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ABSTRACT

Numerous runaway stars with bow shocks have been observed distributed around the

Galaxy. These shocks have previously been observed in the infrared, Hα, [OI I I ], and

[N I I ] lines. Recently hydrodynamic simulations allow for theoretical emissions of a

runway star bow shock to be calculated. Expanding on these simulations shows that

simultaneous observations in visible spectrum for Hα, HeIλ5876Å, and [OI I I ] by the

GMOS instruments of the Gemini Observatories are possible, allowing direct

composition measurements of the ISM in the Milky Way Galaxy.
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1. INTRODUCTION

Hydrodynamic simulations of runway stars allow us to gain unprecedented insights

into the underlying physics and composition of their bow shocks and the surrounding

ISM in the Milky Way Galaxy (MW).

Runaway stars are differentiated from the numerous surrounding stars by the

difference in their translational (or peculiar) velocity to the local mean. The peculiar

velocity of these stars is omnidirectional, not just in the direction of travel for the local

group (Brown 2015). Simultaneously, their peculiar velocity is faster then the speed of

sound for the local ISM Comeron & Kaper (1998). A star that meets these two

definitions is classified as a runaway star.

Runaway stars traveling through the MW have been observed to generate bow shocks

by the collision of their stellar wind with the surrounding ISM at supersonic velocities

(Wilkin 1996). These shocks have been observed in numerous wavelengths over the

decades. Some of the earliest observations of bow shocks were done in Hα, [OI I I ], and

[N I I ] by Gull & Sofia (1979). A later survey by Brown & Bomans (2005) examined the

emission of eight unique bow shocks in Hα. More recent observations have been

analyzed from images taken by the Wide-Field Infrared Survey Explorer (WISE) by

Kobulnicky et al. (2016), and others have found numerous bow shocks around runaway

stars.

These observations have motivated theoretical analysis on the structure and

formation of a runaway star bow shock. Wilkin (1996) looks at the relation between the

mass loss rate of a star (Ṁ), its peculiar velocity (v∗), the ISM density (ρI SM ), and the

distance the shock front (standoff distance) is from the star (R(0)). Simulations by
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Comeron & Kaper (1998) utilized the Euler equations of hydrodynamics in a

computational grid to run numerical simulations of runaway star bow shocks. Recently

Meyer et al. (2016) has shown that bow shocks simulations can be used to calculate the

observable luminosity of the Hα, and [OI I I ] lines for a variety of different star masses,

velocities and ISM densities. This is further expanded on in Meyer et al. (2021), where

the bow shock of Betelgeuse is simulated using 3D Magnetohydrodynamics.

Some runway stars are classified as hyper velocity stars depending both on how they

obtained their peculiar velocity, and its magnitude (Brown 2015). A hyper velocity star

(HVS) is generated by interaction between a multiple star system and a supermassive

black hole (Brown 2015) in the center of the MW. The initial v∗ from this method

exceeds the galactic escape velocity of 1000 km/s (Brown 2015). Runaway stars have

two primary origin methods including gravitational interaction (Poveda et al. 1967) and

binary supernovae (Blaauw 1961). These methods can occur throughout the MW,

leading to a large distribution of runway stars (Kobulnicky et al. 2016), whereas most

hyper velocity stars are only found close to the Galactic Center (Brown 2015). Since

HVS are located much further away from Earth, we will restrict our simulations to

runaway star bow shocks.

The composition of the ISM has been observed indirectly in the past through looking

at absorption lines 1. To date though it is very difficult to make direct observations of

the ISM composition2. Only 2 spacecraft launched from earth have reached interstellar

space, Voyagers 1 and 2, and neither has a way to directly measure the ISM

1 https://www.cosmos.esa.int/documents/1866264/3219248/Wimmer-SchweingruberR_2019-08-04-

interstellar-whitepaper.pdf
2 see 1
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composition3. This lack of direct observations make bow shocks appealing

spectroscopy targets, because the shocks are comprised of the ISM and not the stars

stellar wind (Wilkin 1996), they could provide a unique opportunity to directly observe

the ISM composition in multiple locations around the MW.

Simulating runaway star bow shocks using the open source hydrodynamics code,

PLUTO, (Mignone et al. 2007) allows us to further expand on the work of Meyer et al.

(2016) and determine the observability of bow shocks in the HeI λ5876Å emission

band by the Gemini Observatories GMOS instruments.

3 https://voyager.jpl.nasa.gov/mission/status/
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2. METHODOLOGY

2.1. Hydrodynamics

The simulations are governed by the Euler equations for hydrodynamics. These three

conservation equations are solved by the PLUTO code by Mignone et al. (2007), and

take into account the relevant physics of the bow shock. For a more complete

explanation of the equations see Meyer et al. (2014) and Mignone et al. (2007).

The hydrodynamic equations are identical to those used by Meyer et al. (2014) and

are outlined below.

∂ρ

∂t
+∇· (ρv) = 0 (1)

∂ρv

∂t
+∇· (v⊗ρv+∇p) = 0 (2)

∂E

∂t
+∇· (Ev)+∇· (ρv) =Φ(T,ρ)+∇·Fc (3)

Equation 1 - 3 are the three conservation equations where v is the gas velocity, ρ is

the density, p is the pressure, E is the energy, and T is the temperature of the gas

(Meyer et al. 2014). Equation 1 is also known as the mass-conservation equation

(Batchelor 2000), where the change in density for the gas is opposite to the change in its

velocity (Batchelor 2000). Equation 2 accounts for momentum conservation for the gas,

and Equation 3 handles energy conservation.

Furthermore, the total energy density in the gas is given by equation 4, below (Meyer

et al. 2014).

E = p

(γ−1)
+ ρv2

2
(4)
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Equation 4 shows how the gas’ energy is equal to the sum of its thermal and kinetic

energy. Equation 4 is also the ideal gas law in another form. The factor γ is adiabatic

index of the gas (Meyer et al. 2014).

Assuming an ideal gas, we can obtain the gas temperature directly by solving the

ideal gas law for T.

T =µmH p

kBρ
(5)

where µ is the mean molecular mass, mH is the mass of a hydrogen atom, p is the

pressure, kB is Boltzmann’s constant, and ρ is the density of the gas.

As a runaway star travels through interstellar space, the stellar wind, and

surrounding ISM undergo both heating and cooling from various interactions. To

accurately calculate the change in temperature for each time step, we need to look at

the heating and cooling effects on the gas. These effects are included in Equation 6.

Φ(T,ρ) = n2
HΓHeat (T )−n2

HΛ(T ) (6)

Equation 6 allows us to look at the heating (ΓHeat ) and the optically thin cooling (Λ) of

the bow shock.

To fully implement cooling and heating we need to find nH , by solving ρ =µnmH of

the gas for n. Doing so gives us Equation 7:

nH = ρ

µmH
(7)
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Combining equations 6 and 7 allows us to find the cooling rate for each grid space at

a given temperature T . We can find the sound speed of the gas (cs)using Equation 10-6

from Spitzer (1978) and solving for Cs .

cs =
√
γp

ρ
(8)

2.2. Runaway Stars

For a star to be classified as a runaway its peculiar velocity must exceed the ISM

sound speed calculated with Equation 8 (Comeron & Kaper 1998). The peculiar velocity

of a star, (v∗), is determined by differencing its velocity with the local mean. When a

star is moving at these speeds, it is possible for a bow-shock to form ahead of the star in

the direction of travel (Comeron & Kaper 1998). For each star, this minium velocity is

dependent on the properties of the local ISM, ()see Equation 8). For this paper, we will

use the 10.0 km/s minimum peculiar velocity in the simulations of Meyer et al. (2014)

as the cutoff velocity of a star to be simulated.

Two primary progenitor scenarios produce runaway stars: binary-supernova (Blaauw

1961), and dynamical ejection scenario (Poveda et al. 1967), both of which have been

identified in the MW (Hoogerwerf et al. 2000). The particular progenitor scenario for a

runaway star can be inferred using spatial position data from astronomical surveys in

order to calculate the past orbital locations of both the runaway star and the region it

came from (Hoogerwerf et al. 2001). An outline of each method along with their key

characteristics can be found below.

