms for calculating the out-degree centrality for the testing of 

hypothesis one, the network graph in the testing of hypothesis three, and finding weakly 

connected components for the testing of hypothesis four are built in commands for 

Mathematica. The longest path calculation for the testing of hypothesis two as well as the 
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blocking factor and delay factor in the testing of hypothesis three require some additional 

programming in Mathematica.  

Figure 5 

Conversion from a Prerequisite Network to the Department Network 

 

    

Note. Panel A has a sample prerequisite network and Panel B has the resulting 

department network from the same information.  

The process used to calculate the longest paths in the testing of hypothesis two 

will be used to help calculate the delay factor. The delay factor will be used in the testing 

of hypothesis three. To evaluate the delay factor of a node, a built-in command in the 

Mathematica software will be used to build a matrix that gives the geodesic path length 

between every pair of nodes in the prerequisite network. The maximum of these values 

will be the longest geodesic paths in the network and pulling the courses that make up the 

paths of maximal length from the network information is again a built-in command of the 

Mathematica software. Reviewing these paths for mathematics courses will be the test for 
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hypothesis two. The delay factor for a node in a prerequisite network is defined as the 

length of the longest geodesic path that contains that node (Slim et al., 2014). The 

distance matrix in the process listed above will be used to calculate the delay factor for 

each node in the network. From this information and the lists of courses that comprise 

each path, a collection of nested proper subsets can be formed so that the smallest subset 

that contains a course is also the course’s delay factor. 

The blocking factor calculation for each course in the prerequisite network is a 

quick calculation in Mathematica. The blocking factor for a course in a prerequisite 

network is the number of unique courses, excluding itself, that exist in all possible paths 

starting at that course (Slim et al., 2014). A command named VertexOutComponent in 

Mathematica lists the original course and all of the courses that define its blocking factor. 

Therefore, the blocking factor for any course in a prerequisite network will be the value 

of its VertexOutComponent minus one. The cruciality factor for a course will be used to 

test hypothesis three. The cruciality of a course is the sum of its blocking and delay 

factors. The complexity of a department is then the sum of the cruciality factors for all of 

the courses in the department. 
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Chapter IV - Results 

 This research built and used the curriculum prerequisite networks for the 

universities in the Minnesota State (MinnState) system to compare curriculum structures. 

The prerequisite information for each course was taken from the course catalogs available 

on each university’s public website. The data collection for this research took place in the 

fall of 2021. The Wolfram Mathematica software 

(https://www.wolfram.com/mathematica/)  was used to collect all of the data. 

Mathematica was also used for all computations and graph rendering throughout this 

research.  

 The MinnState system is comprised of thirty colleges and seven universities 

across fifty-four campuses (Minnesota State, 2021). The fall 2021 enrollments and 

Carnegie university classifications (Carnegie Classifications, 2021) for each university 

can be found in Table 1. The Carnegie university classification for each school was 

largely based on the number of degrees awarded during the 2019-2020 academic year. 

For example, the classification of Metropolitan State University as a 

Doctoral/Professional University indicated that at least 30 professional practice doctoral 

degrees in at least two programs were awarded in 2019-2020. All of the other universities 

are classified as Master’s Granting institutions. The large, medium, and small 

classifications indicate that more than 200, 100 to 199, or less than 100 master’s degrees 

respectively were awarded at the institution in 2019-2020 (Carnegie Classifications, 

2021). 

Before the hypotheses of this research are addressed, it is important to first inspect 

some of the high-level features of the MinnState university system. The following 

https://www.wolfram.com/mathematica/
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information will describe the size and distribution of features in the curriculum 

prerequisite networks for the universities in the MinnState system and thus can help 

define a starting point for how to evaluate the hypotheses. The initial metrics of student 

enrollment in the fall of 2021 (Minnesota State, 2021), the total number of courses in 

each university’s online course catalog, the distribution of isolated, and linked courses in 

each network are reported in Table 1. Isolated courses had no prerequisites and did not 

serve as the prerequisites for any other course. These courses were not connected to any 

edges in the network and had a total in-degree and out-degree of zero. Linked courses 

either served as a prerequisite for at least one course or had at least one prerequisite. 

Linked courses were connected to at least one edge in the network and had a total in and 

out-degree greater than zero. The data reported throughout this research will reflect the 

courses and prerequisites that have been adjusted from the initial online course catalog 

listings to accommodate the structure of curriculum prerequisite networks.  

Since the networks used in this research needed to be acyclic and were built only 

to consider those requirements that listed specific courses as prerequisites, changes 

needed to be made to some prerequisite listings in each university’s online course 

catalog. Changes that were made to the online course catalog listings included combining 

corequisite courses into a single course, removing prerequisites that did not call a specific 

course or courses, and removing redundant prerequisites that have no alternatives. 

Corequisite courses were listed as a single course node in the network if both courses 

were required to be taken at the same time. This was the case with many lab courses. 

Additionally, courses were listed as a single course node in the network if both courses 

required the other as a prerequisite. Examples of requirements that were removed because 
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they did not call a specific course include statements that require acceptance into a major 

or program, previous attainment of a certain number of general or in-program credits, a 

passing grade of “C” or higher, and permission from a department or person. 

Additionally, it was found that some courses listed prerequisite courses that no longer 

existed in the current course catalog. These courses that no longer existed were deleted as 

prerequisites and appropriately substitutes were added when the target course listing 

could be found on the MinnState course registration system.  

After all of the data collection and adjustments to each university’s course catalog 

were complete, five percent of each university’s collected course information was audited 

with a comparison to the online catalog to assure accuracy. This auditing process was 

repeated for each university until no errors were found in a five percent audit. 

The number of courses found in the curricula for each university in the MinnState 

system and the distribution of those courses into linked and isolated courses showed 

some consistent patterns. The two largest universities in the system, Minnesota State 

University, Mankato and St. Cloud State University, had the largest number of isolated, 

linked, and total courses in their curricula as well as the smallest percentage of linked 

courses (see Table 1). The two universities which were classified as Master’s Granting 

Institutions: Medium Size, Southwest Minnesota State University and Minnesota State 

University, Moorhead, also shared similar demographics for all of the categories in Table 

1. Two universities were classified as Master’s Granting Institutions: Small Size, Winona 

State University and Bemidji State University. These universities had similar numbers of 

courses in their catalog as the medium-sized institutions, but the small institutions had the 

largest percentage of linked courses across the system. Metropolitan State University was 
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the only university classified as a Doctoral/Professional Granting Institution in the 

MinnState university system. The metrics of linked, isolated, and total courses in the 

Metropolitan State University curriculum were very similar to those of the small 

institutions.  

Table 1 

Fall 2021 Classification, Enrollment, and Course Listings for MinnState Universities 

Carnegie 
Classification 

University 
Student 

Enrollment 
 Isolated 
 Courses 

Linked 
Courses 

Total 
Courses 

%  Linked 
Courses 

Doctoral/ 
Professional 
University 

Metropolitan 
State 

10,575 682 795 1,477 53.8% 

Master’s 
University: 

Large 

Minnesota State, 
Mankato 

17,357 1,668 1,192 2,860 41.7% 

St. Cloud State 16,326 2,082 1,166 3,248 35.9% 

Master’s 
University: 

Medium 

Southwest 
Minnesota State 

8,718 769 592 1,361 43.5% 

Minnesota State, 
Moorhead 

7,534 1,027 761 1,788 42.6% 

Master’s 
University: 

Small 

Winona State 8,856 626 1,138 1,764 64.5% 

Bemidji State 6,354 612 743 1,358 55.0% 

 

Note: The sum of the in-degree and out-degree of an isolated course is zero. A linked 

course has a total degree that is more than zero. 

 

 The curriculum prerequisite network for Metropolitan State University was made 

up of 795 linked courses separated into several components (see Figure 6). In an acyclic 

directed network, components of linked courses are defined to be weakly connected. All 

of the networks in the MinnState system were acyclic-directed networks. Acyclic-
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directed networks cannot be considered strongly connected (connected). The largest 

weakly connected component in the Metropolitan State University network was  

Figure 6 

The Curriculum Prerequisite Network for the Metropolitan State University 

 

 

Note: The Metropolitan State University Prerequisite network had 795 linked courses and 

682 isolated courses (not shown). See Appendix A for more information on the 

departmental makeup of components. 
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composed of 703 courses. The four smaller components at the bottom of Figure 6 show, 

from left to right, courses from the departments of nursing, art, human services, and 

human resource management. See Appendix A for more information on the composition 

of courses in the different network components. Overall, the network contained 2 

components with 11 to 25 courses, 3 components with 6 to 10 courses, and 19 

components with 5 or fewer courses. This was by far the smallest number of components 

for any curriculum prerequisite network in the MinnState university system. The large 

component in the network accounted for 88.4% of all the linked courses in the network 

and 47.6% of all courses in the curriculum (see Table 2). The most predominant feature 

of the largest component is a cluster of 170 courses that all contained WRIT 131: Writing 

1 as a prerequisite. 