In the binary supernova scenario of Blaauw (1961), the runaway star is ejected from

its binary system by gravitational instability, when its larger mass primary explodes as a

type II supernova. When M1 explodes as a supernova, the total kinetic energy of the
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system < K E > stays the same, while the required orbital velocity vor bi t al decreases.

This causes the ejection of M2 as a runaway star with a velocity comparable to its

pre-explosion orbital velocity. M1 is then either a black hole or neutron star

(Hoogerwerf et al. 2001).

this is in contrast to the dynamical ejection scenario of Poveda et al. (1967), where the

runway star originates from gravitational interactions between stars in dense, compact

clusters. Hoogerwerf et al. (2001) outlines the two-binary star encounter as the primary

progenitor method for gravitational interactions. Here, two binary systems that

approach sufficiently close to each other can produce four distinct results: two

separate binary systems, a single star and a triple star system, two stars and a binary, or

four individual unbound stars. The most likely result of the interaction however, has

been shown to be the third scenario: two unbound stars and a binary (Hoogerwerf et al.

2001).

2.3. Bow Shocks

In Figure 1, the general structure of a bow shock illustrated.
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Figure 1. Bow shock structure overview from Comeron & Kaper (1998)

Here, the key physical regions of a bow shock are presented: the stellar wind out

flowing from the progenitor star, the region of shocked stellar wind, and the hot and

cool layers of the ambient ISM gas associated with the shocked region itself (Comeron

& Kaper 1998). R(0) is the distance from the star to the shocked ISM, and varies

depending on the stars parameters. The shocked ISM regions are the most luminous

part of the shock, while the thinnest part of the shock is along the direction of v∗.

In the instantaneous cooling approximation of Wilkin (1996), a bow shock is assumed

to form at a distance R(0) away from the star. The equation for the standoff distance

R(0) of a bow shock.

R(0) =
√

Ṁ vw

4πρI SM v2∗
(9)

Here Ṁ is the mass loss rate for the star, vw is the velocity of the stellar wind, ρI SM is

the ISM density around the star, and v∗ is the stars peculiar velocity (Meyer et al. 2014).
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In our numerical simulations, though, we use a time-stepped cooling function which is

a more accurate representation of cooling than the instantaneous method of Wilkin

(1996) (Comeron & Kaper 1998). In this case there will be a high temperature (but low

density layer) of gas between the bow shock and the star, which can cause the bow

shock to start further out than the R(0) approximation of Wilkin (1996) (Comeron &

Kaper 1998). While Equation 9 is not solved numerically in our simulations it does play

a key role in the setup of each simulation. Equation 9 shows that the key underlying

factors determining the R(0) are Ṁ and ρI SM . Both the velocity of the star and stellar

wind are much lower then the preceding terms and will have less of an effect on the

standoff distance,as we will see later.

The density of the stellar wind is found using Equation 10 below (Meyer et al. 2014).

ρw = Ṁ

4πr 2vw
(10)

In Equation 10, we see that the density ρw is mainly determined by Ṁ , and the

distance from the star. While Equation 9 is used as a reference in setting up our

simulations, Equation 10 is solved at each time step to determine ρw around the star.

vw can be calculated using the method of Eldridge et al. (2006). We combine equations

1 and 2 of Eldridge et al. (2006) to form equation 11 below for vw .

vw = 2βwGM∗
(

1−Γw

R∗

)
(11)

The value of βw comes from Table 1 of Eldridge et al. (2006), while R∗ and M∗ are the

radius and mass of the star respectively. With Γw defined as Γw = L∗/Ledd (Eldridge
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et al. 2006). Ledd balances the radiation pressure and gravity of a star, and restricts the

maximum mass a star can have.

To determine if the ISM around the star is photo-ionized we calculate the Strömgren

radius RS for the star, using Equation 12 below.

RS =
(

3S∗
4πn2αB

r r

)1/3

(12)

Here, αB
r r is the case B recombination rate from Hummer (1994) and S∗ as the flux of

hydrogen ionizing photons from the star (Meyer et al. 2014). Since the Strömgren

radius is larger than the bow shock standoff distance R(0) for O stars, we treat both the

stellar wind and ISM as fully ionized (Meyer et al. 2014). A more thorough overview of

runaway star bow shocks can be found in the papers by Wilkin (1996), Comeron &

Kaper (1998), Mohamed et al. (2012), and Meyer et al. (2014).

For each of the simulations we need to know tcr oss , which is how long it takes the star

to travel the distance R(0). To find tcr oss we use Equation 13 below (Meyer et al. 2014).

tcr oss = R(0)

v∗
(13)

This value allows us to set the run time for our simulations to be long enough to

cancel out any numerical artifacts. We will discuss tcr oss more in the next chapter.

2.4. Runaway Star Selection

Ideally, we would like to simulate the emission lines for every known runaway star,

but there are Ns > 709 runway stars (Kobulnicky et al. 2016). Therefore, it would take a

long time to calculate the emissions lines for each one. So we identify a representative
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sample size of stars with observations, that can be extrapolated to accurately represent

the larger population of runaway stars emission lines. Then we can interpolate our

results for stars with properties similar to those that we simulated to determine the

feasibility of accurate observations.

We define our initial selection criteria as follows: O stars within 6000 parsecs of Earth,

a v∗ greater than 10km s−1, and a bow shock that is distinct from its progenitor star.

The online catalog of Kobulnicky et al. (2016) gives a detailed table of 709 possible

runaway stars with bow shocks that are within 6000 parsecs of Earth. In Figure 2, below,

the distribution of these runaway stars in the MW from Kobulnicky et al. (2016) is

illustrated.

Figure 2. Locations of bow shock candidates drawn as arrows to indicate the morphological

orientation of the nebula. The upper panel shows a portion of the Plane at 0◦ < t < 60◦, while the

lower panel shows the 300◦ < t < 360◦ region. The colors represent extinction values from the

H −4.5µm color excess (Kobulnicky et al. 2016)

It is apparent from Figure 2 that the runway stars in the MW are primarily located in

the galactic plane. Runway stars are also isotropic in v∗, and have random directions of
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travel in the galactic plane. Therefore the direction of travel for runaway star viewed

from Earth will not be perpendicular to the direction of v∗.

2.5. Runaway Stars Selected

The Kobulnicky et al. (2016) catalog includes very few of the parameters necessary for

our simulations and the sample size is too large to effectively simulate. But, Kobulnicky

et al. (2018a) and Kobulnicky et al. (2019a), help to refine our sample of runaway stars.

Kobulnicky et al. (2018a) outlines a process that utilizes a few steps to calculate Ṁ for

70 O and early B stars. They start with the momentum flux balancing equation below.

ρw v2
w = ρa v2

a (14)

In Equation 14, ρa and va are the density of the ISM and peculiar velocity of the star

respectively. Kobulnicky et al. (2018a)’s process continues by showing how to find Ṁ in

terms of observable parameters. This is done by combining Eq 10 with Eq 14,

substituting R(0) for r and solving for Ṁ we get Eq 15 for the mass loss rate in terms of

observable parameters.

Ṁ = 4πR(0)2v2
aρa

vw
(15)

Here. va is the peculiar velocity of the star, and ρa is the ambient ISM density around

the star. Kobulnicky et al. (2018a) then calculates R(0) from angular measurements of

the standoff distance of the bow shock with other observable parameters, to find the

mass loss rate of a star. This is a big shortcoming of Kobulnicky et al. (2018a) method,
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as the final equation does not take into account the angle between v∗ and the local ISM

velocity (v I SM ). To compensate fom this shortcoming we will use the 3σ minimum Ṁ

for each selected star in our simulations.

Many of the stars listed in the catalog of Kobulnicky et al. (2019b) have similar M∗

and Ṁ . Thus, we can further refine our simulation sample to stars with unique masses.

These stars presented also are within the range of M∗ simulated by Meyer et al. (2014).

By selecting a range of stars with masses similar to those simulated by Meyer et al.

(2014) we can verify our simulations by direct comparison. Our final refinement of

selection parameters comes from the results of Meyer et al. (2014), seen in Figure 3

below.

Figure 3. Figure 13 from Meyer et al. (2014). The bow shock luminosities from Meyer et al. (2014)

for the main sequence (MS) and red supergiant (RSG) models. The identifiers list the simulation

properties in three parts: MS or RSG for the current evolutionary state, the mass in M¯ , and

the velocity in km/s. The MS2070 designation is then: a main sequence star, with 20 solar mass,

traveling at 70km/s.
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Figure 3, shows that the mass of a runaway star is much more important in

determining the luminosity of a bow shock than v∗. This allowed us to focus on a single

parameter when selecting our sample size. Thus, we emphasized a mass range between

20M¯ to 60M¯ for our star selection rather than velocity. The selected stars from

Kobulnicky et al. (2019b) are outlined in Table 1 below.

Table 1. Selected Stars

Star Name Spectral Class Mass Distance R(0)

M¯ Pc Pc

G000.1169-00.5703 O8V 26.0 2441 0.344

ζ Ophiuchi O9.2IV 19.0 112 0.179

KGK 2010-10 O8V 22.0 2115 0.113

CPR 2002A37 O5V 37.0 1703 0.636

BD+43 3654 O4If 58.0 1577 1.623

G342.5873+00.1600 O6V 32.0 3197 0.529

NOTE— Selected stars from Kobulnicky et al. (2019b). Each star is

listed with it’s name, spectral class, M¯, distance from Sun, and

R(0).

Table 1 presents a some key details of the selected stars. Each is a MS O star except

BD+43 3654 and ζ Ophiuchi. We chose BD+43 3654 so that our sample would have a

larger range of M∗, and its large R(0). ζ Ophiuchi is included because it is the nearest

runaway star in Kobulnicky et al. (2019b).

2.6. Runaway Star Distribution
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We created four 2D visual representations of the stars in Kobulnicky et al. (2019b),

using three parameters: Galactic Longitude, Galactic Latitude, and distance from the

Sun. These values were then plotted using python to create Cartesian and Polar

distribution plots of runaway stars. By looking at the distributions of runaway stars in

2D we are able to present a clearer understanding of how they are distributed relative to

the Sun and galactic center than a 3D plot would allow. The position of each star with

respect to the Sun is illustrated in Figure 4.
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Figure 4. Polar view of runaway stars with the solar system at the origin. The distance increment

is in parsecs and angles in galactic longitude with 0◦ corresponding to galactic center

In Figure 4 the 0◦ point in azimuth of the arc points in the direction of Galactic

Center. The stars in Kobulnicky et al. (2019b) are distributed approximately 180 degrees

arc around the Sun. Each selected star is highlighted to show their distribution relative



17

to other stars in the data set. In Figure 5, we illustrate the position of our selected stars

with Galactic Center at the origin.

Figure 5. Polar View of runaway stars with Galactic center at the origin. The distance increment

is in parsecs and angles in galactic longitude with 0◦ corresponding to galactic center

In Figure 5, the plot has been shifted to show the positions of each star relative to the

center of the MW. While the number of stars in Kobulnicky et al. (2019b) require us to
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select a representative sample size, they occupy only a fraction of the galactic disk. We

can infer then that the number of runaway stars is much higher than those found in

Kobulnicky et al. (2019b) and Kobulnicky et al. (2016). To compliment the two polar

plots, we present the edge on view of each stars location relative the Sun in Figure 6

Figure 6. Galactic Plane view of runaway stars with the solar system at the origin. The positive X

direction is to Galactic Center.
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Figure 7 illustrates how the stars in Kobulnicky et al. (2019b) are distributed above

and below the Sun. In Figure 7 we can see how this compares to the galaxy as a whole.

Figure 7. Galactic Plane view of runway stars with Galactic center at the origin.

Figure 5 presents a similar shift of stars to illustrate their positions relative to the

center of the MW. Combined with Fig 5 we are able to verify that the selected group of
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stars are distributed in the galactic plane around the sun. The distribution of runaway

stars with verifiable bow shocks should be sufficient to constrain how the ISM

composition varies around the Sun and Galaxy as a whole.

2.7. WISE Images of Selected Stars

For this paper we are focusing on the specific set of runaway stars in Table 1. To verify

that the selected star is a good candidate to simulate, we inspected the infrared image

of the progenitor star and resulting bow shock in the WISE database4. Each star was

observed in the four WISE bands, which correspond to wavelengths of 3.4, 4.6, 12, and

22 µm respectively.

We started by looking at each bow shocks in the four WISE bands separately. Each

shock was clearly defined in the 4.6, 12, and 22 µm bands, while some of the selected

stars had no shock visible in the 3.4 µm band. We then used the multicolor tool to view

an RGB composite of three WISE band images with the red, green and blue colors

corresponding to a specific WISE band. For the stars where the shock was visible in all

four WISE bands we set the 3.4 µm band as red, the 4.6 µm band as green, and the 12

µm band as blue. In the composite images of the stars where the 3.4 µm band is not

clearly visble we instead set the 4.6 µm band as red, the 12 µm band as green, and the

22 µm band as blue to highlight the shock.

By looking at the composite imaged, we confirmed that each star has a visible bow

shock in the infrared, that is clearly separated with respect to the progenitor star. This

verified that a distinct bow shock was present for each selected stars. We created an

4 https://irsa.ipac.caltech.edu/applications/wise/
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RGB image from the downloaded composite images of each star, which we provide in

Figure 8, along with two distance scales for each star: arc minutes and parsecs. This

image illustrates that the geometry of each bow shock differs due to the

omnidirectional nature of v∗.
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Figure 8. WISE images of selected runaway stars. Each star and the WISE bands in RGB order are

as follows: A. G000.1169-00.5703 in bands 4,3,2, B. ζ Ophiuchi in bands 3,2,1, C. KGK 2010-10 in

bands 3,2,1, D. CPR 2002A37 in bands 3,2,1, E. BD+43 3654 in bands 3,2,1, F. G342.5873+00.1600

in bands 4,3,2. The top scale given is distance in arc minutes and the bottom scale is distance in

parsecs.



23

In Figure 8, each star is at the center of the image. The different R(0) for each star are

identifiable in Figure 8 and match the numerical values given in Table 2. Also visible is

the variation in both shape and size for each bow shock. This is to be expected given

the different Ṁ , v∗ and direction of travel for each star.

We note a few unique structures in the bow shocks. For ζ Ophiuchi and CPR 2002A37,

the shock is asymmetrical. As highlighted in Meyer et al. (2021), this structure may be

due to v∗r and the angle of v∗ with respect to v I SM around the star. This difference in

direction causes a sheer effect, producing the asymmetrical shock seen (van Buren

et al. 1995). This is in contrast to the shocks for the other stars where we see a relatively

symmetrical shock. Additionally, we see that the shock of KGK 2010-10 is located

relatively close its progenitor star. This is to be expected since each star is not

necessarily traveling perpendicularly to our line of sight. This implies that for some

stars, the uncertainty in R(0) can be quite high.