 The curriculum prerequisite network for Minnesota State University, Mankato 

contained 1,192 courses separated into several components (see Figure 7). The network 

consisted of one large component composed of 727 courses and several smaller 

components that vary in size from 43 to 2 courses. Specifically, there were 3 components 

with 26 to 50 courses, 10 smaller components that contain 11 to 25 courses, 8 

components with 6 to 10 courses, and 49 components with 5 or fewer courses (see Table 

2). Refer to Appendix B for more information on the courses that were found in the 

different weakly connected components. Across the entire MinnState university system, 

Minnesota State University, Mankato had the most components with six or more courses. 

The largest component in the network accounted for 60.0% of all the linked courses in 

the network and 25.4% of all courses in the curriculum (see Table 2).  
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 For St. Cloud State University, the curriculum prerequisite network was 

composed of 1,166 linked coursed and 2,082 isolated courses (see Figure 8). The network  

had one large weakly connected component composed of 717 courses and many smaller  

Figure 7 

The Curriculum Prerequisite Network for Minnesota State University, Mankato 

 

Note: The Minnesota State University, Mankato prerequisite network had 1,192 linked 

courses and 1,668 isolated courses (not shown). See Appendix A for more information on 

the departmental makeup of components. 
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components. The large component in the network accounted for 61.4% of all the linked 

courses in the network and 22.1% of all courses in the curriculum. St. Cloud State 

University network had the largest number of components across all of the universities in 

Figure 8 

The Curriculum Prerequisite Network for St. Cloud State University 

 

Note: The St. Cloud State University prerequisite network had 2,082 linked courses and 

1,166 isolated courses (not shown). See Appendix C for more information on the 

departmental makeup of components. 
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the MinnState system. This included having the most components, 59, with five or fewer 

courses (see Table 2). The second through fourth largest components contained coursed 

from the art, nursing, and criminal justice departments (see Appendix C).  

Figure 9 

The Curriculum Prerequisite Network for Southwest Minnesota State University 

 

Note: The Southwest Minnesota State University prerequisite network had 592 linked 

courses and 769 isolated courses (not shown). See Appendix D for more information on 

the departmental makeup of components. 
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Figure 9 show the curriculum prerequisite network for Southwest Minnesota State 

University excluding the 769 isolated course. The network’s largest component was 

composed of 339 courses. This was the smallest number of courses in the largest 

component for any of the schools in the MinnState University system. The next two 

largest components are both composed of courses from the music department (see 

Appendix D). The large component in the network accounted for 56.8% of all the linked 

courses in the network and 24.7% of all courses in the curriculum (see Table 2). 

 Figure 10 shows the curriculum prerequisite network for Minnesota State 

University, Moorhead excluding the 1,027 isolated courses. The largest component in the 

network was composed of 474 courses (see Table 2). The next two largest components 

are in the row below the largest component. The component on the left is composed of 

courses from the music department and the one in the middle is composed of courses 

from the photography, film, and animation departments (see Appendix E).  

 Figure 11 shows the curriculum prerequisite network for Winona State University 

excluding the 626 isolated courses. The network consisted of one large weakly connected 

component composed of 868 courses, 5 smaller components that contain 11 to 25 

courses, 12 components with 6 to 10 courses, and 40 components with 5 or fewer 

courses. The large component in the Winona State University curriculum prerequisite 

network was the largest component across all of the networks representing universities in 

the MinnState system. Also, only the networks of Winona State University and 

Metropolitan State University had no components with twenty-six to fifty courses. The 

large component in the network accounted for 76.3% of all the linked courses in the 

network and 49.2% of all courses in the curriculum (see Table 2). 
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 Figure 12 shows the curriculum prerequisite network for Bemidji State University 

excluding the 612 isolated courses. The network consisted of one large weakly connected 

component composed of 403 courses, 1 medium-sized component of 93 courses, 2 small 

Figure 10 

The Curriculum Prerequisite Network for Minnesota State University, Moorhead 

 

Note: The Minnesota State University, Moorhead prerequisite network had 761 linked 

courses and 1,027 isolated courses (not shown). See Appendix E for more information on 

the departmental makeup of components. 
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components that contain 26 to 50 courses, 3 smaller components that contain 11 to 25 

courses, 3 components with 6 to 10 courses, and 42 components with 5 or fewer courses.  

This was the only network in the MinnState university system that had its second-largest 

component made up of more than fifty courses (see Table 2). The second-largest 

Figure 11 

The Curriculum Prerequisite Network for Winona State University 

 

Note: The Winona State University prerequisite network had 626 linked courses and 

1,138 isolated courses (not shown). See Appendix F for more information on the 

departmental makeup of components. 
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component in this network was composed of courses from the education, math, modern 

languages, Ojibwe, physical education, Spanish, and special education departments. See 

Figure 12 

The Curriculum Prerequisite Network for Bemidji State University 

 

Note: The Bemidji State University prerequisite network had 743 linked courses and 612 

isolated courses (not shown). See Appendix G for more information on the departmental 

makeup of components. 
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Appendix G for more information on the courses that exist in the weakly connected 

components of Figure 12. The large component in the network accounted for 82.4% of all 

the linked courses in the network and 45.1% of all courses in the curriculum.  

Table 2 

Distribution of Component Size in MinnState University Curriculum Prerequisite Maps 

Carnegie 
University 
Classification  
 

Weakly Connected Components with 
the Indicated Number of Courses 

Number of 
Courses  
in the 
Largest 
Component 

% of  
Linked 
Courses in 
Largest 
Component 

% of  
All  
Courses in 
Largest 
Component 2-5 6-10 11-25 26-50 51-99 

Doctoral/ 
Professional 

        

  Metropolitan 19 3 2 0 0 703 88.4% 47.6% 

Master’s: 
Large 

        

  Mankato 49 8 10 3 0 727 60.0% 25.4% 
  St. Cloud 59 7 9 2 0 717 61.4% 22.1% 

Master’s: 
Medium 

        

  Southwest 42 5 4 2 0 339 56.8% 24.7% 
  Moorhead 43 8 4 2 0 474 62.3% 26.5% 

Master’s: 
Small 

     
   

  Winona 40 12 5 0 0 868 76.3% 49.2% 
  Bemidji 42 3 3 2 1 403 82.4% 45.1% 

 

 The distribution for the different sizes of weakly connected components across all 

of the universities in the MinnState system is found in Table 2. The Master’s Granting 

Institutions of large size appeared to have similar demographics and the same can be said 

for Master’s Granting Institutions of medium size. The Winona State University and 

Bemidji State University networks had similar percentages of courses devoted to their 

largest weakly connected components. They had about the same number of components 

with one to five courses, but the rest of the component distribution did not appear to be 

similar. 
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Hypothesis 1 

 The first hypothesis of this research was that lower-level courses in mathematics 

departments would exhibit a higher variance in being listed a prerequisite than higher-

level courses. The out degrees of similar mathematics courses across the MinnState 

university system were inconsistent (see Table 3). Similar mathematics courses across the 

different universities in the MinnState university system were determined using the 

Transferology.com website. Transferology (https://www.transferology.com/) is a public 

site that indicates how credits may transfer from one university to another.  

 In Table 3, each course is a predicted credit equivalency on Transferology. 

Although some equivalencies take multiple steps. For example, Transferology predicted 

that Minnesota State University, Mankato Discrete Mathematics course would only 

transfer as elective credits to St. Cloud State University. However, Transferology 

predicted that both the Minnesota State University, Mankato and St. Cloud State 

University Discrete Mathematics courses would have directly transferred to Metropolitan 

State University as Discrete Mathematics credits (Transferology, 2021). 

 As seen in Table 3, the number of courses at a given university that listed a 

specific mathematics course as a prerequisite varied drastically in the MinnState System. 

Metropolitan State University had 23 courses that listed the pre-college level 

Intermediate Algebra course as a prerequisite while Saint Cloud State University only 

had 14 such courses. The rest of the universities in the MinnState system averaged only 

about 5.2 courses that listed Intermediate Algebra as a prerequisite. Similarly, 

Metropolitan State University had 65 courses that listed College Algebra as a prerequisite 

while Winona State University had 3. The other five universities in the MinnState 
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Table 3 

Out-Degree of Similar Courses in MinnState University Mathematics Departments 

 Metro. Mankato St. Cloud SMSU Moorhead Winona Bemidji 

Int. Algebra 23 5 14 4 4 8 5 
College Algebra 65 19 22 16 9 3 14 
Trigonometry -- 9 5 2 2 -- 4 
Precalculus 4 1 12 8 2 8 6 
Calculus I 10 24 16 1 7 20 4 
Calculus II 9 14 31 13 10 12 11 
Calculus III 3 14 9 2 7 4 2 
Discrete Math. 13 3 11 2 6 1 9 
Linear Algebra 5 8 9 0 4 3 2 
Differential Equ. 3 9 5 1 5 11 2 
Real Analysis 1 1 1 1 1 2 0 
Abstract Algebra 0 7 1 1 1 1 0 

 

Note: Metro.= Metropolitan State University, SMSU= Southwest Minnesota State 

University, Int. Algebra= Intermediate Algebra, Discrete Math.=Discrete Mathematics, 

Differential Equ.=Differential Equations. Dashes indicate a course that was not in the 

university’s curriculum. See Appendix H for specific course numbers. 