Resolution diminishes with distance. The shock of BD+43 3654 is particularly

interesting because it is still quite well defined even though G342.873+00.1600 is the

only star in our sample set that is further away. We also are able to see that the bow

shock of BD+43 3654 is almost three times larger than the bow shock of CPR 2002A37,

which is the closest star in mass to BD +43 3654. The size of BD +43 3654’s shock,

despite its distance from us, makes it a particularly interesting star in the survey. For

this reason we included BD +43 3654 in the simulations even though it is no longer a

main sequence star.
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3. SIMULATIONS

3.1. Star Parameters

We take the parameters for M∗, R∗, v∗, T∗, L∗, Ṁ , and ρI SM ) necessary for the

simulations from the VizieR database of Kobulnicky et al. (2019b)5 and the work of

Green et al. (2022). The parameters for LE dd , Γ, βw , vw , R0, TI SM , and tcr oss are derived

using the methodology of Meyer et al. (2014), and Eldridge et al. (2006). We use the

notation R0 to differentiate between the measured R(0) and value calculated using

Equation 9. ζ Ophiuchi’s v∗ has recently been calculated by Green et al. (2022) to be

higher than the value given by Kobulnicky et al. (2019b). Therefore for ζ Ophiuchi we

use the more recent v∗ of 38km s−1 which corresponds to previous calculations by

Mohamed et al. (2012).These required physical values can be found below in Tables 2

and 3.

5 https://vizier.cds.unistra.fr/viz-bin/VizieR?-source=J/AJ/158/73
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Table 2. Runaway Star Known Parameters

Name M∗ v∗ R∗ T∗ L∗ Ṁl ow

M¯ km s−1 R¯ (K) 104 L¯ 10−10 M¯
yr

G000.1169-00.5703 26.0 16.3 9.4 35500 12.000 2639

ζ Ophiuchi 19.0 38.0 7.2 31000 4.2 117

KGK 2010-10 22.0 41.6 8.5 33400 7.9 474

CPR 2002A37 37.0 78.1 11.1 41500 32.0 121619

BD+43 3654 58.0 37.7 19.0 40700 87.0 197923

G342.5873+00.1600 32.0 16.7 10.2 38100 19.0 2244

NOTE—From Kobulnicky et al. (2019b) and Green et al. (2022). Ṁlow is

minimum Ṁ with error.

Using Equations 9, 11 and 13, we calculated R0, vw and tcr oss for each star.

Table 3. Runaway Stars Calculated Parameters

Name βw LE dd Γw vw R0 tcr oss

104 L¯ km s−1 Pc Myr

G000.1169-00.5703 2.6 84.0 0.14 1535.61 0.261 2.1x10−2

ζ Ophiuchi 2.6 61.4 0.07 1562.3 0.052 1.5x10−2

KGK 2010-10 2.6 71.1 0.11 1512.1 0.085 2.7x10−3

CPR 2002A37 2.6 119.5 0.26 1561.1 0.408 7.8x10−3

BD+43 3654 2.6 187.4 0.46 1283.8 0.955 4.2x10−2

G342.5873+00.1600 2.6 103.4 0.18 1596.8 0.266 3.1x10−2

NOTE— Processed Data from Kobulnicky et al. (2019b)

3.1.1. Cooling and Heating
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Each simulation includes the relevant heating and cooling physics present in the bow

shock. To implement this, we need to calculate the required heating and cooling curves

over a large range of temperatures. Calculations for the cooling and heating tables were

performed using the method outlined in Meyer et al. (2014). The cooling and heating

curves forΛCool and ΓHeat are created separately before being combined using

Equation 6. The cooling curve,ΛCool , is comprised of different cooling effects that are

calculated independently then combined using Equation 16 from Meyer et al. (2014):

ΛCool =ΛH+He +ΛZ +ΛRR +ΛF L (16)

Here the cooling componentsΛH+He ,ΛZ ,ΛRR , andΛF L are the hydrogen plus helium,

metals, recombination rate, and forbidden line cooling respectively. To realistically

model the cooling curves for these effects, a large range of temperatures is required

with a large number of distinct temperature values. However, none of the data sources

for the variousΛCool functions match these criteria. Therefore, it is necessary to

interpolate more data points from the given data.

For ourΛZ cooling curve we obtained the metal cooling table from Wiersma et al.

(2009), who gives cooling values for various redshifts, and nH . To model the metal

cooling we selected the nH = 1 table for zero redshift. As each star has a different

velocity, and ρI SM , this allows our simulation to be consistent between stars. We

present the resulting interpolated cooling curve below for temperatures greater than

10000K .
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Figure 9. Cooling curve for ΛZ . Data is interpolated from Wiersma et al. (2009). Below 104K the

cooling effect becomes negligible.

In Figure 9,ΛZ is strongest between 104 and 107 Kelvin. Because of the low number

of temperature values in the data, we want to expand the data set from 353 temperature

to 2079. Because there is no single function that represents an entireΛZ , orΛH+He

cooling curve (Wiersma et al. 2009), a series of 6th order polynomials were required to

interpolate the data into a set of functions that when combined represents the entire

curve. This allowed us to expand the cooling tables range from 102 −109K to

10−1 −109K . This range matches the temperature range of Meyer et al. (2014).

Simultaneously we were able to increase the number of unique temperatures from 353

to 2079.This increase in resolution allows for more precise heating and cooling effects

on each cell every time-step.
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To obtain theΛH+He curve, we started with solar cooling curve in Figure 10 from

Wiersma et al. (2009) below.

Figure 10. Solar cooling curve. Data is interpolated from Wiersma et al. (2009). Below 104K the

cooling effect becomes negligible.

In Figure 10, the combined cooling effects of theΛH+He andΛZ cooling curves is

presented as (ΛSol ar ). The same polynomial interpolation technique used forΛZ was

then applied to increase the data range and resolution. By subtractingΛZ fromΛSol ar

we obtain the cooling curve forΛH+He seen below in Figure 11 for temperatures greater

than 10000K .
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Figure 11. Cooling curve for ΛH+He with zero redshift and nH = 1. Data is interpolated from

Wiersma et al. (2009). Below 104K the cooling effect becomes negligible.

Here,ΛH+He is strongest between 104 and 106K with an increase in strength after

106K .

TheΛRR cooling function was created assuming the case B energy loss (βB ). This

comes from assuming that the absorption profile from level 1 to n for an atom are

balanced by the inverse spontaneous transitions Baker & Menzel (1938). To determine

βB , we assume the T 1/2
e (βB ) from Table 1 of Hummer (1994) and divided the value by

the T 1/2
e to get the recombination rate in er g cm3 s−1. Next we utilized a power series

interpolation with R2 > 0.99 to expand the resolution of the data set. The final cooling

curve is then calculated for T < 60000K using the same temperature scale asΛZ .
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Figure 12. ΛRR cooling curve.

The forbidden line cooling curve we obtain by using equation A9 from Henney et al.

(2009) below.

ΛF L = 2.905x10−19zOne np e
−T1

T −
(−T2

T

)2

er g cm3 s−1 (17)

In Equation 17, zO is the oxygen abundance, while T1 = 33610K and T2 = 2180K ,

respectively (Henney et al. 2009). For the simulations we assume a solar oxygen

abundance of n0/nH = 4.89x10−4 (Asplund et al. 2009), identical to Meyer et al. (2014).

Because of low cooling rates and discontinuities at low temperatures (T < 8000K ), we

only incorporatedΛF L from 8000K to 60000K .
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Figure 13. ΛF L cooling curve.

The heating function (ΓHeat ) in Equation 6 is Equation 6.9 from Spitzer (1978) below.

ΓHeat =
2.07x10−11ne np

T 1/2

{
E 2φ1(β)−kTχ1 (β)

}
(18)

Where ne , and np are the number of electrons and protons respectively which is

calculated separately for each star. E 2 is the kinetic energy of newly created

photoelectrons derived from interpolating the data from Spitzer (1978) table 6.1 at

various temperatures T, φ1(β) is the combination coefficient derived from interpolating

the data from Spitzer (1978) table 5.2 at various temperatures T, k is Boltzmann’s

constant, and Tχ1 (β) is the energy gain function derived from interpolating the data

from Spitzer (1978) table 6.2. Unlike the cooling curves, the heating curve will be

different for each star, because of the dependence on Rs , and nh . This method allows us
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to separately calculate the heating curve in the vicinity of each star. Finally, we

combine the heating and cooling curves using Equation 6.

Figure 14. Combined Photo-ionization cooling curves of ζ Ophiuchi.

In Figure 14, we present the cooling and heating curves representative of the

environment around ζ Ophiuchi, along with the combined heating and cooling curve

in red. The only difference between the cooling curves for each star id ΓHeat , so the

combined curve of ζ Ophiuchi is similar to the ones for the other five stars. Around

8000K we see the minimum value of the combined curve which will be used to set

TI SM for each simulation. Briefly we discuss the curve in Figure 14. At T ∼ 0−8000K

the curve is dominated by the heating effects of the star. From T ∼ 8000−60000K ,ΛF L



33

is dominant. At temperatures between T ∼ 60000−106.5K the cooling is dominated by

the metal cooling. Above T ∼ 106.5K , the curve is dominated by unbound (x-ray,

scattering, free-free) emission from the gas.

3.2. PLUTO Code

To run our simulations, we need to solve the hydrodynamic equations need to be

solved for each time step. We accomplished this using the PLUTO code by Mignone

et al. (2007) which is based on the work of Godunov & Bohachevsky (1959). PLUTO is a

readily available, open source numerical hydrodynamics simulation code designed for

astrophysics simulations in the C programming language. It allows us to iteratively

solve the hydrodynamic equations for a given set of input parameters. The code is

designed to solve a system of conservation laws of the form (Mignone et al. 2007).

∂U

∂t
=−∇·T(U)+S(U) (19)

Where U is a state vector of conserved quantities, T(U) is a 2nd rank tensor whose

rows are the flux components of U and S(U) is the source terms (Mignone et al. 2007).

While components of U are the primary variables being updated, the fluxes are

computed using a different set of physical quantities of the vector form V. The

conservation laws in Equation 19 are numerically integrated using finite volume

shock-capturing schemes. This integration is done in three steps and establishes the

framework of the PLUTO code (Mignone et al. 2007). The PLUTO code also supports

Message Passing Interface, or MPI, which allows for parallel processing of simulations.
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PLUTO has three main parameter files that can be easily modified to set up a

simulation. When setting up the code, these files are generated as definitions.h,

pluto.ini, and init.c (Mignone et al. 2007). The setup of a new simulation is done in a

python scripted user interface (UI), which allows for the selection of the basic and

physics dependent parameters for the simulation. Simultaneously, the UI allows for

defining the independent variables of the simulation, and to run the code in parallel.

The definitions.h file is auto generated based on the setup parameters chosen by the

user. These are divided into two main areas: Basic, and Physics-Dependent options. In

the basic options we are able to select the core parameters of our simulations: Physics,

Dimensions, Geometry, Body Force, Cooling, Reconstruction, Time Stepping, Tracers,

Partials, and User Defined parameters. The physics dependent options for

Hydrodynamic simulations include: End of State, Entropy Switch, Rotating Frame,

Thermal Conduction, and Viscosity. We can also change the system constants for unit

measurements: length, velocity, and density. Other predefined macros can also be

implemented in the definitions.h file. Once these files are set up by the user, a make

script is used to set up the PLUTO code.

The pluto.ini file is used to assign numerical values to simulation parameters, select

our desired solver, declare the boundary conditions for each axis, and the grid geometry

(Mignone et al. 2007). This file is also the easiest to modify while setting up simulations,

as it allows us to quickly change the values of various simulation parameters without

needing to run a make script to update the rest of the code. The Pluto.i ni file also

allows us to control both when and how often run data are saved during a simulation.
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In init.c, we are able to set up initial conditions, user-defined boundary parameters, a

separate analysis code (optional), and the desired body forces (optional) (Mignone

et al. 2007). The initial conditions are applied over the entire area of the simulations.

Inside of the user defined boundary section we can setup both interior boundaries

along with edge conditions as needed. The user defines specific values in the initial

volume and boundary conditions: density, velocity, and pressure. These values can

either be imported from the user defined variables in pl uto.i ni , or calculated at each

time step with user specified equations (Mignone et al. 2007).

3.3. PLUTO Code Setup

We then set up the PLUTO v4.4 hydrodynamics code by Mignone et al. (2007) to solve

the system of hydrodynamic equation over each time step. Each simulation is set up

based on the method outlined by Meyer et al. (2014). The simulations use a parabolic

reconstruction, which uses the piecewise parabolic method of Mignone (2014) to

reconstruct the data between time steps. In the piecewise parabolic method, the

parabolic interpolant is found using the cell average and extrapolated values of the left

and right edges. Time stepping is handled using a 3rd order Runge-Kutta total variation

diminishing scheme. The flux at each time step is then found using a Harten, Lax, Van

Leer (HLL) approximate Riemann Solver. The HLL solver uses the collision-less

Boltzmann equation to find the approximate Riemann solution for each time step, see

(Harten et al. 1983). which guarantees that the pressure will be positive when

computing the flux at the edges of a cell, and if the pressure is negative, the simulations

automatically stop (Mignone et al. 2007).
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Modifying the init.c file allows us to input starting parameters for ρI SM , ρw , v∗, vw ,

and p (calculated using equations 5 and 10). In the initial conditions we set up a

background area with the ambient density for the star from Kobulnicky et al. (2019b)

and found the pressure using Equation 5 for TI SM at equilibrium in the cooling curve.

We set the gas to move in the y-axis at v∗. Instead of defining an equal sized grid

around the origin, we set our domain to include y-axis and the positive x-axis. This

change does not affect the results of our simulations but allows us to save considerable

computation time. Inside of the grid we initialize the star with its stellar wind centered

at the origin (0,0). Our wind parameters are from finding ρw in a circle with a radius of

20 cells from the origin. This is identical to Meyer et al. (2014).

Our simulations assume a 2D cylindrical coordinate system, where the z −axi s of the

3D cylindrical coordinate system is set to a single value, giving us a polar coordinate

system (Mignone et al. 2007). At x = xmax , and y = ymi n borders we utilized outflow

boundary conditions. We set the ISM material to flow inwards with velocity v∗ at the

y = ymax boundary. The stellar wind is generated in a circle 20 pixels in radius, with the

center at the origin, by finding ρw = 0.1pc and then scaling it to the distance r from the

center. The x = xmi n border is set to a reflective boundary condition, which allows us to

restrict our simulations to positive x values by replicating the interactions between the

x −neg ati ve and x −posi t i ve gas at the boundary.

3.4. Simulation Setup

To start a simulation, we first set up the pluto.ini file with the initial parameters: R(0),

nI SM , v∗, vwi nd , TI SM and Ṁ from Kobulnicky et al. (2019b) and Green et al. (2022). We

calculate the faintest possible bow shock by assuming Ṁ is at the low end of the
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associated 3σ error given by Kobulnicky et al. (2019b). This allows us to account for any

errors in the data given when running our simulations.

Our first time step is set to be 0.1 years. The grid boundaries were set to

ymax ≈ R(0)∗4 for the positive and negative y-axis and xmax = ymax or xmax = 2∗ ymax

for the x-axis depending on the bow shocks width. Each axis minimum resolution is set

400 in the y-axis and either 200 or 400 in the x-axis depending on the stability of the

shock at the x −axi s boundary. A simulation then runs until it reaches a preset time,

(Tstop ), which is set to ∼ 60∗ tcr oss . After initial setup we ran the simulation for

105 −106 time steps to verify that the resulting bow shock is stable.

Some initial simulations resulted in an unstable bow shock where R(0) expands

continuously instead of reaching a stable limit. Because the stability of the shock

depends on the ram pressure of the stellar wind and ISM to be balanced, if R(0)

continued to expand past the theoretical limit (see Equation 14) we needed to adjust

our simulation setup to bring the parameters back into balance. To verify that the

simulated shock was an accurate representation of the star we looked at the shock over

the first 100000 time-steps to verify that the R(0) simulated matched the data.