   

university system averaged about 17 courses that listed College Algebra as a prerequisite. 

For Calculus I, Minnesota State University, Mankato had 24 courses that listed it as a 

prerequisite while Southwest Minnesota State University had only 1. The higher-level 

courses of Calculus III, Discrete Mathematics, Linear Algebra, Differential Equations, 

and Abstract Algebra had similar but less extreme variances in the number of times they 

were listed as prerequisites. 

Hypothesis 2 

 The second hypothesis of this research was that the longest geodesic paths in the 

curriculum prerequisite networks for the universities in the MinnState system would 

contain mathematics courses. The longest geodesic paths in the networks for Minnesota 

State University, Mankato, Southwest Minnesota State University, Minnesota State 
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University, Moorhead, and Winona State University all contained mathematics courses 

(see Tables 4-5). The only three mathematics courses in the MinnState system that had 

prerequisites options outside of the mathematics department were from St. Cloud State 

University and Winona State University. These courses were only involved with 16 of the 

longest geodesic paths at Winona State University and one similar path at St. Cloud State 

University. Mathematics courses existed in and began the longest geodesic paths for the 

majority of long paths at every university except Bemidji State University. Similarly, 

outside of Bemidji State University, each university had a steady increase in the percent 

of paths that contained mathematics courses as the path lengths also increased. 

Table 4 

Longest Geodesic Paths at the Three Largest MinnState Universities 

Courses 
in Path  

Metropolitan Mankato St. Cloud 

Count % Count % Count % 

2 489 5% 555 1% 670 1% 
3 599 21% 464 12% 552 4% 
4 324 43% 540 29% 1254 10% 
5 178 69% 613 63% 3480 10% 
6 42 93% 268 85% 630 86% 
7 14 93% 119 93% 285 91% 
8 2 50% 24 92% 54 91% 
9 1 0% 8 100%   

10 1 0% 4 100%   
       

Total  28%  38%  20% 

Note: Count refers to the number of paths that were of the indicated length and % 

indicates the percentage of those paths that contained at least one mathematics course. 

This information is continued in Table 5. 

 

Hypothesis 3 

 The third hypothesis of this research stated that mathematics departments would 

have consistently high centrality in the university curriculum prerequisite networks. 



69 

 
To investigate this hypothesis, the departmental curriculum prerequisite networks (see 

Figure 5) were constructed for each university in the MinnState university system. 

Additionally, the department nodes in the departmental networks were also clustered into 

communities based on the strength of their connections. The Mathematica software was 

used to find network communities using a method based on edge betweenness centrality. 

The edges in the departmental network were weighted based upon the number of 

prerequisite connections and the weight of those connections between departments. When 

departments were clustered together, it indicated that there were multiple prerequisite 

relationships between the departments in the cluster.  

Table 5 

Longest Geodesic Paths at the Four Smallest MinnState Universities 

Courses 
in Path  

Southwest Moorhead Winona Bemidji 

Count % Count % Count % Count % 

2 413 10% 399 4% 681 2% 425 2% 
3 212 50% 293 13% 724 5% 328 8% 
4 155 79% 381 24% 452 20% 195 28% 
5 55 95% 284 67% 263 50% 215 54% 
6 10 100% 287 91% 321 79% 106 50% 
7 2 100% 203 97% 141 87% 55 38% 
8   65 100% 23 91% 3 0% 
9   6 100% 4 100%   

10         
         

Total  39%  45%  25%  21% 

 

Note: Count refers to the number of paths that were of the indicated length and % 

indicates the percentage of those paths that contained at least one mathematics course. 

This information is a continuation of Table 4. 

 

 In the department prerequisite network for Metropolitan State University, the 

mathematics department was grouped in a cluster with twenty-three other departments. 

This cluster is at the top left side of Figure 13. There did not appear to be one cluster of 
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departments that is more central to the departmental network than the others. However, 

the cluster containing the mathematics department was the largest of the five clusters in 

the network. 

 The department prerequisite network for Minnesota State University, Mankato 

had a clear central cluster of departments that includes mathematics, aviation, computer 

science, electrical engineering, English, physics, and four additional departments. While 

this largest central cluster was composed of eleven departments, no other cluster 

contained more than six departments (see Figure 14). See Appendix J for the departments 

in each of the clusters shown in Figure 14. 

 The departmental prerequisite network for St. Cloud State University had a clear 

central cluster of departments that contained the departments of mathematics, biology, 

Figure 13 

Departmental Prerequisite Network for Metropolitan State University 

 

Note: The Metropolitan State University departmental network had 65 linked 

departments and 6 isolated departments (not shown). See Appendix J for the departments 

in each cluster. 
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chemistry, computer science, engineering, physics, economics, geography, and eleven 

other departments (see Appendix K). The network also had department clusters that 

contained eight, seven, and six departments. There were additionally ten smaller clusters 

that each contained one to four departments (see Figure 15). 

Figure 14 

Departmental Prerequisite Network for Minnesota State University, Mankato 

 

Note: The Minnesota State University, Mankato departmental network had 67 linked 

departments and 15 isolated departments (not shown). See Appendix J for the 

departments in each cluster. 

 

 The departmental prerequisite network for Southwest Minnesota State University 

did not have a clear central clustering of departments (see Figure 16). The mathematics 

department was in a cluster with the accounting, agribusiness, data science, finance, 

computer science, economics, and management departments. This is the center-left 

cluster in Figure 16. See Appendix L for more information on the departments that were 

contained in each of the clusters in Figure 16. The mathematics department was not  
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Figure 15 

Departmental Prerequisite Network for St. Cloud State University 

 

Note: The St. Cloud State University departmental network has 76 linked departments 

and 23 isolated departments (not shown). See Appendix K for the departments in each 

cluster. 

 

Figure 16 

Departmental Prerequisite Network for Southwest Minnesota State University 

 

Note: The Southwest Minnesota State University departmental network had 43 linked 

departments and 9 isolated departments (not shown). See Appendix L for the departments 

in each cluster. 
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clustered with the other traditional STEM departments in the St. Cloud State University 

departmental network.  

 The departmental prerequisite network for Minnesota State University, Moorhead 

had only one cluster with four departments and five clusters with three departments (see 

Figure 17). There were additionally eight clusters with two courses and twelve with only 

one linked course. The cluster of three departments that appeared to be the most central to 

the graph contained the departments of computer science and information systems, 

mathematics, and physics (see Appendix M). Due to the abundance of small clusters, the 

departmental network for Minnesota State University, Moorhead appears to be similar to 

that of Winona State University (see Figure 18). Additionally, many of the departmental 

networks that had small clusters did not have the mathematics department grouped with 

traditional STEM departments.  

 The departmental prerequisite network for Winona State University appeared to 

be one of the least clustered graphs in the MinnState system (see Figure 18). Twenty-one 

of the networks twenty-four clusters had four or fewer departments and fifteen of those 

contained only one department. There is a triangle of three clusters, one cluster with 

seven departments and two with six departments, which appeared to be central to the 

network. The cluster containing the mathematics department was on the left side of this 

triangle of clusters (see Figure 18). Grouped with the mathematics department were the 

departments of computer science, physics, composite materials engineering, 

communication studies, data science, and statistics (see Appendix N). 

 The departmental network for Bemidji State University did not appear to have a 

clear central cluster of departments (see Figure 19). This was the only network in the  
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Figure 17 

Departmental Prerequisite Network for Minnesota State University, Moorhead 

 

Note: The Minnesota State University, Moorhead departmental network had 57 linked 

departments and 12 isolated departments (not shown). See Appendix M for the 

departments in each cluster. 

 

Figure 18 

Departmental Prerequisite Network for Winona State University 

 

Note: The Winona State University departmental network had 60 linked departments and 

7 isolated departments (not shown). See Appendix N for the departments in each cluster. 
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MinnState system that did not have the mathematics department in the largest cluster of 

the network. The mathematics department was in a cluster with the computer science, 

physics, sociology, statistics, and technology, and the art and design departments. The 

cluster with the mathematics department is located in the top middle portion of the large 

weakly connected component in Figure 19. See Appendix O for more information on the 

departmental composition of clusters in figure 19. 

Figure 19 

Departmental Prerequisite Network for Bemidji State University 

Note: The Bemidji State University departmental network had 43 linked departments and 

4 isolated departments (not shown). See Appendix O for the departments in each cluster. 