If the simulation was not a match to the data, we adjusted each simulation using the

following methodology. If the winds termination zone was too far from R(0), we started

by changing the resolution to bring it closer to R(0). If this did not work without

lowering the resolution below 200X 400 pixels, we then adjusted the grid size to be

between ∼ 3−10R(0) to account for rounding in the grid size calculations and different

R(0). Our final simulation parameters for each star can be seen below in Tables 4 and 5.
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Table 4. Simulation Physical Parameters

Star Name R(0) nI SM TI SM v∗ vwi nd Ṁ tcr oss

Pc cm−3 K km s−1 km s−1 (10−10 M¯
yr ) Myr

G000.1169-00.5703 0.261 41 7748.8 16.3 1535.6 1530 1.6x10−2

ζ Ophiuchi 0.052 9 7596.2 38.0 1562.3 72 1.4x10−2

KGK 2010-10 0.085 11 7672.1 41.6 1512.09 289 2.7x10−3

CPR 2002A37 0.408 35 7983.6 78.1 1561.1 72391 5.0x10−3

BD+43 3654 0.955 29 7983.6 37.7 1283.8 125117 2.4x10−2

G342.5873+00.1600 0.266 20 7904.6 16.7 1596.8 786 1.6x10−2

NOTE—Physical parameters for each simulation. Each star is listed with the relevent pa-

rameters imputed into the pluto.ini file.
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Table 5. Simulation Spatial Parameters

Star Name xmax ymax Nx Ny tstop

Pc Pc Pc Myr

G000.1169-00.5703 5.0 2.5 400 400 1.3

ζ Ophiuchi 0.86 1.72 400 400 0.1

KGK 2010-10 1.0 1.0 200 400 0.2

CPR 2002A37 4.0 4.0 200 400 0.5

BD+43 3654 12 12 200 400 2.0

G342.5873+00.1600 6.3 3.15 400 400 1.2

NOTE—Spatial parameters for each simulation. Each

star is listed with the relevent parameters imputed into

the pluto.ini file.

Tables 4 and 5 gives an overview of the simulation parameters that we imputed into

the pluto.ini file before each run. The ymi n value is the same as the one used for ymax

in the negative direction. Each run takes approximately 1-3 days to complete when run

in parallel over 3 CPU cores. These parameters are representative of the actual runaway

stars as they assume that v∗ is in the same direction as v I SM . While this will not have

much effect on the simulations for stars with a v∗ that is perpendicular to our line of

sight, stars with a v∗ that includes significant motion towards or away from the sun will

be less accurate.
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4. ANALYSIS

4.1. Simulation Results

After running each simulation, we first created a composite plot of the density for

each simulation.

Figure 15. Plot of logρg as for each bow shock. The X and Y axis are scaled in parsecs, and the

color bar is in the log scale for density of particles. The plots are truncated from the full result

grid to highlight the bow shock. Each plot has units of logcm−3.
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In Figure 15 we can see the a log-scaled density plot of each star and its bow shock.

The shock for ζ Ophiuchi, G000.1169-00.5703, and G342.5873+00.1600 are thicker than

the other stars. We found that the bow shock of ζ Ophiuchi was the hardest to

accurately simulate. We believe this is caused by the highly asymmetrical shock seen in

the WISE image (see Figure 8), making accurate measurements of its R(0) from these

images as done in Kobulnicky et al. (2019b). Even though ζ Ophiuchi has a hard to

reproduce shock, we included it in our simulations due to its close proximity. While

wider than the rest of the shocks, we still can see that they are well-defined with the

highest density at the front of the shock. CPR 2002A37 has the largest region of shocked

stellar wind in the direction of travel. Because we are looking for an average of the

emission in the highest density zone of each shock with the lowest possible Ṁ , these

small variations will have a negligible result on our emission calculations.

4.2. Comparison to Meyer et al. (2014)

Looking at Figure 15, we can see that each bow shock has a different structure based

on the input parameters. Because each simulation is run using the same i ni t .c file, a

single star can be compared to the previous work by Meyer et al. (2014) as a

representative of the the whole set of simulations. We chose to compare the simulated

shock of KGK 2010-10 with the results of Meyer et al. (2014) MS2040 star. KGK 2010-10

was selected because of the similarities between its M∗ and v∗ and the MS2040 run by

Meyer et al. (2014). This allows us to verify that our simulations for each star are

accurately set up. Below we can see the results of KGK 2010-10’s simulation and the MS

2040 star from Meyer et al. (2014).
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Figure 16. Comparison between the MS2040 (left) star of Meyer et al. (2014) and KGK 2010-10

(right). The X and Y axis are in parsecs.

In Figure 16, we see that the overall shape of the bow shocks and the distribution of

gas is the same. The standoff distance between the stellar wind and the brightest part

of the bow shock is much shorter for the KGK 2010-10 simulation. This is a result of

setting the termination distance for the stellar wind much closer to R(0) than in Meyer

et al. (2014). The ISM for KGK 2010-10 is also much denser than the ISM for the MS2040

star, which accounts for the different size of each shock.

4.3. Comparison to WISE

We also want to verify that the simulations are accurately reproducing observed bow

shocks. For this comparison we selected the simulation results representative of BD

+43 3654 to compare with the composite image from the WISE database. BD +43 3654

was selected because the observed shock is highly symmetrical and well defined from

its progenitor star, which is similar to how our simulations are set up allowing for

comparisons between the star and its simulation.
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Figure 17. Image of BD +43 3654 from WISE (left) and simulations (right). The distance is in

parsecs, and the bar represents log density

Looking at Figure 17, we can infer that the overall shape of the simulated bow shock

is similar to WISE observations. The brightest part of BD +43 3654’s shock is in the

direction of travel In our simulation, the densest part of the shock is in front of the star,

which is what we would expect from the WISE image. Each simulated shock has a lower

thickness than the actual image, which is understandable due to the simulation using

the lowest value of M¯ with error taken into account.

4.4. Mean Output of Emitting Region

We analyzed the results of each simulation to find the bow shock luminosity (LBow )

for the Hα, HeI λ5876Å and [OI I I ] lines. To measure LBow , we corrected for the stellar

wind and un-shocked ISM present in the simulation results (Mohamed et al. 2012). The

stellar wind was corrected for by finding the regions where ρ <ρI SM and then setting
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ρI SM , p I SM and TI SM to zero. We removed the un-shocked ISM by finding the value for

ρI SM and TI SM in each cell, and set ρI SM , p I SM and TI SM to zero if either property was

than their initial value. We illustrate the results of this process with the density plot of

KGK 2010-10 in Figure 18.

Figure 18. Log ρ plot of KGK 2010-10 simulation with non shock regions set to zero. The axis are

in parsecs, and the scale is in l og (ρ). The plot has units of logcm−3.

In Figure 18, the bow shock with the non-shock region parameters set to zero. This

leaves us with only the bow shock of the star. The blue band at the front represents

residual high temperature and low-density shocked ISM material. From Figure 8 we see

that the brightest part of a shock is in the direction of travel. In Figure 18 we see that the

densest part of the shock is in the front. Since the brightest part of a runway stars bow

shock is also in the direction of motion, we can ignore the shocked material behind the

star in our luminosity calculations. To account for this we set ρ, p and T to zero for



45

each cell where y < 0. This gives us our final region for calculating the luminosity of

each bow shock.

Figure 19. Final region for luminosity calculations. The axis are in parsecs, and the scale is in

log (ρ). The plot has units of logcm−3.

The final region for KGK 2010-10 luminosity calculations can be seen in Figure 19.

Here we can see that by setting the parameters of the y < 0 regions to zero, we are able

to highlight the densest part of the shock. This gives us our ideal region for calculating

the mean emission in Hα, HeI λ5876Å and [OI I I ] lines. After the un-shocked material

was removed, we calculated the luminosity for a given (Λ) cooling curve using equation

20 below (Meyer et al. 2014).

Lshock = 2π
Ï

D
Λ(T )n2

H RdRd z (20)
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Here, D is the surface area of integration,Λ(T ) is the cooling rate calculated at a point

(x,y) from Equation 5 and nH is the number density at the same point. To determine

LHα we used equation A1 from Meyer et al. (2014) which is derived from an

interpolation of Table 4.4 in Osterbrock (1989).