 

 Slim et. al (2014) developed the centrality measure of cruciality for curriculum 

prerequisite networks. The measure of cruciality for a course in a curriculum prerequisite 

network is the sum of the longest geodesic path that contains the course plus the size of 

the course’s out component. The out-component of a course contains all of the courses 

that lie on a path after the given course. Slim et. al defined these values as the delay and 

blocking factors of a course. The delay factor is so named due to the likelihood of a delay 
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in graduating due to a lack of success in a course that lies in long prerequisite paths. The 

blocking factor is so named because all courses in the out-component are blocked from 

student enrollment until success is achieved in the original course.  

 The prerequisites for mathematics courses were slightly modified for the 

calculation of the out components that contributed to the cruciality measures in this 

research. Some universities in the MinnState system listed prerequisites using only the 

lowest required course. Other universities would list the lowest required course that could 

satisfy a prerequisite and also higher-level courses that could also satisfy the prerequisite. 

For example, if Precalculus was a prerequisite for a chemistry course then Calculus 1 

should also satisfy that prerequisite if Precalculus is a prerequisite for Calculus 1. In 

cases like this, some universities would only list Precalculus as a prerequisite in their 

online course catalog and others would list both Precalculus and Calculus 1. A 

programming command in Mathematica was written so that only the lowest level 

mathematics courses that satisfied the prerequisites were used in the calculations for 

cruciality. This adjustment kept the mathematics courses from having artificially inflated 

out-component sizes. The courses from other departments that had large cruciality 

measures were also inspected for similar artificially high out-component numbers, and it 

was determined that no adjustments were needed.  

 For the universities in the MinnState system, the courses with the highest 

cruciality measure on each campus were from the mathematics department. In six of the 

seven universities, the course with the highest cruciality measure was College Algebra. 

At Metropolitan State University, the course with the highest cruciality measure was 

MATH 102: Mathematics of Sustainability which can serve as a prerequisite to College 
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Algebra. Additionally, College Algebra had the third highest cruciality measure for 

Metropolitan State University (see Table 6). College Algebra was the only course to 

appear on all seven lists. The courses with the highest cruciality measures at each 

university had measures ranging from 152 to 410. Since the longest geodesic path in the 

MinnState system included only ten courses (see Tables 4-5), it is clear that the large 

cruciality scores came mostly from the size of each course’s out-component. With the 

previously mentioned adjustment to mathematics courses that serve as course 

prerequisites, the average number of mathematics courses in the top ten cruciality 

measures across the MinnState system was 4.7. Without the adjustment to the way 

prerequisites were written, the average number of mathematics courses in the top ten 

cruciality measures would have been 6.4. Winona State University had the largest 

number of mathematics courses in its top ten cruciality measures with seven and Bemidji 

State University had the lowest with only two. Other departments that had courses show  

Table 6 

College-Level Courses with Highest Cruciality in the Minnesota State Universities  

Metropolitan Mankato St. Cloud 

 MATH 102 282 MATH 112 410 MATH 112 317 
 WRIT 131 271 MATH 115 313 MATH 115 273 
 MATH 115 218 MATH 121 292 MATH 221 178 
 STAT 201 154 MATH 113 292 PHYS 234 130 
 WRIT 121 99 MATH 122 134 CHEM 160 125 
 MATH 120 99 PHYS 221 117 CHEM 210 119 
 WRIT 132 98 CHEM 104 85 MATH 113 107 
 PSYCH 100 72 PHYS 222 64 MATH 222 99 
 MATH 215 72 CHEM 201 64 MATH 111 99 
 ICS 140 69 MATH 321 55 GENG 102 92 

 

Note: The number to the right of each course is its cruciality measure. Some of the 

mathematics course names can be found in Appendix H. This information is continued in 

Table 7. 
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up in the top ten cruciality scores included accounting, art, biology, chemistry, English, 

economics, finance, physics, psychology, statistics, and writing (see Tables 6-7). 

Table 7 

College-Level Courses with the Highest Cruciality in the Minnesota State Universities  

Southwest Moorhead Winona Bemidji 

 MATH 110 153  MATH 127 152  MATH 115 248  MATH 1170 142 
 MATH 135 80  ART 125 60  MATH 120 239  CHEM 2211 61 
 ACCT 211 42  ART 101 57  MATH 212 158  CHEM 1111 61 
 CHEM 231 39  MATH 261 54  ENG 111 138  BIOL 1400 59 
 FIN 230 32  MATH 227 54  STAT 100 112  ACCT 2101 56 
 MATH 060 31  MATH 234 49  STAT 110 110  MATH 2471 54 
 COMP 165 31  PSY 113 45  MATH 110 99  CHEM 2212 51 
 ECON 201 30  MATH 262 42  MATH 112 82  ECON 2000 50 
 PSYC 101 29  ACCT 230 36  MATH 117 80  ED 3110 49 
 MUS 300 29  ACCT 231 32  MATH 140 79  CHEM 1112 49 
        

Note: The number to the right of each course is its cruciality measure. Some of the 

mathematics course names can be found in Appendix H. This information is a 

continuation of Table 6. 

 

Hypothesis 4 

 The fourth hypothesis for this research was that the connectedness of 

undergraduate curricula in the MinnState university system would be inversely correlated 

with institution size. A review of the average out-degree for each curriculum prerequisite 

network in the MinnState university system (see Table 8) closely follows the results from 

Table 1 and Table 2. The average out-degree for all courses at Minnesota State 

University, Mankato, St. Cloud State University, Southwest Minnesota State University, 

and Minnesota State University, Moorhead are very similar (see Table 8). These four 

universities also had similar numbers of isolated courses and percentages of linked 

courses in their networks (see Table 1). Additionally, Table 2 showed that these four 
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universities had similar percentages of linked and total courses in their largest 

components. The numbers and sizes of weakly connected components were not 

consistent across all four of these universities, but the pairs of universities in the Large 

and Medium Carnegie classifications did have similar numbers (see Table 2). These 

similarities in Tables 1, Table 2, and Table 8 also hold for the other three Universities in 

the MinnState system. Winona State University and Bemidji State University are both 

have a Carnegie classification of Master’s Granting Universities: Small while 

Metropolitan State University is classified as a Doctorate/Professional degree-granting 

institution. These three institutions have similar average out-degrees across all of their 

courses (see Table 8), similar numbers of isolated courses and percentages of linked 

courses (see Table 1), and percentages of linked and total courses in their largest 

component. The size and numbers of the weakly connected component in these three 

networks were not very similar (see Table 2). 

Table 8 

Average Out-Degree in the Curriculum Prerequisite Networks for MinnState Universities 

Carnegie University 

Classification 

Minnesota State 

University 

Average Out-Degree 

for All Courses 

Average Out-Degree 

for Linked courses 

Doctoral/Professional Metropolitan 0.65 3.76 

Master’s: Large 
Mankato 0.48 2.60 

St. Cloud 0.45 2.68 

Master’s: Medium 
Southwest 0.44 2.82 

Moorhead 0.44 2.27 

Maser’s: Small 
Winona 0.83 2.96 

Bemidji 0.60 2.51 
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Chapter V – Discussion 

Summary of Findings 

 This research sought to use curriculum prerequisite networks to analyze the 

similarities and differences of the curriculum structures for the seven universities in the 

Minnesota State (MinnState) university system. The prerequisite information for each 

course at each university was taken from the university’s publicly available online course 

catalog. The data collection for this research proved to be time-consuming and difficult 

since the presentation, availability, and accuracy of course prerequisites varied from one 

university to the next.   

 Some universities only listed the lowest level course that would satisfy a 

prerequisite, while others listed the lowest level course along with more advanced 

courses as alternatives. For example, assume that College Algebra is a prerequisite for 

both Precalculus and General Physics, but no lower-level mathematics course would 

satisfy the prerequisites for these courses. Some universities would list only College 

Algebra as a prerequisite for General Physics while others would list the option of 

satisfying the prerequisite with either College Algebra or Precalculus. These higher 

prerequisites are nearly the opposite situation of the redundant prerequisites defined in 

chapter three (see Figure 4). An example of a redundant prerequisite is where College 

Algebra is a prerequisite for Precalculus and Precalculus is the lowest-level mathematics 

course that satisfies the prerequisite for General Physics. There would be no need to list 

College Algebra as a prerequisite to General Physics since the prerequisite to Precalculus 

already requires that knowledge base. If it were listed as a prerequisite for General 

Physics, College Algebra would be a redundant prerequisite. The problems of higher-
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prerequisites and redundant prerequisites were both partially addressed with adjustments 

to prerequisite course listings.   

 In addition to issues of redundant and higher prerequisites, there were also 

problems caused by the variety of methods used to list corequisites in the online course 

catalogs. Some corequisites were listed as such, some had each course listed as a 

prerequisite for the other, and some pairings only had statements in the text of the course 

descriptions that indicated concurrent enrollment was required. These variations were not 

unique to particular universities. A single university could have all three of these 

variations. As a final variation on corequisites, some courses listed corequisites that only 

applied to specific majors or programs, and all other students could take the course as a 

stand-alone. Great efforts were made for the sake of the current research to identify all of 

these corequisite courses and list them as a single node in the curriculum prerequisite 

networks.  

 The ease with which the prerequisite data could be found and retrieved from each 

university’s public website also varied. In particular, one university had a course catalog 

user interface with a search function that would at times not even recognize some of the 

courses and department prefixes in the curriculum. In these cases, course descriptions and 

prerequisites could only be accessed by searching through an alphabetical list of all the 

courses at the university. Additionally, for some universities, it was at times easy to 

mistakenly link to and review a course catalog from a previous academic year. Using the 

university website search option for a specific course might bring up the course 

description and prerequisites from a catalog that could be several years old. It was 

necessary to carefully inspect the given webpage to determine if the given course 
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information was current. This was particularly problematic with courses that no longer 

existed in the current online course catalog. These courses that appeared in prerequisites 

but no longer appeared in the course catalog gave an indication to the accuracy of each 

universities course catalog. This was the only method in this research that could note the 

accuracy of prerequisites listed in online course catalogs. The number of non-existent 

courses that were listed as prerequisites varied from one university to the next. The 

lowest number of such courses at a university was ten and the highest number was sixty. 

Since the number of listed courses MinnState universities varied from 1,138 to 3,248 (see 

Table 1), there was only a small percentage of courses that were found to have inaccurate 

prerequisites.  

 The initial rendering of the curriculum prerequisite networks for the universities 

in the MinnState system showed a few consistent features. Each university had one large 

weakly connected component that accounted for 22.1%-49.2% of all courses at the 

university and 60.0%-82.4% of all linked courses (see Table 2). Each curriculum 

prerequisite network also contained smaller weakly connected components that often 

only contained courses from one department (see Appendices A-G). The total number of 

courses, linked courses, isolated courses showed mostly consistent patterns when the 

universities were grouped by their Carnegie classifications (see Table 1).   

Hypotheses 

The first hypothesis of the current study predicted that lower-level courses would 

exhibit a higher variance in being labeled a prerequisite than higher level mathematics 

courses. The results from the out-degrees of similar mathematics course listings across 

the MinnState system supported this hypothesis. The lower-level mathematics courses 
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varied drastically in the number of courses that listed them as prerequisites. The variation 

in the upper-level courses was also quite variable between campuses, but the number of 

courses that listed the higher-level courses as prerequisites was much lower (see Table 3).  

 The second hypothesis of the current research predicted that the longest 

prerequisite paths through the curricula would contain mathematics prerequisites. The 

results confirmed that mathematics courses were present in a large majority of the longest 

geodesic paths across the MinnState university system. However, mathematics 

prerequisites did not exist in all such paths. An interesting pattern to the data was that the 

percentage of geodesic paths that contained mathematics courses grew as the path lengths 

increased (see Tables 4-5). Only two universities saw a drop in the percentage of 

geodesic paths that contained mathematics courses for the longest paths.  

 The third hypothesis of the current research predicted that mathematics 

departments would have consistently high centrality in the network analysis. The results 

partially supported this hypothesis. The construction of the departmental prerequisite 

networks for each of the universities in the MinnState system showed varying results. 

The mathematics department was often in the largest cluster of grouped departments, but 

that cluster did not always appear to be central to the entire network. Some networks had 

more than one cluster that was central to the network (see Figures 17-18), some had no 

apparent centralized cluster of departments (see Figures 13, 16, and 19), and some had 

the cluster that contained the mathematics department as the central cluster (see Figures 

14-15).  

 However, the cruciality measures of courses did appear to partially confirm the 

third hypothesis. At each university, there were several mathematics courses included in 
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the list of the courses with the highest cruciality measures. Additionally, College Algebra 

had the highest cruciality measure at each university except for one. At that university, 

the top cruciality measure was a mathematics course that can serve as a prerequisite for 

College Algebra, and College Algebra had the third highest cruciality score.  

 The fourth hypothesis of this research predicted the interconnectedness of 

undergraduate curricula will be inversely correlated with institutional size. The results 

failed to support this hypothesis. The average out-degree of all and linked courses (see 

Table 8), the percentage of linked courses (see Table 1), and the percentage of all and 

linked courses in the largest weakly connected component (see Table 2) indicated that the 

universities could be bifurcated into two groups. One group contained the universities 

classified as Master’s Granting Institutions of large and medium sizes and the other group 

contained the Master’s Granting Institutions of small size and the only 

Doctoral/Professional Granting Institution in the MinnState university system. This may 

indicate that interconnectedness of a university’s curriculum may have more of a relation 

with a university’s mission than with a university’s size.  

Implications 

 The work of this research and the previous work upon which it rests demonstrates 

that organizing curricula into a network representation can provide new and informative 

measures regarding course interactions and curriculum structure. The apparent 

confirmation for the first hypothesis indicates that the mathematics courses listed as 

prerequisites for some similar courses across the Minnesota State (MinnState) university 

system may be inconsistent.  For example, since Metropolitan State University has sixty-

five courses with College Algebra as a prerequisite and Winona State University only has 
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three (see Table 3), there may be some prerequisites inconsistencies. These 

inconsistencies would appear when some of the indicated sixty-five courses at 

Metropolitan State University had equivalent courses at Winona State University. Similar 

but less extreme variances existed with several other mathematics courses and pairs of 

universities (see Table 3).  

 This research also suggested that mathematics courses appear in the majority of 

longer prerequisite paths at each university in the MinnState system (see Tables 4-5). In 

support of hypothesis three, this research showed that College Algebra is the most 

common course to appear in a prerequisite path leading up to a target course (see Tables 

6-7). This implies that success in College Algebra plays a significant role in students’ 

ability to progress through the curriculum and graduate on time. It is questionable if it is 

possible for a single course to serve all of these target courses. Additionally, the 

department networks developed to investigate hypothesis three revealed that mathematics 

departments are often closely grouped with departments that are different from traditional 

science, technology, and engineering (i.e., STEM) courses. It is possible that the 

implication of these departmental groupings and the over-dependence on the College 

Algebra course indicates a need for that more service courses in the mathematics 

departments.   

 A final broad implication of this research is that there exists a largely untapped 

wealth of information in university course catalogs. Simply listing the out-components 

for courses could be beneficial for student advising and faculty course planning. It is not 

unknown to many faculty members that College Algebra is a course that will satisfy 

many prerequisites at a given university. However, it may surprise faculty and students 
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how far across the curriculum the out-components of College Algebra and other 

mathematics courses actually reach. Listing the out-components for courses would show 

students the prerequisite paths that open up for them upon completion of a course as 

opposed to choosing courses to satisfy the prerequisite path to a target. Similarly, listing 

the out-components of courses would help faculty determine the audience for a course 

and help in structuring course content.  

Strengths and Limitations 

 The major strength of this research is that the analysis was performed across all 

the universities in one of the nation’s largest state-wide systems. Some studies have 

limited their analysis to the curricula of a small number of colleges or universities 

(Aldrich, 2015; Knorn et al. 2019, Lightfoot 2010; Molontay, 2020; Slim et al. 2014; 

Varagnolo et al. 2020; Wigdahl et al. 2014). Others have considered a larger number of 

schools, but the similarities between the institutions have been based on similar 

programing and not a shared board of trustees (Heileman et al., 2019; Komenda et al., 

2015). The consistent collection and analysis of curriculum data from universities in a 

single system allows for a unique look at how local academic decisions can lead to 

structural differences.  

 The focus on how mathematics courses and departments fit into a university’s 

curriculum is also a strength of this research. Much of the research using curriculum 

analytics reviews particular programs in a university’s curriculum but not the curriculum 

as a whole (Aldrich, 2015; Heileman et al., 2019; Knorn et al. 2019, Lightfoot 2010; 

Molontay, 2020; Slim et al. 2014; Varagnolo et al. 2020; Whigdahl et al. 2014 ). Since 

mathematics courses are often taken by students majoring in other departments 
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(American Mathematical Society, 1999; Mathematical Association of America, 2015; 

Herriott and Dunbar 2009), mathematics courses and departments play a central role in 

each university’s curriculum as a whole. 

 Finally, the use of network analytics to define the structure of a university’s 

curriculum is a relatively new process. The current makeup of higher education is one 

where faculty and administration are increasingly relied upon to make data-driven 

decisions. The use of curricular network analytics could prove to be a valuable tool used 

to quantifying data relates to course decisions and curriculum structure. 

 The largest limitation to this research is the accuracy of and adjustments made to 

the listed prerequisites for each course. The prerequisite data for each university was 

taken from the online course catalogs. As stated previously, each university had some 

courses listed as prerequisites, but those courses no longer existed in the current course 

catalog. It is also possible that course catalogs had courses listed even though 

departments had determined that those courses would no longer be offered. This research 

made no effort to confirm which courses were perennially offered at each institution. 