ΛHα = 1.21x10−22T −0.9ne np er g s−1 cm−3 (21)

Using the same interpolation method with table 4.6 of Osterbrock (1989), we are able

to get Equation 22 for HeI λ5876Å below.

ΛHeλ5876Å = 4.27x10−23T −1.1ne np er g s−1 cm−3 (22)

The luminosity of the [OI I I ] emissions is calculated using Equation 17, which is

restated below as Equation 23. Again T1 = 33610K and T2 = 2180K Henney et al. (2009).

Λ[OI I I ] = 2.905x10−19zOne np e
−T1

T −
(−T2

T

)2

er g cm3 s−1 (23)

In Equations 21 - 23 ne and np are the number density of electrons and protons at a

given point in the emitting region. We calculated the values of nei and npi for theΛHα,

ΛOI I I , andΛHeλ5876Å emission lines where i = 1, 2, and 6 for H , He and O respectively.

npi =
mh An

uwi
cm−3 (24)

Here, mH is the mass of a hydrogen atom, An is the atomic mass of the element, u is an

atomic mass unit, and wi is the mass fraction of the element derived from the



47

metallically. We then use the results of Equation 24 in Equation 25 to get the number of

electrons.

nei = npH (1.0+0.5Az(1.0−wH −wHe )) cm−3 (25)

Where npH is the number of hydrogen atoms from Equation 24, Az , which we assume

to be 30.0, is the mean atomic weight of heavy elements, wH and wHe are the hydrogen

and helium mass fraction, respectively. We used Equations 21 - 25 to find the emission

at each grid particle of the simulation. Taking the average of the emission in the y > 0

region averaged over the volume, we measured the average cooling rates of theΛHα,

ΛOI I I , andΛHeλ5876Å lines for the bow shock. This result can be found below in Table 6.

Table 6. Mean Emissivity

Star Name εHα εHeλ5876Å ε[OI I I ]

er g s−1 cm−3 er g s−1 cm−3 er g s−1 cm−3

G000.1169-00.5703 1.50e-21 5.32e-23 1.25e-20

ζ Ophiuchi 2.28e-23 5.92e-25 1.09e-20

KGK 2010-10 1.74e-22 5.02e-24 3.36e-20

CPR 2002A37 9.50e-22 2.26e-23 9.54e-19

BD+43 3654 2.10e-21 6.30e-23 2.71e-19

G342.5873+00.1600 3.56e-22 1.26e-23 3.18e-21

NOTE—Mean emissivity of each star. The value given is the average

emission in er g s−1 cm−3 for the region in the +y axis.

In Table 6, we see that the weakest emissivity is in HeI λ5876Å, while the strongest is

for [OI I I ]. This agrees with Meyer et al. (2014), who found the total [OI I I ] emission

was an order of magnitude higher than hydrogen.
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4.5. Luminosity Visualization

To verify that the emission profile for each bow shock matches the density plots, we

generate images for theΛHα,ΛHeλ5876Å,Λ[OI I I ] cooling emissions of each shock.
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Figure 20. Hα emissivity for each star. The axes are in units of Pc and emissivity is in

er g s−1 cm−3. The plots are truncated from the full result grid to highlight the bow shock.



50

Figure 21. HeI λ5876Å emissivity for each star. TThe axes are in units of Pc and emissivity is in

er g s−1 cm−3. The plots are truncated from the full result grid to highlight the bow shock.
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Figure 22. [OI I I ] emissivity for each star. The axes are in units of Pc and emissivity is in

er g s−1 cm−3. The plots are truncated from the full result grid to highlight the bow shock.
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Looking at the emissions maps, we see that the brightest part of each shock is at the

bow shocks front. We can also see in Figures 20 - 22 that, as in Figure 15, the bow shock

of ζ Ophiuchi is not nearly as well defined as the other stars. However in these images it

is apparent that there is an area of shocked ISM in front of the star, and it has a clearly

defined bright spot in front of its direction of travel similar to the other simulations,

and WISE observation.

It is also apparent that for the Hα and HeI λ5876Å emission of CPR 2002A37, that the

brightest spot is on the side of the star, yet its [OI I I ] emission is still brightest in the

front. This confirms the results of Meyer et al. (2014), which found that the Hα

emission were brightest on the side of a runaway star with a v∗ of 70kms−1. The ideal

result for the Hα emission of CPR 2002A37 would be to have its peak emissions in front

of the star for simultaneous observation in multiple wavelengths. However, because

the shock is not visible opposite the direction of travel in the WISE image, we will find

average emissions for the Hα and HeI λ5876Å bands in the y > 0 region for each star to

allow a single image to be taken instead of searching for CPR 2002A37’s Hα bright spot.

4.6. Observatory Selection

Since the runway stars we selected can be found across the celestial sky, we need to

select telescopes in both the northern and southern hemisphere. Further the ideal

observatories(s) will have an open submission policy. There is one US based

observatory meets this selection criteria: The Gemini Observatory, which consists of

twin 8.1 meter telescopes. Each telescope of the Gemini Observatory is located in an

ideal location for observation: one on Mauna Kea in the northern hemisphere, and one
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in the southern hemisphere on the Cerro Pachon mountain in Chile6. Since each

telescope is the same size and has similar instruments, constructing an observability

feasibility study of each bow shock is greatly simplified.

In this feasibility study, we will find the signal to noise ratio (SNR) for specific lines on

the Gemini Multi-Object Spectrograph (GMOS) instrument in the visible spectrum

using intensities derived from bow shock simulations. This instrument provides the

ideal capabilities to observe the Hα, HeI λ5876Å, and [OI I I ] lines, with its

0.36−1.03µm sensitivity 7. Both GMOS-N and GMOS-S have nearly identical

capabilities8, therefore a signal to noise estimate for one telescope will be valid for the

other. To verify that the bow shocks for each star simulated can be observed in the Hα,

HeI λ5876Å, and [OI I I ] emission lines, we will require that the SNR measured exceeds

10 using the GMOS spectrograph.

4.7. Bow Shock Luminosity

We measure the luminosity from the emmisivity of the bow shock by first defining a

square region for the brightest part of the shock. In Figure 8, the width of each shock in

the direction of travel is less than the 5.5 arcminute limit of the GMOS instrrument9.

We measure the width of the brightest region of a selected stars shock in arcminutes

from the WISE image and multiply the width by the stars distance in Table 2 to get its

width in Pc. The measured regions are highlighted in Figure 23.

6 https://www.gemini.edu/about/gemini-telescopes-science-and-technologies
7 https://www.gemini.edu/instrumentation/gmos
8 https://www.gemini.edu/instrumentation/gmos
9 http://www.gemini.edu/sciops/instruments/factsheet
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Figure 23. WISE images of selected runaway stars. As in Figure 8, each star is highlighted by a

circle, and the selected output region is represented by a square.
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In Figure 23, the square represents a 2D slice of the total 3D emission zone defined by

the maximum slit width of GMOS. We then multiplied the resulting volume of a shock

by its correspondingΛemmi si ons to get the total luminosity of the brightest region.

Table 7. Output Luminosity

Star Name Width Width Hα HeIλ5876Å [OI I I ]

Arc Min Parsec er g s−1 er g s−1 er g s−1

G000.1169-00.5703 0.5 0.016 3.17e+28 1.13e+27 2.65e+29

ζ Ophiuchi 1.0 0.500 6.78e+30 1.76e+29 3.25e+33

KGK 2010-10 0.2 0.150 7.22e+30 2.08e+29 1.40e+33

CPR 2002A37 0.3 0.100 7.68e+30 1.82e+29 7.71e+33

BD+43 3654 1.0 0.602 1.13e+33 3.37e+31 1.45e+35

G342.5873+00.1600 0.2 0.186 2.80e+31 9.91e+29 2.51e+32

NOTE—Luminosity of slit region target for each bow shock. The distance used

is the same as in Table 2.