Additionally, it is possible, and indeed likely, that some course prerequisites that were 

found to contain non-existent courses had been updated by the appropriate departments, 

but those updates were not added to the current course catalog. When it was possible to 

find these courses with prerequisite errors on the MinnState e-Services course registration 

website, the appropriate prerequisites were substituted into the data. However, the public 

information for the e-Services site typically only has three semesters of scheduling 

available for review. If a course was not offered in that window of time, the current and 

correct prerequisite courses were not known to this research.  
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 An additional limitation of this research is the difficulty in adapting network 

curriculum analytics found in the literature to weighted prerequisite connections. The 

edge weighting for the curriculum prerequisite networks was based on the statement of 

the prerequisite. If there was an “Or” in the prerequisite, then an edge was listed with a 

weight less than one (see Figure 1). These “Or” listings make it difficult to find redundant 

prerequisites (see Figure 4), properly scale out-components (see Tables 6-7), and 

accurately find geodesic paths (see Tables 4-5).  

 As stated in chapter three, an adjustment was made to remove redundant 

prerequisites that strictly came from “And” statements, but the redundant prerequisites 

that came from a path with  “Or” statements were not adjusted. Similarly, as stated in 

chapter four, several mathematics courses initially had inflated out-component 

calculations due to “Or” prerequisites statements. An adjustment was made to these 

prerequisite statements. This adjustment led to more accurately listing the average 

number of mathematics courses in the top ten cruciality scores as 4.7 as opposed to the 

pre-adjustment average of 6.4 (see Tables 6 -7) . However, the out-component calculation 

still does not account for edge (prerequisite) weighting. For example, assume either 

MATH 105 or MATH 107 satisfied the prerequisite for MATH 165, and assume that 

MATH 165 is a prerequisite for CHEM 475 (see Figure 1). The edge from MATH 105 to 

MATH 165 adds one-half to the out-degree of MATH 105 but the same edge adds one to 

the number of courses in the out-component of MATH 105. Similarly, CHEM 475 would 

add another full course to the out component of MATH 105.  

 The number of courses in a path was used to define the geodesic and longest 

geodesic paths, but the edge (prerequisite) weighting was also not involved in the 



89 

 
calculation. Figure 20 shows prerequisite paths to COMP 455 in the Southwest State 

University curriculum prerequisite network. The geodesic path from MATH 110 to 

COMP 455 would be the one containing MATH 110, MATH 210, and COMP 455. 

However, as indicated by the solid edges, the path containing MATH 110, COMP 165, 

COMP 166, COMP 324, and COMP 455 contains exclusively required courses. 

Similarly, since COMP 324 is a required prerequisite for COMP 455, the path containing 

MATH 150, MATH 320, MATH 325, COMP 324, and COMP 455 also exclusively 

contains required courses. Since there is an unseen alternate option to MATH 125 for 

MATH 150, it’s unclear what would be the shortest way to finish this path. Regardless, 

both of these required paths would be longer than what this research recorded as the 

geodesic path from MATH 110 to COMP 455. 

Figure 20 

A Prerequisite Path from Southwest Minnesota State University  

 

 

 

 

 

 

 A final limitation to this research is that student enrollment trends and success 

data were not used in this research. It is possible that a course with no prerequisites that 

also does not serve as a prerequisite for any other course still has high enrollments and 

serves a central purpose to the curriculum. Alternatively, it is possible that a course 
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serves as a prerequisite to many courses and has a large number of courses in its out- 

component, but the course has low enrollments. This could possibly occur in a low-level 

mathematics course where many students at the university are initially placed at a level 

above the course due to testing or previous course work. It could also be the case that a 

course central to the curriculum that has high student success rates would be less of a 

concern than a course less central and with lower success rates.  

Recommendations for Further Research 

 An extension of this research would be to define the meaning of the “accepted to” 

prerequisites and include this information in the curriculum prerequisite networks. The 

“accepted to” prerequisites are the ones that state a student must have been accepted to a 

program or major before enrollment in a target course. For example, many of the 

prerequisite networks in the MinnState university system included weakly connected 

components that only contained courses from a single department (see Appendices A-G) 

and many isolated courses (see Table 1). Additional linkages could be defined for these 

components and courses if there are exist prerequisites of a declared major or acceptance 

to a program and that declaration or acceptance required specific course work. How this 

would change the centrality and importance of the mathematics departments across 

university curricula is unknown.   

 Another extension of this research would be to incorporate student success data or 

enrollment information into the network analysis in an effort to better understand how 

students progress through the curriculum. Among others, the work of Molontay et al. 

(2020), Saltzman and Roeder (2012), Slim et al. (2014), and Wigdahl et al. (2014) gives 

practical and theoretical examples of how this may be accomplished. Additionally, the 
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comparisons of network analytics could also be done while grouping the universities 

according to factors besides classified size. Network curriculum analytics could show 

more consistency when the grouping is based on each university’s mission. If a university 

is more likely to enroll older-than-average and returning students then the listed 

prerequisites for a course may need to be more or less prescriptive than a university that 

enrolls primarily residential students straight out of high school. As Heileman et al. 

(2018) noted, prerequisites are likely more necessary when students are less prepared.  

 A final recommendation for further research would be to extend this analysis of 

curriculum prerequisite networks to the community colleges in the MinnState system. In 

particular, does College Algebra play a similarly central role in the curricula of the 

community colleges? This additional research could be tailored as a comparison between 

community colleges or a comparison between a community college and typical transfer 

institutions. The analysis could aid in determining the consistency of prerequisites from 

two to four-year colleges and possibly help with identifying issues that could arise with 

the transfer between institutions.
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Appendix A 

Components for the Metropolitan State University 

Curriculum Prerequisite Network 

 

 

 

 

 

  1. 

 

 

 

 

 

 

 

 2.        3.        4.                    5.   

 

 

Note: Departments of Courses in the Indicated Components, Ordered by Component Size 

1. Accounting, Anthropology, Biology, Business Law, Computer Forensic Sciences, 

Chemistry, Criminal Justice, Communication, Cybersecurity, Data Science, Dental 

Hygiene, Decision Sciences, Economics, Education, Entrepreneurship, 
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Environmental Science, Ethnic Studies, Finance, Geology, Gender Studies, History, 

Human Services Administration, Health Science, HSCO, Human Services, Human 

Services/Family Studies, Humanities, International Business, Information and 

Computer Sciences, Interdisciplinary Studies, Information Studies, Language Arts 

Education, Law Enforcement, Linguistics, Literature, Mathematics Education, 

Mathematics, Media Studies, Management, Management Information Systems, 

Marketing, Advertising and Purchasing, Natural Science, Nursing, Philosophy, 

Physics, Political Science, Psychology, Risk Management and Insurance, Science 

Education, Screenwriting, Sociology, Social Work, Special Education, Social 

Science, Social Studies Education, Statistics, Technical Communication/Interaction 

Design, Theater, Writing 

2. Arts 

3. Nursing 

4. Criminal Justice, Human Services/Alcohol & Drug Counseling, Human Services 

5. Human Resource Management 
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Appendix B 

Components for the Minnesota State University, Mankato  

Curriculum Prerequisite Network 

            8.  

            

                  14. 

   1. 

           15. 

 

          12. 

 

          22. 

 

          18. 

 

            8.  

 

           11. 

 

           20. 

 

           13.  

5.     2.       

           21. 

 

 

4.     7.   6.  

 

 

9.      3.   10.           13.       17. 

 

 

 

 

Note: Departments of Courses in the Indicated Components, Ordered by Component Size 

1. Accounting, Automotive Engineering Technology, Anthropology, Astronomy, 

Aviation, Biology, Chemistry, Computer Information Science, Civil Engineering, 

Construction Management, Computer Science, Dental Hygiene, Economics, 
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Electrical Engineering, Electrical Engineering Technology, English, Integrated 

Engineering, Ethnic Studies, Family Consumer Science, Finance, Geography, 

Geology, Health Science, Human Performance, International Business, Mass Media, 

Mathematics, Mechanical Engineering, Manufacturing Engineering Technology, 

Management, Marketing, Music General, Nursing, Physics, Psychology, Social 

Work, Statistics 

2. Theatre Arts 

3. French 

4. Art 

5. Art 

6. Recreation, Parks and Leisure Services 

7. Criminal Justice, Corrections, Health Science, Human Performance, Sociology 

8. Spanish 

9. English, Film 

10. German 

11. Political Science 

12. Health Science 

13. Dance 

14. Health Science 

15. Geography 

16. Business Law 

17. Integrated Engineering 

18. Social Work 
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19. Political Science 

20. Human Performance 

21. Ethnic Studies 

22. Nursing 
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Appendix C 

Components for the St. Cloud State University  

Curriculum Prerequisite Network 

 

            5.  

 

 

           11.  

  1.       

             7.  

           15. 

 

                  12. 

                  16. 

 8.   6.  2.                14. 

         4.   

          

 9.            10.  3.   17. 

         13. 

 

 

Note: Department of Courses in the Indicated Components, Ordered by Component Size 

1. Accounting, Atmospheric & Hydrologic Sciences, Astronomy, Biological Sciences, 

Biochemistry& Molecular Biology, Child and Family Studies, Chemistry, 

Communication Studies, Computer Networking and Applications, Community 
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Psychology, Computer Science, Electrical and Computer Engineering, Economics, 

Education, Engineering Management, English, Engineering Science, Environmental 

Engineering, Ethnic Studies, Environmental and Technological Studies, Finance, 

Insurance and Real Estate, General Engineering, Geography, Gender and Women’s 

Studies, Health, Human Relations and Multicultural Ed, Information Media, 

Information Systems, Mathematics, MATS, Management, Marketing and Business 

Law, Medical Laboratory Sciences, Mechanical and Manufacturing Engineering, 

Mathematics and Statistics, Music Education, Physical Education Sports Science, 

Philosophy, Physics, Psychology, Science, Software Engineering, Sociology, School 

of the Arts, Special Education, Social Studies, Statistics, STEM, Social Work 

2. Art 

3. Criminal Justice Studies 

4. Nursing 

5. Anthropology, Sociology 

6. Mass Communications 

7. Political Science 

8. Music Education, Music Musicianship, Music Performance 

9. Communication Sciences and Disorders, English, German, Languages and Cultures, 

Spanish 

10. Health Education and Physical Education, Physical Education Sports Science 
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11. Physical Education Sports Science, Recreation 

12. History 

13. Hospitality and Tourism  

14. Global Studies, Political Science 

15. Special Education 

16. Anthropology 

17. Theatre  
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Appendix D 

Components for the Southwest Minnesota State University  

Curriculum Prerequisite Network 

 

 

     1.       8. 

 

            2. 

 

 

 

 

 

 3.    5.    6. 

 

 

       

 4.    7.          9.  10.    

 

Note: Departments of Courses in the Indicated Components, Ordered by Component Size 

1. Accounting, Agribusiness Management, Agronomy, Agricultural Solutions, Art, 

Biology, Chemistry, Computer Science, Culinology, Data Science, Economics, Early 

Childhood Special Education, Education, Environmental Science, Exercise Science, 
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Finance, Health, Hospitality, Justice Administration, Mathematics, Management, 

Marketing, Physical Education, Physics, Political Science, Psychology, Sociology, 

Special Education, Social Work 

2. Music 

3. Music 

4. English: American Language, Marketing, Philosophy 

5. Art 

6. Theatre Arts 

7. History, Spanish, Teaching English as a Second Language 

8. Justice Administration, Political Science 

9. Communication Studies  

10. Education, Spanish 
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Appendix E 

Components for the Minnesota State University, Moorhead  

Curriculum Prerequisite Network 

       

                8.  

 

               10. 

  1. 

 

 

 

 

 

     3. 

     2.          6.  

  

4.               5.            7.         9.  

  

Note: Departments for Courses in the Indicated Components, Ordered by Component 

Size 

1. Accounting, Anthropology, Art, Astronomy, Biochemistry and Biotechnology, 

Biology, Chemistry, Criminal Justice, Construction Management, Computer Science 

and Information Systems, Economics, Education, Elementary and Early Childhood 
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Education, English, Finance, Geoscience, Graphic and Interactive Design, Honors, 

Health Services Administration, Mathematics, Management, Marketing, Operations 

Management, Paralegal, Philosophy, Physics, Project Management, Political Science, 

Psychology, Speech, Language & Hearing Science, Sociology, Special Education, 

School of Teaching and Learning, Social Work, Women's Studies 

2. Animation, Film Studies, Photography 

3. Music 

4. Entertainment Industry Technology, Paralegal 

5. Spanish 

6. Speech Language & Hearing Science 

7. Nursing 

8. Anthropology, Women's Studies 

9. Philosophy 

10. English, History, Physical Science, Sustainability, Women's Studies 
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Appendix F 

Components for the Winona State University  

Curriculum Prerequisite Network 

              10. 7. 

 

  1.             4.  

 

             

               9.  

 

 

 

                8. 

 

 

 

 2.         3.           5.          6. 

 

 Note: Departments of Courses in the Indicated Components, Ordered by Component Size 

1. Accounting, Art & Design, Bilingual/Bicultural Education, Biology, Business 

Administration, Chemistry, Composite Materials Engineering, Communication 

Studies, Clinical Practice Education Studies, Computer Science, CSED, Data Science, 

Economics, Educational Foundations, Education, English, Ethnic Studies, Film, 

Finance, Geoscience, Global Studies, Health Administration, Health Exercise 
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Rehabilitative Sciences, History, Healthcare Leadership and Administration, 

Individualized Studies, Legal Studies, Mathematics, Mass Communication, 

Management, Management Information Systems, Marketing, Music, Nursing, 

Physical Education and Sport Science, Physics, Political Science, Psychology, 

Sociology, Social Work, Spanish, Special Education, Statistics, Sustainability, 

Theatre & Dance, Women’s Gender and Sexuality Studies, World Language 

Education 

2. Nursing 

3. POL 

4. Rochester Education Department 

5. Recreation, Tourism & Therapeutic Rec 

6. Mass Communication 

7. Biology, Chemistry, Geoscience, Physics 

8. Music, Theatre & Dance 

9. History 

10. Child Advocacy Studies 
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Appendix G 

Components for the Bemidji State University  

Curriculum Prerequisite Network 

 

    1.      5. 

                   10. 

          9. 

 

 

 

 

 

 

 

 

 2.      3. 

 

 

 

 4.     6.   7.       8.  

 

 

Note: Departments of Courses in the Indicated Components, Ordered by Component Size 
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1. Accounting, Biochemistry, Cellular & Molecular Biology, Biology, Business 

Administration, Chemistry, Criminal Justice, Computer Science, Economics, English, 

Environmental Studies, Geography, Geology, Health, Mass Communications, 

Mathematics, Physical Education, Physics, Political Science, Psychology, Sociology, 

Social Work, Spanish, Statistics, Technology, Art and Design -Technology 

2. Professional Education, Mathematics, ML, Ojibwe, Physical Education, Spanish, 

Special Education 

3. Music 

4. Nursing 

5. Music 

6. Technology, Art and Design - Design 

7. Mass Communications 

8. History 

9. Indigenous Studies 

10. Geography  
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Appendix H 

Equivalent Mathematics Courses in the MinnState University System Results are 

Based on Transferology.com 

Course Metro. Mankato St. Cloud SMSU Moorhead Winona Bemidji 

Int. Algebra 098 098 072 060 099 050 0800 

College Algebra 115 112 112 110 127 115 1170 

Trigonometry -- 113 113 125 143 --  1180 

Precalculus 120 115 115 135 142 120 1470 

Calculus I 210 121 221 150 261 212 2471 

Calculus II 211 122 222 151 262 213 2472 

Calculus III 310 223 321 252 323 312 2480 

Discrete Math. 215 280 271 210 210 247 2210 

Linear Algebra 315 247 312 360 327 242 3310 

Differential Equ 350 321 325 350 366 313 2490 

Real Analysis 301 417 421 450 361 452 4410 

Abstract Algebra 471 345 461 440 476 447 4371 

 

Note: The department name for each course number is MATH. Metro.= Metropolitan 

State University, SMSU= Southwest Minnesota State University,  

Int. Algebra= Intermediate Algebra, Discrete Math.=Discrete Mathematics, Differential 

Equ.=Differential Equations 
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Appendix I 

The Departmental Curriculum Prerequisite Network for  

Metropolitan State University 

 

 

  1.      2. 

 

          5. 

 

           3. 

 

    4.  

Note: Departments in the indicated clusters, ordered by cluster size. 

1. Accounting, Biology, Chemistry, Computer Forensic Sciences, Cybersecurity, Data 

Science, Decision Sciences, Economics, Entrepreneurship, Environmental Science, 

Finance, Geology, Information and Computer Sciences, International Business, 

Management, Management Information Systems, Mathematics, Natural Science, 

Nursing, Physics, Risk Management and Insurance, Social Work, Statistics 

2. Advertising and Purchasing, Anthropology, Business Law, Communication, Dental 

Gender Studies, Hygiene, History, Humanities, Information Studies, Interdisciplinary 

Studies, Literature, Marketing, Media Studies, Political Science, Screenwriting, 

Social Science, Sociology, Technical Communication/Interaction Design, Theater, 

Writing 
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3. Criminal Justice, Ethnic Studies, Health Science, Human Services Corrections, 

Human Services, Human Services Administration, Human Services/Alcohol & Drug 

Counseling, Human Services/Family Studies, Law Enforcement, Psychology 

4. Education, Language Arts Education, Mathematics Education, Science Education, 

Special Education, Social Studies Education, Linguistics 

5. Philosophy 

Isolated Departments:  CAS, CC, DKTA, Geography, Human Services and Disability 

Studies, Human Services Gerontology, Human Service Violence Prevention, Metro 

Educational Planning, Music, Nonprofit Management, Ojibwe, Public Administration, 

Reading, Religious Studies, Speech, UMET 
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Appendix J 

The Departmental Curriculum Prerequisite Network for  

Minnesota State University, Mankato 

      12. 