In Table 7, the luminosity of BD+43 3654’s shock is two orders of magnitude higher

than the other bow shocks. Given that the mass of BD+43 3654 is about 20M¯ larger

than any other simulated star and its observed bow shock is so clearly defined (despite

distance of 1577 parsecs), this result is not too surprising.

4.8. Flux Calculations

To find the amount of light that reaches the GMOS spectrograph each second we

need to calculate to output flux of each line. Because the maximum slit width for
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GMOS is 5", we need to scale the output luminosities in Table 7 to the amount emitted

by the region that the instrument observes. We calculates the observable flux (f) for

each bow shock on the telescope detector using equation 26 below.

f = L

4πd 2

Sw ∗Sl

A
(26)

In Equation 26, L is the output luminosity corresponding to the target area from

Table 7,Sw is the width of the GMOS slit, Sl is the length of the GMOS slit, A is the area

of the bow shock section (in arc seconds), and d is the star’s distance (Table 2). Because

the slit for GMOS is up to 5.5′ long, we use the width of the bow shock in arc seconds

from Table 7 for Sl to constrain the maximum flux.

Table 8. Observable Flux

Star Name fHα fHeλ5876Å f[OI I I ]

er g s−1cm−2 er g s−1cm−2 er g s−1cm−2

G000.1169-00.5703 2.11e-14 7.49e-16 1.77e-13

ζ Ophiuchi 1.95e-14 5.07e-16 9.35e-12

KGK 2010-10 9.04e-15 2.61e-16 1.75e-12

CPR 2002A37 4.92e-14 1.17e-15 4.94e-11

BD+43 3654 2.19e-12 6.57e-14 2.83e-10

G342.5873+00.1600 2.29e-14 8.10e-16 2.05e-13

NOTE—Flux on detector from each bow shock.
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In Table 8 the highest simulated flux for each star is in [OI I I ], while the HeI λ5876Å

is lowest. This lines up with the results in Table 7, where [OI I I ] had the highest

luminosity, and HeI λ5876Å had the lowest.

4.9. Integration Time Calculations

We used the integration time calculator for GMOS10 to determine which bow shocks

can be detected in the selected lines. To calculate the SNR time we used the following

settings: extended source with a uniform surface brightness of 22.0mag /ar csec2, a

single emission line at 6563Å, 5876Å, or 5007Å for Hα, HeI λ5876Å or [OI I I ]

respectively. the line flux was set to 1.55x10−15 er g s−1 cm2, and a continuum flux

density of 1.0x10−17 er g s−1 cm2 Å−1. These settings were chosen because they are the

default for the instrument. The minimum line width of 600kms−1 allowed by GMOS,

for [OI I I ] integration, is much larger then the ∼ 5.0kms−1 thermal velocity of the gas.

This means that the instrument constrains the maximum resolution of each line

observation.

The B600 grating was chosen because of its optimal performance in the visible

spectrum compared to the other gratings, and set our central wavelength to 585.0nm,

for a focal plane unit with a 5.0" slit. For our detector properties, we used the default

setup with 2 pixel spatial binning. We assumed moderate observing conditions which

allow 70% image quality, 70% clouds, 50% water vapor, 50% background light and an

air-mass of 1.5. Each integration calculation was set up to find the SNR for a specified

10 http://www.gemini.edu/instrumentation/gmos/exposure-time-estimation



58

exposure time, and using the optimum SNR ratio analysis method for a sky aperture

with a 5x ratio between the sky and target apertures.

For each SNR calculation, we started with the default 900 second integration time. If

this did not produce a SNR above 10, we increased the time by until all wavelengths had

a SNR greater than 10. The SNR in Hα and [OI I I ] lines is greater than 10 for each bow

shock, with the HeI λ5876Å line having the lowest SNR for each shock. Because the

SNR ratio for Helium is much lower than the other bands, it is the determining factor

on integration time to get each line in one observation.

Only one star, KGK 2010-10, had an SNR below 10, with a SNR of 9. We increased the

integration time to 1500 seconds for KGK 2010-10. This resulted in a SNR ratio of 10 for

KGK 2010-10.

Table 9. GMOS Integration Time and SNR

Star Name Integration Time Hα HeI λ5876Å [OI I I ]

s SNR SNR SNR

G000.1169-00.5703 900 98 14 244

ζ Ophiuchi 900 94 11 1780

KGK 2010-10 1500 81 10 994

CPR 2002A37 900 151 18 4092

BD+43 3654 900 1016 173 9794

G342.5873+00.1600 900 102 14 263

NOTE—Final recommended integration time, and minimum SNR for

each bow shock in Hα, HeI λ5876Å, and [OI I I ].
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Table 9 gives our final anticipated SNR ratio for the selected integration times. With

texp > 900s, Hα, and [OI I I ] bands can be expected to have SNR>> 10. this result is not

unexpected as observations in Hα and [OI I I ] by van Buren et al. (1995) and Gull &

Sofia (1979) respectively used other, smaller telescopes to observe bow shocks in these

two wavelengths. Given the high SNR for BD +43 3654, and CPR 2002A37 in

HeI λ5876Å, they would be ideal targets to verify the simulations before attempting to

observe the fainter bow shocks simulated. We also also recommend observing ζ

Ophiuchi’s bow shock despite the stars highly asymmetrical shock because of its

proximity to Earth.
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5. CONCLUSION

The 2D hydrodynamics simulations we carried out produced results which allow us

to determine the observability of runaway star bow shocks using the Gemini telescopes.

We used the PLUTO code by Mignone et al. (2007) based on the methodology outlined

by Meyer et al. (2014), to produce simulations for six different stars from Kobulnicky

et al. (2018b). These simulations gave results that allow us to determine the

observability of bow shocks in Hα, HeI λ5876Å, and [OI I I ] by the GMOS instrument.

We based our simulations parameters on the six stars selected from Kobulnicky et al.

(2018b). Using the methodology outlined by Meyer et al. (2014), we then derived the

remaining physical parameters required. The heating and cooling functions were

derived separately using the methodology outlined by Meyer et al. (2014). This

procedure left us with six sets of well defined parameters to run our simulations.

Each simulation was run for at least 0.5 Myr before we analyzed the results to

determine the observability of each bow shock in Hα, HeI λ5876Å, and [OI I I ]. This

analysis was done by removing any un-shocked stellar wind and ISM material from the

results before finding the emissivity of the bow shock. We then plotted the resulting

emissivity maps of each simulation to verify that the bow shocks structure matched

precious work and observations by WISE.

Each emissivity map was then used to derive the luminosity of the brightest part of

the bow shock. in doing so we were able to verify that the luminosity for Hα, and

[OI I I ] were of the same order of magnitude as previous work by Meyer et al. (2014).

This allowed us to find the flux of each bow shock in the three selected wavelengths

that would be observable by the GMOS instrument of the Gemini Telescopes. After
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running the flux values for each emission through the GMOS observation calculator we

found the minimum observation time for each shock to be observed in all 3 bands

simultaneously.

Our simulations have shown that it is possible to observe the bow shocks of runaway

stars in Hα, HeI λ5876Å, and [OI I I ] with moderate integration times. The initial

targets would be ζ Ophiuchi, CPR 2002A37, and BD +43 3654. CPR 2002A37 and BD +43

3654 have the highest SNR of our simulations which make them ideal for validating the

data set. This would then allow the data to be extrapolated to other O class stars.

Because ζ Ophiuchi’s is the closest runaway star in our data set to Earth, and has a long

straight bow shock it would also be a an ideal candidate for initial observation. This

would allow for insights into expanding the data set to include runway stars with

asymmetrical bow shocks. Simultaneously this would allow for fainter runaway star

fluxes to be calculated through further simulation refinement. By expanding the data

set to allow for a much larger range of M∗ than our initial study, an ISM composition

survey through runaway bow shock spectroscopy could be accomplished out using

spectroscopy of runaway stars around the Galaxy.
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