            8.                    15.  

           2.   

             1.  

        

         10.               4.       14. 

         3.       7.      13. 

          9. 

           6. 

            11. 

            5. 

  

Note: Departments in the indicated clusters, ordered by cluster size. 

1. Astronomy, Automotive Engineering Technology, Computer Information Science, 

Computer Science, Construction Management, Electrical Engineering, Electrical 

Engineering Technology, Manufacturing Engineering Technology, Mathematics, 

Physics, Statistics 

2. Accounting, Economics, Finance, International Business, Management, Marketing 
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3. Biology, Chemistry, Geology, Human Performance 

4. English, Mass Media, Music General, Music Performance 

5. Anthropology, Ethnic Studies, Geography 

6. Criminal Justice, Corrections, Sociology 

7. Family Consumer Science, Health Science 

8. Nursing, Psychology 

9. Civil Engineering, Mechanical Engineering 

10. Educational Studies: K-12 & Secondary Programs, SPST 

11. Dental Hygiene 

12. Social Work 

13. Aviation 

14. Film 

15. Engineering 

Isolated Departments: CAHN Interdisciplinary, Chinese, Communication, Counseling 

and Student Personnel, Dakota Language, First Year Experience, Gerontology, History, 

Interdisciplinary Studies, Medical Technology, Museum Studies, Rehabilitation 

Counseling, Special Education, Urban and Regional Studies, World Languages and 

Cultures 
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Appendix K 

The Departmental Curriculum Prerequisite Network for  

St. Cloud State University 

    14.     13.      10.   

         9.               6.  

         

          11.       1. 

            4.             7.    5. 

     3. 

  12.     2. 

 

 

        8. 

Note: Departments in the indicated clusters, ordered by cluster size. 

1. Atmospheric & Hydrologic Sciences, Astronomy, Biological Sciences, Chemistry, 

Computer Networking and Applications, Computer Science, Economics, Engineering 

Science, Environmental and Technological Studies, Environmental Engineering, 

Geography, Math Education, Mathematics, MATS, Mechanical and Manufacturing 

Engineering, Medical Laboratory Sciences, Physics, Software Engineering, Statistics 

2. Child and Family Studies, Community Psychology, Education, Information Media, 

Special Education, Science, Science, Social Studies, Technol, Engineer & Math 

Education 
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3. Accounting, Business Law, Finance, Insurance and Real Estate, Information Systems, 

Management, Marketing and Business Law, School of the Arts 

4. Communication Studies, Electrical and Computer Engineering, English, General 

Engineering, Languages and Cultures, Spanish 

5. Anthropology, Ethnic Studies, Gender and Women’s Studies, Sociology 

6. Physical Education Sports Science, Health, Health Education and Physical Education, 

Recreation 

7. Psychology, Social Work, Human Relations and Multicultural Ed 

8. Music Education, Music Musicianship, Music Performance 

9. Global Studies, Political Science 

10. Biochemistry & Molecular Biology 

11. Communication Sciences and Disorders 

12. German 

13. Philosophy 

14. Engineering Management 

Isolated Departments: British Studies, Construction Management, Community Studies, 

College Experience, English for Academic Purposes, East Asian Studies, Education 

Administration, Exercise Science, French, Gerontology, Herberger Business School, 

Honors, Humanities, Information Assurance, Jewish Studies, Learning Resources and 

Services, Military Science, Music, Nuclear Medicine Technology, Radiologic 

Technology, Religious Studies, School of Health and Human Services  
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Appendix L 

The Departmental Curriculum Prerequisite Network for  

Southwest Minnesota State University 

 

              7.  

           3.      6. 

         8.            2. 

                 9.    

        1.             4. 

 

           5. 

Note: Departments in the indicated clusters, ordered by cluster size. 

1. Education, Early Childhood Special Education, Health, History, Physical Education, 

Special Education, Spanish, Teaching ESL 

2. Accounting, Agribusiness Management, Finance, Computer Science, Data Science, 

Economics, Management, Mathematics 

3.  Biology, Chemistry, Environmental Science, Exercise Science, Physics 

4.  Social Work, Psychology, Sociology, Political Science 

5. English: American Language, Literature, Marketing, Philosophy 

6. Agronomy,  Agricultural Solutions 

7. Culinology, Hospitality 

8. Art, Honors Program 

9. Justice Administration 
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Isolated Departments: Agricultural Education, ANSC, Anthropology, Business Law, 

Geography, Humanities, Interdisciplinary, Indigenous Nations Dakota Studies, Liberal 

Education Program 
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Appendix M 

The Departmental Curriculum Prerequisite Network for  

Minnesota State University, Moorhead 

        23. 

      6.    21.     11. 

    25.        20.       3.  

    24.       

                 8. 

         4.        13.  

      15.      16.          1.  

     7. 

         9. 

        18.  2.       5.          19. 

             17. 

 

          10.         14.     22. 

          27.          26.  

 

Note: Departments in the indicated clusters, ordered by cluster size. 

1. English, Sustainability, History, Physical Science 

2. Management, Economics, Marketing 

3. Biochemistry and Biotechnology, Biology, Chemistry 

4. Computer Science and Information Systems, Mathematics, Physics 

5. Women's Studies, Sociology, Social Work 

6. Education, Elementary and Early Childhood Education, Special Education 

7. Accounting, Construction Management 

8. Anthropology, Geoscience 

9. Art, Psychology 

10. Criminal Justice, Political Science 

11. English Language Program, Teaching English as a Foreign  
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12. Animation, Photography 

13. Paralegal, Entertainment Industry Technology 

14. Physical Education, Athletic Training 

15. Finance 

16. Health Services Administration 

17. Operations Management 

18. Graphic and Interactive Design 

19. School of Teaching and Learning 

20. Communication 

21. Film Studies 

22. Astronomy 

23. Honors 

24. Speech, Language & Hearing Science 

25. Philosophy 

26. Project Management 

Isolated Departments: American Multicultural Studies, Athletics, Business, Engineering, 

Entrepreneurship, Exchange, First Year Experience, Humanities, International Studies, 

Library, Media Arts, University Studies 
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Appendix N 

The Departmental Curriculum Prerequisite Network for  

Winona State University 

        18. 

 

      5.       19. 

    2.           12. 

      14.    21.     9. 

          24.        3. 

           

       10.       1.         13. 

  15. 

  

          22.        11.           4.         6. 

        8.            

 

   23.      7.  

                 20. 

 

 

    16.                17. 

 

Note: Departments in the indicated clusters, ordered by cluster size. 

1. Computer Science, Physics, Composite Materials Engineering, Communication 

Studies, Data Science, Statistics, Mathematics 

2. Accounting, Management, Business Administration, Management Information 

Systems, Economics, Finance 

3. English, Mass Communication,  Psychology, Global Studies, History, Women’s, 

Gender, and Sexuality Studies 

4. Biology, Chemistry, Geoscience, Health Exercise Rehabilitative Sciences 

5. Theatre & Dance, Music 

6. Bilingual/Bicultural Education, World Language Education, Spanish 
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7. Education, Educational Foundations, Clinical Practice Education Studies 

8. Healthcare Leadership and Administration, Health Administration 

9. Physical Education and Sport Science, Clinical Practice in Physical Education 

10. Art & Design 

11. Nursing 

12. Film 

13. Political Science 

14. Sociology  

15. Social Work 

16. Special Education 

17. Education - Reading 

18. Individualized Studies 

19. Sustainability 

20. Ethnic Studies 

21. Japanese 

22. Legal Studies 

23. Computer Science Education 

24. Marketing 

Isolated Departments: Counselor Education, Education Human Services, Education: 

Student Teaching, Geography, Library Science, Orientation, Philosophy, Professional 

Studies 
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Appendix O 

The Departmental Curriculum Prerequisite Network for  

Bemidji State University 

          8. 

     6.              

 

           2.           1. 

 

 

  9.         4.             3.          5.       7. 

 

Note: Departments in the indicated clusters, ordered by cluster size. 

1. Biochemistry, Cellular & Molecular Biology, Biology, Chemistry, Environmental 

Studies, Geography, Geology, Health 

2. Computer Science, Mathematics, Physics, Sociology, Statistics, Technology,  

Art and Design -Technology 

3. Accounting, Business Administration, Physical Education, Economics, English 

4. Professional Education, Modern Languages, Special Education, Spanish 

5. Social Work, Political Science, Psychology 

6. Philosophy, Leadership 

7. Criminal Justice 

8. Mass Communications 

9. Ojibwe 
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Isolated Departments: Anthropology, Art History, Gender and Women’s Studies, 

Humanities, Music, Science 
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